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Abstract

In this dissertation, optimal forest management and land use allocation are analyzed when

biodiversity and carbon sequestration benefits are introduced into the forest agent problem.

In particular, forest carbon sequestration is studied under two different scenarios: the first

considers the problem of the small private owner, while the second focuses on the management

of a public forest, when timber and land prices are endogenously determined.

In the first paper, based on a multiple rotation model à la Faustmann in which optimal

land use conversion time is endogenous, we discuss the implementation of the optimal solution

from the small private owner’s perspective . Given the important role of the “permanence”

issue in the context of the United Nations Framework Convention on Climate Change, two

different accounting methods (the Carbon Flow and the Ton-Year Crediting) with constant

and rising carbon prices are analyzed. It is shown that the use of different carbon methods

strongly impacts optimal rotations and forest profitability, implying that short and long run

timber supplies are also affected by the carbon accounting method choice. Moreover, the con-

sideration of carbon stored in long-lived wood products affects the optimal land use conversion

time when carbon prices are increasing. An application to the portuguese Eucalyptus forest

confirms these results. In particular, as immediate land use conversion is optimal for most

cases considered, the idea that forests may provide the economic incentives needed to change

land-use decisions, buying time for the development and deployment of low carbon-based

technological innovations, is reinforced.

The second paper adresses the question of optimal timber management when carbon ben-

efits are introduced into a framework where both the price of timber and the price of land

are endogenously determined. Building upon the multi vintage forest model developed by

Salo and Tahvonen, the paper analyzes the problem of carbon sequestration under a forest

sector scope. To compare forest carbon sequestration with avoided emissions, three different
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ABSTRACT v

carbon accounting methods are considered: the carbon flow regime, the ton-year crediting and

the average storage, where the carbon flow is the first-best solution. We compare the results

obtained in each case with those without carbon sequestration, as well as the performances of

the ton-year and the average storage with respect to the first-best solution on optimal land

allocation between forestry and alternative uses, total carbon sequestered, timber production

and social welfare, for different values of the most relevant parameters. In general, internal-

izing carbon sequestration benefits increases the optimal amount of land allocated to forest,

and has implications to the optimal forest management. The induced impact in the timber

market during the transition period depends upon the carbon accounting method generating

interesting insights from the perspective of the implementation of the first-best solution. A

full proof of long-run optimality of steady state forest is provided. The theoretical results are

discussed based on numerical simulations that illustrate the setup’s potential.

The recent recognition of the existence of possible conflicts between carbon sequestration

policies and biodiversity has once more put biodiversitiy in the centre of the forestry literature

debate While a complete assessment of the interactions between carbon sequestration policies

and biodiversity conservation is still needed, there are previous questions in the biodivesity

literature that remains to be addressed, namely, in what concerns the forest sector scope.

To this end, in the third essay, biodiversity considerations are introduced into a multiple

species, multi-vintage forest sector model with endogenously determined timber prices and

land use allocation. Following recent ecological literature, biodiversity is modeled focusing

on structural diversity, i.e, age classes and species distribution. We show that transition

dynamics are strongly affected when biodiversity is introduced, contaminating both timber

and land markets. Moreover, different ecological forest structures have distinct impacts on

optimal land use distribution, therefore, affecting also timber prices. Finally, we observe major

changes in optimal timber management. In fact, even after a long period of adjustment,

optimal deviations from Faustmann’s rotation combined with changes in land use allocation

still occur.

The fourth essay extends the multi vintage forest model developed in the second by intro-

ducing net carbon sequestration benefits in a multiple species context. Based on the carbon

flow accounting method, a full proof of long run optimality of steady state forest is provided.

Based on sensitivity analysis with respect to the speed of growth, the carbon conversion factor
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and the amount of carbon that is stored in long-lived wood products among species, we con-

clude that they impact significantly on the optimal allocation of land to forest. In particular,

when the fast growing species is also the one for which a lower fraction of wood is used in

long-lived products, it may be optimal to allocate to the slow growing species a larger amount

of land when compared to the case without carbon. Numerical simulations are performed,

illustrating and confirming the results obtained.



Chapter 1

The Impact of Carbon Accounting on

Optimal Forest Rotation

1.1 Introduction

The importance of the climate change debate in the current political agenda has put forestry in

the centre of the environmental economics literature. In fact, Righelato and Spracklen [15] have

recently shown that emissions avoided by the use of liquid biofuels over a 30-year period are

much smaller (two to nine times) than the amount of carbon sequestered by forestation of an

equivalent area of land. Moreover, several applied studies have examined the potential impact

of forest carbon sink programs by estimating their cost-effectiveness and carbon sequestration

capacity in a variety of settings, as Richards, Rosenthal, Edmonds and Wise [14], Sohngen and

Mendelsohn [16] and more recently Tavoni, Bosetti and Sohngen [17], among others. Although

the level of impact varies significantly depending upon the model used, in all cases introducing

forests as carbon sinks reduce costs relative to policies that only consider fossil fuel emissions.

Forestry seems, therefore, to be both an ecological and economically viable instrument to help

mitigate climate change.1

However, in spite of the role that forests play in the global carbon cycle and the recent

recognition of its potential contribution in an overall portfolio of greenhouse-gas mitigation

strategies, the use of forest carbon sinks remains controversial in the context of the United

Nations Framework Convention on Climate Change (UNFCCC). While many different reasons

may lay behind this, the issue of ”permanence” in part explains the origin of the controversy.

In fact, while managed forests assimilate carbon from the atmosphere, carbon is also gradually
1According to the Third Assessment Report on the Intergovernmental Panel on Climate Change (IPCC),

up to 20% of excessive emissions can be captured in forests and biological sinks over the next 50 years.

1



1.1. INTRODUCTION

released after harvesting.

Therefore, ”permanence” raises an important question about how to incorporate the ser-

vices provided by carbon sequestration when modelling forest management: while forests can

generate carbon offsets that may be used to compensate for GHG emissions, the net effect of

sequestration has to be identical to that of avoided emissions. Hence, when carbon benefits

are taken into account, not only the forested area is relevant, but also the amount of carbon

released when the forest is harvested.

In the related literature, different accounting methods have been considered: the carbon

flow regime, the lump-sum regime, and the carbon stock regime, among others. In what

follows, we discuss the implementation of the optimal solution from the private owner’s per-

spective based on a multiple rotation model à la Faustmann, focusing on the carbon flow

regime and the ton-year crediting. Note that by considering these two accounting methods,

we consider the main features addressed by the carbon accounting literature. The first method

is essentially the Pigouvian tax/subsidy on the carbon externality, while the second represents

the carbon accounting methods in which payments are made on the stock and redemption of

carbon credits upon harvest is not required.2 While we aim to analyze changes in the optimal

timber management in the context of the small private forest owner,we consider that the price

of timber and the price of land are exogenously determined.3

Most of the available studies addressing the question of carbon sequestration assume a

constant carbon price. This hypothesis seems, however, to be rather inappropriate, as previous

studies (Cline [3], [4], Maddison [10], Nordhaus [12], Peck and Teisberg [13], Sohngen and

Mendelsohn [16]) that have computed economically efficient policies to mitigate climate change

have shown that marginal damages of carbon should increase over time at rates varying from

1.5% to 4%. This issue is particularly relevant since it has important implications to the costs

of sequestering carbon in forests, introducing new elements into the analysis. In fact, not

only the profitability of forested land changes, but also the incentives to convert land from

agriculture to forest is also affected, implying that the optimal timing of land conversion is also

a decision variable of the landowner. Therefore, the optimal supply of carbon sequestration

may shift relative to the case when carbon prices are assumed to be constant.

2See Feng, Zhao and Kling [8] and Sohngen and Mendelsohn [16] for similar payment schemes.
3For the case with endogenous timber and land price see Costa Duarte, Cunha-e-Sá e Rosa [5].

2



1.1. INTRODUCTION

When carbon prices increase over time, it is important to distinguish between the cases

of land already forested (forested land) from those in which a potential incentive to convert

agricultural land into forest may exist (agricultural land vs forest)).4 In this last case, even if

forestry becomes a more attractive option when carbon services are paid, it may be optimal

not to convert land immediately.5 This may be explained by the stylized fact reported in

the literature according to which, following the pattern of trees’ growth, the rate of carbon

storage typically increases in young stands, and declines as the stand ages. Thus, an incentive is

created to delay conversion as higher discounted carbon payments can be generated. However,

as we will show later in the paper, the forest management policy (permanent versus rotative),

as well as the chosen carbon accounting method are not without consequences in this context.

These results are related to those derived in Velt and Plantinga [20], where the effect of rising

carbon prices on the optimal portfolio of greenhouse-gas mitigation strategies is examined. In

particular, carbon sequestration projects, where conversion of agricultural land into forest is

considered, are compared to carbon abatement projects.

In this paper, we examine the problem of a small private forest manager under two dif-

ferent accounting methods with constant and rising carbon prices, in which optimal land use

conversion time is endogenous. It is, therefore, our purpose to address the impacts on timber

management’s incentives resulting from the use of different carbon accounting schemes, allow-

ing not only for changes in the optimal rotation period but also in the optimal timing of land

use conversion. The impact of internalizing social benefits from carbon sequestration both on

the optimal rotation age and land values is estimated for the Portuguese eucalyptus forest.

In general, we conclude that increasing carbon prices may not be enough to delay land

conversion to forest. In fact, for very low opportunity costs of alternative use of land, it may

be optimal to convert immediately. This result highlights the crucial role that forests may

play in the context of a more global policy to combat climate change, giving rise to rapid

reductions in CO2 emissions, and, therefore, buying time for the development and deployment

of low carbon based technological innovations.

4Because more carbon is typically stored in forests than in lands used for agriculture, the conversion of
agricultural land to forest achieves a net reduction in atmospheric CO2 concentrations. Thus, in what follows,
we only consider the eventual conversion of agricultural land to forest. Besides, when land is already forested,
it is assumed that the choice in favour of forest use was optimal.

5The same may occur even when carbon prices remain constant over time. The effect, however, may become
negligible.

3



1.2. THE MODEL

In the case of the carbon flow, the future use of timber, reflected in the amount of carbon

released at harvest plays a very important role in determining optimal rotations. While in

the ton-year crediting regime the results reflect the way carbon benefits are accounted for,

namely, based on the timber stock rather than the flow. In both cases, a sensitivity analysis

to the initial carbon price is undertaken.

The remainder of the paper is organized as follows. Section 2 presents the theoretical

model under the different methods of carbon accounting. Section 3 discusses the estimated

results for the Portuguese eucalyptus forest. Section 4 concludes the paper. The tables and

technical derivations are presented in the appendices.

1.2 The Model

The two following subsections present the theoretical model under constant and increasing

carbon prices. The cases of already forested land and eventual optimal conversion of agricul-

tural land to forest are discussed. In each case, both accounting methods, the carbon flow

regime and the ton-year crediting, are considered.

1.2.1 Carbon Flow

Constant Prices

According to the carbon flow regime, as developed in Van Kooten, Binkley and G. Delcourt

[19], the carbon credit cash flows are a function of the annual change in the forest carbon

stock. Credit payments reflect the flow of carbon between land and the atmosphere through

the carbon cycle, so a net increase in the carbon stock over a year means that carbon has

been removed from the atmosphere and the owner is paid credits for it. Similarly, a fall in the

carbon stock suggests carbon has been released into the atmosphere, and the owner surrenders

the associated credits.

However, the amount of carbon released when the forest is harvested depends upon the

use given to the timber harvested. Different uses will have different impacts on carbon release

after harvest. To take this fact into account, and when there is not enough information, Van

Kooten, Binkley and G. Delcourt [19] have introduced a parameter, β, which measures the

4



1.2. THE MODEL

fraction of timber that is harvested but goes into long-term storage in structures and landfills.

Alternatively, decay functions to capture different uses can be considered, as in Alavalapati,

Stainback and Carter [1]. This is especially relevant in the case of the Portuguese forest, since

its two main species (pine tree and eucalyptus) have very distinct uses. Pine timber is mainly

used to long-term carbon storage structures, while eucalyptus is used to produce pulpwood,

releasing a larger amount of carbon.6

Under this accounting method, carbon benefits are a function of both the change in biomass

and the amount of carbon per cubic meter, m3. Thus, what is relevant to consider in carbon

sequestration benefits’ modelling is the change in the carbon uptake.7

The present value of benefits from carbon sequestration over a rotation of length T can be

represented as follows:

∫ T

0

Pcαiv
′
i(t)e

−rtdt (1.1)

where vi(t) represents the timber volume at age t, v′i(t) is the instantaneous growth in timber

volume in period t, αi converts timber volume in cubit feet to metric tons of carbon,8 Pc is the

social value of carbon sequestered,9 r is the discount rate, and, finally, the subscript i accounts

for the species.

Following Van Kooten et al. [19], the present value of the external cost of the carbon

released at T is

Pcαi(1− βi)vi(T )e
−rT (1.2)

where β represents the fraction of the timber harvested and used to long-term storage struc-

tures. Depending on the use of the timber harvested, β varies in the unit interval. If β = 0,

then all carbon is released at harvest time, while if β = 1 there are no social costs of carbon

release.
6When recycling is considered, the life cycle for carbon stored in pulpwood may increase significantly,

determining a larger β for eucalyptus.
7Other sources of carbon as litter, branches, tops, stump and roots is simply recycled into the next stand

of trees, due to the lack of information.
8The proportion of carbon in biomass varies with tree species, although it is generally in the range of 200kgs

/ m3.
9Pc is the present value, for all time, of removing one unit of carbon from the atmosphere today. It is

determined as the discounted value of the annual contribution to damage caused by one unit of carbon added
over the expected number of years that the unit of carbon is present in the atmosphere.

5



1.2. THE MODEL

The net present value of total benefits from timber production and sequestered carbon

over multiple rotations of length T , is given by:

NPV0 =
(Pivi(T )− c)e−rT

(1− e−rT )
−

∫ ∞

0

ae−rtdt+

+

∫ T

0
Pcαiv

′
i(t)e

−rtdt− Pcαi(1− βi)vi(T )e
−rT

(1− e−rT )
(1.3)

where c represents the (constant) cost of replanting at t, Pi the price of a cubic feet of timber,

and a the annual opportunity cost of forested land.

Maximizing (1.3) with respect to T and assuming that the second order conditions hold

for a maximum, we obtain the first-order condition from which the optimal rotation period

T = TC can be derived,

G′
T =

r

1− e−rT

[
G(T )− Pcαi(1− βi)vi(T ) +

∫ T

0

Pcαiv
′
i(t)e

−rtdt

]
−

− Pcαiβiv
′
i(T ) (1.4)

where G(t) = Pivi(t)− c.

This same expression can be restated as:

G′
T

G(T )
=

r

1− e−rT
+

+

r
1−e−rT

[∫ T

0
Pcαiv

′
i(t)e

−rtdt− Pcαi(1− βi)vi(T )
]
− Pcαiβiv

′
i(T )

G(T )
(1.5)

Equation (1.5) clarifies the role of carbon benefits and timber use in deciding when to

harvest. In Appendix A we show that when β = 0 we unambiguously conclude that the

optimal rotation period increases relative to Faustmann’s. In contrast, when β = 1, the

optimal rotation period decreases. Moreover, for 0 < β < 1, the final result is indeterminate.

From a private owner’s perspective, the optimal solution could be implemented by assuming

that public agencies provide payments for net CO2 assimilation and tax net CO2 emissions.

Thus, an annual subsidy is paid to the forester equal to the total value of the carbon sequestered

that year, while a tax is levied at harvest time that equals the external cost of the carbon

released to the atmosphere, given the parameters of the model, in particular, the social value

of carbon, Pc.

6



1.2. THE MODEL

Increasing Carbon Prices

In this section, we consider the more general case where carbon prices increase over time

according to:

Pct = Pc0e
µt (1.6)

where Pc0 stands for the initial carbon price level, and µ for the rate of carbon price growth.

Also, it is assumed that the carbon price growth rate is lower than the discount rate, µ < r.

Forested Land When land is already forested, the net present value of profits per hectare

when carbon prices increase is given by:

NPV0 =
(Pivi(T )− c)e−rT

1− e−rT
−

∫ ∞

0

ae−rtdt+

+

∫ T

0
Pc0αiv

′
i(t)e

(µ−r)tdt

1− e(µ−r)T
−

Pc0αi(1− βi)vi(T )e
(µ−r)T

1− e(µ−r)T
(1.7)

In this case, we assume that forest is the land use that maximizes the present value of

profits per hectare.

The optimal T is obtained from the following first-order condition:

G′
T =

r

1− e−rT
G(T ) +

+
(1− e−rT )eµT

(1− e(µ−r)T )2
Pcαi

[
−βiv

′
i(T )(1− e(µ−r)T )− (µ− r)

∫ T

0
v′i(t)e

(µ−r)tdt+
+(µ− r)(1− βi)vi(T )(1− e(µ−r)T )

]
(1.8)

It is not possible to unambiguously determine the impact of increasing carbon prices on

the optimal rotation period as well as on the value of a hectare of land. It is possible,

however, to observe that the impact of the cost of carbon release (third term inside the

square brackets) relative to the permanent benefit change of carbon uptake at harvest (first

term inside the square brackets) is now reduced. Hence, as β affects both terms in opposite

directions, the ultimate impact of the different uses given to timber on the optimal rotation

period may change in face of rising carbon prices. In fact, β has two distinct effects on the

optimal rotation period: larger β′s determine lower costs of carbon released at harvest, and,

consequently, lower rotations, but also originate higher changes of permanent carbon uptake

at harvest time, contributing to larger rotation periods.

7



1.2. THE MODEL

Agricultural Land versus Forest By improving forested land profitability, increasing

carbon prices may create incentives to convert agricultural land into forest. Yet, even if

conversion from agriculture to forest is optimal, it may be in the best interest of the forester

to delay it. As trees sequester carbon at higher rates when they are younger, an incentive

to delay conversion is created as higher future carbon payments are, thus, generated. This

suggests that biology may play an important role in this context.

The net present value of forest investment per hectare is given by:

NPV0 =
(Pivi(T )− c)e−rT

(1− e−rT )
e−rY −

∫ ∞

Y

ae−rtdt+

+

∫ T

0
Pc0αiv

′
i(t)e

(µ−r)tdte(µ−r)Y

1− e(µ−r)T
−

Pc0αi(1− βi)vi(T )e
(µ−r)(T+Y )

1− e(µ−r)T
(1.9)

where Y stands for the time of conversion of agricultural land to forest.

By maximizing (1.9) with respect to Y we obtain the first-order condition from which the

optimal timing of conversion can be derived, as follows

∂NPV0
∂Y

= −r

[
(Pivi(T )− c)e−rT

1− e−rT
−

a

r

]
e−rY +

+ (µ− r)

∫ T

0
Pc0αiv

′
i(t)e

(µ−r)tdte(µ−r)Y

1− e(µ−r)T
− (1.10)

−
(µ− r)

1− e(µ−r)T

[
Pc0αi(1− βi)vi(T )e

(µ−r)(T+Y )
]

Rewriting this condition we obtain

∂NPV0
∂Y

=

− r




(Pivi(T )−c)e−rT

1−e−rT
e−rY +

∫ T
0 Pc0αiv′i(t)e

(µ−r)tdte(µ−r)Y

1−e(µ−r)T
+

−
[Pc0αi(1−βi)vi(T )e

(µ−r)(T+Y )]
1−e(µ−r)T

− a
r
e−rY



+ (1.11)

+ µ

[∫ T

0
Pc0αiv

′
i(t)e

(µ−r)tdte(µ−r)Y

1− e(µ−r)T
−

[
Pc0αi(1− βi)vi(T )e

(µ−r)(T+Y )
]

1− e(µ−r)T

]

where T should be evaluated at the optimal rotation period.

By inspection of (1.10), we conclude that the negative terms create incentives to immediate

conversion, while the positive ones play for delay. The first term of the right hand side of (1.10)

8



1.2. THE MODEL

is unambiguously positive, the second is negative for a carbon price growth rate lower than

the discount rate and v´>0, while the last one, reflecting the impact of costs of carbon release

at harvesting time, is positive for µ<r. Therefore, for larger β, reflecting lower costs of carbon

release, conversion occurs earlier than for lower β.

Velt and Plantinga [20] show that, for a permanent forest (T = ∞), implying no costs of

carbon release, later conversion can be optimal for increasing carbon prices. However, when

µ = 0, that is, with constant carbon prices, these authors show that immediate conversion is

optimal.10

In the case of this paper, for a rotative forest with T < ∞, when µ = 0, once conversion

is optimal ( i.e. when the first term of the right hand-side in equation (1.11) is positive),

delaying is never advantageous. However if µ > 0, we cannot unambiguously show as in Velt

and Plantinga [20] that immediate conversion is optimal when carbon prices are constant. So,

our results extend theirs to the case of a multiple rotation forest management problem.

1.2.2 Ton-Year Crediting

Constant Prices

This approach attempts to determine the storing time of carbon sequestered in biomass for

which the carbon stored is equivalent to a certain amount of avoided emissions. The calcula-

tions for this time period (T e−equivalence time) are based on the residence time and decay

pattern of atmospheric CO2, its Absolute Global Warming Potential (AGWP) (see Fearnside,

Lashof and Moura-Costa [7], and Moura-Costa and Wilson [11]). It was found that keeping a

megagram (Mg) of CO2 out of the atmosphere for a full 100 years is equivalent to 55 Mgyear

(or ton-year) equivalents, rather than the full 100 Mg-years if the CO2 entering the atmo-

sphere had no movement to the ocean or other sinks. The number obtained, in this case 55,

is denoted by the equivalent time, T e. In addition, assuming a linear relationship between

the residence of CO2 in the atmosphere and its radiative forcing effect, the effect of storing 1

ton of CO2 in forest biomass for 1 year was derived. Following Moura-Costa and Wilson [11],

according to that rule, when the equivalence time considered is 55 years, it was found that

10See Appendix B.
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storing one ton of carbon for one year is equivalent to preventing the effect of 0.0182 tonnes

CO2 of emissions, which is denoted by the equivalence factor (Ef).

Based on the equivalence factor, the ton-year method consists of crediting a project with a

fraction of its total yearly GHG benefit. This fraction is determined by the amount of carbon

stored each year, which is then converted, using the Ef , to its equivalent amount of preventing

effect. Notice that this method does not require redemption of carbon credits upon harvest.

Following this approach, and assuming that payments will occur on a yearly basis, the net

present value of forest investment per hectare is given by:

NPV0 =
(Pivi(T )− c)e−rT

1− e−rT
−

∫ ∞

0

ae−rtdt+
Pcαi

∫ T

0
Efv(t)e

−rtdt

1− e−rT
(1.12)

Maximizing (1.12) with respect to T yields the following first order condition:

G′(T ) =
r

1− e−rT

[
G(T ) + Pcαi

∫ T

0

Efv(t)e
−rtdt

]
− PcαiEfv(T ) (1.13)

Rewriting this condition we get:

G′(T )

G(T )
=

r

1− e−rT
+

r
1−e−rT

[
Pcαi

∫ T

0
Efv(t)e

−rtdt
]
− PcαiEfv(T )

G(T )
(1.14)

Notice that expression (1.14) is identical to that derived by Englin and Klan [6] denoted

by “externalities balance”. In this case, it represents the “carbon balance”. Since v´>0, and

v´´<0, this term is unambiguously negative, implying that harvesting will be postponed.11

The main difference between this method and the previous one is that payments here are

based on the stock and not on the stock growth. This difference will impact significantly on

the final results. In fact, it is possible to prove that in the absence of timber benefits it will

be optimal to never harvest. (see Appendix C).

Increasing Carbon Prices

Forested Land

In this case, and for already forested land, the net present value of forest investment per

hectare with increasing carbon prices is given by:

NPV0 =
(Pivi(T )− c)e−rT

1− e−rT
−

∫ ∞

0

ae−rtdt+
Pc0αi

∫ T

0
Efv(t)e

(µ−r)tdt

1− e(µ−r)T
(1.15)

11See Aronsson and Lofgen [2].
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Once more, it is assumed that forest is the optimal land use for this piece of land. The

corresponding first-order condition is given by:

G′(T ) =
r

1− e−rT
G(T )−

−
1− e−rT

(1− e(µ−r)T )2

[
(µ− r)eµTPc0αi

∫ T

0

Efv(t)e
(µ−r)tdt

]
− (1.16)

−
1− e−rT

(1− e(µ−r)T )
eµTPc0αiEfv(T )

This can be rewritten as

G′(T )

G(T )
=

r

1− e−rT
+

+

(1−e−rT )eµT

(1−e(µ−r)T )

[
− (µ−r)

1−e(µ−r)T
Pc0αi

∫ T

0
Efv(t)e

(µ−r)tdt− Pc0αiEfv(T )
]

G(T )
(1.17)

In (1.17), the term inside the square brackets is again the “externalities balance” or ”carbon

balance”, except that, in this case, it is as if the discount rate has been reduced to r− µ < r.

Therefore, the same result applies, that is, for an increasing and concave v(t), the balance is

negative, implying that it will be optimal to cut later, relatively to the Faustmann solution.

Notice that with increasing carbon prices it is as if the exogenous discount rate that is

applied to carbon net benefits is lower than the one used to calculate the present value of

timber profits (µ < r). Hence, the forest owner has an additional incentive to postpone

cutting, compared to the case of constant carbon prices.

Agricultural Land vs Forest When carbon prices increase over time, by changing the

incentives of optimal conversion, forestry may become more profitable when comparing to the

previous case. When the optimal timing of conversion is endogenous, the net present value of

forest investment per hectare is given by:

NPV0 =
(Pivi(T )− c)e−rT

1− e−rT
e−rY −

∫ ∞

Y

a−rtdt+

+
Pc0αi

∫ T

0
Efv(t)e

(µ−r)tdte(µ−r)Y

1− e(µ−r)T
(1.18)

where Y represents the time of conversion.

11
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Maximizing (1.18) with respect to Y , we obtain

∂NPV0
∂Y

= −re−rY

[
(Pivi(T )− c)e−rT

1− e−rT
−

a

r

]
+

+ (µ− r)e(µ−r)Y

[
Pc0αi

∫ T

0
Efv(t)e

(µ−r)tdt

1− e(µ−r)T

]

(1.19)

the above expression can be rewritten as

∂NPV0
∂Y

= −r

[
(Pivi(T )− c)e−rT

1− e−rT
e−rY +

Pc0αi

∫ T

0
Efv(t)e

(µ−r)tdt

1− e(µ−r)T
e(µ−r)Y −

a

r
e−rY

]

+

+µe(µ−r)Y

[
Pc0αi

∫ T

0
Efv(t)e

(µ−r)tdt

1− e(µ−r)T

]

(1.20)

Expression (1.19) identifies the forces playing for and against later optimal conversion. As

in the carbon flow method, the negative terms create an incentive to immediate conversion,

while positive terms have the opposite effect.

If µ = 0, and assuming it is optimal to implement a forest project after introducing carbon

benefits (i.e. if the expression inside parenthesis of the first term in (1.20) is positive), then

conversion should take place immediately. However, if µ > 0, the last term in (1.20) is positive

and it is impossible to unambiguously determine the optimal policy. On the other hand, from

the third term of (1.18), we conclude that carbon payments are based upon the carbon stock.

Thus, delaying conversion for one more year implies that for every subsequent period the

forester will receive credits calculated on a lower basis. Consequently, for a given (finite)

optimal rotation period, the incentives to delay conversion are reduced when compared to the

previous method, in which compensatory payments are based on the stock growth, that is,

the flow, and where costs of carbon release may also postpone optimal conversion time.

1.3 Empirical Results

In this section the previous models are applied to the case of eucalyptus Portuguese forest.

The yield function used in this section, based on Globulus 2.1 Model (Tomé, Ribeiro and

12
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Soares, [18]) , is given by:12

V (t) = 877.0924(1− e(−(−0.0724+0.0214t))) (1.21)

Notice that for this empirical growth function, V (t) is negative for values of t below

3, 383178. To correct for this, a zero volume value is instead considered. As the function

is no longer strictly concave in the relevant domain, the results derived in the theoretical

section do not necessarily hold.

A long-term real discount rate, r = 4% is used. Plantation costs of 750/ha, a maintenance

cost of 25/ha/year and a replanting cost incurred after every 3 rotations given by 1250/ha

are also considered.13 The opportunity cost, a, considered as a forgone rent, is of 114.02/ha.

This rent corresponds to the Faustmann’s present value of forest investment.

The comparison between the results obtained in the two different scenarios is made. As

the results can be very sensitive to the initial values of Pc, a sensitivity analysis is undertaken

for an interval ranging from 0 to 30/ton.

For the empirical application it will only be considered the case in which the carbon price

growth rate is lower than the discount rate (µ < r). Hence, for the calculations, µ = 3%,

which is within the range proposed by the majority of integrated assessment models.

The empirical results were obtained using the MatLab optimization toolbox.

1.3.1 Carbon Flow Regime

Constant Prices

Based on these assumptions, we calculate the optimal rotation age and the present value for

different P ′
cs and β ′s. The results obtained are presented in Tables 1 and 2, respectively, in

Appendix D.

When only timber benefits are considered, the optimal rotation period is T F = 13.994 years

(Faustmann model). From Table 1 it is clear that introducing carbon sequestration increases

the optimal rotation. In fact, the decision about the optimal rotation period is very sensitive
12In this model a relationship between total volume and the age of pure and mixed eucalyptus forest tree

was considered, based on two variables: density at the age of three years (938), and a quality index given by
the value of the dominant height at the age of ten years (19 meters).
13Income taxes are not considered, as it is assumed that the majority of Portuguese private forest owners

do not pay them (See GANEC [9]). For an explanation on costs see also GANEC [9]. Notice that 1 hectare is
equivalent to 10 000 m2.
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to changes in Pc and β: when Pc = 25 and β = 0.5, the optimal rotation age is TC = 15.069,

which represents a significant change with respect to Faustmann’s (T F = 13.994).

In this case, the optimal rotation period decreases with β, that is, the lower the costs

of carbon release at harvest the smaller the optimal rotation period. Therefore, the costs of

carbon release at harvest are leading these results.

When carbon benefits are considered, the net present value of the forested land per hectare

increases significantly and is always positive (i.e. the present value with carbon sequestration

benefits is always above Faustmann). From Table 2, we observe that for Pc = 25 and β = 0.5,

the net present value per hectare is given by 910.590/ha, while for the considered limit case in

which Pc = 30 and β = 1 this value is 1799.60/ha. Therefore, the increase in the profitability

of the forested land per hectare is rather substantial.

Increasing Prices

Forested Land Once more, we calculate the optimal rotation age and the present value for

different initial carbon price levels and β ′s. The results for infinite carbon price growth can

be found in Tables 3 and 4.

When carbon prices increase, optimal rotations increase in response to changes in the initial

carbon prices, as well as to changes in β (Table 3). This translates into larger optimal rotations

periods when compared to the Faustmann solution and the constant carbon prices case with

carbon benefits. For Pc0 = 25 and β = 0.5, the optimal rotation age is now TC = 16.09,

approximately one year larger than in the case of constant carbon prices. Notice also that the

optimal rotation period now increases with β, in contrast to the constant price case. Therefore,

the lower the costs of carbon release at harvest, the larger the optimal rotation period, to take

advantage of the increase in carbon prices.

The value of the forest investment becomes not only considerably more sensitive (see Table

4) to changes in the values of those parameters but it also increases significantly. For Pc0 = 25

and β = 0.5, the net present value per hectare is now given by 3360.5, in contrast to 910.59

with constant carbon prices. For the limit case of Pc0 = 25 and β = 1, the corresponding

value is 6351.3/ha against 1498.40/ha for constant carbon prices. Moreover, the larger the

14
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initial carbon prices, the larger the present value of the hectare of forest when prices increase

permanently.

Agricultural vs Forested Land In contrast to the case of constant carbon prices, imme-

diate conversion of agricultural land to forest can be no longer optimal when prices increase

over time. In fact, two factors may contribute for optimal delay: increasing carbon prices,

as mentioned, and increases in the opportunity cost of land, here considered as a forgone

rent, a. We found that carbon price increase alone may be not enough to optimally delay

the implementation of forest sequestration projects. Therefore, a combined increase in carbon

prices and land rents was instead considered.14 Notice, however, that as the model developed

in this study only allows for partial equilibrium analysis, changes in timber prices, land rents

and carbon prices must always be taken as exogenous. Thus, a small land rent increase was

considered (a = 116). When increasing carbon prices are not attractive enough to postpone

conversion to forest, the benefits of afforestation can be immediately felt. This will most prob-

ably occur in the case of land with relatively low opportunity cost for alternative uses. Land

use value cannot be ignored.

For an initial Pc0 = 5 it was found that delaying conversion is optimal for small values

of β (see Table 5). In particular, for β = 0, the forester should wait 40 years to plant a

new forest, while for β = 0.2, conversion of agricultural land should take place immediately.

When the initial carbon price changes, those figures also change significantly. For instance, if

the initial carbon price is 15, conversion should take place in 4 years for β = 0, contrasting

sharply with the 40 years in the 5 case. Therefore, when the costs of carbon release at harvest

are maximum, that is, for β = 0, the delay in optimal conversion is also maximum. Once

again, optimal rotations are always above Faustmann’s. In particular, when it is optimal to

convert immediately, the obtained optimal rotations are equal to the ones in the forested land

scenario. Otherwise, rotations are even larger.

Also, the increase in net present value is non-negligible, even after considering the exoge-

nous induced increase in the land rent. Also, the optimal rotation period increases with β. This

result is similar to that found in the case of forested land when prices increase permanently.

14See Costa-Duarte, Cunha-e-Sá and Rosa [5].
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1.3.2 Ton-Year Crediting

Constant Prices

The calculations were performed based on an equivalence factor of 0.018 (T e = 55 years).

The results show that the optimal harvesting time is always postponed implying larger carbon

supplies for already forested areas (see Tables 6 and 7). These changes are, however, much

smaller than in the case of the previous carbon accounting method.

The net present value of forest investment is always larger when carbon benefits are con-

sidered. However, this increase is not substantial. Actually, when using this method, the value

of forest investment for Pco = 25 is lower than the one obtained under the carbon flow method

for a price of carbon of 5 and β = 0.5, meaning that carbon benefits are playing a minor role.

Thus, the accounting method used to estimate and to compensate for the carbon benefits

is not without consequences, as it impacts both on the optimal rotation period and on the

profitability of forested land. From a policy-maker’s perspective, this fact cannot be disre-

garded given its implications on the supply of timber and carbon, both in the short-run and

in the long run.

Increasing Prices

Forested Land The results are presented in Tables 8 and 9. Carbon benefits increase

significantly and optimal rotations are now larger when compared to the constant carbon

price case. For Pc0 = 25 harvesting should only take place every 18.295 years (Table 8), while

with constant carbon prices, optimal rotation is 14.617 years.

The present value increases considerably as the initial carbon price increases and is also

higher when compared to the constant price case, making forest investment more attractive.

Agricultural Land versus Forest We find that conversion should take place immediately

not only for the constant carbon price case, but also for most of the initial prices considered

when prices are increasing; the results are presented in Table 10. Once again, a combined

increase of carbon prices and land rent is necessary for optimal delay.
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This is an expected result, as carbon payments are based upon the carbon stock and not

on the stock growth. One of the main forces behind conversion delay, that is, the stylized fact

according to which the rate of carbon storage typically increases in young stands and declines

as the stand ages, is not valued by this carbon accounting method.

1.4 Conclusions

By sequestering and storing GHGs from the atmosphere, forests can generate carbon offsets,

which may be used to compensate for GHG emissions. However, the net effect of sequestration

has to be identical to that of avoiding emissions. This issue raises an important question

about how to incorporate the benefits provided by carbon sequestration when modelling forest

management.

In this paper, we focused on two carbon accounting methods: the carbon flow regime and

the ton-year crediting method, with constant and increasing carbon prices. In this last case,

not only the profitability of forested land changes but also the incentives to convert land from

agriculture to forest, implying that the optimal timing of land conversion is also a decision

variable of the landowner.

When net benefits from carbon sequestration are accounted for, the impact on the optimal

rotation period depends upon a “carbon balance” representing a balance between the amount

of carbon sequestered up to the harvest time (for each rotation) and carbon sequestered at

harvest time. The sign of this carbon balance depends upon the carbon accounting method

used.

In the case of the carbon flow regime, while payments for carbon benefits create an incen-

tive to cut earlier, the cost of carbon emissions at harvest pushes for delaying. Under this

accounting method, and for constant carbon prices, the optimal rotation period decreases with

β, suggesting that the cost of carbon release is leading the results. In fact, for a strictly con-

cave yield function, while for β = 0 optimal rotation period increases relative to Faustmann’s,

when β = 1 the optimal rotation period decreases. When carbon prices increase over time,

the opposite may be true, as optimal rotation can actually increase with β. These results were

found for the Portuguese eucalyptus forest.
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When conversion is also a decision variable of the forester, the results are driven by the

increase in carbon prices and the opportunity cost of alternative use of land. Immediate

conversion can be optimal in cases where the opportunity cost of the alternative use of land

is very low. In other words, if this is the case, independently of increasing carbon prices, it is

optimal to convert to forest immediately. Moreover, delaying conversion is only optimal for

low β ′s, and it occurs earlier the larger are initial carbon prices.

If the carbon accounting is based upon the ton-year crediting method, the carbon balance

is always negative, implying that postponing harvest is always optimal relative to the Faust-

mann’s solution. This effect is reinforced with increasing carbon prices. Moreover, incentives

for optimal conversion are stronger under the carbon flow method, as the benefits from car-

bon sequestration are based on the timber stock rather than on the flow. These results are

confirmed for the case of the Portuguese eucalyptus forest.

Finally, in both cases (carbon flow and ton-year crediting), the present value per hectare

of forested land is lower in the constant case when compared to the increasing one.

In order to implement a sustainable forest management, from a policy maker’s perspective,

the results in this paper give interesting insights. In particular, using the international carbon

market to value the carbon contained in standing forests may provide the economic incentives

needed to change land-use decisions, buying time for the development and deployment of low

carbon-based technological innovations.
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1.5 Appendix A

Equation (1.5), after integration by parts and considering β = 0, can be rewritten as:

G′
T

G(T )
=

r

1− e−rT
+

+

r
1−e−rT

[∫ T

0
rPcαivi(t)e

−rtdt
]
− rPcαivi(T )

G(T )

Note that the second term on the right hand side, representing a balance between the

amount of carbon sequestered up to the harvest time (for each rotation) and carbon sequestered

at harvest time, can be interpreted as a “carbon balance”. For v(t) strictly concave we have

that v(t) is increasing , implying that the optimal rotation increases relative to Faustmann as

the balance is negative(see Aronsson and Lofgren[2]).

We now consider the case for β = 1. Using again (1.5), and substituting now β = 1, we

obtain:

G′
T

G(T )
=

r

1− e−rT
+

+

r
1−e−rT

[∫ T

0
Pcαiv

′
i(t)e

−rtdt
]
− Pcαiv

′
i(T )

G(T )

Once again, the second term on the right hand side can de interpreted as representing a

”carbon balance”. For v(t) strictly concave we have that v′(t) is decreasing , implying now that

the optimal rotation decreases relative to Faustmann, as the balance is positive(see Aronsson

and Lofgren[2]).

1.6 Appendix B

Using our model we obtain the same result. For T =∞ we have

NPV (Y, µ) =

∫ ∞

Y

Pcoαiv
′
i(t− Y )e(µ−r)tdt−

∫ ∞

Y

ae−rtdt
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If immediate conversion is profitable with constant carbon prices, then it has to be the

case that

NPV (Y, 0) � 0⇔ a

r
≤

∫ ∞

0

Pcoαiv
′
i(t− Y )e−rtdt

evaluated at Y = 0. Moreover, if it is optimal to convert immediately, then

∂NPV (Y, 0)

∂Y
≤ 0⇒ a ≤

∫ ∞

0

Pcoαiv
′′

i (t− Y )e−rtdt

Integrating by parts the last integral we obtain

a

r
≤

∫ ∞

0

Pcoαiv
′
i(t− Y )e−rtdt

Therefore, not only immediate conversion is profitable, but also optimal, as in Velt and

Platinga [20].

1.7 Appendix C

In the absence of timber benefits the net present value of forest investment is given by

NPV0 =
Pcαi

∫ T

0
Efv(t)e

−rtdt

1− e−rT
−

∫ ∞

0

ae−rtdt

From the first order conditions we obtain:

∂NPV0
∂T

= −
r

1− e−rT

∫ T

0

Efv(t)e
−rtdt+ v(T ) > 0

For v′ > 0 and v” < 0 the sign of this expression is always positive (negative of the carbon

balance). (see Aronsson and Lofgen [2]).
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1.8 Appendix D

Carbon Flow

 β 5 10 25 30  β 5 10 25 30

0 14.257 14.536 15.490 15.853 0 61.562 124.080 325.640 396.680

0.2 14.236 14.488 15.309 15.606 0.2 108.940 219.080 559.220 675.640

0.5 14.205 14.418 15.069 15.292 0.5 180.030 361.100 910.590 1095.80

0.7 14.185 14.374 14.929 15.111 0.7 227.430 455.710 1145.40 1376.80

1 14.156 14.311 14.743 14.877 1 298.550 597.700 1498.40 1799.60

Table 1 - Optimal Rotation Period Table 2 - Net Present Value

- Carbon Flow Method - a=114,02 - Carbon Flow Method - a=114,02 

T
F

=13,994

Pc Pc

Constant Carbon Prices

 β 5 10 15 25  β 5 10 15 25

0 14.307 14.644 15.011 15.853 0 68.896 140.155 213.9884 370.29

0.2 14.37 14.755 15.149 15.968 0.2 306.6834 616.68 929.9683 1566.2

0.5 14.46 14.901 15.318 16.09 0.5 663.53 1331.9 2004.5 3360.5

0.7 14.516 14.986 15.411 16.149 0.7 901.5152 1809 2721.2 4556.8

1 14.595 15.099 15.528 16.217 1 1258.7 2524.8 3796.5 6351.3

Table 3 - Optimal Rotation Period Table 4 - Net Present Value

- Carbon Flow Method - a=114,02 / µ=0,03 - Carbon Flow Method - a=114,02 / µ=0,03

Pc

T
F

=13,994

Pc

Increasing Carbon Prices - Forested Land

 β T* Y* NPV* T* Y* NPV* T* Y* NPV* T* Y* NPV*

0 15.162 40.659 38.1 15.162 17.556 96.007 15.162 4.0415 164.85 15.853 0 370.29

0.2 14.37 0 257.183 14.755 0 567.18 15.149 0 880.468 15.968 0 1516.7

0.5 14.46 0 614.03 14.901 0 1282.4 15.318 0 1955 16.09 0 3311

0.7 14.516 0 852.015 14.986 0 1759.5 15.411 0 2671.7 16.149 0 4507.3

1 14.595 0 1209.2 15.099 0 2475.3 15.528 0 3747 16.217 0 6301.8

Table 5

- Carbon Flow Method - a=116 / µ=0,03

Pc0=5 Pc0=10 Pc0=15 Pc0=25

Increasing Carbon Prices - Agricultural vs Forested land

Ton-Year

E f 5 10 25 30 E f 5 10 25 30

0,018 14.112 14.234 14.617 14.753 0,018 27.815 55.952 142.49 172.07

- Ton-Year Crediting - a=114,02 / Ef=0,018 - Ton-Year Crediting - a=114,02 / Ef=0,018

P c P c

Table 6 - Optimal Rotation Period Table 7 - Net Present Value

Constant Carbon Prices
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E f 5 10 25 30 E f 5 10 25 30

0,018 14.581 15.263 18.295 19.959 0,018 127.1117 262.6381 736.271 925.8473

Table 8 - Optimal Rotation Period Table 9 - Net Present Value

P c P c

- Ton-Year Crediting - a=114,02 / Ef=0,018 - Ton-Year Crediting - a=114,02 / Ef=0,018

Increasing Carbon Prices - Forested Land

T* Y* NPV* T* Y* NPV* T* Y* NPV* T* Y* NPV*

Ef= 0,018 15.162 20.71 84.64 15.263 0 213.14 16.071 0 358.47 18.295 0 686.77

- Ton-Year Crediting -  a=116 / µ=0.03 -

Pc0

5 10 15 25

Table 10

Increasing Carbon Prices - Agricultural vs Forested Land
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Chapter 2

Forest Vintages and Carbon

Sequestration

2.1 Introduction

Given the rising concern with CO2 levels, and the recognition in the Kyoto Protocol of the

important role that can be played by forests in the global carbon cycle to limit the impact of

GHGs (greenhouse gases) emissions, the consideration of carbon sequestration benefits is in

the centre of recent developments in forestry literature. Building in the multiple vintage forest

model developed in Salo and Tahvonen [18], [19] and [20], the present paper´s contribution

consists of introducing net carbon sequestration benefits’ accounting in that setting.

From a theoretical point of view, when carbon benefits are considered, not only the forested

area is relevant, but also the flow of carbon between land and the atmosphere through the

carbon cycle, namely, the amount of carbon released when the forest is harvested. To account

for all these impacts the typical analytical framework of the one stand forest or any other

that does not take into account the internal age-structure of forests, are not appropriate.1

In the single stand case, the decision on the optimal allocation between alternative uses can

only be assessed in marginal terms, not allowing to address the global (or regional) impact

of some policy incentive measures. Besides, since it typically represents the decision model

1A one stand or single vintage forest is characterized by a plot of land with trees of the same species
and of the same age, where the price of timber is an exogenous constant. In this context, we should mention,
among others, Van Kooten, Binkley and Delcourt [26], who modeled a scheme to allocate carbon credits, under
which the carbon credit cash flows are a function of the annual change in the forest carbon stock (carbon flow
regime), Spring, Kennedy, and Nally [8] that study the effect of carbon sequestration, fire frequency and water
scarcity in tree harvest decision, and Cunha-e-Sá and Rosa [3] where different accounting methods of carbon
sequestration benefits in the model of the private forester are examined with constant and rising carbon prices.
Also, Velt and Plantinga [27] explore the effect of rising carbon prices on the optimal portfolio of greenhouse-
gas mitigation strategies based on the carbon flow accounting regime, and considers the optimal timing to
convert agriculture land to forest.
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2.1. INTRODUCTION

of the private owner, both the price of land and the price of timber are exogenous constants.

In contrast, in this paper, both the price of timber and the price of land are endogenously

determined. Therefore, only in this context it is possible to study the transition path to

the new steady-state, and, more generally, to perform comparative welfare analysis between

the different carbon accounting methods. Hence, a multi-vintage forest setting with possible

conversion to alternative land uses should be considered instead.2

By sequestering and storing GHG’s from the atmosphere, forests can be used to compensate

for GHG emissions. However, for this compensation to occur, the net effect of sequestration

has to be comparable to that of avoided emissions. This issue raises an important question

about how to incorporate the services provided by this activity when modeling forest manage-

ment, which depends upon the choice of the carbon accounting method. Following the IPCC

Special Report on Land Use, Land Use Change and Forestry, we consider three different car-

bon accounting methods - the carbon flow method, the ton-year crediting regime and the

average storage. In contrast to the others, the carbon flow method is essentially a Pigouvian

tax/subsidy on the carbon externality (first-best), as it fully internalizes at any point in time

the carbon flows between forest and the atmosphere. Based on numerical simulations of the

theoretical model, the results obtained in the carbon flow method on optimal land allocation

between forestry and alternative uses, total carbon sequestered, timber production and social

welfare, are compared to those obtained in the other two methods and to the case without car-

bon sequestration benefits. Sensitivity analysis with respect to the most relevant parameters

is performed.

There is a vast empirical literature that attempts to estimate the costs of forest-based

carbon sequestration, and compare them with those obtained in alternative energy-saving

options such as reducing emissions from fossil fuel use. Despite their differences, in general,

they conclude that the carbon sequestration option is surprisingly cost-effective relative to

policies that only consider fossil fuel emissions.

A recent review of empirical studies for the US can be found in Stavins and Richards

[24]. According to these authors, three general approaches have been used to estimate the

economic costs of diverting land from other uses to forest carbon sinks: econometric studies

of the revealed preferences of agricultural land owners, bottom-up engineering cost studies,

and optimization models that account for behavioral response in the forest and agricultural

sectors.

Recent econometric studies by Stavins [23], Newell and Stavins [15], Plantinga et al. [16],

2Reinforcing the interest of this modeling framework for empirical studies, Getz and Haight [6] refer that
biological populations are typically described by discrete time demographic models for reasons like seasonal
cyclicality in reproduction or in concentration in harvesting, as in the case of forests.
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Plantinga and Mauldin [17], Kerr, Pfaff and Sanchez [9] and Lubowski et al. [10], among

others, have provided an alternative approach to modeling the potential costs of land for

carbon sequestration in the US. These authors have analyzed how landowners have historically

allocated land use between agriculture and forests in response to differences in prices. Rather

than assuming maximization of profits by landowners a revealed-preference approach based

on observed practices is used.

The majority of the studies fall in the second category, where land and timber prices are

taken as exogenous constants. To obviate to this problem, studies by Alig et al. [2] and Adams

et al. [1] have addressed this issue using the Forestry and Agricultural Sector Model (FASOM).

This model is a multi-period, price endogenous, spatial equilibrium model that links the forest

and agricultural sectors in the US, where the welfare of producers and consumers in the two

sectors is maximized. Besides, it also estimates where and how much conversion of land

between forest and agricultural uses would be induced by a carbon sequestration program.

Also, Sedjo and Sohngen [21] developed a world timber supply model to examine and assess

the interactions between carbon sequestration forestry, particularly, newly created carbon

forests, and the markets for timber. However, in all these models, the numerical solutions

are computed by imposing that the forest age class structure must reach the normal forest

distribution in finite time.3,4 In contrast, in this paper, we do not impose a normal forest.

Despite that the concept of normal forest has been widely used in forest economics, only

recently, in Salo and Tahvonen [20], the analytical conditions under which the normal forest is

the long-run steady-state solution of the original forestry model with any number of age classes

(Mitra and Wan, [12], [13]) and endogenous land allocation between forestry and alternative

land uses were derived. This line of research addresses one of the most important theoretical

issues that has been discussed in the context of forest economics literature, that is, the optimal

evolution of an age-class structured forest over time, in particular, whether it converges to

the normal or regulated forest. By extending the results in Salo and Tahvonen [20] to the

presence of net carbon sequestration benefits’ accounting, we prove that, in general, the long-

run stationary state converges to the normal forest. In the case where all land is forested land,

optimal forest management can lead to optimal cyclical harvesting. Alternatively, when it is

optimal to allocate part of the forest land to other land uses, cycles optimally vanish, and the

normal forest becomes a local saddle point equilibrium. While all the adjustments following

the internalization of carbon sequestration benefits are undertaken through either changes in

land allocation between forest and alternative uses, or the time to harvest, or both, in Salo

3A normal, syncronized or regulated forest is a forest where total land is evenly allocated between existing
age-classes and only the oldest age class (with, e.g., Faustmann financial maturity) is clearcut in each period.

4In contrast, Sohngen and Mendelsohn [22] determine endogenously the efficient shadow price of carbon.
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and Tahvonen [20], the optimal rotation is always given by Faustmann’s.

Based on numerical simulations of the theoretical model, we conclude that, for a given car-

bon price, the transition paths to the steady-state in the three accounting methods are rather

similar in what concerns the dynamic behavior of forested area, as the optimal adjustment on

land allocation is almost instantaneous, moving fast to cycles stabilization. In contrast, timber

consumption performs rather distinctively among carbon accounting methods. While in the

first-best case the timber market is characterized by major short-run adjustments, following

the change in the optimal rotation period, in the other two accounting methods the adjust-

ment is mainly driven by the allocation of land between forest and alternative uses. Therefore,

we conclude that the first-best policy determines larger medium-term costs when compared

to the less efficient solutions, thus making its implementation eventually less attractive in the

short/medium run.

When different carbon prices are considered, in general, higher carbon prices increase both

the optimal rotation period and land allocated to forest, increasing in all cases the amount

of carbon sequestered relative to the case without carbon. The carbon flow method has the

biggest impact in terms of carbon sequestration.

In general, welfare deviations of both the ton-year and the average storage with respect

to the carbon flow solution increase as carbon prices increase. Whenever the carbon price

only changes slightly the rotation period, that is, for low carbon prices, the ton-year performs

worse than the average storage, while for high carbon prices, it performs better, as it allows

for adjustments in the optimal rotation.

The use of forests as carbon sinks depends upon the species and, therefore, on the amount

of carbon sequestered into long-term structures, that is, not released at harvest. Interestingly

enough, we show that increases in the amount of carbon sequestered into long-term structures

do not necessarily determine an increase in the amount of carbon sequestered in forest biomass.

Ultimately, this is an empirical question.

The remainder of the paper is organized as follows. Section 2 presents the different ac-

counting methods of carbon sequestration benefits, Section 3 extends the theoretical multiple

vintage model to account for carbon sequestration benefits. Section 4 develops the model

for the three carbon accounting methods considered: the carbon flow regime, the ton-year

crediting and the average storage method. The results are compared to those obtained with-

out carbon sequestration benefits. In Section 5 the results are discussed based on numerical

simulations of the theoretical model. Section 6 concludes the paper. Technical details, figures

and tables are presented in the Appendices.
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2.2 Accounting Methods

By sequestering and storing GHG’s from the atmosphere, forests can generate carbon offsets,

which may be used to compensate for GHG emissions. However, for this compensation to

occur, the net effect of sequestration has to be comparable to that of avoided emissions.

This issue raises two important questions: first, how to compare forest carbon sequestration

with avoided emissions, examined in this section, and second, how to incorporate the services

provided by this activity when modeling forest management, considered below.

The IPCC Special Report on Land Use, Land-Use Change and Forestry [7] considers

different accounting methods to apply to forest or land use change investment projects, namely,

the stock change method, the average stock method and the ton-yearly crediting. In this paper,

these methods are adjusted in order to account for the time dimension of carbon sequestration

and storage.

According to the carbon flow regime, as developed in Van Kooten, Binkley and G. Delcourt

[26], social benefits are a function of the annual change in the forest carbon stock, as well

as of the amount of carbon permanently stored in timber products and landfills. A net

increase in the forest carbon stock over a year means that carbon has been removed from the

atmosphere. Similarly, a fall in the forest carbon stock suggests that carbon has been released

into the atmosphere. In this context, while carbon released at harvest is taxed, depending

upon the timber use, sequestered carbon is subsidized yearly. Therefore, the carbon flow

method is essentially a Pigouvian tax/subsidy on the carbon externality, representing a first-

best solution.

An alternative approach is the ton-year crediting regime. The ton-year method consists

of crediting a forestry project with a fraction of its total yearly GHG benefit, based on what

is called an equivalence factor Ef . This fraction is determined by the stock of carbon stored

each year, which is then converted, using Ef , to its equivalent amount of preventing effect. In

the context of this approach, two alternative calculations have been proposed by Moura-Costa

and Wilson [14], and by Fearnside, Lashof and Moura-Costa [5], respectively. In both, they

are based on the residence time and decay pattern of atmospheric C02, its Absolute Global

Warming Potential (AGWP), taking explicitly into account the decay pattern of GHGs in the

atmosphere. As a consequence, notice that this method does not require redemption of carbon

credits upon harvest.

Moura Costa and Wilson [14] aim to determine the storing time of carbon sequestered in

biomass for which the carbon stored is equivalent to an amount of avoided emissions (equiv-

alence time). It was found that keeping a megagram (Mg) of CO2 out of the atmosphere for
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a full 100 years is equivalent to 55 Mg-year (or ton-year) equivalents, rather than the full 100

Mg-years if the CO2 entering the atmosphere had no movement to the ocean or other sinks.

The number obtained, in this case 55, is denoted by the equivalent time, Te. In addition,

assuming a linear relationship between the residence of CO2 in the atmosphere and its radia-

tive forcing effect, the effect of storing 1 ton of CO2 in forest biomass for 1 year was derived.

According to this rule, storing one ton of carbon for one year is equivalent to preventing the

effect of 0.0182 tons of CO2 emissions, which is denoted by the equivalence factor, Ef = 1/

Te. Therefore, to store one ton of carbon for one year is equivalent to receiving a subsidy for

preventing the effect of 1/ Te of CO2 emissions.

Also based on a Absolute Global Warming Potential (AGWP) function, Fearnside et al.[5]

estimate the incremental credit that can be awarded for each additional year that carbon

stocks remain sequestered. For this purpose these authors assume as the benchmark “keeping

a Mg of CO2 out of the atmosphere for a full 100 years”. If the stock remains intact for 100

years, the cumulative awarding of ton-year credits would equal the credits from a “permanent”

emission reduction of the same magnitude. If the stock is released at any time prior to the

100-year time horizon, only the corresponding partial credit amount would be awarded.

The average carbon storage method consists of averaging the amount of carbon stored in

a site over the long run, assuming an average cycle rotation period. As a result, the forest

owner receives the corresponding subsidy. Finally, notice that in contrast to the carbon flow

method, the ton-year and the average carbon storage are second-best solutions.

2.3 The Model

The model used in this paper follows closely the multiple vintage forest model developed

in Salo and Tahvonen [20], which can be summarized as follows. The model assumes multi

vintages forest land, where s = 1, ..., n represents the age of trees, xs,t the area of forest land

allocated to the age class s in period t, fs the biomass content in timber per unit of land with

trees of age class s, and 0 ≤ f1 ≤ .... ≤ fn. Land allocation must satisfy

0 ≤ yt = 1−
n∑

s=1

xs,t (2.1)

that is, total land area equals 1, and yt is the area of land allocated to an alternative use

(agriculture or urban use).

Let us denote by U(ct) =
∫
d(c)dc the social utility from timber consumption, where d(.) is

the inverse demand for timber, and assume U(.) is a continuous, twice differentiable, increasing

and strictly concave function. Also, W (yt) represents the social utility of alternative land use,
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where W (.) is a continuous, twice differentiable, increasing and concave function and W (́yt)

is the opportunity cost of a unit of land. Finally, St represents the social value of carbon

sequestration by forests 5 and depends on how the benefits from carbon sequestration are

accounted for, as shown below.

Thus, the problem of optimal forest harvesting and allocation of land is obtained by max-

imizing the present value of social utility from the use of land, as follows:

v(x1,0, ....xn,0)
i = Max

{xs,t+1,s=1,...n,t=0,...}

∞∑

t=0

bt
[
U (ct) + Si

t +W (yt)
]

(2.2)

subject to

ct =
n−1∑

s=1

fs (xs,t − xs+1,t+1) + fnxn,t (2.3)

yt = 1−
n∑

s=1

xs,t (2.4)

xs+1,t+1 ≤ xs,t, s = 1, .......n− 1 (2.5)

n∑

s=1

xs,t+1 ≤ 1 (2.6)

xs,t ≥ 0, s = 1, ...., n (2.7)

for all t = 0, 1.... Moreover, the initial land distribution satisfies

xs,0 ≥ 0, s = 1, ...., n,
n∑

s=1

xs,0 ≤ 1 (2.8)

Therefore, given the discount factor b, the problem consists of choosing the next period

state, that is, the land allocation between different vintages and competing uses of land for

all t = 1, ....6

The necessary conditions for optimal solutions can be obtained from the following La-

grangian problem. For (2.2-2.8) it can be stated as

5St can alternatively be interpreted as the actual payment scheme given to forest owners to induce carbon
sequestration. In this sense, the model can be used to evaluate and compare actual policy measures.

6In Salo and Tahvonen [20] no harvesting or plantation costs are considered nor any type of forest exter-
nalities. Under these conditions, m, as defined in (2.10), is the Faustmann rotation period in the one stand
model. As consumption is constant in the steady-state, so is the marginal utility of consumption U ′(.) = p,
the long-run market equilibrium price of timber. In addition, this condition also corresponds to the maximum
value in the steady-state of a marginal unit of bare forest land.
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Li =
∞∑

t=0

bt
[
U (ct) + Si

t +W (yt)
]
+ λt

(

1−
n∑

s=1

xs,t+1

)

+
n−1∑

s=1

[ps,t (xs,t − xs+1,t+1)] (2.9)

where ps,t and λt are the Lagrangian multipliers, and i = c, t, a. While ps,t can be interpreted

as the value of marginal changes in forest land area of vintage s at the beginning of period t+1,

λt represents the value of marginal changes in land allocation between forest and alternative

uses.

Salo and Tahvonen [20] provide a full proof on the long-run optimality of the normal forest

steady-state for the above problem, when St = 0. A forest is called an Optimal Faustmann

Forest (OFF) if the age-class structure x = (x1, ..., xn) has the property xs = 0 for s =

m+1, ..., n and if harvesting only trees of age m is the optimal solution for the above problem

when x0 = x. An OFF is an interior OFF if xs > 0 for s = 1, ...,m. In addition, an OFF

with the normal forest structure is x = (1/m, ..., 1/m, 0, ..., 0), and in each period it yields a

constant consumption level of fm/m. An OFF with consumption that is periodic with period

length equal to m can be expressed as x = (1/m + φ1, ..., 1/m + φm, 0, ...0) ∈ S, where φk

represents the largest number φ that satisfies x = (1/m + φ1, ..., 1/m + φm, 0, ...0) ∈ K for

all |φs| < φ, s = 1, ...,m,
∑m

s=1 φs = 0. The Faustmann rotation period, denoted by m,

1 ≤ m ≤ n, is assumed to be unique and satisfies the following condition:7

bmfm/(1− bm) ≥ bsfs/(1− bs), s = 1, ..., n. (2.10)

Salo and Tahvonen [20] show that, if all land is allocated to forestry, optimal forest man-

agement can lead to optimal cyclical harvesting because smoothening an age class structure

that deviates from the normal forest is not optimal. On the contrary, if it is optimal to allocate

part of the land to alternative land use then optimal stationary cycles cannot exist.8

Using similar notation, let mi, for i = c, t, a, denote the optimal rotation period with

net carbon sequestration benefits for each accounting method. Assume that mi is unique,

for i = c, t, a. A forest is called an Optimal Carbon Forest (OCF) if the age-class structure

x = (x1, ..., xn) is characterized by OFF for mi, i = c, t, a, where mi can be different from m.

In this paper, the full proof on the long-run optimality of the normal forest steady state is

extended to the case of carbon sequestration benefits.

7See Salo and Tahvonen [20], Proposition 1 and Corollary 1, pages 518-520.
8From now on, let i∞ represent the stationary state level of variable i.
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2.4 Introducing Carbon Sequestration Benefits

In this section, for the three methods, the age-class and land allocation forestry decision

problem of the social planner is presented and the necessary and sufficient optimality conditions

are derived. It is shown how the optimal rotation period, the long run equilibrium and the

optimal land allocation are affected by introducing carbon sequestration benefits in the three

different cases. For each method, the comparison with the case without carbon sequestration

benefits is provided.

When formalizing net carbon benefits, we assume in all cases that the social value of one

unit of carbon removed from the atmosphere is constant and given by pc.9 That is, the price

of carbon is the value of the marginal damage of an additional unit of carbon added over to

the atmosphere. Alternatively, if pc is considered as a tax/subsidy to be payed to the forest

owners, then the model can be used to estimate the cost of the policy in each case. Finally,

St can be endogeneized by imposing quantitative targets in terms of carbon sequestration

amounts or afforestation areas. In these cases, the shadow price of carbon implicit in the

constraint can be estimated for each method.

In what follows, we consider that the amount of carbon per cubic feet of timber biomass

growing in forest land is constant and equal to β.

2.4.1 Carbon flow regime

The carbon flow regime measures the change of the carbon stock in the standing trees, as well

as the amount of carbon that is assumed to remain as permanently stored in timber products

and landfills. This last amount depends upon the different uses of timber. We introduce a

parameter θ which measures the fraction of timber that is harvested but goes into long-term

storage in structures and landfills. Notice that once carbon has been sequestered, no further

carbon benefits will be obtained, therefore what is relevant here is the change in the per period

carbon uptake.10

9Assuming a constant price means that forests have only a partial (marginal) impact on carbon sequestration
markets. In addition, since the time horizon is infinite in this model, it is not realistic to assume that prices
increase indefinitely. However, in the numerical simulations, there is the possibility of considering increasing
carbon prices for finite periods.
10The carbon flow regime with θ = 0 is similar to the rental approach that was proposed in the context of

the Kyoto Protocol, namely, of the Clean Development Mechanism (CDM), as discussed in Marland, Fruit and
Sedjo [11]. In the carbon flow regime presented in this paper, the forest owner is fully liable for the eventual
carbon released and receives full credit for the amount of carbon sequestered for the whole duration period of
the contract. This is similar to the rental approach, except that, in this case, the agent that receives full credit
and the one that is liable are typically not the same, as well as the duration pf the contract. Besides, as we
assume that there is perfect information, and the ton of carbon is payed at its shadow price value, the problem
is simplified in this case, as there are no issues of property rights, credibility, asymmetry of information,
uncertainty or any other market imperfections that are present, for instance, in the CDM context. We are
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Since the carbon flow internalizes correctly the carbon externality, given that pc is the social

value of carbon, we may obtain an estimate of the efficient opportunity benefit of forests as

carbon sinks.

The current net benefits from carbon sequestration at any period t, Sc
t , can be represented

as follows:

Sc
t =

n−1∑

s=0

pcβ(fs+1 − fs)xs+1,t+1 − pcβ(1− θ)ct (2.11)

where the first term represents the value of the carbon stock increase in forest standing biomass,

for all the area of forest land, and the last term represents the value of the carbon released

due to harvest at t, that is, the amount that is not permanently stored in timber products or

landfills.

By solving the problem (2.2-2.8) and taking Sc
t given by (2.11), as in Salo and Tahvonen

[20], we first study the existence of optimal stationary cycles in a regime where the oldest age

class is clear-cut and immediately regenerated at the end of each period.

Denote the optimal rotation period by mc, that satisfies 1 ≤ mc ≤ n 11 and for which

(p− βpc(1− θ))
bm

c

fmc

1− bmc + βpc

∑mc−1
i=0 bi(fi+1 − fi)

1− bmc ≥ (p− βpc(1− θ))
bsfs

1− bs
+

+βpc

∑s−1
i=0 b

i(fi+1 − fi)

1− bs
(2.12)

s = 1, ..., n, holds. Assume that mc is unique. We show in Appendix A that mc ≥ m when all

carbon is released at harvest (θ = 0). When θ = 1 and {fi − fi−1} is a decreasing sequence,

mc ≤ m . Otherwise, for θ = 1, mc � m. 12

Proposition 1 : Given g ≡ [U ′(fmc/m
c)−βpc(1−θ)]bm

c
fmc

1−bm
c + βpc

1−bm
c

∑mc−1
i=0 bi(fi+1−fi)−

b
1−b

W ′(0) >

0, mc ≥ 2, and b < 1, there exists a set of interior Optimal Carbon Forests with φk > 0.

Proof. The proof is in Appendix A.

In Proposition 1 it is shown that optimal stationary cycles exist when it is optimal to

allocate all land to forestry. From (2.34) in Appendix A, we may conclude that when carbon

sequestration benefits are accounted for the maximum cycle radius may either increase or

decrease.13

grateful to an anonimous referee that called our attention to this point.
11Since there are no carbon intakes after n, it is never optimal to postpone harvest after n.
12In fact, in the case of the typical Faustmann model discussed in the forestry literature (continuous-time

model), when the timber growth function is strictly concave we can show that the optimal rotation increases
for lower values of θ, while it decreases for values of θ close to 1. However, this is not the case when the timber
growth function is only increasing, as shown in Appendix 1 for the discrete-time setting. Notice that, if the
timber growth sequence is increasing, but its increments are decreasing with the age of the tree, s, the same
result as in the continuous-time case applies. See Cunha-e-Sá and Rosa [3].
13For a more detailed explanation see Salo and Tahvonen [18], pages 8-9 and 15.
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Corollary 1: If g ≡ [U ′(fmc/m
c)−βpc(1−θ)]bm

c
fmc

1−bmc
+ βpc

1−bmc
∑mc−1

i=0 bi(fi+1 − fi)−
b
1−b

W ′(0) ≤ 0,

optimal stationary cycles with y∞ ≥ 0 and y∞ constant do not exist.

Proof. The proof is in Appendix A.

When it is optimal to allocate land to alternative uses, Corollary 1 shows that optimal

cycles are eliminated and the remaining equilibrium is the normal forest steady-state. As-

suming that mc is unique, for a stationary state, we have that ps,t = ps,∞, ct = c∞, yt = y∞,

λt = 0, and xm,t = x∞, where c∞, y∞, x∞, and ps,∞, for s = 1, ..., n− 1, are constant. Direct

substitution shows that in this case:

ps =W ′(y∞)
s−1∑

i=0

b−i − fs [U
′(c∞)− βpc(1− θ)]− βpc

s−1∑

i=0

bi−s(fi+1 − fi) (2.13)

where
∑s−1

i=0 b
−i = −b1−b−s

1−b
, for s = 1, ..., n.

With some more algebra, we can write (2.13) for s = mc and as pmc,∞ = 0, obtaining:

W ′(y∞)
b

1− b
−

bm
c

fmc

1− bmc

[
U ′(
(1− y∞)fmc

mc
)− βpc(1− θ)

]
−

βpc

1− bmc

mc−1∑

i=0

bi(fi+1 − fi) = 0

(2.14)

Solving for y∞, all the other steady-state variables are fully defined and, from (2.14), the

allocation of land between forestry and the alternative use is optimal when the present value

of output from a marginal unit of land equals the present value of a marginal unit of bare

forest land, where both timber value and the net benefits from carbon sequestration are

accounted for. From Appendix A, we conclude that the long-run optimal steady state will be

characterized by an increase in the forest area and the opportunity cost of land when compared

to the case without carbon benefits.

2.4.2 Ton-year crediting

The ton-year accounting method consists of crediting a forestry project with a fraction of its

total yearly GHGs’ benefit. This fraction is based on the stock of carbon stored each year,

which is then converted, using Ef , to its equivalent amount of preventing effect.14

In this case, St
t can be defined as follows:

St
t = pc(βEf

n−1∑

s=1

fsxs+1,t+1) (2.15)

14Here, we consider Ef constant. This assumption is consistent with Moura-Costa andWilson’ [14] approach,
and also with Fearnside et al. [5], if in this last case we assume that the equivalence factor measures only the
benefit of storing carbon in the forest for one additional year. To be fully consistent with Fearnside et al. [5],
the equivalence factor should be different for each age class s, that is, Ef (s). However, all the main results
also apply.
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where the term in parenthesis represents the equivalent amount of emissions avoided in year t

due to the amount of carbon stored during year t. By considering fsxs+1,t+1, this formalization

excludes from benefits’ accounting all possible harvesting of younger age classes, in period t.

Notice also that there is no liability for carbon releases.

The necessary conditions for optimal solutions of problem (2.2-2.8) and St
t given by (2.15),

are similar to the previous case and are presented in Appendix B.

Denote the optimal rotation period by mt that satisfies 1 < mt and for which15

p
bm

t

fmt

1− bmt + βpcEf

∑mt−1
i=1 bifi
1− bmt ≥ p

bsfs

1− bs
+ βpcEf

∑s−1
i=1 b

ifi

1− bs
, s = 1, ..., n. (2.16)

holds. Assume that mt is unique. We show in Appendix B that mt ≥ m.

Proposition 2: Given g ≡
U ′(fmt/m

t)bm
t
fmt

1−bmt
+

βpcEf

1−bmt
(
∑mt−1

i=1 bifi) −
b
1−b

W ′(0) > 0, mt ≥ 2,

and b < 1, there exists a set of interior Optimal Carbon Forests with φk > 0.

Proof. The proof is in Appendix B.

From Proposition 2 if all land is forested land, cyclical harvesting with consumption that

is periodic with period length equal to mt ≥ m is optimal. By inspection, from (2.64) in

Appendix B, we observe that the maximum radius cycle can either increase or decrease.

Corollary 2: If g ≡
U ′(fmt/m

t)bm
t
fmt

1−bmt
+

βpcEf

1−bmt

∑mt−1
i=1 bifi−

b
1−b

W ′(0) ≤ 0, optimal stationary

cycles with y∞ ≥ 0 and y∞ constant do not exist.

Proof. The proof is in Appendix B.

From Corollary 2 we conclude that the cycles are eliminated, and it is optimal to allocate

land both in forestry and in an alternative use. Assuming again that mt is unique, for a

stationary state, we have that ps,t = ps,∞, ct = c∞, yt = y∞, λt = 0, and xm,t = x∞, where

c∞, y∞, x∞, and ps,∞, for s = 1, ..., n − 1, are constant. Direct substitution shows that, for

s = 1, ..., n,:

ps = W ′(y∞)
s−1∑

j=0

b−j − fsU
′(c∞)− βpcEf

s−1∑

i=1

bi−sfi (2.17)

With some more algebra, we can write (2.17) for s = mt and as pmt,∞ = 0, obtaining:

W ′(y∞)
b

1− b
−

bm
t

fmt

1− bmtU
′(
(1− y∞)fmt

mt
)−

βpcEf

1− bmt

mt−1∑

i=1

bifi = 0 (2.18)

In this case, the net benefits from carbon sequestration (third term of (2.18)) are the

present value of “emissions equivalence reduction” of a marginal unit of forest bare land with

a rotation period of dimensionmt. Also, as carbon sequestration benefits have always a positive

15Also, it may be optimal never to harvest the forest.
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net value, the present value of forest land increases and consequently more land will be put

to forest reducing the area in alternative uses. Moreover, as the optimal rotation period may

change, the steady-state timber consumption level, (1−y∞)fmt
mt , will also change. In empirical

terms it may increase or decrease compared to the case without carbon benefits.

Despite that at the one stand level it may be optimal to never harvest the forest, in a

general equilibrium land allocation model this result is less likely and would require additional

assumptions, namely, the existence of a choke price on timber.

2.4.3 Average Storage Method

The average storage accounting method consists of yearly crediting a forestry project with the

amount of carbon benefits that the land allocated to forest generates, on average, during a

rotation period. Hence, Sa
t can be defined as follows:

Sa
t = pcβC

n∑

s=1

xs,t (2.19)

where the term C is taken as a constant,16 representing the average carbon stored in each

stand.

The necessary conditions for optimal solutions of problem (2.2-2.8) are similar to the

previous case and are presented in Appendix C.

Let us denote the optimal rotation period by ma, that satisfies 1 ≤ ma ≤ n, and for which:

p
bm

a

fma

1− bma + βpcb
C

1− b
≥ p

bsfs
1− bs

+ βpcb
C

1− b
, s = 1, ..., n. (2.20)

holds. By comparing (2.20) with (2.10), we conclude that ma = m, implying that the optimal

rotation period is the same as Faustmann’s.

Proposition 3: Given g ≡ U ′(fma/m
a)bm

a
fma

1−bm
a + b

1−b
D − b

1−b
W ′(0) > 0, ma ≥ 2, and b < 1,

there exists a set of interior Optimal Carbon Forests with φk > 0, where D = βpcC.

Proof. The proof is in Appendix C.

According to Proposition 3, if all land is forested land, optimal forest management can

lead to optimal cyclical harvesting, but here the maximum radius cycle is the same as without

carbon sequestration benefits.

Corollary 3: If g ≡ U ′(fma/m
a)bm

a
fma

1−bm
a + b

1−b
D − b

1−b
W ′(0) ≤ 0, optimal stationary cycles

with y∞ ≥ 0 and y∞ constant do not exist.

Proof. The proof is in Appendix C.

16In particular, the average carbon stock stored can be given by C =
∑

m
a
−1

s=1
fs

(ma)2
.
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Assuming again thatma is unique, for a stationary state, we have that ps,t = ps,∞, ct = c∞,

yt = y∞, λt = 0, and xm,t = x∞, where c∞, y∞, x∞, and ps,∞, for s = 1, ..., n−1, are constant.

Direct substitution shows that, for s = 1, ..., n:

ps =W ′(y∞)
s−1∑

j=0

b−j − fsU
′(c∞)−

s−1∑

j=0

b−jD (2.21)

With some more algebra, we can write (2.21) for s = ma, and pma,∞ = 0, obtaining:

W ′(y∞)
b

1− b
−

bm
a

fma

1− bmaU
′(
(1− y∞)fma

ma
)−

b

1− b
D = 0 (2.22)

Here, the net benefits from carbon sequestration (third term of (2.22)) are the present

value of the yearly constant payment to a marginal unit of forest land, D. Since ma = m is

unique, it is clear from (2.22) that y∞ has to decrease, when compared to the case without

carbon benefits. As the optimal rotation period is the same as Faustmann’s, steady-state

timber consumption increases and market equilibrium price decreases. As well, more land will

be put to forest when compared to the case without carbon benefits, and, at the steady-state,

the incremental forest land area will be evenly distributed among the different vintages.

2.5 Discussion of Numerical Results

In this section, we follow the example in Salo and Tahvonen [20] to simulate the theoretical

models developed in the previous sections and to illustrate the potential use of this setting

to applied empirical studies. The results obtained with the different accounting methods are

compared with respect to the optimal land allocation between forestry and alternative uses,

total carbon sequestered, timber production and social welfare to the case without carbon

sequestration benefits. The ton-year and the average storage’s performance with respect to

the carbon flow is provided, both at the steady-state and in the transition to steady-state.

Sensitivity analysis with respect to the most relevant parameters of the model is undertaken.

Henceforth, the following utility functions for consumption and non-forestry land are con-

sidered: U(c) = c0.7

0.7
,W (y) = 0.5[y

0.2

0.2
]. The vector fs containing the biomass content in timber

per unit of land with age classes of trees, s = 1, ...24, is given by

fs =

[0, 0, 0, 15, 22, 30, 39, 51, 65, 82, 101, 123, 148, 175, 204, 234, 263, 293, 321, 346, 370, 390, 408, 423]

and b = 0.95.17

17Using this example, as in Salo and Tahvonen [20] without carbon, the solution reaches the saddle point
path where only the oldest age class (m = 19) is harvested in period t = 40. After 120 periods the land
allocation was approximately constant and the forest distribution was very close to the normal.
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All the main results of internalizing carbon benefits are presented and illustrated in Tables

1, 2, 3, and Figures 1, 2, 3, 3A-3E, 4.18 The simulations presented assume the same “price

of carbon” for all accounting methods and are based on the following parameter values: pc =

pss = 0.4368 where pss is the steady-state timber price in the baseline,19 that is, without

carbon benefits, β = 0.2.20 The equivalence factor for the ton-year is Ef = 0.0182.

We examine first, for a given carbon price, the time paths for the optimal land allocated

to forest and timber consumption following the internalization of carbon sequestration (see

Figures 1 and 2). We conclude that the optimal land allocation evolves towards a stationary

state where both the area dedicated to forest land and timber production increase. In all

cases, an adjusted normal forest is also the long-run equilibrium, confirming the theoretical

results.

If we compare the three accounting methods, there are no major differences in the dynamic

behaviour towards optimal forested area (see Figure 1). The optimal adjustment on land allo-

cation is almost instantaneous, moving fast to cycle stabilization. Changes in the forested area

take place through allocating more land to the area that is harvested each period. In contrast,

the timber consumption paths perform rather distinctively among accounting methods, as a

consequence of adjustments both on the optimal rotation period and on land allocation (see

Figure 2). In the carbon flow method, adjustments both in the optimal rotation period and

land allocation occur independently of the level of carbon prices (see Table 1). However, in

the ton-year case, this is only observed for high carbon prices, while for low carbon prices,

only the land allocation changes. Finally, in the average storage, the optimal rotation period

never changes, implying that all the adjustments occur through land use changes. For pc = pss

(see Figure 2), timber consumption decreases significantly in the short-run only for the carbon

flow method, as this is the only method where rotation is adjusted. Therefore, it is optimal

to preserve a fraction of the age class previously harvested, creating a shortage of timber in

the market. For the other two methods, the impact on consumption is only due to changes in

the forested area. Therefore, it is postponed, as changes in the distribution of land between

age classes have impact only a cycle ahead.

Given each of the above time paths, it is possible to endogenously estimate the yearly

impact on timber and land markets as well as on the amount of carbon sequestered (see

Figure 4). The welfare gains of internalizing the social benefits of forests as carbon sinks

18See tables and figures at the end of the paper.
19Here it is assumed pc = 0.468 as the benchmark for comparing the three accounting methods; however,

any other hypotheses can be easily implemented. In all simulations, initial land distribution is the steady-state
of the model without carbon benefits.
20Following Salo and Tahvonen [28], in each iteration we use t = 60 as the period length. The number of

iterations ranges from 200 to 500.
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can then be obtained, either in terms of only steady-states’ comparisons or also including the

transition as in Table 3. They are positive in all cases when comparing only steady-state

values, and are higher for the carbon flow method, as expected. The welfare gains reflect the

increase in the social value of the timber market together with an increase in carbon benefits,

net of the increase in the opportunity cost of land use. Despite that they are lower when

the transition is included, they are still non-negative in all cases. However, note that the

transition costs are higher in the carbon flow case (see Figure 3). This can be explained by

the severe short run negative shock on timber markets due to the adjustment in the optimal

rotation period (see Figures 3A-3C). In contrast, in the other two cases, the impacts on timber

markets are smoother and postponed a rotation cycle, implying that the transition costs are

lower (see Figure 3, 3D, and 3E). From a policy perspective this is a relevant result because

the implementation of the first best solution presents the highest transition costs. Therefore,

short run considerations may compromise the choice of the efficient solution.

Finally, we also conclude that, for the same price of carbon, the carbon flow accounting

method has the larger impact on the additional amount of carbon sequestered when compared

to the other methods (see Figure 4). This is due both to an increase in the optimal rotation

period and in forested land. In contrast, the other two have smaller impacts in terms of

additional carbon sequestered, because, for most carbon prices, the adjustment only occurs

on the forest land (see Table 1).

In Table 1, the results of the sensitivity analysis to the price of carbon and to the value of

θ are summarized. By inspection, we conclude that, in general, higher carbon prices increase

both the optimal rotation period and land allocated to forest, increasing in all cases the amount

of carbon sequestered relative to the case without carbon. The carbon flow method has the

biggest effect in terms of carbon sequestration. Notice, in addition, that, by changing carbon

prices, we can also obtain a carbon supply function for each carbon accounting method.

From a welfare point of view, an increase in carbon prices will always increase welfare gains.

Given that the carbon flow is a first best solution, the welfare deviations of both the ton-year

and the average storage from the optimal can be estimated, as presented in the Table 2. In

general, welfare deviations of both second best methods increase as carbon prices increase. In

the carbon flow case, changes in carbon prices induce adjustments both in the optimal rotation

period and the optimal allocation of land. For low carbon prices, the average storage performs

better than the ton-year, as the optimal rotation period is the same in both, while the average

storage is closer to the carbon flow with respect to the optimal allocation of land (see Table

2, for pc = pss and pc = 2pss). However, when carbon prices are high, the ton-year performs

better, as it allows for adjustments in the optimal rotation (see Table 2, for pc = 6pss).
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An important issue that has also been the subject of discussion in the context of the use

of forests as carbon sinks is related to the value of θ, that is, the amount of carbon stored

in long-term structures. Considering now the impact of different values of θ, we observe that

higher values of θ are always associated with larger amounts of land dedicated to forests, thus

contributing to an increase in the total amount of carbon sequestered. However, since the

optimal rotation period also adjusts, varying inversely with θ, the total amount of carbon

sequestered on forest biomass is ambiguous (see Table 1, net cumulative biomass carbon),

depending upon which effect dominates.

Finally, as the discount factor approaches one, for θ = 0, that is, when no carbon is

sequestered in long-term structures, the introduction of carbon benefits has no impact relative

to the case without carbon, as in Tahvonen [25].

2.6 Conclusion

In this paper, the multiple vintage forest model developed by Salo and Tahvonen [20] is

extended to internalize carbon sequestration benefits. All the adjustments occur through

both optimal land allocation and the rotation period.

In order to compare the net effect of sequestration to that of avoided emissions three

different carbon accounting methods are considered, namely, the carbon flow regime, the ton-

year crediting and the average carbon storage. The carbon flow case is considered a first best

solution because this accounting method fully internalizes at any point in time the carbon

flows between forest and the atmosphere. In contrast to the one stand version of the model,

typically representing the decision model of the private owner, both the price of timber and

the price of land are endogenously determined. Therefore, only in this context, it is possible

to study the transition path to the steady-state, and, more generally, comparative welfare

analysis between the different methods can be performed. In addition, timber and carbon

supply functions can also be estimated.

A full proof of the long-run optimality of steady-state forest is provided for all cases con-

sidered. Although the major theoretical results still apply, the extension to the presence of

carbon sequestration benefits is not without consequences. First, in the corner solution situa-

tion where all land is forested land, optimal harvest is cyclical and the maximum radius cycle

changes when compared to the case without carbon benefits, except in the average carbon

storage case. Second, the optimal allocation area to forest will, in general, increase, as the

net value from accounting carbon sequestration benefits is positive although the impacts differ

with the accounting method used. Third, the optimal forest rotation period may or may not
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change depending on the value of carbon and on the accounting method considered. For all

cases considered the changes in optimal rotation and in land allocation will determine the

total amount of forest biomass carbon sequestration.

Formally, it is not possible to compare the impact of the different accounting methods both

on the cycles dimension and on the optimal land allocation, because they are based on distinct

parameters, θ, Ef , and C, respectively. However, numerically, depending on the values taken

by the different parameters, comparisons can be undertaken.

Based on the numerical simulations, we conclude that the three accounting methods have

distinct impacts on timber and land markets. Therefore, significant differences in social welfare

paths are observed. One interesting result is that the carbon flow regime, a first best solution, is

also the accounting method that generates the larger negative impact in the transition period,

namely, in the short/medium run. Moreover, welfare deviations of both the ton-year and the

average storage from the first-best increase as carbon prices increase. Whenever carbon prices

induce minor changes in the optimal rotation period, the ton-year performs worse than the

average storage; however, for high carbon prices, the ton-year performs better, as it allows for

adjustments in the optimal rotation period.

Finally, it is not always the case that higher amounts of carbon sequestered in long-term

structures necessarily generate increases in the total carbon sequestered in forest biomass.

To conclude, the theoretical and the simulation model developed in this paper can be a

useful tool to study the impact of using forests as carbon sinks.
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2.7 Appendix A

The necessary conditions for optimal solutions of the problem (2.2-2.8) and Sc
t given by (2.11),

which can be derived from the Karush-Kuhn-Tucker conditions for all t = 0, ..., are as follows:

bt
∂Lc

∂x1,t+1
= bf1Ú(ct+1) + f1pcβ − bf1pcβ(1− θ)−

−bW ′(yt+1)− λt + bp1,t+1 ≤ 0 (2.23)

bt
∂Lc

∂xs+1,t+1
= −fsÚ(ct) + bfs+1Ú(ct+1) + (fs+1 − fs)pcβ + fspcβ(1− θ)−

−bfs+1pcβ(1− θ)− bW ′(yt+1)− λt + bps+1,t+1 − ps,t ≤ 0 (2.24)

for s = 1, ..., n− 2

bt
∂Lc

∂xn,t+1
= −fn−1Ú(ct) + bfnÚ(ct+1) + (fn − fn−1)pcβ + fn−1pcβ(1− θ)−

−bfnpcβ(1− θ)− bW ′(yt+1)− λt − pn−1,t ≤ 0 (2.25)

xs,t+1 ≥ 0, xs,t+1
∂Lc

∂xs,t+1
= 0, s = 1, ..., n (2.26)

ps,t ≥ 0, ps,t(xs,t − xs+1,t+1) = 0, s = 1, ..., n− 1 (2.27)

λt ≥ 0, λt(1−
n∑

s=1

xs,t+1) = 0 (2.28)

The existence of optimal solutions for bounded utility and b < 1 follows from Theorem 4.6

in Stokey and Lucas (p. 79).

Proof of Proposition 1:

Proof. Following Salo and Tahvonen [20], by convexity of problem (2.2)-(2.8), if there exist

multipliers ps,t satisfying conditions (2.23)-(2.28) under harvesting atmc, then the resulting age

class structure is an interior OCF. The optimality follows since with harvesting at mc, ∂U
∂xs,t
and

xs,t remain bounded satisfying transversality conditions which, together with (2.23)-(2.28) are

sufficient for optimality.

For s = 1, ...,mc − 1 using (2.23) to eliminate λt from (2.24) and (2.25), and to satisfy

(2.26) we obtain a system of mc x (mc − 1) equality equations:

b(ps+1,t+1+k − p1,t+1+k)− ps,t+k = −b [Ú(ct+k+1)− βpc(1− θ)] (fs+1 − f1) +
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+ [Ú(ct+k)− βpc(1− θ)] fs − βpc(fs+1 − fs) + βpcf1 (2.29)

−bp1,t+1+k − pmc−1,t+k = −b [Ú(ct+k+1)− βpc(1− θ)] (fmc − f1) +

+ [Ú(ct+k)− βpc(1− θ)] fmc−1 − βpc(fmc − fmc−1) + βpcf1 (2.30)

where s = 1, ...mc − 2, k = 0, ...,mc − 1.

This system is linear in the Lagrangian multipliers ps,t+k, s = 1, ...,m
c−1, k = 0, ...,mc−1

and solving for any multiplier yields:

ps,t =
bm

c

fmc

1− bmc

[
b−s(U ′(ct+mc−s)− βpc(1− θ))− (U ′(ct)− βpc(1− θ))

]
−

−fs [U
′(ct)− βpc(1− θ)] +Ac

s (2.31)

where Ac
s is given by

Ac
s =

βpc

1− bmc

[

(1− bs)
mc−1∑

i=0

bi−s (fi+1 − fi)− (1− bm
c

)
s−1∑

i=0

bi−s (fi+1 − fi)

]

(2.32)

for s = 1, ...,mc− 1, t = 0, ...., as can be verified by direct substitution into the two equations

above. Moreover, from (2.32), we observe that Ac
mc = 0, and that Ac

s decreases to zero as s

increases to mc. Condition (2.27) requires, for the indefinitely repeated cycle, that ps,t+k ≥ 0

for s = 1, ...,mc − 1, k = 0, ...,mc − 1. Thus, the fact that x ∈ K implies by (2.31) that

U ′(ct+k)− βpc(1− θ)

U ′(ct+k+mc−j)− βpc(1− θ)
≤

bm
c−jfmc

fj + bmc(fmc − fj)
+

+
Ac

j(1− bm
c

)

[U ′(ct+k+mc−j)− βpc(1− θ)] [fj + bmc(fmc − fj)]
(2.33)

for k = 0, ...,mc− 1, j = 1, ...,mc− 1. Using (2.3) and the definition of optimal harvesting, we

can write ct+k = fmcxs and ct+k+mc−j = fmcxs−mc+j where s−mc + j is understood as s− j,

if s−mc + j ≤ 0. Equation (2.33) takes the form

U ′(fmcxs)− βpc(1− θ)

U ′(fmcxs−m+j)− βpc(1− θ)
≤

bm
c−jfmc

fj + bmc(fmc − fj)
+

+
Ac

j(1− bm
c

)

[U ′(fmcxs−m+j)− βpc(1− θ)] [fj + bmc(fmc − fj)]
(2.34)

for s = 1, ...,mc, j = 1, ...,mc − 1.
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We now show that the right-hand side of (2.34) larger than one is equivalent to (2.12) for

any j < mc. By rearranging the right-hand side of (2.34) we obtain

U ′(fmcxs−mc+j )b
mc

fmc(1− bj)− U ′(fmcxs−mc+j )b
jfj(1− bm

c

) +

+βpcb
j

[

(1− bj)
mc−1∑

i=0

bi−j (fi+1 − fi)− (1− bm
c

)

j−1∑

i=0

bi−j (fi+1 − fi)

]

> 0

or

U ′(fmcxs−mc+j )b
mc

fmc(1− bj)− U ′(fmcxs−mc+j )b
jfj(1− bm

c

) +

+βpc

[

(1− bj)
mc−1∑

i=0

bi (fi+1 − fi)− (1− bm
c

)

j−1∑

i=0

bi (fi+1 − fi)

]

> 0 (2.35)

On the other hand, by reducing to the same denominator, (2.12) can be restated as (2.35).

Therefore, if there exists a mc � m such that (2.12) holds, the right-hand side of (2.34) is

larger than one. Then, by the strict concavity of U , there must exist a φ > 0, such that (2.34)

is satisfied if xs = 1/m
c+φs, s = 1, ...,m

c, for all |φs| < φ,
∑mc

s=1 φs = 0, proving that optimal

harvesting is cyclical harvesting and that it is not optimal to cut before mc.

Similarly, for s = mc + 1, ..., n, and k = 0, ...,mc − 1, the optimality of the harvesting at

mc requires that land is not allocated to age classes s = mc + 1, ..., n. Since xmc,t > 0 and

xmc+1,t+1 = 0 in (2.27), we obtain pmc,t = 0, for t = 0, ..., and pst ≥ 0, for s = mc+1, ..., n− 1,

t = 0, ...,as can also be checked in (2.31). Using this and conditions (2.24) and (2.25), yields

b(pmc+1,t+1+k − p1,t+1+k)− pmc,t+k ≤ −b [Ú(ct+k+1)− βpc(1− θ)] (fmc+1 − f1) +

+ [Ú(ct+k)− βpc(1− θ)] fmc − βpc(fmc+1 − fmc) + βpcf1

b(ps+1,t+1+k − p1,t+1+k)− ps,t+k ≤ −b [Ú(ct+k+1)− βpc(1− θ)] (fs+1 − f1) +

+ [Ú(ct+k)− βpc(1− θ)] fs − βpc(fs+1 − fs) + βpcf1

for s = mc + 1, ..., n− 2, and

−bp1,t+1+k − pn−1,t+k ≤ −b [Ú(ct+k+1)− βpc(1− θ)] (fn − f1) +
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+ [Ú(ct+k)− βpc(1− θ)] fn−1 − βpc(fn − fn−1) + βpcf1

where k = 0, ...,mc − 1. Using (2.31), by direct substitution we can show that the first two

inequalities are satisfied as equalities. By eliminating p1,t+1+k and pn−1,t+k from the last

inequality, using (2.31), and the facts that ct+k+1 = fmcxs and ct+k+mc−n+1 = fmcxs−mc+n, we

can write the last inequality above as follows:

U ′(fmcxs)− βpc(1− θ)

U ′(fmcxs−mc+n)− βpc(1− θ)
≤

bm
c−nfmc

fn + bmc(fmc − fn)
+

+
Ac

n(1− bm
c

)

[U ′(ct+k+mc−n)− βpc(1− θ)] [fn + bmc(fmc − fn)]

for s = mc + 1, ..., n.

The conditions ps,t+k ≥ 0 for s = mc + 1, ..., n− 1, k = 0, ...,mc − 1 together with the last

inequality yield

U ′(fmcxs)− βpc(1− θ)

U ′(fmcxs−mc+j)− βpc(1− θ)
≤

bm
c−nfmc

fn + bmc(fmc − fn)

+
Ac

n(1− bm
c

)

[U ′(fmcxs−mc+j)− βpc(1− θ)] [fn + bmc(fmc − fn)]
(2.36)

for s = 1, ...,mc,and j = mc + 1, ..., n. Similarly, it is easy to show that the right-hand side of

(2.36) larger than one is equivalent to (2.12).

Consequently, there exists a φ > 0 such that (2.36) is satisfied if xs = 1/mc + φs, s =

1, ...,mc, xs = 0 for s = mc + 1, ..., n, for all |φs| < φ,
∑mc

s=1 φs = 0, and simultaneously it is

never optimal to postpone harvest after mc.

In addition, a stationary cycle with all land allocated to forestry must satisfy λt ≥ 0, for

t = 0, .... Solving (2.23) or (2.24) for λt, eliminating ps,t, for s = 1, ...,mc − 1, t = 0, ..., using

(2.31), we obtain

λt+k =
[U ′(ct+k)− βpc(1− θ)] bm

c

fmc

1− bmc −
[U ′(ct+1+k)− βpc(1− θ)] bm

c+1fmc

1− bmc +

+
βpc

1− bmc

mc−1∑

i=0

bi(1− b) (fi+1 − fi)− bW ′(0) ≥ 0 (2.37)

for s = 1, ...,mc, where ct+1+mc = ct+1. Writing ct+k = fmcxs and ct+1+k = fmcxs−1, s =

1, ...,mc, where x0 = xmc yields

λs =
[U ′(fmcxs)− βpc(1− θ)] bm

c

fmc

1− bmc −
[U ′(fmcxs−1)− βpc(1− θ)] bm

c+1fmc

1− bmc +
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+
βpc

1− bmc

mc−1∑

i=0

bi(1− b) (fi+1 − fi)− bW ′(0) ≥ 0 (2.38)

for s = 1, ...,mc.

Given g = [U ′(fmc/m
c)−βpc(1−θ)]bm

c
fmc

1−bm
c + βpc

1−bm
c

∑mc−1
i=0 bi (fi+1 − fi) −

b
1−b

W ′(0) > 0, there

must exist a φ > 0 such that (2.38) is satisfied if xs = 1/m
c+φs, s = 1, ...,m

c, for all |φs| < φ,
∑mc

s=1 φs = 0.

Let i∞ represent the stationary state level of variable i.

We next show that if g ≤ 0 there exists a stationary state that satisfies all the necessary

conditions for optimality.21

Proof of Corollary 1:

Proof. Given g ≤ 0, no solutions for (2.38) exist. Thus, by letting λt = 0 in (2.23) or

(2.24), eliminating ps,t, s = 1, ...,mc−1, t = 0, ..., using (2.31), and writing (2.23) analogously

to (2.38), we obtain for s = 1, ...,mc:

[U ′(fmcxs)− βpc(1− θ)] bm
c

fmc

1− bmc −
[U ′(fmcxs−1)− βpc(1− θ)] bm

c+1fmc

1− bmc +

+
βpc

1− bmc

mc−1∑

i=0

bi(1− b) (fi+1 − fi)− bW ′(y∞) ≥ 0 (2.39)

This system is linear in [U ′(fmcxs)− βpc(1− θ)] , s = 1, ...,mc and its solution is given by:

[U ′(fmcxs)− βpc(1− θ)] +
βpc

bmcfmc

mc−1∑

i=0

bi (fi+1 − fi) =
W ′(y∞)

∑mc−1
i=0 bi

bmc−1fmc

, s = 1, ...,mc

(2.40)

as can be verified by direct substitution. Thus, xs = (1− y∞)/m
c, s = 1, ...,mc and optimal

stationary cycles cannot exist.

Impact on the optimal rotation period:

We now show that for θ = 0, mc ≥ m :

At the steady-state, if there exists a mc = m, for which

(p− pcβ)b
mc

fmc

1− bmc +
pcβ

∑mc−1
i=0 bi (fi+1 − fi)

1− bmc ≥
(p− pcβ)b

mfm
1− bm

+
pcβ

∑m−1
i=0 bi (fi+1 − fi)

1− bm

(2.41)

21The results obtained in Salo and Tahvonen [20] regarding convergence and stability of the stationary steady
states (Lemma 1 and Lemma 2, pg. 523) still apply in the case of this paper, as the difference equation for
xmi

t

, for i = c, t, a, is similar to equation (34), pg. 522, in the paper. The additional terms that are present in
our case are independent of xmi

t

. Therefore, the marginal conditions yielding the corresponding characteristic
polynomials turn out to be similar.
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holds, then it is optimal to cut at mc, where mc � m. If (2.41), which is the same as (2.12),

holds in particular formc = m+1, thenmc ≥ m, while if it holds in particular for mc = m−1,

mc ≤ m. If (2.41) holds as an equality, mc = m.

By making mc = m − 1, we show below that (2.41) never holds, implying that mc ≥ m,

that is, it is optimal to postpone harvest. Also, for some mc = m+1, (2.41) may be satisfied.

Let mc = m− 1 in (2.41). By rearranging and collecting terms we obtain

pbm−1fm−1(1− bm)− pbmfm(1− bm−1) >

pcβ(b
m − bm−1)

m−2∑

i=0

bi(fi+1 − fi)− pcβb
mfm(1− bm−1) + (2.42)

+pcβb
m−1(fm − fm−1)(1− bm−1) + pcβb

m−1fm−1(1− bm)

which can be restated as

pcβ(b
m − bm−1)

m−2∑

i=0

bi(fi+1 − fi)− pcβfm(b
m − bm−1)(1− bm−1)− pcβfm−1b

m−1(bm − bm−1)

(2.43)

and, finally, as

pcβ(b
m − bm−1)

[
m−1∑

i=0

bifi+1 −
m−1∑

i=0

bifi − fm

]

(2.44)

In (2.42) the left-hand side is negative. Since

m−1∑

i=0

bifi+1 =
m−1∑

i=0

bi(fi+1 − fm) +
m−1∑

i=0

bifm−1

substituting above we obtain

pcβ(b
m − bm−1)

[
m−1∑

i=0

bi(fi+1 − fm)− fm +
m−1∑

i=0

bi(fm − fi)

]

Given that {fi}, for i = 1, ...,m−1, is an increasing sequence, and b < 1, we may conclude

this expression is positive, as the sign of the algebraic sum inside the square brackets is

negative. Consequently, the right-hand side of (2.42) is positive, implying that (2.42) never

holds for any mc < m. Also, we can show that it may hold for some mc > m. Therefore, when

θ = 0, it is never optimal to cut earlier, that is, mc ≥ m.
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In the case θ = 1, we will consider two cases. In case (i) we assume that the sequence

{fi − fi−1} is a decreasing sequence. In case (ii) we only assume that the sequence {fi} is an

increasing sequence.

(i) Let mc = m+ 1 in (2.41). By rearranging and collecting terms we obtain

pbm+1fm+1(1− bm)− pbmfm(1− bm+1) >

pcβ

[

− (fm+1 − fm) (1− bm)bm +
(
bm − bm+1

)m−1∑

i=0

bi (fi+1 − fi)

]

(2.45)

In (2.42) the left-hand side is negative. Dividing (2.42) by (1− bm)bm, the right-hand side

can be stated as follows:

pcβ

[

− (fm+1 − fm) +
bm − bm+1

(1− bm)bm

m−1∑

i=0

bi (fi+1 − fi)

]

Since

m−1∑

i=0

bi (fi+1 − fi) =
m−1∑

i=0

bi [(fi+1 − fi)− (fm+1 − fm)] +
m−1∑

i=0

bi(fm+1 − fm)

implying that

m−1∑

i=0

bi (fi+1 − fi) =
m−1∑

i=0

bi [(fi+1 − fi)− (fm+1 − fm)] +
1− bm

1− b
(fm+1 − fm)

Substituting above we obtain

pcβ

[
bm − bm+1

(1− bm)bm

(
m−1∑

i=0

bi [(fi+1 − fi)− (fm+1 − fm)] +
1− bm

1− b
(fm+1 − fm)

)

− (fm+1 − fm)

]

which can be restated as

pcβ

[
bm − bm+1

(1− bm)bm

(
m−1∑

i=0

bi [(fi+1 − fi)− (fm+1 − fm)]

)

+

(
bm − bm+1

(1− bm)bm
1− bm

1− b
− 1

)
(fm+1 − fm)

]

Given that {fi − fi−1}, for i = 1, ...,m, is a decreasing sequence, we may conclude that

this expression is positive, as the term that multiplies (fm+1 − fm) vanishes. Consequently,
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the right-hand side of (2.42) is positive, implying that (2.42) never holds for any mc > m. By

inspection, we observe that it may hold for some mc < m. Therefore, for θ = 1, it is never

optimal to postpone harvest, that is, mc ≤ m.

(ii) Let mc = m+ 1 in (2.41). By rearranging and collecting terms we obtain

pbm+1fm+1(1− bm)− pbmfm(1− bm+1) >

pcβ

[

− (fm+1 − fm) (1− bm)bm +
(
bm − bm+1

)m−1∑

i=0

bi (fi+1 − fi)

]

(2.46)

Since

m−1∑

i=0

bifi =
m−1∑

i=0

bi(fi − fm+1) +
m−1∑

i=0

bifm+1

which can be rewritten as

m−1∑

i=0

bifi =
m−1∑

i=0

bi(fi − fm+1) +
1− bm

1− b
fm+1

By substituting above, we obtain

pcβ [− (fm+1 − fm) (1− bm)bm] +

+pcβ
(
bm − bm+1

)
(

m−1∑

i=0

bifi −
m−1∑

i=0

bi (fi − fm+1)−
1− bm

1− b
fm+1

)

Finally, by collecting terms, we get

pcβ

(
−(1− bm)bm −

(
bm − bm+1

) 1− bm

1− b

)
fm+1 + pcβfm(1− bm)bm

+pcβ
(
bm − bm+1

)m−1∑

i=0

bifi − pcβ
(
bm − bm+1

)m−1∑

i=0

bi (fi − fm+1)

where the first-term is negative and the other three are positive. In particular, the last term

is positive as long as {fi} is an increasing sequence for i = 1, ...,m + 1. Therefore, the sign

of this expression, that is, the right-hand side of (2.46) can be either positive or negative.

Since the left-hand side of (2.46) is negative, it may be optimal to postpone harvest. This is

in contrast to case (i), in which by imposing a more restrictive assumption, namely, that the

sequence {fi − fi−1} is decreasing, it is never optimal to postpone harvest.
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Let now mc = m− 1 in (2.41). By rearranging and collecting terms we obtain

pbm−1fm−1(1− bm)− pbmfm(1− bm−1) >

pcβ

[

(fm − fm−1) (1− bm−1)bm−1 +
(
bm − bm−1

)m−1∑

i=0

bi (fi+1 − fi)

]

(2.47)

which can be rewritten as

pcβ

[

(fm − fm−1) (1− bm−1)bm−1 +
(
bm − bm−1

)
(

m−2∑

i=0

bi(fi+1 − fi)

)]

Using the same procedure as before, we may write

m−2∑

i=0

bi [(fi+1 − fi)− (fm − fm−1)] =
m−2∑

i=0

bi +
m−2∑

i=0

bi (fm − fm−1)

that is,

m−2∑

i=0

bi [(fi+1 − fi)− (fm − fm−1)] =
m−2∑

i=0

bi [(fi+1 − fi)− (fm − fm−1)] +
1− bm−1

1− b
(fm − fm−1)

Substituting above and collecting terms, we obtain

pcβ
(
bm − bm−1

)
(

m−2∑

i=0

bi [(fi+1 − fi)− (fm − fm−1)]

)

+

+pcβ

((
bm − bm−1

) 1− bm−1

1− b
+ (1− bm−1)bm−1

)
(fm − fm−1)

Therefore, the right-hand side of (2.47) can be rewritten as the algebraic sum of the two

above terms. The first term is negative, as long as {fi − fi−1} is a decreasing sequence for

i = 1, ...,m − 1, while the second one is positive, as the term that multiplies (fm − fm−1) is

positive. Therefore, it may be optimal to cut earlier than m. The same result is obtained if,

instead, we consider a less restrictive assumption such that {fi} is an increasing sequence for

i = 1, ...,m+ 1.
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2.8 Appendix B

The Karush-Kuhn-Tucker conditions for optimal solutions of problem (2.2-2.8) and St
t given

by (2.15) for all t = 0, ..., as follows:

bt
∂Lt

∂x1,t+1
= bf1Ú(ct+1)− bW ′(yt+1)− λt + bp1,t+1 ≤ 0 (2.48)

bt
∂Lt

∂xs+1,t+1

= −fsÚ(ct) + bfs+1Ú(ct+1) + fspcβEf −

−bW ′(yt+1)− λt + bps+1,t+1 − ps,t ≤ 0 (2.49)

for s = 1, ..., n− 2,

bt
∂Lt

∂xn,t+1
= −fn−1Ú(ct) + bfnÚ(ct+1) + fn−1pcβEf − bW ′(yt+1)− λt − pn−1,t ≤ 0 (2.50)

xs,t+1 ≥ 0, xs,t+1
∂Lt

∂xs,t+1
= 0, s = 1, ..., n (2.51)

ps,t ≥ 0, ps,t(xs,t − xs+1,t+1) = 0, s = 1, ..., n− 1 (2.52)

λt ≥ 0, λt(1−
n∑

s=1

xs,t+1) = 0 (2.53)

The existence of optimal solutions for bounded utility and b < 1 follows from Theorem 4.6

in Stokey and Lucas (p.79).

Proof of Proposition 2 :

Proof. Based on this new formulation, using a similar procedure as used to prove Propo-

sition 1, for s = 1, ...,mt−1, using (2.48) to eliminate λt from (2.49) and (2.50), and to satisfy

(2.51) we obtain a system of mt x (mt − 1) equality equations:

b(ps+1,t+1+k − p1,t+1+k)− ps,t+k = −bÚ(ct+k+1)(fs+1 − f1) + [Ú(ct+k)− βpcEf ] fs (2.54)

−bp1,t+1+k − pmt−1,t+k = −bÚ(ct+k+1)(fmt − f1) + [Ú(ct+k)− βpcEf ] fmt−1 (2.55)

where s = 1, ...,mt − 2, k = 0, ...,mt − 1. This system is linear in the Lagrangian multipliers

ps,t+k, s = 1, ...,m
t − 1, k = 0, ...,mt − 1. Solving for any multiplier yields

ps,t =
bm

t

fmt

1− bmt

[
b−sU ′(ct+mt−s)− U ′(ct)

]
− fsU

′(ct) +At
s (2.56)
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where At
s is given by

At
s =

βpcEf

1− bmt

[

(1− bs)
mt−1∑

i=1

bi−sfi − (1− bm
t

)
s−1∑

i=1

bi−sfi

]

(2.57)

for s = 1, ...,mt − 1, t = 0, ...., as can be verified by direct substitution into the two equations

above. Moreover, from (2.57), we observe that At
mt = 0.

Condition (2.52) requires, for the indefinitely repeated cycle, that ps,t+k ≥ 0 for s =

1, ...,mt − 1, k = 0, ...,mt − 1. Thus, the fact that x ∈ K implies by (2.56) that

U ′(ct+k)

U ′(ct+k+mt−j)
≤

bm
t−jfmt

fj + bmt(fmt − fj)
+

At
j(1− bm

t

)

[fj + bmt(fmt − fj)]U ′(ct+k+mt−j)
(2.58)

for k = 0, ...,mt − 1, j = 1, ...,mt − 1, where At
j is given by (2.57). Using (2.3) and the

definition of carbon harvesting, we can write ct+k = fmtxs and ct+k+mt−j = fmtxs−mt+j where

s−mt + j is understood as s− j, if s−mt + j ≤ 0. Equation (2.58) takes the form

U ′(fmtxs)

U ′(fmtxs−mt+j )
≤

bm
t−jfmt

fj + bmt(fmt − fj)
+

At
j(1− bm

t

)

[fj + bmt(fmt − fj)]U ′(fmtxs−mt+j )
(2.59)

or, alternatively,

U ′(fmtxs)

U ′(fmtxs−mt+j )
≤

bm
t−jfmt

fj + bmt(fmt − fj)
+

At
j(1− bm

t

)

U ′(fmtxs−mt+j )bm
t−jfmt

(2.60)

for s = 1, ...,mt, j = 1, ...,mt − 1.

We now show that the right-hand side of (2.60) larger than one is equivalent to (2.16) for

any j < mt. By rearranging the right-hand side of (2.60), we obtain

U ′(fmtxs−mt+j )b
mt

fmt(1− bj)− U ′(fmtxs−mt+j )b
jfj(1− bm

t

) +

+βpcEfb
j

[

(1− bj)
mt−1∑

i=1

bi−jfi − (1− bm
t

)

j−1∑

i=1

bi−jfi

]

> 0

or

U ′(fmtxs−mt+j )b
mt

fmt(1− bj)− U ′(fmtxs−mt+j )b
jfj(1− bm

t

) +

+βpcEf

[

(1− bj)
mt−1∑

i=1

bifi − (1− bm
t

)

j−1∑

i=1

bifi

]

> 0 (2.61)

On the other hand, by reducing to the same denominator, (2.16) can be restated as (2.61).

Therefore, using a similar reasoning as in the previous case, we conclude that not only it is not
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optimal to cut earlier than mt, but also, by the strict concavity of U , there must exist a φ > 0,

such that (2.59) is satisfied if xs = 1/m
t + φs, s = 1, ...,m

t, for all |φs| < φ,
∑mt

s=1 φs = 0.

Similarly, we now derive the results for s = mt + 1, ..., n, and k = 0, ...,mt − 1. For the

cases mt < n, the optimality of the carbon harvesting requires that land is not allocated to

age classes s = mt + 1, ..., n. Since xmtt > 0 and xmt+1,t+1 = 0 in (2.52), we obtain pmtt = 0,

for t = 0, ..., as can be checked in (2.56). Using this and conditions (2.49), (2.50), and pst ≥ 0,

for s = mt + 1, ..., n− 1, t = 0, ..., yields

b(pmt+1,t+1+k − p1,t+1+k)− pmt,t+k ≤ −bÚ(ct+k+1)(fmt+1 − f1) + [Ú(ct+k)− βpcEf ] fmt

(2.62)

b(ps+1,t+1+k − p1,t+1+k)− ps,t+k ≤ −bÚ(ct+k+1)(fs+1 − f1) + [Ú(ct+k)− βpcEf ] fs

for s = mt + 1, ..., n− 2, and

−bp1,t+1+k − pn−1,t+k ≤ −bÚ(ct+k+1)(fn − f1) + [Ú(ct+k)− βpcEf ] fn−1 (2.63)

where k = 0, ...,mt − 1. Using (2.56), by direct substitution we can show that the first two

inequalities are satisfied as equalities. By eliminating p1,t+1+k and pn−1,t+k from the last

inequality, using (2.56), and the facts that ct+k+1 = fmtxs and ct+k+mt−n+1 = fmtxs−mt+n, we

can write the last inequality above as follows:

U ′(fmtxs)

U ′(fmtxs−m+n)
≤

bm
t−nfmt

fn + bmt(fmt − fn)
+

(1− bm
t

)At
n

[fn + bmt(fmt − fn)]U ′(fmtxs−mt+n)

for s = 1, ..., n.

The conditions ps,t+k ≥ 0 for s = mt + 1, ..., n− 1, k = 0, ...,mt − 1 together with the last

inequality yield

U ′(fmtxs)

U ′(fmtxs−m+j)
≤

bm
t−jfmt

fj + bmt(fmt − fj)
+

(1− bm
t

)At
j

[fj + bmt(fmt − fj)]U ′(fmtxs−mt+j)
(2.64)

for s = 1, ...,mt, and j = mt + 1, ..., n. Similarly, it is easy to show that the right-hand side of

(2.64) larger than one is equivalent to (2.16).

Consequently, there exists a φ > 0 such that (2.64) is satisfied if xs = 1/mt + φs, s =

1, ...,mt, xs = 0 for s = mt + 1, ..., n, for all |φs| < φ,
∑mt

s=1 φs = 0, and simultaneously it is

never optimal to postpone harvest after mt.

In addition, a stationary cycle with all land allocated to forestry must satisfy λt ≥ 0, for

t = 0, .... Solving (2.48) or (2.49) for λt, eliminating ps,t, s = 1, ...,mt − 1, t = 0, ..., using

(2.56), we obtain

λt+k =
U ′(ct+k)b

mt

fmt

1− bmt −
U ′(ct+1+k)b

mt+1fmt

1− bmt +
βpcEf

1− bmt

mt−1∑

i=1

bi(1− b)fi − bW ′(0) ≥ 0 (2.65)
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for s = 1, ...,mt, where ct+1+mt = ct+1. Writing ct+k = fmtxs and ct+1+k = fmtxs−1, s =

1, ...,mt, where x0 = xmt yields

λs =
U ′(fmtxs)b

mt

fmt

1− bmt −
U ′(fmtxs−1)b

mt+1fmt

1− bmt +
βpcEf

1− bmt

mt−1∑

i=1

bi(1− b)fi − bW ′(0) ≥ 0

(2.66)

for s = 1, ...,mt.

Given g =
U ′(fmt/m

t)bm
t
fmt

1−bmt
+

βpcEf

1−bmt

∑mt−1
i=1 bifi −

b
1−b

W ′(0) > 0, there must exist a φ > 0

such that (2.66) is satisfied if xs = 1/m
t + φs, s = 1, ...,m

t, for all |φs| < φ,
∑mt

s=1 φs = 0.

Proof of Corollary 2 :

Proof. Given g ≤ 0, no solutions for (2.66) exist. Thus, by letting λt = 0 in (2.48) or

(2.49), eliminating ps,t, s = 1, ...,mt− 1, t = 0, ..., using (2.56), and writing (2.48) analogously

to (2.66), we obtain, for s = 1, ...,mt.:

U ′(fmtxs)b
mt

fmt

1− bmt −
U ′(fmtxs−1)b

mt+1fm
1− bmt +

βpcEf

1− bmt

mt−1∑

i=1

bi(1− b)fi − bW ′(y∞) ≥ 0 (2.67)

This system is linear in U ′(fmtxs), s = 1, ...,m
t. Its solution is given by

U ′(fmtxs) +
pcβEf

∑mt−1
i=1 bifi

bmtfmt

=
W ′(y∞)

∑mt−1
i=0 bi

bmt−1fmt

, s = 1, ...,mt (2.68)

as can be verified by direct substitution. Thus, xs = (1 − y∞)/m
t, s = 1, ...,mt and optimal

stationary cycles cannot exist.

Impact on the optimal rotation period:

We now show that mt ≥ m :

At the steady-state, if there exists a mt = m, for which

pbm
t

fmt

1− bmt +
pcβEf

∑mt−1
i=1 bifi

1− bmt ≥
pbmfm
1− bm

+
pcβEf

∑m−1
i=1 bifi

1− bm
(2.69)

holds, then it is optimal to cut at mt, where mt � m. If (2.69), which is the same as (2.16),

holds in particular for mt = m+1, thenmt ≥ m, while if it holds in particular for mt = m−1,

mt ≤ m. If (2.69) holds as an equality, mt = m.

By making mt = m − 1, we show below that (2.69) never holds, implying that mt ≥ m,

that is, it is optimal to postpone harvest. Also, for mt = m+ 1, (2.69) can be satisfied.

Let mt = m− 1 in (2.69). By rearranging and collecting terms we obtain

pbm−1fm−1(1− bm)− pbmfm(1− bm−1) >
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pcβEf

[

(bm − bm−1)
m−2∑

i=1

bifi + (1− bm−1)bm−1fm−1

]

(2.70)

In (2.70) the left-hand side is negative. Dividing (2.70) by bm−1(1 − bm−1), and since

b = 1
1+r
, we have that

1

bm−1
bm − bm−1

1− bm−1
= b

[
−

r

1− bm−1

]

where the term in square brackets is the equivalent in discrete time to the discounting term
r

1−e−rT
in the continuous time, as long as er ∼= 1+ r, and T = m−1. Therefore, the right-hand

side of (2.70) becomes

PcβEf

[

b

[
r

1− bm−1

]m−2∑

i=1

−bifi + fm−1

]

Since

m−2∑

i=1

bifi = −b
1− bm−1

r
fm−2 +

m−2∑

i=1

bi(fi − fm−2)

we obtain

PcβEf

[
−br

1− bm−1

m−2∑

i=1

bi(fi − fm−2) +

(
fm−1 −

b− bm−1

1− bm−1
fm−2

)]

(2.71)

Since {fi} is an increasing sequence, we may conclude that fi − fm−2 ≤ 0 for i = 1, ...,m− 2.

Since b−bm−1

1−bm−1
< 1, the second-term in the expression above is positive. This implies that the

first term of the right-hand side of (2.70) is positive. Notice that if {fi} is strictly increasing

and for m ≥ 2, then it is strictly positive. Since the second term is also positive, the inequality

never holds. Moreover, since (2.70) can be satisfied for mt = m+1, this implies that mt ≥ m.

This is also similar to the result obtained in the continuous version of the one stand model,

as shown in Costa-Duarte, Cunha-e-Sá and Rosa [4].

2.9 Appendix C

The Karush-Kuhn-Tucker conditions for optimal solutions of problem (2.2-2.8), Sa
t given by

(2.19), for all t = 0, ..., as follows:

bt
∂La

∂x1,t+1
= bf1Ú(ct+1)− bW ′(yt+1)− λt + bp1,t+1 + bD ≤ 0 (2.72)
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bt
∂La

∂xs+1,t+1
= −fsÚ(ct) + bfs+1Ú(ct+1) + bD −

−bW ′(yt+1)− λt + bps+1,t+1 − ps,t ≤ 0 (2.73)

for s = 1, ..., n− 2,

bt
∂La

∂xn,t+1
= −fn−1Ú(ct) + bfnÚ(ct+1) + bD − bW ′(yt+1)− λt − pn−1,t ≤ 0 (2.74)

xs,t+1 ≥ 0, xs,t+1
∂La

∂xs,t+1
= 0, s = 1, ..., n (2.75)

ps,t ≥ 0, ps,t(xs,t − xs+1,t+1) = 0, s = 1, ..., n− 1 (2.76)

λt ≥ 0, λt(1−
n∑

s=1

xs,t+1) = 0 (2.77)

The existence of optimal solutions for bounded utility and b < 1 follows from Theorem 4.6 in

Stokey and Lucas (p.79).

Proof of Proposition 3:

Proof. Following Salo and Tahvonen [20], for s = 1, ...,ma − 1 using (2.72) to eliminate

λt from (2.73) and (2.74), and to satisfy (2.75) we obtain a system of ma x (ma − 1) equality

equations

b(ps+1,t+1+k − p1,t+1+k)− ps,t+k = −bÚ(ct+k+1)(fs+1 − f1) + fsÚ(ct+k) (2.78)

−bp1,t+1+k − pma−1,t+k = −bÚ(ct+k+1)(fma − f1) + fma−1Ú(ct+k) (2.79)

where s = 1, ...,ma − 2, k = 0, ...,ma − 1,.

This system is linear in the Lagrangian multipliers ps,t+k, s = 1, ...,m
a−1, k = 0, ...,ma−1.

Solving for any multiplier yields

ps,t =
bm

a

fma

1− bma

[
b−sU ′(ct+ma−s)− U ′(ct)

]
− fsU

′(ct) (2.80)

for s = 1, ...,ma− 1, t = 0, ...., as can be verified by direct substitution into the two equations

above. condition (2.76) requires, for the indefinitely repeated cycle, that ps,t+k ≥ 0 for s =

1, ...,ma − 1, k = 0, ...,ma − 1. Thus, the fact that x ∈ K implies by (2.80) that

U ′(ct+k)

U ′(ct+k+ma−j)
≤

bm
a−jfm

fj + bma(fma − fj)
(2.81)
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for k = 0, ...,ma− 1, j = 1, ...,ma− 1. Using (2.3) and the definition of carbon harvesting, we

can write ct+k = fmaxs and ct+k+ma−j = fmaxs−ma+j where s−ma+ j is understood as s− j,

if s−ma + j ≤ 0. Equation (2.81) takes the form

U ′(fmaxs)

U ′(fmaxs−1)
≤ ηa

j ≡
bm

a−jfma

fj + bma(fma − fj)
(2.82)

for s = 1, ...,ma, j = 1, ...,ma−1. Since ηa
j > 1, the right-hand side of (2.82) is larger than one.

Moreover, this is equivalent to (2.20), as can be easily checked. Then, by the strict concavity

of U , there must exist a φ > 0, such that (2.82) is satisfied if xs = 1/m
a + φs, s = 1, ...,m

a,

for all |φs| < φ,
∑ma

s=1 φs = 0.

Similarly, results can be derived for s = ma + 1, ..., n, and k = 0, ...,ma − 1. Following the

previous cases, we can show that a similar condition to (2.82) can be obtained for s = ma, ..., n,

j = ma + 1, ..., n,

U ′(fmaxs)

U ′(fmaxs−ma+j)
≤ ηa

j ≡
bm

a−jfma

fj + bma(fma − fj)
(2.83)

to which all we have shown above for s = 1, ...,ma, j = 1, ...,ma−1, still applies. Consequently,

there exists a φ > 0 such that (2.83) is satisfied if xs = 1/m
a + φs, s = 1, ...,m

a, xs = 0 for

s = ma+1, ..., n, for all |φs| < φ,
∑ma

s=1 φs = 0.Moreover, m
a = m, as it can be easily observed

by comparing (2.20) with (2.10).

In addition, a stationary cycle with all land allocated to forestry must satisfy λt ≥ 0, for

t = 0, .... Solving (2.72) or (2.73) for λt, eliminating ps,t, s = 1, ...,ma − 1, t = 0, ..., using

(2.80), we obtain

λt+k =
U ′(ct+k)b

ma

fma

1− bma −
U ′(ct+1+k)b

ma+1fma

1− bma + bD − bW ′(0) ≥ 0 (2.84)

for s = 1, ...,ma, where ct+1+ma = ct+1. Writing ct+k = fmaxs and ct+1+k = fmaxs−1, s =

1, ...,ma, where x0 = xma yields

λs =
U ′(fmaxs)b

ma

fma

1− bma −
U ′(fmaxs−1)b

ma+1fm
1− bma + bD − bW ′(0) ≥ 0 (2.85)

for s = 1, ...,ma.

Given g = U ′(fma/m
a)bm

a
fma

1−bma
+ b

1−b
D − b

1−b
W ′(0) > 0, there must exist a φ > 0 such that

(2.85) is satisfied if xs = 1/m
a + φs, s = 1, ...,m

a, for all |φs| < φ,
∑ma

s=1 φs = 0.

Proof of Corollary 3 :

Proof. Given g ≤ 0, no solutions for (2.85) exist. Thus, by letting λt = 0 in (2.72) or

(2.73), eliminating ps,t, s = 1, ...,ma−1, t = 0, ..., using (2.80), and writing (2.72) analogously

to (2.85), obtaining:

U ′(fmaxs)b
ma

fma

1− bma −
U ′(fmaxs−1)b

ma+1fma

1− bma + bD − bW ′(y∞) ≥ 0 (2.86)

58



2.9. APPENDIX C

for s = 1, ...,ma.

This system is linear in U ′(fmaxs), s = 1, ...,m
a. Its solution is given by

U ′(fmaxs) +

∑ma−1
i=0 bi

bma−1fma

D =
W ′(y∞)

∑ma−1
i=0 bi

bma−1fma

, s = 1, ...,ma (2.87)

as can be verified by direct substitution. Thus, xs = (1− y∞)/m
a, s = 1, ...,ma and optimal

stationary cycles cannot exist.
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2.10 Appendix D

Figure 1. Forest Area
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                                                               ( Pc=Pss; Theta=0)
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Figure 3a. Cumulative Net Present Value (components) – Carbon Flow Method
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Figure 3d. Cumulative Net Present Value (components) – Ton-Year Method
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Figure 3e. Cumulative Net Present Value (components) – Average Storage Method
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Pc_Pss Pc_2Pss Pc_6Pss Pc_Pss Pc_2Pss Pc_6Pss

Forested area (1 -  y8 ) 0,9358 0,93783 0,93945 0,94616 Forested area (1 -  y8 ) 0,9358 0,94286 0,94864 0,96395

Optimal rotation 19 19 19 21 Optimal rotation 19 19 19 19

Area by age xs,8  0,04925 0,04936 0,04944 0,0451 Area by age xs,8  0,04925 0,049623 0,049928 0,050736

Price of timber 0,4368 0,4365 0,4363 0,43003 Price of timber 0,4368 0,43582 0,43504 0,43336

Unit cost of land W'(y8 ) 4,4971 4,6143 4,713 5,18 Unit cost of land W'(y8 ) 4,4971 4,9363 5,3763 7,136

Timber Consumption 15,814 15,848 15,875 16,67 Timber Consumption 15,814 15,933 16,029 16,237

Net Cumulative Biomass Carbon 0 9,279 16,932 909,93 Net Cumulative Biomass Carbon 0 31,308 56,899 124,42

0 0,5 1 0 0,5 1

Forested area (1 -  y8 ) 0,9358 0,94177 0,94767 0,95252 Forested area (1 -  y8 ) 0,9358 0,94748 0,95666 0,96333

Optimal rotation 19 20 20 20 Optimal rotation 19 21 21 20

Area by age xs,8  0,04925 0,04709 0,04738 0,04762 Area by age xs,8  0,04925 0,045119 0,045554 0,048156

Price of timber 0,4368 0,43288 0,43207 0,43143 Price of timber 0,4368 0,42985 0,42853 0,42984

Unit cost of land W'(y8 ) 4,4971 4,8631 5,2964 5,7252 Unit cost of land W'(y8 ) 4,4971 5,2831 6,1578 7,0389

Timber Consumption 15,814 16,297 16,399 16,481 Timber Consumption 15,814 16,683 16,854 16,684

Net Cumulative Biomass Carbon 0 451,19 473,85 484,41 Net Cumulative Biomass Carbon 0 916,74 953,72 575,47

0 0,5 1 0 0,5 1

Forested area (1 -  y8 ) 0,9358 0,95694 0,96851 0,97582 Forested area (1 -  y8 ) 0,9358 0,96439 0,97573 0,98218

Optimal rotation 19 23 21 21 Optimal rotation 19 24 22 21

Area by age xs,8  0,04925 0,04161 0,04612 0,04647 Area by age xs,8  0,04925 0,04 0,044348 0,046766

Price of timber 0,4368 0,42758 0,42742 0,42726 Price of timber 0,4368 0,4273 0,42524 0,42344

Unit cost of land W'(y8 ) 4,4971 6,1898 7,9521 9,8215 Unit cost of land W'(y8 ) 4,4971 7,2058 9,7921 12,541

Timber Consumption 15,814 16,98 17,002 17,022 Timber Consumption 15,814 17,031 17,294 17,54

Net Cumulative Biomass Carbon 0 1807,9 1054,3 1082,7 Net Cumulative Biomass Carbon 0 2293,3 1540,3 1127,1

*These values are obtained after 300 iterations *These values are obtained af ter 500 iterations

Ton-Year Average

Carbon Flow

No carbon 

benefits

No carbon 

benefits

Pc=Pss Pc=2Pss

θ θNo carbon 

benefits

No carbon 

benefits

The Net Cumulative Biomass Carbon is calculated as the sum of the yearly sequestered biomass carbon above the one resulting from the baseline scenario(no 

carbon benefits). The considered time horizon is of 200 years.

Pc=4Pss* Pc=6Pss*

θ θNo carbon 

benefits

No carbon 

benefits

Table 1. Simulation Results

v i forest area rotation v i forest area rotation v i forest area rotation

Carbon Flow 226,3744 0,94177 20 Carbon Flow 240,2064 0,94767 20 Carbon Flow 254,0965 0,95252 20

Ton-year 226,2331 0,93783 19 Ton-year 240,0632 0,93783 19 Ton-year 253,8933 0,93783 19

Average 226,2407 0,94286 19 Average 240,111 0,94286 19 Average 253,9813 0,94286 19

Ton-year Average Ton-year Average Ton-year Average

-0,06% -0,06% -0,06% -0,04% -0,08% -0,05%

v i forest area rotation v i forest area rotation v i forest area rotation

Carbon Flow 227,6339 0,94748 21 Carbon Flow 255,2039 0,95666 21 Carbon Flow 282,998 0,96333 20

Ton-year 226,2678 0,93945 19 Ton-year 253,9539 0,93945 19 Ton-year 281,64 0,93945 19

Average 226,2992 0,94864 19 Average 254,1353 0,94864 19 Average 281,9713 0,94864 19

Ton-year Average Ton-year Average Ton-year Average

-0,60% -0,59% -0,49% -0,42% -0,48% -0,36%

v i forest area rotation v i forest area rotation v i forest area rotation

Carbon Flow 240,1809 0,96439 24 Carbon Flow 319,9694 0,97573 22 Carbon Flow 402,9598 0,98218 21

Ton-year 234,4237 0,94616 21 Ton-year 316,7785 0,94616 21 Ton-year 399,1327 0,94616 21

Average 226,8387 0,96395 19 Average 311,1256 0,96395 19 Average 395,4119 0,96395 19

Ton-year Average Ton-year Average Ton-year Average

-2,40% -5,56% -1,00% -2,76% -0,95% -1,87%

Pc=Pss
θ=0 θ=0,5 θ=1

Deviations from optimal solution

Welfare Loss               

[(v i -v cf )/v cf ]

Welfare Loss               

[(v i -v cf )/v cf ]

Welfare Loss               

[(v i -v cf )/v cf ]

-0,39% 0,11%
(forest area i -forest 

area cf )/forest area cf

Deviations from optimal solution Deviations from optimal solution

-0,97%

Pc=2Pss
θ=0 θ=0,5 θ=1

-0,98% -0,48%
(forest area i -forest 

area cf)/forest area cf
-1,47%

(forest area i -forest 

area cf)/forest area cf

Deviations from optimal solution

Welfare Loss               

[(v i -v cf )/v cf ]

Welfare Loss               

[(v i -v cf )/v cf ]

Welfare Loss               

[(v i -v cf )/v cf ]

-0,80% 0,12%
(forest area i -forest 

area cf )/forest area cf

Deviations from optimal solution Deviations from optimal solution

-1,47%

Pc=6Pss
θ=0 θ=0,5 θ=1

-1,72% -0,80%
(forest area i -forest 

area cf)/forest area cf
-2,39%

(forest area i -forest 

area cf)/forest area cf

Deviations from optimal solution Deviations from optimal solution Deviations from optimal solution

Welfare Loss               

[(v i -v cf )/v cf ]

Welfare Loss               

[(v i -v cf )/v cf ]

Welfare Loss               

[(v i -v cf )/v cf ]

-1,82%

* The welfare values obtained for the ton-year and average storage method are calculated using the carbon flow accounting to obtain the benefits of the 

internalization of the carbon externality (S).

-2,96% -1,18%
(forest area i -forest 

area cf)/forest area cf
-3,60%

(forest area i -forest 

area cf)/forest area cf
-1,82% -0,04%

(forest area i -forest 

area cf )/forest area cf

Table 2.  Welfare deviations: Ton-year vs Carbon Flow / Average Storage vs Carbon Flow
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Chapter 3

Biodiversity and the Forest Sector

3.1 Introduction

Climate change and the loss of biodiversity are amongst the most serious challenges facing

the international community. Given their global character, a combined action of the different

parties involved in the process is required. As a response to this problem two international

agreements were designed: the Kyoto Protocol (KP) and the Convention on Biodiversity

(CBD). However, given the prominence of the climate change debate on the international

policy arena, while a several studies on the use of forests as carbon sinks have been undertaken,

only a much smaller part on the economics literature has been devoted to biodiversity.

Recently, though, as the existence of possible conflicts between carbon sequestration poli-

cies and biodiversity has been recognized (UNCBD [27]), biodiversity is once more at the

centre of the forestry literature debate ( Englin and Callaway [12], Creedy et al [11], Caparrós

and Jacquemont [8], Matthews et al.[20]).

Building upon the pioneer work by Hartmann [14], who extended the one stand Faustmann

model to incorporate forest’s provision of amenity services, a vast literature on this subject is

already available. However, while this framework has been proved to be a powerful analytical

tool to analyze stand level forests’ questions, it only allows for exogenous timber and land

prices, leaving many questions unanswered. In fact, this is a major drawback of these models,

as biodiversity policies by increasing/decreasing rotation periods and introducing different

incentives on land and species use, may create considerable pressure both on timber and land

markets. Actually, land use change is a crucial element on the design of an optimal biodiversity

policy: according to the Intergovernmental Panel on Climate Change (IPPC), land-use change

is one of the major factors affecting not only climate change but also biodiversity loss (IPCC

[16]). Therefore, the possibility of endogenous land allocation should be considered in a

biodiversity model. In addition, the one stand forest analytical framework only allows for
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static comparisons, implying that transition dynamics are left aside, a central aspect when

considering welfare costs. Some important exceptions are the models by Alig et al. [1] ,

Sedjo and Sohngen [24], Tahvonen [26], and more recently by Costa-Duarte, Cunha-Sá and

Rosa [10]. However, except for Tahvonen [26], these papers focus their analysis on timber and

carbon sequestration aspects.

While a complete assessment of the interactions between carbon sequestration policies

and biodiversity conservation is still needed, there are previous questions in the biodivesity

literature that remains to be addressed, namely, in what concerns the forest sector scope.

To this end, biodiversity considerations are introduced into a multiple species, multi-vintage

forest sector model with endogenously determined timber prices and land use allocation. That

is the purpose of this paper.

When biodiversity is introduced into an economic model, two additional difficulties arise:

the first relates to the measurement of economic values provided by biodiversity, while the

second results from the modelling of the complex nature of biological relationships that con-

stitutes an ecosystem. Therefore, most studies focus on a single (or few) amenity service.

However, as forests species and canopy variety are closely related to biological diversity (Bi-

esterfeldt and Boyce [3], Burton et al. [7], Hunter [15]), management of its ecological services

can be achieved by focusing only on structural diversity, i.e., age classes and species distribu-

tion (Buongiorno et al. [5], Buongiorno et al. [6], Önal [21]). In what follows, we shall measure

biodiversity based on this literature, as it not only saves us from the problem of enumerating

all possible amenities forests may provide, but it also identifies an ecologically meaningful

framework, where environmental benefits are a result of the forest structure condition (Bowes

and Krutilla [4]). In addition, we also avoid the problem of biodiversity valuation and incor-

porate it, instead, as an ecological constraint into the problem of the public forest manager

that maximizes timber and alternative uses benefits. Note, however, that it is also possible

in this context to calculate the resulting losses in timber consumption value from introducing

biodiversity considerations, and, therefore, to find a threshold value to be satisfied by policy

implementation.

While an obvious ecologically valuable forest structure to consider is the old growth, to

focus only on these type of forests can be an oversimplification, as different stages of a stand

provide different habitats that are favorable for some plants and animals but not to others ( e.g

.seedlings are favorable to dears while a higher proportion of saplings improve conditions for

the existence of songbirds) ( Bisterfeldt and Boyce [3], Lin and Buongiorno [19]). Therefore,

a target distribution between species and age classes is instead considered (Buongiorno et al.

[6], Krcmar et al. [18], Önal [21]).
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Despite the fact that biodiversity tends to increase when agricultural lands are converted

into forests, the species used for afforestation or reforestation are not without consequences.

In fact, the use of exotic over native species is one of the most contentious aspects concerning

biodiversity management in plantation forests. While a consensus is not achieved within

the scientific community, it is usually recommended that native species should be favored

over exotics (Hartley [13]). According to this literature, we will consider that biodiversity’s

concerns are focused on the area devoted to the native species forest(s). To this end, three

different biodiversity scenarios are analyzed.

In the first scenario, the forest structure to be considered only accounts for species 1 area

distribution without distinguishing age class structure. The public forest managers are thus

only interested in guaranteeing that a sufficiently large amount of forest area is devoted to

native species. Under the other two alternative scenarios age class is also considered. The first

focus on the more obvious biodiversity forest structure, the old growth. When this constraint

is imposed, the public forest manager focuses only on the total amount of land devoted to

species 1 old growth area. In the second case, constraints are imposed both on old growth

and younger stand areas. Therefore, the already mentioned literature claiming that stands

with younger trees may also contribute to biodiversity is also taken into account (Biesterfeldt

and Boyce [3], Lin and Buongiorno [19]). While a full proof on the long-run optimality of the

normal forest steady-state is provided for the first scenario, the other two will be treated only

by the simulation of numerical examples. In fact, the main insights of this paper are brought

by the simulation results and, consequently, a large part of the analysis is dedicated to them.

In addition, as the solution to the unconstrained biodiversity problem, as well as its main

properties, are already well known, all major comparisons with the baseline scenario can be

easily undertaken.

Based on the numerical simulations, we observe that the optimal transition path towards

the stationary state is characterized by major disturbances concentrated in a short period

of time. Consequently, timber and land markets are also highly affected. Moreover, timber

management along the transition path is very different from the one in the baseline case (in

which biodiversity is not taken into account), as both deviations from Faustmann rotations

and changes in land use allocation are present for a long period. Hence, consumption cycles

also tend to persist. Finally, we observe that timber price behaviour is also highly affected by

the type of forest structure considered.

The remainder of the paper is organized as follows. Section 2 extends the theoretical

multiple vintage model to account for biodiversity in a multi-species context and provides a

full proof of the optimal steady state for the first biodiversity scenario. In Section 3 numer-
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ical simulations illustrate the main results for the three above mentioned biodiversity forests

structures. Section 4 concludes the paper. Technical details and figures are presented in the

Appendices.

3.2 The Model

In this section we provide a full proof on the long-run optimality of the normal forest steady-

state under the first biodiversity scenario, i.e., when the targeted forest structure only accounts

for species 1 area distribution and no constraint is imposed on the age class structure.

The model used in this paper follows closely the multiple vintage forest model developed

in Salo and Tahvonen [23], which can be summarized as follows. The model assumes multi

species multi vintages forest land, where s = 1, ..., n represents the age of trees for species

l = 1, ..., L, xl
s,t the area of forest land allocated to the age class s of species l in period t,

f l
s the biomass content in timber per unit of land with trees of age class s and species l, and

0 ≤ f l
1 ≤ .... ≤ f l

n, for each l. Land allocation must satisfy

0 ≤ yt = 1−
L∑

l=1

n∑

s=1

xl
s,t (3.1)

that is, total land area equals 1, and yt is the area of land allocated to an alternative use

(agriculture or urban use).

Let us denote by U l(ct) =
∫
dl(c)dc the social utility from timber consumption for species l,

where dl(.) is the inverse demand for timber for species l, and assume each U l(.) is a continuous,

twice differentiable, increasing and strictly concave function. Also, W (yt) =
∫
q(y)dy , where

W (.) is a continuous, twice differentiable, increasing and concave function.

Thus, the problem of optimal forest harvesting and allocation of land is obtained by max-

imizing the present value of social utility from the use of land, as follows:

v(xl
1,0
, ....xl

n,0
) = Max

{xls,t+1,s=1,...n,l=1,...,L,t=0,...}

∞∑

t=0

bt

[
L∑

l=1

U l
(
clt
)
+W (yt)

]

(3.2)

subject to

clt =
n−1∑

s=1

f l
s

(
xl
s,t − xl

s+1,t+1

)
+ f l

nx
l
n,t, l = 1, ..., L (3.3)

yt = 1−
L∑

l=1

n∑

s=1

xl
s,t (3.4)
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xl
s+1,t+1 ≤ xl

s,t, s = 1, .......n− 1, l = 1, ..., L (3.5)

L∑

l=1

n∑

s=1

xl
s,t+1 ≤ 1 (3.6)

α
L∑

l=1

n∑

s=1

xl
s,t+1 ≤

n∑

s=1

x1s,t+1, 0 < α < 1 (3.7)

xl
s,t ≥ 0, s = 1, ...., n, l = 1, ..., L (3.8)

for all t = 0, 1.... Moreover, the initial land distribution satisfies

xl
s,0 ≥ 0, s = 1, ...., n,

L∑

l=1

n∑

s=1

xl
s,0 ≤ 1 (3.9)

Therefore, given the discount factor b, the problem consists of choosing the next period

state, that is, the land allocation between different vintages and competing uses of land for

all t = 1, ....

Equation (3.7) introduces biodiversity by imposing a particular forest structure with eco-

logical value. Without loss of generality we chose, for the case here considered, species 1 total

area to be at least a proportion, α, of the total forested area. 1

The necessary conditions for optimal solutions can be obtained from the following La-

grangian problem. For (3.2-3.9) it can be stated as

L =
∞∑

t=0

bt

[
L∑

l=1

U l
(
clt
)
+W (yt)

]

+ λt

(

1−
L∑

l=1

n∑

s=1

xl
s,t+1

)

+

+
L∑

l=1

n−1∑

s=1

[
pl
s,t

(
xl
s,t − xl

s+1,t+1

)]
+ µt

[
n∑

s=1

x1s,t+1 − α
L∑

l=1

n∑

s=1

xl
s,t+1

]

(3.10)

where pl
s,t , λt and µt are the Lagrangian multipliers. While pl

s,t can be interpreted as the

value of marginal changes in forest land area of vintage s for species l at the beginning of

period t+1, λt represents the value of marginal changes in land allocation between forest and

alternative uses. µt can be interpreted as the value of a marginal change in the total forested

land proportion area’s constraint.

Salo and Tahvonen [23] provide a full proof on the long-run optimality of the normal forest

steady-state for the above problem when equation (7) is not considered or binding (or µt = 0)

and there is only one species.

1The same proof can be easily extented to the case of a restricted set of species
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A forest is called an Optimal Biodiversity Faustmann Forest (OBFF) if the age-class struc-

ture xl = (xl
1, ..., x

l
n) has the property xl

s = 0 for s = ml + 1, ..., n and if harvesting only trees

of age ml is the optimal solution for the above problem when xl
0 = xl. An OBFF is an interior

OBFF if xl
s > 0 for s = 1, ...,ml. In addition, an OBFF with the normal forest structure

is xl = (1/ml, ..., 1/ml, 0, ..., 0), and in each period it yields a constant consumption level of

fml/ml. An OBFF with consumption that is periodic with period length equal to ml can be

expressed as xl = (1/ml+φl
1, ..., 1/m

l+φl
ml , 0, ...0) ∈ S, where φkl represents the largest num-

ber φl that satisfies xl = (1/ml + φ1, ..., 1/m
l + φml, 0, ...0) ∈ K for all

∣∣φl
s

∣∣ < φl, l = 1, ..., L,

s = 1, ...,ml,
∑ml

s=1 φ
l
s = 0, The Faustmann rotation period for species l, denoted by ml,

1 ≤ ml ≤ nl, is assumed to be unique and satisfies the following condition: 2

bm
l

f l
ml/(1− bm

l

) ≥ bsf l
s/(1− bs), s = 1, ..., n. (3.11)

Salo and Tahvonen [23] show that, if all land is allocated to forestry, optimal forest man-

agement can lead to optimal cyclical harvesting because smoothening an age class structure

that deviates from the normal forest is not optimal. On the contrary, if it is optimal to allocate

part of the land to alternative land use then optimal stationary cycles cannot exist.3

By solving the problem (3.2-3.9) for each species l, we first study the existence of op-

timal stationary cycles in a regime where the oldest age class is clear-cut and immediately

regenerated at the end of each period.

Proposition 1:Given gl ≡
U l′(f l

ml
/ml)bm

l
f l
ml

1−bmcl
− b

1−b
W ′(0)− b

1−b
µα > 0, mcl ≥ 2, and b < 1, for

l = 1, ..., L, there exists a set of interior Optimal Biodiversity Faustmann Forests with φkl > 0.

Proof. The proof is in Appendix A.

In Proposition 1 it is shown that optimal stationary cycles exist when it is optimal to

allocate all land to forestry. From (3.34) and (3.35) in Appendix A it is still possible to

conclude that for more stringent biodiversity restrictions, that is, the higher is µ, the lower

will be the cycles for the unconstrained species (l = 2, ...L) and the higher for the constrained

one (l = 1).

Corollary1: If gl ≡
U l′(f l

ml
/ml)bmf l

ml

1−bml
− b

1−b
W ′(0) − b

1−b
µα ≤ 0, for l = 1, ..., L, optimal

stationary cycles with y∞ ≥ 0 and y∞ constant do not exist.

Proof. The proof is in Appendix A.

2In Salo and Tahvonen [23] no harvesting or plantation costs are considered nor any type of forest exter-
nalities. Under these conditions, m, as defined in (3.11), is the Faustmann rotation period in the one stand
model. As consumption is constant in the steady-state, so is the marginal utility of consumption U ′(.) = p,
the long-run market equilibrium price of timber. In addition, this condition also corresponds to the maximum
value in the steady-state of a marginal unit of bare forest land.

3See Salo and Tahvonen [23], Proposition 1 and Corollary 1, pages 518-520.
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When it is optimal to allocate land to alternative uses, Corollary 2 shows that optimal cy-

cles are eliminated and the remaining equilibrium is the normal forest steady-state. Assuming

that ml is unique, for a stationary state with binding biodiversity constraint, we have that

pl
s,t = pl

s,∞, c
l
t = cl∞, yt = y∞, λt = 0, µt > 0 and xl

ml,t = xl
∞, where cl∞, y∞, xcl

∞, and pl
s,∞, for

s = 1, ..., n − 1, and l = 1, ..., L, are constant. Following Salo and Tahvonen ([23]) page 521

is easy to show that the following equations for the pl
st Lagrangian multipliers guarantee that

there exists a unique stationary state for the allocation of land between alternative use and

forestry and between the forest age classes.4

p1s = W ′(y∞)
s−1∑

i=0

b−i − f 1sU
1′(c1∞)− µ∞(1− α)

s−1∑

i=0

b−i (3.12)

and

pl
s = W ′(y∞)

s−1∑

i=0

b−i − f l
sU

l′(cl∞) + µ∞α
s−1∑

i=0

b−i (3.13)

l = 2, .., L, s = 1, ..., n,

After some algebra, (3.12) and (3.13) can be rewritten for s = ml and pml = 0 as:

W ′(y∞)b

1− b
−

µ∞(1− α)b

1− b
−

bm
1
f 1m

1− bm1U
1′

[

(1− y∞ −
L∑

l=2

n∑

s=1

xl
s,t+1)f

1
m/m

1

]

= 0 (3.14)

and

W ′(y∞)b

1− b
+

µ∞αb

1− b
−

bm
1
f 1m

1− bm1U
1′

[

(1− y∞ −
L∑

v=1

n∑

s=1

xv �=l
s )f lml/ml

]

= 0 (3.15)

Combining these two equations and solving for y∞, all the other state variables are fully

defined. Consequently, the allocation between all species age stands and the alternative use

can be obtained.

3.3 Numerical Simulations

We now proceed with simulations for the theoretical model developed in the previous section

under three different types of biodiversity forest structure. Our analysis is based on the

following example: U(clt) =
(clt)

0.7

0.7
is the utility function from consumption for both species5

and W (yt) = 0.5[
y0.2t
0.2
] is the utility from non-forestry land, that is, from the alternative use of

4The full proof can be provided by request.
5It is our aim to focus on factors such as species speed of growth and forest structure. Therefore we consider

the same utility function for both types of timber.
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land6. The vectors f l
s of the biomass content in timber per unit of land for species l = 1, 2

and for age classes s = 1, ..., 12, are given by

f 1s = [0, 0, 22, 39, 65, 101, 148, 204, 263, 321, 370, 408]

f2s = [5, 35, 90, 160, 227, 269, 296, 315, 331, 346, 357, 367]

Note that species 2 initially increases at a higher rate than species 1. For both species the

initial land distribution is given by xl
s0 = 0.1, s = 1, .., 5 and xl

s0 = 0, s = 6, ..., 12. The used

discount factor is b = 0.9025.

Species’ type is one of the main concerns regarding biodiversity conservation in forestry.

Despite that a consensus is not achieved within the scientific community, it is usually recom-

mended that native species should be favored over exotics (Hartley [13], Krcmar et al. [18]).

Moreover, the widespread use of non-native fast growing species for timber production (Ca-

parrós et al. [9]), and more recently suggested for carbon sequestration activities (Krcmar et

al. [18], Van Kooten [28], IPCC [17]), is pointed out as one of the major threats to biodiversity.

Thus, we assume that biodiversity’s concerns will be focused on the area devoted to the native

species’ forest. In particular, species 1 (the slow growing species) represents the native forest,

while the second one represents the non-native type. Bearing this in mind, we focus on three

different kinds of target biodiversity forest structures.

The simplest forest structure to be considered only accounts for species area distribution

while no distinction is made on age class structure. In this case, the public forest managers

are only interested in guaranteeing that a sufficiently large amount of forest area is devoted

to the native species. When age class is also considered, two cases are addressed. The first

focus on the more obvious biodiversity forest structure, the old growth. When this constraint

is imposed, the public forest manager is concerned about the total amount of land devoted to

species 1 old growth area. For the second case, requirements are imposed both on old growth

and younger stand areas.

Note that the initial land distributions may not instantaneously satisfy the imposed forest

structure conditions. As a result, an adjustment time interval, T b, is necessary. Here we will

consider two values for this variable, T b = 40 and T b = 10 time units.

In what follows, we focus on transition dynamics, disturbances and adjustments both on

timber and land markets and, finally, on the cyclical approach to the forest steady state

distribution.
6Here we are using the same example as in Salo and Tahvonen [23]. The same algorithm is also applied

(see Andersond and Ye [2])
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3.3.1 Baseline - The Unconstrained Problem

If only timber benefits are considered and no constraint is imposed, the steady state normal

forest structure is reached approximately after 50 periods (cycles completely vanish). Timber

consumption is, consequently, fully smoothened. While different initial distributions of land

strongly impact the transition paths, the new steady state is independent of the initial con-

ditions. When the steady state is reached, harvesting patterns follows Faustmann rotation:

only trees of age class 10 are harvested for species 1, and of age class 5 for species 2. Most area

is allocated to forest use, while a significantly higher fraction is devoted to the fast growing

species (approximately 85% of total forest area).

The approach to the steady state consumption path, where the normal forest structure

is reached, is cyclical. For the initial periods, when the stand’s area’s distribution is still far

from the optimal, adjustments are made by both deviations from the Faustmann rotation and

adjustments on the distribution between species forest area and the alternative use. However,

when age class structure is already close to the normal forest, marginal changes in utility

approach zero as timber consumption is smoothened, while costly deviations from the Faust-

mann rotation are strictly positive (note that time is a discrete variable). Therefore, marginal

adjustments are no longer obtained by deviating from Faustmann rotation but exclusively

through land distribution allocation (see Salo and Tahvonen [23]). These adjustments, then,

proceed as follows: when the stand area to be harvested is above the normal forest structure

distribution, next period allocation for stand 1 is decreased and the inverse process occurs if

the harvested stand area is below the optimal distribution allocation.

Along the optimal transition path, consumption cycles are positively correlated between

species. Periods of higher consumption for species 2 match with higher consumption for species

1. The same pattern is observed for periods of low consumption. As most area is devoted

to species 2, stand area distribution for species 1 is changed to match the consumption cycle

path for species 2, and cycles of five periods are, therefore, created.7.

3.3.2 Species’ Area

We now consider the first and less stringent constrained problem, where forest structure is

not imposed over age classes but only on species’ area distribution. If timber benefits are

maximized without any forest structure constraint, species 1 forest area accounts only for

14.5% of total forest area. Therefore, we shall consider three cases. In the first species 1 forest

area equals 20% of total forest area, while for the second and third that area increases to 60%

7Note that if both biomass vector were equal to f1s , these cycles would be in periods of 10 time units.
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and 90%, respectively.

When T b = 40, the transition to the new optimal steady state is not smooth when compared

to the unconstrained solution. During the initial periods, when the constraint on species 1

area is still far in the future, the new transition dynamics is the same as in the unconstrained

problem. Therefore, severe changes are concentrated in a short period of time, just before

and after T b, the time period at which the constraint has to be met (see Figures 1a and

1b). Adjustments are tighter the larger is the restriction on species 1 total area, implying, in

some cases, almost discrete jumps on timber consumption, prices and land distribution among

species (see Figures 2 -3). Consequently, major disturbances are reflected on both timber and

land markets.

Total forest area decreases as more demanding constraints are imposed on species 1 area.

However, land use distribution between forest and the alternative use is rather stable: no

major changes take place even for very high percentage values of land dedicated to species 1

forest area (90%) (see Figure 2c).

If the T b = 10, transition dynamics start soon to differ from that obtained in the baseline

scenario. More important, however, is the impact of this parameter on Timber Consumption

Present Value, as differences in the former seem to be the most important factor driving

decreases in the latter. This is due to the fact that major adjustments are now taking place

during the initial periods, considerably reducing consumption for species 2 when the effect of

discounting is still small (see Figures 4a and 4b).

In contrast to the unconstrained problem, timber consumption cycles are no longer always

positively correlated. In fact, the period in which consumption is the highest for species 1

coincides with that in which consumption for species 2 is the lowest. Moreover, species 1 cycles

no longer change to perfectly match species 2 cycles as in the previous section (figure 5). To

understand what lies behind this result, let us assume that consumption for both species is

positively correlated. If both timber consumptions (and stand areas) were above the normal

forest steady state structure, optimal adjustments would require that in the following periods

forested area had to diminish. To satisfy the constraint, however, area adjustments would

have to be coordinated or, in alternative, it would be possible to increase stand areas for age

classes above Faustmann and then adjust (reduce) stand areas to approach the normal forest

steady state. However, Faustmann rotation deviations are costly when compared to changes

in forest area. Therefore, periods of decreasing timber consumption for species 1 will tend to

coincide with periods where consumption is increasing for species 2. By doing so, when it is

optimal to reduce one species forest area, it will be optimal to increase or maintain the other,

and only minor changes in Faustmann’s rotation periods are necessary.
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3.3.3 Old Growth

We now analyze the case in which optimal biodiversity forest structure is given by old growth.

When old growth is considered, a slight modification to the problem presented in (3.2 - 3.9) is

necessary. In fact, an additional age class (n+ 1) has to be introduced, representing the land

area for the age classes older than n.8 Moreover, (3.7) should be rewritten as:

α
L∑

l=1

n+1∑

s=1

xl
s,t+1 = x1n+1,t+1, 0 < α < 1 (3.16)

Once again, the transition to the new optimal steady state solution is not smooth and a

similar pattern to the previous constrained problem is obtained. Drastic changes are, therefore,

concentrated in a short period of time, approximately 15/20 periods, when several disturbances

contaminate both land and timber markets (see Figures 6a, 6b and 8c).

The steady state total forest area decreases as a higher forest area is imposed to be old

growth. However, if the targeted area is small (0.05 and 0.1), changes in the steady state

land use distribution between forest and the alternative use are also small when compared to

the one in the baseline scenario (see Figure 7c). On the other hand, changes on species’ area

composition are more substantial, as the slow growing species is favored over the fast growing

one. In fact, species 1 total forest area can be even higher than the one in the baseline scenario

(see figures 7a and 7b) . While species’ 1 total forest area increases, its timber consumption

actually decreases. This is due to the fact that the increase in total area also includes the area

devoted to old growth. If only considered the area used for timber production, this number

is actually smaller. Timber species 2 forest area also declines. As a consequence of these two

facts, both timber prices are higher under the old growth constrained problem (see Figures 8a

and 8b).

As in the previous subsection, when T b = 10, transition dynamics start soon to differ from

that obtained under the baseline scenario. More important, however, is the fact that if this

period is too short, forest area may suffer a temporarily large reduction to meet the constraint,

while the optimal steady state area distribution is again approached in the future (see figure

9). Consequently, major disturbances are felt both in timber and land markets. Once more,

changes in T b seem to be the most important factors driving reductions on total present value.

Moreover, under this type of restriction, the present value of timber consumption decrease by

more when compared to the previous subsection. In fact, the present value for a 10% target

old growth area is lower than the one obtained for the extreme case of a 90% species 1 total

forest area restriction for the previous type of forest structure.

8For a complete presentation of this modified problem see Tahvonen [26]
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Also, there seems to be an upper limit to the old growth target (30%) above which the

total forest area steadily declines towards zero (see Figures 7a and 7b),9 implying that as

timber consumption declines, prices rapidly increase. Therefore, tightening the constraint on

old growth area may have a huge impact on timber and land markets. Moreover, as the forest

structure is defined over the proportion of total forest area, and not over the total available

amount of land, this optimal decrease in total forested area may even result in allocations

without biodiversity meaning.

As in the unconstrained problem, stand area distribution for species 1 is changed to match

the consumption cycle path for species 2. Consumption cycles are, therefore, positively cor-

related, unlike the optimal solution under the previous forest structure constraint. After 200

time periods, the normal forest structure is still not reached and approximations are cyclical.

In fact, adjustments towards the normal forest are now more difficult as changes in stands

areas have to be met by changes in the old growth area. As a consequence, stand ages above

Faustmann rotation are now used to alleviate the costs of adjustment. For instance, when the

stands to be harvested, that is, Faustmann’s, are above the optimal normal forest structure,

it is optimal to leave a fraction of this area to age class 11 for species 1 (remember that Faust-

mann rotation is given by age class 10). By doing so, the area for these stands can be optimally

reduced while total forest area is not, resulting that no adjustments on the old growth area are

necessary. Note that this is a major change in forest management relative to the unconstrained

problem, where adjustments took place early on by changing areas’ distribution and not by

deviating from Faustmann’s rotation.

3.3.4 Old growth and younger stands

Finally, we analyze the more complex forest structure type where restrictions are imposed

both on old growth and younger age classes. To account for this type of forest structure we

consider restrictions in the total area of the three younger age stands and, as in the previous

subsection, in the oldest age class. For illustrative purposes we will focus our analysis on the

following cases: old growth area constraint: 10% and 20%; younger age stands: 5%, 10% and

20%.

Under this type of restriction, (3.7) should be rewritten as:

α1

L∑

l=1

n+1∑

s=1

xl
s,t+1 =

3∑

s=1

x1s,t+1, 0 < α1 < 1 (3.17)

9Note that, for the functions used in this simulations, the steady state allocation will always have a positive
fraction of the land devoted to both forest species, as timber marginal utility of consumption tends to inifinity
when consumption goes to zero.
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and

α2

L∑

l=1

n+1∑

s=1

xl
s,t+1 = x1n+1,t+1, 0 < α2 < 1 (3.18)

The transition dynamics follow the same pattern as in the two previous constrained problems:

major changes in relation to the unconstrained problem are concentrated in a short period of

time. Thus, similar effects are felt on both timber and land markets (see Figures 11a, 11b and

13c).

As for the previous type of forest structure constraint, total forest area decreases for higher

constraints on species 1 area (see Figure 12c). However, forest area actually increases for this

species (implying that species 2 area decreases). Also, for the same percentage constraint in

old growth, the absolute area obtained for this type of imposed structure is higher than the

one in the previous section. Timber consumption for species 1 is also higher, driving price

reductions. The opposite is observed for species 2 (see Figures 13a and 13b).

Minor increases (5% to 10%) in the total younger stands’ area requirement imply major

changes on species mix composition: species 1 area may surpass species 2, while in the uncon-

strained case most of the land was dedicated to the latter type of tree (see Figures 12a and

12b). As for the previous type of restriction, species composition seem to be a more important

factor of adjustment rather than changes between forest and the alternative use of land.

Land allocation adjustment to satisfy the restriction on the three younger stands are not

undertaken by equally increasing the area for these stands. Instead, in each period, to one (or

two) stand(s) is devoted an amount of land above the unconstrained solution, guaranteeing

that the constraint is satisfied. Note that by doing so, the alternative of having three stands

permanently above the optimal normal forest distribution is avoided. Moreover, Faustmann’s

deviations will also take place, as the higher stand can be partially harvested at age 9, or

even 3. These adjustments will obviously impact on the optimal consumption path, and for

substantially higher thresholds on the younger stands areas (10% or 20%), both species will

present consumption cycles’ lenghts of 3 time units (see Figure 14).

3.4 Concluding Remarks

In this paper, we analyze the impact of introducing biodiversity into a multiple species, multi-

vintage forest sector model with endogenously determined timber prices and land use alloca-

tion. Biodiversity was incorporated as an additional ecological constraint in the problem of

the public forest manager, avoiding the additional problem of economic valuation.
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Following recent ecological literature, we model biodiversity focusing on structural diver-

sity, i.e, age classes and species distribution. To account for the most representative structures,

three different constraints were studied. In the first, the structure is only imposed on species’

area distribution, without distinguishing age class structure, while in the second the con-

straint is imposed on the total area of species 1 old growth age class. Finally, in the last forest

structure considered, both young and old growth stand areas are targeted.

For all the considered forest structures, the transition to the new optimal steady state is

not smooth when compared to the unconstrained solution. In fact, for the initial periods,

when we are far away from the time period at which the constraint has to be satisfied, the

new transition dynamics is similar to the ones obtained in the unconstrained problem. Severe

adjustments are, therefore, concentrated in a short period of time, when major additional

disturbances imposed by biodiversity considerations are felt both on timber and land markets.

In addition, as more stringent constraints are imposed, total forest area diminishes for all

forest structures considered. It is, however, in the case of old growth that this reduction is the

highest, leading to a shrinking total forest area that may even result in allocations without

biodiversity meaning. Land markets are, therefore, more affected when the imposed forest

structure accounts for old growth stands.

As timber prices are endogenous in this model, it is also possible to analyze the impacts on

timber markets from imposing different forest structures. While in the first case, timber prices

for species 1 tend do diminish and to increase for species 2, in the old growth case both prices

increase. In fact, while in the former the area used for timber production for species 1 increases

and for species 2 decreases, in the latter both timber production areas decrease. If, however,

the targeted forest structure is the third case considered, stringent constraints imposed in

the younger stands area tend to increase total native forest area and, consequently, reduce

timber prices, while those on the old growth area tend to decrease them. In this latter type

of restriction species 2 timber prices always increase.

While biodiversity is introduced into the problem as a constraint it is still possible to

calculate the resulting losses on timber consumption present value. As expected, introducing

biodiversity always results in losses in the timber consumption present value. These losses,

however, are greater when the imposed forest structure includes old growth. In fact, the

present value for a 10% target old growth area is lower than the one obtained for the extreme

case of a 90% species 1 total forest area requirement, in the first type of forest structure.

Cycles persist for a very long period, even for the first constraint type, for which a proof

on the optimality of the normal forest steady state structure was provided in section 2. More

important, however, is to observe that cycles properties differ widely, depending on the con-
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sidered targeted forest structure. In the first case, cycles between species are not positively

correlated: the period in which consumption is the highest for species 1 coincides with that

in which consumption for species 2 is the lowest. Moreover, species 1 cycles no longer match

species 2 cycles as in the baseline case. In the second constrained problem, when old growth

is the imposed forest structure, cycles perfectly match. Finally, when analyzing the last forest

structure type, we observe that for stringent requirements in the younger stands (10% or 20%),

both species presented consumption cycles of 3 time units, suggesting that the number of age

classes included in this constraint determines consumption cycles.

Finally, we observe major changes in optimal timber management. In fact, even after a long

period of adjustment, optimal deviations from Faustmann’s rotation combined with changes

in land use allocation still occur. This is in contrast to the baseline case, where Faustmann’s

rotation deviations only occur in the initial periods. Thus, introducing biodiversity into the

multispecies, multi-vintage model gives interesting insights about the adjustment dynamics in

timber and land markets. From a policy perspective analysis this is of great relevance and,

as mentioned in the introduction, should be taken into account before carbon sequestration

benefits are considered into the analysis.

82



3.5. APPENDIX A

3.5 Appendix A

The necessary conditions for optimal solutions of the problem (3.2-3.9) for species 1, which

can be derived from the Karush-Kuhn-Tucker conditions for all t = 0, ..., are as follows:

b−t ∂L

∂x11,t+1
= bf 11U

1(́c1t+1)− bW ′(yt+1)− λt + bp11,t+1 + bµt+1(1− α) ≤ 0, (3.19)

b−t ∂L

∂x1s+1,t+1
= −f 1sU

1(́c1t ) + bf 1s+1Ú
1(c1t+1) +

−bW ′(yt+1)− λt + bp1s+1,t+1 − pl
s,t + bµt+1(1− α) ≤ 0 (3.20)

for s = 1, ..., n− 2

b−t ∂L

∂x1n,t+1
= −f1n−1U

1(́c1t ) + bf 1nU
1(́c1t+1) +

−bW ′(yt+1)− λt − p1n−1,t + bµt+1(1− α) ≤ 0 (3.21)

for the remaining species (l = 2, ..., L), these conditions are given by:

b−t ∂L

∂xl
1,t+1

= bf l
1U

l(́clt+1)− bW ′(yt+1)− λt + bpl
1,t+1 − bαµt+1 ≤ 0, (3.22)

b−t ∂L

∂xl
s+1,t+1

= −f l
sU

l(́clt) + bf l
s+1Ú

l(clt+1) +

−bW ′(yt+1)− λt + bpl
s+1,t+1 − pl

s,t − bαµt+1 ≤ 0 (3.23)

for s = 1, ..., n− 2 and l = 2, ..., L

b−t ∂L

∂xl
n,t+1

= −f l
n−1U

l(́clt) + bf l
nU

l(́clt+1) +

−bW ′(yt+1)− λt − pl
n−1,t − bαµt+1 ≤ 0 (3.24)

for l = 2, ..., L

xl
s,t+1 ≥ 0, x

l
s,t+1

∂L

∂xl
s,t+1

= 0, s = 1, ..., n and l = 1, ..., L, (3.25)

pl
s,t ≥ 0, p

l
s,t(x

l
s,t − xl

s+1,t+1) = 0, s = 1, ..., n− 1, and l = 1, ..., L, (3.26)
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λt ≥ 0, λt(1−
L∑

l=1

n∑

s=1

xl
s,t+1) = 0 (3.27)

µt ≥ 0, µt

(
n∑

s=1

x1s,t+1 − α
L∑

l=1

n∑

s=1

xl
s,t+1

)

(3.28)

The existence of optimal solutions for bounded utility and b < 1 follows from Theorem 4.6

in Stokey and Lucas (p. 79).

Proof of Proposition 1:

Proof. Following Salo and Tahvonen [23], by convexity of problem (3.2)-(3.9), if there exist

multipliers pl
s,t satisfying conditions (3.19)-(3.28) under harvesting atm

l, then the resulting age

class structure is an interior OFF. The optimality follows since with harvesting at ml, ∂U l

∂xls,t
and

xl
s,t remain bounded satisfying transversality conditions which, together with (3.19)-(3.28) are

sufficient for optimality.

For s = 1, ...,m−1 using (3.19) for species 1 and (3.22) for l = 2, ..., L to eliminate λt from

(3.20), (3.21),(3.23), (3.24), and to satisfy (3.25) we obtain a system of ml x (ml− 1) equality

equations:

b(pl
s+1,t+1+k − pl

1,t+1+k)− pls,t+k = −bU
l(́clt+k+1)(f

l
s+1 − f l

1) + U l(́ct+k)f
l
s (3.29)

−bpl
1,t+1+k − pl

ml−1,t+k = −bU
l(́clt+k+1)(f

l
ml − f l

1) + U l(́clt+k)f
l
ml−1 (3.30)

where s = 1, ...ml − 2, k = 0, ...,ml − 1 and l = 1, ..., L.

Note that equations (3.29) and (3.30) are equal to the ones obtained in Salo and Tahvonen

[23] for the case of a single species. Therefore, the result obtained in Salo and Tahvonen [23]

follows directly.

Solving the above system for any multiplier pl
st yields:

pl
s,t =

bm
l

fml

1− bml

[
b−s(U l′(clt+ml−s)− U l′(clt)

]
− f l

s(U
l′(clt) (3.31)

The same argument applies for the case where m < n.

In addition, a stationary cycle with all land allocated to forestry must satisfy λt ≥ 0, for

t = 0, .... Solving (3.19) or (3.20) for λt, eliminating p1s,t, for s = 1, ...,m
1 − 1, t = 0, ..., using

(3.31), we obtain
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λt+k =
U1′(c1t+k)b

m1
f 1m1

1− bm1 −
U1′(c1t+1+k)b

m+1f 1m1

1− bm1 − bW ′(0) + bµt+1+k(1− α) ≥ 0 (3.32)

using the same procedure with (3.22) and (3.23) yields:

λt+k =
U l′(clt+k)b

ml

fml

1− bml
−

U l′(clt+1+k)b
m+1f l

ml

1− bml
− bW ′(0)− bµt+1+kα ≥ 0 (3.33)

for l = 2, ..., L and k = 0, ...,m, where clt+1+ml = clt+1. Writing clt+k = f l
mlx

l
s and clt+1+k =

f l
mlxl

s−1, s = 1, ...,m
l, where xl

0 = xl
ml yields

λs =
U1′(f 1m1x1s)b

m1
f 1m1

1− bm1 −
U1′(f 1m1x1s−1)b

m1+1f 1m
1− bm1 − bW ′(0) + bµt+1+k(1− α) ≥ 0 (3.34)

λs =
U l′(f l

mlxl
s)b

ml

f l
ml

1− bml
−

U l′(f l
mlxl

s−1)b
ml+1f l

m

1− bml
− bW ′(0)− bµt+1+kα ≥ 0 (3.35)

for s = 1, ...,ml and l = 2, ..., L.

Note that, as expected, if µt+1 = 0 the above equations are the same as in Salo and

Tahvonen [23].

Given gl =
U l′(f l

ml
/ml)bm

l
f l
ml

1−bmcl
− b

1−b
W ′(0) − b

1−b
µα > 0, there must exist a φl > 0 such that

(3.34) and (3.35) are satisfied if xl
s = 1/m

l + φl
s, s = 1, ...,m

l, for all
∣∣φl

s

∣∣ < φcl,
∑ml

s=1 φ
l
s = 0,

and l = 1, ..., L.

Let il∞ represent the stationary state level of variable i
l.

We now show that if gl ≤ 0 there exists a stationary state that satisfies all the necessary

conditions for optimality.10

Proof of Corollary 1

Proof. Given gl ≤ 0, no solutions for (3.35) exist. Thus, by letting λt = 0 in (3.19) or

(3.20), eliminating p1s,t, s = 1, ...,m
1−1, t = 0, ..., using (3.31), and writing (3.19) analogously

to (3.34), we obtain for s = 1, ...,m1

U1′(f 1m1x1s)b
m1

f1m1

1− bm1 −
U1′(f 1m1x1s−1)b

m1+1fm1

1− bm1 − bW ′(y∞) + bµ∞(1− α) ≥ 0 (3.36)

10The results obtained in Salo and Tahvonen [23] regarding convergence and stability of the stationary steady
states (Lemma 1 and Lemma 2, pg. 523) still apply in the case of this paper, as the difference equation for
xmt
, for is similar to equation (34), pg. 522, in the paper. The additional terms that are present in our case are

independent of xmi

t

. Therefore, the marginal conditions yielding the corresponding characteristic polynomials
turn out to be similar.
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This system is linear in U1′(f 1m1x1s), s = 1, ...,m
1 and its solution is given by:

U1′(f 1m1x1s) =
(W ′(y∞)− µ∞(1− α))

∑m1−1
i=0 bi

bm1−1f 1m1

(3.37)

s = 1, ..,m1. Thus, x1s = (1−y∞−
∑L

l=2

∑n
s=1 x

l
s)/m

1, s = 1, ...,ml and optimal stationary

cycles cannot exist.

Following the same steps for species l = 2, ..., L. using (3.22) or (3.23), (3.35). The obtained

solution is given by:

U l′(f l
mlxl

s) =
(W ′(y∞) + µ∞α)

∑ml−1
i=0 bi

bml−1f l
ml

(3.38)

for s = 1, ...,ml, l = 2, ..., L, as can be verified by direct substitution. Thus, xl
s = (1− y∞ −

∑L
v=1

∑n
s=1 x

v �=l
s )/ml, s = 1, ...,ml and optimal stationary cycles cannot exist.
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Species 1 - Timber Consumption
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Species 2 - T imber Consumption
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Species 1 -  Land Allocation
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Species 2 -  Land Allocation
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Alternative Use -  Land Allocation
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Species 1 -  Timber Prices
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Species 2 -  Timber Prices
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Alternative Use Land Prices

0

2

4

6

8

10

12

14

16

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

1
0
5

1
1
0

1
1
5

1
2
0

1
2
5

1
3
0

1
3
5

1
4
0

1
4
5

1
5
0

1
5
5

1
6
0

1
6
5

1
7
0

1
7
5

1
8
0

1
8
5

1
9
0

1
9
5

Time

Baseline 20% area restr iction 60%  area restriction 90% area restriction

SPECIES AREA - Figure 3c

90



3.6. APPENDIX B

 

Differences in T
b 
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=10 vs T
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Differences in the constraint biding period (T
b
=10 vs T

b
=40)
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Species 1 - T imber Consumption
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Species 2 - Timber Consumption
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Species 1 -  Land Allocation
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Species 2 -  Land Allocation
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Alternative Use -  Land Allocation
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Species 1 -  Timber Prices
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Species 2 -  Timber Prices
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Alternative Use Land Prices
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Differences in Tb (Tb=10 vs Tb=40)
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 Species 1 - Timber Consumption (10 %Old Growth Area)
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Species 2 - Timber Consumption (20% Old Growth Area)
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Species 1 -  Land Allocation (20 % Old Growth Area)
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Species 2 -  Land Allocation (20% Old Growth Area)
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 Alternative Use -  Land Allocation (10% Old Growth Area)
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 Species 1 -  Timber Prices (10% Old Growth Area)
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 Species 2 -  Timber Prices (10% Old Growth Area)
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 Alternative Use Land Prices (10% Old Growth Area)
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Chapter 4

Multi-Species Forest Vintages and

Carbon Sequestration

4.1 Introduction

Given the rising concern with CO2 levels, and the recognition in the Kyoto Protocol of the

important role that can be played by forests in the global carbon cycle to limit the impact of

GHGs (greenhouse gases) emissions, the consideration of carbon sequestration benefits is in

the centre of recent developments in forestry literature. Recently, Righelato and Spracklen [25]

have shown that the emissions avoided by the use of the liquid biofuels over a 30-year period

is much smaller (two to nine times) than the amount of carbon sequestered by forestation of

an equivalent area of land.

Several studies have shown that the carbon sequestration option was surprisingly cost-

effective in the context of greenhouse gas emissions stabilization plan. Different applied studies

have examined the potential impact of forest carbon sink programs by estimating their cost-

effectiveness and carbon sequestration capacity in a variety of settings, as Richards, Rosenthal

et al. [23], Sohngen and Mendelsohn [30], and more recently Tavoni et al. [33], among others.

Although the level of impact varies significantly depending upon the model used, in all cases

introducing forests as carbon sinks reduce costs relative to policies that only consider fossil

fuel emissions.

Moreover, forest conservation can be implemented almost immediately at a global scale.

As a matter of fact, know-how for forest conservation is available today and may be used as

a means to buy needed time until the low-carbon technologies become available. Using the

growing international carbon market to value the carbon contained in standing forests will also

provide the incentives to change land-use decisions, making a standing forest more valuable

than alternative uses of land.
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4.1. INTRODUCTION

From a theoretical point of view, when carbon benefits are considered, not only the forested

area is relevant, but also the flow of carbon between land and the atmosphere through the

carbon cycle, namely, the amount of carbon released when the forest is harvested. To account

for all these impacts the typical analytical framework of the one stand forest or any other

that does not take into account the internal age-structure of forests, are not appropriate.1

In the single stand case, the decision on the optimal allocation between alternative uses can

only be assessed in marginal terms, not allowing to address the global (or regional) impact

of some policy incentive measures. Besides, since it typically represents the decision model

of the private owner, both the price of land and the price of timber are exogenous constants.

In contrast, in this paper, both the price of timber and the price of land are endogenously

determined. Therefore, only in this context it is possible to study the transition path to the

new steady-state, and, more generally, to perform comparative welfare analysis when carbon

benefits are considered. Hence, a multi-vintage forest setting with possible conversion to

alternative land uses should be considered instead. 2

Despite that forest management activities play a key role through mitigation of climate

change, forests are also affected by climate change which may under some circumstances reduce

the net impact of those mitigation activities, as recent literature indicates, as a consequence

of fire, pests, drought and heat waves, affecting forestry production including timber.3 Forest

mitigation options include reducing emissions from deforestation and forest degradation, en-

hancing the sequestration rate in existing and new forests, providing wood fuels as a substitute

for fossil fuels, and providing wood products for more energy-intensive materials. Therefore, if

properly designed and implemented, forestry mitigation options may generate benefits in terms

of employment and income generation opportunities, biodiversity and watershed conservation,

provision of timber and fibre, as well as aesthetic and recreational services.

In this context, the mitigation and adaptation trade-offs and synergies in the forestry

1A one stand or single vintage forest is characterized by a plot of land with trees of the same species and of
the same age, where the price of timber is an exogenous constant. In this context, we should mention, among
others, Van Kooten, Binkley and Delcourt [35], who modeled a scheme to allocate carbon credits, under
which the carbon credit cash flows are a function of the annual change in the forest carbon stock (carbon
flow regime), Spring, Kennedy, and Nally [12] that study the effect of carbon sequestration, fire frequency
and water scarcity in tree harvest decision, and Cunha-e-Sá and Rosa [7] where different accounting methods
of carbon sequestration benefits in the model of the private forester are examined with constant and rising
carbon prices. Also, Velt and Plantinga [36] explore the effect of rising carbon prices on the optimal portfolio
of greenhouse-gas mitigation strategies based on the carbon flow accounting regime, and considers the optimal
timing to convert agriculture land to forest.

2Reinforcing the interest of this modeling framework for empirical studies, Getz and Haight [10] refer that
biological populations are typically described by discrete time demographic models for reasons like seasonal
cyclicality in reproduction or in concentration in harvesting, as in the case of forests.

3See Nabuurs, Masera, Andrasko, Benitez-Ponce, Boer, Dutschke, Elsiddig, Ford-Robertson, Frumhoff,
Karjalainen, Krankina, Kurz, Matsumoto, Oyhantcabal, Ravindranath, SanzSanchez, and Zhang [19].
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sector should be carefully addressed. Several adaptation practices can be used in the forest

sector, including changes in land use choice, management intensity, hardwood/softwood species

mix, timber growth and harvesting patterns within and between regions, changes in rotation

periods, shifting to species more productive under the new climatic conditions, landscape

planning to minimize fire and insect damage, among others. In some specific regions, namely,

in Europe, afforestation and reforestation are the dominant mitigation options. Currently,

these activities are included under Article 3.3 and in Articles 6 and 12 (CDM) of the Kyoto

Protocol. Plantations consisting of multiple species may be an attractive adaptation option

as they are less vulnerable to climate change, because of larger tolerance of some species to

climate change, different migration abilities and different resilience to invading species.

This is related to a more general argument according to which diversity raises productiv-

ity and robustness of natural ecosystems, and therefore of the Earth’s life-support systems.

Diversity helps natural ecosystems to make the best adjustments to changes in environmen-

tal conditions. There is no single subset of species that by itself would serve to operate all

ecosystems services all over the planet. So diversity in a given location may increase produc-

tivity and ecosystem functions in that location, while diversity at the regional or global level

is necessary for the operation of important ecosystems in all geographic regions.

The purpose of this paper is to develop a framework where carbon sequestration benefits

are internalized in a multi species and multi vintages context. By allowing to endogenously

determine the price of timber and the unit price of land, the implications to the forest sector

of introducing changes in management practices, different species mix, alternative uses of

land, externalities, taxation, among other policy relevant questions, can be studied. The

model follows closely the multiple vintage forest model developed in Salo and Tahvonen [26],

[27] and [28], extending it by introducing net carbon sequestration benefits on optimal land

allocation and optimal forest management in a multi-species discrete-time setting.

Based on the IPCC Special Report on Land Use, Land Use Change and Forestry, we

consider the carbon flow accounting method, which is essentially a Pigouvian tax/subsidy on

the carbon externality. The proofs on the existence of optimal stationary steady-states are

extended to this more general context. Besides, we show how the optimal rotation period,

the long run equilibrium and the optimal land allocation are affected by introducing carbon

sequestration benefits as well as by the species mix.

In general, we conclude that with or without benefits from carbon sequestration, and in

the absence of externalities among species, the long-run stationary state is the normal forest

for each species. In the case where all land is forested land, optimal forest management can

lead to optimal cyclical harvesting. Alternatively, when it is optimal to allocate part of the

113



4.2. THE MODEL

forest land to other land uses, the remaining equilibrium is the normal forest steady state.

When cycles optimally vanish, in general, the normal forest becomes a local saddle point

equilibrium. Also, we conclude that biology plays an important role, as fast growing species’

plantations increase when carbon benefits are introduced. Carbon in long-lived products is a

critical aspect, as its consideration may actually reverse optimal allocations of land in favor

of slow growing species when compared to the case without carbon. Moreover, the net social

benefits of a carbon sequestration policy are considerably higher in a framework where this

carbon pool is also accounted for.

The remainder of the paper is organized as follows. Section 2 extends the theoretical

multiple vintage model to account for carbon sequestration benefits in a multi-species context.

Section 3 develops the model for the carbon flow accounting regime. In Section 4 numerical

simulations illustrate the main results. Section 5 concludes the paper. Technical details and

figures are presented in the Appendices.

4.2 The Model

The model used in this paper follows closely the multiple vintage forest model developed in

Salo and Tahvonen [28], which can be summarized as follows. The model assumes multi species

multi vintages forest land, where s = 1, ..., n represents the age of trees for species l = 1, ..., L,

xl
s,t the area of forest land allocated to the age class s of species l in period t, f l

s the biomass

content in timber per unit of land with trees of age class s and species l, and 0 ≤ f l
1 ≤ .... ≤ f l

n,

for each l. Land allocation must satisfy

0 ≤ yt = 1−
L∑

l=1

n∑

s=1

xl
s,t (4.1)

that is, total land area equals 1, and yt is the area of land allocated to an alternative use

(agriculture or urban use).

Let us denote by U l(ct) =
∫
dl(c)dc the social utility from timber consumption for species l,

where dl(.) is the inverse demand for timber for species l, and assume each U l(.) is a continuous,

twice differentiable, increasing and strictly concave function. Also, W (yt) =
∫
q(y)dy , where

W (.) is a continuous, twice differentiable, increasing and concave function. Finally, Sjl
t depends

on how the benefits from carbon sequestration are accounted for.

Thus, the problem of optimal forest harvesting and allocation of land is obtained by max-
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imizing the present value of social utility from the use of land, as follows:

v(x1,0 , ....xn,0)
j = Max

{xls,t+1,s=1,...n,l=1,...,L,t=0,...}

∞∑

t=0

bt

[
L∑

l=1

(U l
(
clt
)
+ Sjl

t ) +W (yt)

]

(4.2)

subject to

clt =
n−1∑

s=1

f l
s

(
xl
sl,t − xl

sl+1,t+1

)
+ f l

nx
l
n,t, l = 1, ..., L (4.3)

yt = 1−
L∑

l=1

n∑

s=1

xl
s,t (4.4)

xl
s+1,t+1 ≤ xl

s,t, s = 1, .......n− 1, l = 1, ..., L (4.5)

L∑

l=1

nl∑

sl=1

xl
s,t+1 ≤ 1 (4.6)

xl
s,t ≥ 0, s = 1, ...., n, l = 1, ..., L (4.7)

for all t = 0, 1..., where Sjl
t represents the net benefits from carbon sequestration for the chosen

carbon accounting method, indexed by j. Moreover, the initial land distribution satisfies

xl
s,0 ≥ 0, s = 1, ...., n,

L∑

l=1

n∑

s=1

xl
s,0 ≤ 1 (4.8)

Therefore, given the discount factor b, the problem consists of choosing the next period

state, that is, the land allocation between different vintages and competing uses of land for

all t = 1, ....

The necessary conditions for optimal solutions can be obtained from the following La-

grangian problem. For (4.2-4.8) it can be stated as

Lj =
∞∑

t=0

bt

[
L∑

l=1

(U l
(
clt
)
+ Sil

t ) +W (yt)

]

+ λj
t

(

1−
L∑

l=1

n∑

s=1

xl
s,t+1

)

+

+
L∑

l=1

n−1∑

s=1

[
pjl
s,t

(
xl
sl,t − xl

sl+1,t+1

)]
(4.9)

where pjl
s,t and λj

t are the Lagrangian multipliers. While p
jl
s,t can be interpreted as the value of

marginal changes in forest land area of vintage s for species l at the beginning of period t+1,
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λj
t represents the value of marginal changes in land allocation between forest and alternative

uses for each accounting method i.

Salo and Tahvonen [28] provide a full proof on the long-run optimality of the normal for-

est steady-state for the above problem, when St = 0 and there is only one species. A forest

is called an Optimal Faustmann Forest (OFF) if the age-class structure xl = (xl
1, ..., x

l
n)

has the property xl
s = 0 for s = ml + 1, ..., n and if harvesting only trees of age ml is

the optimal solution for the above problem when xl
0 = xl. An OFF is an interior OFF

if xl
s > 0 for s = 1, ...,ml. In addition, an OFF with the normal forest structure is xl =

(1/ml, ..., 1/ml, 0, ..., 0), and in each period it yields a constant consumption level of fml/ml.

An OFF with consumption that is periodic with period length equal to ml can be expressed

as xl = (1/ml + φl
1, ..., 1/m

l + φl
ml , 0, ...0) ∈ S, where φkl represents the largest number φl

that satisfies xl = (1/ml + φ1, ..., 1/m
l + φml, 0, ...0) ∈ K for all

∣∣φl
s

∣∣ < φl, l = 1, ..., L,

s = 1, ...,ml,
∑ml

s=1 φ
l
s = 0, The Faustmann rotation period for species l, denoted by ml,

1 ≤ ml ≤ nl, is assumed to be unique and satisfies the following condition: 4

bm
l

f l
ml/(1− bm

l

) ≥ bsf l
s/(1− bs), s = 1, ..., n. (4.10)

Salo and Tahvonen [28] show that, if all land is allocated to forestry, optimal forest man-

agement can lead to optimal cyclical harvesting because smoothening an age class structure

that deviates from the normal forest is not optimal. On the contrary, if it is optimal to allocate

part of the land to alternative land use then optimal stationary cycles cannot exist.5

In this paper, the full proof on the long-run optimality of the normal forest steady state

is extended to the case of carbon sequestration benefits with multi-species, building upon the

results previously obtained in the case of only one species.

Using similar notation, let mjl, for l = 1, ..., L, denote the optimal rotation period with net

carbon sequestration benefits for each accounting method j and for species l. Assume that

mjl is unique. A forest is called an Optimal Carbon Multi-Species Forest (OCMSF) if the

age-class structure for each species l, xl = (xl
1, ..., x

l
n), is characterized by OFF for m

il and for

each l = 1, ..., L, where mjl can be different from ml, for the carbon accounting method j.

4In Salo and Tahvonen [28] no harvesting or plantation costs are considered nor any type of forest exter-
nalities. Under these conditions, m, as defined in (4.10), is the Faustmann rotation period in the one stand
model. As consumption is constant in the steady-state, so is the marginal utility of consumption U ′(.) = p,
the long-run market equilibrium price of timber. In addition, this condition also corresponds to the maximum
value in the steady-state of a marginal unit of bare forest land.

5See Salo and Tahvonen [28], Proposition 1 and Corollary 1, pages 518-520.
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4.3 Introducing Carbon Sequestration Benefits: Car-

bon Flow Regime

By sequestering and storing GHG’s from the atmosphere, forests can generate carbon offsets,

which may be used to compensate for GHG emissions. However, for this compensation to

occur, the net effect of sequestration has to be comparable to that of avoided emissions.

This issue raises two important questions: first, how to compare forest carbon sequestration

with avoided emissions, examined in this section, and second, how to incorporate the services

provided by this activity when modeling forest management.

The IPCC Special Report on Land Use, Land-Use Change and Forestry [11] considers

different accounting methods to apply to forest or land use change investment projects, namely,

the stock change method, the average stock method and the ton yearly crediting. In the

economic forestry literature, similar accounting methods have also been considered: the carbon

flow regime, the lump-sum regime, and the carbon stock regime, among others, as referred in

Locatelli and Pedroni [14]. In what follows, we consider the carbon flow regime.

According to the carbon flow regime, as developed in Van Kooten, Binkley and G. Delcourt

[35], social benefits are a function of the annual change in the forest carbon stock, as well as of

the amount of carbon permanently stored in timber products and landfills. A net increase in

the forest carbon stock over a year means that carbon has been removed from the atmosphere.

Similarly, a fall in the forest carbon stock suggests that carbon has been released into the

atmosphere. However, the amount of carbon released when the forest is harvested depends

upon the use given to the timber harvested. Different uses will have different impacts on the

amount of carbon released after harvest, as some uses are able to provide long term carbon

storage in structures like furniture or houses. In this context, while carbon released at harvest

is taxed, depending upon the timber use, sequestered carbon is subsidized yearly. Therefore,

the carbon flow method is essentially a Pigouvian tax/subsidy on the carbon externality.

In this context, the age-class and land allocation forestry decision problem of the social

planner is presented and the necessary and sufficient optimality conditions are derived. It is

shown how the optimal rotation period, the equilibrium cycles and the optimal land allocation

are affected by carbon sequestration benefits in a multi-species context. Sensivity analysis with

respect to the speed of growth, the carbon conversion factor and the amount of carbon that

is stored in long-lived wood products among species, is undertaken.

When formalizing net carbon benefits, we assume in all cases that the social value of one

unit of carbon removed from the atmosphere is constant and equal to pc.6 Also, we consider

6pc is the present value, for all time, of removing one unit of carbon from the atmosphere today. It is
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that the amount of carbon per cubic feet of timber biomass growing in forest land is constant

and equal to βl for species l for l = 1, ..., L. Notice that once carbon has been sequestered, no

further carbon benefits will be obtained. Thus, in this case, what is relevant when modeling

carbon sequestration benefits in a standing forest is the change in the per period carbon

uptake. Finally, to take into account different uses of timber we introduce a parameter θl

which measures the fraction of timber that is harvested but goes into long-term storage in

structures and landfills for species l.

Under these assumptions, the current net benefits from carbon sequestration at any period

t for each species l, Scl
t , can be represented as follows:

Scl
t =

n−1∑

s=0

pcβ
l(f l

s+1 − f l
s)x

l
s+1l,t+1 − pcβ

l(1− θl)clt (4.11)

where the first term represents the value of the carbon stock increase in forest standing biomass,

for all the area of forest land, and the last term represents the value of the carbon released

due to harvest at t.

By solving the problem (4.2-4.8) and taking Scl
t given by (4.11) for each species l, as in

Salo and Tahvonen [28], we first study the existence of optimal stationary cycles in a regime

where the oldest age class is clear-cut and immediately regenerated at the end of each period.

Denote the optimal rotation period by mcl, that satisfies 1 ≤ mcl ≤ n and for which

L∑

l=1

(
pl − βlpc(1− θl)

) bmcl

fmcl

1− bmcl
+

L∑

l=1

βlpc

mcl−1∑

i=0

bi
(f l

i+1 − f l
i )

1− bmcl
≥

≥
L∑

l=1

(
pl − βlpc(1− θl)

) bsf l
s

1− bs
+

L∑

l=1

βlpc

s−1∑

i=0

bi
(f l

i+1 − f l
i )

1− bs
(4.12)

for s = 1, ..., n, holds.7 Assume that mcl is unique, for each l. We show in Appendix B

that mcl ≥ ml, for each l, when all carbon is released at harvest (θl = 0). When θ = 1 and

{fi− fi−1} is a decreasing sequence, mcl ≤ ml . Otherwise, mcl � ml. In fact, in the absence

of external effects between species, there is no mcl ≥ mc common to all species that improves

upon mcl for each l, as any common mc is always dominated by the optimal mcl for each l.

Proposition 1: Given gcl ≡
[U l′(f l

mcl
/mcl)−βlpc(1−θl)]bm

cl
f l
mcl

1−bmcl
+
∑L

l=1 β
lpc

∑mcl−1
i=0 bi

(f li+1−f li )

1−bmcl
−

b
1−b

W ′(0) > 0, mcl ≥ 2, and b < 1, for l = 1, ..., L, there exists a set of interior Optimal Multi

Species Carbon Forests with φkl > 0.

determined as the discounted value of the annual contribution to damage caused by one unit of carbon added
over the expected number of years that the unit of carbon is present in the atmosphere.

7These conditions correspond to the optimal conditions of the discrete version of the one stand model as
proved in Costa-Duarte, Cunha-e-Sá and Rosa [8] in the case of only one species.
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Proof. The proof is in Appendix A.

In Proposition 1 it is shown that optimal stationary cycles exist when it is optimal to

allocate all land to forestry. From (4.34) in Appendix A, we may conclude that when carbon

sequestration benefits are accounted for the maximum cycle radius may either increase or

decrease.

Corollary 1: If gcl ≡
[U l′(f l

mcl
/mcl)−βlpc(1−θl)]bm

cl
f l
mcl

1−bm
cl

∑L
l=1 β

lpc

∑mcl−1
i=0 bi

(f li+1−f li )

1−bm
cl −

b
1−b

W ′(0) ≤

0, for l = 1, ..., L, optimal stationary cycles with y∞ ≥ 0 and y∞ constant do not exist.

Proof. The proof is in Appendix A.

When it is optimal to allocate land to alternative uses, Corollary 2 shows that optimal cy-

cles are eliminated and the remaining equilibrium is the normal forest steady-state. Assuming

that mcl is unique, for a stationary state, we have that pcl
s,t = pcl

s,∞, c
cl
t = ccl∞, yt = y∞, λc

t = 0,

and xcl
mcl,t = xcl

∞, where ccl∞, y∞, xcl
∞, and pcl

s,∞, for s = 1, ..., n−1, and l = 1, ..., L, are constant.

Direct substitution shows that in this case:

pcls =W ′(y∞)
s−1∑

i=0

b−i − f l
s

[
U l′(cl∞)− βlpc(1− θl)

]
−

L∑

l=1

βlpc

s−1∑

i=0

bi−s(f l
i+1 − f l

i ) (4.13)

for s = 1, ..., n, where
∑s−1

i=0 b
−i = −b1−b−s

1−b
.

With some more algebra, we can write (4.13) for s = mcl and as pcl
mcl,∞

= 0, obtaining

W ′(y∞)
b

1− b
−

bm
cl

f l
mcl

1− bmcl

[
U l′(cl∞)− βlpc(1− θl)

]
−

L∑

l=1

βlpc

mcl−1∑

i=0

bi

1− bmcl
(f l

i+1 − f l
i ) = 0

(4.14)

for l = 1, ..., L, where

cl∞ =
(1− y∞ −

∑L
v=1 x

v �=l
∞ )f l

mcl

mcl
, and cv �=l

∞ = xv �=l
∞ f l

mcl for v = l = 1, ..., L (4.15)

Therefore, we obtain a system of L equations, one for each species, in L unknowns (y∞,

and cl∞, for l = 1, ..., L− 1). The allocation of land between the different types of forest and

the alternative use that results is optimal when the present value of output from a marginal

unit of land in the alternative use equals the present value of a marginal unit of bare forest

land for each species, where both timber value and the net benefits from carbon sequestration

are accounted for, as follows:

W ′(y∞)
b

1− b
=

=
bm

c1
f 1mc1

1− bmc1

[

U1′(
(1− y∞ −

∑L
l=2 x

cl
∞)f

1
mcl

mc1
)− β1pc(1− θ1)

]

+

L∑

l=1

βlpc

mcl−1∑

i=0

bi

1− bmcl
(f l

i+1 − f l
i ) = ...
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... =
bm

cL

fL
mcL

1− bmcL

[
UL′(xL

∞fL
mcL)− βLpc(1− θL)

]
+

L∑

l=1

βlpc

mcl−1∑

i=0

bi

1− bmcl
(f l

i+1 − f l
i )

(4.16)

Let us assume that we only have two species, that is, l = 1, 2. In this case, the above conditions

become

W ′(y∞)
b

1− b
=

=
bm

c1
f 1mc1

1− bmc1

[
U1′(

(1− y∞ − xc2
∞)f

1
mc1

mc1
)− β1pc(1− θ1)

]
+

2∑

l=1

βlpc

mcl−1∑

i=0

bi

1− bmcl
(f l

i+1 − f l
i ) =

=
bm

c2
f 2mc2

1− bmc2

[
U2′(x2∞f 2mc2)− β2pc(1− θ2)

]
+

2∑

l=1

βlpc

mcl−1∑

i=0

bi

1− bmcl
(f l

i+1 − f l
i ) (4.17)

which also imply, for an interior solution, that is, with land optimally allocated to both species,

that

bm
c1

f1
mc1

1−bmc1

[
U1′(

(1−y∞−xc2
∞
)f1
mc1

mc1 )− β1pc(1− θ1)
]
+
∑2

l=1 β
lpc

∑mcl−1
i=0

bi

1−bmcl
(f l

i+1 − f l
i )

bmc2f2
mc2

1−bmc2

[
U2′(x2∞f2mc2)− β2pc(1− θ2)

]
+
∑2

l=1 β
lpc

∑mcl−1
i=0

bi

1−bm
cl (f

l
i+1 − f l

i )
= 1

(4.18)

Since the second term both in the numerator and the denominator is the same, a larger first

term in the numerator implies a lower one in the denominator and vice-versa. The equilibrium

can be recovered by increasing the amount of land dedicated to forest and relatively more the

part corresponding to the most valuable species.

4.4 Numerical Simulations

In this section, we simulate the theoretical model developed in the previous sections. We

start by considering a case with two different species but without carbon benefits. For this

scenario, we base our analysis on the following example: U(cl) = (ci)
0.7

0.7
is the utility function

from consumption for both species and W (y) = 0.5[y
0.2

0.2
] is the utility from non-forestry land,

that is, from the alternative use of land. The vectors f l
s of the biomass content in timber per

unit of land for species l = 1, 2 and for age classes s = 1, ...24, are given by

f 1s = [0, 0, 0, 15, 22, 30, 39, 51, 65, 82, 101, 123, 148, 175, 204, 234, 263,
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293, 321, 346, 370, 390, 408, 423]

f2s = [5, 15, 35, 60, 90, 125, 160, 194, 227, 249, 269, 284, 296, 306, 315, 323,

331, 339, 346, 352, 357, 362, 367, 372]

For both species the initial land distribution is given by xs0 = 0.1, s = 1, .., 5 and xs0 = 0,

s = 6, ..., 24. The discount factor is b = 0.95

From Figure 1 we conclude that differences on species’ growth may cause wide disparities

on the optimal distribution of tree species. Actually, if we consider, instead, that all land is

initially allocated to species 1 (see Figure 2), we obtain a path that illustrates what has been

observed in Portugal for the last decades, where pinus forest has been replaced by eucalyptus

plantations.

Departing from this baseline scenario, we now introduce carbon benefits and analyze some

of the most important trade-offs regarding carbon sequestration in a multispecies framework.

i) speed of growth across species: f l
ss

We begin by analyzing the effects of growth differences between species. Except for f 1s
and f2s , all parameters are equal among species, namely, pc = 0.4368, θ1 = θ2 = 0.5 and

β1 = β2 = 0.2. The results obtained show that differences on species’ growth do matter when

carbon sequestration is introduced, as more land is dedicated to the fast growing species.

However, this increase does not seem to be very sensitive to increases in the value of pc (see

Figure 3).

ii) carbon conversion factor: β

Different tree species sequester distinct amounts of carbon due, not only to growth, but

also to other biological features, e.g., types of leaves. To capture this effect, we consider a

different β for each species, namely β1 = 0.2 and β2 = 0.5, and the same growth vector for

both species, given by f 1s . From Figure 4, we conclude that the carbon conversion factor plays

a very important role, as a large gap is now optimally generated between the species with

the larger β and the other. Note that β may be interpreted as each species’ ability to either

sequester carbon in branches or to retain it in the soil.

iii) long-lived wood products: θ

Bearing in mind a post-Kyoto world, a very important discussion about the role of carbon

sequestration is now taking place. In fact, the current Protocol assumes that all carbon is

released once a tree is harvested (θ = 0 in our model). However, as a substantial part of the

harvested wood goes into long-lived wood products, carbon actually remains sequestered for

decades and, in some cases, even centuries, implying that such an assumption may actually
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end up being too restrictive. To account for that, a sensitivity analysis for θ is performed,

assuming that growth and all other parameters are the same across species. In Figure 5, we

observe that the value of θ affects significantly the optimal species’ distribution, as a higher

fraction of land is allocated to trees with higher θ′s. Furthermore, when carbon sequestered

in long-lived wood products is taken into account, the net social benefit per ton of carbon

removed by forest sinks increases considerably (from to 0.1809 to 0.3957).

We now additionally allow for differences in species’ growth. Species 1 is represented by

vector f1s and species 2 by vector f
2
s . Given that the majority of fast growth species is used

for paper production, a lower θ is associated to species 2. From Figure 6, we conclude that

differences in θ are actually enough to counteract differences in growth when carbon benefits

are introduced (see Figure 2). In fact, if compared with a scenario where θ = 0, a higher

fraction of land is allocated to the slow growing forest (associated with a higher θ), in contrast

to the fast growing species.

We can conclude that the optimal land allocation evolves towards a stationary state and

that the area dedicated to forested land and timber production increases. However, the in-

crease in timber production associated to an expansion of forested land is not very significant,

as the increase occurs in all classes and only the oldest one is harvested. Nonetheless, increases

on carbon retained in forests are rather substantial.

Biology plays a important role, as fast growing species’ plantations increase when carbon

benefits are introduced. Carbon in long-lived products is a critical aspect, as its consideration

may actually reverse optimal allocations of land in favor of slow growing species. Moreover,

the net social benefits of a carbon sequestration policy are considerably higher in a framework

where this carbon pool is also accounted for.

4.5 Concluding Remarks

The introduction of carbon sequestration benefits in the multiple vintage forest model de-

veloped by Salo and Tahvonen [28] is undertaken by considering the carbon flow regime in

a multi-species context. However, in contrast, the partial equilibrium setting of this model

with endogenously determined timber and land prices allows us to endogenously determine the

optimal impact on timber and land markets from internalizing carbon sequestration benefits

in a multi species context.

A full proof of the long-run optimality of steady-state forest is provided. Although the

major theoretical results still apply, the extension to the presence of carbon sequestration ben-

efits with multi-species is not without consequences. The results obtained, based on numerical
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simulations, may suggest how to increase efficiency on forest management from a social point

of view.

Depending on the values taken by the different parameters, namely, the speed of growth,

the carbon conversion factor and the amount of carbon that is stored in long-lived wood

products among species, we observe that either fast growing species or species with larger

carbon conversion factors are optimally allocated to a larger fraction of land. Moreover, a

similar result applies to species whose timber is used in long-lived wood products. In particular,

this effect may even dominate the impact of the different speeds of growth among species. We

may observe that the slow growing species may be the one that benefits the most when carbon

sequestration has value

To conclude, the theoretical and simulation models developed in this paper can be a useful

tool to empirical studies on forestry policy in general, or, in particular, to examine the impact

of policy measures on forest management to mitigate GHGs emissions in the post-Kyoto

context.
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4.6 Appendix A

The necessary conditions for optimal solutions of the problem (4.2-4.8) and Scl
t given by

(4.11) for each species l, which can be derived from the Karush-Kuhn-Tucker conditions for

all t = 0, ..., are as follows:

bt
∂Lcl

∂xl
1,t+1

= bf l
1U

l(́clt+1) + bf l
1pcβ

l − bf l
1pcβ

l(1− θl)−

−bW ′(yt+1)− λc
t + bpcl

1,t+1 ≤ 0, l = 1, ..., L, (4.19)

bt
∂Lcl

∂xl
sl+1,t+1

= −f l
slU

l(́clt) + bf l
s+1Ú

l(clt+1) + (f
l
s+1 − f l

s)pcβ
l + f l

spcβ
l(1− θl)−

−bf l
s+1pcβ

l(1− θl)− bW ′(yt+1)− λc
t + bpl

s+1,t+1 − pl
s,t ≤ 0 (4.20)

for s = 1, ..., n− 2, and l = 1, ..., L,

bt
∂Lcl

∂xl
n,t+1

= −f l
n−1U

l(́ct) + bf l
nU

l(́ct+1) + (f
l
n − f l

n−1)pcβ
l + f l

n−1pcβ
l(1− θl)−

−bf l
npcβ

l(1− θl)− bW ′(yt+1)− λc
t − pl

n−1,t ≤ 0 (4.21)

for l = 1, ..., L,

xl
s,t+1 ≥ 0, x

l
s,t+1

∂Lcl

∂xl
s,t+1

= 0, s = 1, ..., n and l = 1, ..., L, (4.22)

pcl
s,t ≥ 0, p

cl
s,t(x

l
s,t − xl

s+1,t+1) = 0, s = 1, ..., n− 1, and l = 1, ..., L, (4.23)

λc
t ≥ 0, λ

c
t(1−

L∑

l=1

n∑

s=1

xl
s,t+1) = 0 (4.24)

The existence of optimal solutions for bounded utility and b < 1 follows from Theorem 4.6

in Stokey and Lucas (p. 79).

Proof of Proposition 1:

Proposition:Following Salo and Tahvonen [28], by convexity of problem (4.2)-(4.8), if there

exist multipliers pcl
s,t satisfying conditions (4.19)-(4.24) under harvesting at mcl, then the re-

sulting age class structure is an interior OCMSF. The optimality follows since with harvesting
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at mcl, ∂U l

∂xls,t
and xcl

s,t remain bounded satisfying transversality conditions which, together with

(4.19)-(4.24) are sufficient for optimality.

Proof. For s = 1, ...,mcl − 1 using (4.19) to eliminate λc
t from (4.20) and (4.21), and to

satisfy (4.22) we obtain a system of mcl x (mcl − 1) equality equations:

b(pcl
s+1,t+1+k − pcl1,t+1+k)− pcl

s,t+k = −b
[
U l(́clt+k+1)− βlpc(1− θl)

]
(f l

s+1 − f l
1) +

+
[
U l(́ct+k)− βlpc(1− θl)

]
f l
s + βlpcf

l
1 − βlpc(f

l
s+1 − f l

1) (4.25)

−bpcl
1,t+1+k − pcl

mc−1,t+k = −b
[
U l(́clt+k+1)− βlpc(1− θl)

]
(f l

mc − f l
1) +

+
[
U l(́clt+k)− βlpc(1− θl)

]
f l
mc−1 − βlpc(f

l
mcl − f l

mcl−1) + βlpcf
l
1 (4.26)

where s = 1, ...mcl − 2, k = 0, ...,mcl − 1.

This system is linear in the Lagrangian multipliers pcl
s,t+k, s = 1, ...,m

cl−1, k = 0, ...,mcl−1

and solving for any multiplier yields:

pcl
s,t =

bm
cl

fmcl

1− bmcl

[
b−s(U l′(clt+mcl−s)− βlpc(1− θl))− (U l′(clt)− βlpc(1− θl))

]
−

−f l
s(U

l′(clt)− βlpc(1− θl)) +Acl
s (4.27)

where Acl
s is given by

Acl
s =

βpc

1− bmcl



(1− bs)
mcl−1∑

i=0

bi−s
(
f l
i+1 − f l

i

)
− (1− bm

cl

)
s−1∑

i=0

bi−s
(
f l
i+1 − f l

i

)




for s = 1, ...,mcl− 1, t = 0, ...., as can be verified by direct substitution into the two equations

above. Condition (4.23) requires, for the indefinitely repeated cycle, that pcl
s,t+k ≥ 0 for

s = 1, ...,mcl − 1, k = 0, ...,mcl − 1. Thus, the fact that xcl ∈ Kcl implies by (4.27) that

U l′(clt+k)− βlpc(1− θl)

U l′(clt+k+mc−j)− βlpc(1− θl)
≤

bm
cl−jf l

mcl

f l
j + bmcl(f l

mcl − f l
j)
+ (4.28)

+
Acl

j (1− bm
cl

)
[
U l′(ct+k+mcl−j)− βlpc(1− θl)

] [
f l
j + bmcl(f l

mcl − f l
j)
]
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for k = 0, ...,mcl − 1, j = 1, ...,mcl − 1. Using (4.3) and the definition of optimal harvesting,

we can write clt+k = fmcxl
s and cl

t+k+mcl−j
= f l

mclx
cl
s−mcl+j

where s−mcl + j is understood as

s− j, if s−mcl + j ≤ 0. Equation (4.28) takes the form

U l′(f l
mclxcl

s ) + βlpcθ
l

U l′(f l
mclxcl

s−m+j) + βlpcθ
l
≤

bm
cl−jf l

m

f l
j + bmcl(f l

mc − f l
j)
+ (4.29)

+
Acl

j (1− bm
cl

)
[
U l′(f l

mclx
cl
s−mcl+j

)− βlpc(1− θl)
] [

f l
j + bmcl(f l

mcl − f l
j)
] (4.30)

for s = 1, ...,mcl, j = 1, ...,mcl − 1.

///By (4.12) ηcl
j > 1, implying that the right-hand side of (4.30) is larger than one and

larger than ηcl
j . Then, by the strict concavity of U

l, there must exist a φcl > 0, such that (4.30)

is satisfied if xcl
s = 1/m

cl + φcl
s , s = 1, ...,m

cl, for all
∣∣φcl

s

∣∣ < φcl,
∑mcl

s=1 φ
cl
s = 0, proving that

optimal harvesting is cyclical harvesting and that it is not optimal to cut before mcl.

Similarly, for s = mcl + 1, ..., n, and k = 0, ...,mcl − 1, the optimality of the harvesting at

mcl requires that land is not allocated to age classes s = mcl + 1, ..., n. Since xcl
mcl,t > 0 and

xl
mcl+1,t+1 = 0 in (4.23), we obtain p

cl
mcl,t = 0, for t = 0, ..., and p

cl
st ≥ 0, for s = mcl+1, ..., n−1,

t = 0, ...,as can also be checked in (4.27). Using this and conditions (4.20) and (4.21), yields

b(pcl
mcl+1,t+1+k − pcl

1,t+1+k)− pmcl,t+k ≤ −b
[
U l(́clt+k+1) + βlpcθ

l
]
(f l

mcl+1 − f l
1) +

+
[
U l(́clt+k) + βlpcθ

l
]
fmcl (4.31)

b(pcl
s+1,t+1+k − pcl

1,t+1+k)− pcl
s,t+k ≤ −b

[
U l(́clt+k+1) + βlpcθ

l
]
(f l

s+1 − f l
1) +

+
[
U l(́clt+k) + βlpcθ

l
]
f l
s (4.32)

for s = mcl + 1, ..., n− 2, and

−bpcl
1,t+1+k − pcl

n−1,t+k ≤ −b
[
U l(́clt+k+1) + βlpcθ

l
]
(f l

n − f l
1) +

+
[
U l(́clt+k) + βlpcθ

l
]
f l
n−1 (4.33)

where k = 0, ...,mcl − 1. Using (4.27), by direct substitution we can show that the first

two inequalities are satisfied as equalities. By eliminating pcl
1,t+1+k and pcl

n−1,t+k from the last
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inequality, using (4.27), and the facts that clt+k+1 = f l
mclxcl

s and clt+k+mc−n+1 = f l
mcxcl

s−mcl+n,

we can write the last inequality above as follows:

U l′(f l
mcxcl

s ) + βlpcθ
l

U l′(f l
mclxcl

s−mcl+n
) + βlpcθ

l
≤

bm
cl−nf l

mcl

f l
n + bmcl(f l

mcl − f l
n)

for s = mcl + 1, ..., n.

The conditions pcl
s,t+k ≥ 0 for s = mcl+1, ..., n− 1, k = 0, ...,mcl− 1 together with the last

inequality yield

U l′(f l
mclx

cl
s ) + βlpcθ

l

U l′(f l
mcxcl

s−mcl+j
) + βlpcθ

l
≤ ηcl

j ≡
bm

cl−jf l
mc

f l
j + bmcl(f l

mcl − f l
j)

(4.34)

for s = 1, ...,mcl,and j = mcl+1, ..., n.A similar condition to (4.30) can be obtained, concluding

that it is not optimal to postpone harvest at mcl.

In addition, a stationary cycle with all land allocated to forestry must satisfy λc
t ≥ 0, for

t = 0, .... Solving (4.19) or (4.20) for λc
t , eliminating p

cl
s,t, for s = 1, ...,m

cl − 1, t = 0, ..., using

(4.27), we obtain

λc
t+k =

[
U ′(clt+k) + βlpcθ

l
]
bm

cl

fmcl

1− bmcl
−

[
U l′(clt+1+k) + βlpcθ

l
]
bm

cl+1f l
mcl

1− bmcl
− bW ′(0) ≥ 0 (4.35)

for s = 1, ...,mcl, where cl
t+1+mcl = clt+1. Writing clt+k = f l

mcxcl
s and clt+1+k = f l

mclx
cl
s−1, s =

1, ...,mcl, where xl
0 = xmcl yields

λc
s =

[
U l′(f l

mclx
cl
s ) + βlpcθ

l
]
bm

cl

f l
mcl

1− bmcl
−

[
U l′(f l

mclx
cl
s−1) + βlpcθ

l
]
bm

cl+1f l
m

1− bmcl
− bW ′(0) ≥ 0

(4.36)

for s = 1, ...,mcl.

Given gcl =
[Ul′(f l

mcl
/mcl)−βlpc(1−θl)]bm

cl
f l
mcl

1−bmcl
+
∑L

l=1 β
lpc

∑mcl−1
i=0 bi

(f li+1−f li )

1−bmcl
− b

1−b
W ′(0) > 0,

there must exist a φl > 0 such that (4.36) is satisfied if xl
s = 1/m

cl + φcl
s , s = 1, ...,m

cl, for all
∣∣φcl

s

∣∣ < φcl,
∑mcl

s=1 φ
cl
s = 0, and l = 1, ..., L.

Let il∞ represent the stationary state level of variable i
l.

We now show that if gcl ≤ 0 there exists a stationary state that satisfies all the necessary

conditions for optimality.8

Proof of Corollary 1:

8The results obtained in Salo and Tahvonen [28] regarding convergence and stability of the stationary steady
states (Lemma 1 and Lemma 2, pg. 523) still apply in the case of this paper, as the difference equation for
xmi

t

, for i = c, t, a, is similar to equation (34), pg. 522, in the paper. The additional terms that are present in
our case are independent of xmi

t

. Therefore, the marginal conditions yielding the corresponding characteristic
polynomials turn out to be similar.
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Proof. Given gcl ≤ 0, no solutions for (4.36) exist. Thus, by letting λc
t = 0 in (4.19) or

(4.20), eliminating pcl
s,t, s = 1, ...,m

cl−1, t = 0, ..., using (4.27), and writing (4.19) analogously

to (4.36), we obtain for s = 1, ...,mcl and l = 1, ..., L,

[
U l′(f l

mclxcl
s )− βlpc(1− θl)

]
bm

cl

f l
mcl

1− bmcl
+

L∑

l=1

βlpc(1− b)
mcl−1∑

i=0

bi
(f l

i+1 − f l
i )

1− bmcl
−

−

[
U l′(fmclxcl

s−1)− βlpc(1− θl)
]
bm

cl+1fmcl

1− bmcl
− bW ′(y∞) ≥ 0 (4.37)

This system is linear in
[
U l′(f l

mclx
cl
s )− βlpc(1− θl)

]
, s = 1, ...,mcl and its solution is given by:

U l′(f l
mclx

cl
s )− βlpc(1− θl) +

L∑

l=1

βlpc

mcl−1∑

i=0

bi
(f l

i+1 − f l
i )

1− bmcl
=

W ′(y∞)
∑mcl−1

i=0 bi

bmcl−1f l
mcl

(4.38)

for s = 1, ...,mcl, l = 1, ..., L, as can be verified by direct substitution. Thus, xcl
s = (1− y∞ −

∑L
v=1

∑n
s=1 x

cv �=l
s )/mcl, s = 1, ...,mcl and optimal stationary cycles cannot exist.

4.7 Appendix B

The value of θ and the optimal rotation period:

Since there is no optimal rotation period for the whole forest, in what follows, it is enough

to consider only one species. Therefore, to simplify notation, we eliminate the superscript l.

We now show that for θ = 0, mc ≥ m :

At the steady-state, if there exists a mc = m, for which

(p− pcβ)b
mc

fmc

1− bmc +
pcβ

∑mc−1
i=0 bi (fi+1 − fi)

1− bmc ≥
(p− pcβ)b

mfm
1− bm

+
pcβ

∑m−1
i=0 bi (fi+1 − fi)

1− bm

(4.39)

holds, then it is optimal to cut at mc, where mc � m. If (4.39), which is the same as (4.12),

holds in particular formc = m+1, thenmc ≥ m, while if it holds in particular for mc = m−1,

mc ≤ m. If (4.39) holds as an equality, mc = m.

By making mc = m − 1, we show below that (4.39) never holds, implying that mc ≥ m,

that is, it is optimal to postpone harvest. Also, for some mc = m+1, (4.39) may be satisfied.
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Let mc = m− 1 in (4.39). By rearranging and collecting terms we obtain

pbm−1fm−1(1− bm)− pbmfm(1− bm−1) >

pcβ(b
m − bm−1)

m−2∑

i=0

bi(fi+1 − fi)− pcβb
mfm(1− bm−1) + pcβb

m−1(fm − fm−1)(1− bm−1) + pcβb
m−1fm−1(1

(4.40)

which can be restated as

pcβ(b
m − bm−1)

m−2∑

i=0

bi(fi+1 − fi)− pcβfm(b
m − bm−1)(1− bm−1)− pcβfm−1b

m−1(bm − bm−1)

(4.41)

and, finally, as

pcβ(b
m − bm−1)

[
m−1∑

i=0

bifi+1 −
m−1∑

i=0

bifi − fm

]

(4.42)

In (4.40) the left-hand side is negative. Since

m−1∑

i=0

bifi+1 =
m−1∑

i=0

bi(fi+1 − fm) +
m−1∑

i=0

bifm−1

substituting above we obtain

pcβ(b
m − bm−1)

[
m−1∑

i=0

bi(fi+1 − fm)− fm +
m−1∑

i=0

bi(fm − fi)

]

Given that {fi}, for i = 1, ...,m−1, is an increasing sequence, and b < 1, we may conclude

this expression is positive, as the sign of the algebraic sum inside the square brackets is

negative. Consequently, the right-hand side of (4.40) is positive, implying that (4.40) never

holds for any mc < m. Also, we can show that it may hold for some mc > m. Therefore, when

θ = 0, it is never optimal to cut earlier, that is, mc ≥ m.

In the case θ = 1, we will consider two cases. In case (i) we assume that the sequence

{fi − fi−1} is a decreasing sequence. In case (ii) we only assume that the sequence {fi} is an

increasing sequence.

(i) Let mc = m+ 1 in (4.39). By rearranging and collecting terms we obtain

pbm+1fm+1(1− bm)− pbmfm(1− bm+1) >
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pcβ

[

− (fm+1 − fm) (1− bm)bm +
(
bm − bm+1

)m−1∑

i=0

bi (fi+1 − fi)

]

(4.43)

In (4.40) the left-hand side is negative. Dividing (4.40) by (1− bm)bm, the right-hand side

can be stated as follows:

pcβ

[

− (fm+1 − fm) +
bm − bm+1

(1− bm)bm

m−1∑

i=0

bi (fi+1 − fi)

]

Since

m−1∑

i=0

bi (fi+1 − fi) =
m−1∑

i=0

bi [(fi+1 − fi)− (fm+1 − fm)] +
m−1∑

i=0

bi(fm+1 − fm)

implying that

m−1∑

i=0

bi (fi+1 − fi) =
m−1∑

i=0

bi [(fi+1 − fi)− (fm+1 − fm)] +
1− bm

1− b
(fm+1 − fm)

Substituting above we obtain

pcβ

[
bm − bm+1

(1− bm)bm

(
m−1∑

i=0

bi [(fi+1 − fi)− (fm+1 − fm)] +
1− bm

1− b
(fm+1 − fm)

)

− (fm+1 − fm)

]

which can be restated as

pcβ

[
bm − bm+1

(1− bm)bm

(
m−1∑

i=0

bi [(fi+1 − fi)− (fm+1 − fm)]

)

+

(
bm − bm+1

(1− bm)bm
1− bm

1− b
− 1

)
(fm+1 − fm)

]

Given that {fi − fi−1}, for i = 1, ...,m, is a decreasing sequence, we may conclude that

this expression is positive, as the term that multiplies (fm+1 − fm) vanishes. Consequently,

the right-hand side of (4.40) is positive, implying that (4.40) never holds for any mc > m. By

inspection, we observe that it may hold for some mc < m. Therefore, for θ = 1, it is never

optimal to postpone harvest, that is, mc ≤ m.

(ii) Let mc = m+ 1 in (4.39). By rearranging and collecting terms we obtain

pbm+1fm+1(1− bm)− pbmfm(1− bm+1) >
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pcβ

[

− (fm+1 − fm) (1− bm)bm +
(
bm − bm+1

)m−1∑

i=0

bi (fi+1 − fi)

]

(4.44)

Since

m−1∑

i=0

bifi =
m−1∑

i=0

bi(fi − fm+1) +
m−1∑

i=0

bifm+1

which can be rewritten as

m−1∑

i=0

bifi =
m−1∑

i=0

bi(fi − fm+1) +
1− bm

1− b
fm+1

By substituting above, we obtain

pcβ [− (fm+1 − fm) (1− bm)bm] +

+pcβ
(
bm − bm+1

)
(

m−1∑

i=0

bifi −
m−1∑

i=0

bi (fi − fm+1)−
1− bm

1− b
fm+1

)

Finally, by collecting terms, we get

pcβ

(
−(1− bm)bm −

(
bm − bm+1

) 1− bm

1− b

)
fm+1 + pcβfm(1− bm)bm

+pcβ
(
bm − bm+1

)m−1∑

i=0

bifi − pcβ
(
bm − bm+1

)m−1∑

i=0

bi (fi − fm+1)

where the first-term is negative and the other three are positive. In particular, the last term

is positive as long as {fi} is an increasing sequence for i = 1, ...,m + 1. Therefore, the sign

of this expression, that is, the right-hand side of (4.44) can be either positive or negative.

Since the left-hand side of (4.44) is negative, it may be optimal to postpone harvest. This is

in contrast to case (i), in which by imposing a more restrictive assumption, namely, that the

sequence {fi − fi−1} is decreasing, it is never optimal to postpone harvest.

Let now mc = m− 1 in (4.39). By rearranging and collecting terms we obtain

pbm−1fm−1(1− bm)− pbmfm(1− bm−1) >

pcβ

[

(fm − fm−1) (1− bm−1)bm−1 +
(
bm − bm−1

)m−1∑

i=0

bi (fi+1 − fi)

]

(4.45)
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which can be rewritten as

pcβ

[

(fm − fm−1) (1− bm−1)bm−1 +
(
bm − bm−1

)
(

m−2∑

i=0

bi(fi+1 − fi)

)]

Using the same procedure as before, we may write

m−2∑

i=0

bi [(fi+1 − fi)− (fm − fm−1)] =
m−2∑

i=0

bi +
m−2∑

i=0

bi (fm − fm−1)

that is,

m−2∑

i=0

bi [(fi+1 − fi)− (fm − fm−1)] =
m−2∑

i=0

bi [(fi+1 − fi)− (fm − fm−1)] +
1− bm−1

1− b
(fm − fm−1)

Substituting above and collecting terms, we obtain

pcβ
(
bm − bm−1

)
(

m−2∑

i=0

bi [(fi+1 − fi)− (fm − fm−1)]

)

+

+pcβ

((
bm − bm−1

) 1− bm−1

1− b
+ (1− bm−1)bm−1

)
(fm − fm−1)

Therefore, the right-hand side of (4.45) can be rewritten as the algebraic sum of the two

above terms. The first term is negative, as long as {fi − fi−1} is a decreasing sequence for

i = 1, ...,m − 1, while the second one is positive, as the term that multiplies (fm − fm−1) is

positive. Therefore, it may be optimal to cut earlier than m. The same result is obtained if,

instead, we consider a less restrictive assumption such that {fi} is an increasing sequence for

i = 1, ...,m+ 1.
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Figure 1

Figure 2

Figure 3
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Figure 4

Figure 5
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