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ABSTRACT This work addresses target localization problem in precarious surroundings where possibly no
links are line of sight. It exploits the known architecture of available reference points to act as an irregular
antenna array in order to estimate the azimuth angle between a reference point and a target, based on distance
estimates withdrawn from integrated received signal strength (RSS) and time of arrival (TOA) observations.
These fictitious azimuth angle observations are then used to linearize the measurement models, which
triggers effortless derivation of a new estimator in a closed-form. It is shown here that, by using fixed network
geometry in which target orientation with respect to a line formed by a pair of anchors can be correctly
estimated, the localization performance can be significantly enhanced. The new approach is validated
through computer simulations, which corroborate our intuition of profiting from inherent information within

a network.

INDEX TERMS Non-line-of-sight (NLOS), weighted least squares (WLS), received signal strength (RSS),

time of arrival (TOA), azimuth angle.

I. INTRODUCTION

Achieving accurate location of people and objects will be a
paramount task in many applications of the future Internet of
things systems based on 5G networks. To this end, different
properties of radio signals could be exploited, e.g. received
signal strength (RSS) [1]-[4], time of arrival (TOA) [5]-[8]
or angle of arrival [9]-[14].

The topic of target localization based on amalgamated
RSS and TOA observations has evoked much attention
in the research society recently [15]-[19]. In the works
of [15] and [16], the authors considered the problem of range
estimation founded on these two radio measurements. The
authors in [17]-[19], addressed the target localization prob-
lem in mixed line-of-sight (LOS)/non-line-of-sight (NLOS)
surroundings. In [17], the authors started by identifying
the kind of path of each link by employing Nakagami
distribution after which they derived an estimator in the
form of weighted least squares (WLS). Based on the type
of the identified path (LOS/NLOS), the WLS estimator
than exploits TOA-only/RSS-only observations. In [18], the
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authors proposed an iterative estimator based on squared
range WLS. They partially mitigated the resinous impact of
NLOS biases by introducing a single balancing term, together
with employing an intermittent scheme to determine an
estimate of the target’s location. The authors in [19], studied
a worst-case setting of the problem in which it was assumed
that none of the links are LOS. Building upon this, as well
as the supposition that the knowledge about the magnitude
of the NLOS bias is (imperfectly) available, the authors
derived a robust estimator formulated in a generalized trust
region sub-problem (GTRS) framework, by following a min-
max criterion. The existing algorithms are limited in the
sense that they either require perfect distinguishment between
LOS/NLOS links [17] (which might not be feasible in prac-
tice) or their computational complexity is not completely
satisfactory [18], [19].

In this work, we take a completely different approach
from the existing ones: by taking advantage of the network
topology of known reference points to play a role of an
irregular antenna array and the available distance estimates
(from RSS and TOA observations), we first estimate the
azimuth angle between a reference point and a target. Note
that this is in huge contrast with [9]-[12], [14], [20], where
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azimuth angle was measured by using directional antennas or
antenna arrays. These estimates are then used to linearize the
measurement models based on Cartesian to polar coordinates
transformation, which permits effortless development of a
new estimator whose solution is given in closed-form. The
biggest challenge in the proposed approach is to guarantee
correct estimation of the target’s orientation with respect to
a line between two reference points. Owing to the elevated
level of difficulty of the problem of interest, this is extremely
hard to achieve always in ad-hoc networks. Nevertheless,
in some fixed network architectures of high practical inter-
est, where such guarantees are attainable, the new approach
exhibits superior performance over the existing ones. Hence,
the principal contributions of the present work are the
following.

« Novel procedure for azimuth angle estimation between
a reference point and a target. The procedure is based
only on exploiting the known network architecture of the
reference points and distance measurements obtained
through RSS and TOA measurements, and requires
no additional hardware. This is in sharp contrast with
the existing methods in [9]-[12], [14], [20], where the
azimuth angle was measured by using directional anten-
nas or antenna arrays.

o New estimator for hybrid RSS-TOA localization in
adverse indoor environments. Our proposed approach
takes advantage of the estimated azimuth angle to facil-
itate derivation of an efficient estimator (both in terms
of computational complexity and localization accuracy)
in a closed-form. The new estimator shows superior per-
formance over the existing ones, owing to the exploita-
tion of the inherent information from the network

architecture.
The remainder of this work is structured as follows.

Section II introduces the considered measurement models
and formulates the target localization problem. In Section III,
derivation of the proposed procedure to estimate the azimuth
angle between a reference point and a target is presented.
Section IV describes how to exploit the estimated azimuth
angle in order to efficiently solve the localization problem
at hand. Sections V and VI validate the performance of the
proposed localization algorithm in terms of computational
complexity and localization accuracy, respectively. Lastly,
Section VII summarizes the main findings of this work.

Il. PROBLEM CONCEPTUALIZATION

Let us focus on a 2-dimensional network of sensors, where
a; and x respectively represent the known location of the
i-th reference point (also called anchor) ( = 1,...,N)
and the unknown location of the target. The target emits
a radio signal, picked-up by anchors, which are capable

of extracting the RSS and the TOA information from
it. In NLOS environments, the two radio measurements
(where TOA observations were converted to distance) can be
modeled [15], [16] as

lx — a;ll

P; = Py — b; — 10y log; T + n;, (1a)
0
di = |lx —ai| + Bi + m;, (1b)

where P( denotes the RSS (in decibel-milliwatts, dBm) mea-
sured at a short reference distance dy (||lx — a;|| > do), b;
(in decibels, dB) and B; (in meters, m) denote the (positive)
NLOS biases, y represents the path loss exponent between
two sensors, indicating the rate at which the received strength
decreases with distance, n; denotes the log-normal shadowing
term (dB) modeled as n; ~ N0, a,%l_), and m; ~ N(O, a,fll_)
is the measurement noise (m). Analogously to the previous
works in [5]-[8], the magnitude of the NLOS biases is consid-
ered upper-bounded by a given parameter, i.e., 0 < b; < bmax
and 0 < B; < Bmax. Note that this assumption does not imply
anything about the distributions of b; or g, since they are not
known in general.

Based on (1a) and the fact that n; and m; presumably follow
a Normal distribution, the combined RSS-TOA maximum
likelihood (ML) estimator of x, b; and $8; can be formulated
as If RSS and TOA measurements were taken from individual
origins, the problem in (2), shown at the bottom of this page
would represent the exact joint ML estimator [16]. Neverthe-
less, the experimental trials in [15] and [21] corroborate that
these observations withdrawn simultaneously from a single
radio signal are weakly correlated; hence, the supposition
that the measurements are uncorrelated is not unacceptable.
Howsoever, (2) is far from being convex and is not deter-
mined, since the set of unknowns (2N + 2) is greater than the
set of observations (2N ). Hence, instead of tackling it directly,
we first estimate the azimuth angle between an anchor and
the target, which then allows us to linearize the measurement
models and derive a different estimator in a closed-form. '
lll. AZIMUTH ANGLE ESTIMATION
In the mean ML sense,? the best estimators of ||x — a;|| from
(1a), are

Py—P;— bmax

dBSS = dp10™ 07, (3a)

aToA _ g, _ Pmax. (3b)

TAn alternative (iterative) approach for achieving (local) linearization
might be through gradient search. However, these methods highly rely on
initialization and might lead to imprecise solutions due to local minima.

2E. g., the best estimate of |lx — a;]| in (1b) in the mean ML perspective is
di — Bmax/2 = diTOA, where Bmax /2 denotes the mean value of the interval
[0, Bmax Lfrom which g; is stipulated. Analogous reasoning was applied for
defining d; RSS

1\ 2
N (Pi = Po+bi+ 10y logi 2340) 02+ (d; — x — aill = B* 02
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FIGURE 1. Geometrical interpretation of the azimuth angle estimation
process.

As shown in Fig. 1 where d; instead of Z@RSS and ’d\iTOA
is used for notation simplicity, by having these distance esti-
mates at hand, together with the known locations of anchors,
one could form triangles between a couple of anchors and the
target. Note that in any of these triangles, all three side lengths
are (possibly imperfectly) known. Hence, by using the law of
cosines, the angle 6; (see Fig. 1) can be easily estimated as

follows.
R d} +d? —a?
0; = arccos | ——— ),
2d;;d;

“

for both types of measurements (RSS and TOA). In addition,
the azimuth angle between the i-th anchor and the target at
the i-th anchor (from both RSS and TOA) is estimated as

¢ = a6, )

where a;; stands for the (known) azimuth angle among a; and
a;j, and =+ is used to capture all potential scenarios relative to
the location of the target (depending on whether the target is
located above or below the line formed by the anchors i and j).
In general, the correct sign in (5), i.e., the target’s orientation
with respect to a line formed by a pair of anchors can be
estimated by finding a rough estimate of x. For instance,
one could achieve this by resorting to an ordinary trilatera-
tion method, like the one in [9], or by any of the existing
RSS-TOA localization algorithms [17]-[19]. Still, because
of the elevated level of difficulty of the considered problem
(non-convex and under-determined) and perhaps unfavor-
able geometry in ad hoc networks (e.g., when sensors are
approximately deployed on a line), it is not realistic to attain
perfect orientation estimates in all cases. Naturally, this would
reflect negatively on the localization performance. Nonethe-
less, there are many fixed network deployments of practical
interest (as the one considered in Section VI), where one
can simply rely on known network topology to guarantee the
correct orientation estimation in all situations. Hence, we will
show that in such cases, the artificially fabricated information
about the estimated azimuth angle can considerably enhance
localization performance. To this end, the following section
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gives details about how this additional information could be
exploited.

IV. THE PROPOSED WLS ESTIMATOR

This section shows how to linearize the measurement model
(1a) by exploiting the estimated azimuth angles in (5), and
how to solve the localization problem in a closed-form.
Notice that from (3) one can write

Aillx — aill = ndo, (6a)
I — ail ~ d; — P (6b)
2
P+ omgax Py
where A; = 10 ™  and n = 10 . Moreover,

by exploiting ¢; in (5) and applying simple geometry, one can

approximate
~ Xy — dj
4  arctan (u) ,

Xx — dix
where xy and ajy (xx and a;x) denote the y-coordinates
(the x-coordinates) of the target and the i-th anchor respec-
tively. After performing certain elementary algebraic opera-
tions, the previous expression can be written in the following
vector form.

¢/ x—a) =0, (Ta)
kiT x —a;) ~ 0, (7b)

where ¢; = [—sin(@R5S), cos(®5%))” and ki =
[— sin(gﬁlTOA), cos(g?JZTOA)]T, for the estimates obtained
according to RSS and TOA observations.

Then, according to the least squares criterion based on (6a)
and (7a), an estimate of x can be obtained by solving

N N
2
& =argmin ) (illx — ail| — nd0)2+2(cf (x — a,~))
Y=l

i=1

N 2 N 5
+y (le—ai||—3iTOA) +y° (kiT (x— a,~)> )
i=1 i=1

The estimator in (8) is not convex owing to the norm
terms in the first two summations. Nevertheless, since we
have (fabricated) azimuth angle information at our disposal,
and it is well known that polar space is more suitable when
dealing with directional data [22], we shortly switch from
Cartesian to polar space and (indirectly) tackle (8) in the latter
space. To do so, we express x — a; = r;u; in (6a), with r; > 0

and |lu;|| = 1, which results in ||x — a;|| = r;. Moreover,
we define the unit vector as u; = [cos(gblRSS), sin((ZJlRSS)]T.
Similar procedure is applied in (6b), where x — a; = p;v;,

with the unit vector defined as v; = [cos(g?)l.TOA), sin(gﬁ;rOA)]T.
To invert the treatment and return to the original space, it is
enough to multiply the two equations by ul.Tui =1, ie,
viTv,- = 1. Hence, by applying the described steps to (6a),

we get
Al riwg = ndy < Au! (x —a;) = ndo, (9a)
v,-Tpivi = diTOA & vl-T x—a)= diTOA. (9b)
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With the goal to attribute more trust to nearby connections
(to both RSS and TOA links), weights, w = [, /will and @ =
[Ja:]T, are iil\troduced, Wi/Eh wi = 1-— dl.RSS/ vazl diRSS
and w; = 1—d, ToA Zf’: 1 d;7%4. Hence, following the WLS
criterion, the following estimator can be derived.

N
2
X =arg minz w; (AiuiT (x—a;)— ndo)
iz

N 2
+ Z wi (clT (x — ai))

i=1

N 2 N 2
+ Za)i(viT (x—a;) — ZZ\I-TOA> +Zwi<kiT (x — ai)) .

i=1 i=1

(10)
The problem in (10) can be rewritten in a vector form as
minimize |W(Ax — b)||%, (11)
X
where W = diag ([wT, wl, o7, wT]), and diag(e) denotes

a diagonal matrix whose elements on the main diagonal are
defined by the vector in the argument, and

)\,lu{ )Llu{al + ndo
kNulj\; )LNuK,aN + ndp

cl cla

A= 017\; b— CTa’]Y
vlT ’ vlTal + leOA
T T “5 TOA

v,¥ VNan ;— dy
k, kia
| kY | | kyan

The closed-form solution? to (11) is thus

%= (ATWTWA)_l ATWTp).

V. COMPLEXITY ANALYSIS
In this section, besides the proposed WLS algorithm in (11),
three existing algorithms are considered: the HWLS algo-
rithm which identifies the type of path by relying on
Nakagami distribution [17], the SR-WLS algorithm which
approximates the NLOS biases by balancing parameters [18],
and the R-GTRS algorithm which uses a robust approach to
turn the original problem into a min-max one [19].

An overview of the computational complexity of the rele-
vant algorithms is given in Table 1. Note that Sy« in Table 1

3Note that after solving (11), one could apply an alternating approach in
which X could be used to obtain an estimate of the mean NLOS bias (both
RSS and TOA) and vice versa. Nevertheless, in our simulations, this itera-
tive approach showed only marginal improvements in terms of localization
accuracy, which does not justify its use.

44044

TABLE 1. Summary of the considered algorithms.

[ Algorithm | Description [ Complexity |
WLS The proposed method in (11) O(N)
HWLS The HWLS method in [17] O(N)
SR-WLS | The SR-WLS method in [18] | 2 X O (SmaxN)
R-GTRS | The R-GTRS method in [19] O (SmaxN)

TABLE 2. Anchors’ deployment within the simulation surrounding.
Index 1] 2 3 4 5 6 7 8

0|0 |B|B| 0 |B/2|B/2| B
o|B|o|B|B/2| 0 | B | B2

a; (m)

denotes the maximum allowed number of iterations in the
bisection scheme. The table exhibits that the considered algo-
rithms have linear complexities in N. Nevertheless, the com-
plexities of SR-WLS and R-GTRS are somewhat higher due
to the iterative nature of the bisection procedure.

VI. PERFORMANCE ASSESSMENT

In this section, we present a set of computer simulation results
in order to assess the performance of the proposed algo-
rithm in terms of localization accuracy. All presented results
were obtained by implementing the considered algorithms
in MATLAB. All observations were simulated by follow-
ing (1a), whereas the known locations of the reference points
are given in Table 2. The true unknown location of the target
was generated randomly within a region of B x Bm? in every
Monte Carlo, M, run. It is worth mentioning that the first N
(where N might vary in each setting) anchors from Table 2
were employed invariably. The rest of the fixed simulation
parameters were set as: Pp = 20dBm, dp = 1 m, y = 3,
and M, = 50000. Furthermore, for each link and in each M,
run, the NLOS biases (for both RSS and TOA measurements)
were retrieved arbitrary from a uniform distribution on the
interval [0, biasyax] (dB, m), ie., bias; ~ U[0, biaspyax],
i =1,...,N. The main metric for performance assessment
is the root mean squared error (RMSE), defined as RMSE =
Z?i"l W, where X; represents the estimate of the true
target location, x;, in the i-th M, run.

The considered network geometry is chosen intentionally,
since it allows for perfect estimation of the correct sign in (5).
For instance, to determine ¢; one could use a» and a3 to form
pairs with a1, since the only feasible target orientations would
be to the right and above the lines formed by these pairs of
anchors, respectively. To determine ¢s one could use a; and
a; to form pairs with as, since the only feasible target orien-
tation would be to the right of the lines formed by these pairs
of anchors, and so on. Whenever feasible, in all simulations
presented here, each anchor used two additional anchors to
assist it in estimating its azimuth angle to the target.

The new algorithm is compared with the existing ones
(see Table 1). In all simulations, the first N anchors in Table 2
are considered, and K = 30 was used for SR-WLS and
R-GTRS.

Fig. 2 illustrates the performance comparison in terms of
the number of anchors, N, in the setting where the number
of NLOS links, |LnrLosl, is equal to N. The figure shows
that WLS outperforms significantly the existing approaches,
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FIGURE 2. RMSE versus N comparison, when biasmax = 5 (dB, m),
bias; ~ [0, biasmax]. 6; = 3 (dB, m), |CnLos| =N, B =20 m.
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FIGURE 3. CDF versus LE (m) comparison, when N = 4,
biasmax = 5 (dB, m), bias; ~ 1[0, biasmax], s; = 3 (dB, m),
|LNLos| =4, B=20m.

especially for low N. This result was anticipated, since the
new approach benefits from additional information from the
estimated azimuth angles. Naturally, as N grows, the amount
of information acquired in the network becomes sufficiently
large to permit reasonably good performance to all methods.

Fig. 3 illustrates the cumulative distribution func-
tion (CDF) of localization error (LE), when N = 4. We define
the LE according to LE = ||x; —X;|| (m), fori =1, ..., M,.
It can be seen from the figure that the proposed estimator
accomplishes LE < 4 in roughly 90% of the cases, which is
fairly better in comparison with the existing methods.

Fig. 4 illustrates the performance comparison in terms of
noise powers, o; (dB, m). In order to give a deeper insight
on the impact of noise powers on localization performance,
the magnitude of the NLOS biases, biasp,x (dB, m), was
fixed to a reasonably low value, i.e., biasmax = 1 (dB, m)
was considered. Fig. 4 shows that WLS performs well in
noisy environments, offering a considerable error reduction
in comparison with the state of the art approaches.

Fig. 5 illustrates the performance comparison in terms of
the magnitude of the NLOS biases, biasy,x (dB, m). Analo-
gously to the previous figure, here, we set o; = 1 (dB, m).
From Fig. 5, one can notice a margin in the performance
between the new and the existing approaches for every exam-
ined value of biasp,x (dB, m). This result suggests that WLS
handles NLOS bias more efficiently than other approaches.

Fig. 6 illustrates the performance comparison in terms of
the number of NLOS links, |£nros|. Note that |Lnpos| = 0
corresponds to a completely LOS setting, while |[CnLos| = N
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FIGURE 6. RMSE versus | Ly os| comparison, when N = 4,
biasmax = 5 (dB, m), bias; ~ 1[0, biasmax], 0; = 3 (dB, m), B =20 m.

corresponds to a fully NLOS setting. The figure shows that,
besides HWLS algorithm® all approaches perform better in
the two radical scenarios (all links LOS/NLOS) than in the
mixed environment. This might be justified to some propor-
tion by the fact that all of them tend to cancel out the influence
of the NLOS bias, which gets more miscellaneous as the
number of LOS and NLOS links balance out, allowing only
partial NLOS bias mitigation. Nevertheless, the figure shows
superior performance of WLS in all considered proportion of
LOS/NLOS links.

Next, we compare the proposed hybrid algorithm
against its complements utilizing RSS-only and TOA-only

4Note that the authors in [17] assume that their estimator is able to
distinguish among LOS/NLOS links. Hence, in Figs. 2-6, and 8, HWLS was
implemented with perfect knowledge about bias; (dB, m).
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TABLE 3. Stability test results for the proposed estimator.

[ N i 2 [ 3 [ 4 5 [ 6 7 8 |
MEEC 7.25 0.34 5.84 1.94 351 —0.23 2.78 —0.20 3.31 0.46 4.370.27 1.94 0.12
500 0.34 12.21 1.94 6.63 —0.23 3.37 —0.20 3.94 0.46 3.33 0.27 1.85 0.12 2.03
MEEC- 7.66 — 0.05 5.86 1.72 3.37 —0.00 2.80 — 0.04 3.41 0.37 4.49 0.08 2.00 0.01
5000 —0.05 11.62 1.72 6.03 —0.00 3.47 —0.04 4.10 0.37 3.43 0.08 1.83 0.01 1.91
MEEC 7.69 —0.03 6.11 1.75 3.41 0.01 2.81 0.01 3.36 0.37 4.44 0.01 1.93 —0.01
50000 —0.03 11.26 1.75 6.11 0.01 3.41 0.01 3.91 0.37 3.37 0.01 1.83 —0.01 1.90
(500) 7.29 1.26 3.20 2.74 2.86 1.82 1.85
€ 12.23 8.22 3.68 3.97 3.78 4.39 2.11
(5000) 7.66 123 3.36 2.80 3.05 1.82 1.91
€ 11.63 7.67 3.47 4.11 3.78 4.49 2.01
(50000) 7.68 4.35 3.40 2.81 2.99 1.83 1.90
€ 11.26 7.86 3.42 3.91 3.74 4.44 1.93
8 7 T T
—WLS E ! —WLS
F) S, WLSRgg i 6.5 OHWLS ||
T, AWLSToA 6 *SR-WLS||
of N O WLS i (RSS+TOA) | Ss OR-GTRS
/g N O WLS, AL = 10° E
= oGS, LS in (8) I _—
%) *GS, ML in (2) Iz
=1 =
a4 o~

FIGURE 7. RMSE versus N comparison, when biasmax = 5 (dB, m),
bias; ~ [0, biasmax], o; = 3 (dB, m), |CnLos| =N, B =20 m.

measurements, and azimuth angle-only estimates from (5),
and present the results in Fig. 7. As a kind of a lower bound,
we also include the results of WLS when, instead of estimat-
ing the azimuth angles, one is able to measure them (which
requires additional hardware at anchors), denoted as “WLS,
oazi = 10°”. For such a case, azimuth angle measure-
ment error was retrieved from a von Mises distribution with
zero-mean value [22], where the concentration parameter
chosen to coincide with a Normal distribution with zero-
mean whose noise power was set as noted explicitly in Fig. 7.
Finally, the theoretical results of (2) and (8) obtained through
grid search (GS) with a step of 0.1 m are also presented.’
The figure exhibits that the hybrid approach indeed brings
benefits in terms of localization accuracy in comparison with
traditional ones. Also, it shows that the idea exploited within
the proposed approach is a valid one, since the performance
of WLS is competitive with its counterpart that is able to
measure the azimuth angle with a relatively high precision
of 10°. Lastly, it shows that the estimator in (8) is a good
approximation of (2), i.e., that the proposed derivation steps
in Section IV make sense.

Note that the supposition that the upper bound of the
NLOS biases is perfectly available, might be an oversimpli-
fied perspective of the reality. Therefore, with the objective
to assess the performance of the new estimator in a more

51n order to solve (2), true NLOS bias realizations and noise powers
were used; thus, one can see the results obtained by solving (2) and (8)
as theoretical lower bounds on the performance of WLS. Also, note that
grid search algorithms are impractical for real-time applications due to their
extensive execution time.

44046

FIGURE 8. RMSE versus N comparison, when biasmax = 5 (dB, m),
bias; ~ Exp(1£[0, biasmax]), o; = 3 (dB, m), |y os| =N, B =20 m.

realistic setting, where the magnitude of the NLOS biases is
not perfectly known, we randomly drawn the NLOS biases
from an exponential distribution, where the rate parameter is
generated according to a uniform distribution on the interval
[0, biasmax] (dB, m), i.e., bias; ~ ExpU[0, biasmax]), i =
1,...,N, and we present the results in Fig. 8. Naturally,
the figure exhibits slight performance deterioration of all
considered algorithms, but the main conclusions drawn in
previous settings remain unaltered, i.e., the use of additional
information can enhance localization performance, especially
when N is low.

Lastly, we also performed a test in order to check the
stability of the proposed estimator. Hence, we calculated the
mean estimation error covariance (MEEC) matrix [23] as
MEEC = YM @R afier M, = 500,5000, and
50000, in order to to get a notation about the behaviour of
the matrix. The results of this test are presented in Table 3,
together with the results of the eigenvalues of MEEC, ¢;, for
the corresponding M, run. The table shows that MEEC is
positive definite for all M, runs; thus, the stability of MEEC
is verified, i.e., we can conclude that the estimation process
is mean square error stable [23].

VIi. CONCLUSION

This work addressed the RSS-TOA target localization prob-
lem in adverse NLOS surroundings. We took advantage of the
network architecture to estimate the azimuth angle through
available range observations. By making use of the fabricated
azimuth information, the originally non-linear measurement
models (RSS and TOA) were linearized by shortly switch-
ing from Cartesian to (a more natural space for exploiting
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directional data) polar space after which the new estimator
was effortlessly derived in closed-form. Hence, not only
that we showed how to estimate the azimuth angle without
using any auxiliary hardware (for instance antenna arrays or
directional antennas), but we also showed how to amalga-
mate it together with RSS and TOA observations to improve
localization accuracy. The new estimator exhibited superior
performance over the existing ones in all considered sce-
narios, which is owed to fixed favorable deployment of the
reference points that allowed us perfect estimation of the
target’s orientation in all cases. It is still an open question if
perfect estimation of the target’s orientation can be achieved
always in ad-hoc networks, since it is extremely difficult to
resolve the ambiguity problem in such a challenging setting
(adverse NLOS environment with potentially inauspicious
network deployments), but it is a part of our ongoing work.
Nevertheless, here we showed that there is indeed a great
potential in the inherent information hidden in the network
topology, which, if availed in the right manner, can enhance
significantly the localization performance.
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