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A B S T R A C T

As Earth’s temperature continues to rise, sudden warming events, designated as marine heatwaves (MHWs), are
becoming more frequent and longer. This phenomenon is already shown to significantly impact marine eco-
systems and respective fauna. While experimental acclimation to higher temperatures is known to affect pre-
datory behavior, metabolism and overall fitness of sharks, the effects of short-term exposure to high tempera-
tures on sharks’ physiology has yet to be investigated in a MHW context. Thus, the aim of our work was to study
the impact of a category II MHW (Δ3 °C, 15 days) on: i) hematological parameters (total erythrocytes, leuko-
cytes, thrombocytes, erythrocyte nuclear abnormalities (ENAs) counts, and nucleus to cytoplasmic ratio), ii)
heart and spleen to body ratios, and iii) ventilation rates of juvenile catsharks (Scyliorhinus canicula). We found
that MHW exposure led to significant changes in normal blood cell counts, by lowering erythrocyte counts and
nucleus to cytoplasm ratio, and increasing leukocyte and thrombocyte counts. Moreover, ventilation rates in-
creased consistently over the course of the MHW. However, there were no changes regarding the presence of
ENA, as well as spleen and heart to body ratios. Our findings indicate limited capabilities for coping with sudden
warming events, suggesting potential disruption in shark physiological homeostasis as the frequency, duration
and intensity of MHWs are expected to be strengthened.

1. Introduction

Marine heat waves (MHW) are sudden warming events that occur in
the ocean, caused by a conjunction of oceanographic and atmospheric
processes (Hobday et al. 2016). In particular, small and large-scale at-
mospheric forcing, oceanic forcing, or the combination of both can
contribute to extreme temperatures at the surface of the ocean, causing
a MHW (Frölicher & Laufkötter 2018). Since the last century, MHWs
frequency and duration has increased by 54% (Oliver et al. 2018) as
consequence of rising greenhouse gases emissions (Meehl & Tebaldi
2004). Concurrently, these warming events are expected to continue
increasing in the future, both in intensity and in frequency (Frölicher
et al. 2018; Oliver et al. 2019). MHWs have already cause major im-
pacts in key ecosystems, e.g. the Great Barrier Reef, where coral as-
semblages suffered massive mortality over 2300 km (Hughes et al.

2017), which may impact reef fish diversity and abundance (Munday
et al. 2008). In fact, starting from 2013, in the northeastern Pacific, the
longest MHW ever recorded (known as “the Blob”) lasted for an un-
precedented 3 years (Cavole et al. 2016; Di Lorenzo & Mantua 2016). As
a consequence, MHWs are reshaping marine communities, through
changes in the distribution of keystone species (Pinsky et al. 2013;
Poloczanska et al. 2013; Frölicher et al. 2018), the loss of kelp forests
(Wernberg et al. 2016), severe coral senescence due to bleaching
(Hughes et al. 2017), and mass mortality of several marine animals due
to heat stress (Garrabou et al. 2009; Oliver et al. 2017; Smale et al.
2019).

Animals exposed to warmer, but sublethal temperatures, face
thermal stress (Mariana & Badr 2019) and a decline in oxygen avail-
ability (Schmidtko et al. 2017) can result in constraints on hematolo-
gical and cardio-respiratory systems (Mariana & Badr 2019).
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Specifically, as the temperature rises there is an increase of respiration
rates (Coma 2002) that can compromise oxygen transport by red blood
cells (Madeira et al. 2016) and affect heart rate (Carlson et al. 2004). A
basic parameter to determine functional efficiency of an animal’s car-
diac condition is the relationship between heart and body weight
(Ostadal & Dhalla 2012). Elevated temperatures can increase cardiac
output in fish (Farrell 2009), which is allied to a decrease in cardiac
mass (Gamperl & Farrell 2004). Contrarily, at colder waters, fish can
enlarge their hearts to maintain cardiac output (Driedzic et al., 1996;
Gamperl & Farrell 2004), even during a short-term exposure of 4 weeks
(Graham & Farrell 1989). Thermal stress has also implications over the
metabolism (Pörtner & Knust 2007), through changes in energy allo-
cation, alongside a reduction in animal’s immunity by increased bac-
terial pathogenicity and infections (Vezzulli et al., 2010). These infec-
tions can be responsible for changes in the biometric characteristics of
fish (Tavares-Dias et al. 2000) such as increased spleen size (Hadidi
et al., 2008). The spleen plays an important part during a physiological
response to stress and in a few short minutes can change in size
(Pearson & Stevens 1991). A quantifiable immune parameter is the
spleno-somatic index which can be measured as the spleen to body ratio
(Lefebvre et al. 2004). Thus, identifying species’ thermal window of
performance is essential to define their vulnerability to warming
(Pörtner and Farrell, 2008).

Top and mesopredator sharks are known to play a key role in eco-
systems (Terborgh & Estes 2013; Wallach et al. 2015), with recent
studies showing that increased temperatures (not within MWH con-
texts) can elicit negative effects on sharks. For instance, warming has
been shown to significantly change digestive abilities (Rosa et al. 2016),
reduce the duration embryonic development (Rosa et al. 2014; Pistevos
et al. 2015), and increase ventilation rates and mortality (Rosa et al.
2014). However, to our knowledge, there is no experimental data on
the effects of ecologically realistic MHWs on shark physiology, which
depend on external temperature to maintain vital processes. Since early
stages are expected to be more vulnerable to sudden changes in the
environment (Pörtner & Farrell, 2008), the aim of our work was to
study, for the first time, the impact of a category II (see MHW category
definitions in Hobday et al., 2018) MHW (Δ3 °C, 15 days) on different
physiological parameters of juvenile catsharks (Scyliorhinus canicula),
including: i) hematological parameters (total erythrocytes, leukocytes,
thrombocytes, erythrocyte with nuclear abnormalities counts, and er-
ythrocyte’s nucleus to cytoplasm ratio), ii) heart and spleen to body
ratios and iii) ventilation rates.

2. Materials and methods

2.1. Ethics statement

During this work, all procedures followed the requirements of the
European Parliament (Directive 2010/63/EU) and the Council of 22
September 2010 on animal protection used for science. Experimental
procedures were also reviewed and approved by the animal ethics
committee ORBEA, the Animal Welfare Body of FCUL (Statement 5/
2016) and the National Veterinary Medicines Directorate (DGAV).

2.2. Animal collection and acclimation

Small-spotted catshark juveniles (n = 24) around 15.8 cm (±1.7)
were brought to our aquaculture facilities from a public aquarium
(Aquário Vasco da Gama, Algés, Portugal) in September 2018. They
were all placed in one 600L semi-open system and fed ad libitum, with
fish or squid. After at least 4 weeks of acclimation at control tem-
perature conditions (18 °C), sharks were divided in three 600L semi-
open systems (replicates) per treatment: control (18 °C; n = 12) and a
simulated scenario of a category II MHW (21 °C; n = 12) for 15 days
(for more information see Table 1). Sharks were also divided per sex: 7
females and 5 males per treatment.

In the MHW treatment, the water temperature was increased around
0.5 °C per day. Water was constantly renewed with a drip-system,
which constantly supplied UV-sterilized (Vecton 300, TMC Iberia,
Portugal) and filtered (1 μm; Harmsco, USA) seawater. Water tem-
perature was controlled and adjusted automatically with thermostats
(V2 Therm 100, TMC Iberia, Portugal) and chillers (Hailea chillers,
China). Seawater parameters such as salinity (V2 TMC, Iberia, Portugal)
and temperature (WTW, Multi 3510 IDS SET4, Germany) were mon-
itored daily, while ammonia, nitrites and nitrates (Tropic Marin,
Germany) were measured twice a week. Water quality was further
ensured with protein skimmers (Schuran, Jülich, Germany) and biolo-
gical filter (Ouriço® bioballs, Fernando Ribeiro, Portugal) matured with
nitrifying bacteria. A photoperiod of 12:12 h was kept throughout the
experiment.

2.3. Experimental design

A 30 years dataset for seawater surface temperature in the region of
Cascais (Portugal) was acquired from NOAA (Daily Optimum
Interpolation SST version 2; (Banzon et al. 2016)). The R package,
heatwaveR (Schlegel and Smit, 2018), was used to determine the
average duration (14 days) and the maximum temperature registered
(21 °C; corresponding to a category II MHW when the climatology was
~18 °C). This package applies the MHWs definition by Hobday et al.
(2018) (See Fig. 1).

2.4. Ventilation rates

Sharks were individually observed for one minute and the number
of breaths (i.e. gill movements) was registered. Each observation was
repeated 3 times to obtain a mean value of the ventilation rate per
shark. Ventilation rates were measured: i) 9 days before the experiment
started; ii) the first day with +3 °C; and iii) after 15 days of treatment.
These observations were made before feeding to exclude any possible
bias on the respiration.

2.5. Sample preparation and hematological parameters

Each shark was collected from the respective treatment (n = 24)
and euthanized with an overdose of MS222 solution (buffered with
addition of sodium bicarbonate at 1:1 ratio). Afterwards, sharks were
weighted, and blood was collected from the caudal vein using a he-
parinized syringe. Blood smears of each individual were prepared, by
placing a drop of blood in a microscope glass slide. Then blood was
spread by capillary action using a second slide as the spreader slide,
being subsequently allowed to air-dry and fixed for one minute in
methanol. Following 24 h, the fixed blood smears were stained with
Hemacolor staining reagent (Hemacolor® Rapid, Sigma-Aldrich) and
counter-stained with safranin (Sigma-Aldrich). Staining allowed the
count of normal blood cells (erythrocytes, leukocytes and thrombo-
cytes) and the identification of erythrocytes nuclear abnormalities
(ENAs) through optical microscopy. After staining, the glass slides were
mounted with a drop of DPX (BDH, Poole, England) and Xylene (mix-
ture of isomers≥98.5%, AnalaR NORMAPUR® ACS). An average of 500
cells per animal was counted under the microscope (40× magnification
(pixel 0.14 µm, DFC 320), Leica DM LB2 microscope), classified as
normal blood cells according to Arnold (2005) and ENAs according to

Table 1
Seawater parameters during the experiment (temperature, pH and salinity).

Control MHW

Temperature (°C) 18.1 ± 0.4 21.2 ± 0.3
pH 8.05 ± 0.04 8.08 ± 0.04
Salinity 35 ± 0.7 35 ± 0.7
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Carrola et al. (2014) classification. An average of 100 erythrocytes per
shark was measured using ImageJ software, to determine the nucleus to
cytoplasmic ratio (NCR) according to Doughty (2012), with the fol-
lowing formula: NCR = nucleus area/(cell area – nucleus area). All cell
counts and measurements were performed by an investigator blind to
the treatment.

After blood collection, sharks were dissected, the heart and spleen
were removed and weighed to calculate heart and spleen to body ratios,
according to the formula:

= × = ×HBR SBR
Heart weight (g)
Body weight (g)

100
Spleen weight (g)
Body weight (g)

100

Fig. 1. Category II MHW reconstructed from
a dataset of local sea surface temperatures
for the last 30 years (Cascais, Portugal; ac-
quired from NOAA (Daily Optimum
Interpolation SST, version 2)). Temperatures
above threshold (90th percentile in relation
to the long-term climatology) represented as
yellow (Category I) and orange (threshold
2x; Category II) (Hobday et al., 2018).

Table 2
Values of the studied parameters.

Ery Leu Thr Mic NCR HBR SBR

Control 747 ± 202 39 ± 29 6 ± 8 1 ± 2 0.28 ± 0.13 0.11 ± 0.02 0.22 ± 0.08
MWH 642 ± 235 72 ± 45 12 ± 6 1 ± 0 0.20 ± 0.06 0.13 ± 0.03 0.21 ± 0.06

Ery – Erythrocytes, Leu – Leukocytes, Thr – Thrombocytes, Mic – Erythrocytes with micronucleus, NCR – Erythrocyte’s nucleus to cytoplasmic ratio, HBR – Heart to
body ratio and SBR – Spleen to body ratio.

Fig. 2. Impact of a simulated category II MHW (+3 °C) on the proportions of: A) erythrocytes, B) leukocytes, C) thrombocytes and D) erythrocytes with micronucleus
from blood smears of small-spotted catsharks (Scyliorhinus canicula, n = 12 per treatment). Black triangles represent the mean, bold horizontal lines represent the
median, boundaries represent 25th and 75th percentiles and whiskers represent the lowest and highest values. Lower case letters indicate significant statistical
difference between treatments. Additional statistical information in Supplemental Table S1.
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2.6. Statistical analyses

Generalized linear mixed-effects models (GLMM) were used to
analyse the data. To model normal blood cells (i.e. erythrocytes, leu-
cocytes, and thrombocytes) and ENAs proportions the binomial dis-
tributional family (logit link function) was used. To model continuous
quantities as HBR and SBR, the Gaussian distribution (identity link
function) was used instead, while for NCR we used the Gamma dis-
tribution (log link function). These models included the MHW level as a
fixed effect and a random effect to account for potential non-in-
dependency between observations within the same tank (i.e. re-
plicates). To model the ventilation rates the Gaussian distribution
(identity link function) was used, with individual identity as a random
effect, time of the measurement and treatment as covariates. All model
residuals were examined for departures from the models' assumptions
(i.e. residuals distribution and homoscedasticity) and for possible

influence from observations. No significant deviations from the models’
assumptions or outliers were found. Statistical analyses were performed
in R (R Core Team, 2014), using lme4 and nlme packages (Pinheiro et al.
2012; Bates et al., 2015).

3. Results

Under the control conditions, the average hematological composi-
tion of sharks comprised a total erythrocyte count of 747 ± 202 cells,
a total leukocyte count of 39 ± 29 cells and a total thrombocyte count
of 6 ± 8 cells (Table 2).

Exposure to a category II MHW significantly altered normal blood
cell counts. More specifically, the number of erythrocyte cells was
significantly decreased (MHW: 642 ± 235, Table 2; p < 0.05, Table
S1; Fig. 2A), while the number of leukocytes (MHW: 72 ± 45, Table 2;
p < 0.05, Table S1; Fig. 2B) and thrombocytes (MHW: 12 ± 6,
Table 2; p < 0.05, Table S1; Fig. 2C) increased. Concerning the pre-
sence of ENAs, none of the individuals displayed erythrocytes with
segmented and blebbed nucleus, and there was no significant difference
between treatments regarding micronucleus (control: 1 ± 2, MHW:
1 ± 0, Table 2; p > 0.05, Table S1; Fig. 2D). Nucleus to cytoplasm
ratio (NCR) was significantly lower (control: 0.28 ± 0.13, MHW:
0.20 ± 0.06, Table 2; p < 0.05, Table S1; Fig. 3A) in the MHW
treatment, while the other ratios were not significantly different be-
tween treatments; i.e. heart (g/g) (control: 0.11 ± 0.02, MHW:
0.13 ± 0.03, Table 2; p > 0.05, Table S1; Fig. 3B) and spleen to body
ratio (g/g) (control: 0.22 ± 0.08, MHW: 0.21 ± 0.06, Table 2;
p > 0.05, Table S1; Fig. 3C). However, ventilation rates significantly
increased through time in sharks from the MHW treatment, and be-
tween treatments (control (T0): 58 ± 13, MHW (T0): 53 ± 6, control
(T1): 59 ± 10, MHW (T1): 67 ± 7, control (T15): 53 ± 7; MHW
(T15): 66 ± 11; p < 0.01, Table S1; Fig. 4). More specifically, sharks
exposed to a MHW significantly increased their ventilations from T0 to
T1 (p < 0.001, Table S1; Fig. 4) and T15 (p < 0.001, Table S1; Fig. 4),
and also increased between treatments, from control T1 to MHW T15
(p < 0.01, Table S1; Fig. 4) and from control T15 to MHW T15
(p < 0.01, Table S1; Fig. 3).

4. Discussion

Small-spotted catsharks occupy open and coastal waters on corals or
rocky bathyal bottoms (Ayas & Çiftçi 2018). Although their depth range
varies from 10 to 780 m, juveniles are generally found in the shelves,
i.e. above ~ 200 m (Ayas & Çiftçi 2018). Because MHW are in-
tensifying, and heat is expected to expand in depth as well, these ju-
venile sharks may not be able to avoid warmer temperature conditions.
For example, recent anomalous warmer temperatures have reached a
depth of 300 m in the Pacific Ocean (Walsh et al. 2018). Here we show
that a category II MHW has the potential to alter blood cell counts
(erythrocytes, leukocytes and thrombocytes) and increase ventilation
rates in juvenile small-spotted catsharks. As temperature can affect the
structure of cell membrane (Farkas et al. 2001) the present data sug-
gests that a 3 °C increase may cause erythrocyte, i.e. red blood cell
(RBC), membranes to become more fragile and susceptible to apoptosis,
which ultimately resulted in a lower RBC count. A similar reduction
was observed in another shark species (Heterodontus francisci) exposed
to warmer waters (Neale et al. 1977). This RBC reduction may impose a
significant challenge as, in a warmer environment, animals are si-
multaneously tackled with lower dissolved oxygen levels and a higher
oxygen demand, which leads to an increased effort for animals to obtain
proper oxygen supply (Pörtner 2006). Accordingly, to cope with MHW-
related challenges, small spotted catsharks registered reduced ery-
throcyte’s nucleus to cytoplasm ratio (NCR) and increased ventilation
rates. Erythrocyte’s NCR appears to diminish as a response to the heat,
since smaller erythrocytes could improve oxygen delivery by allowing a
faster oxygen transfer rate (Lay & Baldwin 1999). It has been proposed

Fig. 3. Impact of a simulated category II MHW (+3 °C) on: A) nucleus to cy-
toplasmic ratio, B) heart to body ratio and C) spleen to body ratio of small-
spotted catsharks (Scyliorhinus canicula, n = 12 per treatment). Black triangles
represent the mean, bold horizontal lines represent the median, boundaries
represent 25th and 75th percentiles and whiskers represent the lowest and
highest values. Lower case letters indicate significant statistical difference be-
tween treatments. Additional statistical information in Supplemental Table S1.
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that animals with higher metabolism tend to have smaller cells (Szarski
1970). For instance, warm and active elasmobranchs tend to have RBC
with a lower volume than temperate ones (Baldwin & Wells 1990).
Simultaneously, sharks exposed to a MHW increased ventilation rates
through buccal pumping, as rising ventilations offer another mean of
intensifying waterflow over the gills, to effectively deal with the oxygen
limitations (Houston 1980). This behavior was also verified in the wild,
in a survey performed during a MHW along the Western Australian
coast, where wobbegong sharks were observed laying on the ocean
bottom venting their gills more than normal (Pearce et al. 2011).

Changes in environmental temperature can have severe effects over
the immune system (Magnadottir 2010). In this experiment, we de-
tected an increase of sharks’ white blood cells (WBC) count, which can
be designated as leukocytosis (Chabot-Richards & George, 2014). Fish
exposed to elevated temperatures have a tendency to develop bacterial
illnesses (Zaragoza et al. 2008), hence, leukocytosis is essential in the
first line of defense, and may occur to maximize protection against
pathogens that can arise (Opdenakker et al. 1998). Additionally,
oxygen limitation can affect erythrocyte’s integrity increasing the rate
of erythrophagocytosis, i.e. phagocytosis of RBC (Pulsford et al. 1994),
which would further explain the observed lower RBC count. Along with
leukocytosis, there was also an increase of thrombocyte counts. Elas-
mobranch thrombocytes, specifically, can engulf latex beads, sug-
gesting they also play a role in immune responses (Carrier et al. 2012);
thus, the observed thrombocyte increase may serve as another protec-
tive barrier against pathogens. On the other hand, thrombocytes are
also responsible for coagulation, which can be increased by stress (Ruis
& Bayne 1997). Thus, alternatively or complementary, the increase of
thrombocytes could be beneficial to prepare the animal for possible
stress-related impairments. It is worth noting however, that long-term
exposure to heat has been shown to permanently change clotting time,
which may implicate severe hemostatic problems (Tavares-Dias &
Oliveira 2009). Warming conditions stimulate the respiratory frequency
(Miklos et al. 2003), which increases heart rate (Butler & Taylor 1975)
and blood pressure, which in turn can be correlated to heart growth.
Changes in spleen size could also indicate differences in blood storage
since sharks’ spleen has several functions, including the production and
storage of blood cells, and the removal of damaged or aged blood cells
(Fänge & Nilsson 1985). Yet, no significant results were observed re-
garding SBR and HBR, most probably due to the short time of the MHW
exposure.

Summing up, our findings indicate an overall negative impact of a

present-day category II MHW juvenile shark condition. Similar findings
were previously observed in juvenile tropical sharks exposed to ocean
warming expected to occur by the end of the century (Rosa et al. 2014).
As MHWs occur for determined, relatively short periods, there is a
possibility of recovery to a normal hematological and respiratory state.
Since these physiological changes are non-detrimental, recovery should
be tested by successive blood collection over 15-day periods. However,
since MHWs are expected to become longer and more frequent, pro-
longed thermal stress may lead to impact exacerbation and override
hematological recover. Thus, future research should further investigate
the impacts of longer or even repeated sudden warming events on the
hematological parameters of sharks. Understanding the impact that
these drastic climatic events may impose on marine life is essential to,
not only facilitate policymakers’ decisions to protect vulnerable species,
but also to stimulate further research in this field.
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