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Abstract: Transportation data in a smart city environment is increasingly becoming available. This
data availability allows building smart solutions that are viewed as meaningful by both city residents
and city management authorities. Our research work was based on Lisbon mobility data available
through the local municipality, where we integrated and cleaned different data sources and applied
a CRISP-DM approach using Python. We focused on mobility problems and interdependence and
cascading-effect solutions for the city of Lisbon. We developed data-driven approaches using artificial
intelligence and visualization methods to understand traffic and accident problems, providing a big
picture to competent authorities and supporting the city in being more prepared, adaptable, and
responsive, and better able to recover from such events.

Keywords: transportation; traffic; accidents; data-driven; data visualization; smart cities

1. Introduction

Transportation infrastructures (TIs) have a pivotal role in ensuring citizens’ liveability,
safety, security, and health in urban settings. In the environment, modern critical infras-
tructures have become more competent in the way they operate, function, and interact
with citizens, customers, and between each other, leading to the birth of smart cities (SCs).
The smart city can now be defined as a complex network of technologically advanced
critical infrastructures connected in a digital environment, characterized by a massive and
increasing presence of IoT objects and underlying technologies [1]. A TI becoming smarter
involves regular operation and use, making it more adaptive, more intelligent, and more
connected. Moreover, in the case of excessive optimization, it could also make TIs more
vulnerable and subject to cascading effects, and therefore less resilient. Following recent
disruptive human-made and natural events, including the COVID-19 pandemic, it has
become clear that the smart city itself is not sufficient to protect citizen life, and shall move
to an upgraded and more secure version of itself: the resilient city [1].

The population inhabiting metropolitan areas around the world is increasing at an
alarming rate. In 2008, 50% of the world’s population lived in urban areas, and was
growing exponentially. By 2050 [2], it is expected that 70% of the world’s population will
live in metropolitan regions. Due to this rapid population growth, cities will face new
challenges [3], such as increased waste, pollution, traffic congestion, and road accidents.

Traffic management is a topic the research community has been tackling for more than
40 years [4]. Cities’ policymakers approach this problem by integrating new technologies
in their solutions, such as sensors, video images, microwave radar, infrared sensors, laser
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sensors, audio sensors, and Global positioning System (GPS) sensors equipped in smart-
phones and vehicles, which provide large quantities of data. With appropriate data science
methodologies, scientists can now predict real-time traffic trajectories and patterns based
on historical data [5].

The availability of such data sources with open access has led to new data-driven
approaches, cost-effective mobile services, and applications that stand as the cornerstone
of intelligent transportation systems (ITSs). Road traffic congestion is a problem that leads
to delays, energy consumption, and environmental pollution [6]. ITSs can improve citizens’
sustainable urban mobility and quality of life, providing solutions to pollution and traffic
congestion, promoting reduction of road accidents [7] and energy consumption. ITSs can
contribute to key public policy and systematic management, reducing traffic congestion
and energy consumption in urban areas.

The World Health Organization (WHO) estimates road accidents are the ninth leading
cause of death globally across all age groups, and are the main cause of death among
people aged between 15 and 29 years. Road accidents are a cause of life losses, and bring
health and socioeconomic costs [8].

All over the globe, countries are adopting measures to decrease road fatalities. Speed
management, infrastructure design and improvement, enforcement of traffic laws, lead-
ership on road safety, vehicle safety standards, and post-crash survival are some of the
currently ongoing initiatives that aim to mitigate this hazard [8]. A large number of road ac-
cidents occur due to various factors that directly or indirectly affect conditions on the road
for drivers, passengers, and pedestrians [9]. Factors such as gender and age, or environ-
mental factors such as low brightness (dawn or dusk) and adverse weather conditions [10],
influence the world’s global number of road accidents.

In Portugal, drivers spend a daily average of 42 min in urban traffic and an average
of 160 h each year in traffic jams [11]. Traffic congestion is one of the causes of road
accidents. This is considered one of the most serious problems in today’s Portuguese society
and a public health issue. According to Autoridade Nacional de Segurança Rodoviária
(ANSR) [12], compared to 2018, the number of accidents with victims increased by 4% in
2019, with a reduction of 9% in the number of fatalities. Despite this fall in fatalities, serious
injuries increased by 9%. The geographic distribution of road traffic victims in 2019 shows
that Lisbon and Porto have approximately 40% of the country’s total number of victims.

Our research aim was to analyze and visualize data of two traffic phenomena: traffic
congestion and road accidents, with Lisbon as a case study. Lisbon is the capital of Portugal,
with a population of 508,368, and 2 million people (20% of Portugal’s population) living
in the urban metropolitan area commute to Lisbon. Around 370,000 vehicles enter Lisbon
every day, adding to the 200,000 vehicles that already circulate in the city. We investigated
and constructed an overview of traffic congestion and road accidents in Lisbon by analyzing
2019 data. Our main research goal was to correlate traffic and road accidents, identifying
how people move in a city and how weather conditions affect traffic congestion and road
accidents, with a multivariable analysis and visualization. Furthermore, our research goal
aimed to provide data-driven guidelines and knowledge about traffic and road accidents in
Lisbon to the city authorities and policymakers in the framework of a traffic management
and visualization tool to help them mitigate such phenomena.

Our study addresses the following research questions:

• RQ1: How can we characterize Lisbon’s road traffic patterns?
• RQ2: How can we characterize road accident patterns in Lisbon, and what are the

external factors that contribute the most to this phenomenon?
• RQ3: With a better understanding of Lisbon’s traffic and road accident patterns, how

can we identify how citizens move in Lisbon with the help of data visualization?

The paper is structured as follows: Section 2 presents our literature review. In Section 3,
Data-Driven Solution for Decision Support, we introduce the adopted cross-industry
standard process for data mining (CRISP-DM) methodology and the application to our
Lisbon case study, particularly the business and data understanding, data preparation and
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fusion, and data visualization phases. In Section 4, we provide a comparative analysis of
traffic and road accidents, discuss our findings and compare them to the literature review,
and analyze our approach to addressing the research questions. We also identify research
gaps and the limitations of our research. Finally, in Section 5, we present conclusions and
draw lines for further research.

2. Literature Review

Our literature survey covered traffic congestion and road accidents in urban areas. We
found just a few articles in these fields, with a focus on data analysis and visualization of
traffic congestion and road accident. On the other hand, we found that most articles used
prediction models to address how external factors influenced traffic and road accidents
in cities.

Studies [7,8,11,13] on road accidents in Spain, India, and the United States of America
(Washington) showed different approaches and results. Palazón-Bru [10] studied Spain
road accident data from 2015, and considered variables associated with the accident, the ve-
hicle, and individuals. This information could be used by both police authorities and health
services to make predictions and determine where to undertake possible interventions
to reduce death risk. Factors like not using a seat belt; unfavorable lighting; interurban
roads where greater speed is reached; and small vehicles driving alongside buses or trucks,
which, in the event of a small vehicle rollover, could cause its occupants’ death, were the
more prevalent. The authors concluded that individuals younger than 60 years had lower
mortality rates.

In India, road accidents were analyzed [9], and the authors concluded that the period
between 3 p.m. and 6 p.m. corresponded to the peak traffic hours, but this changed
between states in India. The study [9] showed that two-wheeled vehicles are involved in
accidents more, and over 80% that occurred were the driver’s fault. These authors also
concluded that accident severity was growing due to the increase in the number of vehicles.
Another interesting result was that 61% of accidents occurred on the weekend (Friday and
Saturday), which correlated well with alcohol consumption.

Combining data analytics with data visualization allows effective communication of
research insights and provides visualization tools to policymakers and public authorities.
According to Chen [14], a pipeline of traffic visualization is an adequate tool to assess traffic
data properties and discover hidden patterns in the data. Chen [14] proposed an analysis
based on four factors: temporal, spatial, spatio-temporal, and multivariable.

Traffic congestion analysis and visualization combined with factors such as car trajec-
tories in peak hours [15] has proven to be an interesting tool to understand mixed traffic
conditions. A multivariable analysis of vehicle types and car flow models improves mixed
traffic-flow trajectories.

Multivariable analysis has shown effectiveness in communicating data insights by
providing visualizations of road accidents within a time range and city areas [16] where
they most occur. Moreover, it can be combined with data regarding type of vehicle, lighting
conditions, weather conditions, month of the year, and day of the week.

Other factors can be analyzed in a multivariable analysis and visualization regarding
road conditions [17] and how they affect traffic congestion and road accidents. Tools such
as RetinaNet enhance results by training images and providing better performance metrics
of road conditions.

The impacts of traffic congestion on road accidents are a common study field, as
congestion can trigger road accidents. Studies [18,19] showed the application of Poisson–
Gamma models to modeling road accidents. Wang [19] specifically looked at this correlation
to measure congestion using Poisson nonspatial and spatial models. Aguero-Valverde [20]
looked at road-accident frequency with spatial models using a Bayesian hierarchical ap-
proach to identify spatial correlations.

Visual analytics provides the ability to analyze several tasks, such as traffic congestion
detection, accident monitoring, and flow-pattern recognition. These tools are essential to
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what constitutes an intelligent transportation system (ITS). According to Zhang [21], having
access to large quantities of data obtained through multiple sensor sources facilitates the
development of a data-driven ITS based on vision, multisource, and machine algorithms.
Such a visual-analytics approach is particularly efficient at predicting and managing traffic
flows in urban areas.

Using visual analytics to aid in the interpretation of forecasting models is becoming the
norm. Andrienko [22] used visual-analysis techniques to study the relationship between
traffic intensities and speeds practiced on the roads by using mathematical models. These
models could be used to predict everyday traffic situations, as well as to simulate future
events. According to this author, visualization, as a tool for prediction, should be developed
evolutionarily and iteratively through a cycle of data analysis, model development, and
analysis of predictions.

As mentioned at the beginning of this section, most of the analyzed traffic and road
accident papers presented their analysis and prediction methodologies combined. For this
reason, we will also discuss how the scientific community has addressed traffic and road
accident prediction in their studies.

The research community in traffic frequently uses two specific machine-learning
techniques for predicting traffic flow. Those are the long short-term memory (LSTM) and
recurrent neural networks (RNNs).

ITS systems are considered essential tools for mitigating automobile traffic, and
because of that, providing a good forecast of automobile flow is essential for this system’s
effectiveness. Several authors have proposed hybrid models for better traffic prediction in
the city due to conventional machine-learning models’ weak adaptability.

A specific traffic-flow-prediction framework was proposed by Xiangxue [23] by com-
bining LSTM and RNN models to evaluate two urban networks. The results showed that
this approach brought better quality than other machine-learning models.

Current prediction models have problems such as poor stability, significant data needs,
and poor adaptability. Liu [24] defined a model derived from the RNN that combined long
short-term memory (SDLSTM) with auto-regressive integrated moving average (ARIMA).
The end result presented excellent adaptability and higher precision than common machine-
learning methods. This hybrid model integrated computer vision and machine learning in
a cloud-computing environment.

Zheng [25] used another LSTM model and compared it with the conventional machine-
learning models such as ARIMA and BPNN (back-propagation neural network), and
obtained substantially superior results.

Regarding road accidents, Norros [26] found that factors such as weather, traffic, and
location could be included as variables when creating models to predict road accidents.
Driver characteristics do not depend on the time of day, traffic, or weather, but weather
and other external conditions affect traffic intensity and constitution.

Tang [13] used the Washington Incident Tracking System and applied a combined
analysis using eight methods: four statistical methods (accelerated failure time (AFT), finite
mixture (FM), random parameters hazard-based duration (RPHD), and quantile regression
(QR); and four machine-learning methods (K-nearest neighbor (KNN), support vector
machine (SVM), BPNN, and random forest (RF)) used in traffic-incident clearance-time
analysis. All showed that temporal factors like day of the week, time of day, and month of
year influence accidents.

Table 1 summarizes our literature review analysis, with a focus on the papers’ dimen-
sions and applications.
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Table 1. Literature review summary.

Reference Dimension Application

[7]

Multivariable analysis in three levels: sensor
networks formed by vehicles, cognitive

management functionality placed inside the
vehicles, and cognitive management functionality

in the overall transportation infrastructure

Provide knowledge to
vehicles, and manage traffic

and safety

[9]

Multivariable analysis of city names, the type of
accident, condition of light, severity, speed zone,

consumption of alcohol, time and day of the
accident, etc.

Identify patterns to take
appropriate measures to

reduce the risk of loss of lives
and occurrence of accidents

on roads

[10]

Multivariable analysis with variables associated
with accidents (weekend, time, number of vehicles,
road, brightness, and weather), vehicle (type and
age of vehicle, and other types of vehicles in the
accident), and individuals (gender, age, seat belt,

and position in the vehicle)

Predictive model to help
determine the probability

of mortality

[13]

Eight methods for predicting incident clearance
time, including four statistical models: accelerated
failure time (AFT), quantile regression (QR), finite

mixture (FM), and random parameters
hazard-based duration (RPHD); and four

machine-learning models: K-nearest neighbor
(KNN), support vector machine (SVM), back

propagation neural network (BPNN), and random
forest (RF)

“Heterogeneity” models
performed better than

statistical models

[14]

Multivariable data-processing techniques
depicting the temporal, spatial, numerical, and

categorical properties of traffic data
through visualization

Identify transport mobility
patterns with traffic
data visualizations

[15]
Multivariable analysis: six vehicle categories using

various stability criteria, evaluated for mixed
traffic conditions

Identify traffic-flow behavior

[16] Multivariable analysis and visualization of
geospatial data (Tableau and GeoCharts)

Identify the effects of traffic
public policies using

data-visualization methods

[17] Road-conditions assessment with
RetinaNet image processing

Identify road conditions with
imaging training

[18] Poisson–Gamma models for modeling motor
vehicle crashes: a Bayesian perspective Model road accidents

[19]

Poisson-based nonspatial (such as
Poisson–lognormal and Poisson–Gamma) and
spatial (Poisson–lognormal with conditional

autoregressive priors) models

Identify spatial correlation in
traffic congestion and

road accidents

[20]
Bayesian hierarchical approach was used with

conditional autoregressive effects for the spatial
correlation terms

Identify effect of spatial
correlation in models of road

crash frequency at the
segment level

[21] Multivariable analysis of functionality
and deployment

Data-driven intelligent
transport systems

performance optimization
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Table 1. Cont.

Reference Dimension Application

[22]
Traffic simulations based on spatially abstracted

transportation networks using dependency
models derived from real traffic data

Identify correlations between
the traffic intensity and

movement speed on links of a
spatially abstracted

transportation network

[23] Data-driven short-term data processing and
LSTM–RNN

Forecast urban road
network traffic

[24] Traffic flow combination forecasting method based
on improved LSTM and ARIMA Forecast traffic flow

[25] Traffic flow forecast through time series analysis
based on deep learning Forecast traffic flow

[26] Palm distribution application to analyze road
accident risk assessment

Identify correlations between
traffic, road, and weather

conditions in road accidents

3. Data-Driven Solution for Decision Support

The Cross-Industry Standard Process for Data Mining (CRISP-DM), which was adopted
in our research, is a methodology that aims to create a standard approach to data-mining
projects to reduce costs and increase reliability, repeatability, and manageability, making
the data-mining process more efficient [27]. CRISP-DM [28] is composed of six phases, and
we changed the process toward specific data visualization, taking into account data fusion
from different sources (Figure 1). The first and second phases, business understanding
and data understanding, are when the initial data are collected, described, explored, and
verified. In the third phase, data preparation, data are selected and cleaned, exploring and
verifying data quality, integration, and format. In the fourth phase, data fusion, we selected
the data sources, like traffic, accidents, weather, city infrastructure, pollution, and data
warehouse. In the fifth phase (data visualization), we defined visualization templates to
automatically visualize temporal and spatial data to define goals based on municipalities’
needs. Finally, the last-step decision and the big picture were provided to competent
decision-making authorities.

Figure 1. Our data-driven methodology.
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Applying CRISP-DM involved business understanding by looking at the aim of
the challenges proposed by the Lisbon City Hall (CML) in the framework of Lisboa
Inteligente—LxDataLab [29]. It also required the definition of our strategy to address
the research questions. In the data-understanding phase, traffic and road accident data sets
were described and categorized in features. This was followed by the data-preprocessing
phase, in which the collected data were cleaned and normalized, generating new data sets
to be used in the modeling phase comprising analysis and visualization.

3.1. Business Understanding

Our study addressed the challenges of “General traffic index and indexes for the
main Lisbon city entrances” [30] and “Identification of road accidents patterns and corre-
lation with external factors” [31], both launched by Lisboa Inteligente—LxDataLab [29]
for academia. Our study’s objective was to investigate and identify traffic and accident
patterns in Lisbon’s metropolitan area, define when and where traffic congestion and
accidents road occur and how they relate, and how external factors such as weather and
pandemics affect such phenomena.

3.2. Data Understanding

The data-understanding phase aimed to collect, describe, explore, and verify the
data’s quality. This step was structured in three subphases: describe, explore, and verify
data quality.

Traffic congestion and road accident data sets were provided and collected from
Lisboa Inteligente—LxDataLab [29] on the scope of the challenges launched for academia,
as mentioned previously.

3.2.1. Traffic Data Understanding

The data-understanding phase aimed to collect, describe, explore, and verify the
quality of the data available. This step contained three subphases (describe, explore, and
verify data quality).

The traffic-congestion data set included Waze data [30], preprocessed by Lisboa
Inteligente—LxDataLab [29], with data from traffic jams in the Lisbon metropolitan area,
in the period of 1 January 2019 to 30 July 2020. The provided data set had a table structure
with 25 columns and 12,619,459 rows in the comma-separated values (CSV) file format.

The data set provided had already been preprocessed before extraction. Some columns
needed to be removed, and minor alterations and improvements in the data quality were
made. Some duplicated columns with no values (Endnode, pubmillis, Roadtype, turnType,
turntype, Typeentity) and some columns (Bbox, entity_location, entity_type, fiware_service,
fiware_servicepath, and pubMillis) deemed irrelevant by the CML were removed. Addi-
tionally, the Country column was removed because all data were from Lisbon (Portugal).

Table 2 shows the Waze data schema, and each column corresponds to the column
name, description, the removed columns (excluded columns), and the reasons for removal.

After removing the columns, an assessment of the data quality was executed on the
remaining columns, and although the data was consistent and no significant problems were
found, some adjustments had to be made in the next step of the CRISP-DM methodology.
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Table 2. Waze data schema/provided by LxDataLab from Waze.

ID Column Name Description Excluded
Columns Reason

1 Bbox Position start and
position end

2 City Information from the city and
the region

3 Country Country information Excluded
All data were
from Portugal

(PO)

4 Delay
Delay of jam compared to

free-flow speed, in seconds
(“−1” in case of a block)

5 Endnode
Nearest junction, street, city

to jam end (supplied
when available)

6 Endnode
Nearest junction, street, city

to jam end (supplied
when available)

Excluded Duplicated
column

7 Entity_id No description Excluded

8 Entity_location No description Excluded Unused column
(client)

9 Entity_ts
Date of the occurrence (UNIX

time—milliseconds
since epoch)

10 Entity_type No description Excluded Unused column
(client)

11 Fiware_service No description Excluded Unused column
(client)

12 Fiware_servicepath No description Excluded Unused column
(client)

13 Length Jam length in meters

14 Level Traffic congestion level
(0 = free flow 5 = blocked).

15 Position Jam geographical reference in
Geojson format

16 pubMillis
Publication date (UNIX

time—milliseconds since
epoch) (excluded)

Excluded Unused column
(client)

17 pubmillis
Publication date (UNIX

time—milliseconds since
epoch) (excluded)

Excluded Unused column
(client)

18 RoadType Type of road (18 different
types of roads)

19 Roadtype Type of road (18 different
types of roads) Excluded Duplicated

column

20 Street
Street name (as is written in
the database, no canonical

form, may be null)
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Table 2. Cont.

ID Column Name Description Excluded
Columns Reason

21 turnType

What kind of turn is it—left,
right, exit R or L, continue
straight or NONE (no info)
(supplied when available)

Excluded No data

22 turntype

What kind of turn is it—left,
right, exit R or L, continue
straight or NONE (no info)
(supplied when available)

Excluded No data

23 Typeentity
The field typeEntity

(corresponds to the field Type
(irregularities))

24 Typeentity
The field typeEntity

(corresponds to the field Type
(irregularities))

Excluded Duplicated
column

25 Validity_ts
Date of LxDataLab archive
(UNIX time—milliseconds

since epoch)

3.2.2. Road Accident Data Understanding

In the scope of the Lisboa Inteligente—LxDataLab [29] challenge 51, the provided data
set was a single Excel file with aggregated data from Agência Nacional para a Segurança
Rodoviária (ANSR), Polícia de Segurança Pública (PSP), and Guarda Nacional Republi-
cana (GNR), with a list of road accidents (RSB) events in Lisbon involving vehicles and
motorcycles from January to December 2019. The Excel file included four sheets with the
following structure: accidents (Table 3) with 37 columns and 2768 rows; vehicles involved
and their driver (Table 4), with 18 columns and 4834 rows; passengers (Table 5), with eight
columns and 631 rows; and pedestrians (Table 6), with seven columns and 700 rows.

3.3. Data Preparation and Fusion
3.3.1. Traffic Data Preparation and Fusion

This phase of the CRISP-DM methodology was subdivided into four subphases: data
selection, data cleaning, feature selection, and data integration. All columns were selected
except for Country, Typeentity, and Validity_ts. The Country column had no value, since
the data all were from Lisbon, Portugal. The Typeentity column had only five levels: NONE
(12,531,806 entries), Small (46,417 entries), Medium (25,794 entries), Large (15,313 entries),
and Huge (129 entries), with NONE being the value in almost all of the rows; for that reason,
this column was removed. The Validity_ts column also was removed, given that this work’s
main focus was on the occurrence of each event and not the archive date, so the Entity_ts
column was used to the detriment of Validity_ts (date of LxDataLab archive—Table 1).

After the final column selection, all the columns were carefully inspected [32,33], and
we made a few improvements in the data quality, as depicted in Table 7.
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Table 3. Accident data schema.

Characteristics Description

IdAcidente Accident ID
Datahora Date and hour

Dia da semana Day of the week
Sentidos Upward and downward

Latitude GPS Latitude
Longitude GPS Longitude

Via Trânsito Left, right, or central transitway
Localizações Inside or outside localities

Freguesia Parish
Pov. Proxima Nearby village
Tipo natureza Runover, collision, or screen

Natureza Type of runover, collision, or screen
Traçado 1 Straight or curved
Traçado 2 With slope, in level or bump
Traçado 3 With or without roadside
Traçado 4 Place where the accident occurred

Estado de conservação State of road
Características Tecnicas Highway or other

Reg Circulação One or both ways
Marca Via Marks on the road
Obstáculos Obstacles

Sinais Signals
Sinais Luminosos Light signals

Tipo Piso Pavement type
Intersecção Vias Road intersection

Factores Atmosféricos Weather conditions
Luminosidade Luminosity

Cond Aderência Adhesion conditions
VM No description
FG No description
FL No description

Tipos Vias Type of road
Via Lane

Num arruamento Street number
Km No description

Nome arruamento Street name
Localização 2 GPS signal

Table 4. Vehicles involved data schema.

Characteristics Description

IdAcidente Accident ID
Datahora Date and hour

Id. Veiculo Vehicle ID
Categoria Veículos Vehicle category

Idade Age
Sexo Sex

Lesões a 30 dias Type of injury
Acessórios Condutores Driver accessories

Acções Condutores Driver actions
Inf. Comp. a Acções e Manobras No description

Licença Condução Driver license
Tempo Condução Continuada Driving time

Teste Alcool Alcohol test
Carga Lotação Freight

Certificado Adr No description
Inspecção Periódica Periodic inspection

Seguros Insurance
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Table 5. Passengers’ data schema.

Characteristics Description

IdAcidente Accident ID
Datahora Date and hour

Id. Veículo Vehicle ID
Id. Passageiro Pedestrian ID

Idade Age
Sexo Sex

Lesões a 30 dias Type of injury in 30 days
Acessórios Passageiro Passenger accessories

Table 6. Pedestrians’ data schema.

Characteristics Description

IdAcidente Accident ID
Datahora Date and hour
Id. Peao Pedestrian ID

Idade Age
Sexo Sex

Lesões a 30 dias Type of injury in 30 days
Acções Peão Pedestrian actions

Table 7. Waze dataset—details and data transformation.

ID Column Chosen Type Defects Detected Corrections Applied

1 City Yes object

1,963,605 rows were
empty 10,137 rows

had the
value “Null.”

All the missing values and
nan were replaced with
“Lisboa” because all the

data were from the Lisbon
metropolitan area

2 Country No object Not considered for
analysis

3 Delay Yes float64

8,779,033 rows had
the value “−1”

when the level of
traffic was 5

−1 was treated as a
missing value and was
replaced with a value
prediction using the

Pearson correlation and
linear regression

4 Endnode Yes object 3,471,012 rows had
the value “Null.”

All the null values were
replaced with “Unknown”

for dashboard
display improvement

5 Entity_ts Yes float64
6 Length Yes float64
7 Level Yes float64
8 Position Yes object
9 RoadType Yes float64

10 Street Yes object 1,620,642 rows had
the value “Null.”

All the null values were
replaced with “Unknown”

for dashboard
display improvement

11 Typeentity No object Not considered for
analysis

12 Validity_ts No float64 Not considered for
analysis

When the traffic level was 5, the Delay column had the value “−1”, and this value
could not be used for analysis. To surpass this problem without impacting the column
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values, “−1” was treated like missing data and replaced with a value prediction using a
Pearson correlation and linear regression [24,25]. Table 8 shows the Pearson correlation
between all variables. The variables Length, Level, and Road Type were selected to find
the missing values because of the high correlation with the variable Delay.

Table 8. Pearson correlation table.

Characteristics Delay Entity_ts Length Level Road Type Validity_ts

delay 1.00 0.04 0.37 0.40 0.15 0.04
entity_ts 0.04 1.00 −0.18 0.30 0.14 1.00
length 0.37 −0.18 1.00 −0.53 −0.02 −0.18
level 0.40 0.30 −0.53 1.00 0.11 0.30

roadtype 0.15 0.14 −0.02 0.11 1.00 0.14
validity_ts 0.04 1.00 −0.18 0.30 0.14 1.00

When applying the values predicted by the linear regression algorithm to the original
data set, we could observe an increase in the mean and median, and a decrease in the
standard deviation, which could be explained by the increase in traffic occurrences with a
high delay (level 5 traffic level). Table 9 shows the impact of the application of predicted
values to the original dataset:

Table 9. Original vs. postprediction delay results.

Data Description Original Delay Postprediction Delay

Mean 46 235
Median −1 267

Standard deviation 107 96
Minimum Value −1 0
Maximum Value 6133 6133

According to the terms of the proposed challenge by the Lisbon City Hall, which
stated that the aim was to “evaluate the traffic, the main entry points, and the main roads
within the capital that are freeways”, we filtered the main entry points of the city to include
only road types 2 and 3 (primary streets and freeways, respectively), reducing the total
number of rows to 5,123,746, or 4,982,407 primary streets and 141,339 freeways.

With the reduced dimensionality [32,33], we created new features to improve the
display of information:

• entity_Date: Conversion of the entity_ts from UNIX time to standard date format
(year-month-day hour:minute:second).

• Traffic Level: Level of the traffic according to the variable Traffic:

◦ 1 = Low traffic
◦ 2 = Low to medium traffic
◦ 3 = Medium traffic
◦ 4 = High traffic
◦ 5 = Traffic jam

• length_KM: Length of the traffic in kilometers
• delay_M: Delay in minutes
• delay_H: Delay in hours
• Date_key: Date identification in a format yyyymmdd

3.3.2. Road Accident Data Preparation and Fusion

We performed data cleaning and preprocessing in Python, using the Spyder plat-
form [34] and Python libraries, such as Numpy [35], Pandas [36], Matplotlib [37], and
Seaborn [38].
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From the initial data set comprising 4 Excel sheets, four corresponding new data
sets were generated: ‘acidentes’, referring to accidents; ‘veíc-cond’, referring to vehicles
involved; ‘passageiros’, corresponding to passengers; and ‘peões’, meaning pedestrians.

In the next step, data cleaning, we replaced some strings with null values since they
did not add value. For example, ‘NÃO DEFINIDO’ was replaced by ‘nan’. Some columns
were deleted (acidentes: IdAcidente, Sentidos, Pov Próxima, Km; veíc-cond: IdAcidente,
id_veiculo, certificado_adr; passageiros: IdAcidente, id_veiculo, id_passageiro; peões:
IdAcidente, id_peao), while others were renamed and then converted for the string type.
In addition, in the data cleaning, due to the occurrence of a large number of ‘nan’ in the
categoria_veiculo column, regarding the veíc-cond data frame, ‘nan’ values were replaced,
taking into account the values in the tipo_veiculo column. The data set was divided by
type of accident: mislead (despiste), collision (colisão), and runover (atropelamento). The
Datahora column was divided in date and hour to show on what day of week and what
hour of the day more accidents occurred, or even in what season of the year (spring,
summer, autumn, or winter). From the Datahora, we therefore created hora (hour) and mes
(month), as well as new columns: nome_estacao (season) and momentoDia (moment of
the day), to analyze the moment of the day and the moment of the year when accidents
were more likely to happen. In the veíc-cond, passageiros, and peões data sets, age was
aggregated to create an average column. A new data set was created with latitude and
longitude columns to visualize the Lisbon map’s geographic coordinates.

Tables 10–13 show each data set’s first row after the transformations mentioned above,
namely the new added columns.

Table 10. Accident data schema after data preparation.

Column Data of 1st Row

Date and time 2019-01-02 15:10:00
Day of the week Wednesday

Latitude 38.7683669
Longitude −9.1728989
Traffic side Right
Location In the city

Parish Lumiar
Accident type Runover

Type Pedestrian runover
Track_1 Straight
Track_2 Plateau
Track_3 Without road berm
Track_4 In parking area

Conservation status Good
Technical characteristics Road without separator

Road lane direction One direction
Road tracing nan

Obstacles Nonexistent
Signals nan

Light signals nan
Road lane type Concrete

Road lane intersection nan
Weather conditions nan

Luminosity Daylight
Adherence conditions Dry and clean

VM 0
FG 0
FL 1

Type of road Road
Road 0
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Table 10. Cont.

Column Data of 1st Row

Street number 0
Street name Azinhaga Ulmeiros
Location_2 Without GPS—estimated

Date 2019-01-02 00:00:00
Month 1
Hour 15

Season 1
Season name Winter

Daytime 12 h–15 h

Table 11. Vehicles involved data schema after data preparation.

Column Data of 1st Row

Date and time 2019-06-10 11:30:00
Vehicle category Car

Vehicle type Passengers
Age 32

Gender Female
Injuries in 30 days With no injuries

Driver’s accessories Seat belt
Driver’s actions Sudden braking

Infractions Exceed speed to existing road characteristics

Driver’s license With driving license/driving license according
to vehicle

Driving time Less than 1 h
Alcohol test Not submitted

Load capacity Without load
Regular inspection Valid

Insurance With insurance
Age range 30–39

Date 2019-06-10 00:00:00
Month 6
Hour 11

Season 3
season name Summer

Daytime 9 h–12 h

Table 12. Passengers involved data schema after data preparation.

Column Data of 1st Row

AccidentID 20201823347
Date and time 2019-12-18 13:00:00

Age 22
Gender Female

Injuries in 30 days Bruised
Passenger’s accessories With helmet/seat belt

Age range 18–29
Date 2019-12-18 00:00:00

Month 12
Hour 13

Season 1
Season name Winter

Daytime 12 h–15 h
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Table 13. Pedestrians involved data schema after data preparation.

Column Data of 1st Row

Date and time 2019-01-17 16:12:00
Age 59

Gender Male
Injuries in 30 days Bruised

Pedestrian accessories Construction works running
Age range 50–59

Date 2019-01-17 00:00:00
Month 1
Hour 16

Season 1
Season name Winter

Daytime 15 h–18 h

3.4. Data Visualization
3.4.1. Traffic Model

Our modeling results showed that in 2019, 96.90% of the traffic congestion occurred
on primary streets, and 3.10% of the traffic congestion occurred on freeways, as shown in
Figure 2.

Figure 2. Traffic distribution by road type in Lisbon in 2019.

Figure 3 displays the distribution of traffic levels presented for both freeways and
primary streets: 64.76% of the traffic corresponded to a level 5 occurrence (traffic jam),
17.78% to level 3 (medium traffic), 12.78% to level 4 (high traffic), 4.48% to level 2 (low to
medium traffic), and only 0.20% to level 1 (low traffic).

Figure 3. Traffic distribution by severity level in Lisbon in 2019.
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Our data analysis showed that 5.39% of level 5 traffic occurrences happened on
freeways versus 66.66% on primary streets, and 34.30% of level 4 traffic occurred on
freeways versus 12.09% on primary streets. The data also showed that traffic level 3 traffic
was more common on freeways, with 44.28% vs. 16.93% on primary streets, and level
2 traffic was more common on freeways, with 14.62% compared to primary streets with
4.16%. The model also showed that level 1 traffic was the least-common traffic on both
freeways (1.41%) and primary streets (0.16%).

The average traffic length on freeways was 1.71 km, and the average delay was
5.27 min. In comparison, primary streets had an average traffic length of 0.19 km and an
average delay of 3.86 min. Table 14 displays the average traffic delay and length distributed
by road type and traffic level.

Table 14. Average delay and traffic length by road type.

Road Type Average Delay (Min) Average Traffic Length (km)

Freeway 5.27 1.71
Low traffic 1.26 2.35

Low to medium traffic 2.19 2.25
Medium traffic 3.67 1.89

High traffic 8.87 1.46
Traffic jam 4.90 0.25

Primary Street 3.86 0.19
Low traffic 1.10 0.61

Low to medium traffic 1.29 0.54
Medium traffic 1.87 0.41

High traffic 3.65 0.34
Traffic jam 4.57 0.09

Total 3.90 0.24

According to our analysis, rush hours in Lisbon occur between 8 a.m. and 9 a.m. in
the morning and between 5 p.m. and 6 p.m. in the evening, and make up 24.77% of daily
traffic occurrences (11.34% in the morning and 13.43% in the afternoon).

Lisbon boroughs Paço do Lumiar, Sacavém, Lumiar, Ajuda, and Belém together
displayed 80.93% of the Lisbon metropolitan area’s traffic occurrences. In 2019, the months
with higher traffic were October (16.61%), November (16.91%), and December (15.95%), and
the months with lower traffic were April (1.83%), February (2.76%), and January (2.88%).

Our analysis also showed that the freeway IC17 and CRIL had a higher percentage of
traffic occurrences (26.61%) and an average delay of 4.84 min, followed by A5 with 22.16%
and an average delay of 4.53 min. The freeway with the highest delay was IP7/Eixo N-S,
with an average delay of 8.07 min, followed by IC-19, with an average delay of 5 min.
Figure 4 shows the distribution of traffic on Lisbon freeways.

Analysis of primary roads showed that Rua Direita in Lumiar, Rua Auta da Palma
Carlos in Sacavém, and Calçada da Ajuda in Ajuda combined to make up 54.75% of the
traffic occurrences on Lisbon’s primary streets. According to the data, these streets were
also the ones with the highest delays, where drivers experienced an average delay of 5 min.
Figure 5 shows the distribution of traffic on primary streets.
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Figure 4. Distribution of traffic on freeways in Lisbon in 2019. Red corresponds to locations where
more traffic congestion occurred on freeways; orange and yellow are locations where traffic congestion
was less common on freeways.

Figure 5. Distribution of traffic on primary streets in Lisbon in 2019. Red corresponds to locations
where more traffic congestion occurred on primary streets; orange and yellow are locations where
traffic congestion was less common on primary streets.

3.4.2. Road Accident Model

Modeling, which involved analysis and visualization, was performed in Python with
the Spyder platform. Python libraries such as Numpy [35], Pandas [36], Matplotlib [37],
and Seaborn [38] were used for statistical analysis, and Folium [39] and Geopandas [40]
were used for spatial analysis visualization.

In the entire universe of accidents, we could gauge that 56.8% of the accidents were
collisions, 24.3% were runovers, and 18.8% were misleads. Accidents that occurred during
the day represented 66%, mainly between 3 p.m. and 6 p.m. It was also identified that 52%
of accidents occurred in autumn and spring.
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Figure 6a–c shows the road accident distribution by type, hour of the day, and season
of the year.

October and November were the months where 30% of misleads happened; of these,
54% were in broad daylight, and 39% were at night but with illumination. On Thursday
and Saturday, there was a higher prevalence of misleads; this was lesser on Sunday.

It is clear that runovers and collisions (Figures 7 and 8) occurred more at Avenidas
Novas, and misleads (Figure 9) at São Domingos de Benfica. On the other hand, runovers
were more likely to occur in Lisbon’s more touristic areas, and collisions mostly in the
Lisbon city center.

Figure 6. (a) Distribution of road accidents by type—collision, runover, and misleading; (b) road
accident count by time of the day; (c) road accident count by season.

Figure 7. Mislead distribution in Lisbon in 2019. Orange and yellow represent streets where more
misleads occurred; green and blue represent less common places for mislead occurrences.
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Figure 8. Runover distribution in Lisbon in 2019. Orange and yellow represent streets where more
runovers occurred; green and blue represent less common places for runover occurrences.

Figure 9. Collision distribution in Lisbon in 2019. Orange and yellow represent streets where more
collisions occurred; green and blue represent less common places for collision occurrences.

Data visualizations of the incidence of accidents in Lisbon are shown as heatmaps
in Figures 7–9. Areas represented in orange and yellow were the most active, represent-
ing streets where more accidents occurred; green and blue represent areas with lower
occurrences of accidents.

Misleads occurred more in São Domingos de Benfica, Benfica, Carnide, and Lumiar
(Figure 7), corresponding to entrances and exits to Lisbon’s outskirts. The central city axis
from Campo Grande, Avenida da República, passing by Saldanha, Marquês do Pombal, to
Avenida Infante Santo had a strong incidence of mislead occurrences.

Approximately 95% of runovers involved pedestrians in broad daylight, and most
happened between 3 p.m. and 6 p.m. on Tuesday and Friday. Runover incidents were
scattered throughout the city (Figure 8). There was a strong incidence in the downtown
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area, Terreiro do Paço, that could be associated with distracted tourists strolling. Other
areas include Parque das Nações, São Domingos de Benfica, and Alcântara, corresponding
to entrances to and exits from Lisbon. From Campo Grande to Avenida da República,
passing by Saldanha, Marquês do Pombal, Avenida Infante Santo to Avenida 24 de Julho
are the streets where most runovers took place. Moreover, the same pattern was also
observed in the analysis and visualization of misleads (Figure 7).

Finally, regarding collisions, 65% of them occurred during daylight, and 21% between
3 p.m. and 6 p.m. on Thursdays and Fridays. Side collisions with another moving vehicle
represented 35% of the total, while the more expressed others were rear collision with
another moving vehicle, and collision with other situations involved.

Collision occurrence was scattered throughout the city, with focuses in Marvila,
Alcântara (entrance and exit to Ponte 25 de Abril) and downtown, Terreiro do Paço,
and stronger occurrences in Alvalade, Areeiro, Avenidas Novas, Campo de Ourique, and
Estrela boroughs.

Generally speaking, the vehicle analysis showed that 89% of accidents corresponded
to a passenger vehicle with a driver 18–29 years of age (28%). In addition, 84% of accidents
occurred on a dry and clean road, and 15% on a wet road. It was possible to see that of all
the passengers, 64.8% were females, and 33.8% were between 18–29 years of age. Of these,
99% suffered minor injuries and were wearing a seat belt or a helmet.

Pedestrians involved in accidents were mainly females (55.9%), and 94% suffered mi-
nor injuries, of which 41% were crossing roads on a signalized zebra crossing. Pedestrians
aged 18 to 29 years and 70+ were the main citizens involved.

Moreover, misleads and runovers had a high incidence at the entrances and exits of
Lisbon, and along the central axis of the city from Campo Grande to Avenida Infante Santo.
However, these were phenomena that occurred all over the city.

4. Discussion

The major finding, addressing our first study on Lisbon traffic patterns in 2019, was
that the predominance of traffic occurrences on primary streets represented most of the
traffic events in the Lisbon metropolitan area.

Other findings showed that the average driver was likely to spend between 3 to 5 min
more on each road—primary street or freeway—when a traffic event occurred. These traffic
occurrences tended to peak between 8 a.m. and 9 a.m. and between 5 p.m. and 6 p.m.

When observing the data patterns, it was possible to assess that Lisbon boroughs, at
the city limits, had the highest concentration of traffic jams. Most of these boroughs are
neighboring municipalities, part of Lisbon’s network of entrances and exits.

According to the data analysis, freeway traffic tended to have a higher length and
delay than primary street traffic. However, traffic occurrences on freeways tended to be less
severe than on primary streets. However, some freeways had slower and lengthier traffic
jams than others, such as IC 17, A5, and Eixo Norte-Sul. The primary streets that stood
out with more traffic congestion were R. Direita, R. Alta da Palma Carlos, and Calçada
da Ajuda.

Traffic congestion was susceptible to pendular variations in its intensity, with critical
peaks at the city’s main entrances, especially during the morning and evening peak hours.
However, traffic congestion tended to normalize throughout the evening. Our findings
showed that roads were especially prone to long traffic jams when public events occurred.
When a traffic event occurred, it was very likely to be of the heavy type.

Road accident patterns in Lisbon strongly correlated with traffic congestion and
external factors, but varied according to the type of occurrence. Our findings showed that
most accidents occurred in bustling traffic areas, during the daytime (between 3 p.m. and 6
p.m.), corresponding to the afternoon traffic peak when traffic congestion peaked. Friday
was the weekday with a higher prevalence of road accidents, mostly when commuters
were traveling back home and rushing for weekend leave. Seasonality also influenced road
accidents, as most accidents occurred in autumn and spring.
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Hence, external factors such as weather, location, luminosity, and time of the day were
crucial to understanding Lisbon’s road accident phenomena. Age also influenced accidents.
The population between 18 and 29 years old were the most involved in road accidents.
Similarities with the literature [7,8,11] were observed, especially regarding our study’s
external factors.

Road accidents in Lisbon were scattered in the city by type of occurrence. Misleads and
runovers had a higher incidence at Lisbon’s entrances and exits, and along the central axis
of the city from Campo Grande to Avenida Infante Santo. These occurrences corresponded
to traffic-congestion patterns observed on primary streets and freeways. São Domingos de
Benfica, Carnide, Lumiar, and Alcântara were the zones where most misleads and runovers
occurred, corresponding to the entrances and exits of freeways—IC 17, A5, and Eixo Norte-
Sul—with high congestion levels. Collisions, on the other hand, were a phenomenon that
spread all over the city.

Our literature survey [7,8,11] found few articles about data analysis and visualization
of traffic congestion and road accidents. We addressed this by developing data analytics
and visualization, providing effective communication of research insights and visualization
tools to policymakers.

Following insights from previous studies [14,15], we developed data analyses and
visualizations based on different and combined factors, such as temporal, spatial, spatio-
temporal, and multivariable.

Multivariable analysis has shown effectiveness in communicating data insights [16],
providing visualizations of data regarding traffic congestion and road accidents within a
time range and city areas, type of vehicle, lighting conditions, weather conditions, month
of the year, and day of the week.

The results of our traffic-congestion and road-accident analyses and visualizations
showed similar findings to insights found in the literature review, as shown in Table 15.

According to our literature review (Table 1), further work is needed to better under-
stand the correlation between traffic congestion and road accidents. Poisson-based nonspa-
tial (such as Poisson–lognormal and Poisson–Gamma) and spatial (Poisson–lognormal with
conditional autoregressive priors) models [18,19] should be developed further regarding
spatial correlation in traffic congestion and road accidents, and should provide a broader
and deeper understanding of this phenomenon.

Moreover, in order to provide a data-driven analytics and visualization tool that helps
decision-makers (public authorities and stakeholders), which is one of our research goals,
we need to develop prediction models. Although we did not address predictive models in
our study, we discussed them in the literature review in Section 2. Andrienko [22] used a
visualization technique developed iteratively with data analysis, model development, and
analysis of predictions. Moreover, long short-term memory (LSTM) and recurrent neural
networks (RNNs) are the most used traffic prediction models [23].

Our study’s limitations were related to incomplete data features and a lack of infor-
mation regarding external factors data—weather, air quality, events, sports, music, and
COVID-19. Waze traffic data needs to be understood in the context of Lisbon traffic; in
particular, the percentage of the overall Lisbon traffic it represents in reality. Additionally,
more data are required; namely, the numbers of cars in the city and cars that commute to the
city, car speed, accident occurrences, external factors such as public events—soccer games,
music festivals—as well as COVID-19 pandemic data. These additional data sources are
needed to provide broader analysis and visualization of traffic and road accident patterns
in the city.
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Table 15. Literature review and results synthesis.

Reference Literature Review Results

[9]

Multivariable analysis of city names,
type of accident, condition of light,

severity, speed zone, consumption of
alcohol, time and day of the

accident, etc.

Multivariable analysis applied to Lisbon
road accidents identified patterns by type

of accident, lighting condition, vehicle
speed, and day and time of the accident

[14]

Multivariable data-processing
techniques depicting the temporal,
spatial, numerical, and categorical

properties of traffic data
through visualization

Multivariable data analysis and
visualizations with variables associated
with Lisbon traffic congestion (day and

time) and road accidents (weekend, time,
number of vehicles, road, brightness, and
weather); vehicle (type and age of vehicle,

and other types of vehicles in the
accident); and individuals (gender, seat

belt, and position in the vehicle)

[15]

Multivariable analysis: six vehicle
categories using various stability

criteria, evaluated for mixed
traffic conditions

Lisbon traffic congestion patterns
according to street type, and road

accident patterns according to vehicle
type and street type

[16]
Multivariable analysis and

visualization of geospatial data
(Tableau and GeoCharts)

Lisbon geomapping heatmaps as a
visualization method in traffic congestion

and road accidents

5. Conclusions

Lisbon traffic congestion and road accidents are ongoing issues in Lisbon’s urban
mobility, carbon-emission reduction, and road safety. In a city where 370,000 vehicles enter
every day, adding to the 200,000 vehicles that already circulate in the city, traffic congestion
and road accidents are key challenges that need to be tackled to improve citizens’ quality
of life.

This study accomplished our research aim and goals in characterizing traffic conges-
tion and road accidents in Lisbon (RQ1), as well as characterizing road accident patterns in
Lisbon, and the external factors that contribute the most to this phenomenon (RQ2).

The developed multivariable analyses and visualizations showed congestion and road
accident patterns related to their features and external factors. Traffic congestion and road
accidents correlated with highway street type, on Friday and during afternoon peak hours.
Road accident characterization also featured number of vehicles involved, brightness, and
weather; and variables associated with individuals, such as gender, seat belt, and position
in the vehicle. This enriched the characterization of Lisbon road accidents and identified
the external factors that contributed the most to this phenomenon.

Poisson nonspatial and spatial models [18,19] need to be constructed to better under-
stand the correlation between traffic congestion and road accidents; this will be addressed
in future work.

Although in our study there was a strong correlation between traffic congestion and
road accidents, this relation was not necessarily linear, meaning one can happen without
the other occurring, and this needs more to be studied in more detail.

The developed data analytics and visualization tool for traffic congestion and road
accidents provides a traffic visualization pipeline to assess traffic data properties based on
a multivariable analysis that finds urban mobility patterns.

Traffic congestion and road accident visualization provided knowledge and insights
on how citizens move in Lisbon (RQ3), enabling a better understanding of road accident
scenarios and related events. It also provided data-driven guidelines and knowledge about
traffic congestion and road accidents in Lisbon to the city authorities and policymakers
in the framework of a traffic management and visualization tool to help them mitigate
such phenomena.
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Future work aims to better understand these results’ implications, especially re-
garding external factors such as weather, air quality, events, crowd flow, and bike data.
Studies [41,42] of the Lisbon bike-sharing system have shown the influence of external
factors, such as weather and bike type, in bike use and ride frequency. Moreover, pedestrian
walkability, cycleways, bike stations, and bike accident data are of interest to correlate with
this study’s findings and understand the overall Lisbon urban mobility scenario.

To this aim, an integrated urban mobility dashboard with data analysis and visualiza-
tion can contribute to providing city management authorities and policymakers with an
overall picture of the city’s urban mobility, enabling implementation of smart solutions
toward a more resilient city.

This urban mobility tool would allow city management authorities and decision-
makers to explore and better understand the profile of Lisbon metropolitan area commuters
by means of an interactive dashboard depicting georeferenced data with different borough,
geographical, demographic, economic, social, planning and environmental information,
generating combined visualizations.

Moreover, this analytical and visualization tool would provide a complete monitoring
and management resource of the entire urban ecosystem that could be replicated in other cities.
It could also be integrated into the Lisbon Intelligent Management Platform—Plataforma
de Gestão Inteligente de Lisboa (PGIL) [43], an existing data platform used by the City
Hall, further developing PGIL capacity to process and provide useful information on the
operational and strategic management of the city to the various stakeholders.
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