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"Why should we live with such hurry and waste of life?
We are determined to be starved before we are hungry."

— Henry David Thoreau, Walden





Abstract

Data Science and Machine Learning are two valuable allies to fight financial crime,

the domain where Feedzai seeks to leverage its value proposition in support of its mission:

to make banking and commerce safe. Data is at the core of both fields and this domain, so

structuring instances for visual consumption provides an effective way of understanding

the data and communicating insights.

The development of a solution for each project and use case requires a careful and

effective Machine Learning Model Evaluation stage, as it is the major source of feedback

before deployment. The tooling for this stage available at Feedzai can be improved,

accelerated, visually supported, and diversified to enable data scientists to boost their

daily work and the quality of the models.

In this work, I propose to collect and compile internal and external input, in terms of

workflow and Model Evaluation, in a proposal hierarchically segmented by well-defined

objectives and tasks, to instantiate the proposal in a Python package, and to iteratively val-

idate the package with Feedzai’s data scientists. Therefore, the first contribution is MevaL,

a Python package for Model Evaluation with visual support, integrated into Feedzai’s Data

Science environment by design. In fact, MevaL is already being leveraged as a visualiza-

tion package on two internal reporting projects that are serving some of Feedzai’s major

clients.

In addition to MevaL, the second contribution of this work is the Model Evaluation

Topology developed to ensure clear communication and design of features.

Keywords: Financial Crime, Data Science, Data Visualization, Machine Learning, Model

Evaluation, Python Package
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Resumo

A Ciência de Dados e a Aprendizagem Automática [277] são duas valiosas aliadas

no combate à criminalidade económico-financeira, o domínio em que a Feedzai procura

potenciar a sua proposta de valor em prol da sua missão: tornar o sistema bancário e o

comércio seguros. Além disso, os dados estão no centro das duas áreas e deste domínio.

Assim, a estruturação visual dos mesmos fornece uma maneira eficaz de os entender e

transmitir informação.

O desenvolvimento de uma solução para cada projeto e caso de uso requer um estágio

cuidadoso e eficaz de Avaliação de Modelos de Aprendizagem Automática, pois este

estágio coincide com a principal fonte de retorno (feedback) antes da implementação

da solução. As ferramentas de Avaliação de Modelos disponíveis na Feedzai podem ser

aprimoradas, aceleradas, suportadas visualmente e diversificadas para permitir que os

cientistas de dados impulsionem o seu trabalho diário e a qualidade destes modelos.

Neste trabalho, proponho a recolha e compilação de informação interna e externa, em

termos de fluxo de trabalho e Avaliação de Modelos, numa proposta hierarquicamente

segmentada por objetivos e tarefas bem definidas, a instanciação desta proposta num

pacote Python e a validação iterativa deste pacote em colaboração com os cientistas

de dados da Feedzai. Posto isto, a primeira contribuição deste trabalho é o MevaL, um

pacote Python para Avaliação de Modelos com suporte visual, integrado no ambiente de

Ciência de Dados da Feedzai. Na verdade, o MevaL já está a ser utilizado como um pacote

de visualização em dois projetos internos de preparação de relatórios automáticos para

alguns dos principais clientes da Feedzai.

Além do MevaL, a segunda contribuição deste trabalho é a Topologia de Avaliação de

Modelos desenvolvida para garantir uma comunicação clara e o design enquadrado das

diferentes funcionalidades.

Palavras-chave: Criminalidade Económico-Financeira, Ciência de Dados, Visualização

de Dados, Aprendizagem Automática, Avaliação de Modelos, Pacote Python
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1
Introduction

1.1 Problem Statement and Motivation

Data Science (DS) and Machine Learning (ML) consist of a set of different tasks inter-

spersed sequentially or in a loop, aimed at discovering actionable insights and/or creating

models that allow the signal to be extracted from a dataset for use in future data without

direct human intervention. However, within these tasks, there is a particularly interesting

part for the data scientist since it is the first part where he/she gets some feedback on the

state of the solution being developed — that part is called Model Evaluation.

Before deployment, it is only during this evaluation that the data scientist obtains

quantitative and qualitative information on the suitability of the models developed to

solve the intended problem. Although all parts are important, this part has special im-

portance, given the insights that can be obtained and the incentive for new iterations.

In other (more practical) words, usually, multiple ML models are methodically trained

and evaluated in an exploratory process in order to identify the set of features, hyperpa-

rameters and other variables that allow the creation of the best possible model, within

a time limit, for a given problem [108]. For Feedzai to continue to develop its DS-based

value proposition in the field of financial technology (fintech) to fight financial crime, it

is essential to ensure that data scientists have access to the appropriate tools to design

and tune models for ever-changing challenges.

Currently, for Feedzai’s data scientists to be able to fully analyze their ML models in

a customized fashion, they have to create their own, sometimes one-shot, computational

notebooks and/or scripts (single-purpose code). This recurring necessity is, in most cases,

an impediment to deepening the Model Evaluation procedure due to lack of time or

other resources (or to adapt it to something more standardized, shareable, and ready

to communicate). Although Feedzai’s data scientists may use some in-house standard
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CHAPTER 1. INTRODUCTION

capabilities for a first screening of Model Evaluation, there is no further tooling (except

strict computational notebooks or scripts previously developed for a specific use case) to

extend these benefits to consistent procedures and to test new ideas efficiently.

1.2 Main Goal and Objectives

1.2.1 Main Goal

The main goal of this master’s thesis is to create a Python package to be integrated into

Feedzai’s DS environment and improve the capabilities currently available for Feedzai’s

data scientists to evaluate ML models with visual support. Developing ML models is a

highly iterative process, composed of several pieces that must be tracked (data, both at

the level of features, and at the level of samples used between training, validation, and

testing, hyperparameters, algorithms, available computing resources, etc.), resulting in

a demanding and difficult procedure in terms of comparing and evaluating models for

each case [107].

This goal is backed by the following research question: how can we improve, accel-

erate, visually support, and diversify Feedzai’s current Model Evaluation capabilities to

enable data scientists to boost their daily work and the quality of their models? This

question covers four fundamental pillars for the development of the proposed solution

aiming at Model Evaluation and model-wise decision-making:

• Improve current features in terms of design or usability.

• Accelerate features to be customizable and easy-to-use.

• Visually support features with appropriate charts.

• Diversify features to allow other tasks to be performed out-of-the-box (OOTB).

1.2.2 Objectives and Constraints

The proposed solution should be aligned with the following targets:

• It should be integrable in Feedzai’s DS environment.

• It should be a general-purpose solution, that is, it should work for all of Feedzai’s

use cases.

• It should be modular and extensible.

• It should be geared to the financial crime detection domain (the main implications

of this domain are described in the Background Knowledge and Literature Review

chapter, namely in the Feedzai section).

• It should be aimed at interactive Model Evaluation but also adaptable as a set of

building blocks for the construction of input-agnostic computational notebooks

(on-demand versus automation/reporting).
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1.2.3 Success Criteria

In addition to the main goal and the derived objectives, there is a set of metrics established

initially to facilitate the comparison of the work done with a possible definition of success.

In this way, the success criteria are:

• The Python package enables the exploration of the created models from at least a

new perspective that is not currently available OOTB in Pulse (Feedzai’s end-to-end

(e2e) ML platform).

• At least two action points of each of the defined and selected tasks/requirements

are implemented and ready to use.

• All small, low-effort action points related to improvements of what Pulse currently

offers in terms of Data Visualization (DV) for Model Evaluation are implemented

(if the charts in question are implemented in the Python package).

• The Python package receives approval from the Product and Customer Success

departments.

• The Python package is tested and validated by Feedzai’s data scientists.

• All information about this project is documented in a central repository at Feedzai.

• The Python package features a modular architecture so that it is possible to add

new functionalities efficiently.

• The Python package is complemented with a set of tutorials and documentation.

• The Python package is promoted internally on at least two occasions.

• The Python package is promoted externally on at least one occasion.

1.3 Contributions and Document Structure

The main contributions of this work are: (i) a Python package, MevaL (the explanation

of this name and the project logo can be found in Appendix D), for visual Model Evalua-

tion (standalone or for reporting); (ii) a Python package design adapted to Feedzai’s DS

environment and iteratively implemented with the help of data scientists and data visual-

ization engineers; (iii) a topology to organize the different features for Model Evaluation.

In order to fully describe them, this work is divided into the following chapters (there

are also some appendices that can be checked at the end of the document):

1. Introduction (current chapter): this chapter is dedicated to inducing the problem

and the proposed solution.

2. Background Knowledge and Literature Review: this chapter is dedicated to present-

ing the related and relevant work to characterize the general panorama, as well as

Feedzai itself.
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CHAPTER 1. INTRODUCTION

3. MevaL, a Python Package for Visual Model Evaluation: this chapter is dedicated

to describing the details that allowed defining the scope of the Python package, as

well as its functionalities.

4. User Validation and Case Study: this chapter is dedicated to reporting the feed-

back and conclusions of the user validation initiatives carried out, namely the user

interviews where MevaL was demonstrated and evaluated qualitatively. It also con-

tains the description of two internal projects at Feedzai that are taking advantage

of MevaL.

5. Future Work and Conclusion: this chapter is dedicated to highlighting the main

conclusions drawn throughout the development, as well as to project possible future

iterations.
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2
Background Knowledge and Literature

Review

2.1 Introduction

Since this work seeks to tackle the topic of ML Model Evaluation with visual support, via

a Python package, it is essential not only to characterize Feedzai and its domain, but also

to learn from related works. Thus, this chapter is divided into two main sections.

First, the Background Knowledge section is divided into four independent parts,

each one designed to briefly describe Financial Crime, Data Science and Machine Learn-

ing, Data Visualization and, finally, Feedzai itself (especially from the point of view of

the problem to be solved).

Second, in order to get to know the landscape of works in this area and the like,

essential to enrich the in-house input collected and justify some of the design decisions

for the developed Python package, the Literature Review section is divided as follows

(this can be seen as its high-level scope):

1. Work related to Model Evaluation with Visual Support, that is, visual interfaces

that help to evaluate models. In addition to papers, Python, R, and Java virtual

machine (JVM) packages will also be analyzed (Python and R are two of the most

used programming languages for DS and ML [281]), which, in a more practical

way, also seek to contribute to the development of this area and the concrete tools

available.

2. Work related to Model Evaluation in which the visual support is null (or clearly a

secondary element) will be discussed. The main motivation for considering these

works is to explore options such as statistical tests, in which the focus is on a specific
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CHAPTER 2. BACKGROUND KNOWLEDGE AND LITERATURE REVIEW

set of formulas and numbers, and to stimulate ideas to make this type of work more

visual.

3. Work related to Data Visualization not applied to this specific context. Although

these works do not have a direct application to Model Evaluation, they have charac-

teristics that can be leveraged.

2.2 Background Knowledge

2.2.1 Financial Crime

Financial crime, also known as economic crime [74], can be viewed as improperly and

unlawfully transferring property from one person or entity to another [333]. It is just an

umbrella term that abstracts all the details of this illegal mapping that can take many

forms. Credit card fraud, bank fraud, point of sale (POS) fraud, identity theft, and money

laundering are just a few examples of financial crime.

According to PwC’s 2020 Global Economic Crime and Fraud Survey [231], 47% of

respondents stated that their companies had been victims of financial crime in the last

24 months, the second highest percentage in the past 20 years (only surpassed by 49%

in 2018 [230]). Additionally, according to a study from Juniper Research, the value

of online fraudulent transactions is expected to reach USD 25.6 billion by 2020 [276].

Since 2013, the percentage of organizations that experienced attempted and/or actual

payment fraud has gone up [22], and in 2018 and 2019 it exceeded 80% [23]. Regarding

occupational fraud, fraud committed against an organization by its people, of 2504 cases

from 125 countries, the total losses exceeded USD 3.6 billion [24]. From an investment

point of view, estimated spending on anti-money laundering (AML) technology solutions

exceeded USD 8 billion in 2017 [292] (a proxy for an active problem). Regardless of the

perspective, it is possible to see that the numbers associated with the different types of

financial crime are overwhelming.

In the context of this work, there are three verticals to highlight: transaction fraud,

money laundering, and account opening fraud.

Transaction fraud concerns the different flavors of detecting fraud as transactions

come by in real-time [83]. For banks and acquirers [321], this generally means assessing

the risk of prepaid, debit, credit, and ATM transactions. For merchants, this means

typically assessing the risk of e-commerce transactions.

Regarding account opening fraud, there are two main types to consider: true name

fraud and synthetic fraud [80]. In true name fraud, a criminal will try to take advantage

of the personal information available to apply for an account in the victim’s name. On

the other hand, in synthetic fraud, the criminal will try to fabricate a new identity. So, for

example, the criminal will attach a fake name to a real social security number.

Finally, money laundering is the process of integrating the proceeds obtained illegally

into the legitimate mainstream of the financial system [287]. The main goal of money
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laundering is to eliminate the origin of the income obtained so that it looks similar to the

normal money that circulates in the financial system. However, there is a fundamental

difference in money laundering in relation to the types that have fraud in their name:

the fraudsters already have the illicit money. This means that, unlike transaction and

account opening fraud, in money laundering normally no one complains (about credit

card transactions made without the cardholder’s consent, for example).

A possible approach to fight and mitigate the harmful effects of financial crime is to

leverage DS and ML [206] together with domain knowledge for the settlement of systems

and communication flags for this global problem. Given the ever-changing scenario

between crimes committed and their detection/prevention, as well as the number of

transactions made daily by people as a proxy for the size of the global financial system, it

is essential to work on how DS and ML derivatives are evaluated during its design against

the references considered relevant. So, this master’s thesis focuses precisely on evaluating

the adequacy of the ML models, the main component responsible for answering whether

a given item is associated with fraud or not, before its introduction into a system in action,

and on the potential tooling improvements for Feedzai’s data scientists to design these

models according to the needs of different stakeholders.

2.2.2 Data Science and Machine Learning

DS is the intersection of different processes and methods for analyzing and understanding

actual phenomena with data [102]. These processes and methods are mainly derived from

Data Analysis, Statistics, and ML [329].

In order to structure such an effort, there are different methodologies that can be

followed. In general, these are composed, in addition to understanding the problem in

question, by one (or more) data acquisition phase(s), one (or more) modeling phase(s),

and, finally, one (or more) deployment phase(s). An example is the Team DS Process, a

methodology compiled by Microsoft [184]. It consists of five big steps (which are not

necessarily sequential, as they can be revisited over time):

1. Business understanding

2. Data acquisition and understanding

3. Modeling

4. Deployment

5. Customer acceptance

The data acquisition and understanding stage is divided into at least three parts: data

wrangling, exploration, and cleaning. Similarly, the modeling stage is divided into at

least three blocks: feature engineering, model training, and Model Evaluation.

Another example of a (six-step) workflow is that of Uber that inspired Michelangelo,

its e2e ML platform [108]:
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1. Manage data

2. Train models

3. Evaluate models (also known as (a.k.a.) Model Evaluation)

4. Deploy models

5. Make predictions (online)

6. Monitor predictions (online)

Based on this general overview of the DS lifecycle, it is possible to get an idea of where

ML fits (and that real-world problems are not singular e2e predictive problems [193]).

First of all, ML is the field where different algorithms and statistical models are leveraged

to detect patterns in data automatically, and then to take advantage of those patterns to

predict future data, and/or to make other kinds of decisions under uncertainty [45, 202].

There are four main types of ML: supervised, semi-supervised, unsupervised, and

reinforcement learning.

In supervised learning (the type of interest in this work), the main goal is to use a

dataset, that is, a collection of N labeled instances {(xi , yi)}Ni=1, to produce a model that

takes a feature vector x as input and outputs some information (a score or a probability,

for example) that allows deducing its label y [45]. Basically, it is intended to find the class,

the real number or a more complex structure, that sums up (from a set of features to a

label) an unknown instance according to the user’s objective.

In unsupervised learning, on the other hand, the main goal is to use an unlabeled

dataset, {xi}Ni=1, to produce a model that takes a feature vector x as input and either

transforms it into another vector or into a value that can be used to solve a practical

problem such as clustering, dimensionality reduction, or anomaly detection [45]. A

slightly more concrete example is the application of Isolation Forest to detect anomalies

in card transactions since these anomalies can mean the fraudulent use of these same

cards [171]. Isolation Forest is an algorithm that generates an ensemble of trees and

allows the detection of abnormal instances (based on the dataset) by calculating the

shortest average path lengths on the trees.

In semi-supervised learning, the main goal is similar to the goal of supervised learning

in the sense that the dataset has both labeled and unlabeled instances, and that these

instances can help the algorithm to produce a better model according to the metrics

defined by the user [45].

Finally, reinforcement learning is a subfield with a lot of specificities. Generally speak-

ing, reinforcement learning tries to solve problems where decision making is sequential,

and the goal is long-term. At the same time, the types presented previously try to solve

one-shot decision-making problems where instances are independent of one another and

the predictions made in the past [45].

Within supervised learning, there are several problems, where classification and re-

gression problems stand out. In both problems, the main goal is to learn a mapping
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from feature vectors x to labels y [202]. The difference is in the representation of the

labels (and, of course, the algorithms to be used, the tasks to be solved, the metrics to be

optimized, among other details):

• For binary classification problems, y ∈ {1, ...,C} with C = 2. C is the number of

classes.

• For multi-class classification (MCC) problems, y ∈ {1, ...,C} with C > 2.

• For multi-label classification problems, y ∈ {1, ...,C} but the class labels are not

mutually exclusive.

• For regression problems, y ∈R (y is continuous).

That said, imagining that the objective is to classify binary-labeled transactions as

genuine or fraudulent, and assuming that all steps up to model training have been com-

pleted, it is necessary to divide the dataset into (at least) two subsets: the training set and

the test set. The training set, as the name implies, will serve to train the model, that is,

to provide the instances that an algorithm can use to learn to map, as best as possible,

instances for the appropriate (according to the model) labels. Thus, in order to get an

unbiased evaluation of the quality of the model, the test set, with instances "never seen

before", is used — hence the utility of dividing the data into two subsets.

If the model is able to correctly map these instances to the expected labels, according

to a metric and a pre-established minimum, then the model is said to generalize well and

can be used for predictions. Generalization is fundamental because, at the end of the day,

the interest is in predicting the labels of new instances, that is, it is important to ensure

that the model works as a reliable function approximation of the true unknown mapping

function (and not as a reliable function approximation of all the idiosyncrasies of a small
sample) [202].

Other strategies for splitting the dataset can be considered, especially if there is an

interest in evaluating different configurations (or hyperparameters) of ML models. There

is a risk of over-adapting (or overfitting) the model to existing historical data by experi-

menting with different hyperparameters if the dataset is divided only into two parts. In

this case, there is one more step, the choice of hyperparameters or validation, in addition

to assessing the quality of the model, which makes it essential to have a separate set to test
the various models with the different hyperparameters and, in the end, test the apparent

best model in a separate set as described in the previous paragraph [67]. Thus, there are

three strategies to highlight:

• The first strategy to consider is the division into three subsets: the train/valida-

tion/test split [67]. This strategy can be useful in a context where large amounts of

data exist.

• The second one is called k-fold cross-validation (CV) and is one of many variants

of the CV procedure [21] (a kind of resampling procedure). The main idea is to
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consider k folds (or partitions) of training data, where k−1 folds are used for training

and the rest for testing — something that can be particularly useful in contexts where

the amount of data is not so large. A separate test set will later be used for the final

evaluation of the model trained with all the data used during the CV procedure and

the best hyperparameters [67, 87]. There is also a stratified variant of this algorithm,

suitable for imbalanced (in relation to the class of each instance) datasets, which

keeps the original ratio of classes in each fold constant.

• Finally, temporal CV is also an interesting option when working with time-series

data. In the above strategy, it is assumed that the instances are independent and

identically distributed, which contrasts with the correlation between instances close

in time (autocorrelation) in time-series data [67]. Thus, in a simple way, the tempo-

ral CV can be seen as a k-fold CV strategy where the first k folds are used for training

and the (k + 1)th fold is used for testing (successive training sets are supersets of

those that come before them).

A model is the product of a given (parametric or nonparametric) algorithm, its hyper-

parameters, and the data used. In order to assess the quality of such a model, performance

metrics can be used. Once the model outputs a value between 0 and 1 (not necessarily

a probability value [207]), it is necessary to define the classification/decision threshold

(a kind of dataset cut-off point) that will define the output value or score from which a

given prediction will be labeled positive. In some cases, the value 0.5 is considered as

the classification threshold, but depending on the context, different values can help to

produce better results.

In binary classification, when comparing the labels obtained using the model with the

expected labels, it is possible to obtain a set of performance metrics from the confusion

matrix [121]. The confusion matrix is a matrix that groups the labels obtained with the

model according to each class and their correctness. Considering two classes, where C = 1

is the positive class and C = 0 is the negative one:

• If the actual class and the predicted class are C = 1, a True Positive (TP) is obtained.

• If the actual class is C = 0 and the predicted class is C = 1, a False Positive (FP) is

obtained.

• If the actual class is C = 1 and the predicted class is C = 0, a False Negative (FN) is

obtained.

• If the actual class and the predicted class are C = 0, a True Negative (TN) is obtained.

From the confusion categories, it is possible to calculate several metrics [226, 328],

among which the following stand out:

• Accuracy is the fraction of labels that a model correctly predicted. This performance

metric is not used in this work due to the bias caused by the large number of TNs in
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imbalanced contexts. Formally,

Accuracy = T P+TN
T P+FP+FN+TN .

• Precision is the fraction of predicted positive labels that a model correctly predicted.

Formally, P recision = T P
T P+FP . Precision is also known as Positive Predictive Value

(PPV).

• Recall is the fraction of actual positive labels that a model correctly predicted. For-

mally, Recall = T P
T P+FN . Recall is also known as True Positive Rate (TPR) or Sensitiv-

ity.

• False Positive Rate (FPR) is the fraction of actual negative labels that a model incor-

rectly predicted. Formally, FPR = FP
FP+TN .

• F1 Score is the harmonic mean (a kind of weighted average) of Precision and Re-

call [68]. Since the relative contribution of both metrics are equal, F1 Score can

be seen as a metric that tries to balance both Precision and Recall. Formally,

F1Score = 2 · P recision·RecallP recision+Recall .

• Complementing the metric above, it is possible to consider a more general perfor-

mance metric, the Fβ Score, with a positive real factor β that allows more weight

to be attributed to one of the metrics that make up this one. Thus, the F0.5 Score

is a good alternative to give more weight to Precision, while the F2 Score is a good

choice for a similar effect on the Recall side [93]. Formally, Fβ Score = (1 + β2) ·
P recision·Recall

(β2·P recision)+Recall [332].

• True Negative Rate (TNR) is the fraction of actual negative labels that a model

correctly predicted. Formally, TNR = TN
TN+FP .

• Geometric Mean (for binary classification problems) is the square root of the prod-

uct between Recall and TNR, that is, of the product between the class-wise sensi-

tivity values [166]. As a performance metric for imbalanced settings, it tries, in a

balanced way, to maximize accuracy in each of the classes (performance of the pos-

itive class versus performance of the negative class). Formally, GeometricMean =√
Recall · TNR.

• Matthews Correlation Coefficient (MCC) is another useful performance metric for

imbalanced contexts [93] since it is a metric that considers the four confusion cate-

gories, so that a value close to 1, its maximum, will only happen if the model, for

a given classification threshold, produces good results for all the four categories

(proportionally to the size of the data subset for each of the classes) [50]. More-

over, MCC is similar to the Pearson correlation coefficient in its interpretation.

In this case, the value -1 indicates a model that always predicts the class oppo-

site the true class and the value 1 reflects a perfect model (a value of 0 means

that the model is no better than predicting classes at random). Formally, MCC =
T P ·TN−FP ·FN√

(T P+FP )(T P+FN )(TN+FP )(TN+FN )
.
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In the simplest version, these metrics are count-based metrics, and all instances are

treated equally [226]. If, for example, the amount of money associated with each in-

stance is considered, these metrics become cost-based (or money-based) metrics, and all

instances are treated differently, depending on the amount involved. In addition, for

situations where performance in different subgroups of data is as important as overall

performance, metrics are also calculated by splitting the dataset according to the unique

values of interest in one or more breakdown features, in order to obtain an estimate for

each of the subgroups of interest (filter-based metrics). Another relevant use is the paired

or constrained use of two performance metrics (or business-related metrics). In addition

to checking the individual values of various metrics for a given threshold, the value of, for

example, Recall for a pre-defined FPR value is also directly determined (such as Recall at

5% FPR, for example).

There is also a sliding or visual metric to consider: the Receiver Operating Character-

istic (ROC) curve. This curve is a Recall versus FPR line that shows the performance

of a model considering different classification thresholds. To transform it into a single

number, the area under this curve (integral) is computed. This (threshold-independent)

metric is called Area Under the ROC Curve (AUROC) and ranges from 0 to 1. The trape-

zoidal rule can be used to calculate an approximation of the integral [98]. It is also

possible to consider the AUROC as the probability that an instance from the positive

class has a higher prediction score than an instance from the negative class [98]. In this

way, the AUROC can be obtained by sorting the prediction scores in ascending order and

using the following formula: AUROC = S0−n0(n0+1)/2
n0n1

, where n0 and n1 are the numbers of

instances of the positive and negative classes, respectively, and S0 is the sum of ranks of

positive instances. Similarly, the Precision-Recall (PR) curve is a Precision versus Recall

line that shows the performance of a model considering different classification thresholds.

It can also be summarized in a single number, the Area Under the Precision-Recall Curve

(AUCPR) [94], through the trapezoidal rule or the average precision (AP) formula:

AP =
∑
n

(Rn −Rn−1)Pn (2.1)

where Pn and Rn are the Precision and Recall values at the n-th classification thresh-

old [217, 320]. AUCPR can be used as an alternative to AUROC for imbalanced data,

since TNs (usually the majority) are not used to calculate the metrics that make up the

PR curve. Thus, this number does not overshadows the effects caused by changes in the

other confusion categories [57, 94].

In the fraud domain, looking at the entire ROC curve may not be particularly useful

— it is more interesting to look at the partial ROC curve [347]. Since business decisions

are usually based on the impact generated on good/legitimate customers, it is important

to consider FPR, that is, the rate of genuine transactions blocked, so as not to harm

legitimate customers. Bearing in mind that the ROC curve is a chart of the Recall against

the FPR, checking the partial curve allows to answer the question: at this given FPR, how
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much of the fraud am I capturing? Basically, the higher the Recall for a given FPR previously

defined depending on the use case’s constraints (a small value up to 5% in most cases), the

better the model. At the same time, with a (Artificial Intelligence (AI)-based, rules-based

or hybrid) financial crime detection system in mind, it is also important to mitigate the

number of FPs, to be as low as possible, in order to allocate fraud analysts (or investigators

who check these kind of alerts by calling injured cardholders, for example) to ideally

control/check only potentially fraudulent events, having a greater bandwidth for this

type of activity [59].

Other relevant metrics to consider are the (number of) Alerts (Alerts = T P +FP ) and

the Alert Rate (AR), that is, the percentage of instances that produced an alert (AR =
Alerts

T P+FP+FN+TN ).

Furthermore, instead of considering a hard decision line through a classification

threshold that separates the instances classified as negative and positive, some cases

consider the division of this spectrum into three different bands. In the middle is the

uncertainty band, that is, the band where the instances whose score (obtained from the

ML model) is between the lowest scores, close to 0, which reflect genuine transactions

and higher scores, close to 1, which reflect fraudulent transactions, are found. This un-

certainty band is, in a way, associated with the classification threshold, since it is this

value that distinguishes a negative instance from a positive one. Thus, in a variable way

for each context, a range of values can be defined around the classification threshold

that will correspond to the scores that the ML model is not so sure about the respective

class, and that will correspond to instances to be reviewed, that is, with the final label

to be decided. In this way, these instances imply that a fraud analyst must manually

analyze and catalog them. Given the limited throughput of analysts, it may be necessary

to tune the number of transactions that should be seen by them and consider comparing

the Queue/Review Rate [30] and the (automatic) Decline Rate instead of the AR (where

this separation does not exist). Based on the example in Figure 2.1, instances with scores

between 0 and 0.4 would automatically be classified as Non-Fraud, instances with scores

between 0.4 and 0.6 would need to be reviewed, and instances with scores between 0.6

and 1 would automatically be classified as Fraud.

Figure 2.1: Output label according to predefined score ranges.
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2.2.3 Data Visualization

Data is at the core of DS and ML — and, more relevant than that, it composes the pieces

that can be used to understand financial crime from a practical point of view: the trans-

actions. Structuring instances so that they are efficiently consumable by our visual sys-

tem [144] provides an effective way of understanding the data and communicating in-

sights. In other words, to make the data visual, it needs to be converted in a systematic

and logical way into the visual elements (from the coordinate system to the axes, colors,

and even the title) that constitute what is usually called a chart/graph/plot [338].

From a technical but also a design point of view, DV is responsible for how data is pre-

sented. DS is more comprehensive in the way it uses data, and ML is just a highly scalable

mapping that helps with what is most important: exposing and leveraging patterns [122].

There is data throughout all the pipeline, from the original and raw instances to those

outputs that have been digested. So, using DV techniques seems natural in this context.

However, DV is not just about creating a chart to represent a data table in a more

consumable way by humans. DV is the discipline that explores the best way to transmit

the desired information. In a simple way, DV starts the moment someone takes a raw

table full of numbers — it ranges from how this table can be improved to the creation of

highly customized charts.

In addition to the widespread idea that DV is a great vehicle for data, there are also

some aspects that can prove decisive in helping a person searching for latent information

in a dataset, and drive certain decisions and changes [182]. First, DV is quite flexible and

can accommodate exploratory or explanatory scenarios [141], as well as be unfolded in

charts for quick interpretation or tailored for reflective analysis [181]. Furthermore, a

well-designed visualization can (and sometimes must) be combined with textual elements,

with visual elements helping to develop an overview of the data, while the text provides

precise and analytical information [144].

DV can also be the perfect tool for easy and clear detection of outliers, as these in-

stances will stand out significantly from the others [144]. More generally, the reason for

creating a visualization may be to see data in context, something more difficult to achieve

through a simple table, for example [51].

In the same perspective of enhancing the image created by different visual elements, it

is also possible to leverage principles and maxims such as Hick’s law, the aesthetic–usability

effect for creating charts, and Gestalt rules. Hick’s law says, briefly, that the time to

decide increases with the number and complexity of the options [157, 342], while the

aesthetic–usability effect associates more aesthetically pleasing design and usability [341].

Gestalt rules are a set of rules that summarize strong inferences that humans make about

the relationships between visual elements [104]. As an example, the proximity rule comes

down to the apparent relationship between spatially close elements, and the common

fate rule comes down to the apparent unitary relationship between elements that share

the same direction of movement.
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In general, the importance and usefulness of Data Visualization make it one of the

fields that is definitely exploited in the context of this work, as it will be further explored

starting from the Literature Review section.

2.2.4 Feedzai

Feedzai seeks, on a daily basis, to fulfill its mission by leveraging large amounts of data,

designed and operationalized visualizations, DS and ML [78]: to make banking and

commerce safe [76]. Through the developed fraud prevention and AML products, and

their use by different financial institutions and merchants, such as Cuscal, Credorax, and

First Data [79], Feedzai helps to manage risk and improve customer experience. To put it

simply, Feedzai’s job is to identify financial fraud.

In addition to different types of clients, Feedzai also acts in different use cases. The

main ones are account opening, transaction fraud, and AML. Feedzai’s software can be

positioned at different points within a financial transaction: at the payment processor,

at the issuing bank, or at the merchant. Also, this platform is divided into two major

components [77]:

• For data scientists, there is Pulse (also known as ML Engine) where they can build a

customized e2e ML pipeline (enabling big data preparation, and large-scale model

training and serving [107], for example). It can also be seen as an AI-based fraud

detection system [59].

• For fraud analysts, there is Risk Studio where they can gain deeper insights into

financial crime and manage events.

For each project, there is a DS methodology, the DS Loop, which is followed more or

less closely. First, this methodology is divided into two main phases: the offline phase

(that takes place in the DS environment) and the online phase (that takes place in the

streaming-oriented production environment). Within the first one, the following steps

are followed (which can be repeated, hence the Loop):

1. Data cleaning

2. Data validation

3. Data exploration

4. Feature engineering

5. Model building

6. Model evaluation and comparison

After this phase, one or more models are deployed (a project/dataset does not neces-

sarily correspond to a single model, as there are cases where there are different models for

different regions, for example [223]), and the real action in the production environment
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begins. Here the essential tasks are to monitor the model(s) and monitor data changes

(runtime monitoring). Since it is normal that, over time, the reality changes, it is also nec-

essary to consider the transition from the online environment to the offline environment

and retrain the model(s).

In addition, Pulse, the tool for building e2e ML pipelines, currently enables ML at

scale (along with other products and expertise, for example). In terms of Model Evalua-

tion, its main native features are:

• Two-way model comparison (performance and feature importance-wise).

• ROC curve, PR curve, and other two-dimensional plottable metrics.

• Performance metrics analysis (including custom algebraic metrics and an adjustable

classification threshold with real-time feedback).

• Breakdowns (a.k.a. data slicing or subgroup discovery).

• Business and DS performance-based many-to-many model comparison.

• Prediction score distribution chart.

• Feature importance (generated agnostically to the model used).

Complementing its functionalities, it is also possible to use JupyterLab [140] (compu-

tational notebooks) in an integrated fashion, bringing added flexibility to the DS environ-

ment.

Feedzai mainly deals with binary classification problems (the positive class is usually

the fraudulent one and the negative class is the legitimate one) and with considerably

imbalanced (in terms of class frequency and interest in the minority class) big (and in

many cases high-dimensional) data [221], as there are many more genuine transactions

than fraudulent ones. Table 2.1 has some examples of summary statistics from real-world

datasets used in previous articles from Feedzai’s Research department. A related and

particularly challenging phenomenon is that of overlapping classes [47]. On the one

hand, fraudsters try to emulate the behavior considered legitimate by a cardholder, for

example, while at times the behavior of a genuine cardholder, for example, can seem

anomalous or illicit.

However, the fraud concept (or labeling logic), that is, the characteristics that define

the fraudulent label, varies from client to client. Regarding the domain, it is an adversarial

one since fraudsters are quick to adapt and evolve. Also, there are often few/limited

"ground truth" labels, and concept drift (due to the non-stationary distribution of the

data) is a non-trivial problem to face [2, 223]. This concept is usually applied in cases

where the data shows different behaviors between the (offline) training and test sets, but

it is generalizable to a continuous change across time (the behavior of customers and

fraudsters changes over time [47]).

An example of a (real) fraud concept [174] is that of the IEEE-CIS Fraud Detection

Kaggle competition datasets [119] (they are comprised of online transactions). In this
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Table 2.1: Summary statistics for real-world (historical) datasets used in previous arti-
cles from Feedzai [39, 223]. Datasets A and B are divided into three and two regions,
respectively [223]. These datasets comprise periods between approximately seven and
ten months. Datasets C and D have fraudulent to legitimate instances ratios of 1:200 and
1:7000, respectively [39].

Dataset # Features # Transactions (Instances)

A1 213 1,046,482
A2 213 2,667,548
A3 213 4,945,509
B1 279 4,401,807
B2 279 9,229,013
C 19 ≈ 1,000,000,000
D 59 ≈ 4,000,000,000

case, the fraudulent labels correspond, in a nutshell, to the transactions that originated a

chargeback [156, 271] on a card and to the transactions subsequent to this reported one

if the user account, email address and/or billing address match. As for the remaining

transactions, these are considered legitimate after 120 days. On the other hand, there may

be unlawful activity that is not reported, simply because the cardholder did not notice

the problem or missed the claim period, for example. Thus, some fraudulent transactions

can be labeled as legitimate, but will go unnoticed (in this specific example, it is assumed

that this scenario corresponds to a negligible portion).

Based on the above fraud concept, it is also possible to see that this detection problem

differs from a more conventional classification one because of the way in which labels are

made available. Although there is variability from case to case, and the associated work-

flow is not entirely linear and varies with the timing of a given project/model lifecycle

(one thing is to start a project from a historical dataset, another is to maintain a project

that requires model retraining with new transactions/labels, for example), a common

scenario is one in which, in the first phase, only a limited set of supervised labels is acces-

sible [59] (obtained with the help of fraud analysts and/or previous systems). After that,

over time, most of the new labels will appear after a variable period of time, depending

on whether or not there is a customer complaint about unauthorized transactions, for

example (even considering a set of transactions annotated by fraud analysts that can be

interpreted as immediate feedback labels compared to delayed labels [59, 223]). In a nut-

shell, the vast majority will not be obtained immediately after a fraudulent or legitimate

event, as there is a maturation/latency period that needs to be respected given the func-

tioning of the financial system (plus the limited human throughput and its associated

cost). Moreover, given the concept-drifting environment [59, 223] in which this problem

occurs, greater caution is needed, as in the retraining of ML models throughout a project,

given the gap between the labels and the present moment.

An important note to keep in mind is that although there is a time variable associated
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with each transaction that makes up the typical datasets that Feedzai works with, the

problem that Feedzai tries to solve is binary classification and not time-series forecast-

ing (even that it is important to respect this idea of temporal sequence when training,

validating and testing models, for example).

2.3 Literature Review

2.3.1 Model Evaluation with Visual Support

From improving the confusion matrix (pre-2016 papers) to visual tools tailored to model au-
diting and Deep Learning (DL).

In this section, there are some characteristics that make it possible to group the lit-

erature of visual tools for ML Model Evaluation into a couple of fuzzy groups. These

characteristics are mainly in terms of (1) granularity, (2) ML problems, (3) features (espe-

cially if it is necessary to consider human-understandable features (uFeatures)/semantic

features or not), (4) number of models, (5) tracking of changes, (6) readiness, (7) develop-

ment context, (8) target group, (9) model availability, and (10) open-sourcing (a summary

can be found in Appendix A). In addition, Figure 2.15 contains a coauthoring network

based on the papers addressed in the next sections.

Throughout the text, some extra details are also highlighted, such as agnosticis-

m/specificity (some of the tools are model-agnostic, and others are specific to Gradient

Boosting or Random Forest (RF) models, for example), data types, scalability, and (ex-

plicit) support for imbalanced data (the typical scenario of the financial crime detection

context).

2.3.1.1 Historical Perspective and First Look

The reference points presented give a first glimpse of the complexity of this field. How-

ever, the challenge of supporting data scientists (or users) in Model Evaluation is not

a recent one (in ML time). In 1998, a scarcely concrete attempt appeared for the visu-

alization of decision tables [28], while in 2002, the idea of adapting shaded similarity

matrices, used in visual cluster analysis, in the visualization of the predicted labels of

simple classification algorithms (Decision Tree (DT) and k-Nearest Neighbors (k-NN))

came up [307]. These ideas had no repercussions, and it was only years later that more

concrete and more carefully grounded proposals began to emerge.

There are different papers that, based on a common motivation — to provide a way for

data scientists and/or domain experts to understand their models and to envision actions

that can bring positive iterations —, try to solve distinct ML problems. For this specific

case, the focus will be on the visual tools proposed for binary classification, although

there may be interesting ideas to adapt from the literature focused on MCC. Some works

18



2.3. LITERATURE REVIEW

related to other problems will also briefly be considered to properly define the current

landscape.

In the most basic way, the evaluation of binary classification models is done through

one or more metrics derived from a confusion matrix. This form of evaluation compacts

the performance of a model to one or more numbers, as if they were averages, which can

be used in the decision-making process and in the comparison of different models. This

perspective, at Feedzai, serves only to perform a first screening of the models and to have

the first impression of them: the real evaluation begins after that. In a pragmatic way, all

works in binary classification seek to provide frameworks and/or tools for this difficult

part — this does not mean that all papers discard the more trivial part.

The Model Diagnostics workflow [147] is, in terms of positioning in the DS lifecycle,

an example of a tool that aims to complement Model Evaluation after the creation of a

model, similar to what is intended with the Python package. The Statistical Summary

View, for example, provides a general overview of the performance of a given model

before presenting the two views they developed for binary classification with sparse bi-

nary data. The second view, the Explanation Explorer, enables the data scientist/domain

expert to explore different instance subgroups explained by different feature sets, as well

as various statistics (these explanations consist of the features needed to be removed to

change the predicted label of instances). The third one, the Item Level Inspector, shares

a way to compare instances explained by a particular feature set in a matrix (each row

represents a unique feature vector pattern while columns represent features) and to check

how labels can be separated. The input data type is substantially different from that used

at Feedzai (which invalidates the use of this solution as it is). Moreover, this solution

has a very high computational cost. However, the use of odds ratio (and its plotting) is

an interesting idea to detect whether an explanation (in more general terms, if a certain

way of dividing the data through a predetermined logic) describes a consistent instance

subgroup or if it describes a random subgroup. The odds ratio compares the number of

positive and negative instances in a given subgroup with the rest of the dataset.

In an attempt to iterate the matrix representation and the information contained in

the traditional confusion matrix, some papers highlight the weaknesses of it and propose

alternative visualizations.

The confusion wheel, a chord diagram to show sample-class probabilities as his-

tograms colored by classification outcomes, is the first example [8]. This radial proposal

is integrated in a set of interconnected views: in addition to the confusion wheel, the

feature analysis view allows to check feature distributions among selected instance sub-

groups, separated by their results and ranked by a separation measure, and different

histograms and scatterplots allows to visually check the separability of selected true and

false classified instances by one or two features. There is also a traditional confusion

matrix augmented with histograms of instance probabilities in the respective rows and

columns; moreover, the size of the squares that make up the cells is proportional to the

number of instances. An important point is a concern with imbalanced data, even if the
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focus of the solution is MCC.

On the other hand, Squares is a visual interface that enables the user to check the

performance of several classes in MCC problems [248]. Squares represents each class in

a color-coded column. Each column contains a vertical axis, each one of them aligned

with the leftmost axis indicating the prediction score range, annotated below by the

corresponding class name and optional summary statistics. Instances predicted as an

axis’ corresponding class are positioned as boxes on the right side, while boxes on the left

side represent instances labeled as an axis’ corresponding class but predicted incorrectly

as a different class. Using parallel coordinates, Squares reveals prediction scores for an

instance across all classes when a user hovers or clicks on a box in the visualization. Also,

Squares summarizes confusion information via a sparkline above each axis, displaying

the parallel coordinates of all instances labeled as the corresponding class. Although it is

optimized for MCC, the various parts of this visualization, as well as the encodings used,

are interesting for possible adaptations for binary classification.

Finally, ModelTracker [12] is a kind of father of visual debugging tools due to the

high number of citations considering this specific field. Its paper introduces an interface

that combines overall model performance with instance-level inspection. The main idea

is to arrange all instances in a visualization and, through various encodings, convey in-

formation about a model’s binary classification results. ModelTracker also emphasizes

prediction score changes on individual instances from one iteration to another. It displays

the magnitude of score changes via directed arcs from an instance’s previous score loca-

tion to its current score location. Arcs are only displayed on instances whose predicted

label changed from the previous iteration. Although the User Interface (UI) is quite out-

dated and the way the correlation is shown seems to be useful only in cases where the

correlation is very high, the instance-level exploration and the encodings highlighting

the differences between iterations are important steps to keep in mind.

2.3.1.2 Model-Agnostic Evaluation

As for the duality of model-specific and model-agnostic, there is a set of tools for each

of the verticals. In the case of model-specific tools, papers in which the algorithms are

also used at Feedzai will be considered. In addition, all papers presented so far are

model-agnostic.

First of all, Prospector relies on one of the agnostic interpretability methods, the

Partial Dependence Plot (PDP) [85], to help understand how features affect predictions

overall [148]. In addition, it supports localized inspection that helps to understand how

and why specific instances are predicted as they are, as well as tweaking feature values

and seeing how the prediction responds. Prospector relies on partial dependence for one

input feature at a time, but this approach relies on the orthogonality of input features.

However, in real-world data, this is not often the case, as features may be correlated.

Prospector can only model changes along one axis at a time as it cannot take correlations
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or influences between features into account. However, it is necessary to consider that this

tool was developed in the context of healthcare and introduces small improvements like

the histograms under each PDP (for a user to have a sense of the distribution of the data

and in which areas the results may not be as reliable due to the lack of representativeness).

In 2018 and 2019, some of the most interesting papers emerged combining model-

agnostic evaluation and visual support. Manifold [349], from Uber, presents a proposal

in the original paper and, over time, the idea has matured, and today it is possible to

find the current open-source version with different functionalities [168] (Figure 2.2). In

the paper, Manifold consists of a model comparison overview that provides a visual

comparison between model pairs using small multiples, and a local feature interpreter

view that reveals a feature-wise comparison between user-defined subsets and provides

a similarity measure of feature distributions. In the open-source version, the feature

interpreter view, now called as feature attribution view, maintains its purpose. However,

the model comparison overview, now called as performance comparison view, changed

quite a bit. Manifold now uses the k-Means (clustering) algorithm to break prediction

data into k segments/clusters based on performance similarity in order to enable the user

to compare two models in different parts of the data (it also allows an interactive data

slicing strategy using feature values selected manually, for example). On the other hand,

in this version, there is a new view as well — the geo(spatial) feature view. Here it is

possible to see the geo features displayed on a map and realize if there is a spatial pattern

according to the selected segments or not, for example. The first impression received at

Feedzai was that the constitution of the segments is not entirely clear to interpret. In

addition, although the geo feature view is a unique proposal with a lot of potential, the

current version currently implemented is still not reliable. Using the Python package

made available in early 2020 [168], it is only possible to see the points of each segment

on a map with a very low resolution, which prevents the true usefulness of this idea (and

the documentation about this functionality is very short). However, the idea of using geo

features to transmit other types of information to the user is something to consider, in

addition to the fact that Manifold continues to be further developed by Uber.

(a) Manifold’s feature attribution view. (b) Manifold’s geo feature view.

Figure 2.2: Manifold web interface [168, 349].

Moreover, Manifold is part of the Michelangelo ecosystem or, in other words, of Uber’s

e2e ML scalable platform (unfortunately, Michelangelo is not available as open-source
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software (OSS)) [107–109, 262]. Excluding the existing possibilities when using the

flexible Jupyter Notebook environment with Python [108, 285], Michelangelo (at least

the version presented in 2017 [108] and updated in 2018 [107]) has three different tabs

with information to evaluate/compare each (regression or binary classification) model

trained (each model is stored as a versioned object in a Apache Cassandra database and

the respective metadata can be accessed through the UI or programmatically) [108]. The

first tab (for binary classification) is dedicated to performance and contains the ROC curve

chart, the PR curve chart, and the probability calibration/reliability chart. An interesting

space-saving detail of these charts is the bet on the positioning of the axis titles inside

the charts (on the right side of the vertical axis and above the horizontal axis). At first

glance, the overlap of the curve and the title does not appear to be harmful as the curve

gives an overview and the user can traverse the curve to obtain more information about

each threshold-driven point via tooltips. In addition, it also shows the confusion matrix

and some scaled-up number [82] widgets for certain performance metrics (or a table for

the training and test sets [107]), such as Area Under the Curve (AUC) — and the user can

choose the classification threshold through an interactive slider [108]. In the second tab,

there are some model-specific visualizations for tree-based models (apparently developed

with MLlib [183], Spark’s ML package) [108]. At the top, there is a Feature Importance

(FI) (the importance of each feature is relative to each tree) heatmap across the various

trees (the trees correspond to the columns and the features to the rows) — this matrix also

helps to analyze the relative importance of each tree for the overall model. At the bottom,

Michelangelo shows an individual tree inspector (the tree can be selected from the heat

map), a kind of flowchart or tree diagram, where it is possible to depict the triggered path

based on an instance whose features are defined by the user through a data generator [107,

108]. Finally, in the third tab, there are some charts and summary statistics about the

features (or a FI vertical bar chart and a table with summary statistics and distribution

sparkbars [107]). Namely, it is possible to find distribution histograms, FI values, PDPs

and a three-dimensional chart for feature interactions (basically, it is a two-way PDP for

two features picked by the user) [108].

In terms of model interpretability, RuleMatrix [187] uses a surrogate model that gen-

erates a list of rules (using the Scalable Bayesian Rule List algorithm) as the first step

in the analysis of a given model. It then leverages a matrix-based visualization of these

extracted rules to help users understand, explore and validate the knowledge learned

by the original black-box model. It also allows the user to configure various options,

filter data, check the original data, and compare rules in terms of fidelity and evidence.

Fidelity is related to the error between the rule and the model, and evidence is related to

the error between the model and real data. The scalability of this tool is a problem, but

the openness to address this issue is noteworthy.

From Google’s People + AI Research (PAIR) team, there’s What-If Tool (WIT) [314].

With WIT (Figure 2.3), it is possible to test performance in hypothetical situations using
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instance-level counterfactuals [305], analyze the importance and summaries of differ-

ent features (it is possible to explore the original data), visualize model behavior across

two models at the same time and multiple instance subgroups, adjust the classification

threshold, and test algorithmic fairness constraints (only available for binary classifica-

tion [312]). Originally, the tool was only really OOTB for the TensorFlow production

ecosystem. However, due to the active development of the tool since its launch, it is

possible, considering version 1.7.0 [313], to use WIT on Google’s AI Platform [251] (in ad-

dition to computational notebooks and together with TensorBoard, its parent tool), create

custom prediction functions to encapsulate models created with other Python framework-

s/libraries, leverage various Explainable AI (XAI) methods, such as LIME and SHAP, as

well as learning about the tool with the various materials now available. As it runs in

the browser [312], there is still a plateau for tabular data due to memory constraints

and the number of possible charts, although the approximate value of 100,000 [314] (in-

stances), in theory, is promising for many applications. Although a larger number would

be positive, mainly for DL applications, the user can, however, promote different strate-

gies [131] to check several samples, one at a time, for example (leveraging computational

notebooks).

Figure 2.3: WIT’s second panel dedicated to (fairness-aware) threshold tuning [314].

By combining individual counterfactual explanations with an interface, ViCE [89]

is a tool that seeks to help non-experts better understand the predictions made by ML

models. Instead of showing merely what changes would be needed in a reduced set of

continuous features to change a single binary prediction of a ML model, ViCE combines

this information with some context in a visual way. In other words, the explanations are

placed next to the data distribution (for each feature) and there is the possibility to filter

this distribution by choosing only positive or negative instances according to the ground

truth, for example.
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For regression problems, 2019 brought FeatureExplorer [350], a tool developed in a

very specific context (a collaboration with three remote sensing experts and plant scien-

tists whose goal was to predict plants’ wet biomass using data recorded in hyperspectral

imagery). It supports the dynamic evaluation of regression models and importance of

feature subsets through the interactive selection of features in high-dimensional feature

spaces typical of hyperspectral images. One interesting point is the use of a double visual

encoding of the Pearson’s coefficient values in the correlation matrix.

2.3.1.3 Model Bias and Fairness Evaluation

Concerned with model bias and fairness, there are also three proposals that are intended

to support this specific field: FairSight [3], FairVis [5], and Aequitas [259] (and partially

WIT [314]). It is important to emphasize that bias and fairness mainly concern the com-

parison of the results obtained over different instance subgroups, which have specific

characteristics in the features that compose them.

FairSight [3] is a visual interface divided into six components to help in achieving

fair decision-making through the ML pipeline of a learning to rank problem (it is not

flexible enough for classification). It instantiates a model-agnostic theoretically frame-

work, FairDM, that incorporates different notions of fairness (group and individual) and

supports measuring, identifying, and mitigating bias. Each of these parts has associ-

ated metrics and operate in different spaces, namely the input, the mapping, and the

output spaces. The six components support the following workflow: (1) build a model,

(2) overview ranking, (3) inspect global and local fairness, (4) inspect features, and (5)

compare different rankings.

For binary classification problems, FairVis [5] presents a different proposal (Fig-

ure 2.4). It is tailored for subgroup discovery to audit the fairness of ML models. Also, it

lets the user apply domain knowledge to generate and investigate known subgroups, and

explore suggested and similar subgroups (via intersectional groups). The feature distribu-

tion view gives users an overview of the dataset distribution and allows them to generate

groups to visualize in the subgroup overview. Users can then add additional subgroups

provided by the suggested and similar subgroup view, and compare and further analyze

them in the detailed comparison view. One of the main visualizations is a small multiple

with strip plots to compare different performance metrics in different instance subgroups.

The ideas in this paper have the potential to be tested at Feedzai, although some of the

techniques, such as the clustering-based subgroup generation technique (pre-running

k-Means), need to be further measured and validated.

Aequitas [259] is a bias and fairness audit toolkit (there is a Python version of it).

Through different bias and fairness metrics, which will depend on the context, it is possi-

ble to compare these values for different subgroups and evaluate ML models. Attached

to this possibility, there are plotting capabilities that allow the user to check the results.
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Figure 2.4: FairVis web interface [5].

2.3.1.4 Model-Specific Evaluation

As for papers with model-specific tools, there are three orientations that align with the

main algorithms currently used (directly or indirectly) at Feedzai: DT (indirectly), RF,

and Gradient Boosting.

For DT models, BaobabView [296] is a visual interface for the manual and algorithmi-

cally supported construction and analysis of DT models. A top-down node-link diagram

is used for tree visualization. Each node contains information regarding the split pred-

icate, the class distribution, and the feature-class values and distributions for a future

split in a streamgraph format. There is a focused layout for tree and data analysis where

the emphasis is placed on links. Nodes are not shown; only predicates (some are difficult

to read), and links are drawn as continuous streams (the idea of adapting the interface

according to the main objective is interesting). In addition, there are other mechanisms

that make it possible to ascertain the confusion matrix and see the different features or-

dered by an impurity measure (a measure of the homogeneity of the classes at the node

level [183]), for example. Although DT models are not used directly at Feedzai, it is also

worth mentioning the encodings given to the links and their drawing as Bézier curves.

iForest, as the name implies, aims at interpreting RF models and their predictions [352].

The interface is divided into (1) a data overview section displaying an overview of how

Random Forests classify data, (2) a feature view depicting the relationships between fea-

tures and predictions, and (3) a decision path view revealing the underlying working

mechanisms by enabling users to audit and compare different decision paths. The most

exciting part is the decision path view, given the way it organizes how to analyze the

different paths of the different trees. Basically, it contains a list in which all decision

paths of a prediction (an instance, in other words) are represented on a row. These rows
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have three components: (1) the decision path projection that provides an overview of

all decision paths in a single prediction based on their similarities (using t-distributed

stochastic neighbor embedding (t-SNE)), (2) the feature summary that summarizes the

critical feature ranges of decision paths, and (3) the decision path flow that provides the

detailed information of decision paths layer by layer (each column represents a layer). If

a layer contains leaf nodes, a pie chart is appended in the corresponding column, where

the red sector represents negative labels and the blue sector represents positive labels

(this pie chart only compares a given category within the total of a single one, so its usage

can be considered effective [48]). Curves connect features from different layers. The curve

width encodes the number of decision paths that have the corresponding feature pair in

adjacent layers. This interface has a long learning curve, and the use of PDP technique

has the problems presented in [148, 192].

Considering gradient boosting models, namely LightGBM [132] and XGBoost [49],

BOOSTVis [172] is a visual interface (Figure 2.5) that helps users analyze and diagnose

the training process. It combines a temporal (or sequential) confusion matrix (to show

the evolution of model performance at the class-level), a t-SNE projection (to show rela-

tionships between instances and outliers), a classifier view (to provide an overview of all

the decision trees and highlight the selected one), and a table displaying the feature dis-

tributions on the selected subsets of instances. When the user selects a specific predicted

class, the temporal prediction scores of its instances is represented by a line chart. Also,

this paper presents a set of algorithms that feed the proposed visualizations:

• A recursive time-series segmentation algorithm is used to present only the k seg-

ments in the temporal confusion matrix that minimize the intra-segment variances.

It is a kind of undersampling of the most interesting points.

• A constrained variation of the tree edit distance is used to estimate the distances

between the tree structures.

• k-Medoids is used to cluster the trees according to the output of the previous algo-

rithm.

• A tree cut algorithm is used to highlight the layers of interest when the user is

looking to the cluster glyphs (simplified representations), and gray out the others.

• k-Means is used to group similar lines (and with the same actual class) on the line

chart of the performance of a selected instance subgroup.

However, learning how to use this tool is not as simple as the authors argue. It would

be interesting to have a tour function that explains the interface step by step. Also,

BOOSTVis is computationally expensive (a lot of different algorithms to build the visu-

alizations). Ignoring the fact that this tool is optimized for MCC problems, the temporal

confusion matrix, the t-SNE projection, and the tree clusters are interesting ideas, but they

have to be adapted and tested at Feedzai. Something that strengthens this perspective
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Figure 2.5: BOOSTVis web interface [172].

is the feedback collected during a presentation of this paper in an internal initiative at

Feedzai where the utility of the temporal confusion matrix and access to t-SNE (although

for the original data, since this paper uses an adapted version where the input is the

prediction score vectors and where it is not clear whether the use of Euclidean distance

is the best option) was highlighted.

For Generalized Additive Models (GAMs) (a generalization, as the name implies, of

linear models), TeleGam [112] offers an interface (Figure 2.6) in which the main aspect

that stands out is the combination of interactive charts with textual descriptions. Through

descriptions (or explanations) generated from threshold-based heuristics, line charts and

waterfall charts, which aim to cover features and specific instances, TeleGam seeks to

reconcile and link these two elements in a complementary way, helping to clarify the

(global and local) behavior of a given GAM. In addition, this interface also includes

a three-level slider (Resolution, in the upper left corner in Figure 2.6) that enables the

adjustment of the level of detail of all explanations, something that can contribute to a

greater range of users and use cases.

2.3.1.5 Model Building and Evaluation

There are other papers, focused on other parallel issues, which also deserve to be high-

lighted briefly.

In order to iteratively build ensemble models and linear models from a local per-

spective and not just from a global perspective, EnsembleMatrix [289] and LoVis [351]

present specific interfaces for this, respectively, where the Model Evaluation component

is also present. EnsembleMatrix is composed of interactive confusion matrices to help

users understand the relative performance of various classification models and manually
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Figure 2.6: The TeleGam web interface [112] with an example of the interactive link
between the explanatory text and the respective bars in the waterfall charts (for two
selected instances).

create model combinations (a.k.a. ensemble models). One interesting point is the linear

combination widget that allows the user to combine models in a simple way, to quickly

test some hypotheses, for example, with some sliders to adjust in more detail. The user

can scrub inside this polygon to specify classifier weights (there is a classifier at each

vertex). To make the appropriate mapping of position to weight, the polygon was param-

eterized using Wachspress coordinates. LoVis is a very cryptic paper that presents a tool

to partition instances and analyze which models or features produce better predictions

for each local segment [349].

2.3.1.6 Theoretical Frameworks

From a more theoretical perspective, there are two papers that present frameworks more

linked to the interpretability of models. Explanatory Debugging [152] is, in a few words,

a two-way exchange of explanations between a user and a ML system. In terms of ex-

plainability (accurately explain the learning system’s reasons for each prediction to the

user), its principles are: (1) soundness, (2) completeness, and (3) don’t overwhelm. In

terms of correctability (allow users to explain corrections back to the learning system),

the principles are: (1) be actionable, (2) be reversible, (3) always honor user feedback, and

(4) incremental changes matter. EluciDebug is an instantiation of these principles for the

classification of emails in different folders (classes). One interesting point is the consider-

ation of principles at the interface level, something to keep in mind for the assembling of

a Python package. On the other hand, explAIner [280] is a TensorBoard [1] plugin that

tries to instantiate a modular conceptual framework designed to understand ML models,

diagnose model limitations using different XAI methods, and refine and optimize the
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models, complemented by eight global monitoring and steering mechanisms. However,

the solution is oriented towards DL models, and explAIner has only a small portion of the

theoretically proposed things implemented, which leads to the lack of a more concrete

way, for example, to have a data shift scoring mechanism or provenance tracking (a kind

of data lineage). An alternative to shareable provenance tracking, in this case for Jupyter

Notebook, is the extension called ProvBook [260]. Simultaneously, the ReproduceMeGit

tool [261] can be used to visualize different metrics about the reproducibility of Jupyter

notebooks housed in GitHub repositories (it shows, for example, several pie charts with

the exceptions raised during notebook execution or the number of different or similar

results).

2.3.1.7 Model Evaluation for Data Exploration

From a perspective more inclined towards data exploration than model debugging [215],

Prospect proposes the use and analysis of various models for debugging purposes (to link

classification results back to noteworthy instances) in a tool that trains a collection of

models, based on different configurations, automatically, aggregates results from those

models, and provides interactive visualizations to help users understand and debug data.

The authors hypothesize that multiple models can marginalize the bias of individual

models and act as a lens for scrutinizing some of the key properties of the original data.

One interesting point is the incorrectness versus label entropy plot. This plot is, basically,

a scatterplot where the X-axis is the percentage of configurations that misclassify an

instance (incorrectness) and the Y-axis is the entropy of the distribution of labels predicted

by each configuration for an instance (label entropy). Also, it has three different regions:

(1) the canonical region consists of instances that most configurations classify correctly,

(2) the unsure region consists of instances for which different configurations generate

widely varying predicted labels, and (3) the confused region consists of instances with

high incorrectness and low entropy (it is interesting for detecting label noise).

2.3.1.8 Python, R, and JVM packages

In terms of packages, in a more practical and hands-on perspective, there are some refer-

ences to point out. First, the ceterisParibus package [33] offers a set of charts that iterate

and instantiate the idea of PDP, and allows to agnostically check and compare classi-

fication (or regression) model responses around a single instance in the feature space.

Yellowbrick [30] is a ML visualization Python package that provides a set of visualiza-

tions for feature and target analysis, classification, regression, and clustering models,

and text analysis. Its OOTB integration with the scikit-learn application programming

interface (API) [44] enables it to be used in scenarios where the most common Python

stack for ML is available. One of the plots that stands out the most for its usefulness in

evaluating different classification thresholds, especially in a context where this threshold

needs to be carefully adjusted (or just to have a general overview), is the discrimination
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threshold plot for binary classification (Figure 2.7). Similarly, EvalML [9], an Automated

Machine Learning (AutoML) Python package, also contains a version of this chart (called

"Binary Objective Score vs. Threshold"), as well as other (common) classification-oriented,

Plotly-based (an interactive visualization package) charts under its Model Understanding

API, such as the ROC curve chart, the PR curve chart, the confusion matrix, the PDP, and

ranking bar charts for FI (including for the model-agnostic Permutation FI algorithm).

scikit-learn [217] also has some common plotting capabilities to help with Model Evalu-

ation. There are plotting functions for the confusion matrix, PR curve, ROC curve, and

PDP.

Figure 2.7: Discrimination threshold plot [30]. This plot places different performance
metrics (Precision, Recall, F1 Score, and Queue Rate, for example) against different clas-
sification thresholds in order to help adjust the threshold to, consequently, tune a certain
performance metric.

Specifically designed for PySpark (in order to provide a user experience similar to

pandas and scikit-learn), HandySpark [88] is a Python package that, in terms of Model

Evaluation for binary classifiers, offers the possibility to plot Matplotlib-based ROC and

PR curves, as well as check the confusion categories and performance metrics for various

classification thresholds.

For ML and DV, with a proposal that aims to reach several target groups (in terms of

coding skills), Orange is a component-based Python package and visual programming

tool (also tailored for interactive DV) conceived in the 90’s and still in active develop-

ment [65]. In a simplified way, Orange is a kind of scikit-learn outside the NumPy-based
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scientific Python ecosystem. In addition to a significant number of algorithms and data

processing capabilities, Orange has a set of charts (for projections as well), both for data

analysis and for Model Evaluation. Within the Model Evaluation charts, in addition

to the typical ROC curve chart and confusion matrix, Orange also provides access to

the cumulative lift/gains curve chart [56] (a TPR versus percentile chart pre-ordered by

prediction score), as well as the probability calibration/reliability chart. The last chart

mentioned is a chart of the fraction of positive instances against the average of the pre-

dicted probability-based scores for a given number of bins (in order to verify whether

a classifier can be interpreted as a probabilistic one). This type of curve-based charts

(and more) is also available in Scikit-plot [203], a ML visualization Python package that

can be easily integrated with scikit-learn-like output (however, its development has been

stalled since August 2018). This package contains two extra curve-based charts worth

mentioning:

• Lift curve chart: This chart is a variation of the cumulative lift chart in which the

values of the Y-axis are divided by the respective percentile value (in this case, the

baseline is a horizontal line at value 1).

• Kolmogorov-Smirnov (KS) statistic chart: This chart is also similar to the cumulative

lift chart, but in this case, it focuses on the separation between the positive and

negative classes (so, it contains two curves). Thus, the percentages of (true) positives

and (true) negatives below a specific threshold (a cut-off point that reflects a certain

percentage of the instances that make up the dataset [123]) are plotted on the Y-axis,

while the threshold itself is plotted on the X-axis. There is also a version of this chart

in which the classification threshold is plotted on the X-axis and the lines encode

the TPR and FPR values [136].

In the panorama of model-specific packages, namely for classification or regression

DT models, dtreeviz [214] appears with a wide range of visualizations, both for Model

Evaluation and for learning purposes, which allow not only to have an overview of the

trees (via tree diagrams), but also the prediction paths for an instance, FI values, various

leaf-based distributions, and feature-target relationships. These feature-target relation-

ships, in the case of classification problems, are framed in charts that result from the

junction of scatterplots for a pair of features and a heatmap in the background for the

decision surface, with the color of the points encoding the true classes (the tree diagrams

themselves can also be used for this purpose, as they can be customized to include class-

based stacked histograms, for example). There is also a univariate jittered version in

which the heatmap is replaced by a kind of stacked bar intercepted by vertical lines that

simulate the decision surface. For this work, the charts for leaf-based distributions are

implicitly interesting, like those in Figure 2.8, as they allow to inspect the structure of

the model and the molding of the instances to this same structure (a kind of model-

driven data analysis). So, they can serve as inspiration for charts that allow exploring
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the volume-like structure of RF models (they are composed of multiple trees), through

leaf/terminal node depth histograms or node depth histograms considering a certain

feature, helping not only to understand the behavior of these models (interpretability)

but also to obtain some insights that can help in choosing hyperparameters. Another

relevant model-specific chart is the (feature) split value (count) histogram (an example

can be seen in Figure 2.9) available in LightGBM’s Python API [132] (in addition to the

FI value ranking chart that will be adapted in the package developed for this work).

(a) Stacked bar chart for the distribu-
tion of the instances (and the respec-
tive classes) in the various leaf/termi-
nal nodes of a DT model. In this ex-
ample, leaf node 23 contains the vast
majority of instances and is dominated
by class 0.

(b) Histogram with the number of leaf
nodes for each bin of Gini impurity val-
ues (the value 0 implies that all values
are of the same class, while the value
0.5 implies that there is a 50% prob-
ability of incorrectly classifying an in-
stance) for a DT model. In this exam-
ple, most leaf nodes have a low Gini
impurity value but there are some with
high values (looking at the number of
instances of each leaf is something in-
teresting to complement this chart).

Figure 2.8: Two examples of charts generated with the dtreeviz [214] package using a
baseline DT model [217] (with a maximum depth of 4) and the Titanic dataset [127]. The
leaf node identifier increases from left to right.

In the R and Bioinformatics ecosystems, it is possible to find a set of packages that

iterate over the basic ROC curve plot in order to provide an empowered suite for ROC

curve analysis:

• cvAUC [162] provides a confidence interval estimation method for cross-validated

AUROC values.

• PRROC [92] allows to estimate the ROC curve and AUROC for soft-labeled data.

• plotROC [257] presents a very easy way to compare several ROC curves on the same

plot and to add labels.

• pROC [250] includes functions for computing confidence intervals, statistical tests

for comparing total or partial Area Under the Curve (pAUC), and methods for

smoothing ROC curves.
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Figure 2.9: An example of a split value histogram obtained from the LightGBM model
described in Appendix K. The X-axis corresponds to the binned values (automatically
calculated) of the transaction amount (continuous) feature (TransactionAmt) for a part of
the IEEE-CIS Fraud Detection Kaggle competition dataset [119]. The Y-axis encodes the
number of times that values for each of the bins were used as the feature split value in
the different trees of the model (LightGBM is a Gradient Boosting Decision Tree (GBDT)
algorithm).

• ROCit [135], by default, plot the location of the Youden index [130] (if Recall and

TNR are equally important or desirable, this value will indicate the optimal classifi-

cation threshold [282]) to the plot and allows to estimate the ROC curve empirically,

parametrically, or nonparametrically.

For a broader curve-based analysis (to tackle, in particular, imbalanced datasets),

which includes PR curves in addition to ROC curves, there is Precrec [258]. This R

package provides mechanisms for computing and visualizing partial and full curves,

with or without confidence (interval) bands (via vertical averaging [75], that is, mean TPR

with fixed FPR, for multiple test sets obtained, for example, through a resampling method

such as k-fold CV), as well as for calculating a set of performance metrics, including the

full and/or partial AUC. As an interesting detail in the header of the generated charts,

Precrec adds the number of positive and negative instances. In addition, this package is

used by mlr3viz [159] (for binary classification), one of the mlr3 ecosystem packages for

ML.

Finally, in terms of Java/JVM-based packages/tools (for ML and DL), there are some

options to highlight, although the visualization component for Model Evaluation is not

constant for all of them [134]. Eclipse DeepLearning4J [72], in addition to performance

metrics and probability calibration capabilities, has a UI to monitor the training of DL
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models with different neural network (NN)-oriented (and time series-like) charts and

have an overview of the final results (more about DL in the next section). Smile [167],

on the other hand, in addition to the evaluation metrics (and mechanisms to validate

and iterate models, such as hyperparameter tuning and CV), has a DV API (actually,

it has an imperative API and a declarative one wrapping Vega-Lite [264], similar to

Altair [297]). The rest of the verified packages/tools, namely Spark’s MLlib [183], Tribuo

(it also has a built-in provenance tracking system, as well as a LIME implementation for

local explanations of instances) [211], Apache Ignite [18], Deep Java Library (DJL) [10]

and Dagli [170], support multiple performance metrics and other types of metrics (they

are metric-centric packages in terms of Model Evaluation, basically).

2.3.1.9 Deep Learning

As expected from a very active field today, there are a considerable number of proposals

for DL models. Although not the type of models in focus here, they present a very current

and future perspective on, mainly, the importance to understand the underlying behavior

of ML/DL models. In 2018, a survey [111] was published covering 38 different papers

and analyzing them based on the Five W’s and How technique [334]. Although analyzing

DL models from the inside is not of interest for this work, there are some papers that

present visualizations whose main idea can be adapted:

• ActiVis [129] is a visual assessment tool for deep neural network models from Face-

book. One of the panels, the instance selection one, is an interesting way of provid-

ing an overview of instances with their prediction results and highlight meaningful

instances to further explore (in a faceted waffle chart).

• Seq2Seq-Vis [284] is a visual debugging tool for sequence-to-sequence models. The

idea of having a kind of neighborhood view, in order to allow the user to look

at model decisions in the context of finding similar instances, has some intrinsic

potential.

• TensorWatch [272], from Microsoft, is a visual debugging tool that can be used in

notebooks. Its real-time visual logging philosophy is an interesting window for the

idea of providing information during model training and not just after it finishes.

In addition, Ludwig [190, 191], a TensorFlow-based Python package for training and

testing DL models using a no-code command-line interface (CLI) (supported by dataset

and YAML configuration files) or a low-code programmatic API (also from Uber), provides

a visualization suite (Visualization API) for Model Evaluation (particularly for binary and

MCC problems) — most of its charts are also used or can be adapted for ML models (the

learning curve chart is, however, tailored to DL as it allows the verification of one or more

metrics over the course of the training epochs). Within the available charts, it is possible

to highlight the following:
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• The characteristic ROC curve chart and (heatmap-based) confusion matrix (paired

with a bar chart, particularly useful for MCC, where classes are ranked by entropy).

• Several variations of bar charts to compare various performance metrics (particu-

larly useful to compare two or more models) considering the whole dataset or just

a part of it.

• The probability calibration chart (for binary classification and MCC). The main

chart is complemented by a (count) histogram (similar to that of scikit-learn [217])

that aims to approximate the distributions of the predicted scores/probabilities for

each model or by a bar chart with the Brier Score for each model. The Brier Score

is a binary/multi-class performance metric and, in general terms, it consists of the

quadratic difference between the predicted scores and the value 0 or 1 (indicator

variable) according to the true class of each instance [34]. Formally, the Binary Brier

Score is given by the following formula: 1
n

∑n
i=1(Ii − pi)2 (Ii is 1 if the instance i

belongs to the positive class and it is 0 otherwise) [158].

• A dual-axis line chart that puts the frequency of each class and the respective F1

Score values in perspective (the idea of reporting the values of a performance metric

by class, together with the number of associated instances is interesting to look more

critically at the results obtained).

• Different versions of a chart, with more or less dimensions, under the name con-
fidence thresholding that aim, in general, to compare Accuracy and data coverage

for various classification thresholds (with a threshold step equal to 0.05 [190]). Dif-

ferent data coverage percentages are obtained based on the highest class-oriented

probability/score for each instance (or based on the score of the positive class in a bi-

nary classification problem) compared to different classification thresholds, that is,

the percentages are obtained by dividing the number of instances with a probability

greater (or equal) than a certain classification threshold by the total number of in-

stances (the Accuracy values are also calculated based on this filtered dataset) [190].

• Two threshold-dependent charts to compare the predictions of two or more clas-

sifiers: (1) a nested (two-level) donut chart (Figure 2.10) for two models whose

segments are colored according to the correctness of the predictions (in terms

of output labels) of both models (with the different possible combinations); (2) a

probability/ratio-based radar chart, designed for MCC problems, to show the distri-

bution of predictions, in terms of output labels, for two or more models, including

the class-based "ground truth" distribution.

• The performance metric by classification threshold chart for one or more models,

with each performance metric plotted on a separate line chart (similar to Yellow-

brick’s discrimination threshold chart [30] for different metrics related to a model).

Two other interesting aspects of Ludwig are the idea of a CLI argument or function,

corresponding to a visualization, not necessarily meaning the production of a chart, but
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Figure 2.10: A nested (two-level) donut chart [190, 191] to compare the correctness of
the predictions of two (binary) classification models, namely the segmentation and the
number of labels correctly and incorrectly estimated considering the instances of the
Titanic’s training dataset [127]. This type of graph can be problematic since it implies
the comparison of circles/rings with different radii and areas [275], something mitigated
by the low number of segments (identified by the legend and the color), by the presence
of absolute and relative numbers, and by the fact that there are two rings with distinct
well-identified granularities, which invite a two-stage reading (however, it is important to
clarify how this graph works with users). This chart is most useful for MCC contexts due
to the extra (light) red zone segmentation possible since there are more than two labels.
The function to create and save this image was monkey patched to ensure better image
quality/resolution (300 DPI).
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rather a small set of charts complementary to each other, and the organization of de-

pendencies in various groups. with different purposes, facilitating the installation of

this package with the functionalities only relevant to the user (through the extras_require
keyword argument from the setup() function used with the standard Setuptools build

system [233]).

2.3.1.10 Vendors of Data Science and Machine Learning (DSML) platforms

While vendors of DSML (closed-source) platforms [150] are not an option due to the asso-

ciated costs and because they entail the introduction of a completely new tool in the work-

flow of Feedzai’s data scientists, they can serve as inspiration through community/open-

source editions and information available online for their built-in (industrial-strength)

Model Evaluation features distinguishable from those discussed so far. So, these different

features, as far as possible, will be the only ones covered in this section.

In KNIME Analytics Platform [31], Cohen’s kappa is calculated by default with the

confusion matrix [143, 319] (computed through a node available in one of the basic

extensions). Cohen’s kappa is a commonly used metric for inter/intra-rater reliability,

and here it is used as an alternative to Accuracy (also considering the predicted and

actual classes), especially for imbalanced datasets [319]. In terms of charts for Model

Evaluation, the linked charts (these charts are common for binary classification, but

when they work together, in a kind of small dashboard, the user experience is enriched)

shown in Figure 2.11 stand out.

Regarding RapidMiner Studio [186], there are three aspects to highlight: (1) Visualize
Model by Self-Organizing Map (SOM), that is, it is possible to generate a two-dimensional

SOM from the input space colored by the predictions of a given model [242]; (2) Model

Comparison via statistical significance tests (ANOVA and T-Test) [239, 241]; (3) in addi-

tion to the performance metrics, it is also possible to see the models’ runtimes [240].

For DataRobot, there is a set of interesting charts for Model Evaluation and Com-

parison. The Accuracy Over Time chart [228] is a line chart to check the stability and

performance of a model over time (X-axis). It can be useful for this project since Feedzai’s

datasets also contain a time component. In addition, it is also possible to compare the

predicted line with the line composed of current (aggregated) values, and the existence of

peaks in only one of the lines may be an indicator of something that deserves to be inves-

tigated (in the shared example, the Y-axis corresponds to the field target of a regression

problem, but this idea can be adapted to different performance metrics [228]). For mul-

tiple models, the Speed vs Accuracy chart [100] is a scatterplot to analyze the trade-off
between prediction runtime/speed (the time to make 1000 predictions in milliseconds,

for example) and a specific performance metric. The Learning Curves chart [100], another

line chart whose Y-axis corresponds to a performance metric and the X-axis to a percent-

age of the dataset size, has two areas highlighted in the chart itself for the validation set

and the holdout set (that is, for the percentages that add up to the training data), as these
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Figure 2.11: An example of the four linked charts produced by the Binary Classification
Inspector node (an element of a pipeline) available on the KNIME Machine Learning
Interpretability Extension [142] for KNIME Analytics Platform [31]. This widget can
be used for Model Comparison, Threshold Tuning, and Visual Performance Analysis
(more information about these terms in the Model Evaluation Topology section). In the
ROC curve chart, the highlighted points (with a diamond-like mark) correspond to the
classification thresholds that maximize a given performance metric (Precision in this case)
or a user-defined threshold through the slider for the RF model.

separate sets, together with the training data, make up the total size (100%) of the dataset.

The Lift chart [100, 101, 228], in DataRobot, can be leveraged for one (containing two

lines, one of which is for the "ground truth") or more models (this Lift chart is different

from the one described in the Python, R, and JVM packages section). In this way, the

Y-axis corresponds to the average target (prediction score) value, while the X-axis corre-

sponds to the score distribution ranked and binned from lowest to highest (the number

of bins can be changed in a dropdown menu). The "ground truth" line corresponds to

the average proportion of positive instances, assuming a binary classification problem,

for each specified bin [228]. Moreover, the Dual Lift chart [100] is similar to the Lift

chart, but specific for comparing two competing models (it can be useful for ensemble

modeling). For this chart, the predictions are sorted by the magnitude of the difference

between the scores of each model and then binned. Finally, the Profit Curve chart [101] is

a line chart of the profit against the classification threshold. Profit is calculated based on

the confusion matrix and, by default, all outputs are worth the same amount of money

(the true confusion categories have a payoff value of 1 and the negative ones a payoff
value of -1). These values can be customized through the Payoff Matrix, a user-defined,
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cost-based confusion matrix for simulation purposes.

As for Dataiku Data Science Studio (DSS) [61], among the various general-purpose

charts and those for Model Evaluation, the Subpopulation analysis table (Figure 2.12) is

one of the highlights (this kind of analysis is important at Feedzai). In the Confusion
matrix tab, there is a slider for the classification threshold that controls the confusion

categories and the performance metrics displayed (the interaction between the slider

and the horizontal bar chart for performance metrics causes an effect that resembles a

bar chart race), as well as a cost matrix to define different weights for each confusion

category. In terms of performance metrics, this platform also includes the Hamming loss

(the fraction of labels incorrectly predicted) and calibration loss (the average distance

between the calibration curve and the diagonal line) metrics.

Considering H2O (H2O-3) and H2O Flow (H2O’s web UI) [94], the first feature that

stands out is the combination of interactive charts and tables by design (the context

button in Highcharts [110], a button with several options in the upper right corner of

each chart, if specified, allows the addition of a simple table with the data next to the

chart as well). In the case of the ROC Curve chart, in addition to two dropdown menus

to select a classification threshold to be highlighted manually or based on a criterion, a

table is also shown with a series of metrics that complement the threshold-independent

and general perspective offered by the curve (an example can be seen in Figure 2.13).

The Variable (or Feature) Importance (ranking) chart is another example, where the table

shows, for a specific feature, the original value and the value scaled to 1 (or 100%), for

example. The Standardized Coefficient Magnitudes chart, for generalized linear model,

for example, is a horizontal bar chart (not a diverging bar chart) where the color of each

bar encodes the sign of the respective coefficient. However, when using the Python

API [93] (in Jupyter Notebook, for example), these charts are redesigned and adapted

for Matplotlib. Last but not least, in particular for comparing a considerable number

of models, there are two relevant heatmap-based charts: (1) the Variable Importance

Heatmap, with rows for features and columns for models; (2) the Model Correlation

Heatmap, where the correlation, for classification, is computed based on the frequency

of identical predictions.

As a side note, OutSystems’ (recent) ML Builder [73] presents, in addition to a donut

chart for a performance metric (Accuracy), a short message with the indication of how

much better a model is compared to the baseline.

2.3.2 Model Evaluation

Different statistical hypothesis testing approaches.

With regard to papers that address Model Evaluation from a purely quantitative/sta-

tistical perspective, the first paper to highlight is a kind of survey of classic methods [245].

This paper covers bootstrapping and uncertainty, CV and hyperparameter tuning, and
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(a) In addition to the overall performance, this table also shows the performance (and other
metrics) for a given breakdown field (gender), that is, for each of the values that divide the dataset
into different subpopulations.

(b) By clicking on one of the rows (which act as an accordion), it is possible to see complementary
interactive charts, such as a score distribution chart and a confusion matrix.

Figure 2.12: An example of the Subpopulation analysis interactive table available on the
Dataiku DSS platform [61].
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Figure 2.13: An example of the ROC Curve chart with the respective table referring to the
classification threshold that maximizes the F1 Score available on the H2O Flow platform.

algorithm/model comparison using statistical tests and nested CV. The author makes a

distinction between algorithm comparison and model comparison. Algorithm compari-

son occurs when comparing between different sets of models where each set was fitted

to different training sets. Looking at the author’s suggestions for classification models

and large datasets, it is worth noting the computation of confidence intervals to estimate

performance, and the use of McNemar’s (a nonparametric test that uses the misclassified

part of the confusion matrix to compare two classification models [64]) and Cochran’s Q

tests (a generalized version of McNemar’s test that can be used to compare three or more

classification models) to compare models (considering the same test set). The use of this

type of tests can be an asset to allow the comparison of different models, especially when

there is a set whose performance is similar (both are fast to compute, for example). On

the other hand, these methods and techniques are implemented in a ready-to-use Python

package called mlxtend [244].

2.3.3 Data Visualization

From how to present ML-based information to time-based charts and fraud detection tools.

Time-based charts are a type of chart that can be leveraged given the sequential nature

of Feedzai’s problems. Periphery plots [201] (Figure 2.14) can be seen as a technique for

augmenting time-aligned temporal charts with a set of horizontally aligned peripheral

views that provide multi-resolution contexts before and after a focal temporal period.

This idea has the potential to be tested at Feedzai, notably as a way to visualize model

performance across various metrics over time (over the period of the test set, for exam-

ple). It may be an option to evaluate the offline degradation/stability of different models.
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Although a model may, in the period closest to the one that was trained, have a better

performance than the other models, it can get worse more quickly than other more stable

models.

Figure 2.14: Periphery plots [201]. This paper basically presents a small multiple (each
plot is called a track) with a control timeline for defining the context zones (periphery
plots) and focus zone (focus plot), thus allowing to compare the distributions of various
features.

Considering each model, its hyperparameters and the results in terms of performance

metrics as a tabular dataset, parallel coordinates [145] are a convenient way to visualize

and discover possible patterns from high-dimensional data using the original data. Al-

though the focus is on DL models and experiments full of hyperparameters and different

models, HiPlot [103], created by Facebook, offers a visualization adapted for model com-

parison which may also be useful for comparing ML models as well (HiPlot is ready to

create the chart from a simple array of dictionaries). In addition, model filtering and axis

manipulation options offer greater flexibility than traditional static plots. However, the

value of this visualization for Feedzai is unclear given that Random Forest models, for

example, are usually resilient in relation to the chosen hyperparameters [229], and the

number of models generated can benefit from tables/plots that data scientists are more

used to, for example. Perhaps for Gradient Boosting algorithms [36] and projects in which

many models are trained — and that any performance gain is significant — HiPlot has a

say. The TensorBoard HParams Dashboard [1] also offers similar functionality, as well as

Optuna [4], a hyperparameter optimization package (for ML and DL).

For fraud detection, but targeted at fraud analysts, VaBank [179] offers a three-way

interface to help characterize fraudulent patterns (in banking datasets). In this tool,

transactions are represented by glyphs that encode a set of common and relevant data

fields. With this in mind, the first panel, the Transaction History view, is a kind of

binned scatterplot (there are also interactive histograms for each axis), where the glyphs

are arranged according to the associated amount of money (Y-axis) and time (X-axis). The

other two panels offer two different projections (a matrix/grid and a force-directed graph)

of the results of a SOM (a dimensionality reduction method) to complement the first

panel.

In terms of presenting information about models and reporting, model cards [188] (a
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kind of one-pager) offer a detailed framework. Some sections, at least, could be useful

to provide a clear and standardized summary of the models that a data scientist will

be using and what practices a data scientist should keep in mind for reporting, since

information about a particular model may be used in the future as a hypothesis to be

evaluated against others, for example. In the same vein, with a special focus on data

ethics, there is deon [71], a well-founded CLI tool to generate a checklist to enrich the

documentation for DS projects.

2.3.4 Takeaways

There are some general conclusions to highlight:

• The discrimination threshold plot from Yellowbrick [30] is one of the options di-

rectly adapted in order to provide a plot that shows the overview of the various

performance metrics (considering the range of classification thresholds) for the

sake of threshold tuning.

• Precrec’s idea of partial ROC/PR curve charts [258] (already used at Feedzai) will

also be adapted for MevaL since there is an interest in analyzing in more detail a

certain subspace (the FPR values of interest are usually small values, up to 5%, for

example).

• Of the tools/packages for Model Evaluation analyzed, the one closest to a production-

ready tool is WIT, given its constant development and flexibility since it was made

available. Yellowbrick [30] is also a very stable Python package, especially for use in

conjunction with scikit-learn [217]. In addition, Yellowbrick also powers PyCaret’s

Model Evaluation (or Analysis) capabilities [6] with its charts (PyCaret is a low-code

ML package for Python). As a side note, PyCaret also uses scikit-plot [203] for the

lift and cumulative lift curve charts.

• In terms of granularity/Model Evaluation categories, there seems to be no trend, at

least one clearly visible. Over time, the overall motivation, in terms of understand-

ing and/or improving the performance of ML models, seems to remain the main

high-level motivation. The main difference is in the specificity and extent of the

proposed solutions. Nevertheless, different granularities and interactivity are very

useful.

• In general, all papers present out-of-the-loop (OOTL) solutions, that is, solutions

parallel to the typical development environment used by data scientists. There

are no proposals that present an Interactive Machine Learning (IML) system that

allows the creation of an e2e ML pipeline and has a significant set of functionalities

in terms of Model Evaluation, for example.

• Within the sample of papers analyzed on Model Evaluation with visual support,

there is a general gap in the way the evaluation is made. Some papers have a good
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number of participants, compare the results with statistical tests and have made

an assessment over time, as in the case of WIT, for example, but, in general, the

proposals were tested only in the context of User Acceptance Testing (UAT) with

simple tasks and datasets, without the complexity of the real world. Although these

works are developed in an academic context, there is a bit of a contradiction here:

is it really necessary a tool with such functionalities to evaluate models trained in

toy contexts?

• Neither visual tool (except WIT) has a maturity/popularity level close to the pack-

ages used in DS/ML in a second tier (being the first tier for scikit-learn, for example).

In terms of packages, there are Orange, Yellowbrick, and PyCaret as pertinent (and

actively maintained) options for use as second-tier packages.

• Some features seem interesting to test, but their value is still unclear. These features

are the odds ratio [147], Manifold’s geo(spatial) feature view [168], and Prospect’s

incorrectness versus label entropy plot [215].

• In addition, although two possible statistical tests have been identified to compare

classification models [245], it is still necessary to further study if these are the most

suitable tests for the intended objective.

• The ROC curve packages [92, 135, 162, 250, 257, 258] and the periphery plots [201]

are tools to keep in mind to adapt and use in the improvement of the charts for

ROC curve analysis and model decay assessment considering different subsets of

data, respectively.

• For cases where the development of model-specific features is a priority, the tempo-

ral confusion matrix [172] and HiPlot [103] are two simple, yet powerful ideas to

adapt. Appendix B contains a prototype of a binary temporal confusion matrix.

• Currently, the DL Model Evaluation subfield is very active, as can be seen through

the survey prepared in 2018 [111], for example.

• In 2019, the number of papers making the code available increased considerably

(uncommon before 2019).

• In 2019, the first papers combining visual tools and bias/fairness in ML began

to emerge (FairSight, FairVis, and partially WIT). Aequitas appeared in 2018 but

underwent a review in April 2019. These works are consistent with the current

concern with bias in data and ML models [13].

• Many of the visual tools presented "ignore" the presentation of model performance

in the most simple and traditional way, such as a number for Recall, for example.

Perhaps it is for the sake of brevity and objectivity.

• Some of the older papers (approximately pre-2016 papers) seem to have, at least in

part, a motivation for improving the confusion matrix concept.
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• The rule-based option, RuleMatrix, shows, at least OOTB, that rule-based methods

can be computationally costly.

• Most papers come from agnostic development contexts, while two papers are linked

to healthcare [147, 148] and one to biomass prediction [350].

• Some of the papers feature visual tools whose target group are also Domain Ex-

perts (DEs) who do not master DS/ML. However, most proposals aim to help data

scientists.

• There is no visible gap between papers looking to address model comparison or not.

• Only two papers highlight change tracking functionality, and only one paper de-

votes a paragraph to talk about the flexibility of the proposed solution for imbal-

anced datasets [8].

• In terms of dimensionality reduction techniques for high-dimensional DV, only

t-SNE [175] is used [3, 172, 352] (VaBank uses SOM [179]). t-SNE is a non-linear

technique for dimensionality reduction. Intuitively, it tries to minimize the diver-

gence between two distributions [216]: (1) a distribution that measures pairwise

similarities of the input instances and (2) a distribution that measures pairwise

similarities of the corresponding low-dimensional points.

• When looking at vendors of DSML platforms [100, 186], it is possible to notice

that, in addition to performance metrics, prediction/model runtime/speed is also a

metric to consider.
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Figure 2.15: Coauthorship network based on a sample of 46 papers and 186 authors
discussed in the Literature Review section. These papers are focused on DV or have at
least one DV component considered significant. Isolated nodes, that is, nodes referring to
the unique authors of certain papers (nodes without edges) are maintained in this graph.
In this sample, the author with the most papers is Steven M. Drucker (four papers [12, 112,
215, 272] in total). An interactive version (with tooltips) is publicly available online [212].
The script (and some additional information) used to generate this graph can be found in
Appendix S.
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3
MevaL, a Python Package for Visual Model

Evaluation

3.1 Introduction

In order to introduce MevaL, the Python package for visual Model Evaluation developed

as the solution to this effort, and its inner workings, this chapter is dedicated to the

concrete definition of the scope and requirements of the project, as well as to the top-

bottom description of the package. Thus, each section will cover the following:

1. Requirements Elicitation: this section is dedicated to describing and consolidating

the requirements identified for MevaL derived from the input collected. This section

is also devoted to organizing and contextualizing all pre-development moments of

interaction with data scientists in order to qualitatively validate some ideas and

iterate MevaL.

2. Tech Stack: this section is dedicated to the technologies and packages that support

MevaL.

3. Package Architecture: this section is dedicated to elaborating on the structure and

organization of MevaL (as a Python package).

4. Aesthetics and Configuration: this section is dedicated to the style specifications for

the plotting part of MevaL, as well as some configuration considerations for pandas.

5. Features: this section is dedicated to detailing the data processing and plotting

capabilities available in MevaL. The description of each implemented chart can be

found in this section.
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6. Deployment: this section is dedicated to the process and status of moving MevaL to

production, that is, to integrate the developed package in Feedzai’s DS environment

and make it widely available to all Feedzai’s data scientists.

3.2 Requirements Elicitation

From the beginning, there was a clear research question with a hazy path: how can we

improve, accelerate, visually support, and diversify Feedzai’s current Model Evaluation

capabilities to enable data scientists to boost their daily work and the quality of their

models? In simpler words, how could we help Feedzai’s data scientists to validate their

ML models?

In order to clarify this path until the definition of small concrete objectives to guide the

development of the project, this section will start by addressing the process of collecting

input and ending with the list of requirements collaboratively assembled to be respected.

3.2.1 User Interviews and Input Gathering

Initially, in order to align the research question with a concrete action plan, two sources

of input were leveraged (in addition to the literature review): Feedzai’s data scientists

(the main target group) and Feedzai’s Knowledge Management (KM) system (the scalable

way to access the main target group over time using historical documentation).

In order to collect input from Feedzai’s data scientists, semi-structured user inter-

views (aiming at insights, not statistics) with six Research data scientists (working or with

previous experience in ML) and five Customer Success data scientists working on differ-

ent projects were designed and conducted (Table 3.1). Given that there are two major

personas (or profiles) at Feedzai working in DS, it was decided to consider both at this

stage to collect the desired input about the workflow and their Model Evaluation needs,

as well as to break any unconsciously established assumptions — and ultimately to decide

the persona for this project given the considerable heterogeneity between the two (there

is also a possible third persona, the external data scientist, from Feedzai’s clients, who was

not considered). The first interview, with a Research data scientist, also served as a pilot

in order to improve the agenda and receive feedback on facilitation. The sample size was

decided based on the opinion shared by experienced people at Feedzai (supported by pre-

vious initiatives), as well as the cost-benefit perspective that the cumulative input of five

people may be sufficient [208, 270]. In addition, this (approximate) number was consid-

ered especially due to the time available, either for conducting the interviews themselves,

either to compile the results, and the impact of scheduling interviews lasting between

45-60 minutes with different people busy with their normal responsibilities. In this way,

the interviews were designed with the help of some User Experience (UX) materials [25,

69, 204, 209, 273] and the guidelines can be found in Appendix C.
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Table 3.1: Department and starting date at Feedzai of interviewees. User interviews took
place between December 30, 2019 and January 16, 2020.

Department Starting Date

Customer Success May 2018
Customer Success October 2018
Customer Success January 2019
Customer Success June 2019
Customer Success September 2019
Research January 2018
Research February 2018
Research October 2018
Research October 2018
Research May 2019
Research July 2019

Simultaneously, the interviews also made it possible to clarify some open (technical)

questions when this project started:

• Should we extend the Model Evaluation capabilities available on Pulse or develop

a solution from a clean slate?

• Is a Python package a reliable option?

• What types of charts do data scientists use regularly (if any)? And for what?

• Are there any needs that could benefit from a visual representation and that are

well defined?

The main lessons (both general and actionable) to keep in mind are:

• One of the tasks that Customer Success data scientists need to do is check specific

breakdown fields and see different performance metrics in different data subgroups.

A breakdown field, in this context, is a feature of a dataset or its own set of unique

values (or just a subset of them) by which a dataset is divided to treat the derived

slices as individual datasets to be compared (since the performance on these slices

is relevant in addition to the overall performance). So, it is important to allow flexi-

bility in terms of the number of breakdowns and/or models allowed per table/visu-

alization. In addition, this task is mostly made outside of Pulse (via computational

notebooks and/or scripts).

• There is significant variability between workflows (considering different projects/-

clients). The use of Pulse, compared to computational notebooks and scripts, varies

significantly between Customer Success data scientists and projects.

• Pulse is Feedzai’s go-to-production platform, with useful features to (at least) per-

form the first screening of the models, but the requirements demand the flexibility

provided by custom code.
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• Although possible new features, in an ideal scenario, should be implemented on

Pulse, it is feasible to consider creating a Python package (at least for Feedzai’s data

scientists). However, some requirements must be incorporated by design: in terms

of usability, the package must be stable, easy to use, modular and be equipped with

good tutorials and documentation.

• No ML Bias and Fairness audit needs were identified.

• ML Interpretability methods are useful for communicating with clients and for

speeding debugging.

• The duration and pace at which projects are carried out can vary, which correlates

with faster Model Evaluation and with slower and more in-depth Model Evaluation.

However, given the Big Data context in which Feedzai operates, it is important to

keep in mind the computation time required to iterate and that this can influence

the project to be slower and more static, but with a not so deep Model Evaluation

— each project is a unique project. Somewhat independent of this, is the fact that

there is always more that could be done and data scientists have limited time. The

preparation of data and features, as well as environment configurations, takes a

considerable fraction of the available time and strongly influences the time for

other actions. Therefore, it is important to provide tools for evaluating models as

OOTB as possible so that the focus is on hypothesis testing rather than preparation

for testing hypotheses.

• There are (approximately) two major phases in client projects: the initial phase,

with only historical data and without a functioning production environment, and

the maintenance and iteration phase, over time, after the first model goes into pro-

duction (there is a kind of calibration period between both when the model is in

shadow mode). From the second phase, (online) model monitoring is a fundamental

aspect and, with that, the return to the (offline) DS environment for possible itera-

tions and/or model retraining. This implies, therefore, that new Model Evaluation

procedures are made with the snapshot of the old model in mind. In this way, there

is a new reference point for several decisions that must be carefully considered.

• FI is very important and used (to simplify models by reducing the number of fea-

tures, for example).

• The use of model-specific methods to evaluate ML models is rare (to understand

how splits are being made in a RF model, for example).

• Feedzai provides a system that is not only composed of ML models but also (explicit

and manually defined) rules (or just rules, depending on the use cases). Thus, in

certain projects, it is also fundamental to evaluate the performance of the system as

a whole, in a flat or hierarchical way.

To complement the user interviews, some content of the Feedzai’s KM system was also

checked and documented in order to collect potential ideas, to understand part of the
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reasoning for the current state, and to confirm if there were, in the past, possible ideas

that did not work (or were still open). Pulse, Feedzai’s e2e ML platform, was also set

up locally, tested, and some conclusions drawn, which were later addressed in a meeting

with a Customer Success data scientist. This meeting also served to collect some input in

a similar way to the interviews.

Finally, a meeting was also conducted with the principal responsible for a similar

initiative at Feedzai that resulted in a Python package (and computational notebook)

for Exploratory Data Analysis (EDA). This meeting mainly served to address the vari-

ous stages of development and to highlight the importance of creating and validating a

mockup (the recommended format was that of a computational notebook) before moving

on to coding (more information in the Mockup section). As a side note, flexibility was

one of the criteria that motivated the development of a Python package for EDA.

3.2.2 Persona

The main persona for this work is the Customer Success data scientist at Feedzai. This

narrowing occurred for the following reasons:

• First of all, the work, at least at the level of Model Evaluation, is significantly more

standardized (in a simplified way, Model Evaluation is a performance metric-centric

job at Feedzai) for Customer Success data scientists (compared to Research data

scientists).

• In Research, the focus is on defining heterogeneous proofs of concept (PoCs) that

fail easily or show potential quickly. The main objective is to beat a pre-established

baseline (Is this new method better or not?) and ensure that the experimental setup

is adequate so that new alternatives can be generalized for Feedzai. So, it’s difficult

to have a setup or package that would be general enough to work for everything —

proper support is on the side of guidelines and processes.

• Due to the limited time and the lack of centralized and programmable tooling for

Model Evaluation (except the features available on Pulse), the impact of a package

like MevaL could be quite significant for the daily work of Customer Success data

scientists.

• Given the communication aspect existing in DS projects, between peers and between

data scientists and clients, a package designed with consistency in terms of charts

in mind can speed up the sharing and exchange of information. In addition, at

Feedzai, Customer Success data scientists already use charts in presentations and

to share results, for example.

• On the other hand, the consistency, as well as the centralization of a general package

(around the context of financial crime detection), may allow its extension in the

future, in addition to ensuring that all Customer Success data scientists have access

to the same options ready to be used.
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In general, this profile and the associated work have the following characteristics:

• The Customer Success data scientist is focused on obtaining better results, based

on pre-established performance metrics, and on fitting a solution for a specific use

case.

• Depending on the project, the Customer Success data scientist has variable time to

devote to Model Evaluation.

• In general, the Customer Success data scientist knows the relevant data subgroups

that he/she needs to take into account when evaluating models a priori.

• In addition to in-house platforms, the Customer Success data scientist also uses

scripts and/or computational notebooks (although preference varies from person

to person).

• The Customer Success data scientist knows how to use the main tools of the Python-

based DS tech stack (adopted at Feedzai), namely pandas, Jupyter, NumPy, and

PySpark (Spark Python API).

3.2.3 Scope

In order to clarify what MevaL is and what it is not, the package fits as a reliable tool

according to a set of attributes that make up its scope:

• MevaL is a Python package designed and tested to be used in JupyterLab environ-

ments.

• MevaL is intended for post-modeling, pre-production evaluation (or, simply, Model

Evaluation). However, MevaL can also be used to compare new and old ML models,

that is, offline models and models in production.

• MevaL is single model-first. This means that the API for each chart is designed for

one model at a time, even though some charts can be adapted for more than one

model — for now, comparing models can be done using different charts plotted side

by side through different calls (in a way inspired by the small multiple concept [29]

adapted to a computational notebook layout).

• MevaL is a visually supported package. Although, in practice, it is necessary to

have a data processing component to improve the user experience and ensure that

there is a sufficiently small representation of the original data (with an expected

maximum of 10,000 rows, with only a part of these rows being plotted per chart)

and with the necessary transformations for analysis, all other features have DV in

their core.

• MevaL is designed and tested to work, in the first place, in Feedzai’s DS environ-

ment, respecting its dependencies. Basically, MevaL is an environment-dependent

package.
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• MevaL is a model-agnostic package. In other words, MevaL works from datasets

that can be loaded and analyzed. In addition, it is raw data-friendly by having an

optional data processing pipeline. These raw datasets may or may not have been

sampled.

• MevaL is oriented towards binary classification problems.

• MevaL is structured mainly for the second phase of Model Evaluation, after the

first screening of a possibly large number of models (mainly through a leaderboard-

like, metric-oriented table, like the table generated by the mljar-supervised pack-

age [189]), where the maximum expected number of models is five (the comparison

of 2-3 models is expected to be the most recurrent scenario). This number may be

higher for short-term projects (10-15), for example, but time will not allow such

an in-depth analysis — however, MevaL, with some of its features, can be partially

used in the process as well.

• MevaL is table-aware. In other words, MevaL sees tables (more specifically pandas

DataFrames) as visualizations. This is particularly useful for the first screening of

models, based on different performance metrics.

• MevaL follows three simple, yet well-defined and purpose-based (dataset) schemas,

that is, it follows a (reduced) set of rules for the definition of a schema suitable for

performance metrics, predicted scores or feature importance. The details of these

schemas can be found in the Data and Data Processing section.

• MevaL is a threshold-driven package, that is, given the importance of adjusting and

analyzing various classification thresholds, sometimes even more than a threshold

for the same model, depending on the value of a particular feature, for example,

all relevant charts can be prepared according to a certain classification threshold

(there is also a specific chart to visualize the performance metrics over the range of

classification thresholds). In this way, MevaL does not assume anything about the

classification threshold to be inspected — it only provides an API that allows the

user to prepare the appropriate chart for a specific classification threshold, explicit

or derived from the value of a performance metric for some cases, as well as a

processing pipeline that includes a range of thresholds in the metrics dataset to be

analyzed.

• MevaL is a low-code package, with a set of functions and classes that are easily

usable and that require only the appropriate parameterization by the user (thus

seeking to speed up the experimentation cycle, in addition to lowering the barrier

to leverage DV). In this way, MevaL abstracts the implementation details, allowing

the user to focus on what he/she wants.

• MevaL is a package designed for data scientists, that is, designed for knowledgeable

people, who have the sensitivity to interpret the results and know how to critically

interpret the data shown by MevaL. However, this principle does not deny that
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different data scientists will have different levels of experience/backgrounds and

that, at least initially, not all data scientists will be acquainted with all the charts.

Thus, in addition to knowing the target audience, it is essential to ensure that the

documentation and tutorials provided are adequate to support all Feedzai’s data

scientists.

3.2.4 Requirements

From the content discussed in the interviews, as well as all the material collected, it was

possible to establish a set of requirements to guide the development of MevaL, as well

as the questions that the package seeks to answer explicitly. To adjust the requirements

defined after a first iteration, a meeting with stakeholders was scheduled in order to

present the findings and finalize the list of requirements. Subsequently, each requirement

has been carefully described in a product requirements document (PRD)-like document

to provide a kind of single source of truth and a way to share this list with potential

stakeholders.

That said, the list of requirements (or design goals) consists of the following items:

• R01: Data readiness

• R02: Flexibility

• R03: Modularity

• R04: Pluggability

• R05: Usability

• R06: Work-based relatability

The first requirement (R01: Data readiness) is concerned with the availability of data

ready to be plotted (and analyzed), either from a raw scored dataset (that is, from a

dataset with the predicted scores of a ML model and the features used), or from a dataset

processed independently with a valid schema. In other words, MevaL must support a

mechanism that allows extracting a sufficiently small representation with the relevant

information from one or more raw datasets (each one for a specific model), that is, it must

support a data pre-processing pipeline that is easily triggered and performant (it needs

to be fast enough according to Feedzai standards so that this component does not become

a clear bottleneck). On the other hand, starting from a pre-specified schema, MevaL

must also be able to use the data present in datasets already processed by extraneous

mechanisms. In this way, MevaL can accommodate different workflows, and datasets

previously processed and persisted. In a nutshell, MevaL must be ready to plot data from

different datasets coming from different sources and transformations.

The second (R02: Flexibility) and third (R03: Modularity) requirements come from

shared motivation for the entire package at the structural level, but are applied to dif-

ferent granularities. On the one hand, R02 is concerned with a user experience that is
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customizable according to the needs in each individual case, that is, R02 is concerned

that each feature has workable defaults and the possibility of gradually customizing more

parts; on the other hand, R03 is concerned with decoupling the individual building blocks

that holistically constitute MevaL, that is, with the modular interpretation and use that

must be possible with each subpackage and module. In addition, R02 also seeks to ensure

that the plotting API for each feature is as consistent as possible, while R03 enables the

use of different subsets of features freely and MevaL’s own extensibility for the future

(without discouraging the application of the package as a whole).

From a more contextual point of view, the fourth requirement (R04: Pluggability) is

concerned with the easy integration of MevaL into Feedzai’s current DS environment and

that any data scientist is able to use the package as another tool that he/she uses daily.

This environment, in terms of front-facing details, is made up of Pulse, JupyterLab, and

a set of Python-based dependencies, with the current supported Python version being

Python 3.6. Thus, MevaL must be aligned with these technical requirements in order to

be integrable from the beginning — at the end of the day, MevaL is a tool for Customer

Success data scientists.

As expected, the fifth requirement (R05: Usability) connects a number of key points

for the adoption and use of a package like MevaL. That said, MevaL must be grounded on

an intuitive and exemplified API, appropriate documentation, an entry-level notebook,

and duly explained visualizations, so that the learning curve is of rapid progress. This

requirement is also linked to the first one (R01: Data readiness) in the sense that data

preprocessing should not be an obstacle to the adoption of the package.

Last but not least, the sixth requirement (R06: Work-based relatability) addresses the

duality between existing and actually used charts and tasks that would benefit from new

visual representations (according, above all, to user interviews). From a more practical

point of view, MevaL should support existing charts for Model Evaluation at Feedzai and

should provide charts designed with the potential to cover specific tasks that may benefit

from visual support. From the user interviews, no evidence was found on the usefulness

of looking for visual alternatives for Model Evaluation tasks that are not currently carried

out at Feedzai. That said, this requirement is just an umbrella for a set of specific tasks, or

design goals, that integrate the current Model Evaluation procedures — these options are

described in the Model Evaluation Topology section and together they make up a kind of

taxonomy for Model Evaluation.

3.2.4.1 Prioritization (Preview)

After the user interviews, and in the same document mentioned above, a first crude list of

priorities was also defined that helped shape the development phase (the first tier turned

out to be the focus of this master’s thesis):

1. Tier 1 (the must-have features): features that fill the current Model Evaluation

Topology/functional requirements (with particular attention to the design of tables
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and informative summaries). FP/FN Analysis is considered the least priority task

at this tier as it involves a strong component of Data Exploration (and Feature

Engineering). Within this tier, features can be ordered in terms of complexity

(ascending order) and current adoption (descending order). The main idea is to

start with the features that are easier to implement and that Feedzai’s data scientists

already use, such as ROC curves, and go deeper into the possible available options.

2. Tier 2 (the nice features to have): model-specific features for RF and LightGBM mod-

els, incorrectness versus label entropy plot [215], Data Exploration/Feature Engineering-

oriented features for FP/FN Analysis, and ensemble modeling via non-adversarial

Model Comparison.

3. Tier 3 (the features to explore if possible): metadata weight comparison (to compare

the weight of different models using the number of trees, the number of features

they use, among other aspects) and geospatial analysis (Manifold’s Geo Feature

View is an example [168, 349]).

Focusing on Tier 1, the associated prioritization was designed to conform to the order

approximately dictated by the following factors:

1. Complexity: the simplest features, both in terms of implementation and in terms of

use, consisting of a smaller number of parts, should be the first to be implemented.

Complexity will not be measured objectively by any metric. Although, throughout

several iterations, a given feature may become more complex than another, it will

be considered an estimate of complexity based on the current perspective.

2. Current adoption: the features that are already implemented on Pulse, as well as

the features related to them and identified through the user interviews, should be

implemented first. Current adoption can also be seen as a proxy for the usefulness

of features in the short term.

3. Availability of ready-to-use files: since, through Pulse, it is possible to obtain a

set of files ready to consume, the features that can use them by design should be

implemented first. The features that require manipulating the original data file

scored by Pulse should be addressed later. In the end, it turned out to be the other

way around (more information in the Data and Data Processing section).

4. Consumption-oriented: the initial approach should be focused on the consumption

of existing files, that is, MevaL should load the relevant files. Thus, features that

solely depend on existing files a priori should be implemented first. The features

that need to communicate with Pulse for the generation of new files (that must be

later consumed) should be implemented later.

5. DV-oriented: features whose charts or tables are the main element should be im-

plemented first, compared to features in which the most visual parts are a comple-

mentary or null element.
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3.2.5 Mockup

In addition to the theoretical settlement for MevaL, a mockup was also developed, in the

form of a (Jupyter) notebook (with images and some text), aimed at showing the possible

capabilities of the API and simulating the approximate usability that a data scientist

would have with MevaL. It is important to highlight that the mockup was developed

from the perspective of the API/package as a flexible tool to be used according to the

user’s preferences, that is, the mockup did not serve to simulate what may be, step by

step, a standardized Model Evaluation procedure for Feedzai.

So, in order to collect some (initial) feedback on the possible concrete features to be

implemented in MevaL, five (mockup review) conversations/interviews (the guidelines

can be seen in Appendix V) were conducted with Customer Success data scientists (this

number was defined in a similar way to that presented in the User Interviews and Input

Gathering section). Of these five conversations, three were with data scientists previously

interviewed and two were with data scientists whose first contact with this project was

during the conversation. The motivation to collect this feedback, in addition to keeping

the development of MevaL close to its future users, was related to the need to carry out

the first screening, as well as to collect a more concrete list of ideas than that obtained

during the interviews about possible customizations for the features, so that they are

designed with the needs of data scientists in mind. These conversations also served to

address some relevant questions raised in the final part of the conversations, as well

as to ascertain whether there was any missing fundamental feature according to what

Customer Success data scientists currently use/do (with the awareness that the sample of

the conversations may not be fully representative).

That said, the mockup approached the following structure (the chart images and

helper text were arranged in a narrative based on questions and answers):

1. Imports

2. Configs

3. Question (Markdown)

4. Feature/Chart (mock)

5. Answer (Markdown)

Finally, from these conversations, some preliminary new ideas emerged, such as:

• Create and update the standard notebook for Model Evaluation as new features

are developed and implemented in the Python package. This should complement

an easy-to-use API with a clear statement of functionality. The notebook can also

serve as an introduction or tutorial for the API, as well as a first standard version of

Model Evaluation.

• Implement a summary of the models and datasets to be analyzed.
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• Implement interactive legends or a similar mechanism to show/hide information.

• The score distribution chart must have an interactive mechanism to change the bin

width or its function must have an argument to define it flexibly (a small multiple

can be an option as well).

• Implement the strip plot (considering a version for Threshold Tuning as well) and

add a tooltip to each strip.

• Confidence intervals can also help in communicating with clients.

• Include tooltips in the classification threshold plot. Also, allow to zoom in on the

Y-axis or limit the values.

• Consider that performance-based tables and charts, when being used for Threshold

Tuning, will have to be flexible to allow Customer Success data scientists to check

different thresholds for different breakdown fields.

• Implement a parameter for the amount (cost-sensitive) field.

• More important than a ROC curve chart is a flexible partial ROC curve chart.

3.3 Tech Stack

For MevaL to be possible, a set of specific technologies (packages and extensions) was

leveraged (mainly Python-based) in order to guarantee the most robust development pos-

sible and in line with the practices followed at Feedzai (not to mention the suitability for

the development of the desired features). Although most of this stack was built to match

Feedzai’s DS environment, all technologies used are open source. These technologies can

be divided into three major groups (a list of them, as well as the versions used and their

project-specific purpose, can be found in Table 3.2 and Table 3.3, respectively):

1. Plotting (Front-end) tools: since MevaL is a package for evaluating ML models

with visual support, it is necessary to have suitable technologies to build and show

different charts.

2. Data and processing (Back-end) tools: since MevaL is a data-driven package, de-

pendent on certain consolidated representations from the original data used to

train/test a given ML model, as well as its output, it is necessary to provide a way

(pipeline) to map the low-level raw data to the higher-level information in order to

ensure the extraction of insights in a practical way. In addition, implicitly, it is also

necessary to consider certain data structures that allow data (from external datasets)

to be handled and programmatically maneuvered, that is, a format for representing

(tabular) data (in Python).

3. Code quality tools: since MevaL is a dynamic package to be used by data scientists

in order to help them develop ML models for their projects, it is necessary to ensure

that its codebase is as robust, stable, and consistent as possible. In other words,
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from an agnostic perspective in terms of functionality, it is essential to enrich the

package with a set of heterogeneous validations and standardized formatting that

will increase the quality/readability of the code (from a practical point of view, it is

very difficult, perhaps impossible, to compare the code being developed with a large

list of good practices/warnings constantly) and facilitate future maintenance/ex-

tension of the package itself. Thus, although part of this work needs to be done by

hand, it is composed of a set of cumbersome, error-prone, and non-scalable steps in

general — the ideal scenario to use certain tools (from logical and stylistic linters

to unit testing frameworks) that help in the execution of various quality assurance

tasks in an (approximately) automatic way.

Regarding the plotting side, Altair was the chosen package (the other possible and

supported option was Matplotlib). Altair is a declarative visualization package for Python

that provides an API for generating web-based Vega-Lite charts (which are automatically

embedded in JupyterLab notebooks). In other words, Altair is like an alternative Python-

based syntax [195] that generates Vega-Lite specifications (chart blueprints) — in the

end, the visualizations are still rendered with Vega-Lite (JupyterLab comes with built-in

support for Vega and Vega-Lite [196]). Thus, Altair is part of the Vega ecosystem — Vega

is a JavaScript Object Notation (JSON)-based declarative language for describing and

creating interactive visualizations (Vega-Lite is the high-level counterpart) [213] inspired

by Leland Wilkinson’s influential The Grammar of Graphics [339] (building blocks for DV).

The Grammar of Graphics (GoG) is a well-established framework for composing charts

from different independent parts [317], streamlining the mapping between a dataset and

the available visual encodings (it is also at the foundation of ggplot2 [315], a declarative

visualization package for R). That said, the reasons (partly due to the ecosystem in which

Altair operates) that fueled this choice were as follows (in no particular order):

• In addition to Altair being supported in Feedzai’s DS environment, the other in-

house MevaL-like package for EDA uses Altair.

• Altair provides OOTB interactive charts (through a high-level interaction grammar

entangled with the rest of the grammar/methods [264]), extending the possibilities

in a similar way to existing ones for producing static charts. In addition, it is also

possible to add OOTB tooltips, a way to complement the chart based on the user’s

interests (via mouseover) through table-like information on the different plotted

marks. A tooltip is a tabular-like text box [290] that provides extra information

upon user-driven mouse hovering.

• Since Altair is the visualization package for Python currently used by Feedzai’s DV

team (and it is the package used in the EDA package), there is significant know-how

at Feedzai about it.

• Altair has sensible, workable defaults, as is the case for color palettes [264], thus

allowing implicitly to leverage its declarative vein.
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• The Vega ecosystem, where Altair is inserted as a front-facing package for Python

(the stack goes like Altair → Vega-Lite → Vega → D3 [164]), is strongly backed

up by research [105]. After the first version of Vega in 2013 [263] (and other prior

actionable works, such as Prefuse [38] in 2005 and D3 [38], Vega’s cornerstone/k-

ernel and one of the most powerful plotting tools out there [164], in 2011), the

first research paper [266] on language design/implementation appeared in 2014,

followed by a set of other works, such as Vega-Lite [264] in 2017 and Draco [199] (a

Vega-Lite-based visualization design tool) in 2019, culminating, for now, in two re-

search papers accepted at IEEE VIS 2020 (a visualization conference that took place

in October 2020) on smart labeling [139] (already available from version 5.16.0 of

Vega [106]) and animation [137] (two of Altair’s current weaknesses). The last two

works also show the active development experienced in this ecosystem (Altair is at

the end of the pipeline but it is also in active development).

• Altair’s charts can be easily embedded in Hypertext Markup Language (HTML)

files (an interesting medium to create and share reports, for example) as fully-

functioning charts (in terms of interactivity, for example) or statically (as an image).

In other words, it is possible to use a Vega-Lite chart, created with Altair, in other

environments outside the Python and Jupyter ecosystem.

• In addition to providing the ability to create multiple individual charts and combine

them into a single (layered or concatenated) multi-view/compound chart, Altair also

offers a kind of chart parameterization mechanism to generate multi-view (faceted

or repeated) charts (via certain methods/operators). In other words, from the typ-

ical code block to define a unit chart, it is possible to obtain multiple charts (as a

multi-view chart) according to the variables used. This convenient API, smoothly

integrated with the rest, for creating varied views of a dataset (for a particular type

of chart) is particularly useful for small multiples (significantly leveraged by MevaL)

and scatterplot matrices [225].

• Altair brings Vega-Embed [198], a small package for embedding charts in web

environments and customizing some options, enabled by default. From a purely

practical point of view, Vega-Embed adds a button (in the upper right corner of each

chart) and a dropdown menu with some actions (triggered manually) useful for the

user, such as the option to export a Portable Network Graphics (PNG) or Scalable

Vector Graphics (SVG) image.

• Altair has a consistent, readable and easy-to-use API underpinned by the Vega-Lite

(and Vega) design principles and the way it clearly instantiates the GoG [169].

• Under Altair, at the Vega level, lies an efficient system architecture previously bench-

marked [265]. In simple and non-exhaustive terms, Vega efficiently updates a chart

according to new input events or data changes, highlighting its reactive nature (in
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addition, there is also a separation of concerns between specification and evalua-

tion) [169].

As for data and processing tools, the two main ones are pandas and PySpark, the

de facto packages (at least currently) for data [246] (in-memory analytics) and data-

intensive [237] (distributed computing) contexts powered by Python (Spark is a more

comprehensive tool, an all-in-one Big Data project, that can also be used with R, Java,

and Scala, for example). In addition, they are also two of the standard tools at Feedzai for

DS and ML. The need to have data processing tools that allow the transition from large

raw datasets to small carefully thought-out datasets is also linked, from a practical point

of view, to one of Altair’s design principles/constraints: limiting the number of rows

in a dataset that will be embedded in the chart specification generated from Altair in

5000 [301] (by default). This mechanism is particularly tailored for pandas DataFrames,

as the respective data is converted to JSON and included in its entirety in this specifica-

tion, that is, in the Vega-Lite scaffolding that defines a Altair chart from its API. Above

all, although it is totally possible to remove this restriction in a fruitful way, this idea

attracts holistic thinking for the entire solution, from raw data to the notebook, and draws

attention to potential problems in the size of notebooks and performance, especially in

presence of multiple plots (this restriction is maintained by default in MevaL). In terms of

implementation, it also invites a careful choice of a subset of processed data, if applicable,

at the time of plotting. Moreover, supporting these two tools are NumPy and SciPy, as

they are used for specific data transformations and for statistical computation.

In terms of code quality tools, in addition to efficient support for the iterative de-

velopment and maintenance of a certain level of quality, there are some idiosyncrasies

regarding certain tools that deserve to be highlighted:

• nbQA [91], by enabling static code analysis and code formatting of the cells of a

Jupyter notebook through a simple, one-liner command, was particularly useful for

running Black on development and demonstration notebooks. This formatting al-

lowed, for example, to break function calls with a significant number of parameters

on different lines, facilitating their readability and customization.

• Pyroma [247] made it possible to compare the setup.py file, the metadata-based

build script, which is essential for creating Python packages, with a list of best

practices, allowing this non-priority file to be improved effortlessly.

• flake8-docstrings [15] was especially useful to ensure that the Python docstrings

followed the NumPy convention [304] (the convention recently adopted at Feedzai

for Python packages like MevaL).

As a side note, since the Feedzai’s DS environment does not have one of the dependen-

cies necessary to prepare Altair charts as images programmatically, a JavaScript-based

workaround was developed and briefly used. This component is detailed in Appendix G.
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Table 3.2: Each version of the different technologies leveraged for the development and
maintenance of MevaL. Some of the options have two versions as these dependencies
have been updated according to Feedzai’s DS environment. At the base of this stack is
Python 3.6.10. The version of markdownlint corresponds to the version used for the Visual
Studio Code extension.

Tech Version

Altair [297] 2.4.1
Bandit [232] 1.6.2
Black [161] 19.10b0 and 20.8b1
Flake8 [353] 3.7.9 and 3.8.3
flake8-bugbear [160] 20.1.4
flake8-docstrings [15] 1.5.0
isort [55] 4.3.21
JupyterLab [140] 0.34.12 and 1.2.6
markdownlint [17] 0.37.1
mypy [165] 0.780
nbQA [91] 0.3.5
NumPy [99] 1.14.5 and 1.18.5
pandas [180] 0.23.4 and 0.24.2
Pipenv [224] 2018.11.26 and 2020.8.13
Pyroma [247] 2.6
PySpark [346] 2.3.1 and 2.4.5
pytest [149] 3.6.3 and 5.4.3
SciPy [303] 1.1.0 and 1.4.0
Vega-Embed [198] 3.30.0

Finally, JupyterLab is like the workbench, that is, in this work, it is used as the main

platform for the execution of Model Evaluation procedures, given not only its use in

Feedzai (as an extensible platform for routine DS tasks and manual or automatic re-

porting [279]) and the community in general [128] but also its native support to show

(interactive) visualizations. On the other hand, JupyterLab, together with Visual Studio

Code [185], were the source-code editors used during this project (JupyterLab was used,

mainly, to visually test the charts created). The technical specification of the laptop used

during development can be found in Appendix M.

3.4 Package Architecture

The general project structure for MevaL can be seen in Figure 3.1. As a Python package to

be distributed internally (and developed locally), the structure followed is similar to that

of a typical Python package [234, 294] (mainly based on the user guide provided by the

Python Packaging Authority [235], the official working group responsible for maintaining

a core set of resources for Python packaging). However, this structure is extended to

that of a DS project [70] as well, since MevaL, in addition to being a package, is also a
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Table 3.3: Overview of the purpose of each of the technologies used for the development
and maintenance of MevaL.

Tech Purpose

Altair [297] Plotting
Bandit [232] Security linting
Black [161] Code formatting
Flake8 [353] Linting
flake8-bugbear [160] Linting (it extends Flake8 with extra warnings/error codes)
flake8-docstrings [15] Docstring convention checking
isort [55] Import ordering
JupyterLab [140] Computational notebook environment
markdownlint [17] Markdown linting
mypy [165] Optionally-enforced static type checking
nbQA [91] Running Python code quality packages on Jupyter notebooks
NumPy [99] Data manipulation
pandas [180] Data structuring, processing, and manipulation
Pipenv [224] Dependency and environment management
Pyroma [247] Python package metadata (setup.py file) checking
PySpark [346] Data structuring and processing
pytest [149] Unit testing
SciPy [303] Statistical calculations
Vega-Embed [198] Chart embedding and image saving (used by default in Altair)

repository and, therefore, will contain some folders and files that will not necessarily be

packaged/distributed but that can be consulted and used from the repository (like demo

notebooks, for example). That said, there are some opinionated details that complemen-

t/contrast the examples found online:

• The notebooks folder contains the computational notebooks for development and

showcase, as well as the respective supporting datasets (relatively small raw datasets

and small processed datasets). These two types of artifacts are in the same folder

given the purpose shown by the two types of notebooks hosted here.

• Pipenv is the environment isolation tool of choice, as it is the option used in Feedzai’s

main DS-oriented Python package. The other options on the table were Virtualenv

and Conda [237].

• The list of adopted Python Package Index (PyPI)/Trove classifiers (metadata to

categorize a given Python package) can be found in Appendix E.

• The changelog file (a chronologically ordered list of changes [153], basically) was

updated based on the name of the closed issues for each of the merge/pull requests

to the main branch of the MevaL repository.

• The versioning of the package is based on the Semantic Versioning 2.0.0 [227]

specification (without pre-releases).
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• All modules, except those that refer to specific types of charts (submodules), are lo-

cated under the inner meval folder (package), regardless of whether they are internal
modules or front-facing modules (all can be imported and used by the user, but some

are expected and others are not). This structure was followed in order to keep the

folders (subpackages) for the visual parts to be used directly by the user (the style
subpackage was also structured in this way since it also contains some user-friendly

helper functions to change the general theme for Altair charts, for example). One

option studied was to create a folder called internal to place all modules for internal

use, that is, all non-API modules, as is the case with the PyCaret package [6]. The

utils module is also expected to be rarely used by the user.

• In the case of the tables module, which contains a set of Python decorators to cus-

tomize the rendering of different pandas DataFrames (more specifically, a simple

function created by the user to show pandas DataFrames), it was decided to sepa-

rate it from the above structure designed for the OOTB charts and related helper

functions, as this module is operated in a very specific way.

• Within the text files, there is the .editorconfig file which aims to facilitate the main-

tenance of the style of certain files, as is the case with the LICENSE file, the Makefile,

and the Python files themselves (especially at the level of insertion of a new empty

line at the end of each file or not, indentation style, and indentation size). This file is

part of a project called EditorConfig [340] that provides a file format and numerous

text editor plugins for code-wise consistency purposes.

Each subpackage, that is, each of the folders inside the inner meval folder, contains

one or more files (or Python modules), each with a class for a particular type of chart.

The nomenclature for this division is further explored in the Model Evaluation Topology

section.

The charts.py file, on the other hand, contains all the functions that allow the con-

struction of the different Altair charts available in MevaL, as well as the definition of

some components (or partial charts) to be used by these charts. These functions are very

close, in theory, to the "recipe" functions present in the altair_recipes package [222] or the

high-level functions available in the Starborn package [267] for various types of charts

(each function is named after a chart, basically).

As a side note, there is no file dedicated to custom exceptions since MevaL takes

advantage of Python’s built-in exceptions (like ValueError, for example).

To wrap up this part, MevaL can also be summarized by the following (overall) code

metrics (calculated using the Radon package/CLI tool [154]):

• Cyclomatic/McCabe’s complexity (radon cc -e tests/* -s –total-average .)

– Average complexity (considering 267 blocks, that is, 267 classes, functions,

and methods): A (2.850187265917603).
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meval ... Root folder for the project/repository

<Pipenv files> ... Development environment files

<Python packaging files> ... The files for making a Python package and manag-

ing its distribution like the setup.py file

<Text files> ... Non-code files like the changelog/history or the README

assets ... Images and other miscellaneous files

<Asset> ... UML diagram, for example

meval ... MevaL package (root folder for the importable package)

base.py ... Abstract base classes and evaluation interface for MevaL

charts.py ... Functions for creating Altair charts

constants.py ... Reusable constants for MevaL

logging.py ... Default logger for MevaL

metrics.py ... Functions for performance metrics and confidence intervals

preprocess.py ... Data processing pipeline for MevaL

tables.py ... Styling decorators to customize pandas DataFrames

utils.py ... Utility (general-purpose) functions for MevaL

feature_importance ... FI subpackage

<chart>.py ... Module with the class for a given type of chart

model_decay ... MD subpackage

<chart>.py

score_distribution_estimation ... SDE subpackage

<chart>.py

style ... Aesthetics and configuration for Altair and pandas

<config.py>

threshold_tuning ... TT subpackage

<chart>.py

uncertainty_estimation ... UE subpackage

<chart>.py

visual_performance_analysis ... VPA subpackage

<chart>.py

notebooks ... Development and showcase data and computational notebooks

data

<data>.csv

<notebook.ipynb>

scripts ... Convenient Bash scripts for various tasks

<script>.sh ... Launch JupyterLab locally, for example

tests ... Unit test suite

<test>.py

Figure 3.1: Approximate project structure for MevaL. The __init__.py files for the package
and each subpackage are omitted. The preprocess.py file contains all the functions to
preprocess raw datasets and create datasets (pandas DataFrames) ready to be plotted.
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– Complexity of the best blocks: A (1).

– Complexity of the worst block: D (22).

• Maintainability Index (radon mi -e tests/* -s .)

– All files are ranked A, except the file with all Altair charts (charts.py) given

its large number of lines (2841 excluding docstrings). In the future, this file

should be separated into different modules.

– Ranking (and score) of the best files: A (100.00).

– Ranking (and score) of the two worst files: C (8.99) and A (33.54).

• Raw metrics (radon raw -e tests/* -s .)

– Lines of code (LOC): 9722.

– Logical lines of code (LLOC): 2378.

– Source lines of code (SLOC): 6760.

– Comments: 505.

– Single comments: 522.

– Multi: 1000.

– Blank: 1440.

– Comment statistics: 5% (C % L), 7% (C % S), and 15% (C + M % L).

In particular, the data processing module (preprocess.py) has the following Halstead

metrics/complexity measures [335] (radon hal meval/preprocess.py):

• η1: 13.

• η2: 102.

• N1: 65.

• N2: 117.

• Program vocabulary: 115.

• Program length: 182.

• Calculated (estimated) program length: 728.6931012169267.

• Volume: 1245.8791892718764.

• Difficulty: 7.455882352941177.

• Effort: 9289.128661188843.

• Time required to program (coding time derived from the Effort measure): 516.0627033993801

seconds (≈ 8-9 minutes).

• Number of delivered bugs: 0.41529306309062547.
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3.5 Aesthetics and Configuration

MevaL, as a visualization and DS package, is adjusted (by default) with a set of aes-

thetic/style options for Altair, as well as some custom settings for pandas. All of this

configuration is loaded when importing this Python package (however, given the flexi-

bility of Altair and pandas, all of these decisions can be reversed/changed if necessary).

On the other hand, there are some standard options consciously subscribed to, such as

Altair’s categorical color scheme (Tableau 10 [283]).

At the core of the aesthetic choices for MevaL, the following items stand out:

• Arial is the preferred (sans-serif) typeface (or simply font) for MevaL (in other

words, it is the umbrella font for the computer fonts that will be used by default).

The choice of Arial was mainly due to its familiarity, its good (arguable) design, and

its ubiquity — Arial is a cross-platform, web-safe font [178] (the initial choice was

Roboto, but this font is not Ubuntu-friendly).

• The initial and generic width and height values for charts available in MevaL are

300 pixels. Although different widths and heights can benefit distinct charts (it is

possible to change both values in general, as well as to change them individually),

these numbers were decided, mainly, based on the provided chart size, suitable for

13-inch (or larger) laptops and for the JupyterLab interface.

• The Y-axis title is positioned, by default, horizontally (zero rotation angle) in the

upper left corner of the chart, near the end of the axis. This positioning, in contrast

to the more traditional version where the title is rotated and centered vertically

along the Y-axis, seeks to facilitate the reading of this title [41, 90, 286, 295].

• Regarding color, MevaL leverages three different color palettes, as shown and de-

scribed in Figure 3.3. In addition to the two available ones in Altair, there is a

customized and heterogeneous color palette tailored for non-data elements of the

chart (such as axes and grid lines, for example), for secondary encoded data (as verti-

cal reference lines, for example), and for semantic distinction (thus complementing

the other color palettes). Taking the first four monochromatic colors (Figure 3.3),

White is used, for example, as the background color and as the stroke color in

the marks that are used on the vertical axes of a slopegraph to mitigate visual clut-

ter; Light Gray is used, for example, for shaded areas that highlight a part of the

ROC/PR/Gain space of a ROC/PR/Gain curve chart and for the review area of a

score distribution chart; Gray is used, for example, for direction markers/strips,

that is, to show whether the change in the continuous value associated with a cate-

gory is positive or negative according to a reference (double encoding using colors

and marks); finally, Black is used, for example, as a more aesthetically pleasing

color for chart guides and text, as well as for threshold markers. As for Green

and Red , these are used semantically with a positive and negative character (to

compare differences), as well as a proxy for non-fraud and fraud, respectively. The
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application of these color palettes will become clear throughout the Features sec-

tion.

• As a final note on color, it is important to highlight that the chosen Green is a bluish
tone of green [255]. As evidenced by the comparison of Figure 3.4 and Figure 3.5,

the choice of a binary set of dichotomous colors like this needs to be done carefully

so that the color palette is accessible to as many people as possible, including people

with some kind of red/green color deficiency [256]. In this way, with this bluish

green, it is possible to maintain the semantic meaning typically attributed to these

two colors at Feedzai (green for non-fraud and red for fraud), while this color palette

is more accessible than one with a normal tone of green.

• Based on the points that discuss color, it is also important to note that MevaL is

ready to be used OOTB in a light mode interface. This decision was mainly due

to the default light theme of JupyterLab, as well as a custom theme for JupyterLab

created at Feedzai, also light [279].

Hereupon, the options described above, as well as other non-data elements, constitute

a custom Altair theme that serves as a skin for the charts. In this context, an Altair theme

(or simply theme [288]) is a set of top-level chart configurations [302] applied together

(via a Python dictionary-based theme registry) to (globally) customize the appearance of

the charts developed in Altair (within any Python session/notebook).

In parallel, MevaL also adopts the concept of a tooltip theme to refer to Cascading

Style Sheets (CSS)-driven aesthetics for Altair tooltips (since these characteristics cannot

be changed from the top-level chart configurations, as is the case for axes and legends,

for example [300]). Although the tooltip is expressible as a visual encoding channel, that

is, the content of the tooltip can be defined and customized through the usual API, its

logic and style are addressed with the Vega Tooltip plugin [197] that is integrated into

Vega-Embed [198], the convenience wrapper for rendering the charts used by Altair. This

decoupling between tooltips and Vega/Vega-Lite specifications assembled with Altair is

in line with one of Vega’s design principles: Vega and Vega-Lite are designed to operate

declaratively and agnostically in relation to the renderer or platform where the charts

will be shown — this way, given that the tooltip is a feature that works in browsers but

does not work in SVG files, for example, it is not fully integrated into Vega [194]. So, it

is necessary to define a HTML/CSS snippet/string (it is necessary to rely on web-based

technologies), based on a set of standard CSS properties [278], and load it separately

so that the tooltip theme inherits the same colors and the same font as Altair’s main

theme. For this, two functions are used, display() and HTML(), from IPython [220] (display
module), the Jupyter kernel to work with Python (JupyterLab dependency). The current

disadvantage of this method is that the tooltip theme disappears when the user clears the

notebook’s entire output, that is, the displayed tooltip theme is transient. This method

is non-invasive, in the sense of persisting changes in CSS properties of the JupyterLab

interface, for example, but it should be active during the entire JupyterLab session to
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work robustly. In addition, considering Altair version 2.4.1, the respective style, or CSS,

is not injected into a possible HTML file by default, so it needs to be monkey patched.

To overcome the last problem, MevaL provides a helper function to save a certain chart

as an HTML file that monkey patches the Jinja HTML template [252] used by Altair to

include the necessary CSS properties, as well as to add an extra argument needed in the

save method (Appendix P).

That said, MevaL has a custom theme (inspired by those available in theming pack-

ages [210, 311]) that is loaded when importing the package, as well as a custom tooltip

theme (a comparison between the default tooltip theme and this custom one can be seen

in Figure 3.2). In addition, MevaL provides some custom helper functions (Appendix H)

that allow the verification of the loaded theme (and the list of available themes), changing

the default width and height of charts, the loading of the default Altair theme, and the

activation of another available (Altair or tooltip) theme (the user can also employ the

Altair API itself to create new themes from scratch).

(a) Altair’s default tooltip theme (light
theme).

(b) MevaL’s custom tooltip theme.

Figure 3.2: A comparison between Altair’s default tooltip theme and the custom theme
provided by MevaL. The customized theme offers improved contrast between the text
and the background, in addition to ensuring that the same colors and font are used for
consistency purposes.

Moreover, Altair (more specifically Vega) supports two types of (HTML-based) ren-

derers: HTML5 Canvas and SVG. Both have advantages and disadvantages, depending

on the application, but in the case of MevaL, it was decided to use the SVG renderer as

the default one (instead of Canvas). Keeping the plotting context in mind, this choice

was motivated by the fact that SVG is vector-based, providing better image quality (it is

resolution-independent, so to speak) and infinite zooming, even though, in theory, Can-

vas provides improved rendering performance and scalability based on the number of

charts [54]. Considering the average size of the notebooks created by Feedzai’s data sci-

entists in the sample analyzed and the way Jupyter notebooks are stored (they are stored

in a JSON-based format, ignoring the greater complexity of the HTML Document Object

Model (DOM), the representation of a web page in the browser, originated by the SVG

format, for example), the benefits of Canvas are not a priority — if necessary, the renderer
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type can be changed with a single line of code.

Regarding the axis labels (for both the X-axis and the Y-axis) and some tooltip fields,

it is noteworthy that some number/time format patterns (or abbreviations) are applied to

ensure the most compact, human-readable, and consistent representation possible [274].

Thus, the main standard format patterns (the week starts on Monday by default) for

MevaL are:

• For axes with ratio-based performance metrics, the values are formatted as percent-

ages, with two significant digits and without the (possible) insignificant trailing

zeros. The other float numbers follow the same format, but without the percentage

part. To balance the lower precision for the axis labels, tooltips are formatted with

four significant digits.

• Integers, such as confusion category values or certain FI values, follow decimal

notation with an International System of Units (SI) prefix and without insignificant

trailing zeros.

• The numbers that represent positive or negative differences, as is the case in the

difference in ranking of features, are signed (a plus sign for zero or positive numbers

and a minus sign for negative numbers).

• For time-based labels and tooltip fields where the month, day and year are relevant

(mainly in tooltip fields), the format applied is "<full month name> <zero-padded

day of the month>, <year with century>" ("November 30, 2020", for example). Rel-

evance depends on the time resolution/discretization present in a given feature,

given that MevaL currently supports discretization at the day, week, and month

levels.

• For time-based labels and tooltip fields where the month and year are relevant

(mainly in tooltip fields), the format applied is "<full month name> <year with

century>" ("November 2020", for example).

• For time-based labels and tooltip fields where the month and day are relevant

(mainly in labels), the format applied is "<full month name> <zero-padded day

of the month>" ("November 30", for example).

Finally, MevaL also controls some global pandas options, especially display-related

options (these options will impact the HTML representation used by IPython to show

pandas DataFrames on Jupyter notebooks). These adjustments are intended to remove

the metadata that is printed at the end of the pandas DataFrame (dimensions), adjust

the horizontal behavior of the pandas DataFrame (no limit on columns, but they have a

smaller maximum size, so that the user can view the entire pandas DataFrame, even if

it is necessary to scroll horizontaly, on a row) and raise an exception when the user tries

to change a certain value (via a chained assignment) on a copy of a slice from a pandas
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#FFFFFF #EBEBEB #858585 #2F2F2F

#368F8B #EE6C4D

Figure 3.3: The custom color palette for MevaL (in hexadecimal format), used in conjunc-
tion with the Tableau 10 color palette [283] (Altair’s default categorical color palette [200])
and the Blues one (Altair’s default sequential single-hue color palette [200]).

DataFrame, thus preventing manipulations with unexpected results. The specific options

and the respective values can be found in Appendix J.

3.6 Features

Throughout this section, all charts available in MevaL will be shown and described (Ap-

pendix T contains a gallery with more examples). Figure 3.6 contains an overview of all

types of charts, grouped by subpackage, which MevaL currently supports. In addition,

the data layer that supports MevaL will also be covered.

As general considerations about MevaL’s charts (these details do not apply to the

pandas-based content in the Tabular Performance Analysis section), they tend to fol-

low/inherit from two abstract base classes (two classes that act as starter blueprints of the

chart classes), and one of the chart class constructor arguments (or instance variables) is

constant and currently only supports one value. As for the abstract base classes (Code

Listing 3.1), these classes were created for two main reasons (apart from good practices

in object-oriented programming (OOP) and code organization): (1) ensure a minimally

consistent plotting API for the various charts with a group of standard basic arguments

and methods that allow a set of actions to be carried out, such as showing the charts; (2)

facilitate future integration of new visual extensions into the package from a common and

easily interpretable basis for the developer. As for the argument mentioned earlier, this is

the argument that defines the plotting engine (or package) to be used (plotting_engine in

Code Listing 3.1). Currently, only Altair ("altair") is supported for all charts, but in the fu-

ture, other engines may be integrated into MevaL. This option is particularly interesting

to allow a more natural fit of charts created with other technologies where it is possible

to create certain types of charts that are not possible with Altair, for example. In addition,

this approach has the advantage of maintaining the same interface that wraps the possible

visualization packages that could be supported (another approach would be to have a

separate module or class for each chart according to its plotting backend as it is the case
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Figure 3.4: How colorblind users (approximately) see the original colors of the chart in
the upper left corner. In this example, where colorweak users are not considered (they
have less severe anomalies but in the same line as colorblindness [256]), deuteranope,
protanope, and tritanope are different kinds of dichromats, so they can only rely on
just two primary colors [327] instead of three (the color in parentheses corresponds to
the non-functional color). Considering the Green and Red chosen for MevaL, it is
still possible to categorically distinguish both colors, although care must be taken with
the nomenclature used in terms of colors and semantic meaning. These charts were
generated with the help of the colorspace R package [348] and its implementation of a
physiologically-based model for simulating color vision deficiency [176] (considering the
maximum possible severity, that is, dichromacy). The respective script can be found in
Appendix F.
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Figure 3.5: A scenario similar to that of Figure 3.4, but now with another starter tone of
green. In practical terms, both colors, although slightly distinguishable, can no longer
be categorically distinguished — they look like two brownish colors from a sequential
color palette now (except for tritanopes). These charts were generated with the help of
the colorspace R package [348] and its implementation of a physiologically-based model
for simulating color vision deficiency [176] (considering the maximum possible severity,
that is, dichromacy). The respective script can be found in Appendix F.
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of the plot and iplot modules in the spectrum_utils package [35], for example). Since this

argument is constant and for the sake of simplicity, it will be omitted hereinafter.

Listing 3.1: The two abstract base classes for the charts available in MevaL. The encode()
instance method is the method responsible for creating a given chart from a given input

(according to data, visual encodings, and other options), with or without some kind of

manipulation in between (it is a method for internal use and it is expected to be used

only once in the class constructor method). The show() instance method is responsible

for simply returning the previously created chart (stored in an instance variable) to be

displayed in JupyterLab (it is a method for external use and it is expected to be used

more than once). In addition to the methods present in this snippet, these classes also

define getters and setters with input validations. The UAltairChart type can be found in

Appendix H.

1 from abc import ABC, abstractmethod

2 import pandas as pd

3 from .constants import UAltairChart

4

5

6 class OneDimChart(ABC):

7 def __init__(

8 self,

9 data: pd.DataFrame,

10 xvar: str,

11 xscale: str = "linear",

12 plotting_engine: str = "altair",

13 ) -> None:

14 self.data = data

15 self.xvar = xvar

16 self.xscale = xscale

17 self.plotting_engine = plotting_engine

18

19 @abstractmethod

20 def encode(self) -> UAltairChart:

21 pass

22

23 @abstractmethod

24 def show(self) -> UAltairChart:

25 pass

26

27

28 class TwoDimChart(OneDimChart):

29 def __init__(

30 self,

31 data: pd.DataFrame,

32 xvar: str,

33 yvar: str,

34 xscale: str = "linear",

35 yscale: str = "linear",
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36 plotting_engine: str = "altair",

37 ):

38 super().__init__(

39 data=data, xvar=xvar, xscale=xscale, plotting_engine=plotting_engine,

40 )

41

42 self.yvar = yvar

43 self.yscale = yscale

Complementing the previous paragraph, there are also other general (secondary)

points to clarify. All marks, such as points and bars, have associated tooltips (assuming

that charts are used in their interactive versions). The tooltips allow showing (extra)

details (via a kind of table) on demand (when hovering) defined based on the available

data fields (the variables of the dataset, basically).

On the other hand, charts with two or more subcharts (so-called small multiples or

compound charts in Altair), are arranged in a grid with a maximum of two subcharts

per row (by default), that is, these charts will have an arbitrary number of rows but only

two columns (in the case of a row with only one subchart, it will be aligned to the left).

The only exception to this arrangement is the faceted score distribution chart, where

each row refers to a bin width and the number of columns will depend on the number of

breakdown values if a breakdown field is specified. This value for the number of columns

was chosen based on the JupyterLab interface (which has a collapsible left sidebar) and

its use on laptops (with a diagonal display size of 13.3 inches or relatively similar) so that

both subcharts by row appear at the same time on the screen (however, in certain cases,

it may be necessary to scroll up and down to see all the subcharts).

Regarding interactivity, only a subset of the techniques available in Altair are lever-

aged, since the version used (2.4.1) has significantly more limited mechanisms than the

most recent version (4.1.0). In this way, the main techniques adopted are tooltips (small

pop-up windows that provide extra information when the mouse cursor hover over a mark

or a data item [344]), interactive legends (in practice, this functionality is made possible

by another chart in the upper right corner that simulates a chart legend, as Altair does not

support interactive legends natively in version 2.4.1), and linked selections (in particular

for the FI comparison and breakdown strip charts) [264]. The last two techniques allow

multiple selection, that is, it is possible to select several chart elements to highlight (these

can be added/removed by clicking on them while holding the Shift key [297]). In addition

to these techniques, brushing (or interval selection) is also used in the (optional) control

chart located below the temporal chart for Model Decay in order to simulate a focus +

context approach that allows exploring certain subspaces of the main chart in greater

detail [201]. On the other hand, techniques such as zooming, panning, and query widgets

(like sliders or dropdown selection lists, for example) are not used due to the more lim-

ited options available, compared to the most current version of Altair, and because they

do not provide a user experience as intended. Although the first two options are quite
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Figure 3.6: Overview of the chart types available in each MevaL subpackage.

interesting for curve charts (in the ROC curve chart, most of the time, there is a subspace

of greater interest, as is the case of the subspace for low FPR values) and the third option

to have a slider that would allow the data scientist to quickly change the threshold to be

considered for certain charts (such as the classification threshold chart), it is not possible

to clear the selection by double-clicking (it is necessary to run the notebook cell again

to return to the initial state, for example) and these query widgets (provided by Altair

as input bindings) lack user-defined options to make them clearer about their purpose

through textual labels, as well as API-driven styling options, for example. The techniques

adopted fall into the categories of Abstract/Elaborate (tooltips), Filter (interactive legends

and linked selections) and, in a way, Connect (brushing) of an established taxonomy [264,

344]. In the future, other techniques may be more easily adopted after upgrading the

Altair version.

The Dataset section of the User Validation and Case Study chapter contains informa-

tion on the data (including FI data) used for the visualizations in this section. In addition,

the images for the charts were obtained using the procedure described in Appendix I

(they faithfully represent the charts that appear as output from JupyterLab cells).

3.6.1 Model Evaluation Topology

The Model Evaluation Topology (Figure 3.7) is a visual representation of the different

objectives and tasks for Model Evaluation. In a nutshell, it is a diagram that helps to

organize the charts available in MevaL in different subpackages that serve distinct pur-

poses. It is divided into the main need, that of evaluating models to obtain feedback, four

objectives (Table 3.4), and ten tasks. The motivation to develop this kind of hierarchical

conceptualization is twofold:

1. First, to have a way to communicate as standardized as possible about the Python

package and its features, since the features will be instantiated from this topology.
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Figure 3.7: Model Evaluation Topology.

2. Second, to frame the design of the features to be implemented based on specific

tasks and objectives, given that, not all features can be as flexible as a two-dimensional

chart for two arbitrary performance metrics, for example.

That said, the tasks that constitute the lowest level of the Model Evaluation Topology

are the following:

• Feature Reduction: Features or actions related to reducing the number of features

being used. The reduction in the number of features is done via Feature Selection
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Table 3.4: Model Evaluation objectives.

Objective Possible Question

Bias/Fairness How can I confirm that one of my subgroups of interest is not
being harmed in relation to the rest?

Debugging How can I properly estimate the performance of my model?
Interpretability How can I find out what are the most important features for my

model?
Selection How can I choose between these two models with similar

performance?

and not via Dimensionality Reduction, that is, a subset of the original features is

used. An alternative name could be Feature Subsetting.

• FI: Features or actions related to computing the feature importance. They don’t pro-

vide actionable information by themselves, so they appear combined with FP/FN

Analysis and Feature Reduction, for example.

• FP/FN Analysis: Features or actions related to assessing regions of the feature space

where the model is failing.

• Model Comparison: Features or actions related to the comparative diagnosis and

selection of models based on performance and other relevant metrics. They are

related to Performance Analysis, and the models can be obtained from different

hypothesis classes and/or hyperparameter sweeps.

• Model Decay: Features or actions related to offline inspecting performance metrics

over time. They are related to Model Comparison and the idea of measuring things

in different time windows. An alternative name could be Model Degradation.

• Score Distribution Estimation: Features or actions related to checking and com-

paring the prediction score distribution for various datasets and/or models. It is

also relevant for models in production, where new "ground truth" labels may or may

not be available.

• Tabular Performance Analysis: Features or actions related to checking and com-

paring business and performance metrics in a tabular or numeric format.

• Threshold Tuning: Features or actions related to adjusting the classification thresh-

old. This impacts threshold-dependent metrics.

• Uncertainty Estimation: Features or actions related to complementing point esti-

mates with information on variability and statistical significance.

• Visual Performance Analysis: Features or actions related to checking and compar-

ing business and performance metrics with visual support through charts.

That said, all tasks are covered by charts and other features from MevaL except FP/FN

Analysis. This type of feature-based, model-driven analysis implies crossing the original
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data with the results obtained from a model in order to try to identify patterns in the

incorrectly classified instances or how they vary compared to the well-classified ones, for

example (leading to the generation of new ideas for features or other options that may

allow to improve the previous results). So, this exercise would imply considering the

original datasets as one of the datasets plottable by MevaL and not just as the source of

raw data to be potentially processed in smaller formats and with aggregated information.

In addition, given the large size of these original datasets and the scope of the package for

analyzing performance metrics, prediction scores, and FI values (processed datasets away

from the feature space), this inclusion would lead to a significant increase in complexity

and necessary computational resources. Thus, the FP/FN Analysis was considered as

future work. Lastly, it is also important to note that although it is totally possible to

compare different models, MevaL is, at the moment, a single model-first package (more

information in the Scope section) and although the charts available for the FI task help to

select subsets of features manually, MevaL does not support any pre-modeling feature se-

lection method or direct mechanism that allows selecting a subset of features and training

a new model, for example. MevaL is a package focused on Model Evaluation per se, that

is, on facilitating the analysis of the score-based results obtained from the development

of ML models. In this way, it is a package that works from raw/processed data and does

not communicate with Pulse, that is, it does not interact programmatically with the tool

that allows training new models.

With the tasks presented in mind, it would also be possible to consider Subgroup

Discovery. This task includes features or actions related to the inspection of different

breakdowns (based on distinct fraud concepts and/or feature values). However, given

that, based on the user interviews, the subgroups are usually known a priori, it will only be

considered the associated granularity (subgroup) for other tasks, as is the case of Tabular

Performance Analysis.

Regarding the Bias/Fairness objective, it was not addressed simply because there is a

whole team at Feedzai working on issues related to this vast topic. Thus, it was decided

not to include particular features with this objective in mind.

3.6.2 Data and Data Processing

First of all, MevaL is designed to operate on (one or multiple raw) domain-specific tabular

datasets (called main datasets from now on to facilitate the distinction between this type

of dataset and the FI ones) consisting of a set of input (raw or engineered) features/vari-

ables, a (binary) target column, and a prediction score column (from the raw output of

a given classification ML model) for each row (transaction in most cases). Within the set

of features, there is a subset of these with semantic value for the problem in question,

such as the feature for the transaction amount (a weighing feature), the feature for the

timestamp, and different categorical breakdown features that divide the dataset into rel-

evant subgroups. In addition, the package also digests (small) datasets of FI (absolute
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or relative/percentage) values (each row refers to a different feature), obtained from the

internal workings of an algorithm or agnostically, to help users extract insights that can

help them understand the data, the model, and how to improve the model [42] (this

dataset is optional). The data scientist can analyze one or two of these datasets as it is

possible to compare the set of FI values (and ranking positions) obtained for the same

set of features and for the same unit of measurement. The single processed dataset is sim-

ilar to these raw datasets, if they are long-format/tidy [316] datasets, with a few extra

columns to help include additional information in the relevant charts. On the other hand,

if the raw datasets are wide-format/wider [318] datasets, where each feature will be in

a different column or the different types of FI values (absolute and relative/percentage,

for example) are in different columns, instead of one column for the type and one for the

value, for example, MevaL will transform them into a long-format dataset as well (basi-

cally, making a dataset longer leads to an increase in the number of rows and a decrease

in the number of columns [318]). For now, MevaL only accepts files in comma-separated

values (CSV) format.

Given the typically large size of these raw domain-specific datasets and the lack of

summary statistics due to their finer granularity, MevaL also offers a data processing

pipeline (on top of PySpark and pandas) to derive two sufficiently small datasets (called

functional datasets when they are referred to together) to serve as a basis for the visual

part: (1) a wide-format [318] (approximately) dataset dedicated to performance metrics

(performance metrics and confusion categories are unstacked to facilitate their plotting

and mapping between visual encodings and concrete column names/accessors, as well as

their comparison using a table, all in a single representation); (2) a long-format/tidy [316]

(approximately) one dedicated to prediction scores aggregated in different ways. One of

the main differences between both datasets is that, in the first case, scores are interpreted

as possible classification thresholds and are (merely) used to obtain certain performance

metrics, while in the second case, scores are actually interpreted as predicted scores and

there are interest in understanding its distribution.

Running this pipeline is optional (for both types of source files or for just one of them,

and, in the case of the main dataset, it is possible to process it only to derive one of the

two functional datasets) since MevaL accepts datasets loaded (via pandas) and previously

processed by MevaL or other tools, as long as each follows a relatively soft predefined

schema (or input format). Figure 3.8 and Figure 3.9 briefly outline MevaL’s data-oriented

input and output. However, given the efficiency of the data processing pipeline and to

keep the API (and the logic behind it) as simple as possible, the data scientist needs, for

each model/raw dataset, to specify a processed dataset for each one of them in each of

the optional fields for datasets already processed (this mechanism serves primarily to

fully load previous work quickly). In other words, it is not possible to combine paths for

files and datasets (DataFrames) that have already been processed arbitrarily, since the

processing is triggered based on the paths for specified datasets and if the field for each

functional dataset is empty or not (the data scientist must pass a processed dataset for
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each model/raw dataset, or pass none at all and process everything). Thus, if the data

scientist has two datasets that he/she wants to analyze, but only one of them is already

processed, he/she must leave the fields for the processed datasets empty and pass the

paths to the respective files (note that both these fields work separately to trigger the data

processing pipeline or not, as well as the one for the FI dataset). In addition, except for

FI datasets which are totally optional, the data scientist must specify at least one path to

a main raw dataset, one path to a main raw dataset and one of the respective functional

datasets, or both functional datasets (these fields cannot all be empty).

The flexibility present in this pipeline is mainly due to two reasons:

1. First, this flexibility combines with the possibility of persisting the (small) processed

datasets, so that they can be used by different people, at different times, without

the need to process the data again (even if this pipeline is relatively efficient, this

will not be as fast as loading this data into memory).

2. Secondly, this flexibility makes it easy to use other tools that allow to achieve the

same final product as the pipeline implemented in MevaL, something that can be

useful in contexts where the available tools may be different.

That said, given that there are three possible output datasets, each will have its own

schema or basic set of columns. The first one, for the performance metrics dataset, is

based on the following (boilerplate) schema:

• model (identifier)

• breakdown field

• breakdown value

• classification threshold

• TP

• FP

• TN

• FN

• lower endpoint of the 100(1 - α)% confidence interval

• performance metric

• upper endpoint of the 100(1 - α)% confidence interval

The confusion category columns (TP, FP, TN, and FN) are optional, as they can be

removed from the final version of this (performance metrics) dataset using a Boolean ar-

gument. In addition, if the data scientist specifies a cost field (as the transaction amount

field, for example) and wants to compute the supported cost-based (weighted) versions
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Figure 3.8: Data input to MevaL. MevaL accepts two types of source files: the main
dataset (with the train/test data and the predicted scores) and the FI dataset (optional).
MevaL supports multiple main datasets, merging them into unique functional datasets
that can be queried with this dimension in mind as well, and one or two FI datasets paired
with a specific model. Being raw files, these datasets will trigger the data processing
pipeline and give rise to the functional datasets in Figure 3.9. However, it is also possible
to replace these datasets with ones previously processed in different combinations, and
the processing will only occur partially (if the data scientist has a pre-processed metrics
dataset, the pipeline will only process the main dataset in order to generate a new scores
dataset, for example). MevaL distinguishes between raw and processed datasets based
on the type of object used as an argument (ignoring the fact that multiple datasets are
specified through a sequence-based list or tuple): if the object is a string-based Python
dictionary (the path to the file corresponds to the key and the file name corresponds to
the value), it means that the data scientist has a dataset that he/she wants to process; if
the object is a pandas DataFrame, it means that the data scientist has a dataset already
processed (in addition, if the object is a PySpark DataFrame, it will be converted to a
pandas DataFrame).

Figure 3.9: Data output from MevaL. Based on the input in Figure 3.8, MevaL will
give access to two or three single-purpose, multi-task functional datasets that can be
visualized and analyzed with the help of the package.
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Figure 3.10: Execution time of the data processing pipeline for the main dataset consider-
ing different variations of the (base) main dataset obtained by sampling with replacement
(between approximately 120,000 rows and 1,200,000 rows). The points/circles corre-
spond to the average values obtained considering 20 independent repeats. The vertical
error bars correspond to the associated standard deviations, being only visible in the
last case and negligible in all of them. The relative size is always based on the dataset
described in the Dataset section and Appendix K. For the base main dataset, the data
processing pipeline takes about 1 minute (with a memory usage of approximately 1.2 GB),
while for a similar dataset with 10 times more rows, it takes between 9 and 10 minutes
(with a memory usage of approximately 2 GB). These execution times (with an approx-
imately linear trend) are sufficiently efficient and workable for a development context.
More information on this performance analysis can be found in Appendix L.
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of the performance metrics of interest, there will also be confusion category and perfor-

mance metric columns for them. The confidence interval-related columns will also only

be added if the data scientist wants to compute this complement to the point estimate

obtained for each of the supported performance metrics of interest. For now, this feature

is only available for (count-based) FPR, Precision, and Recall. That said, the performance

metrics currently available natively (their definitions can be found in the Data Science and

Machine Learning section) on MevaL are (these metrics were selected based on the ones

currently used by Feedzai’s data scientists or because they are appropriate for imbalanced

datasets):

• (Count/Cost-based) Alerts

• (Count-based) Alert Rate

• (Count-based) F1 Score, F0.5 Score, and F2 Score

• (Count/Cost-based) FPR

• (Count-based) Geometric Mean

• (Count-based) MCC

• (Count/Cost-based) Precision

• (Count/Cost-based) Recall

On the other hand, the rows whose value is overall for the breakdown field and break-

down value columns correspond to the overall performance of the model including all

instances of the original dataset. More generally, the overall keyword always refers to the

complete (original) dataset in which all instances are included in the calculations (this

value also corresponds to the minimum representation of each dataset derived from the

main one since the addition of breakdown fields/values is optional). As for the second

output dataset, the aggregate scores dataset, it is based on the following (boilerplate)

schema:

• model (identifier)

• breakdown field

• breakdown value (distribution)

• prediction score (original or truncated)

• count/frequency

• percentage

Prediction scores are, by default, in the range between 0 and 1 and are maintained in

this range after processing. Each breakdown value, for each breakdown field, is treated

as a distribution, that is, the sum of the percentages of each score in each breakdown

value adds up to 100%. In addition, since scores can have a large number of decimal
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places (more than 10, for example), there is an option to truncate them, that is, to keep

only a certain number of decimal places without any rounding. In this way, the number

of unique values is significantly reduced (producing a reduced aggregate scores dataset,

particularly important with the addition of breakdown fields and values), without sacri-

ficing the usually desired precision (2 to 4 decimal places). Finally, the last dataset, the

FI dataset, it is based on the following (boilerplate) schema:

• feature name

• FI variable name ("Absolute Importance" and "Relative Importance", for example)

• FI value

• FI method identifier

• rank

• difference in ranking compared to the other FI method

• difference in FI value compared to the other FI method

• not_percentage

• box

• absolute_change

The last five columns are only computed/required if there are two results of FI meth-

ods to be compared. The ranking is currently calculated using the ordinal ranking

method [336] (the first value for the method parameter in pandas [180]), that is, each

feature is assigned a different value. This method is used to ensure that there is a dif-

ferent ranking position for each feature, even if the FI value is the same (the respective

axes must behave as categorical-oriented axes). The difference-based columns are only

computed if the data scientist specifies two datasets with the results of two different

methods/runs of the same method. On the other hand, the last three columns are helper

columns specifically for the slopegraph (or comparison chart) that can be plotted to com-

pare two FI methods (more information can be found in the Feature Importance section).

The not_percentage column is a Boolean column to indicate whether FI values should be

interpreted as percentages or not on the Altair side. The box column contains Unicode

box-drawing characters [326] to encode groups of features (features with the same FI

value) on the Y-axis of the slopegraph. Lastly, the absolute_change column corresponds

to the annotations to be added in the slopegraph containing a summary for the features

that have a difference in ranking higher than a specific threshold. Note that the last two

columns are only used in the version of this chart designed for a reduced number of fea-

tures (or for a chart whose height is large enough and does not imply that the entire chart

is visible on the screen at the same time).

From a high-level point of view, the (full) data processing pipeline for main datasets is

described by the following steps (the respective pseudocode can be found in Algorithm 1,

Algorithm 2, Algorithm 3, and Algorithm 4):

85



CHAPTER 3. MEVAL, A PYTHON PACKAGE FOR VISUAL MODEL EVALUATION

1. Standardize/Enrich some of the input arguments (if necessary). This step is respon-

sible for the following actions: Algorithm 2, Line 2

a) Ensure that the threshold(s) to analyze, performance metric(s), and break-

down(s) are in a sequence (list or tuple, preferably).

b) Standardize the name of performance metrics.

c) Concatenate the paths and filenames for each score file/main raw dataset (in

order to create path strings).

d) Split breakdowns into two objects, one for the fields and one for the user-

defined values. This division is intended to facilitate the use of each part

individually in certain functions.

e) Define the threshold listing strategy as "scores" if the scores are not truncated,

thus considering only the scores in the raw dataset as threshold steps.

2. Create a SparkSession (the entry point for using PySpark) or obtain an existing one.

A2, L3

3. Prepare two empty lists that will serve as containers for each type of processed

dataset (performance metrics dataset and aggregate scores dataset). A2, L4-5

4. For each score file: A2, L6-17

a) Read the score file using PySpark. A2, L7

b) Minify the dataset (PySpark DataFrame) by selecting only a subset of columns,

that is, transform the dataset into a minified version with just the columns of

interest (based on the semantic and breakdown fields). The columns for the

predicted scores and the cost/amount (if specified) are cast to double data type.

Predicted scores may also be truncated. A2, L8

c) If the timestamp field is one of the specified breakdown fields, add temporal

columns extracted from the timestamp field (according to the supported and

specified options/breakdown values) with these new resolutions in order to

facilitate future manipulations of the minified dataset. Basically, in this way,

the discretized temporal columns (for day, week, and/or month) can be op-

erated as breakdown columns. In addition, also add the breakdown values

corresponding to the discretizations applied to the list of breakdown fields

(and remove the timestamp field itself). A2, L9-12

d) For the overall results, group the predicted scores and aggregate them by com-

puting the number of actual (count-based and cost-based, if specified) positives

and negatives (according to the target field). This step will result in a relatively

small pandas DataFrame (an example of this DataFrame can be seen in Ta-

ble 3.5), with a column for each unique score associated with a column for the

number of actual positives, a column for the number of actual negatives and,
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if specified, a column for the number of actual positives weighed by the asso-

ciated cost/amount and, finally, a column for the number of actual negatives

weighed by the associated cost/amount. When grouping the scores, it is possi-

ble to sum each of the associated binary integer values obtained according to

the equality between the target field values and the adopted (weighted or not)

target/non-target value. This dataset serves to compute the final performance

metrics dataset, as well as the aggregate scores dataset ready to be plotted

(scores work as scores and also classification thresholds). Moreover, this func-

tion is fundamental for the efficiency of the pipeline, since, in this way, it is not

necessary to go through the entire dataset repeatedly to compute these sum-

mary statistics for each classification threshold, for example — a sufficiently

(memory-wise) small representation is generated and it is possible to rely on

pandas-based (column-wise) vectorized operations to easily compute the final

datasets (more precisely, a dataset of this type is also generated for each break-

down field and value, and in the end, all these datasets are concatenated into

one). A4, L2

e) For the overall results, prepare the aggregate scores dataset by computing the

total instances for each score as well as the respective percentages. A4, L3

f) Before computing the (count-based and cost-based, if specified) performance

metrics of interest, for the overall results, extend the list of available scores/thresh-

olds, sort them in descending order (more precisely the pandas DataFrame),

and compute the confusion categories. The thresholds to be considered are

extended with a possible set of thresholds specified by the user (if they are

not already in the dataset) and/or with the missing values in an evenly spaced

range of values between 0 and 1 coming from a power of 10 (calculated ac-

cording to the number of decimal places after truncating the scores). On the

other hand, by ordering the dataset before calculating the confusion categories,

scores closer to 1 will be at the top, while scores closer to 0 will be at the bot-

tom, which allows these values to be computed in an efficient (for pandas)

and cumulative way. For example, the TPs for the 0.99 score, the first score

of a hypothetical dataset, are all the (actual) positive values summed up pre-

viously, that is, the positive values in the respective column of this row of the

dataset. As for the 0.98 score, the second score of a hypothetical dataset, the

(actual) positive values correspond to the values of its row, as well as those

of the previous row, that is, the number of positives in the score 0.99, since

the true positives are all instances whose scores are equal to or higher than a

certain classification threshold (and so on). This logic is similar for FPs and

the (actual) negative column. In this way, it is possible to calculate two of

the confusion categories (TP and FP) by cumulatively adding the values of the
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previously computed positive and negative columns, and the other two confu-

sion categories (FN and TN) can be obtained by subtracting the total number

of positives and the total number of negatives to the number of TPs and the

number of FPs, respectively. A4, L4

g) For the overall results, compute the performance metrics of interest (and con-

fidence intervals if requested). If confidence intervals are also calculated, each

trio of columns for one of the supported performance metrics will be reordered

so that the column for the point estimate is in the middle between the lower

endpoint and the upper one. A4, L4

h) For each breakdown field and breakdown value (each breakdown value repre-

sents a subset of data that should be considered as a full dataset): A4, L5-28

i. Repeat the steps described between 4. d) and 4. g) but now considering

that the original dataset is also grouped by one breakdown field at a time

(at this moment, the breakdown values are still in this column and not in

a separate one), and the aggregate scores dataset and the relevant perfor-

mance metrics will be computed for each relevant breakdown value. A

column for breakdown fields and another for breakdown values are also

added to help disambiguate the results. A4, L7-18

ii. Concatenate all generated (partial) datasets into one and fill in the null

values with the overall keyword. Note that it is each type of dataset that

is merged into one, that is, there are an intermediate scores dataset and

another one for performance metrics. A4, L19-28

i) Add a column for the model identifier (currently, the identifier corresponds to

the file name without the extension). A2, L14

j) Reorder the columns for each type of dataset so that the leftmost columns are

the model identifier column, the breakdown field column (a kind of identi-

fier too), and the breakdown value column(and the threshold column for the

performance metrics dataset as well). A2, L14

k) Add each type of dataset, for a particular model, to its outer list (3.). A2, L15-16

5. Concatenate all per-model datasets, and return the final aggregate scores dataset

and the final performance metrics dataset ready to be used. A2, L18

For cases where only a part of the above pipeline is needed, it is simplified and only the

relevant steps will be executed to generate the aggregate scores dataset or the performance

metrics dataset (more specifically, steps unique to one or the other dataset will not be

performed in the simplified functions). In contrast, the data processing pipeline for FI

datasets consists of the following approximate steps (the respective pseudocode can be

found in Algorithm 5):
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Table 3.5: The first five rows of an example main dataset after the aggregation and sorting
step.

fraud_score P N

1.00 0 0
0.99 88 2
0.98 127 16
0.97 100 4
0.96 94 3

Algorithm 1 Input and output of the data processing pipeline for main datasets

Input:
score_files – The unstructured paths to the main raw dataset(s)
target_field – The name of the target column
target_value – The positive target value
non_target_value – The negative target value
score_field – The name of the predicted score column
timestamp_field – The name of the time column
breakdowns – The name(s) of the breakdown column(s), as well as the optional value(s)
to be considered for each specified breakdown column
thresholds_to_analyze – Set of extra classification thresholds to consider
performance_metrics – The performance metrics of interest to be calculated
compute_cost_metrics – Whether to calculate the cost-based counterparts of the confu-
sion categories and performance metrics of interest
compute_ci_for_metrics – Whether to calculate the binomial proportion confidence
interval via normal approximation for each supported performance metric
keep_confusion_categories – Whether confusion categories should be maintained in the
performance metrics dataset
sep – Delimiter to use for score_files
timestamp_fmt – The format string to represent the timestamp_field
cost_field – The name of the cost/amount column
truncate_score_decimals – The number of decimal places to consider for the discretiza-
tion of the predicted scores
threshold_listing_strategy – The method for structuring the classification thresholds to
be considered for computing the performance metrics dataset

Output:
Performance metrics dataset
Aggregate scores dataset
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Algorithm 2 Data processing pipeline for main datasets

1: function process_scores(Input @ Algorithm 1)
2: normalized_args ← normalize_input_arguments(score_files, perfor-

mance_metrics, thresholds_to_analyze, breakdowns, truncate_score_decimals, thresh-
old_listing_strategy)

3: spark← get_or_create_spark_session()
4: per_model_metrics← empty list
5: per_model_scores← empty list
6: for all input_path ∈ normalized_args.score_f iles do
7: raw_scores_df← read_spark_df(input_path, sep)
8: minified_scores_df ← minify_raw_scores(raw_scores_df, target_field,

score_field, timestamp_field, cost_field, normalized_args.breakdown_fields, trun-
cate_score_decimals)

9: if timestamp_f ield ∈ normalized_args.breakdown_f ields then
10: minified_scores_df ← add_time_columns(minified_scores_df, times-

tamp_field, timestamp_fmt, normalized_args.breakdown_values)
11: normalized_args← update_time_breakdown_fields(normalized_args,

timestamp_field, normalized_args.breakdown_fields, normalized_args.breakdown_values)
12: end if
13: metrics_df, scores_df← prepare_metrics_and_scores(minified_scores_df,

score_field, target_field, target_value, non_target_value, normal-
ized_args.performance_metrics, compute_cost_metrics, compute_ci_for_metrics,
keep_confusion_categories, cost_field, truncate_score_decimals, normal-
ized_args.threshold_listing_strategy, normalized_args.thresholds_to_analyze, nor-
malized_args.breakdown_fields, normalized_args.breakdown_values)

14: metrics_df, scores_df← add_model_id_and_reorder_cols(metrics_df,
scores_df, input_path)

15: per_model_metrics.append(metrics_df )
16: per_model_scores.append(scores_df )
17: end for
18: return concat_dfs(per_model_metrics), concat_dfs(per_model_scores)
19: end function

1. Standardize/Enrich some of the input arguments (if necessary). This step is respon-

sible for the following actions: Algorithm 5, Line 2

a) Ensure that the feature and FI column names are in a sequence (list or tuple,

preferably).

b) Concatenate the paths and filenames for each FI file/FI raw dataset (in order

to create path strings).

c) Obtain the unique name for the feature name (feature_col_name, FI variable

name (variable_col_name, and FI value (value_col_name columns according to

pre-established constants for cases in which the dataset needs to be trans-

formed into a long-format one (basically when there is more than one feature

name and/or FI variable column) or according to the names for these columns

(except for the FI value column, called value by default, that does not need to
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Algorithm 3 Input and output of the wrapper function for intermediate steps in the
preparation of each partial functional dataset

Input:
minified_scores_df – A PySpark DataFrame with only the columns of interest
score_field – The name of the predicted score column
target_field – The name of the target column
target_value – The positive target value
non_target_value – The negative target value
performance_metrics – The performance metrics of interest to be calculated
compute_cost_metrics – Whether to calculate the cost-based counterparts of the confu-
sion categories and performance metrics of interest
compute_ci_for_metrics – Whether to calculate the binomial proportion confidence
interval via normal approximation for each supported performance metric
keep_confusion_categories – Whether confusion categories should be maintained in the
performance metrics dataset
cost_field – The name of the cost/amount column
truncate_score_decimals – The number of decimal places to consider for the discretiza-
tion of the predicted scores
threshold_listing_strategy – The method for structuring the classification thresholds to
be considered for computing the performance metrics dataset
thresholds_to_analyze – Set of extra classification thresholds to consider
breakdowns_fields – The name(s) of the breakdown column(s)
breakdowns_values – The optional value(s) to be considered for each specified break-
down column

Output:
Partial performance metrics dataset for a ML model
Partial aggregate scores dataset for a ML model

be defined by the data scientist).

2. Create a SparkSession (the entry point for using PySpark) or obtain an existing one.

A5, L3

3. Create a blank dataset (pandas DataFrame) for the final FI dataset (all processed

files are appended to the same final pandas DataFrame). A5, L4

4. For each FI file (maximum of two files per model): A5, L5-16

a) Read the file into a temporary/partial pandas DataFrame, cast the necessary

fields, and melt it if necessary (unpivot it from wide to long format). If it is not

necessary to melt it, the FI column is divided/unfolded into two columns: one

for the name of the FI variable (variable_col_name), according to the original

name of the column, and another one (value_col_name) for the FI values them-

selves. This step is done for the sake of consistency (there are cases in which

there may be more than one type of results for the same FI algorithm/run, as

is the case for algorithms/runs that produce absolute and relative values, for

example). A5, L6-12
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Algorithm 4 Wrapper function for intermediate steps in the preparation of each partial
functional dataset

1: function prepare_metrics_and_scores(Input @ Algorithm 3)
2: aggregated_scores_df← agg_scores_for_base_metrics(minified_scores_df,

target_field, target_value, non_target_value, score_field, compute_cost_metrics, cost_field)
. Overall

3: scores_df← prepare_scores(aggregated_scores_df, score_field) . Partial
aggregate scores dataset

4: metrics_df ← compute_metrics_and_ci(aggregated_scores_df,
score_field, performance_metrics, compute_cost_metrics, compute_ci_for_metrics,
keep_confusion_categories, truncate_score_decimals,threshold_listing_strategy, thresh-
olds_to_analyze) . Partial performance metrics
dataset

5: metrics_bfield_dfs← empty list
6: scores_bfield_dfs← empty list
7: for all bf ield ∈ breakdown_f ields do
8: bvalues_to_compute← get_breakdown_values(minified_scores_df, bfield,

breakdown_values). Get the list of unique values for a breakdown field if there are no
user-defined values

9: metrics_bvalue_dfs← empty list
10: scores_bvalue_dfs← empty list
11: for all bvalue ∈ bvalues_to_compute do
12: scores_bvalue_df ← prepare_scores(aggregated_scores_df, score_field,

bfield, bvalue)
13: scores_bvalue_df← add_bfield_and_bvalue_standalone_cols(

scores_bvalue_df, bfield, bvalue) . Identity-like columns whose values are the name of
the breakdown field and the breakdown value, respectively

14: metrics_bvalue_df← compute_metrics_and_ci(aggregated_scores_df,
score_field, performance_metrics, compute_cost_metrics, compute_ci_for_metrics,
keep_confusion_categories, truncate_score_decimals,threshold_listing_strategy, thresh-
olds_to_analyze, bfield, bvalue)

15: metrics_bvalue_df← add_bfield_and_bvalue_standalone_cols(
metrics_bvalue_df, bfield, bvalue) . The original breakdown field column is also
removed

16: metrics_bvalue_dfs.append(metrics_bvalue_df )
17: scores_bvalue_dfs.append(scores_bvalue_df )
18: end for
19: metrics_bfield_df← concat_dfs(metrics_bvalue_dfs)
20: scores_bfield_df← concat_dfs(scores_bvalue_dfs)
21: metrics_bfield_dfs.append(metrics_bfield_df )
22: scores_bfield_dfs.append(scores_bfield_df )
23: end for
24: metrics_df← concat_dfs(metrics_df, metrics_bfield_dfs)
25: scores_df← concat_dfs(scores_df, scores_bfield_dfs)
26: metrics_df← fill_null_values(metrics_df, "Overall")
27: scores_df← fill_null_values(scores_df, "Overall")
28: return metrics_df, scores_df
29: end function
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b) Create the ranking field and sort the pandas DataFrame (ascending). The first
argument is used to ensure that there is a different ranking position for each

feature, even if the feature importance value is the same. If null values exist,

they will be located at the end. A5, L13

c) Create the field for the FI method identifier (composed of the path and the

name of the respective file). A5, L14

d) Add the partial DataFrame to the final DataFrame (3.). A5, L15

5. Create a helper Boolean field (not_percentage) to define, in Altair, what formatting

is indicated for the FI values (axes and tooltip), that is, if the formatting pattern

of these values should contain the % type value in order to be multiplied by 100

and complemented with the percent sign (FI values can be integer values or per-

centage values). The values that will be considered as percentages will be the real

values between 0 and 1 (inclusive), while the values that will not be considered as

percentages will be, above all, the integer numbers (this is verified holistically to

disambiguate possible small values within a range of values where the upper limit

is greater than 1). A5, L17

6. If two FI files are specified, do the following: A5, L18-23

a) Create the field for the difference in ranking compared to the other FI method.

A5, L19

b) Create the field for the difference in FI value compared to the other FI method.

A5, L20

c) Compute the last two helper fields for the slopegraph that can be plotted to

compare two FI methods. The box field contains Unicode box-drawing char-

acters [326] to encode groups of features (features with the same FI value) on

the Y-axis of one of the versions of the slopegraph. On the other hand, the

absolute_change field corresponds to the annotations to be added in the same

slopegraph containing a summary for the features that have a difference in

ranking higher than a specific user-defined threshold. An example of one of

these annotations is card1: 4.37% → 4.63% (+ 0.27%). The annotations are

placed on the right side of the respective chart, so the change is structured from

left to right (from the first method to the second method according to the order

of the methods in the argument passed by the data scientist). A5, L21-22

7. Return the final pandas DataFrame (FI dataset). A5, L24

For now, this data processing pipeline assumes that both possible FI datasets contain

the same set of features. A many-to-many FI method/result comparison may require

different runs of this pipeline (via the EvaluationManager class presented in the Entry

Point section) in order to generate different datasets with 2 of the methods/results to be
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Algorithm 5 Data processing pipeline for FI datasets

Input:
fi_files – The unstructured paths to the FI raw dataset(s)
feature_cols – The name of the feature name column(s)
fi_cols – The name of the FI results column(s)
sep – Delimiter to use for fi_files

Output:
FI dataset

1: function process_fi(Input)
2: normalized_args ← normalize_input_arguments(fi_files, feature_cols,

fi_cols)
3: spark← get_or_create_spark_session()
4: fi_df← empty pandas DataFrame
5: for all input_path ∈ normalized_args.f i_f iles do
6: raw_fi_df← read_pandas_df(input_path, sep)
7: raw_fi_df← cast_numeric_cols()
8: if len(normalized_args.feature_cols) > 1 or len(normalized_args.fi_cols) > 1

then
9: raw_fi_df ← wide_to_long_format(raw_fi_df, normal-

ized_args.feature_cols, normalized_args.fi_cols, normalized_args.feature_col_name,
normalized_args.variable_col_name, normalized_args.value_col_name). Features and/or
FI variables in different columns move to different rows (single column)

10: else
11: raw_fi_df ← unfold_fi_column(raw_fi_df, fi_cols, normal-

ized_args.variable_col_name, normalized_args.value_col_name)
12: end if
13: raw_fi_df ← compute_ordinal_ranking(raw_fi_df, normal-

ized_args.variable_col_name, normalized_args.value_col_name)
14: raw_fi_df← add_fi_id(raw_fi_df, input_path)
15: fi_df← concat_dfs(fi_df, raw_fi_df )
16: end for
17: fi_df← tag_non_percentage_col(fi_df, normalized_args.variable_col_name,

normalized_args.value_col_name)
18: if len(normalized_args.fi_files) = 2 then
19: fi_df ← compute_ranking_diff(fi_df, normalized_args.feature_col_name,

normalized_args.variable_col_name, normalized_args.value_col_name) . Differences are
propagated, so the reference can be any of the methods

20: fi_df← compute_value_diff(fi_df, normalized_args.feature_col_name, nor-
malized_args.variable_col_name, normalized_args.value_col_name) . Differences are
propagated, so the reference can be any of the methods

21: fi_df ← add_box_drawing_chars_col(fi_df, normal-
ized_args.variable_col_name, normalized_args.value_col_name) . Per FI
identifier

22: fi_df ← add_change_annotations_col(fi_df, normal-
ized_args.feature_col_name, normalized_args.value_col_name)

23: end if
24: return fi_df
25: end function
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compared (it is more flexible if the data scientist only wants to see, individually, the FI

ranking by method/execution).

3.6.3 Entry Point

Now that the expected input and output datasets have been presented, as well as the

implemented data processing pipeline, it is relevant to address the entry point of this

package, that is, the EvaluationManager class that serves the purpose of aggregating all

the metadata/variables/functional datasets for a Model Evaluation procedure, as well

as triggering the data processing pipeline (if necessary). Although this class acts as

the starting point for using MevaL, is possible to use the plotting subpackages without

instantiating this class, for example (for the sake of flexibility). That said, the Evalua-
tionManager has the following mandatory/optional attributes (instance variables/class

constructor parameters/__init__() method parameters):

1. target_field: The name of the target column ("ground truth" labels).

2. target_value: The positive target value (the fraud label usually).

3. score_field: The name of the predicted (positive) score column.

4. timestamp_field: The name of the time (timestamp/datetime) column (composed

of UNIX/POSIX timestamps or datetime-like values).

5. performance_metrics: The performance metrics of interest to be calculated. The

performance metrics are validated and standardized/sanitized according to a Python

dictionary (similar to the sanitize_ml_labels package [46]).

6. score_files: A dictionary whose keys identify the path and values the main raw

dataset filename(s). The default value is None (null value).

7. fi_files: A dictionary whose keys identify the path and values the raw FI dataset

filename(s). The default value is None.

8. metrics_dfs: The processed/schema-compliant performance metrics dataset(s) (prefer-

ably pandas DataFrames) ready to be plotted. PySpark DataFrames are converted

to pandas DataFrames. The default value is None.

9. agg_scores_dfs: The processed/schema-compliant aggregate scores dataset(s) (prefer-

ably pandas DataFrames) ready to be plotted. PySpark DataFrames are converted

to pandas DataFrames. The default value is None.

10. fi_dfs: The processed/schema-compliant FI dataset(s) (preferably pandas DataFrames)

ready to be plotted. PySpark DataFrames are converted to pandas DataFrames. The

default value is None.

11. breakdowns: The name(s) of the breakdown column(s) according to the main raw

dataset, as well as the value(s) to be considered for each specified breakdown col-

umn(s) (if no value is specified via a Python dictionary, all distinct values will be
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considered by default, except the null value). If one of the breakdown columns co-

incides with the timestamp_field, the supported (discretization/resolution) values

are "day", "week", and "month". This sequence should be a list or a tuple, preferably.

12. non_target_value: The negative target value (the non-fraud label usually). If no

value is specified, the target value will serve as the reference (or key) to find the

corresponding non-target value within a pre-established dictionary. The default

value is None.

13. cost_field: The name of the cost/amount column. The default value is None.

14. truncate_score_decimals: The number of decimal places to consider for the dis-

cretization of the predicted scores. If no integer value is specified, the predicted

scores will be grouped according to each available single value. This parameter,

together with the threshold_listing_strategy parameter, influences the number of

classification threshold steps considered. If the value specified for this parameter

is 2 (all scores will be truncated and will only have 2 significant decimal places

at most), the number of threshold steps will be 100 (evenly spaced) if the thresh-

old_listing_strategy is "range" or equal to the number of unique score values after

truncation if the threshold_listing_strategy is "scores", for example. The default

value is 2.

15. compute_cost_metrics: Whether to calculate the cost-based counterparts of the

confusion categories and performance metrics of interest. The default value is False.

16. compute_ci_for_metrics: Whether to calculate the binomial proportion confidence

interval via normal approximation for each supported and specified performance

metric (FPR, Precision, and Recall). The default value is False.

17. keep_confusion_categories: Whether confusion categories should be maintained in

the final performance metrics dataset or not. The default value is True.

18. timestamp_fmt: The format code-based string to represent the timestamp_field

(e.g., "%Y-%m-%d %H:%M:%S"). This parameter also accepts two custom strings,

"ms" and "s", used to define the format of UNIX/POSIX timestamp values in mil-

liseconds and seconds, respectively. The default value is "ms".

19. threshold_listing_strategy: The classification threshold listing strategy, that is, the

method for structuring the classification thresholds to be considered for computing

the performance metrics dataset. If "scores", only the unique scores (after truncation,

if applied) present in the dataset will be considered. If "range", all thresholds in

a uniform/evenly spaced interval between 0 and 1 (inclusive) with 10 raised to

truncate_score_decimals values will be considered. In addition, if the scores are

not truncated (truncate_score_decimals is set to None), MevaL will be forced to only

consider the scores in the main raw dataset as threshold steps ("scores" strategy).

The default value is "range".
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20. thresholds_to_analyze: Set of specific classification thresholds to consider for anal-

ysis (these may or may not already be in the list of generated classification thresh-

olds).

21. feature_cols: The name of the feature name column(s). This field is used exclusively

to process the FI dataset(s).

22. fi_cols: The name of the FI value column(s). This field is used exclusively to process

the FI dataset(s).

23. score_files_sep: Delimiter to use for score_files. This separator is applied to all

files (there was no need to make this parameter more flexible, as only some projects

need a different field separator for their CSV files, something followed as a kind of

convention within a project). The default value is ",".

24. fi_files_sep: Delimiter to use for fi_files. This separator is applied to all files (there

was no need to make this parameter more flexible, as only some projects need a dif-

ferent field separator for their CSV files, something followed as a kind of convention

within a project). The default value is ",".

The type hints [254] for each of the above parameters can be found in Appendix N.

In addition, the EvaluationManager class also has instance methods for orchestrating

the computation of functional datasets, getters and setters with input validations, and,

also, an instance method that prints a summary of the functional datasets. This simple

summary includes the identifier for each dataset (the name of the respective property),

the number of rows, the number of columns, and the total memory usage.

Regarding the breakdowns parameter, one of its possible arguments (or one of the parts

of its argument) has particular characteristics. If one of the defined breakdown fields co-

incides with the timestamp_field, it is necessary to include which temporal discretization

values should be associated with this field, that is, how the timestamp/datetime values

must be truncated to be interpreted as breakdown values similar to the others. This step

is important to ensure a viable resolution, both in practical/technical terms (the number

of unique values is significantly reduced, for example) and in terms of granularity of

interest to Feedzai’s data scientists. Thus, MevaL supports three types of discretization:

day, week, and month. In practice, with these discretizations, datetimes will be gener-

ated where only the day and/or month and year will be significant (and new columns

will be added with the name of each of the selected discretizations). This mechanism

is implemented with a Spark User-Defined Function (UDF) where two methods from

Python’s datetime.datetime class are used that originate naive objects in terms of timezone

information, which makes these methods time-wise agnostic in relation to the machine(s)

they will run on: utcfromtimestamp() (for timestamps in milliseconds and seconds) and

strptime(). The Delorean [345] and datetime_truncate [14] packages also offer forms of

truncation similar to that implemented in MevaL.
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3.6.4 Feature Importance

In a nutshell, the concept of FI summarizes a set of techniques (or, sometimes, the values

themselves), intrinsic or extrinsic to the models, which assign a kind of score to each

of the features according to their utility for performing the proposed task. In this con-

text, in addition to providing compressed and global information on the behavior of a

model [192], these methods are particularly useful for Feature Reduction, that is, to find

the minimum subset of features required to develop a valid ML model. Therefore, to help

the data scientist analyze the results of (at least) one (or two at the same time) Feature

Importance methods, MevaL provides three types of custom charts: the ranking chart,

the comparison chart, and the boxplot.

3.6.4.1 FI ranking chart

The FI ranking chart (Figure 3.11) is a horizontal bar chart that aims to facilitate getting

the big picture of the distribution of FI values, as well as comparing features individually

or in subgroups obtained from their position in the ranking. The choice of a horizontal

bar chart instead of vertical was due to its approximation to a table/list and its reading

from top to bottom (or vice versa), typical of a ranking, as well as the possibility of

arranging the axis labels for the features in an easily readable and natural way (with a

zero rotation angle and without truncating the text too much) [11]. Also, this chart is

ordered in descending order of FI values. That said, the parameters of the respective class

are:

1. data: The FI dataset (pandas DataFrame) to be plotted.

2. fi_id: The identifier of the FI method/results to be plotted.

3. xvar: The column name with the values for the X-axis (FI values).

4. yvar: The column name with the values for the Y-axis (feature names).

5. catvar: The column name with the existing FI variables, that is, the value/category

types (absolute and/or percentage/relative, for example).

6. category: The name of the category or type of FI values to be plotted. A different

chart is generated for each of the specified categories.

7. mode: The chart mode, that is, the type of chart to display. The supported values are

"bar" (horizontal bar chart) and "lollipop" (horizontal lollipop chart). The default

value is "bar" (the most common design for all data scientists at Feedzai).

8. top: The number of top features to be plotted. This parameter can be used in

conjunction with the bottom parameter to generate a chart with a combination of

top and bottom features (if the bottom parameter is 0, only a number of top features

are shown). The default value is 0 (all features are considered if bottom is also 0).
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Figure 3.11: FI ranking chart. This example shows the top 20 features for the two types
of available FI values.

9. bottom: The number of bottom features to be plotted. This parameter can be used

in conjunction with the top parameter to generate a chart with a combination of top

and bottom features (if the top parameter is 0, only a number of top features are

shown). The default value is 0 (all features are considered if top is also 0).

The lollipop mode (Figure T.1) is designed for cases where there are a large number of

features to display (for one or more FI categories) and several bars with similar heights/FI

values, and these have a small width so that the height of the chart is relatively reduced

(avoiding, or at least mitigating, the need to scroll up and down to inspect the chart, for

example) [53, 81, 110, 114, 205]. Thus, this version seeks to avoid the Moiré (optical)

effect and make the chart visually less aggressive [81, 110, 114]. This chart works similarly

to the bar chart, combining a line anchored on the Y-axis and a dot at the end to indicate

the value to retain, although it may be more difficult to retrieve this value since it is the

center of the dot that effectively marks it (this design is less accurate than the straight edge

of a bar and half of the dot surpasses the specific value it represents) [81, 110]. However,

according to one study (a crowd-sourced experiment using Amazon Mechanical Turk

with approximately 150 participants), there were no significant differences between bar

and lollipop charts (in terms of accuracy and response time) [113].

3.6.4.2 FI comparison chart

The FI comparison chart (Figure 3.12) is a mixed chart that aims to provide an overview

of the difference in results (or lack thereof) between two FI methods/runs. This chart
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can be used to complement or replace the typical manual work of comparing FI results

through spreadsheets. That said, the parameters of the respective class are:

1. data: The FI dataset (pandas DataFrame) to be plotted.

2. versus: A sequence (list or tuple) with the identifiers of each of the FI results to be

compared. The order of this sequence matters, since the first identifier is considered

as the reference.

3. xvar: The column name with the values for the main X-axis (FI identifiers).

4. yvar: The column name with the values for the Y-axis (FI values).

5. fvar: The column name with the feature names.

6. catvar: The column name with the existing FI variables, that is, the value/category

types (absolute and/or percentage/relative, for example).

7. category: The name of the category or type of FI values to be plotted. A different

chart is generated for each of the specified categories.

8. rankvar: The column name with the ranking positions.

9. rank_threshold: The ranking difference threshold to include features on the chart.

Features whose absolute difference in ranking is greater than or equal to the integer

value passed as an argument are shown. This parameter can be used in conjunction

with the value_threshold parameter, in order to create a predicate that includes one

condition and the other. A value between 3 and 5 is a good starting value for this

parameter (according to the input and experience of Feedzai’s data scientists). A

higher value may be symptomatic of a problem or that the results are from two

different algorithms, such as LightGBM and a DL algorithm, for example. The

default value is 3.

10. value_threshold: The FI value difference threshold to include features on the chart.

Features whose absolute difference in value is greater than or equal to the inte-

ger/real value passed as an argument are shown. This parameter can be used in

conjunction with the rank_threshold parameter, in order to create a predicate that

includes one condition and the other. The default value is None.

11. show_feature_names: Whether to show the name of the features, instead of the

ranking positions, on the leftmost vertical axis of the version of this chart tailored

to a reduced number of features. The default value is False.

12. show_second_chart: Whether to show the complementary (rightmost) chart to the

slopegraph, the main chart to compare the overall results in terms of change of

ranking. The default value is True.

13. label_char_limit: The maximum length of labels for feature names (in pixels). If

the length of a feature name is greater than this value, the text is truncated and the

ellipsis string ("...") is used in response to this limit. The default value is 80 (pixels).
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Figure 3.12: FI comparison chart. This example shows the differences between two FI
(absolute) results, with special attention to the 18 features whose ranking difference is
greater than or equal to 1 and whose difference in value is greater than or equal to 5.
Features are sorted in ascending order of difference in (signed) value. Although there
are changes in the features closer to the bottom, these are not highlighted because, in
practice, the value change is zero or very close to that.

14. right_yaxis_sort: The sorting criteria for the features of the chart complementary

to the slopegraph. They can be ordered by absolute difference in value ("abso-
lute_value_diff"), alphabetical order ("alphabetical"), difference in value ("value_diff"),

according to the values of the first result ("first_result"), and according to the values

of the second result ("second_result"). The default value is "value_diff".

15. right_yaxis_order: Based on the sorting criteria (right_yaxis_sort parameter), sort

in ascending ("asc") or descending ("desc") order. The default value is "asc".

16. mode: The chart mode, that is, the type of chart to display. The supported values

are "slope&bar" (a combination of a slopegraph and a horizontal grouped bar chart

for a reduced number of features), "slope&strip" (a combination of a slopegraph and

a Cleveland dot-based ranged strip chart [37, 62]), and "dot" (an adaptation of the

Cleveland dot/ranged/arrow chart [37, 62, 63]). The default value is "slope&strip".

In the standard version of this chart (slope&strip), color plays a central role in making

the chart easier to interpret (Figure 3.12). For both subcharts, two (binary) categorical

color schemes are applied: (1) the color scheme consisting of MevaL’s gray and MevaL’s

black colors (double-)encodes the FI results, with the former referring to the first result

(the reference) and the latter to the second one; (2) the color scheme composed of MevaL’s

green and MevaL’s red colors (double-)encodes, respectively, positive (ranking increases
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or higher FI values) and negative (ranking decreases or lower FI values) differences, with

the first result specified as an argument serving as a reference. Subchart-wise, the first

subchart (the slopegraph on the left) is dedicated to the ranking for each feature explicitly

displayed. Thus, in each of the vertical axes, there is a dot that indicates the position

in the ranking of each of the features (the first place in the ranking corresponds to the

topmost position on the Y-axis), and the change from one result to the other is hinted

by the connecting lines between the same features (and their colors). So, this subchart

allows at least two readings: (1) one more general, from each of the vertical axes, where

one looks at the ranking order of the explicit features and the surfaced gaps/clusters;

(2) another more granular, considering the features individually, when inspecting the

connecting slopes and which ones went up or down (or reveal no changes). Even if, for a

given criterion, there are no significant changes or there are few changes for a relaxed one,

this finding can also be important for the data scientist [138]. As for the chart on the right

(the ranged strip chart) and its apparatus, the Y-axis title contains some supplementary

information, such as the number of features in accordance with the specified threshold(s)

(such as Unicode circled numbers [330, 331], obtained via Python’s unicodedata built-in

module, or simple numbers, if the number of features is greater than 50) and the ordering

criteria for them. Since this chart is a ranged/gap chart [62], the ticks (instead of dots)

encode the values obtained in each FI result per feature (with the color distinguishing the

results), with a colored band that connects them, in case there is any difference in value, to

facilitate visual inspection of the differential magnitude. This design pays more attention

to the distance between the values than to the values themselves [62], although the data

scientist can consult the tooltips associated with each tick to verify the specific values in

question (Figure T.14). The arrow version (dot) of this comparison chart [63] works in a

similar way to this subchart, using colored arrows to indicate the sign/direction of the

change (Figure T.3).

3.6.4.3 FI boxplot

The FI boxplot (Figure 3.13) aims to show the approximate distribution of the FI values,

based on five summary statistics (five-number summary), as well as to enable the com-

parison of this distribution between the results available in a given dataset. This boxplot

is a boxplot with whiskers from minimum to maximum and without outliers encoded as

individual points (the idea is to show a general picture of the distribution of values in

which there is not a clear outlier concept). That said, the parameters of the respective

class are:

1. data: The FI dataset (pandas DataFrame) to be plotted.

2. xvar: The column name with the values for the X-axis (FI identifiers).

3. yvar: The column name with the values for Y-axis (FI values).
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Figure 3.13: FI boxplot. In this example, it is possible to see that the values are concen-
trated in a relatively low range of values. The value of the third quartile (the median of
the upper half of this dataset) is just 7 (the maximum value is significantly higher).

4. catvar: The column name with the existing FI variables, that is, the value/category

types (absolute and/or percentage/relative, for example).

5. category: The name of the category or type of FI values to be plotted.

3.6.5 Model Decay

3.6.5.1 Temporal chart

The temporal chart (Figure 3.14) is an interactive line chart that provides a visual way

of checking how performance, according to a given metric, varies over time. In other

words, this chart shows several points for which performance has been estimated, instead

of considering only a single value that covers the entire time span covered by a given

dataset. In this way, this chart seeks to show the decay of the performance of a model

over time and whether this decay is abrupt after a certain moment or if the model is

somewhat conservative and performance is slowly decreasing, for example. This chart
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seeks to help the data scientist to select a model, as a given model may perform better

in the first moments of a test dataset, but with a significantly quick drop in performance

after that, while another, with a worse performance than the previous one, but which

maintains a similar performance for a longer time (depending on the lifetime of each

model in production, it may be more appropriate to choose a more conservative model,

for example). In addition, it can also be useful to identify periods when performance has

fluctuated significantly and encourage future analysis. That said, the parameters of the

respective class are:

1. data: The performance metrics dataset (pandas DataFrame) to be plotted.

2. xvar: The name of the time discretization ("day", "week", or "month") for the X-axis.

3. yvar: The name of the performance metric column(s) to be plotted. A different

chart is generated for each of the specified performance metrics.

4. at_value: The classification threshold of interest (if the reference argument is "thresh-
old") or the reference value for the reference argument performance metric for which

the classification threshold should be obtained. In the case of the second behavior,

the classification threshold is obtained depending on the value of a given reference

performance metric (if the exact value does not exist in the dataset, the closest

smaller value is used). This option is important for the data scientist because, in

many cases, they are guided by a certain reference value (or upper bound) for a

given performance metric and do not directly use the classification threshold.

5. mode: The chart mode, that is, the type of chart to display. The supported val-

ues are "line" (interactive line chart) and "pez" (a simple pez chart, a kind of one-

dimensional temporal heatmap [310]). The default value is "line".

6. show_points: Whether to show the points for which there are estimates or just the

line. The default value is False.

7. show_zoom_line_chart: Whether to show the interactive sparkline/control time-

line [201] coordinated with the main line chart that serves to select specific time

periods and display them in more detail. The default value is True.

8. show_pez: Whether to show the pez chart as a complementary chart at the bottom.

The scale domain of this chart is between 0 and 1, showing a perspective based

on the entire domain supported by each ratio-based performance metric, while the

Y-axis of the line chart is adapted according to the concrete range in the dataset.

The default value is False.

9. ref_line: The specific value of a performance metric to be highlighted in the line

chart (in particular for single charts), through a horizontal line, or highlight the

general performance (for each metric), considering the entire dataset, if the value is

the string "overall". The default value is None (no horizontal line).
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Figure 3.14: Temporal chart for Model Decay assessment.

10. reference: The performance metric to be used as a reference to obtain the classifica-

tion threshold for which to select the values to be plotted or simply "threshold" in

order to specify a classification threshold using the at_value argument. The default

value is "threshold".

3.6.6 Score Distribution Estimation

3.6.6.1 Score distribution chart

The score distribution chart (Figure 3.15) is a histogram [213] for visual inspection of

the approximate distribution of the predicted scores by a ML model, globally or for each

value in a breakdown field. At Feedzai, this type of chart is mainly used to cover the

following subtasks (in addition to its use for communication purposes):

• Qualitatively check the expected skewness of the fraud (positive) and non-fraud

(negative) distributions.
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• Detect anomalies.

• Define alert and automatic decline thresholds.

• Inspect the fraud/non-fraud "ratio" in the various bins.

That said, the parameters of the respective class are:

1. data: The aggregate scores dataset (pandas DataFrame) to be plotted.

2. xvar: The column name with the values for the X-axis (the predicted scores, or,

more precisely, each single predicted score, truncated or not).

3. yvar: The column name with the values for the Y-axis (the count/frequency or

percentage of each score).

4. breakdown_field: The breakdown field for which to plot each of the approximate

distributions of the respective (breakdown) values (ignoring the overall distribu-

tion). The default value is None (just show the overall distribution).

5. breakdown_values: The subset of values for each of the specified breakdown fields,

in order to limit the number of distributions to be shown. The default value is None
(consider all breakdown values).

6. yscale: The scale type of the Y-axis. The supported values are "linear" (linear scale)

and "log" (logarithmic scale). In the case of the "log" scale, a logarithmic transfor-

mation is applied to the original values (the values of the input domain) for the

Y-axis. This type of scale can be useful when the data vary over several orders of

magnitude, allowing zoom in on the various bins, even if they are very small [264].

The default value is "linear".

7. show_overall: Whether to show the overall histogram when a breakdown field is

specified. The default value is True (this parameter is ignored if no breakdown field

is specified).

8. bin_width: The width of each bin. It is possible to define more than one value in a

sequence (list or tuple), and a chart (or set of chart, if a breakdown field is specified)

is generated for each value. Bin widths can be specified in the range [0, 1]. The

default value is 0.1.

9. threshold_marker: The value, considering the continuous scale of the X-axis, to be

highlighted. If more than one threshold marker is specified, numeric labels will

only appear, in addition to the vertical line, if the difference in the thresholds is

greater than or equal to 0.1 (so as to avoid visual clutter). Threshold markers can

be specified in the range [0, 1]. The default value is None (no threshold markers).

10. threshold_marker_dashed: Whether to make the threshold marker line dashed

instead of solid. The default value is False.
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11. show_threshold_area: Whether to show the areas divided by two threshold mark-

ers (without the numeric labels) and the percentage of instances in each of them,

as well as a grouped bar under each histogram to show how the percentage of in-

stances is divided ignoring the width of the areas (in the score space). Each of

the three areas/segments is colored with the respective color for non-fraud (nega-

tive class), uncertain/to be reviewed, and fraud (positive class), respectively. These

threshold-based areas are useful for defining alert and automatic decline thresholds,

for example. The default value is False.

12. mode: The type of histogram for the score distribution by breakdown value, that is,

when a breakdown field is specified (it is assumed that there will be two or more

distributions to be plotted). There are three different supported types: "facet" (a

faceted histogram, that is, a histogram for each different distribution), "group" (a

grouped histogram, like a grouped bar chart, where the continuous X-axis scale is

broken so that the bars of each distribution are side by side for each bin), and "layer"
(a layered/overlaid/overlapping histogram). Usually, this chart helps to compare

distributions considering fraudulent (positive) and non-fraudulent (negative) in-

stances (according to the true labels) separately. The layered and grouped versions

are optimized for two breakdown values, as is the case when choosing the (binary)

target field as the breakdown field, for example. The default value is "layer" (the

most common version used at Feedzai).

13. shared_yscale: Whether to share (forcibly, since the scales can coincide) the Y-axis

between the charts for the same bin width. In other words, a single scale for the Y-

axis is adopted. It only works for "group" (nevertheless, two axes are drawn because

this version can grow a bit horizontally, thus facilitating individual reading) and

"facet" (only the leftmost Y-axis is drawn) modes (with show_threshold_area set to

False). The default value is False.

The possibility of defining a list of bin widths, instead of just one, stemmed from

the feedback shared by data scientists. Depending on how a data scientist bins, it is

possible to have slightly different pictures of how the actual underlying distribution is

(Figure 3.17, for example). So, it is more robust to look at different bin sizes. Oftentimes,

the variation between distributions will be in the score range from 0 to 0.1. In this way,

with this flexible parameter, a data scientist can "zoom in" on this specific section of the

distributions and see if there is a different curve in this left part, for example.

When the Y-axis scale is not shared (in the grouped and faceted breakdown versions),

that is, each subchart has an independent Y-axis scale per row (the scales can end up

being the same, depending on the data), the logging message in Figure 3.16 is displayed

by default (thus providing additional information about the histograms). This feature,

a prototype of the idea of using logging or something similar to alert the data scientist

to relevant details of each chart generated, was implemented using the built-in logging
module, a custom logger (interface) and the INFO logging level. The idea was inspired
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Figure 3.15: Layered score distribution chart. In this example, the second column shows
the distribution of the scores obtained for the fraudulent instances and for the non-
fraudulent instances separately (according to the target labels, not with the classification
obtained from a model and a threshold). The first row has a bin width of 0.01, while the
second one has a bin width of 0.2. The scale of the Y-axis is a logarithmic scale.
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Figure 3.16: When showing a grouped or faceted score distribution chart with inde-
pendent Y-axis scales, MevaL displays the following (logging) message to alert the data
scientist to be careful when trying to compare distributions directly: INFO: The domain
of the Y-axis can be different in each chart per row..

by VisuaLint [115], a recent technique for surfacing chart building errors in situ (like the

red wavy underlines for spelling mistakes in certain word processor programs), and the

concept of code linting (especially in terms of the messages that appear on the terminal).

In Figure 3.17, there is an example of the threshold areas, plotted in the background

of each subchart, as well as at the bottom of each one of them. In the background, since

these areas are defined using score-based threshold markers, they are limited to cover the

respective score subspace, regardless of the number of instances in each area. In addition

to tooltips with precise information on the percentage of instances in these areas, it is also

possible to visually contrast the their size with the histogram bars. On the other hand,

at the bottom of each subchart, the single thin bar functions as a normalized stacked bar

chart, showing the proportion of instances in each of the three plotted areas.

As a side note, although this chart can be used in Model Monitoring contexts, with

or without labels for the instances, its design focuses on offline Model Evaluation where

labels exist. Also, no density estimation mechanisms (like kernel density estimation, one

of the methods to estimate the underlying probability density function from observed

data [308]) have been implemented since Feedzai’s data scientists typically look only at

bars when relying on visual inspection of these charts.

3.6.7 Tabular Performance Analysis

3.6.7.1 Table styling

In order to facilitate the analysis and communication of tables, MevaL stands on the shoul-

ders of pandas and provides a set of declarative-like functions that allow the customiza-

tion of the visual styling for the familiar and easy to use tables rendered by this package.

To make this possible, MevaL leverages the CSS-based Styling API for DataFrames (Series
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Figure 3.17: An example of the threshold areas for the (faceted) score distribution chart.
The scores 0.2 and 0.4 were the scores chosen to depict the threshold markers. In addition,
it is also possible to see an example of a tooltip for one of the areas in the first subchart.
All bars have the same color, instead of one color per distribution, to prevent visual clutter.
Note that the Y-axis scales tend to be different for each subchart.
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must be converted to DataFrames) available in pandas. So, from a pandas DataFrame

object, (hard or conditional) formatting (at different levels, such as at the cell level, at

the column level, at the row level, among others) can be applied using the style property.

This property returns a Styler object, which can be incrementally formatted (via different

built-in methods) to define the desired style for the table rendered by pandas.

That said, MevaL provides a set of Python decorators (a decorator is a function that

takes another function and extends its behavior without explicitly modifying it) that can

be applied to a function whose purpose is merely (at the very least, since the function can

perform other actions, such as certain data transformations, for example) to return and

display the pandas DataFrame passed as an argument. An example of a decorator imple-

mented in MevaL to round up float values (more precisely to define a certain precision in

terms of the number of decimal places) and choose the presentation type is as follows:

Listing 3.2: A decorator to round up the float values displayed on a pandas DataFrame.

An important aspect of this function, which allows multiple decorators to be applied to

the same function in any order, is the try-except block (all implemented decorators follow

the structure of this example). Since the style property is a property of the DataFrame
class only, and not of the Styler class, the decorator must call the relevant style method de-

pending on whether the object in question is a DataFrame or a Styler previously formatted

by another decorator.

1 from functools import wraps

2

3

4 def get_round_cols(data):

5 return list(data.select_dtypes(include=["float"]).columns)

6

7

8 def round(decimal_places=2, value_format_type="f"):

9 def decorator_round(func):

10 @wraps(func)

11 def wrapper_round(*args, **kwargs):

12 value = func(*args, **kwargs)

13

14 try:

15 cols = get_round_cols(value)

16 return value.style.format(

17 f"{{:.{decimal_places}{value_format_type}}}", subset=cols

18 )

19 except AttributeError:

20 cols = get_round_cols(value.data)

21 return value.format(

22 f"{{:.{decimal_places}{value_format_type}}}", subset=cols

23 )

24

25 return wrapper_round

26
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27 return decorator_round

To use this decorator and others, it is only necessary to apply them (and optionally

pass the necessary arguments as in any other function), in any order (they are independent

of the order), to a display function like the following:

Listing 3.3: An example of a decorator applied to a function that will serve to show an

arbitrary pandas DataFrame with a precision of three decimal places.

1 from meval import tables

2

3

4 @tables.round(3)

5 def displayer(df):

6 return df

With this in mind, MevaL has a set of 14 decorators ready to be used:

1. round() (Figure T.18): Decorator for rounding float columns (more specifically, to

set their precision in terms of decimal places). This decorator has two parameters:

a) decimal_places: The number of decimal places. The default value is 2.

b) value_format_type: An identifier (according to Python’s format specification

mini-language [236]) for the desired presentation format for floats. The de-

fault value is "f" (fixed-point notation, that is, all floats have exactly the same

number of digits).

2. bar() (Figure T.19): Decorator for (diverging) bar chart in the background of the

specified columns/features. It can be particularly useful for looking at FI datasets

(where the FI values are arranged in a column). This decorator has one parameter:

a) cols: The name(s) of the column(s)/feature(s).

3. caption() (Figure T.20): Decorator for table caption (in the upper left corner above

the table). This decorator has one parameter:

a) text: The text for the table caption.

4. border_rows() (Figure T.21): Decorator for horizontal bordering (its logic is different

from that used in the border_cols() decorator). This decorator has three parameters:

a) col: The name of the column/feature that defines the location of the horizon-

tal borders based on their unique values (assuming the pandas DataFrame is

ordered by this column/feature because, otherwise, the borders will be added

at the end of the pandas DataFrame between rows with different values).

b) sort: Whether to order the pandas DataFrame by the specified column before

applying the borders. The default value is False.
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c) order: Sort ascending ("asc") or descending ("desc"). The default value is "asc".

5. border_cols() (Figure T.22): Decorator for vertical bordering (its logic is different

from that used in the border_rows() decorator). This decorator has one parameter:

a) cols: The name(s) of the column(s)/feature(s) that define(s) the location of the

vertical border(s). The borders are positioned to the left of the columns/fea-

tures.

6. magnify() (Figure T.23): Decorator to magnify individual cells or rows on mouse

hover (it can be useful for presentations, for example). This decorator has two

parameters:

a) font_size: Font size (CSS font-size property) when hovering. The default value

is 16 (in points).

b) mode: Magnify only the hovered "cell" or the entire corresponding "row". The

default value is "row".

7. highlight_rows() (Figure T.24): Decorator to highlight specific rows (the highlight

is made through a black background and white text). This decorator has one param-

eters:

a) filter_criteria: A pandas query string to evaluate (the matched rows will be

highlighted).

8. highlight_cols() (Figure T.25): Decorator to highlight specific columns. The high-

light is made through a background with a user-defined color and white or black

text, according to the color that best contrasts with the chosen background color.

This decorator has three parameters:

a) cols: The name(s) of the column(s)/feature(s) to highlight.

b) color: The background color. The default value is "#2F2F2F" (MevaL’s black

color).

c) highlight_col_heading: Whether to highlight the cell with the name of each

column in the DataFrame header. The default value is True.

9. sort() (Figure T.26): Decorator to sort, with the addition of Unicode arrows [323] in

the column/feature names to identify the sorting criteria. This decorator has two

parameters:

a) cols: The name(s) of the column(s)/feature(s) by which to sort the pandas

DataFrame.

b) order: Sort ascending ("asc") or descending ("desc"). The default value is "asc"
(it is used in all specified columns).
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10. sticky_header() (Appendix W): Decorator to make the pandas DataFrame header

a fixed/sticky header. In this way, the height of the DataFrame isfixed to an arbi-

trary number of rows, allowing the data scientist to navigate (to scroll up/down)

along all the rows without this implying that the DataFrame extends across the

computational notebook. This decorator has one parameter:

a) height: The height, in pixels, of the pandas DataFrame. The default value is

300.

11. hide_index() (Figure T.27): A decorator to hide the index of a pandas DataFrame

(the leftmost integer column). This decorator has no parameters.

12. hide_null_cols(): A decorator to hide all columns made up only of null values.

This decorator only considers the pandas DataFrame passed as an argument of the

display function, be it a complete DataFrame or just a slice. This decorator has no

parameters.

13. highlight_null_values() (Figure T.28): A decorator to highlight the null values

present in a pandas DataFrame. The highlight_rows(), highlight_cols() and shade_alternate_rows
decorators overlap (they have higher priority) in case of joint use in the relevant

cells. This decorator has one parameter:

a) color: The color to highlight cells with null values. The default value is "#EE6C4D"
(MevaL’s red color).

14. shade_alternate_rows() (Figure T.29): A decorator to apply one of two background

colors to the rows of a pandas DataFrame alternately (excluding the header). The

color is alternated if the next value is different, that is, the rows with the same

contiguous value are colored with the same color. The highlight_rows() and high-
light_cols() decorators overlap (they have higher priority) in case of joint use in the

relevant cells. This decorator has four parameters:

a) col: The name of the column/feature by which to guide color switching.

b) sort: Whether to order the pandas DataFrame by the specified column before

coloring the rows. The default value is False.

c) order: Sort ascending ("asc") or descending ("desc"). The default value is "asc".

d) colors: The colors for the rows (their order matters). The default value is

["#FFFFFF", "#F5F5F5"] (MevaL’s/pandas’ white color and pandas’ light gray

color).

The idea of implementing style decorators for pandas DataFrames came from the

PrettyPandas package [97], a small Python package that leverages the Styling API to

provide chainable methods for formatting values and adding summary rows/columns

via a custom pipeable class, and Tailwind CSS [309], a utility-first CSS framework (it
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provides HTML-ready classes like text-center and text-lg, for example, thus inspiring the

basic idea for these declarative decorators). On the other hand, the idea of adopting or

adapting a general-purpose graphical user interface (GUI) package for pandas, such as

D-Tale [268], PandasGUI [253], bamboolib [146] (it is not an open-source package), and

Qgrid [238], was also investigated (EDA report build packages, like Sweetviz [32] and

pandas-profiling [43], were also checked, as well as Lux [163], a semi-automatic EDA

package using Altair). However, this idea was dropped because of the extra dependencies,

the amount of work needed to adapt one (or more) of the options properly, and/or because

it is a more disruptive choice for the JupyterLab environment and for the current workflow

followed by Feedzai’s data scientists (and also due to the lack of support for some of the

front-facing customizations implemented).

For the highlight_cols() and highlight_rows() decorators, the font color (pandas’ black

or pandas’ white) is automatically selected based on the chosen background color, so

that there is an appropriate contrast between both colors. To do so, the 6-digit hexadec-

imal (background) color is converted to an RGB color [133] and each channel is used

individually in the following (normalized) formula [16, 86, 249]:

Brightness =
0.299×Red + 0.587×Green+ 0.114×Blue

255
(3.1)

This formula (based on the formula to convert from the RGB color space to the

YIQ one, namely the part used to calculate the Y component representing luma/bright-

ness [249, 337]) is used to calculate the color brightness, more precisely the perceived

brightness for a color, and if this value is greater than 0.5 (the chosen threshold that rep-

resents the intermediate value between 0 and 1), the implemented function will return

the black color (since the background color is bright); otherwise, the function will return

the white color (since the background color is dark) [86, 249]. This formula was the only

one tested and implemented since it worked empirically after manual testing of various

background colors.

When using the set_table_styles() instance method of the Styler class, it is necessary to

save the list of table_styles (instance variable) in a dummy variable, for example, as this

list (if not empty) must be concatenated with the list of new styles to apply (otherwise,

the new styles will simply overwrite the ones already applied previously).

3.6.8 Threshold Tuning

Threshold Tuning corresponds to the process or set of processes followed in order to

choose the most appropriate classification threshold for the decisions of a ML model. It

does not necessarily imply the choice of a single threshold, as several thresholds can max-

imize the results obtained, such as different thresholds for certain values in a breakdown

field, for example. Other charts, such as those in the Visual Performance Analysis section,

can also help with this choice.
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Figure 3.18: Overall classification threshold chart.

3.6.8.1 Classification threshold chart

The classification threshold chart (Figure 3.18) is a line chart of the (overall) value of one

or more performance metrics against the classification threshold (throughout its range).

However, if a breakdown field is specified, this chart is broken down into multiple charts

(small multiple), one for each performance metric, with each line corresponding to a

different breakdown value (Figure 3.19). This variation is particularly useful to help the

data scientist to have a glimpse of the relationship between a subspace of classification

thresholds and the respective values for different performance metrics at the subgroup

level, since the choice of a single threshold may imply disparate results in these subgroups

of interest. That said, the parameters of the respective class are:

1. data: The performance metrics dataset (pandas DataFrame) to be plotted.

2. xvar: The column name with the values for the X-axis (classification threshold

column).

3. metrics: The name(s) of the performance metric(s) to be plotted.

4. breakdown_field: Instead of a single chart with one line for each specified perfor-

mance metric, show different charts for each specified performance metric where

each line concerns one of the unique values of a breakdown column, as well as

the overall performance. The default value is None (single chart for all specified

performance metrics).
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Figure 3.19: Classification threshold chart for the card4 breakdown field. The tooltip
provides extra information, such as the difference in value with respect to overall perfor-
mance (considering a certain threshold).

3.6.9 Uncertainty Estimation

3.6.9.1 Binomial proportion confidence interval

In MevaL, in order to extend the point estimate to three of the supported (count-based)

performance metrics (FPR, Precision, and Recall), there is the option to compute confi-

dence intervals. When a model is evaluated in the test set, for example, the exact Recall of

the model is not obtained, for example, but an estimate. Even when performance metrics

are calculated from entire datasets, computing confidence intervals around the obtained

values is a good informative practice, especially when comparing multiple models. In

other scenarios, confidence intervals can also be useful to assess whether a given point

estimate is very sensitive to a training/test split (thus having high variance) or not [245].

In this way, a possible approach for the calculation of confidence intervals is via the

Normal approximation/Wald method [306, 325], thus generating binomial proportion

confidence intervals [245, 269, 325]. To this end, it is assumed that the predictions (that

is, the predicted labels according to the scores of a model and a certain classification

threshold) follow a Normal distribution. Thus, the confidence intervals will be computed

from the mean in a given dataset (a test set, for example, or, in practice, a subset according
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to the denominators of the supported performance metrics) under the Central Limit

Theorem. That said, each prediction can be interpreted as a Bernoulli trial, with the

number of correct predictions following a binomial distribution (X ∼ (n,p)) with n ∈N
instances, k trials, and the probability of success p ∈ [0,1] (the probability of failure,

an incorrect prediction, is q = (1 − p)). This random variable has a variance of σ2 =

np(1 − p) and a standard deviation of σ =
√
np(1− p) (a necessary element to compute

the confidence intervals) [245, 306, 324, 325]. The (estimated) performance metric value

(metric) here is like the proportion of successes, where the numerator is the number of

possible successes (a specific confusion category) and the denominator is the number of

trials (so, it can be used to estimate the probability of success p). Therefore, since the

average number of successes is the value of interest, not the associated absolute value, the

standard deviation formula can be adapted as follows:

σ =

√
1
n
metric(1−metric) (3.2)

So, the Normal approximation/Wald interval can be computed as follows (in this

work, only FPR, Precision, and Recall are considered possible values for metric, although

these confidence intervals can also be computed for other performance metrics, such as

Accuracy and False Negative Rate (FNR) [96]):

metric ± z
√

1
n
metric(1−metric) (3.3)

z is the 1−α/2 quantile of a standard Normal distribution and α is the error quantile.

Moreover, for a 95% confidence level (α = 1−0.95 = 0.05), 1−α/2 = 0.975 and z = 1.96 [245,

306, 325]. In addition, as expected, n (the denominator) is different depending on the

performance metric in question [96]:

• For FPR, n = FP + TN (# legitimate instances).

• For Precision, n = T P +FP (# predicted positives).

• For Recall, n = T P +FN (# fraudulent instances).

On the other hand, the assumption at stake is known not to apply well with very small

datasets or when the success probability is close to 0 or 1 (in this case, the true values of the

performance metrics) [306]. Also, given that the upper and lower values may overshoot,

they are clipped to be in the [0, 1] interval [269]. Although there are more reliable, more

or less computationally demanding alternatives (including other similar methods that try

to overcome the problems identified), the great advantage of this approach (or similar

ones) is that it does not require any resampling method, such as bootstrapping or CV, or to

vary the seed used to train a particular model, for example. From a single dataset (pandas

DataFrame), the confidence intervals are calculated with the values previously obtained

for the confusion categories and for the performance metrics themselves directly. It was
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for this simplicity that this specific method was adopted in MevaL in order to kick off
uncertainty estimation features (in addition, within the binomial proportion confidence

interval landscape [306, 325], the simplest method, the one described in this section, was

chosen to introduce this topic more easily).

3.6.9.2 Confidence interval chart

The confidence interval chart (Figure 3.20) is a dot plot with error bars that complements

the point estimates for a set of performance metrics with binomial proportion confidence

intervals via normal approximation. This chart complements the tabular analysis of

concrete values for performance metrics and their confidence intervals with an overview

for raising red flags or helping to choose a model (when plotting several of these charts),

for example. That said, the parameters of the respective class are:

1. data: The performance metrics dataset (pandas DataFrame) to be plotted.

2. metrics: The name(s) of the performance metric(s) to be plotted. The supported

values are FPR, Precision, and Recall.

3. threshold: The classification threshold to consider for performance metrics.

4. shared_xscale: Whether to consider a unique X-axis scale for all performance met-

rics, thus forming a single dot plot (otherwise, in practice, different charts will be

generated and stacked on each other, forming a small multiple where each con-

stituent chart has an X-axis scale adapted to its range of values). This parameter is

particularly useful if the common range of values is significantly different between

metrics (as can happen between low FPR values and relatively high Recall values,

for example). The default value is False.

3.6.10 Visual Performance Analysis

3.6.10.1 Confusion category bar chart

The confusion category bar chart (Figure 3.21) is a dual bar chart for comparing the abso-

lute values of a confusion category (TP, FP, TN, and FN) in general against the breakdown

values coming from a breakdown field and for comparing the same breakdown values

only between them. This chart contrasts with the other charts in this subpackage by work-

ing with absolute metrics instead of ratio-based ones (excluding the confusion matrix).

That said, the parameters of the respective class are:

1. data: The performance metrics dataset (pandas DataFrame) to be plotted.

2. xvar: The breakdown field name with the (categorical) values for the X-axis. The

bar for the overall value is included by default.

3. yvar: The column name with the values for the Y-axis (category confusion column).
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Figure 3.20: Classification threshold chart. Each horizontal axis has a title to point out
that each of the scales is different, and it is not possible to make comparisons between
charts directly.

4. threshold: The classification threshold to consider for the confusion category.

5. show_bar_labels: Whether to display the text labels above each bar with its absolute

value encoded by the respective height (so as to include the precise value statically).

The default value is True.

3.6.10.2 Confusion matrix

The confusion matrix (Figure 3.22) is a contingency table (or 2x2 matrix) that summarizes

the values obtained for the four confusion categories (TP, FP, TN, and FN) in a single

layout. That said, the parameters of the respective class are:

1. data: The performance metrics dataset (pandas DataFrame) to be plotted.

2. at_value: The classification threshold of interest (if the reference argument is "thresh-
old") or the reference value for the reference argument performance metric for which

the classification threshold should be obtained. In the case of the second behavior,

the classification threshold is obtained depending on the value of a given reference

performance metric (if the exact value does not exist in the dataset, the closest

smaller value is used). This option is important for the data scientist because, in

many cases, they are guided by a certain reference value (or upper bound) for a

given performance metric and do not directly use the classification threshold.

3. mode: The chart mode, that is, the type of chart to display. The supported values

are "heatmap" (the typical confusion matrix) and "quadrant" (a layout where the

area of each square in each quadrant encodes the number of instances in each of the

confusion categories [7]). The default value is "heatmap".
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Figure 3.21: FP-based confusion category bar chart. In this example, the DeviceType
breakdown field is analyzed and the classification threshold is 0.2.

4. breakdown_field: The name of a breakdown field for which to plot a confusion ma-

trix for each of its breakdown values. The default value is "overall" (single confusion

matrix considering the general results).

5. count_mode: If a breakdown field is specified, consider a single scale for all con-

fusion matrices ("shared") or different scales adapted to the domain of each of the

generated charts ("independent"). The default value is "shared".

6. reference: The performance metric to be used as a reference to obtain the classifica-

tion threshold for which to select the values to be plotted or simply "threshold" in

order to specify a classification threshold using the at_value argument. The default

value is "threshold".

7. show_count_prefix: Whether to format the absolute numbers (counts) of each quad-

rant so as to follow decimal notation with an SI prefix (without insignificant trailing

zeros). The default value is True.

The Blues sequential single-hue color scheme (a common choice in other packages [203,

217]) is used in the heatmap version of the confusion matrix on a single scale for all con-

fusion categories. In an imbalanced context like this one, the number of TNs will tend to

be significantly higher than the rest, which, in practice, will lead to this quadrant having

a dark blue as the background color and the remaining lighter blue tones. Although this
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Figure 3.22: Overall confusion matrix. The selected classification threshold (0.11) was
obtained for a Recall value of 60%.

color scheme is not optimized for this scenario, it is maintained to function as a kind of

flag to signal strange behavior in the distribution of instances across the four confusion

categories. Another option would be to have a color scheme only for the three quadrants

other than the one regarding TNs.

3.6.10.3 ROC, PR, and Gain curve chart

The ROC curve chart (Figure 3.23a) shows the trade-off between Recall and FPR, while

the PR curve chart (Figure 3.23b) the trade-off between Precision and Recall [30]. On

the other hand, the Gain curve chart shows the trade-off between Recall and AR (the

main idea is to show the effectiveness of a model by comparing the percentage of TPs

and the percentage of alerted instances, that is, instances classified as positive ones). In

other words, for a set of classification thresholds, it is possible to see how two different

performance metrics behave. Each of these charts also has a partial version (in this

context, a partial ROC/PR/Gain curve chart implies that one or both axes contain only a

portion of the [0, 1] interval). That said, the parameters of the respective classes are:

1. data: The performance metrics dataset (pandas DataFrame) to be plotted.

2. xvar: The column name with the values for the X-axis (FPR for the ROC curve,

Recall for the PR curve, and AR for the Gain curve).

3. yvar: The column name with the values for the Y-axis (Recall for the ROC curve,

Precision for the PR curve, and Recall for the Gain curve).
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4. partial: A dictionary whose keys identify the axes (X-axis and/or Y-axis) and the

values identify the visible limits (minimum and maximum) for them (in order to

obtain a partial ROC/PR/Gain curve). Values can be specified in the range [0, 1]

or [0, 100]. This hard way of generating partial charts was implemented for two

reasons: (1) in Altair 2.4.1, it is necessary to rerun the respective cell when zooming

and panning to return to the initial state; (2) to allow defining static partial charts.

An example of a possible argument (to limit the FPR to 5%) is as follows: "X-axis":
[0, 5], "Y-axis": [0, 100]. The default value is None (full curve).

5. overall: Whether to show the overall ROC/PR/Gain curve (considering the com-

plete dataset). The default value is True.

6. breakdown_fields: The name(s) of the breakdown column(s)/feature(s) to plot as

individual ROC/PR/Gain curves. The default value is None.

7. partial_mode: The way to trim the full ROC/PR/Gain curve according to the de-

fined limits (in order to obtain the partial ROC/PR/Gain curve). There are three

different modes available: "clip" (to cut the curve at the defined limits), "clamp" (to

cut the curve at the defined limits and move points beyond the limit to the edge

of the axis), and "filter" (to explicitly filter the dataset based on the defined limits).

The default value is "clip".

8. show_points: Whether to show the points that make up the ROC/PR/Gain curve.

9. highlight_threshold: Highlight the point that corresponds to the classification

threshold specified in all curves present in a chart and with a different shape (a

star) than the one added by show_points. This parameter can be useful to check

the impact of choosing a certain classification threshold on the various breakdown

values plotted. The default value is None.

10. show_axis_annotations: Whether to add an annotation next to the titles of each

axis to give a clue on how to interpret the respective values (Recall (higher is better)
and FPR (lower is better)). This parameter works only for the ROC curve chart. The

default value is False.

11. highlight_area: The coordinates in the ROC/PR/Gain space to highlight a particu-

lar area for comparison with the curve(s). These coordinates must be specified in a

sequence (list or tuple) in the following order: [y2, x2, y1, x1]. The default value is

None.

3.6.10.4 Scatterplot

In MevaL, the main use case for the scatterplot (Figure 3.24) is to visualize two perfor-

mance metrics considering a certain threshold and breakdown column/feature, that is,

individual points are arranged for every single value of a breakdown column/feature, as
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(a) ROC curve chart. (b) PR curve chart.

(c) Gain curve chart.

Figure 3.23: Basic version of the curve charts available in MevaL. The ROC and Gain
curves are similar in terms of shape, but the concrete values are different.

well as a point for the overall performance. That said, the parameters of the respective

class are:

1. data: The performance metrics dataset (pandas DataFrame) to be plotted.

2. xvar: The column name with the values for the X-axis (a performance metric).

3. yvar: The column name with the values for the Y-axis (a performance metric).

4. threshold: The classification threshold to consider for performance metrics.

5. breakdown_field: The name of the breakdown column/feature to plot as individual

points.

6. xscale: The scale type for the X-axis ("linear" or "log"). The default value is "linear".
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Figure 3.24: Scatterplot for the ProductCD breakdown field and for the classification
threshold 0.7. The star (black) mark corresponds to the overall performance.

7. yscale: The scale type for the Y-axis ("linear" or "log"). The default value is "linear".

3.6.10.5 Breakdown strip chart

The breakdown strip chart (Figure 3.25) is a kind of one-dimensional (small multiple or

not) chart or with a categorical vertical axis with a tick for overall performance (in one

or more performance metrics of interest), as well as ticks for performance in different

subgroups (considering a certain threshold and breakdown column/feature). The main

objective of this chart is to show if the values of a breakdown are spread out, in compari-

son with the general performance, or if these values are close to the general one (and also

to identify the subgroups whose performance is significantly inferior or superior). This

chart was inspired by FairVis [5]. That said, the parameters of the respective class are:

1. data: The performance metrics dataset (pandas DataFrame) to be plotted.

2. metrics: The name(s) of the performance metric(s) to be plotted.

3. at_value: The classification threshold of interest (if the reference argument is "thresh-
old") or the reference value for the reference argument performance metric for which
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Figure 3.25: Breakdown strip chart for the DeviceType breakdown field. This example
was generated from a reference value of 5% for FPR.

the classification threshold should be obtained. In the case of the second behavior,

the classification threshold is obtained depending on the value of a given reference

performance metric (if the exact value does not exist in the dataset, the closest

smaller value is used). This option is important for the data scientist because, in

many cases, they are guided by a certain reference value (or upper bound) for a

given performance metric and do not directly use the classification threshold.

4. breakdown_field: The name of the breakdown column/feature to plot as individual

ticks.

5. mode: How the X-axis scale should be defined. There are three modes available, the

first two being absolute and the third one relative (and experimental): "independent"
(each subchart, that is, each part referring to a performance metric, will have its

own X-axis scale), "shared" (unique X-axis scale for all performance metrics), and

"relative" (the X-axis scale reflects how many times each subgroup value is larger

or smaller than the reference value, that is, the overall performance value for each

metric of interest). The default value is "independent".

6. reference: The performance metric to be used as a reference to obtain the classifica-

tion threshold for which to select the values to be plotted or simply "threshold" in

order to specify a classification threshold using the at_value argument. The default

value is "threshold".

7. show_legend: Whether to color each breakdown-based tick with a different color,

in order to identify each breakdown value, and to add a legend. This flag parameter

is particularly useful when this chart is used statically. The default value is False.
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3.7 Deployment

In addition to the Minimum Viable Product (MVP)-style package developed, MevaL

also integrates Feedzai’s main DS Python package as one of its subpackages. So far, the

structure, the base classes, the entry point class, and the data processing pipeline have

been migrated/validated in a collective effort that also allowed to improve the previously

developed code (and support most of it with proper docstrings and unit tests). The choice

to migrate the general structure of MevaL and the data processing pipeline first was

due to their connection with the API, the data scientist-facing part, and because the data

processing pipeline is on the critical path for the adoption of this package, as a mechanism

like this, doubly checked to see if there are no errors, is fundamental for the use of the

remaining features of MevaL. As future work, the visual part will also be migrated.
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4
User Validation and Case Study

4.1 Dataset

In order to have a dataset accessible and relatively representative of Feedzai’s domain,

while being free of restrictions that prevent its sharing and manipulation, it was decided

to use the IEEE-CIS Fraud Detection Kaggle competition [119] (labeled) training datasets

for prediction score-based data gathering, demonstration and user-oriented validation

purposes. The process overview and the corresponding script to prepare this dataset for

use can be found in Appendix K.

In addition, Table 4.1 and Table 4.2 present some summary statistics of the Model

Evaluation procedure and the datasets created, respectively, while Figure 4.1 shows the

unbalanced proportion of the target classes (in particular for the raw test dataset sepa-

rated from the original training datasets to effectively run the Model Evaluation proce-

dure). As a complement, it is also possible to have a glimpse of each of these datasets (or

pandas DataFrames) from Table 4.3 (performance metrics dataset), Table 4.4 (aggregate

scores dataset), and Table 4.5 (FI dataset).

4.2 User Validation

In order to validate the first version of MevaL and to collect some qualitative feedback

(some of the suggestions were subsequently implemented), five user interviews (this

number was defined in a similar way to that presented in the User Interviews and Input

Gathering section) were conducted with data scientists (the respective guidelines can

be found in Appendix Q). The focus of these interviews was on the visual part of the

package, thus ignoring the implemented data layer. Thus, the interviews were conducted

online with the aid of a showcase (computational) notebook, allowing data scientists to
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Table 4.1: Summary statistics derived from the arguments for the Model Evaluation
conducted. The functional datasets used were derived from here. In the first two rows,
the first values in parentheses refer to those before data processing and to non-time values,
respectively.

Evaluation statistics Value

Number of (#) breakdown fields 9 (7) + 1 ("overall")
# breakdown values 55 (11) + 1 ("overall")
# confidence intervals 3
# cost-based metrics 4
# count-based metrics 10
# decimal places for scores 2
# models 1
# threshold steps 101

Table 4.2: Summary statistics for each of the three functional datasets (pandas
DataFrames) used. These numbers were obtained through the report generated by the
pandas-profiling package [43]. The size statistics relate to the size in memory. The total
size is obtained by adding the output of a pandas method that calculates the memory
usage of each column (including the index) in bytes (the average size is obtained by divid-
ing this value by the total number of rows). Deep size values are more accurate values, as
they account for the system-level memory consumption by the object data types of each
DataFrame. For comparative purposes, the raw test set from which these datasets were
derived has a total (deep) size in memory of approximately 9.0 MiB (16.7 MiB).

Dataset statistics Performance metrics Aggregate scores FI

# columns 32 6 3
# rows 8080 5625 365
Average record/row size ≈ 224.0 B ≈ 48.0 B ≈ 24.4 B
Average deep record/row size ≈ 415.4 B ≈ 243.1 B ≈ 77.1 B
Total size ≈ 1.7 MiB ≈ 263.8 KiB ≈ 8.7 KiB
Total deep size ≈ 3.2 MiB ≈ 1.3 MiB ≈ 27.5 KiB

see the charts and interact indirectly with them as the exchange of ideas took place. Of

these five data scientists, three saw MevaL for the first time during these interviews, while

the other two also participated in the initial ones.

For all participants, in general, the presented version of MevaL covers all the main

features they expect to see in a package like this. In addition, in terms of design and

aesthetics, they also approved the charts. Complementing this general perspective, some

points were also raised that reinforce the developed solution, such as:

• For one of the data scientists, the classification threshold chart for a breakdown

field is interesting and could have been useful for a previous project. The overall

version was also highlighted by one of the data scientists.

• For one of the data scientists, a standardized package like MevaL can help all data
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Table 4.3: Six sample rows from the performance metrics dataset. The first row cor-
responds to the general performance when choosing the value 0.45 as a classification
threshold, while the remaining five rows refer to the performance for each of the sub-
groups of the ProductCD feature/breakdown field. Metric values are rounded to four
decimal places.

model breakdown_field breakdown_value threshold TP FP TN

thesis overall overall 0.45 1369 565 113479
thesis ProductCD 3 0.45 50 9 3309
thesis ProductCD 1 0.45 70 30 3106
thesis ProductCD 2 0.45 164 24 5215
thesis ProductCD 4 0.45 157 177 91682
thesis ProductCD 0 0.45 928 325 10167

FN cost_TP cost_FP cost_TN cost_FN alert_rate

2695 151207.7188 64699.1094 1.5569e+07 458726.5938 0.0164
133 1585.0000 620.0000 2.5055e+05 6053.0000 0.0169
127 9960.0000 6524.0000 2.2744e+05 17700.0000 0.0300

93 45550.0000 7300.0000 7.6595e+05 21300.0000 0.0342
1653 43630.6484 39077.6016 1.3926e+07 382644.3438 0.0036

689 50482.0625 11177.5137 3.9879e+05 31029.2793 0.1035

precision_lower precision precision_upper cost_precision recall_lower

0.6876 0.7079 0.7281 0.7003 0.3223
0.7557 0.8475 0.9392 0.7188 0.2087
0.6102 0.7000 0.7898 0.6042 0.2885
0.8246 0.8723 0.9200 0.8619 0.5794
0.4165 0.4701 0.5236 0.5275 0.0738
0.7164 0.7406 0.7649 0.8187 0.5498

recall recall_upper cost_recall f0point5_score geometric_mean f1_score

0.3369 0.3514 0.2479 0.5801 0.5790 0.4565
0.2732 0.3378 0.2075 0.5967 0.5220 0.4132
0.3553 0.4222 0.3601 0.5863 0.5932 0.4714
0.6381 0.6969 0.6814 0.8127 0.7970 0.7371
0.0867 0.0997 0.1024 0.2495 0.2942 0.1465
0.5739 0.5980 0.6193 0.7000 0.7457 0.6467

fpr_lower fpr fpr_upper cost_fpr f2_score alerts cost_alerts mcc

0.0045 0.0050 0.0054 0.0041 0.3763 1934 215906.8125 0.4814
0.0009 0.0027 0.0045 0.0025 0.3161 59 2205.0000 0.4716
0.0062 0.0096 0.0130 0.0279 0.3941 100 16484.0000 0.4868
0.0028 0.0046 0.0064 0.0094 0.6743 188 52850.0000 0.7379
0.0016 0.0019 0.0022 0.0028 0.1036 334 82708.2500 0.2000
0.0277 0.0310 0.0343 0.0273 0.6010 1253 61659.5781 0.6211
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Table 4.4: Five sample rows from the aggregate scores dataset. The first three rows are
derived from all instances of the test dataset used, while the last two lines are obtained
only from all fraudulent instances of this test dataset. The (non-multiplied) percentage
values are rounded to four decimal places.

model breakdown_field breakdown_value fraud_score count percentage

thesis overall overall 0.21 127 0.0011
thesis overall overall 0.75 34 0.0003
thesis overall overall 0.40 47 0.0004
thesis isFraud 1 0.80 18 0.0044
thesis isFraud 1 0.26 29 0.0071

Table 4.5: Nine sample rows from the FI dataset. The first six rows contain the three
most important features for each of the FI results identified. The last three rows cor-
respond to three examples of candidate features to be removed in a future model. In
addition, although their position in the ranking changes significantly, in practice, there is
no change in their value (although this example is hypothetical, supporting charts aimed
at comparing FI results with filtering mechanisms either by ranking and/or by value can
be important to find a subset of features interesting to analyze).

Feature variable value fi rank

card2 Absolute Importance 147 data/fi_data_kaggle.csv 1
DeviceInfo_device Absolute Importance 139 data/fi_data_kaggle.csv 2
DeviceInfo_version Absolute Importance 130 data/fi_data_kaggle.csv 3
DeviceInfo_version Absolute Importance 147 data/fi2_data_kaggle.csv 1
P_emaildomain Absolute Importance 139 data/fi2_data_kaggle.csv 2
DeviceInfo_device Absolute Importance 130 data/fi2_data_kaggle.csv 3
V201 Absolute Importance 0 data/fi2_data_kaggle.csv 365
V202 Absolute Importance 0 data/fi2_data_kaggle.csv 366
V168 Absolute Importance 0 data/fi2_data_kaggle.csv 367

not_percentage rank_diff value_diff box absolute_change

True -3 25 NaN card2: 122→ 147 (+25)
True -1 9 NaN DeviceInfo_device: 130→ 139 (+9)
True 2 -17 NaN DeviceInfo_version: 147→ 130 (-17)
True -2 17 NaN DeviceInfo_version: 130→ 147 (+17)
True -2 17 NaN P_emaildomain: 122→ 139 (+17)
True 1 -9 NaN DeviceInfo_device: 139→ 130 (-9)
True 61 0 V201: 0→ 0 (+0)
True 61 0 V202: 0→ 0 (+0)
True 87 0 V168: 0→ 0 (+0)
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Figure 4.1: Label bar chart for the (test) dataset used. The label 1 corresponds to the
fraudulent class. It is possible to quickly verify the significant imbalance between classes.
The prevalence of fraud is less than 5%. The script to generate this chart can be found in
Appendix O.

scientists create charts with the same style.

• For two of the data scientists, the threshold areas of the score distribution chart

are useful for defining alert and automatic decline strategies (although they can be

difficult to explain to clients), for example.

• For three of the data scientists, the FI comparison is interesting/useful and could

be an alternative to the manual process performed using spreadsheets.

• For one of the data scientists, being able to generate score distribution charts with

several bin widths at once is important.

• For one of the data scientists, the panel for selecting a zone of interest in the tem-

poral chart is interesting, not only for the interactivity but also for the preview it

shows.

Out of curiosity, it is interesting to note that the various data scientists point out and

comment on different things (not just in these interviews, but in those before development

as well), in more or less detail. This arguably shows the disparity of needs and interests

that exist, possibly influenced by the variability of projects and backgrounds, even if the

main tasks that they have to complete are, at the Model Evaluation level, very similar (at
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least within each use case). On the other hand, data scientists also shared a set of ideas

full of potential that, due to the project timeline, could not be implemented and tested

immediately, thus inspiring some of the directions presented in the Future Work and

Conclusion section.

Besides this round of user interviews, the first version of MevaL was also presented at

the weekly event that takes place at Feedzai dedicated to DS. In addition to the opportu-

nity to show and publicize the package, the discussion allowed for the collection of extra

ideas to keep in mind, although it focused mainly on data processing and its importance

for the usability of a tool like MevaL.

4.3 Internal Projects

After the release of the first full working version of MevaL (in August 2020), teams from

two internal projects at Feedzai started using it for two different purposes (in fact, there

is a first version of each project already available). Both projects are producing reports for

the evaluation and comparison of ML models, but with different objectives and designs.

In addition to the value added by MevaL, as a kind of component library for automatic

generation of reports for/with Model Evaluation (or similar), these collaborations also

allowed to improve some aspects of the current version of the package, as well as to

discuss possible new features for a more complete and robust version in the future.

The project descriptions below are based on two interviews conducted in order to

ensure the accuracy of the information regarding different aspects of each of the projects

(the guidelines can be found in Appendix R).

4.3.1 Automatic Model Retraining Report

The first project is called "Automatic Model Retraining Report" and, in general, it boils

down to a two-way model comparison report. In simple words, this report, generated

from a Jupyter notebook, allows comparing two models and was designed mainly to

facilitate the comparison between a model in production and a new model (although

it is possible to compare any two models). The new model can be a retrained model,

that is, a model developed from scratch (in the sense of using new features, different

hyperparameters, among other possible choices), or a refreshed model, i.e., a model

equivalent to the one in production but trained with the latest data.

Prior to this project, this type of comparison was conducted only through one-time

computational notebooks/scripts developed individually for each of the projects that

required it (there was no centralized tooling for this specific purpose). So, the motivation

for this project derives from the need and interest in saving development time and in

unifying not only the look and feel of a front-facing actionable document, but also the

design of the charts and the technologies used to make this possible. Simply put, the main
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goal of this report is to streamline the decision-making process regarding the replacement

of a given model in production with a new model, in a quick and informed way.

In addition to the motivation shared above, this project was also pushed forward as

it fills a gap previously identified for one of Feedzai’s clients: Lloyds Banking Group, a

major British financial institution.

As for the report itself, it consists of dynamic text/tables and charts (powered by

MevaL) interspersed on a Jupyter notebook that is later converted to a shareable HTML

file (main output). This report also has a data layer with a (fast even for large datasets) raw

data processing pipeline, in order to facilitate the preparation of the necessary datasets

for performance verification and model comparison. In the simplest case, a data scientist

only needs to indicate the data sources and the appropriate parameters, as the report

will be generated automatically from this input, without the need for a one-time custom

computational notebook/script (the report is flexible and general enough for different DS

projects).

Moreover, this report has two main target groups: data scientists (who can use both

formats) and Feedzai’s clients (who can freely check the HTML report). For clients, a

report like this one is a good way to show some evidence that justifies or not an update of

a model in production, for example. On the other hand, data scientists (from a developer

and end user perspective), can customize the report, either in terms of cells/content, or

in terms of parameters for the different functions and charts, for example, while they can

use it for their daily work as well.

As for the design goals, it is intended that this report follows a nice and clean interface,

where aesthetics and professionalism are visible throughout the provision of information

considered relevant. Reusability, on the other hand, is a design principle of this report,

both in terms of what it uses and what it provides. In this way, in terms of implementation,

this project takes advantage of some of Feedzai’s in-house packages to assemble the

proposed solution.

As for MevaL and its visual part, the report uses the ROC/PR curve chart, the gain

chart, the (colored) breakdown strip chart (which they found very informative), the con-

fusion matrix, the temporal (Model Decay) chart, and the (faceted) score distribution

chart. According to the project team, MevaL was chosen and reused for five reasons: (1) it

provides the desired charts; (2) it supports breakdowns; (3) it is aesthetically appealing;

(4) it supports interactivity (such as tooltips, for example); (5) it offers a series of options

that allow customization of the ready-to-use charts.

4.3.2 Automatic Model Governance Report

The second internal project that uses MevaL is called "Automatic Model Governance

Report" and, in a nutshell, consists of an end-to-end report for a given model, from the

data used to its detailed results, and it is intended to meet compliance requirements.

Therefore, this template-oriented project is broader than the previous one and MevaL
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only covers a specific part in terms of Model Evaluation. This report thus contains a

section for a new model, focused on performance and where a comparison is made with

the current model in production — MevaL joins here with its charts to facilitate the

sharing of information about model performance.

Previously, specifically for one of Feedzai’s clients, a Model Governance report was

prepared manually using a word processor. However, for each written report, most of

the time was spent in the proper formatting of the document and its components (like

the style for the charts) for the sake of consistency. Thus, the idea arose to develop a

template-like document that allows to create one of these reports quickly, freeing the

data scientist’s time to prepare, exclusively, the content and data, while the look and feel

would be assured. Thus, the main success criterion for this work is to achieve a significant

difference in the time needed to prepare a report compared to the previous support.

As for the report itself, it consists of a mixture of text, tables and charts mounted on a

Jupyter notebook (enriched with custom CSS) that is later converted, using the nbconvert

package [126], to PDF format. Regarding the target group, this (PDF) report is designed

mainly for clients, although data scientists can also avail oneself of the computational

notebook version. In the simplest case, to generate a Model Governance report, it is

only necessary to specify a dataset with a predefined schema (and some variable-like

parameters) and run the notebook.

In addition, in terms of implementation, this project takes advantage of some of

Feedzai’s in-house packages to assemble the proposed solution as well. MevaL was one

of the tools chosen for four reasons in particular: (1) it yields the desired charts; (2) it

provides consistently designed charts and a standard aesthetic; (3) it is easy to use; (4)

it allows to (directly) embed the charts in an HTML file (although this is simply thanks

to Altair). As for MevaL and its visual part, the report uses the ROC curve chart, the

Gain chart, the classification threshold chart, the temporal (Model Decay) chart, and the

(grouped) score distribution chart.

Finally, as a side note, one of the team members of this project highlighted the show-

case notebook available in the MevaL repository as it helped to start using the package

(having a support to show the charts, as a kind of visual documentation, is useful and

makes it easy to pick up the charts).
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Figure 4.2: MevaL as a Python package serving different end goals.
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5
Future Work and Conclusion

MevaL is a Python package for visual ML Model Evaluation integrated into Feedzai’s DS

environment, developed with the help of data scientists and data visualization engineers,

and already supporting two internal client-facing reporting projects. The first version is

up and running, but there are a couple of directions already identified that could make

MevaL a more powerful and robust tool in subsequent versions.

The first action point, with an action plan until January 2021, is to finish the transfer

to production, as described in the Deployment section, and update the charts with the

latest version from Altair (4.1.0). In addition to enabling any data scientist to use MevaL

and its charts OOTB at Feedzai, this unification will allow for the collection of more

feedback coming from its (expected) role in DS projects during Model Evaluation.

MevaL cannot be a static tool for ever-changing needs and scenarios. Thus, in addition

to the well-defined previous point, there are, at this moment, other (research/experimen-

tation) directions with the potential to derive new features and know-how for MevaL and

for Model Evaluation as a fundamental procedure.

In terms of features, in addition to improvements to the current charts with new

options and new custom themes (like a theme with a larger font size for presentation

purposes), for example, the next step would be to natively support multiple models in
situ. In other words, the main idea is to extend the plotting API for relevant charts, such

as the curve chart, the temporal chart, the breakdown strip chart, and the classification

threshold chart, so that, in the same chart and in the same space, the results of multiple

models are visually represented in line with all the customization options already avail-

able. Another option would be to include statistical tests, like the McNemar’s test and

Cochran’s Q test (both tests consider the same test set), to help select models. Besides that,

a chart, like the one used for Skyline Queries [293], for AutoML model selection is an

option to explore as well (AutoML generates many different models, so this chart could
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help the data scientist choose a smaller subsample based on two performance metrics, for

example).

In terms of uncertainty-based features, it would be positive to integrate new estima-

tion mechanisms, such as the calculation of confidence intervals using bootstrapping

methods [245], and to add the option of including confidence bands in ROC curve charts

(vertical bands in terms of Recall), for example.

Plus, there are totally new features for MevaL that are also quite promising to amplify

the package. Taking the tasks described in the Model Evaluation Topology section, it

would be interesting to investigate and test new charts for FP/FN Analysis, and new

functions for Feature Reduction.

For the first task (FP/FN Analysis), in addition to a data layer that would allow the

use of the original dataset(s) enriched with the results of one (or more) ML model(s), a

possible idea would be the geospatial analysis of predicted labels through an interactive

map (assuming that a given dataset would contain geospatial features). In this interactive

map, the instances would be encoded as points, for example, and each point would be

colored in order to distinguish the correctly classified instances from the incorrectly

classified ones, the correctly classified instances from the FPs and FNs, or all confusion

categories. Another option would be to support different color scales, as this map could

be used to see the geographical distribution of the (continuous) scores. The main idea is to

facilitate the inspection of the instances from a geospatial point of view and help the data

scientist to find potentially interesting patterns in order to identify certain data-based

problems or to create new features, for example (this idea is based on Manifold’s Geo

Feature View [168] and could be realized with the Folium package [84], for example).

Another idea would be to include correctness validation in MevaL, a method composed of

the following steps: (1) convert the predicted labels to 0 or 1 (for example) depending on

whether the predicted labels are correct or not, respectively (label 1 may also consist of FPs

or FNs only, while the remaining instances are labeled as 0); (2) train a new model (a RF,

for example) using the new labels as "ground truth"; (3) compute the FI values/ranking;

(4) analyze the most important features.

For the second task (Feature Reduction), using the existing charts, it would be inter-

esting to connect MevaL to Pulse (Feedzai’s e2e ML platform) and, with a function call,

allow the data scientist to apply a Feature Reduction method and then inspect the results

obtained with a subset of features. A simple method for this would be the one-shot fea-

ture elimination, a method consisting of the following steps (the main disadvantage is

the computational cost for training new models): (1) compute the FI values/ranking; (2)

select a number of the best features (or select a number of the less important features

to remove); (3) train and evaluate a new model with this feature subset; (4) compare

performance.

In terms of testing, both from a package and user perspective, there are two aspects

to explore in the future. The first is visual regression testing, a testing method based
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on screenshots and their comparison at different times with reference ones, to comple-

ment unit testing. As a visual-dependent package, this dimension would be central to

ensuring (or to be even closer to guaranteeing) that the charts, as an image, are really

generated as expected (this could be implemented by adapting the pytest [149] and pytest-

selenium [118] packages, for example). The second is the design and execution of a formal

quantitative evaluation with data scientists (where a series of metrics, such as success

rate, mouse metrics, and task duration, would be collected during the resolution of dif-

ferent tasks and then analyzed, for example). This evaluation was not carried out due to

the lack of a benchmark for comparison (in this way, it could also serve to establish an

in-house benchmark in the future), the package development process (an exploratory and

iterative process based on qualitative feedback), and the commitment to deploy MevaL

(considered a priority).

If possible in the future, there are some Jupyter-based technologies (which are not

currently supported in Feedzai’s DS environment) that can be used to implement certain

mechanisms in sync with MevaL and Altair. An example is the ipywidgets package [125],

a package with several interactive HTML-based widgets, such as sliders, to explore and

exploit interaction even more (a slider could allow the data scientist to easily change the

classification threshold and see the impact on charts parameterized by this threshold,

for example). Alternatively, given that JupyterLab is at its core an extensible platform,

it is also possible to consider (almost) everything from small changes to the interface

to serve specific purposes (like the custom colors for the input and output collapsers to

the left of the cells, depending on whether it is recommended or unsafe to rerun a given

cell in terms of implicit dependencies, implemented in NBSafety [177], a Jupyter kernel

with visual functionalities to assist in reasoning about out-of-order cell executions) to

full extensions that help in Model Evaluation. On the other hand, mainly for a first-time

Model Evaluation, MevaL may, in the future, have an automatic computational notebook

(with some metadata in the header, such as the information provided by the watermark

package [243], for example) in which the data scientist will only have to define some

arguments (data sources and some global variables) and will have access to a notebook

with a series of charts (and potentially interactive widgets) ready to use.

Nevertheless, although there are many directions to explore, the first version of MevaL

(and this work) can be considered a success, not only for the Python package developed

and made available internally, but also for the feedback collected and the organic way it

was adopted in two internal projects at Feedzai.

That said, to conclude this work, it remains to look at the success criteria defined in

the first chapter (Success Criteria section):

• The Python package enables the exploration of the created models from at least a

new perspective that is not currently available OOTB in Pulse.

– Comparing the Feedzai section and the Features section, it is possible to check

that MevaL onboards other tasks that are not possible to accomplish using
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Pulse, as is the case for Model Decay, and complements others with comple-

mentary information and new charts, such as the binomial proportion confi-

dence intervals and the breakdown strip chart. Thus, this criterion was met.

• At least two action points of each of the defined and selected tasks/requirements

are implemented and ready to use.

– Scanning the Features section, it is clear that each of the tasks selected for

the first version of MevaL has at least one chart with multiple options (de-

rived from two or more action points), offering, in practice, an extended set of

possible combinations to support a Model Evaluation procedure. In addition,

supporting each of the tasks, there is an efficient data processing pipeline that

allows the data scientist to have access to the ready-to-view datasets. Thus,

this criterion was met.

• All small, low-effort action points related to improvements of what Pulse currently

offers in terms of DV for Model Evaluation are implemented (if the charts in ques-

tion are implemented in the Python package).

– In addition to MevaL providing an improved version of each of the charts

available on Pulse, it also accommodates a flexible API that allows to address

some of the identified needs, such as finer granularity for the bin widths of the

score distribution chart and full-fledged breakdown charts, as is the case for

curve charts, for example. Thus, this criterion was met.

• The Python package receives approval from the Product and Customer Success

departments.

– Complementing the transfer to production (Deployment section), in collabo-

ration with the Product department, and the two internal reporting projects

(Internal Projects section), in collaboration with the Customer Success depart-

ment, the overall feedback received from the various stakeholders is mostly

positive. Thus, this criterion was met.

• The Python package is tested and validated by Feedzai’s data scientists.

– Although this aspect is supported only by a qualitative component, MevaL was

developed iteratively with the support of data scientists (and data visualiza-

tion engineers) and constantly challenged, culminating in a set of formal user

interviews and as one of the tools used by the teams of two internal projects at

Feedzai. Thus, this criterion was met (although there is room for improvement

in the future, as described in this chapter).

• All information about this project is documented in a central repository at Feedzai.
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– All materials referring to MevaL and this project in a more general way are

neatly hosted in a (Git) repository and in a folder on Feedzai’s cloud storage

service. These materials are accessible to everyone at Feedzai. Thus, this

criterion was met.

• The Python package features a modular architecture so that it is possible to add

new functionalities efficiently.

– Based on the Package Architecture and Features sections, MevaL has a data

layer separate from the plotting layer, and each component/chart can be used

starting from the EvaluationManager class or individually, according to some

considerations. It is quite easy and intuitive to add new charts (just create a

new file/folder with a class that inherits one of the abstract classes, if necessary,

and follows some guidelines, as well as the respective function to generate the

chart using Altair) or new performance metrics (just add a function with the

necessary calculations from the pandas DataFrame columns for each confusion

category and add it to a central Python dictionary), for example, in addition

to the fact that the various parts of the package are documented and have

well-defined purposes. Thus, this criterion was met.

• The Python package is complemented with a set of tutorials and documentation.

– The package contains docstrings and comments aimed at helping data scien-

tists and future developers, as well as a showcase notebook to introduce MevaL

and its features. In addition, several documents were prepared to describe all

phases of this project, such as documents with guidelines for the interviews,

documents with the summaries and conclusions of the interviews, documents

with the description and justification of the content to be implemented, among

others. Recordings of presentations regarding the project and MevaL are also

available for everyone at Feedzai. Thus, this criterion was met.

• The Python package is promoted internally on at least two occasions.

– Briefly, MevaL and this project were presented on four separate occasions at

Feedzai, twice at the weekly event of the Research department and twice at the

weekly event dedicated to DS. Thus, this criterion was met.

• The Python package is promoted externally on at least one occasion.

– This thesis, written in as much detail as possible, is the main vehicle for exter-

nal promotion (since it will be publicly available). Furthermore, in the near

future, the writing of a blog post about MevaL is also planned. Thus, this

criterion was met.
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Literature Review summary

Table A.1: Summary of granularities of visual tools for ML Model Evaluation.

Paper Year Granularity

[28] 1998 Instance, Feature, Outcome
[307] 2002 Outcome, Class, Overall
[289] 2009 Outcome, Model, Class, Overall
[296] 2011 Instance, Feature, Outcome, Model, Class, Overall
[215] 2011 Instance, Outcome, Overall
[8] 2014 Instance, Feature, Outcome, Class, Overall
[351] 2014 Feature, Subgroup, Outcome, Overall
[12] 2015 Instance, Outcome, Overall
[152] 2015 Instance, Feature, Outcome, Overall
[148] 2016 Instance, Feature, Subgroup, Outcome
[147] 2017 Instance, Feature, Subgroup, Outcome, Overall
[248] 2017 Instance, Feature, Subgroup, Outcome, Class
[172] 2018 Instance, Feature, Outcome, Model, Class
[352] 2018 Instance, Feature, Outcome, Model
[187] 2018 Instance, Feature, Subgroup, Outcome
[314] 2019 Instance, Feature, Subgroup, Outcome, Overall
[168, 349] 2019 Feature, Subgroup, Outcome, Class
[350] 2019 Feature, Outcome, Overall
[5] 2019 Feature, Subgroup, Outcome, Overall
[3] 2019 Instance, Feature, Subgroup, Outcome, Overall
[280] 2019 Instance, Feature, Outcome, Model, Overall
[112] 2019 Instance, Feature, Outcome
[89] 2020 Instance, Feature, Outcome

The tools are matched to the following granularities:

• Instance: Individual data instance-level granularity.
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APPENDIX A. LITERATURE REVIEW SUMMARY

• Feature: Feature-level granularity.

• Subgroup: Data subgroup-level granularity.

• Outcome: Outcome-level granularity. Outcome concerns the outputs of the mod-

els in terms of probabilities and labels, for example, and their manipulation and

comparative evaluation translated into different metrics.

• Model: Internal model-level granularity.

• Class: Class-level granularity (mainly related to MCC problems).

• Overall: Overall performance-level granularity.
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B
Binary temporal confusion matrix

Figure B.1: Prototype of a binary temporal confusion matrix [172] for Gradient Boosting
Machines like LightGBM [132] (inspired by a stacked area chart). The white line inside the
chart serves only to separate the positives and the negatives (according to the predicted
classes).

Listing B.1: Script to prepare the Titanic dataset [127], train a LightGBM model [132],

assemble the dataset for visualization, and generate a binary temporal confusion matrix

chart. The features engineering and model training parts are adapted from a Kaggle

notebook created by Gareth Jones [124]. The time-series segmentation (get_segment_cost()
and time_series_segmentation()) functions are adapted from an open-source implementa-

tion [58].

1 import re

2 import sys

3

4 import altair as alt

5 import lightgbm as lgb

179



APPENDIX B. BINARY TEMPORAL CONFUSION MATRIX

Figure B.2: Prototype of a binary temporal confusion matrix [172] when hovered. The
opacity of the colors, as well as the tooltip, highlight one of the segments (whose number
is specified by the user) obtained from a time-series segmentation algorithm that aims to
minimize the intra-segment variances. The purpose of this algorithm and this visual layer
is to help the user to quickly identify the iterations of interest as a proxy for considerable
changes in confusion matrices.

6 import numpy as np

7 import pandas as pd

8 from sklearn.metrics import confusion_matrix

9 from sklearn.model_selection import train_test_split

10

11 SEED = 0

12

13 TITLES = {

14 "Capt": "Officer",

15 "Col": "Officer",

16 "Major": "Officer",

17 "Jonkheer": "Sir",

18 "Don": "Sir",

19 "Sir": "Sir",

20 "Dr": "Dr",

21 "Rev": "Rev",

22 "theCountess": "Lady",

23 "Dona": "Lady",

24 "Mme": "Mrs",

25 "Mlle": "Miss",

26 "Ms": "Mrs",

27 "Mr": "Mr",

28 "Mrs": "Mrs",

29 "Miss": "Miss",

30 "Master": "Master",

31 "Lady": "Lady",

32 }

33

34 MODEL_PARAMS = {
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35 "boosting_type": "gbdt",

36 "max_depth": -1,

37 "objective": "binary",

38 "nthread": 5,

39 "num_leaves": 64,

40 "learning_rate": 0.05,

41 "max_bin": 512,

42 "subsample_for_bin": 200,

43 "subsample": 1,

44 "subsample_freq": 1,

45 "colsample_bytree": 0.8,

46 "reg_alpha": 5,

47 "reg_lambda": 10,

48 "min_split_gain": 0.5,

49 "min_child_weight": 1,

50 "min_child_samples": 5,

51 "scale_pos_weight": 1,

52 "num_class": 1,

53 "metric": "binary_error",

54 "seed": SEED,

55 }

56

57

58 def load_datasets(*paths):

59 """Load an arbitrary number of datasets in CSV format."""

60 return [pd.read_csv(path) for path in paths]

61

62

63 def split_letter_number(cabin):

64 """Extract cabin letter and number from the ‘Cabin‘ feature."""

65 match = re.match(r"([a-z]+)([0-9]+)", cabin, re.I)

66

67 try:

68 letter = match.group(1)

69 except AttributeError:

70 letter = ""

71

72 try:

73 number = match.group(2)

74 except AttributeError:

75 number = 9999

76

77 return letter, number

78

79

80 def split_cabin(cabin):

81 """Extract cabin letter, number, and number of cabins from the ‘Cabin‘ feature."""

82 if isinstance(cabin, (int, float)):

83 letter = ""

84 number = ""
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85 n_cabins = 9999

86 else:

87 cabins = cabin.split()

88 n_cabins = len(cabins)

89 first_cabin = cabins[0]

90

91 letter, number = split_letter_number(first_cabin)

92

93 return letter, number, n_cabins

94

95

96 def split_name(name):

97 """Extract the surname and the title from the ‘Name‘ feature (and standardize it)."""

98 name = name.replace(".", "")

99 name_parts = name.split("�")
100

101 surname = name_parts[0]

102

103 name_title = [title for key, title in TITLES.items() if key in name_parts]

104

105 if name_title == []:

106 name_title = "Other"

107 else:

108 name_title = name_title[0]

109

110 return surname.strip(","), name_title

111

112

113 def prep_dataset(data, class_col="", id_col="", ft_drop=()):

114 """Prepare the dataset for use with LightGBM."""

115 if class_col != "":

116 labels = data[class_col]

117 ft_drop = list(ft_drop) + [class_col]

118 else:

119 labels = []

120

121 if id_col != "":

122 ids = data[id_col]

123 else:

124 ids = []

125

126 if ft_drop != []:

127 data = data.drop(ft_drop, axis=1)

128

129 l_data = lgb.Dataset(

130 data,

131 label=labels,

132 free_raw_data=False,

133 feature_name=list(data.columns),

134 categorical_feature="auto",
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135 )

136

137 return l_data, labels, ids, data

138

139

140 def get_predicted_classes(preds, threshold=0.5):

141 """Obtain the predicted classes according to a threshold."""

142 return (preds > threshold).astype(np.int)

143

144

145 def get_segment_cost(vectors, L, R):

146 """Compute the cost function to measure the internal variance of a segment."""

147 avg_vec = np.mean(vectors[L:R, :], axis=0)

148

149 cost = 0

150 for i in range(L, R + 1):

151 delta = vectors[i, :] - avg_vec

152 cost += np.sum(np.square((delta)))

153

154 return cost

155

156

157 def time_series_segmentation(confusion_matrices, n_segment):

158 """Divide a time series-like object (the confusion matrices over the various

↪→ iterations) into a specified number of segments."""

159 n_iteration = len(confusion_matrices)

160 vectors = np.reshape(confusion_matrices, newshape=(n_iteration, -1))

161

162 f = np.zeros(shape=(n_iteration, n_segment), dtype=np.float32)

163 g = np.zeros(shape=(n_iteration, n_segment), dtype=np.int32)

164 cost = np.zeros(shape=(n_iteration, n_iteration), dtype=np.float32)

165

166 for i in range(n_iteration):

167 cost[i][i] = 0

168 for j in range(i + 1, n_iteration):

169 cost[i][j] = get_segment_cost(vectors, i, j)

170

171 for i in range(n_iteration):

172 f[i][0] = cost[0][i]

173 g[i][0] = -1

174

175 for j in range(1, n_segment):

176 for i in range(j - 1, n_iteration):

177 f[i][j] = sys.maxsize

178 for k in range(j - 2, i):

179 if f[k][j - 1] + cost[k + 1][i] < f[i][j]:

180 f[i][j] = f[k][j - 1] + cost[k + 1][i]

181 g[i][j] = k

182

183 endpoints = []
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184 i = np.int32(n_iteration - 1)

185 j = n_segment - 1

186

187 while i != -1:

188 endpoints.append(i.item() + 1) # Add 1 because the X-axis starts at 1

189 i = g[i][j]

190 j = j - 1

191

192 endpoints = endpoints[::-1]

193

194 return endpoints

195

196

197 def temporal_confusion_matrix(

198 df, segments, title, hover="outwards", width=800, height=300, **features

199 ):

200 """Generate a binary temporal confusion matrix (TCM) chart."""

201 confusion_categories = ["TP", "FP", "FN", "TN"]

202

203 color_scale = alt.Scale(

204 domain=confusion_categories, range=["#3CAEA3", "#F6B1A5", "#A6DAD5", "#ED553B"],

205 )

206

207 legend_selection = alt.selection_multi(fields=["Confusion_Category"], bind="legend")

208

209 if hover == "outwards":

210 hover_selection = alt.selection_single(on="mouseover", nearest=False)

211 color_selection = alt.condition(

212 hover_selection, alt.value("transparent"), alt.value("#F4F4F4")

213 )

214 opacity_selection = alt.condition(

215 hover_selection, alt.value(0.0), alt.value(0.5)

216 )

217

218 elif hover == "inwards":

219 hover_selection = alt.selection_single(

220 on="mouseover", nearest=False, empty="none"

221 )

222 color_selection = alt.condition(

223 hover_selection, alt.value("#F4F4F4"), alt.value("transparent")

224 )

225 opacity_selection = alt.condition(

226 hover_selection, alt.value(0.5), alt.value(0.0)

227 )

228

229 main_chart = (

230 alt.Chart(df)

231 .mark_area()

232 .encode(

233 alt.X(
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234 features["Iteration"] + ":O",

235 axis=alt.Axis(

236 orient="bottom", labelAngle=0, ticks=False, title="Iteration"

237 ),

238 ),

239 alt.Y(features["Count"] + ":Q", stack="zero", axis=None),

240 alt.Color(

241 features["Confusion_Category"] + ":N",

242 title="Confusion�Categories",
243 scale=color_scale,

244 legend=alt.Legend(values=confusion_categories),

245 ),

246 alt.Order(features["Class"], sort="ascending"),

247 opacity=alt.condition(legend_selection, alt.value(1), alt.value(0.2)),

248 )

249 .properties(width=width, height=height)

250 .add_selection(legend_selection)

251 )

252

253 hover_chart = (

254 alt.Chart(segments)

255 .mark_rect()

256 .encode(

257 alt.X(features["Seg_Start"] + ":O", axis=None),

258 x2=features["Seg_End"] + ":O",

259 color=color_selection,

260 opacity=opacity_selection,

261 tooltip=[

262 alt.Tooltip(features["Seg_Number"], title="Segment"),

263 alt.Tooltip(features["Seg_Start"], title="Start"),

264 alt.Tooltip(features["Seg_End"], title="End"),

265 ],

266 )

267 .add_selection(hover_selection)

268 )

269

270 tcm_chart = (

271 alt.layer(main_chart, hover_chart, title=title)

272 .configure_axis(grid=False)

273 .configure_view(strokeWidth=0)

274 .configure_title(anchor="start", fontWeight="normal")

275 )

276

277 return tcm_chart

278

279

280 if __name__ == "__main__":

281 train, test = load_datasets("data/train.csv", "data/test.csv")

282 full = pd.concat([train, test], axis=0, sort=True)

283
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284 # Metadata

285 n_train = train.shape[0]

286 ft_drop = ["Ticket", "Cabin", "Name"]

287 class_col = "Survived"

288 id_col = "PassengerId"

289 conf_cat = ["TN", "FP", "FN", "TP"]

290 class_types = [0, 2, 0, 2]

291 n_segments = 5

292 features = {

293 "Iteration": "Iteration",

294 "Count": "Count",

295 "Confusion_Category": "Confusion_Category",

296 "Class": "Class",

297 "Seg_Start": "x_min",

298 "Seg_End": "x_max",

299 "Seg_Number": "number",

300 }

301

302 # ‘Cabin‘-based features

303 cabin_ft = full["Cabin"].apply(split_cabin).apply(pd.Series)

304 cabin_ft.columns = ["CL", "CN", "nC"]

305

306 full = pd.concat([full, cabin_ft], axis=1)

307

308 # Family-based features

309 full["fSize"] = full["SibSp"] + full["Parch"] + 1

310 full["fRatio"] = (full["Parch"] + 1) / (full["SibSp"] + 1)

311 full["Adult"] = full["Age"] > 18

312

313 # ‘Name‘-based features

314 name_ft = full["Name"].apply(split_name).apply(pd.Series)

315 name_ft.columns = ["Surname", "Title"]

316

317 full = pd.concat([full, name_ft], axis=1)

318

319 # Label encoding

320 categorical_cols = ["Sex", "Embarked", "CL", "CN", "Surname", "Title"]

321

322 for categorical in categorical_cols:

323 full[categorical] = pd.Categorical(full[categorical])

324 full[categorical] = full[categorical].cat.codes

325 full[categorical] = pd.Categorical(full[categorical])

326

327 # Age imputation

328 full.loc[full["Age"].isnull(), "Age"] = np.median(

329 full["Age"].loc[full["Age"].notnull()]

330 )

331

332 # Train-Test split

333 train = full.iloc[0:n_train, :]
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334 test = full.iloc[n_train::, :]

335

336 # Train-Validation split

337 train_data, val_data = train_test_split(train, test_size=0.4, random_state=SEED)

338

339 # LightGBM-ready datasets

340 train_data_l, train_labels, train_ids, train_data = prep_dataset(

341 train_data, class_col=class_col, id_col=id_col, ft_drop=ft_drop

342 )

343

344 val_data_l, val_labels, val_ids, valid_data = prep_dataset(

345 val_data, class_col=class_col, id_col=id_col, ft_drop=ft_drop

346 )

347

348 test_data_l, _, _, test_data = prep_dataset(

349 test, class_col=class_col, id_col=id_col, ft_drop=ft_drop

350 )

351

352 # Training

353 gbm = lgb.train(

354 params=MODEL_PARAMS,

355 train_set=train_data_l,

356 num_boost_round=100000,

357 valid_sets=[train_data_l, val_data_l],

358 early_stopping_rounds=50,

359 verbose_eval=1,

360 )

361

362 # Generate confusion matrices for each iteration

363 confusion_matrices_train = []

364

365 for tree in range(0, gbm.num_trees()):

366 train_pred = gbm.predict(train_data, num_iteration=tree + 1)

367

368 train_decision = get_predicted_classes(train_pred)

369

370 confusion_matrices_train.append(confusion_matrix(train_labels, train_decision))

371

372 # Get the datasets for visualization

373 # 1. Confusion categories dataset

374 working_dict = dict()

375

376 working_dict["Count"] = np.concatenate(confusion_matrices_train).ravel().tolist()

377

378 working_dict["Iteration"] = [

379 item + 1 for item in range(0, gbm.num_trees()) for i in range(4)

380 ]

381 working_dict["Class"] = class_types * gbm.num_trees()

382 working_dict["Confusion_Category"] = conf_cat * gbm.num_trees()

383
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384 df_to_plot = pd.DataFrame.from_dict(working_dict)

385

386 # 2. Positive/negative separation dataset

387 sep_dict = dict()

388

389 sep_dict["Iteration"] = [

390 item + 1 for item in range(0, gbm.num_trees()) for i in range(1)

391 ]

392 sep_dict["Class"] = [1] * gbm.num_trees()

393 sep_dict["Confusion_Category"] = ["Blank"] * gbm.num_trees()

394 sep_dict["Count"] = [15] * gbm.num_trees()

395

396 # 3. Plotting dataset

397 df_to_plot = df_to_plot.append(pd.DataFrame.from_dict(sep_dict))

398

399 # Get the indices that group the iterations into ‘n_segments‘ that minimize the intra-

↪→ segment variances

400 seg_index = time_series_segmentation(confusion_matrices_train, n_segments)

401

402 segmentation = pd.DataFrame(

403 {

404 "x_min": [1] + seg_index[: n_segments - 1],

405 "x_max": seg_index,

406 "number": [i for i in range(1, n_segments + 1)],

407 }

408 )

409

410 # Plotting

411 tcm_chart = temporal_confusion_matrix(

412 df=df_to_plot,

413 segments=segmentation,

414 title="1.0-LightGBM",

415 hover="outwards",

416 **features

417 )

418

419 tcm_chart.save("tcm-chart.png", scale_factor=6.0)
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Predevelopment interview guidelines

Considerations:

• These interviews will be more oriented to the personal experience of each one than

to try to perceive generalizations.

• These interviews target interviewees that have experience in the "traditional" DS

workflow. Otherwise, through the impromptu checklist gathered at the beginning,

the questions are framed according to the interviewee’s experience. In addition, a

more abstract agenda for Research data scientists was also defined. This agenda

does not imply that no questions will be asked about Pulse, for example — it will

depend on the participant’s experience.

• Don’t forget to ask for examples (probing questions).

• The interviews will be conducted in English or Portuguese, according to the most

appropriate language for the moment. In addition, the interviews will be in person

or online, depending on the availability and location of the participants.

Agenda (Customer Success edition):

1. Hello + Context.

2. Tell me about your previous experience and your current role at Feedzai.

Get an impromptu checklist (a list to keep in mind or point out in a notebook

with key points to have a basis for the rest of the interview).

3. DS workflow.

4. Model Evaluation workflow.
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5. What are your goals when evaluating models? What actions do you usually take to

evaluate models?

Exemplify begins here.

6. Describe your (past and) current experience with Pulse.

7. Describe your (past and) current experience with Pulse’s Model Evaluation features.

8. Pain points/Difficulties.

9. Optional: Which of Pulse’s features do you usually use (this part was supported by

a single slide with the list of features)?

10. Pros and cons (Pulse).

11. Was there anything missing that you expected? What are you currently doing to

overcome your difficulties?

What other options do you use?

Why these options?

What tasks and plots do you usually do?

What are the drawbacks?

12. Average time split (between different options and Pulse).

Do you think using notebooks/scripts is feasible, or would you rather have

everything available in Pulse?

13. What could be done to improve Model Evaluation at Feedzai?

Optional: If you could evaluate a model in the best way for you, what would

that Model Evaluation environment look like?

14. Wrap-up summary + What haven’t I asked you today that you think would be

valuable for us to know? + Thanks.

Agenda (Research edition):

1. Hello + Context.

2. Tell me about your previous experience and your current role at Feedzai.

Get an impromptu checklist.

3. DS workflow (per case, if necessary).

4. Model Evaluation workflow (per case, if necessary).

To answer the "what" part mainly.

5. What are, in general, your goals when evaluating models?

Exemplify begins here.
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6. How do you evaluate your models (per case, if necessary)?

What options (platforms, tools, packages, etc.) do you use?

Why these options?

What specific tasks and plots do you usually do? Why these options?

What are the drawbacks?

7. Pain points/Difficulties.

8. What could be done to improve Model Evaluation at Feedzai?

Optional: If you could evaluate a model in the best way for you, what would

that Model Evaluation environment look like?

9. Wrap-up summary + What haven’t I asked you today that you think would be

valuable for us to know? + Thanks.
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D
Logo

Figure D.1: MevaL logo. The name comes from the combination of Model, evaluation,
and ML. The logomark shows one of the possible nets for a cube (the typical three-
dimensional geometric shape of a "box"), symbolizing an "open" ML model (ready to be
checked and evaluated).
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PyPI/Trove classifiers for MevaL

The list of PyPI/Trove classifiers [291] (added as package metadata) that categorize MevaL

are:

• Development Status :: 4 - Beta

• Intended Audience :: Developers

• Intended Audience :: Science/Research

• License :: Other/Proprietary License

• Natural Language :: English

• Operating System :: OS Independent

• Programming Language :: Python

• Programming Language :: Python :: 3

• Programming Language :: Python :: 3 :: Only

• Programming Language :: Python :: 3.6

• Programming Language :: Python :: Implementation :: CPython

• Topic :: Scientific/Engineering :: Artificial Intelligence

• Topic :: Scientific/Engineering :: Information Analysis

• Topic :: Scientific/Engineering :: Visualization

• Topic :: Software Development :: Libraries

• Topic :: Software Development :: Libraries :: Python Modules

• Topic :: Utilities

• Typing :: Typed

195





A
p
p
e
n
d
i
x

F
R script to compare two colors after

simulating color vision deficiency

Listing F.1: Script to simulate color vision deficiency using the colorspace package [348].

1 library(colorspace)

2

3 rg <- c("#EE6C4D", "#368F8B")

4 rg_low_contrast <- c("#EE6C4D", "#659B5E")

5

6 png("rg.png", width=2000, height=2000, res=300)

7 par(mfrow = c(2, 2), mar=c(2, 1, 4, 1))

8 demoplot(rg, "bar")

9 title(main="Original")

10 demoplot(deutan(rg), "bar")

11 title(main="Deuteranope�(Green)")
12 demoplot(protan(rg), "bar")

13 title(main="Protanope�(Red)")
14 demoplot(tritan(rg), "bar")

15 title(main="Tritanope�(Blue)")
16 dev.off()

17

18 png("rg_low_contrast.png", width=2000, height=2000, res=300)

19 par(mfrow = c(2, 2), mar=c(2, 1, 4, 1))

20 demoplot(rg_low_contrast, "bar")

21 title(main="Original")

22 demoplot(deutan(rg_low_contrast), "bar")

23 title(main="Deuteranope�(Green)")
24 demoplot(protan(rg_low_contrast), "bar")

25 title(main="Protanope�(Red)")
26 demoplot(tritan(rg_low_contrast), "bar")

27 title(main="Tritanope�(Blue)")
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COLOR VISION DEFICIENCY

28 dev.off()
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G
JavaScript cells to save Altair charts via

Vega-Embed in JupyterLab

These snippets were prepared to be possible, in Feedzai’s DS environment, to save charts

from a computational notebook programmatically. Since, in Altair 2.4.1, the Python

package with the bindings for Selenium is required, as well as a browser (Google Chrome

or Mozilla Firefox) and the respective WebDriver (ChromeDriver or geckodriver), it is not

possible to use the save (class) instance method to get charts as images programmatically

— Selenium is not supported in the DS environment and, depending on the case, the

browser aspect may also be a deterrent. In this way, all charts whose cells were executed

will be saved as images. Note that each snippet must be in a separate cell.

Listing G.1: First JavaScript snippet to be executed to save Altair charts via Vega-Embed

in JupyterLab.

1 %%javascript

2

3 const fileType = "png"; // "png" or "svg"

4 let vegaActions = document.getElementsByClassName("vega-actions");

5

6 [...vegaActions].forEach((element) =>

7 [...element.childNodes]

8 .filter((child) => child.download.endsWith(‘.${fileType}‘))

9 .map((download) => download.dispatchEvent(new MouseEvent("mousedown")))

10 );

Listing G.2: Second JavaScript snippet to be executed to save Altair charts via Vega-Embed

in JupyterLab.

1 %%javascript

2
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APPENDIX G. JAVASCRIPT CELLS TO SAVE ALTAIR CHARTS VIA

VEGA-EMBED IN JUPYTERLAB

3 const fileType = "png"; // "png" or "svg"

4 let vegaActions = document.getElementsByClassName("vega-actions");

5

6 [...vegaActions].forEach((element) =>

7 [...element.childNodes]

8 .filter((child) => child.download.endsWith(‘.${fileType}‘))

9 .map((download) => download.click())

10 );
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H
Custom theme-based helper functions and

union types for Altair

Listing H.1: Custom theme-based helper functions, and union types for all types of Altair

charts and compound-only charts.

1 from json import dumps

2 from typing import Union

3

4 import altair as alt

5

6 UAltairChart = Union[

7 alt.Chart,

8 alt.LayerChart,

9 alt.HConcatChart,

10 alt.VConcatChart,

11 alt.RepeatChart,

12 alt.FacetChart,

13 ]

14

15 UAltairCompoundChart = Union[

16 alt.LayerChart, alt.HConcatChart, alt.VConcatChart, alt.RepeatChart, alt.FacetChart,

17 ]

18

19

20 def get_alt_aesthetic():

21 print(dumps(alt.themes.get()(), indent=4))

22

23

24 def set_default_alt_aesthetic():

25 alt.themes.enable("default")

26
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APPENDIX H. CUSTOM THEME-BASED HELPER FUNCTIONS AND UNION

TYPES FOR ALTAIR

27

28 def get_alt_themes(verbose=True):

29 if verbose:

30 print(f"Current�theme:�{repr(alt.themes.active)}")
31 return alt.themes.names()

32

33

34 def enable_alt_aesthetic(theme, **options):

35 if theme in alt.themes.names():

36 alt.themes.enable(theme, **options)

37 else:

38 raise ValueError(f"The�{repr(theme)}�theme�is�not�available�in�MevaL.")
39

40

41 def update_alt_aesthetic(width=300, height=300):

42 current_theme = alt.themes.active.replace("_updated", "")

43 new_theme = f"{current_theme}_updated"

44

45 alt.themes.register(new_theme, THEMES.get(current_theme))

46 enable_alt_aesthetic(new_theme, width=width, height=height)
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Generate high-resolution images from

static or interacted Altair charts

Although it is possible to generate PNG images (and scalable SVG images) with vari-

able size/resolution (controlled through the scale_factor argument) using the save (class)

instance method available in Altair (or directly via altair_saver [299] nowadays), these

images correspond to static representations of the charts previously created (this method

takes a screenshot to the initial state of the rendered chart so to speak). In this way, a

possible manual and agnostic procedure to generate high-resolution PNG images (using

Google Chrome), with constant margins and that capture a representation after user in-

teraction (it is possible to capture, for example, a tooltip and the appearance of the chart

when hovered), is as follows:

1. Save the Altair chart to an HTML file (which will contain the Vega-Lite counterpart).

This can be done through the following snippet (the SVG renderer is used to ensure

better image quality): chart.save("chart.html", embed_options={"renderer": "svg"}).

2. Open the HTML file in Google Chrome.

3. Open Chrome DevTools (Control+Shift+C or Command+Option+C on Mac).

4. Click on the Toggle Device Toolbar button, then on the Device dropdown menu,

and finally select Edit. This is the first of three steps to create a custom device with

the desired resolution in order to generate high-resolution screenshots [27]. Thus,

this step and the following two steps only need to be performed the first time.

5. In the Settings panel, click on the Add custom device button and then enter a name,

width, and height for the new device (Screenshot, 1920 and 1080, respectively, for

example). In addition, also fill in the device pixel ratio field (with the value 6, for

example).
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INTERACTED ALTAIR CHARTS

6. In the Device dropdown menu, select the newly created device. Close the Settings

panel as well.

7. In the Elements panel, select the DOM node that contains only the chart or the par-

ent node that also contains the Vega-Embed button (both are <div> elements). This

step is important to ensure that the screenshot contains only the chart of interest

with a small margin around it.

8. If necessary, to capture the chart state after an interaction, trigger the desired event.

An example is hovering the chart to show a tooltip.

9. Open the Command Menu using the associated shortcut (Control+Shift+P or Com-

mand+Shift+P on Mac) [26] and search for Capture node screenshot. Select the op-

tion with this name to save a screenshot as a PNG image. This screenshot will

correspond to the desired chart image.

This procedure was tested on version 86.0.4240.111 of Google Chrome.
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J
pandas options reconfigured by MevaL

Listing J.1: Function responsible for setting certain pandas options for MevaL when

imported.

1 import pandas as pd

2

3

4 def set_pd_options():

5 options = {

6 "display": {

7 "max_columns": None, # No limit on the number of columns so that the DataFrame

↪→ is not horizontally truncated

8 "max_colwidth": 30, # Smaller maximum width (in characters) for the columns in

↪→ order to balance the total width with the above option

9 "show_dimensions": False, # Don’t show the dimensions (secondary information)

↪→ of the DataFrame at the bottom

10 },

11 "mode": {

12 "chained_assignment": "raise" # Raise an exception if the user tries to use

↪→ chained assignment

13 },

14 }

15

16 for category, option in options.items():

17 for op, value in option.items():

18 pd.set_option(f"{category}.{op}", value)
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Script to prepare the demo dataset and

train a baseline model

207



APPENDIX K. SCRIPT TO PREPARE THE DEMO DATASET AND TRAIN A

BASELINE MODEL

Listing K.1: Python script to prepare the demo dataset, based on the (labeled) training

datasets of the IEEE-CIS Fraud Detection Kaggle competition [119], to apply minimal

(and oversimplified compared to the procedures followed at Feedzai) feature engineering,

and to train/test (in a time-aware fashion) a baseline LightGBM model [132] with the

default hyperparameters [66, 173, 343]. In addition to saving a dataset with a subset

of features that function as breakdown fields (fields that divide the dataset into several

subsets with individual interest), with the target field (isFraud) and each score predicted

for 118,108 transactions (fraud_score), it also stores the split-based (according to the num-

ber of times each feature is used in the model) [132] absolute and relative/percentage

FI values. The applied feature engineering/preprocessing consists of removing columns

with only one value (excluding null values), columns with more than 90% of their values

as null values, and columns where one of their values appears more than 90% of the time

(basically, columns with variability close to zero are removed) [173]. The three columns

for devices (DeviceInfo and id_30) and the browser (id_31) where online transactions are

made are split so that there are two distinct columns, one for the device model and one

for the version, approximately (in the case of the browser column, it is only kept the

browser name) [66, 343]. Although this data set is not 100% representative of those used

at Feedzai, it works as a proxy given that it is made up of online (card-not-present) trans-

actions binarily labeled in an imbalanced way, covers a period of six months (the time

component is present), has semantic fields, such as the transaction amount field, categor-

ical (or breakdown) fields, such as the device type field, more than 300 original features,

and also a significant size manageable on a single machine. Since the TransactionDT field

is a timedelta field (a duration or the difference between two dates) from a given refer-

ence date, this field was converted to a datetime field (Timestamp) using an arbitrary start

date, in order to simulate a timestamp field. This script also contains a helper function

(save_split_value_histogram()) to generate the histogram in Figure 2.9 and another one

(distance_constrained_shuffle()) [117] to shuffle the FI dataset in a distance-constrained

fashion (another option could be training another model with a different seed, for exam-

ple) in order to obtain another dataset for comparison purposes (this particular method

was applied to avoid huge jumps between the values of each feature, i.e., a completely

random shuffle without considering the distribution of the original FI values).

1 import os

2 import random

3 from datetime import datetime

4

5 import lightgbm as lgb

6 import matplotlib.pyplot as plt

7 import numpy as np

8 import pandas as pd

9 from sklearn.model_selection import train_test_split

10 from sklearn.preprocessing import LabelEncoder

11 from tqdm import tqdm

12
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13 RAW_DATA_PATH = "./raw_data/"

14 DATA_PATH = "./data/"

15 SEED = 0

16

17 MODEL_PARAMS = {

18 "objective": "binary",

19 "boosting_type": "gbdt",

20 "verbose": 1,

21 "seed": SEED,

22 }

23

24

25 def seedify(seed):

26 random.seed(seed)

27 os.environ["PYTHONHASHSEED"] = str(seed)

28 np.random.seed(seed)

29

30

31 def get_columns_to_drop(df, target_column="isFraud"):

32 one_value_cols = [

33 col for col in df.columns if df[col].nunique() <= 1

34 ] and col != target_column

35

36 many_null_cols = [

37 col

38 for col in df.columns

39 if df[col].isnull().sum() / df.shape[0] > 0.9 and col != target_column

40 ]

41

42 big_top_value_cols = [

43 col

44 for col in df.columns

45 if df[col].value_counts(dropna=False, normalize=True).values[0] > 0.9

46 and col != target_column

47 ]

48

49 cols_to_drop = list(set(one_value_cols + many_null_cols + big_top_value_cols))

50

51 return cols_to_drop

52

53

54 def timedelta2datetime(

55 df, td_col="TransactionDT", dt_col="Timestamp", start_date=datetime(2020, 1, 1),

56 ):

57 df[dt_col] = pd.Timestamp(start_date)

58 df["Diff"] = df[td_col] - df[td_col].iloc[0]

59 df[dt_col] = df[dt_col] + pd.to_timedelta(df["Diff"], unit="s")

60

61 return df.drop("Diff", axis=1)

62
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BASELINE MODEL

63

64 def split_devices(df, version_cols, no_version_cols):

65 for col in version_cols:

66 df[col] = df[col].fillna("unknown_device").str.lower()

67 df[f"{col}_device"] = df[col].apply(

68 lambda x: "".join([i for i in x if i.isalpha()])

69 )

70 df[f"{col}_version"] = df[col].apply(

71 lambda x: "".join([i for i in x if i.isnumeric()])

72 )

73

74 for col in no_version_cols:

75 df[col] = df[col].fillna("unknown_device").str.lower()

76 df[f"{col}_device"] = df[col].apply(

77 lambda x: "".join([i for i in x if i.isalpha()])

78 )

79

80 return df.drop(version_cols + no_version_cols, axis=1)

81

82

83 def save_split_value_histogram(model, feature, filename="split_value_hist"):

84 fig, ax = plt.subplots(1, 1, figsize=(10, 5), dpi=300)

85

86 ax = lgb.plot_split_value_histogram(

87 model, feature=feature, bins="auto", ax=ax, grid=False

88 )

89

90 fig.savefig(f"{filename}.png", bbox_inches="tight")

91

92

93 def distance_constrained_shuffle(df, distance, cols_to_shuffle, sort_by):

94 df = df.copy().sort_values(sort_by, ascending=False).reset_index(drop=True)

95 df_to_shuffle = df[cols_to_shuffle]

96

97 # ‘random.random()‘ -> [0.0, 1.0)

98 index_shuffled = [

99 df_idx

100 for idx, df_idx in sorted(

101 enumerate(df_to_shuffle.index),

102 key=lambda enum_tpl: enum_tpl[0] + (distance + 1) * random.random(),

103 )

104 ]

105

106 df_to_shuffle = df_to_shuffle.reindex(index=index_shuffled).reset_index(drop=True)

107

108 df[cols_to_shuffle] = df_to_shuffle[cols_to_shuffle]

109

110 return df

111

112
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113 def make_test_predictions(train_df, test_size, target, timestamp, id_, lgb_params):

114 for col in tqdm(

115 train_df.select_dtypes(include="object").columns, desc="Ordinal�encoding"
116 ):

117 train_df[col] = train_df[col].fillna("unseen_before_label")

118 train_df[col] = train_df[col].astype(str)

119

120 le = LabelEncoder()

121 train_df[col] = le.fit_transform(train_df[col])

122

123 train_df[col] = train_df[col].astype("category")

124

125 train_df = timedelta2datetime(train_df)

126

127 # For time-aware split

128 X = train_df.sort_values(timestamp).drop([target, id_], axis=1)

129 y = train_df.sort_values(timestamp)[target]

130

131 X_train, X_test, y_train, y_test = train_test_split(

132 X, y, test_size=test_size, shuffle=False

133 )

134

135 clf = lgb.LGBMClassifier(**lgb_params) # Scikit-learn API

136 clf.fit(X_train.drop([timestamp, "Timestamp"], axis=1), y_train)

137 test_scores = clf.predict_proba(X_test.drop([timestamp, "Timestamp"], axis=1))[:, 1]

138

139 scores_df = X_test.copy()

140

141 scores_df["isFraud"] = y_test

142 scores_df["fraud_score"] = test_scores

143

144 return clf, scores_df

145

146

147 if __name__ == "__main__":

148 seedify(SEED)

149

150 train_identity = pd.read_csv(f"{RAW_DATA_PATH}train_identity.csv")

151 train_transaction = pd.read_csv(f"{RAW_DATA_PATH}train_transaction.csv")

152

153 train = pd.merge(train_transaction, train_identity, on="TransactionID", how="left")

154

155 cols_to_drop = get_columns_to_drop(train)

156 train = train.drop(cols_to_drop, axis=1)

157 train = split_devices(

158 train, ["DeviceInfo", "id_30"], ["id_31"]

159 ) # Device and browser

160

161 clf, scores_df = make_test_predictions(

162 train, 0.20, "isFraud", "TransactionDT", "TransactionID", MODEL_PARAMS
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APPENDIX K. SCRIPT TO PREPARE THE DEMO DATASET AND TRAIN A

BASELINE MODEL

163 )

164

165 save_split_value_histogram(clf, "TransactionAmt")

166

167 scores_df[

168 [

169 "TransactionDT",

170 "Timestamp",

171 "TransactionAmt",

172 "ProductCD",

173 "card4",

174 "card6",

175 "DeviceType",

176 "id_30_device",

177 "isFraud",

178 "fraud_score",

179 ]

180 ].to_csv(f"{DATA_PATH}evaluation_kaggle.csv", index=False)

181

182 fi_df = pd.DataFrame(

183 {

184 "Feature": scores_df.drop(

185 ["TransactionDT", "Timestamp", "isFraud", "fraud_score"], axis=1

186 ).columns,

187 "Absolute�Importance": clf.feature_importances_,

188 "Relative�Importance": clf.feature_importances_

189 / sum(clf.feature_importances_),

190 }

191 )

192

193 fi_df.to_csv(f"{DATA_PATH}fi_data_kaggle.csv", index=False)

194

195 distance_constrained_shuffle(

196 fi_df, 10, ["Absolute�Importance", "Relative�Importance"], "Absolute�Importance"
197 ).to_csv(f"{DATA_PATH}fi2_data_kaggle.csv", index=False)
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Performance and memory consumption

analysis of MevaL’s data processing pipeline

This analysis was conducted only for the part dedicated to processing the main dataset in

a local JupyterLab environment on a laptop whose technical specifications can be found in

Appendix M. Processing one or two FI raw datasets, on top of pandas, is negligible, given

its small size, up to 1,000 rows and 10 columns as expected, and the simple operations (to

generate new columns or to optionally reshape the dataset) involved. The SparkSession,

the entry point for using PySpark, was initialized with the default configuration.

Listing L.1: Script to plot the resulting execution times (Figure 3.10), and assemble Ta-

ble L.1 and Table L.2 based on the output (persisted as JSON files) of the corresponding

IPython [220]/memory_profiler magic cell commands (%%timeit and %%memit, respec-

tively).

1 import json

2 import math

3

4 import altair as alt

5 import pandas as pd

6

7 COLORS = {

8 "black": "#44475A",

9 "lgray": "#EBEBEB",

10 "gray": "#858585",

11 "white": "#FFFFFF",

12 "green": "#368F8B",

13 "red": "#EE6C4D",

14 }

15

16 NUM_FORMATTER = "{:,}".format
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APPENDIX L. PERFORMANCE AND MEMORY CONSUMPTION ANALYSIS OF

MEVAL’S DATA PROCESSING PIPELINE

Table L.1: Mean execution times (and respective standard deviations) considering 20
(independent) repeats (and one execution per repeat) of the function (Python expression)
responsible for (fully) processing the main dataset (the training/test dataset with the
scores returned by a model for each instance). The dataset used is the one described in
the Dataset section and Appendix K, corresponding to the first line of this table. Subse-
quent datasets were obtained through sampling with replacement in order to simulate
larger datasets and see the (linear) trend in execution time (visible in the chart in Fig-
ure 3.10). On average, it takes less than 10 minutes to run the data processing pipeline
locally on a relatively modern laptop (Appendix M) for a dataset with over a million rows,
a totally tolerable run time. These performance values (in seconds) were collected with
the following IPython built-in magic cell command [220, 298]: %%timeit -o -r 20.

Relative Size # Rows Mean (s) Standard Deviation (s)

1x 118,108 65.95925090704114 1.0088734232719023
2x 236,216 116.96639213609743 2.5616991301031438
3x 354,324 219.22396667789434 4.040200567677255
4x 472,432 266.14367742915056 3.2281893261380463
5x 590,540 313.1284446614096 2.6885876901656593
6x 708,648 363.56116795226114 1.803603312141961
7x 826,756 412.5953572864528 1.106972649273104
8x 944,864 462.86697524811024 2.165084251789841
9x 1,062,972 516.18207561351 4.019599758861626
10x 1,181,080 572.9328743875667 6.74338383796817

Table L.2: Estimated memory usage (reported by the Increment (MiB) column) when run-
ning (only once) the (full) data processing pipeline for the main dataset (the training/test
dataset with the scores returned by a model for each instance). The dataset used is the
one described in the Dataset section and Appendix K, corresponding to the first line of
this table. Subsequent datasets were obtained through sampling with replacement in
order to simulate larger datasets and its impact on memory usage. The memory usage
values (which include the memory usage of any spawned child process) vary approxi-
mately between 1,256 mebibytes (1,317.011 MB) for a dataset with about 120,000 lines
and 2,068 mebibytes (2168.455 MB) for a similar dataset with 10 times more rows (these
values are fine for local environments/laptops). In addition, they were computed using
the memory_profiler package [218, 298], namely the following command: %%memit -c
-o.

Relative Size # Rows Peak Memory (MiB) Increment (MiB)

1x 118,108 1,532.69921875 1,256.0
2x 236,216 2,068.2265625 1,790.6328125
3x 354,324 2,153.32421875 1,875.234375
4x 472,432 2,175.453125 1,897.3359375
5x 590,540 2,299.7109375 2,021.578125
6x 708,648 2,136.17578125 1,858.83984375
7x 826,756 2,195.92578125 1,917.21484375
8x 944,864 2,307.515625 2,028.4921875
9x 1,062,972 2,358.7890625 2,079.7421875
10x 1,181,080 2,347.6484375 2,068.56640625
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17 N_ROWS = pd.read_csv("raw_thesis.csv").shape[0]

18

19

20 def persist_itresult(obj, filename):

21 """Save the output of the %%memit/%%timeit IPython magic command as a JSON file."""

22 with open(f"{filename}.json", "w") as outfile:

23 json.dump(

24 obj, outfile, default=lambda x: x.__dict__, ensure_ascii=False, indent=4

25 )

26

27

28 def theme(font="Fira�Sans"):
29 return {

30 "config": {

31 "title": {"font": font, "color": COLORS["black"]},

32 "axisX": {"labelAngle": 0,},

33 "axisY": {"titleAngle": 0, "titleAlign": "left", "titleY": -5},

34 "axis": {

35 "labelFont": font,

36 "titleFont": font,

37 "gridColor": COLORS["lgray"],

38 "labelColor": COLORS["black"],

39 "tickColor": COLORS["black"],

40 "titleColor": COLORS["black"],

41 "domainColor": COLORS["black"],

42 },

43 "title": {

44 "subtitleFont": font,

45 "subtitleColor": COLORS["black"],

46 "color": COLORS["black"],

47 "font": font,

48 },

49 "view": {

50 "fill": COLORS["white"],

51 "stroke": COLORS["lgray"],

52 "strokeWidth": 1,

53 },

54 "rule": {"color": COLORS["black"]},

55 "line": {"color": COLORS["lgray"]},

56 "text": {"font": font, "color": COLORS["black"], "fontSize": 10},

57 },

58 }

59

60

61 def time_perf_chart(data, xvar, yvar_mean, yvar_lb, yvar_ub, title, subtitle):

62 title_params = {"text": title, "subtitle": subtitle, "anchor": "start"}

63 y_values = list(range(0, 600 + 1, 60))

64

65 base = alt.Chart(data, width=300, height=300, title=title_params)

66
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APPENDIX L. PERFORMANCE AND MEMORY CONSUMPTION ANALYSIS OF

MEVAL’S DATA PROCESSING PIPELINE

67 points = base.mark_point(

68 filled=True,

69 opacity=1,

70 size=20,

71 stroke=COLORS["white"],

72 strokeWidth=0.25,

73 color=COLORS["green"],

74 ).encode(

75 x=alt.X(

76 f"{xvar}:O",

77 axis=alt.Axis(

78 title="Relative�size�(#�rows)",
79 labelExpr="datum.value�==�1�?�’Base’�:�datum.value�+�’x’",
80 ),

81 ),

82 y=alt.Y(

83 f"{yvar_mean}:Q",

84 axis=alt.Axis(

85 title=None,

86 tickCount=len(y_values),

87 values=y_values,

88 labelExpr="(datum.value�/�60)�+�’�min.’",
89 ),

90 ),

91 )

92

93 error_bars = base.mark_rule().encode(

94 x=alt.X(f"{xvar}:O"), y=alt.Y(f"{yvar_lb}:Q",), y2=alt.Y2(f"{yvar_ub}:Q"),

95 )

96

97 line = base.mark_line(size=1).encode(

98 x=alt.X(f"{xvar}:O"), y=alt.Y(f"{yvar_mean}:Q")

99 )

100

101 return line + error_bars + points

102

103

104 def average(obj, key="timings"):

105 """Based on the IPython implementation."""

106 return math.fsum(obj[key]) / len(obj[key])

107

108

109 def stdev(obj, mean, key="timings"):

110 """Based on the IPython implementation."""

111 return (math.fsum([(x - mean) ** 2 for x in obj[key]]) / len(obj[key])) ** 0.5

112

113

114 def get_peak_mem_and_inc(obj, mem_usage="mem_usage", baseline="baseline"):

115 """Based on the memory_profiler implementation."""

116 peak_mem = max(obj[mem_usage])
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117 inc = peak_mem - obj[baseline]

118

119 return peak_mem, inc

120

121

122 if __name__ == "__main__":

123 alt.themes.register(theme, theme)

124 alt.themes.enable(theme)

125 pd.options.display.float_format = NUM_FORMATTER

126

127 time_stats = []

128 mem_stats = []

129

130 for i in range(1, 11):

131 with open(f"time_20Runs_{i}xDataset.json") as ifile:

132 data = json.load(ifile)

133

134 mean = average(data)

135 std = stdev(data, mean)

136

137 lbound = mean - std

138 ubound = mean + std

139

140 time_stats.append([i, N_ROWS * i, mean, std, lbound, ubound])

141

142 with open(f"memory_child_1Run_{i}xDataset.json") as ifile:

143 data = json.load(ifile)

144

145 peak_mem, inc = get_peak_mem_and_inc(data)

146

147 mem_stats.append([i, N_ROWS * i, peak_mem, inc])

148

149 time_df = pd.DataFrame(

150 time_stats,

151 columns=[

152 "relative_size",

153 "rows",

154 "mean",

155 "stdev",

156 "lower_bound",

157 "upper_bound",

158 ],

159 )

160

161 mem_df = pd.DataFrame(

162 mem_stats, columns=["relative_size", "rows", "peak_mem", "inc",],

163 )

164

165 chart = time_perf_chart(

166 time_df,
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MEVAL’S DATA PROCESSING PIPELINE

167 "relative_size",

168 "mean",

169 "lower_bound",

170 "upper_bound",

171 "Execution�time�of�the�data�processing�pipeline",
172 "Main�dataset",
173 )

174

175 chart.save("time_perf_chart.png", scale_factor=6.0)

176

177 time_df["relative_size"] = time_df["relative_size"].astype(str) + "x"

178 mem_df["relative_size"] = mem_df["relative_size"].astype(str) + "x"

179

180 time_df.to_latex(

181 "table8.tex",

182 index=False,

183 columns=["relative_size", "rows", "mean", "stdev"],

184 header=["Relative�Size", "#�Rows", "Mean�(s)", "Standard�Deviation�(s)"],
185 label="tab:time-perf",

186 caption="",

187 formatters={"rows": NUM_FORMATTER},

188 )

189

190 mem_df.to_latex(

191 "table9.tex",

192 index=False,

193 header=["Relative�Size", "#�Rows", "Peak�Memory�(MiB)", "Increment�(MiB)"],
194 label="tab:mem-perf",

195 caption="",

196 formatters={"rows": NUM_FORMATTER},

197 )
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Laptop technical specification

The laptop used during this project has the following main characteristics (platform’s

identifying data) [20]:

• Model Identifier: MacBookPro14,1.

• Processor (Model/Number): 2.5 GHz Dual-Core Intel Core i7 (i7-7660U).

• L2 Cache (per Core): 256 KB.

• L3 Cache: 4 MB.

• Memory: 16 GB of 2133 MHz LPDDR3.

• Graphics (Video RAM): Intel Iris Plus Graphics 640 (1536 MB).

• Storage: 512GB SSD.

• Operating System (Version): macOS (10.15.5 Catalina).

• Kernel (Version): Darwin (19.5.0).

• Display Size: 13.3 inches (diagonal).

The environment variable/line export OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES
was added to the .bash_profile file in order to be able to use PySpark (including UDFs)

locally at full power on macOS Catalina (Apple introduced some security changes at the

multithreading level in macOS High Sierra) [19, 116, 155].
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Type hints for the __init__() method of the

EvaluationManager class.

1. target_field: str.

2. target_value: Union[str, int].

3. score_field: str.

4. timestamp_field: str.

5. performance_metrics: Union[str, Sequence[str]].

6. score_files: Optional[Dict[str, Union[str, Sequence[str]]]].

7. fi_files: Optional[Dict[str, Union[str, Sequence[str]]]].

8. metrics_dfs: Optional[Union[pd.DataFrame, pyspark.sql.DataFrame]].

9. agg_scores_dfs: Optional[Union[pd.DataFrame, pyspark.sql.DataFrame]].

10. fi_dfs: Optional[Union[pd.DataFrame, pyspark.sql.DataFrame]].

11. breakdowns: Optional[Union[str, Sequence[Union[str, Dict[str, Union[str, Sequence[str]]]]]]].

12. non_target_value: Optional[Union[str, int]].

13. cost_field: Optional[str].

14. truncate_score_decimals: Optional[int].

15. compute_cost_metrics: bool.

16. compute_ci_for_metrics: bool.

17. keep_confusion_categories: bool.

18. timestamp_fmt: str.

19. threshold_listing_strategy: str.
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APPENDIX N. TYPE HINTS FOR THE __INIT__() METHOD OF THE

EVALUATIONMANAGER CLASS.

20. thresholds_to_analyze: Optional[Union[float, Sequence[float]]].

21. feature_cols: Union[str, Sequence[str]].

22. fi_cols: Union[str, Sequence[str]].

23. score_files_sep: str.

24. fi_files_sep: str.

It is assumed that a Sequence will be, in practice, a List or a Tuple.

222



A
p
p
e
n
d
i
x

O
Script to generate a label bar chart

Listing O.1: Script to generate the label bar chart for the test dataset (Appendix K) used

to exemplify the charts implemented in MevaL.

1 import altair as alt

2 import pandas as pd

3

4 COLORS = {

5 "black": "#44475A",

6 "lgray": "#EBEBEB",

7 "gray": "#858585",

8 "white": "#FFFFFF",

9 "green": "#368F8B",

10 "red": "#EE6C4D",

11 }

12

13

14 def theme(font="Fira�Sans"):
15 return {

16 "config": {

17 "title": {"font": font, "color": COLORS["black"]},

18 "axisX": {"labelAngle": 0,},

19 "axisY": {"titleAngle": 0, "titleAlign": "left", "titleY": -5},

20 "axis": {

21 "labelFont": font,

22 "titleFont": font,

23 "gridColor": COLORS["lgray"],

24 "labelColor": COLORS["black"],

25 "tickColor": COLORS["black"],

26 "titleColor": COLORS["black"],

27 "domainColor": COLORS["black"],

28 },
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29 "title": {

30 "subtitleFont": font,

31 "subtitleColor": COLORS["black"],

32 "color": COLORS["black"],

33 "font": font,

34 },

35 "view": {

36 "fill": COLORS["white"],

37 "stroke": COLORS["lgray"],

38 "strokeWidth": 1,

39 },

40 "rule": {"color": COLORS["black"]},

41 "line": {"color": COLORS["lgray"]},

42 "text": {"font": font, "color": COLORS["black"], "fontSize": 10},

43 },

44 }

45

46

47 def label_bar_chart(

48 df,

49 xvar="index",

50 yvar_cnt="isFraud",

51 yvar_pct="percentage",

52 colorvar="color",

53 n_ticks=6,

54 ):

55 n_rows = df[yvar_cnt].sum()

56 yvals = [(n_rows * (y / 100)) for y in range(0, 101, 10)]

57

58 base = alt.Chart(df, width=300, height=300)

59

60 count = base.mark_bar().encode(

61 x=alt.X(f"{xvar}:N", title="Count�←�|�Labels�|�→�Percentage"),
62 y=alt.Y(

63 f"{yvar_cnt}:Q",

64 title=None,

65 axis=alt.Axis(values=yvals, grid=True, tickCount=n_ticks),

66 scale=alt.Scale(nice=False, domain=[0, n_rows]),

67 ),

68 )

69

70 percentage = base.mark_bar().encode(

71 x=alt.X(f"{xvar}:N"),

72 y=alt.Y(

73 f"{yvar_pct}:Q",

74 axis=alt.Axis(grid=True, tickCount=n_ticks, format="%"),

75 title=None,

76 ),

77 color=alt.Color(f"{colorvar}:N", scale=None),

78 )
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79

80 text = base.mark_text(dy=-5).encode(

81 x=alt.X(f"{xvar}:N"),

82 y=alt.Y(

83 f"{yvar_pct}:Q",

84 axis=alt.Axis(

85 domain=False, grid=False, ticks=False, labels=False, title=None

86 ),

87 ),

88 text=alt.Text(f"{yvar_pct}:Q", format=".2%"),

89 )

90

91 return alt.layer(count, percentage, text).resolve_scale(y="independent")

92

93

94 if __name__ == "__main__":

95 alt.themes.register(theme, theme)

96 alt.themes.enable(theme)

97

98 data = pd.read_csv("raw_thesis.csv")

99

100 data_to_plot = data["isFraud"].value_counts().to_frame().reset_index()

101 data_to_plot["percentage"] = data_to_plot["isFraud"] / data_to_plot["isFraud"].sum()

102 data_to_plot["color"] = [COLORS["green"], COLORS["red"]]

103

104 chart = label_bar_chart(data_to_plot)

105

106 chart.save("label_bar_chart.png", scale_factor=6.0)
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Helper function to save an Altair chart as

an HTML file and include the tooltip theme

Listing P.1: The snippet with the monkey patched Jinja HTML template [252] and the

helper function to save an Altair chart as an HTML file with MevaL’s tooltip theme.

Basically, this function adapts the Jinja HTML template used by Altair [297] (2.4.1) to

include some extra CSS properties and executes the save() method of an arbitrary chart

with an argument that selects the desired tooltip theme through Vega-Embed [198]. In

the end, the original template is restored (using Python’s importlib).

1 import importlib

2

3 import altair as alt

4 import jinja2

5

6 MONKEY_HTML_TEMPLATE = jinja2.Template(

7 """

8 {%- if fullhtml -%}

9 <!DOCTYPE html>

10 <html>

11 <head>

12 {%- endif %}

13 <style>

14 .vega-actions a {

15 margin-right: 12px;

16 color: #757575;

17 font-weight: normal;

18 font-size: 13px;

19 }

20 .error {

21 color: red;
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APPENDIX P. HELPER FUNCTION TO SAVE AN ALTAIR CHART AS AN HTML

FILE AND INCLUDE THE TOOLTIP THEME

22 }

23 #vg-tooltip-element.vg-tooltip.main-theme {

24 color: #2f2f2f;

25 border: 1px solid #ebebeb;

26 font-family: Arial;

27 font-size: 11px;

28 }

29 #vg-tooltip-element.vg-tooltip.main-theme td.key {

30 color: #2f2f2f;

31 font-weight: bold;

32 }

33 </style>

34 {%- if not requirejs %}

35 <script type="text/javascript" src="{{ base_url }}/vega@{{ vega_version }}"></script>

36 {%- if mode == ’vega-lite’ %}

37 <script type="text/javascript" src="{{ base_url }}/vega-lite@{{ vegalite_version }}"></

↪→ script>

38 {%- endif %}

39 <script type="text/javascript" src="{{ base_url }}/vega-embed@{{ vegaembed_version

↪→ }}"></script>

40 {%- endif %}

41 {%- if fullhtml %}

42 {%- if requirejs %}

43 <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/

↪→ 2.3.6/require.min.js"></script>

44 <script>

45 requirejs.config({

46 "paths": {

47 "vega": "{{ base_url }}/vega@{{ vega_version }}?noext",

48 "vega-lib": "{{ base_url }}/vega-lib?noext",

49 "vega-lite": "{{ base_url }}/vega-lite@{{ vegalite_version }}?noext",

50 "vega-embed": "{{ base_url }}/vega-embed@{{ vegaembed_version }}?noext",

51 }

52 });

53 </script>

54 {%- endif %}

55 </head>

56 <body>

57 {%- endif %}

58 <div id="{{ output_div }}"></div>

59 <script>

60 {%- if requirejs %}

61 {%- if not fullhtml %}

62 requirejs.config({

63 "paths": {

64 "vega": "{{ base_url }}/vega@{{ vega_version }}?noext",

65 "vega-lib": "{{ base_url }}/vega-lib?noext",

66 "vega-lite": "{{ base_url }}/vega-lite@{{ vegalite_version }}?noext",

67 "vega-embed": "{{ base_url }}/vega-embed@{{ vegaembed_version }}?noext",

68 }
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69 });

70 {%- endif %}

71 require([’vega-embed’], function(vegaEmbed){

72 {%- endif %}

73 var spec = {{ spec }};

74 var embedOpt = {{ embed_options }};

75

76 function showError(el, error){

77 el.innerHTML = (’<div class="error" style="color:red;">’

78 + ’<p>JavaScript Error: ’ + error.message + ’</p>’

79 + "<p>This usually means there’s a typo in your chart specification

↪→ . "

80 + "See the javascript console for the full traceback.</p>"

81 + ’</div>’);

82 throw error;

83 }

84 const el = document.getElementById(’{{ output_div }}’);

85 vegaEmbed("#{{ output_div }}", spec, embedOpt)

86 .catch(error => showError(el, error));

87 {%- if requirejs %}

88 });

89 {%- endif %}

90

91 </script>

92 {%- if fullhtml %}

93 </body>

94 </html>

95 {%- endif %}

96 """

97 )

98

99

100 def save_as_html(chart, filename):

101 alt.utils.html.HTML_TEMPLATE = MONKEY_HTML_TEMPLATE

102

103 try:

104 chart.save(

105 filename, embed_options={"renderer": "svg", "tooltip": {"theme": "main"}}

106 )

107 except AttributeError:

108 chart.show().save(

109 filename, embed_options={"renderer": "svg", "tooltip": {"theme": "main"}}

110 )

111

112 importlib.reload(alt.utils.html)
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Postdevelopment interview guidelines

Agenda:

1. Quick introduction to the subject of the master’s thesis and to MevaL (if necessary),

as well as the motivation for this feedback round (obtain input from potential future

users and validate what has been done so far).

Mention that they can interrupt whenever they want. Interlude the expository

part with pauses/general questions.

2. Present a summary of the package development so far (first version). Some notes:

Present the overview of the available features (divided into different subpack-

ages) and the workflow designed with the help of the EvaluationManager class.

The features take advantage of two types of raw data: scored instances and FI

data. These data sources are processed (if necessary since the user can add prepro-

cessed DataFrames that respect a given schema) in three types of data: performance

metrics, aggregate scores, and FI.

Give an overview of the data layer (it is not our focus, but we tried to have a

first version of the necessary operations).

Features have workable but also customizable defaults.

Ask for questions.

3. Show the list of features, as well as an exemplary chart/table for each one of them

(keep it simple).

Ask for questions/comments/suggestions.

In your current project, how would you use these features?
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APPENDIX Q. POSTDEVELOPMENT INTERVIEW GUIDELINES

Are there any features/types of features that have caught your attention? Which

ones and why? Show different versions in cells ready to run according to the con-

versation (if necessary).

If not all features are covered, there is no problem — the most important thing

is to validate the general structure and show concrete things to try to get more

concrete feedback than in past interviews.

Change the list order between conversations.

When trying to compare two distributions in a histogram, what type of his-

togram do you normally use? Why?

Have you applied any type of style to the tables you check on notebooks? If not,

do you imagine any scenario in which this would help?

Do you usually customize the aesthetics of your charts or do you usually use

the standard options? If so, what do you usually do?

4. Open questions: What features do you find most useful? What would you like to

see in the next version of the package?

5. Wrap-up summary + What haven’t I asked you today that you think would be

valuable for us to know? + Thanks.
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Internal project interview guidelines

Goal: Gather information about the internal initiatives that are currently using MevaL in

order to write a few paragraphs about them in the master’s thesis.

Agenda:

1. Share the motivation for this meeting.

2. First of all, what is the project about? Can you summarize it in a few words?

3. What is the motivation for this project?

How did it come about and why?

What are you trying to cover with this project?

What are the main success criteria?

4. Can you elaborate on the format and main (technical) characteristics of this project?

What technologies are you using (in addition to MevaL)?

What is the expected output?

What is the target group?

What is the use case?

5. What is the current status of the project? And the next steps?

6. Have any end-users used the project? If so, is there any feedback?

7. Why are you using MevaL?

8. How are you using MevaL? What features are you using?

9. So far, did you use any alternative to implement some functionality that you ex-

pected to cover with MevaL?
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APPENDIX R. INTERNAL PROJECT INTERVIEW GUIDELINES

10. Based on your experience, what are the main 2-3 positive aspects of MevaL? And

the negative ones? What would you like to see in the package in the future?

11. Clarify the next steps and ask if I can get back in touch to clarify potential doubts.
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Script to generate the coauthorship

network

Listing S.1: Python (3.5.9) script to generate the coauthorship network (Figure 2.15) based

on a sample of 46 papers and 186 authors discussed in the Literature Review section. The

Tethne package [219], a bibliometrics package, was used to obtain a graph describing

coauthorship from the Resource Description Framework (RDF) file downloaded from

Zotero, an open-source reference management software, with all relevant papers (this

graph was persisted as a GraphML file). A variable and a helper function from the Tethne

package were monkey patched in order to update a FOAF (a machine-readable ontology)

property (givenName) [40] in the Zotero RDF file parser and to add isolated nodes (the

nodes that correspond to solo authors) to the generated graph. The Python interface for

igraph (python-igraph package) [52] was used to hold/compute the data (the labels with

the names of the authors, the vertices, the edges, and the number of papers of each author)

to be plotted. It was chosen instead of the NetworkX package [95] simply because of its

simpler data structures to manipulate and prepare some Python lists with the coordinates

for Plotly, the interactive visualization package used [60, 120, 151]. The layout algorithm

for positioning the nodes was the Fruchterman-Reingold force-directed algorithm [52]

(in practice, the graph is plotted as a scatterplot and the layout algorithm allows the

calculation of X and Y coordinates).

1 import os

2 import random

3

4 import chart_studio.plotly as py

5 import igraph as ig

6 import rdflib

7 import tethne

8 from plotly.graph_objects import Figure, Layout, Scatter, layout
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APPENDIX S. SCRIPT TO GENERATE THE COAUTHORSHIP NETWORK

9 from tethne.networks.authors import coauthors

10 from tethne.readers.zotero import FOAF, read

11 from tethne.writers.graph import to_graphml

12

13 SEED = 1234

14 FILENAME = "46papers"

15 LABEL_ID = "id"

16

17

18 def seedify(seed):

19 random.seed(seed)

20 os.environ["PYTHONHASHSEED"] = str(seed)

21

22

23 def zotero2coauthors(path):

24 # Note: If necessary, change the ‘rdf:Description‘ tag to ‘bib:Article‘.

25 corpus = read(path, corpus=True, index_fields=["authors"])

26

27 G = coauthors(corpus, edge_attrs=[])

28

29 return G

30

31

32 def _monkey_generate_graph(

33 graph_class,

34 pairs,

35 node_attrs={},

36 edge_attrs={},

37 min_weight=1,

38 keep_isolated_nodes=True,

39 ):

40 graph = graph_class()

41 for combo, count in list(pairs.items()):

42 if count >= min_weight:

43 if combo in edge_attrs:

44 attrs = edge_attrs[combo]

45 else:

46 attrs = {}

47 graph.add_edge(combo[0], combo[1], weight=count, **attrs)

48

49 for k, attrs in list(node_attrs.items()):

50 if k in graph.nodes:

51 graph.nodes[k].update(attrs)

52 else:

53 if keep_isolated_nodes:

54 graph.add_node(k, **attrs)

55 return graph

56

57

58 def plot_coauthorship_graph(Xn, Yn, Xe, Ye, labels, size):

236



59 trace1 = Scatter(

60 x=Xe, y=Ye, mode="lines", line=dict(color="#D0D0D0", width=1), hoverinfo="none"

61 )

62 trace2 = Scatter(

63 x=Xn,

64 y=Yn,

65 mode="markers",

66 marker=dict(

67 symbol="circle-dot",

68 size=[s * 5 for s in size],

69 color="#44475A",

70 line=dict(color="#44475A", width=0.5),

71 ),

72 text=labels,

73 hovertext=n_papers,

74 hovertemplate="<b>Author</b>:�%{text}"
75 + "<br><b>#�Papers</b>:�%{hovertext:~}"
76 + "<extra></extra>",

77 )

78

79 axis = dict(

80 showline=False,

81 zeroline=False,

82 showgrid=False,

83 showticklabels=False,

84 title="",

85 automargin=False,

86 )

87

88 layout_ = Layout(

89 font=dict(size=12),

90 showlegend=False,

91 autosize=False,

92 width=800,

93 height=800,

94 xaxis=layout.XAxis(axis),

95 yaxis=layout.YAxis(axis),

96 margin=layout.Margin(l=0, r=0, b=0, t=0,),

97 hovermode="closest",

98 plot_bgcolor="#FFFFFF",

99 )

100

101 data = [trace1, trace2]

102 fig = Figure(data=data, layout=layout_)

103 return fig

104

105

106 if __name__ == "__main__":

107 # Monkey patches:

108 tethne.readers.zotero.FORENAME_ELEM = rdflib.URIRef(
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APPENDIX S. SCRIPT TO GENERATE THE COAUTHORSHIP NETWORK

109 FOAF + "givenName"

110 ) # Fix FOAF property

111 tethne.networks.base._generate_graph = (

112 _monkey_generate_graph # Keep isolated nodes (papers with a single author)

113 )

114

115 # Graph:

116 G_to_save = zotero2coauthors(FILENAME)

117 to_graphml(G_to_save, "{}.graphml".format(FILENAME))

118

119 G_to_plot = ig.Graph.Read_GraphML("{}.graphml".format(FILENAME))

120

121 labels = list(G_to_plot.vs[LABEL_ID])

122 N = len(labels)

123 print("Number�of�authors:", N)

124

125 E = [e.tuple for e in G_to_plot.es]

126 g_layout = G_to_plot.layout("fr") # Fruchterman-Reingold force-directed algorithm

127 n_papers = list(G_to_plot.vs["count"])

128

129 # Prepare the vertices and edges to be plotted:

130 Xn = [g_layout[k][0] for k in range(N)]

131 Yn = [g_layout[k][1] for k in range(N)]

132 Xe = []

133 Ye = []

134 for e in E:

135 Xe += [g_layout[e[0]][0], g_layout[e[1]][0], None]

136 Ye += [g_layout[e[0]][1], g_layout[e[1]][1], None]

137

138 plot = plot_coauthorship_graph(Xn, Yn, Xe, Ye, labels, n_papers)

139

140 plot.write_image("coauthorship_graph.png", scale=6)

141

142 # Upload the graph and open the URL:

143 py.plot(plot, filename="coauthorship-graph", auto_open=True)

238



A
p
p
e
n
d
i
x

T
Complementary example gallery for MevaL
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APPENDIX T. COMPLEMENTARY EXAMPLE GALLERY FOR MEVAL

Figure T.1: Lollipop version for the FI ranking chart. This example shows the top 100
features.
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Figure T.2: A combination of a slopegraph and a horizontal grouped bar chart for com-
paring a reduced number of features in terms of FI values.
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APPENDIX T. COMPLEMENTARY EXAMPLE GALLERY FOR MEVAL

Figure T.3: Cleveland dot/arrow version for the FI comparison chart. In this example, the
features are sorted in descending order of absolute difference in FI value.
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Figure T.4: Cleveland dot/arrow version for the FI comparison chart with a visible tooltip.
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APPENDIX T. COMPLEMENTARY EXAMPLE GALLERY FOR MEVAL

(a) This version is designed mainly for static use of this chart.

(b) In this example, one of the breakdown values (the 0 DeviceType) is highlighted (the opacity
value of the other breakdown values has decreased) after clicking on the respective tick or the
respective mark in the legend. This interactive filtering mechanism works the same way for the
non-colored version.

Figure T.5: Colored version for the breakdown strip chart. The marks in the legend mimic
the ticks on the chart itself.
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Figure T.6: Breakdown confusion matrix. In this example, there is an independent confu-
sion matrix for each breakdown value in the DeviceType field.
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APPENDIX T. COMPLEMENTARY EXAMPLE GALLERY FOR MEVAL

Figure T.7: Quadrant version [7] for the confusion matrix. In this example, the area
encodes the number of instances associated with each confusion category.
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Figure T.8: ROC curve chart with a highlighted area. In this example, it is also possible
to see the tooltip that appears when the data scientist hovers over this area. This area can
be used to highlight the desired value ranges (the Recall values above a pre-established
minimum up to a certain FPR value, such as 5%, for example) and contrast them with
the obtained curve. This functionality works in a similar way for the PR and Gain curve
charts.

(a) In this example, FPR is limited to 5% (X-
axis).

(b) In this example, FPR is limited to 10%
(X-axis).

Figure T.9: Partial ROC curve chart. It is also possible to plot partial PR and Gain curves.
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APPENDIX T. COMPLEMENTARY EXAMPLE GALLERY FOR MEVAL

(a) In this example, it is possible to see that
the choice of a certain classification thresh-
old, when put in perspective in relation to a
breakdown field, results in significantly dif-
ferent performance values (which may lead
the data scientist to choose another thresh-
old or to consider more than a threshold ac-
cording to the breakdown value).

(b) By clicking on one of the legend entries,
it is possible to highlight one line compared
to the others (which remain in the chart to
provide some context).

Figure T.10: ROC curve chart broken by DeviceType with the classification threshold 0.4
highlighted (on each line) using a star mark. This functionality works in a similar way
for the PR and Gain curve charts.
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Figure T.11: Partial ROC curve chart with the concrete points that make up the line
visible.
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APPENDIX T. COMPLEMENTARY EXAMPLE GALLERY FOR MEVAL

Figure T.12: Grouped score distribution chart. Although the color palette (Tableau 10)
is not the most suitable for the semantic value associated with these breakdown values
(the classes of the target field), this default choice was maintained due to its flexibility for
any breakdown field that can be chosen for this chart (agnostic to the breakdown field,
basically).

250



Figure T.13: Faceted score distribution chart. Although the color palette (Tableau 10) is
not the most suitable for the semantic value associated with these breakdown values (the
classes of the target field), this default choice was maintained due to its flexibility for
any breakdown field that can be chosen for this chart (agnostic to the breakdown field,
basically).
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APPENDIX T. COMPLEMENTARY EXAMPLE GALLERY FOR MEVAL

Figure T.14: FI comparison chart with an example of a tooltip and one of the features
highlighted after clicking on one of the bands on the ranged strip (sub)chart. The two
difference values in the tooltip must be read, in this case, from left to right, that is, they
must be read taking into account the change compared to the other result. Therefore, for
feature C6, the FI value in the first result is 40 instead of 45 (40−45 = −5), while the place
in the first ranking is three positions lower than in the second one.

Figure T.15: FN-based confusion category bar chart. In this example, the id_30_device
breakdown field is analyzed and the classification threshold is 0.2.
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(a) Clamp-based partial ROC curve chart. (b) Filter-based partial ROC curve chart.

Figure T.16: The other two partial modes (partial_mode parameter) for curve charts.
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Figure T.17: An example of a threshold marker (with the respective numeric label) on a
score distribution chart.
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Figure T.18: An example of the round() decorator to style pandas DataFrames.

Figure T.19: An example of the bar() decorator to style pandas DataFrames.

255



APPENDIX T. COMPLEMENTARY EXAMPLE GALLERY FOR MEVAL

Figure T.20: An example of the caption() decorator to style pandas DataFrames.

Figure T.21: An example of the border_rows() decorator to style pandas DataFrames.
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Figure T.22: An example of the border_cols() decorator to style pandas DataFrames.

Figure T.23: An example of the magnify() decorator to style pandas DataFrames.
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Figure T.24: An example of the highlight_rows() decorator to style pandas DataFrames.

Figure T.25: An example of the highlight_cols() decorator to style pandas DataFrames.
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Figure T.26: An example of the sort() decorator to style pandas DataFrames.

Figure T.27: An example of the hide_index() decorator to style pandas DataFrames.
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Figure T.28: An example of the highlight_null_values() decorator to style pandas
DataFrames.

Figure T.29: An example of the shade_alternate_rows() decorator to style pandas
DataFrames.
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Gantt chart

Initially, when presenting the dissertation plan, this project was divided into seven mile-

stones distributed as follows:

February 21, 2020

2019 2020
Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Literature review

Project assembling

Input gathering

Intermediate deliverables

Proposal

Python package

Final deliverables

Figure U.1: Initial Gantt chart for the master’s thesis.

261



APPENDIX U. GANTT CHART

In the end, the same milestones were approximately distributed as follows:

Figure U.2: Final timeline after project completion.
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Mockup review conversation guidelines

Agenda:

1. Hello + Context (if necessary).

2. Present the considerations about the mockup with the help of the slide deck.

Ask for questions.

3. Present the general structure of the mockup, with the help of the Table of

4. Contents, that the focus of this mockup is on the API, and mention that they can

interrupt whenever they want.

5. Present each feature in the mockup (walkthrough).

6. Merge the presentation of each feature with questions about the possible utility,

possible important customizations, and the current use.

7. Collect feedback on the following questions:

Do you think the features presented cover your current workflow? Can you

share an example, please?

Do you think there should be some model-specific features?

In terms of workflow, what do you think would be most important to you? An

API or a standard notebook?

In general, how many models/files do you analyze at one time? Is this analysis

dependent on the most important previous conclusions? How is your procedure for

loading files to a notebook?

8. Wrap-up summary + What haven’t I asked you today that you think would be

valuable for us to know? + Thanks.
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Sticky header decorator for pandas

DataFrames

Listing W.1: Snippet for the sticky_header() decorator to apply to a function to display a

particular pandas DataFrame.

1 from functools import wraps

2

3

4 def get_sticky_header_style(height):

5 styles = [

6 dict(

7 selector="thead�th",
8 props=[("position", "sticky"), ("top", 0), ("background", "#FFFFFF")],

9 ),

10 dict(

11 selector="", # ‘table‘ HTML element

12 props=[

13 ("display", "block"),

14 ("overflow", "auto"),

15 ("height", f"{height}px"),

16 ],

17 ),

18 ]

19

20 return styles

21

22

23 def sticky_header(height=300):

24 def decorator_sticky_header(func):

25 @wraps(func)

26 def wrapper_sticky_header(*args, **kwargs):
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APPENDIX W. STICKY HEADER DECORATOR FOR PANDAS DATAFRAMES

27 value = func(*args, **kwargs)

28 styles = get_sticky_header_style(height)

29 try:

30 styler = value.style.set_table_styles(styles)

31 return styler

32 except AttributeError:

33 previous_styles = value.table_styles

34 return value.set_table_styles(

35 styles + previous_styles if previous_styles else styles

36 )

37

38 return wrapper_sticky_header

39

40 return decorator_sticky_header
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