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Abstract

Since the beginning of mankind, a lot of fires have happened and have taken mil-

lions of lives, whether they were human or animal lives.

On average, there are about twenty thousand forest fires annually in the world and the

burnt area is one per thousand of the total forest area on Earth. In the last years, there

were a lot of big fires such as the fires in Pedrogão Grande, Portugal, the SoCal fires in the

US coast, the big fire in the Amazon Forest in Brazil and the bush fires in Australia, later

2019.

When fires take such dimensions, they can also cause several environmental and

health problems. These problems can be damage to millions of hectares of forest re-

sources, the evacuation of thousands of people, burning of homes and devastation of

infrastructures. When a big fire starts, the priority is the rapid rescue of lives and then,

the attempt to control the fire. In these scenarios, autonomous robots are a very good

assistance because they can help in the rescue missions and monitoring the fire. These

autonomous robots include the unmanned aerial vehicle, or commonly called the UAV.

This dissertation begins with an intensive research on the work that has already

been done relative to this subject. It will then continue with the testing of different simu-

lators and see which better fits for this type of work. With this, it will be implemented

a simulation that can represent fires and has physics for test purposes, in order to test

without causing any material damage in the real world.

After the simulation part is done, algorithm testing and bench marking are expected,

in order to compare different algorithms and see which are the best for this type of

applications. If everything goes according to plan, in the end, it is expected to have an

autonomous navigation system for UAVs to navigate through burnt areas and wildfires

to monitor the development of these.

Keywords: Forest Fire, Unmanned Aerial Vehicle, Navigation, Planner
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Resumo

Desde o início da humanidade muitos incêndios têm acontecido e têm levado mi-

lhões de vidas, quer estas sejam humanas ou animais. Em média, no planeta, existem

cerca de vinte mil incêndios florestais anualmente e a área queimada é um por mil da

área total de florestas do mundo e na última década, houveram grandes incêndios. Alguns

destes são os de Pedrogrão Grande, em Portugal, os incêndios no sul da Califórnia, na

costa dos EUA, o incêndio que deflagrou na floresta Amazónia, no Brasil e os incêndios

na Austrália, no final de 2019.

Quando os incêndios assumem estas dimensões, podem vir a causar vários proble-

mas ambientais e de saúde. Estes problemas podem ser danos a milhões de hectares de

recursos florestais, a evacuação de milhares de pessoas e podem haver habitações e infra-

estruturas ardidas.

Quando um grande incêndio começa, a primeira prioridade é o resgate rápido e de se-

guida a tentativa de controlar o incêndio. Nestes cenários, robôs autónomos são uma

excelente assistência. Estes robôs incluem o veículo aéreo não tripulado, o UAV.

Esta dissertação começa com uma intensa pesquisa sobre o trabalho já realizado

em relação a este tema. De seguida, vários testes irão ser realizados para testar diferentes

simuladores e ver qual melhor se adapta ao trabalho que se irá realizar. Com isto, será

implementada uma simulação que consiga representar um incêndio e suporte várias

fisícas do mundo real.

Após a secção da simulação estar concluída, espera-se vários testes de algoritmos e

comparação entre eles, para ver qual o que se adequa melhor a este tipo de situações.

Se tudo correr conforme planeado, é esperado no final desta dissertação ter-se um sistema

de navegação autónoma para UAVs percorrem áreas florestais e ser possível monitorizar

incêndios.

Palavras-chave: Incêndio Florestal, Veículo aéreo não tripulado, Navegação, Planeador
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1
Introduction

This is the first chapter of this dissertation. Initially it is given the framework and the

research problem that allowed develop this work and write this dissertation.

The objective and the reason why this subject was chosen are also in this chapter. In

the end there is the dissertation structure that shows the reader how this work is divided

and a brief explanation of each chapter is given.

1.1 Framework and Research Problem

When fires take big dimensions, they can also cause several environmental and health

problems such as damage to millions of hectares of forest resources, the evacuation of

thousands of people, burning homes and the devastation of infrastructures. When a big

fire starts, the priority is a rapid rescue and then the attempt to control the fire [1].

In these scenarios, autonomous robots are a very good assistance. These autonomous

robots include the unmanned aerial vehicle, also commonly called the UAV.

Nowadays, UAVs have been used to perform a lot of missions, such as exploration of

the moon and Mars [2], surveillance in areas affected by war [3], to predict meteorological

conditions [4], among others.

More recently, these aircrafts have also been developed for rescue missions in earthquakes,

tsunamis and forest fires, as they have the advantage of rapid maneuver and simple

maintenance [5].
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CHAPTER 1. INTRODUCTION

This dissertation presents a UAV navigation system to monitor forest fires that is

able to provide a better navigation solution at low altitudes (above tree lines).

UAVs have been recently tested in several fire monitoring missions [1, 6], however in all

of these examples a human operator remotely controls them and the UAV must be in their

line of sight which also involves a great danger for the operator.

It is not new what UAVs can do in the event of a natural disaster. However, most of

the systems are remotely controlled and don’t have paths planned for the UAVs to cover.

The problem with path planning is finding a collision free path in an environment with

obstacles. As it is known, there are already algorithms that can plan paths in a world.

However, planning paths in a world with static or dynamic objects is different. Calculat-

ing this path is a complicated optimization problem, but this will allow the aircraft to get

to its final destination or cover its path without hitting any obstacle.

Despite some differences, most of the algorithms are based on the same general ap-

proaches as these algorithms create a road map, or they decompose the path in cells

and it is created a potential field for the UAV to cover.

In this dissertation, an autonomous navigation system for UAVs to cover areas

without hitting any obstacles or going into restricted areas will be developed. The main

objective is for the UAV to be able to autonomously navigate through the borders of

wildfires and burnt areas in order for the fire to be monitored.

1.2 Motivation

Due to the increasing fires all around the globe and with the aim to achieve a better

world, I applied for this dissertation.

The motivation behind this dissertation is the development and integration of a

control system available for UAVs to monitor forest fires. This system is to be used

under hazardous and demanding situations for Human beings, such as Search and Rescue

Operations, surveillance and forest fire monitoring.

Another motivation to choose this dissertation is my interest in this subject. The fact

that it was possible to join a personal interest with my master thesis definitely improved

my knowledge in this field. Another reason, it is knowing that this dissertation will help

populations and others worldwide and hopefully try to minimize the harm that forest

fires can cause.

Unfortunately, and due to the pandemic, real life tests were not possible to perform.

Various tests were scheduled with the Fire Department in order to test the algorithms

presented in the navigation system however, these had to be postponed.

2



1.3. OBJECTIVE

1.3 Objective

The main objective of this dissertation is to develop an autonomous navigation sys-

tem available for UAVs that can monitor forest fires and help in difficult and hazardous

situations such as prescribed fires and rekindle operations.

In the past months, it was developed an autonomous navigation system based on

path planning algorithms for UAVs to use and cover a path, avoiding possible obstacles

while also taking into account the micro climatic alterations that occur during a forest

fire. This path can be given by an operator for the UAV to cover and it must be able to

autonomously navigate through the borders of wildfires and burnt areas in order for the

fire to be monitored.

1.4 Dissertation Structure

This dissertation is structured into seven chapters. Each one of these chapters represents

a big section of this dissertation and they are described here.

• Chapter 1: An introduction to this work with a framework and the research problem

to this dissertation are presented in this chapter. Motivation, an objective and a

structure are also given;

• Chapter 2: This chapter is dedicated to the supporting concepts and all the scientific

work that is already done related to this dissertation;

• Chapter 3: The simulators used are covered in this chapter. It is provided an overall

understanding of the software and what is needed to do the necessary tests related

to the autonomous navigation system;

• Chapter 4: This chapter is dedicated to the system architecture. It is explained

more in depth the integration done with all the simulators and how everything is

connected;

• Chapter 5: This chapter is dedicated to the autonomous navigation system. The

parameters of the costmaps and the planners used are explained in this chapter as

well as, how the UAV localization is performed.

• Chapter 6: Dedicated to the experimental results. These are reviewed and dis-

cussed;

• Chapter 7: It is given a conclusion and possible future developments and research

topics related to this subject.
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Scientific and Related Work

This chapter presents the scientific work and the supporting concepts that are funda-

mental for the writing of this dissertation. This section sums up all the work that has

been done relative to this subject. It is divided in sub sections accordingly to different

matters.

The first section is relative to the navigation of robots and UAVs, the second section

explains what path planning is and its algorithms. Here, 2D planning and 3D planning

are addressed. The following section is dedicated to explaining how different altitudes

can influence path planning and the last section addresses how path planning can be

applied to natural disasters.

2.1 Robots and UAVs - Navigation

An Unmanned Aerial Vehicle or UAV, is an aircraft without a human pilot on board

and UAVs are a component of an Unmanned Aircraft System (UAS). This UAS includes

an aircraft, a ground-based controller and a system of communications between the two.

The flight of UAVs may operate with various degrees of autonomy: either under remote

control by a human operator or autonomously by on-board computers. This dissertation

is focused on UAVs autonomously operated.

Compared to aircrafts where human assistance is needed, UAVs were originally

used for missions where humans would be in some sort of danger. While they originated

mostly in military applications, their use is rapidly expanding to commercial, scientific,

recreational, agricultural, and other applications, such as policing and surveillance, prod-

uct deliveries, aerial photography, among others, as it is referenced in [7]. In this chapter

it is discussed about various types of navigation and Behaviour-based Architectures.
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Starting of with the control and navigation, there are various types of UAVs. In this

dissertation the work is done with drones or multi-rotors, but there are also fixed-wing,

rotary-wing and flapping-wing UAVs. For the UAV to be able to locate itself and avoid

obstacles, tasks needed to be created. These tasks are vision based and can be separated

in 4 categories:

• Visual Navigation;

• Vision-based Control;

• Vision-based Tracking and Guidance;

• Vision-based Sense-and-Avoid (SAA).

Visual Navigation is the task that determines the aircraft’s position and orientation.

Therefore, sensors are required for the CPU in the aircraft to measure its state and sense

the flight environment. Nowadays most of the aircrafts have IMUs (Inertial Measurement

Unit) and a GPS (Global Positioning Systems) to better correct its position and the most

recent ones also start to have a vision system. Having sensors all around it, if the GPS

signal is low, the aircraft can better estimate where it will be and keep a better track of

its positioning, as it is possible to see in figure 2.1.

Figure 2.1: Visual Navigation on an aircraft [8]. The multi rotor is inside a room, therefore
it doesn’t have GPS. It is using visual navigation to locate where other objects are.

The next task is referred as Control Task, also vision-based. In this task the aircraft’s

position and orientation are controlled based on the information captured by sensors and

then processed by algorithms. This technique was first used in 1990 and since then,

several solutions have been proposed in order to address operations such as the aircraft’s

stabilization and to maintain a certain altitude or directional speed, as it is represented

in figure 2.2.
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Figure 2.2: Vision-based control task [8]. The position and orientation of the UAV are
controlled based on the information captured by sensors.

Another vision-based task is the Tracking/ Guidance based on its sensors. In this

task, the aircraft is designed to perform a flight based on relative navigation with respect

to a target that may be standing still or moving. This is defined by a series of visual

references or features. In this task, represented in figure 2.3, the system must be able to

detect a visual reference or a referenced target in order to perform its flight.

Figure 2.3: Vision-based Tracking/ Guidance [8]. It is shown an aircraft locking on to a
target and following it, in this case a car.

The last vision-based task in [8] is the Sense-and-Avoid Task or SAA Task. This is

a completely autonomous navigation task that requires the ability to detect and avoid

obstacles. This task in particularly requires multiple cameras and sensors spread all

across the aircraft to detect possible collisions with objects, as it is possible to see in

figure 2.4.
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Figure 2.4: Vision-based Sense-and-Avoid [8]. The UAV is using the SAA task where it
can navigate autonomously and it has the ability to detect and avoid obstacles.

After this overview of the various navigation tasks and their influence on UAVs,

let’s now move on to the different architectures. Starting of with Behaviour-based archi-

tectures, this concept started from the conventional artificial intelligence as combination

with automation. In this architecture the control function is componentialized, which

means it is distributed to a variety of function items. In a traditional control problem, the

signal is generated by a control law in response to some sort of feedback from the object

or the environment, the process is seen as a whole.

In behaviour-based architectures the signals and their various responses are created

in terms of behaviours. The control process is defined by its control functions, being

each one, a single behaviour. A behaviour is a function between the sensing input and

the action output internally and a segment of the signal externally [9]. A behaviour is

generally related to a set of parameters, usually representing the state of the agent, the

objective or the performance. Behaviours can be classified in three categories:

• Control law based behaviours

• Signal based behaviours

• User operation behaviours

Control law based behaviours can be executed by a traditional control principle.

On the other hand, signal based behaviours are generated by certain control law as a

response to a sensor’s input. The executor plays the controller role and the mechanism is

in closed loop. At last, User operation behaviour is based on an experienced segment of

signal. The executor directly generates a period of signal based on an experience that is

stimulated by some event.
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2.2 Path Planning and its Algorithms

This section focus on Path Planning algorithms. This is the main focus of this disserta-

tion as different algorithms can influence a lot on how autonomous aircrafts behave.

2.2.1 Path Planning and Trajectory Planning

Let’s start by addressing path planning and explaining what it is. UAV path planning

refers to the optimal trajectory between Point A and Point B. The main purpose of a

optimized path plan is to find a safe flight path for the UAV between two points. This

flight path needs to be covered with the minimum energy consumption for the UAV’s

mission to be completed optimally. In most of the situations, the flight path is getting

from point A to point B, but the essence of path planning is to find the work-space

according to an optimization criteria. Examples are minimum working cost, shortest

covered path, shortest covered time, among others.

In [10], mathematically, path planning is the function δ : [0,T ]→ R3 of bounded

variation, where δ(0) = Xinit and δ(T ) = Xgoal , if there is a process Φ , that can guarantee

δ(τ) ∈Wf ree for all τ ∈ [0,T ], then δ is the Path Planning.

Now, mathematically, the optimal path planning has a different explanation. Given

the following path planning problem (Xinit ,Xgoal ,Wf ree) and the following cost function

c :
∑
→ R ≥ 0, where

∑
is the sum of all paths. If the condition to find a path is plausible

δ′ and c(δ′) =min{c(δ)}, where δ is the set of all feasible paths, then δ′ is the path planning

and Φ ′ is the optimal path planning.

To find the optimal path for the UAV, a lot of work and studies have been done.

There are many algorithms and these fall under many categories. In figure 2.5 it is

possible to see the path planning research span of this dissertation. All of the existent

path planning algorithms are not addressed, as there are too many, in this dissertation it

will be just covered the ones that are useful and important for this dissertation.
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Figure 2.5: Path Planning research span diagram;

In the beginning of the diagram in figure 2.5, it is possible to see a separation

between Trajectory Planning and Path Planning. The distinction between the two is never

addressed properly in other related papers so, in this dissertation its difference will be

properly explained.

Above, it is explained what path planning is, and trajectory planning although it

may sound the same it is very different from path planning. There are several written

papers that bring up the discussion between these two terms, [11] and both are intimately

related.

As the term path planning is already explained, trajectory planning refers to find-

ing a solution from the UAV’s path planning and determining the best way to move

the aircraft along its path. This path can either be continuous, curve or even discrete

with line segments. The trajectory of the path can be described mathematically as a

twice-differentiable polynomial and trajectory planning consists of finding a smooth and

continuous trajectory for the UAV to move along the planned path.

2.2.2 2D Path Planning

Now, that the definitions of trajectory and path planning are explained, the categories

under this type of planning can be analyzed and explained.

As it is possible to see in Fig.4, Path Planning is sub-divided in 2D Planning and 3D

Planning. 2D Planning is the first to be explained and there are three algorithms based on

grid maps (DWA, Probability Map and Grassfire) and two algorithms based on heuristic

functions (Simulated Annealing or SA algorithm and A* algorithm).

There are plenty of 2D Algorithms, nevertheless these five were the ones where

most part of the work was concluded and are the most important in 2D Planning, as they

show better results.

Next, it is given a brief explanation on how these algorithms work.
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Starting with the DWA algorithm or Dynamic Window Approach algorithm, the

idea of this algorithm is to create discrete samples of the robot’s velocity. For each of these

samples a simulation is performed for the current position of the robot to try to predict

what would happen if the robot would move with the help of that sample. For each

path or trajectory, a score is created and evaluated. This score takes into consideration

characteristics such as the proximity to the goal, to obstacles, its speed, among others, so

the algorithm can pick the trajectory with the highest score. Knowing this, the robot ends

up moving in the selected trajectory.

Continuing with what is a Probability Map, [12], at the beginning of a search each

node has probability zero of having a detected target in its area and the probability of

a target to be in any given area is given by an initial probability map. A good method

for planning a search while measuring its effectiveness is doing a discrete search. This

generates a probability grid containing N discrete nodes. With N nodes, it is easier to

approximate the probability distribution in the searched area.

The probability map is generated considering many factors. These factors are for

example the last seen position and the probable target behaviour. As mentioned above,

the probability grid is the probability map that is stored and updated with the factors

mentioned. This grid records whether or not all of the possible target locations have been

searched. To update the map it is required access to both the camera calibration and the

UAV telemetry.

Figure 2.6: Algorithm based on PRM [13]. The UAV is calculating the cost of each cell as
it is making its way to the final destination.

Moving on to the next example of an algorithm based on grid maps is Grassfire.

Again, the objective of this path planning algorithm is to find the shortest path from

one point to another. There are innumerous methods to do this, however a lot of these

methods don’t guarantee they will find the shortest or the quickest path and a lot of them

are methods of trial and error.
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One method that is guaranteed to find the shortest path is the breadth-first search,

which explores evenly out from the ’start’ cell until the ’end’ cell. One of the simplest

types of this search algorithm is the Grassfire algorithm, also referred as a fast wavefront

expansion. The main idea behind this algorithm is to mark each node (cell) with its

distance from the start cell.

As this algorithm runs, it finds new adjacent cells at the same distance (or depth)

as the previous one, in which it only advances to a different distance, if only all nearby

cells are explored.

Next comes the algorithms of 2D planning, based on heuristic functions. These are

named Simulated Annealing or SA Algorithm and A* algorithm. There are plenty of 2D

Algorithms based on heuristic functions however, these two were most used in the 2D

Planning.

Starting with the SA algorithm, [14], this is an optimization algorithm that can pro-

cess cost functions with various degrees of non-linearities, discontinuities and stochastic-

ity. This algorithm can process arbitrary boundary conditions and constraints imposed

on its cost functions.

Almost all of the path planning algorithms are based on grid map searching. How-

ever, there are some optimization problems that are not easily solved by the traditional

approaches, as they are performed in a two dimensional space and the minimizing cost

function has a complex topology, in which may present a local minimum.

This is where the SA algorithm enters and has an advantage comparing to others.

In this algorithm the path can be represented as poly-line, a bézier curve and a spline

interpolated curve.

Figure 2.7: 2D Path Planning Algorithm [15]. It is possible to see the path chosen by the
UAV to avoid the obstacles (T1, T2, T3 and T4) and get to its final destination in a 2D
world.

As it is concluded in [14] all these three representations reach a global minimum.

This algorithm implements a loop, to be more specific an annealing loop that explores

the minimum, the maximum and average cost for a given temperature in a cost map.
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Another 2D path planning algorithm is the A* algorithm [16], this algorithm is

commonly used in engineering and it is possible to see it in action, in figure 2.7.

Summing it up, first, this algorithm calculates the cost of all nodes that can be

reached from the current position node (the node where the UAV is). With this, the

algorithm evaluates the point that has been searched through the heuristic information

and then chooses the node with the minimum cost as the new expanding node (next UAV’s

location). The algorithm then repeats this process until one of the expanding nodes is the

target point, or the final position of the UAV.

2.2.3 3D Path Planning

Now that 2D path planning algorithms are explained lets move on the diagram to the

3D Path Planning category. 2D path planning algorithms are not able to deal with com-

plex 3D environments, where there are a lot of structures and uncertainties. Therefore

3D path planning algorithms are needed nowadays, especially in complex environments

such as cities, forests and caves, as it is depicted in figure 2.8.

Figure 2.8: 3D Complex Environments (a forest, a cave and a city) [10];

Path Planning in 3D environments has a great potential, but it is expected the diffi-

culties to increase when comparing to 2D path planning. It is much more difficult because

of the dynamic and kinematic constraints these ambients have to offer. Accordingly, in

order to plan a collision free path through rough environments mathematic tools are used

to model these constraints and store a lot of data.

As it is possible to see from the diagram presented in figure 2.5 there are a lot of

algorithms under 3D Planning, such as:

• Sampling based Algorithms;

• Node based Optimal Algorithms;

• Mathematical Model based Algorithms;

• Bio-inspired Algorithms;

• Multi-fusion based Algorithms.
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As all of these algorithms are under 3D Path Planning, a brief explanation will be

given to all of them. For covering this subject a lot of papers were researched, but the one

that better explains it and covers this matter is [10].

Starting with Sampling based algorithms, this method needs to know in advance

the work-space where the UAV will operate. As the name of this algorithm suggests, it

samples the environment as a set of nodes. Next, it maps the environment and searches

randomly to find an optimal path.

Sampling based Algorithms can be divided in two sub-categories, Passive and Ac-

tive. Passive are algorithms based on Probabilistic Road maps (PRM). These maps gener-

ate a road map from the start node to the goal node. With this, a set of paths are created,

resulting in a combination of search algorithms needed to fulfil the task.

On the other hand, Active algorithms can form a skeleton to reach the objective,

all by its own processing procedure. One example of this algorithm is Rapidly-exploring

Random Trees. In [10], there are a lot of algorithms in which cannot independent generate

a single path, as though they are classified as passive.

Examples are 3D Voronoi [17], Rapidly-exploring Random Graph [18], PRM, K-

PRM, S-PRM [19], Visibility Graphs, Corridor Map, among others. Examples of the Active

category are RRT, Dynamic Domain RRT(DDRRT) [20], RRT-Star(RRT*) [21], Artificial

Potential Field, among others.

Now, moving on to Node based Optimal Algorithms, from the name it is possible

to understand how this algorithm works. They generate a path based on a set of nodes.

Giving a more in depth look of Node based Optimal algorithms, they share the same

property as the Sampling based ones. They search through a set of nodes on a graph or

a map. These types of algorithms share a special form of dynamic programming. When

the graph or map is built, they define a cost function and after that is when they search

each node to find the path with the minimum cost.

Examples of this type of algorithms are the Dijkstra’s algorithm [16, 22], Theta*

[23], Lazy Theta* [24], Lifelong Planning A* (LPA) [25], among others.

Next in the diagram, is the Mathematical Model based Algorithms. This type

of algorithm includes for example, Linear Programming and Optimal Control. Both of

these methods model the environment considering kinematic and dynamic constraints.

With this, the cost function is bounded with all the equations required to achieve an

optimal solution. The figure 2.9 shows a diagram where is possible to see the process of a

Mathematical model based algorithm.

There a lot of examples of this type of algorithms. Some are Mixed-Integer Linear

Programming [26], Binary Linear Programming [27], Non-linear Programming [28, 29]

and all of these have one thing in common. These algorithms consider all of the available

factors and then the cost function is defined based on the current selection until an

optimal path is found.
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Figure 2.9: Procedure of Basic Mathematic model based problem [10]. With circular
shaped forms it is possible to see the inputs of the Hamiltonian Function, in which will
result in an optimal path.

Next, are the Bio-inspired Algorithms. As the name references, these algorithms

are ’inspired’ in biological behaviour. Instead of giving more importance into building a

complex model of the environment, these algorithms focus on the searching method.

According to [10], Bio-inspired algorithms can be divided into Evolutionary and

Neural Network algorithms, because of the fact that they do a deep analyze at different

levels. Evolutionary algorithms are composed by many other algorithms such as genetic

[30], Particle swarm optimization or PSO Algorithms [31], memetic algorithms [32] or

Ant Colony Optimization algorithms [33].

All of these start by selecting individuals randomly and assigning them to be the

first generation. Then, they take into consideration the goal, the environment and other

constraints and the planner of each algorithm evaluates the fitness of each individual. The

following step is choosing a set of individuals as parents for the next generations. The

individuals that have a better chance to be chosen are the ones that have a better fitness.

Finally, the end step is the mutation and crossover step. In this step the parents reproduce,

creating the child individuals with a better fitness than the previous generation. After all

these steps, one individual is selected, the one with the best fitness, which is the optimal

path. In the figure 2.10 it is possible to see a diagram of this process.

Figure 2.10: Evolution process for a Bio-inspired Algorithm [10]. With a rectangular form
it is possible to see the beginning and the end of the process and with a circular form are
the middle steps.
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As mentioned above, there are also Neural Network algorithms. The approach these

take is to generate a dynamic environment (a landscape) for the neural activities to occur.

This environment also has unsearched areas that attract the UAV. A shunting equation

is defined to guarantee that the positive UAV’s activity can spread to this unsearched

environment. With this equation, the negative activity tries to only stay local.

Bio-inspired algorithms can be very good in choosing the individuals, but because

of the crossover step being random, it may cause a problem of premature convergence in

which may end up compromising all the individuals.

The last type of algorithm under this category is the Multi-fusion based Algo-

rithms. It is normal for 3D path planning algorithms to integrate various algorithms in

order to obtain better results and better optimal paths.

Artificial potential field algorithms, without the navigation part or other meth-

ods, tend to drop into a local minimum. Another type of algorithm explained above,

Probabilistic road maps, also cannot generate an optimal single path, working just by

themselves.

With this, by combining several algorithms together, it is possible to achieve a better

result, thus a better optimal path. This type of algorithm can deal with problems that a

single one cannot. An example is referenced in [34]. He used a 3D grid to represent the

environment and a 3D PRM algorithm to form a road map in an obstacle free space. With

these, he also used the node based algorithm A* to achieve an optimal path.

These multi-fusion based algorithms can be split into two categories. One called

Integration of Algorithms, as it is formed by integrating several path planning algorithms

in order to work simultaneously to find an optimal path. The other category is called

Algorithm Ranking. In this category, when one algorithm does its part and ends, another

one assumes the control immediately. This category is composed of several path planning

algorithms.

2.3 Different altitudes in Path Planning

This chapter is focused on how different altitudes, distinguished as low and high in-

fluence Path Planning. This is a very important chapter for this dissertation as different

altitudes can influence a lot on how the autonomous aircraft behaves.

Although applied to crops and precision agriculture, this section will follow a simi-

lar structure as found in [35], as an amazing job has been done covering this subject.

As it is mentioned above, in this dissertation it is distinguished two different alti-

tudes, one being low altitude and the other being high. Low is when the autonomous

aircraft is below the treetops, high altitude is when the aircraft is above the treetops. In

the figure 2.11, it is possible to see two different flight altitudes.
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Figure 2.11: UAV paths can include flights at low and high altitudes. [35]

High altitude is an obstacle free environment as so, for covering big forests or crops

a zig-zag pattern for example, can be applied. With this pattern the UAV can cover the

whole area safely and with precision. Prior to high altitude, for the low altitude path

planning, the best way for the autonomous aircraft to travel is to construct paths between

the treetops to avoid possible obstacles and tree branches.

For the low altitude path planning, following [36], the algorithms are categorized in:

• Classical exact cellular decomposition

• Morse-based cellular decomposition

• Landmark-based topological coverage

• Grid-based methods

Starting with Classical exact cellular decomposition, this category was created to

deal with polygonal shaped forms or obstacles, in which are very few in a real world

environment. Alternatively Morse based methods also have one flaw. If the obstacles are

in a parallel line to the propagating Morse functions, which is very common in trees, the

algorithms cannot identify them, as it is explained in [37].

The last two categories, Landmark-based topological and grid-based methods are

a better approach to solve this problem. As explained in the last chapter, grid-based

methods work with a fixed grid map where they can operate. Landmark-based methods

rely on algorithms with a dynamic slice free/ occupied decomposition.

Concerning the path planning part, as explained in the previous chapter, there

are a lot of algorithms. However the algorithms that work the best with these kind of

applications are the algorithm Rapidly-exploring Random Trees (RRT), the A*, the DWA

algorithm and its derived methods. RRT is one of the best given its lower computational

load and A* is also good given its own algorithm.

For the high altitude coverage, a location in the world can be specified with GPS

coordinates to form a shape to better create the grid map.

17



CHAPTER 2. SCIENTIFIC AND RELATED WORK

2.4 Path Planning applied to forest fires and natural disasters

In this chapter it is applied path planning to situations that can happen in the real

world, such as floods, forest fires or other natural disasters.

There are already a lot of UAV-based sensing systems to handle and support aid in

these type of situations. An example of one, is cited in [1], because in addition to using

multi rotors it also uses fixed wing UAVs. The multi rotors are being controlled manually

and operate as a bridge between earth communication and a cloud based processing unit,

in a way that various UAVs can fly in pre-programmed paths and collect information

from stationary sensors.

Nonetheless, this method has a flaw, as it is not well suited for quick reactions, or

life-threatening events such as wildfires or floods. In this type of natural disasters a quick

response is needed also, using multi rotors with direct communication to the ground

consumes a lot of the multi rotor’s battery. In these scenarios using autonomous multi

rotors with the capability of independent path planning is a much more efficient solution.

Facing this, a network of multiple UAVs and multi rotors can be utilized to cooper-

atively perform tasks and cover a wide and highly dynamic operation field.

The paper [1] also proposes a solution to the system referenced above. It is called

’Leader-Follower coalition formation for UAV-based wildfire monitoring’ and it is repre-

sented in the figure 2.12.

Figure 2.12: This figure shows the Leader and Follower system, where it uses a system of
UAVs and multi rotors [1].

The main objective of this system is forming optimal UAV coalitions in a distributed

way to cover a wide area of a wildfire. As the multi rotors have a limited communication

range and cannot send their information to a ground station, there are also in the skies a

set of fixed wings UAVs with sensing and imaging capabilities.
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With this, the fixed wing UAVs can fly at higher altitudes and quickly search a wide

area and the multi rotors can hover at low altitudes to collect data with much better

resolution. Fixed wings UAVs have better flight capabilities and higher computation

process, these will serve as the leader. The multi rotors will be the respective followers

and will perform the video and recording tasks.

Depending on the scenarios faced it is possible to consider a different number and

type of UAVs and multi rotors. The UAVs can be in a stand-by mode or parked in charging

pads located near the forest and if a fire starts, the UAVs can fly towards the area and

provide an initial fire map. With this, the multi rotors can enter in action and provide a

fire profile. Can estimate the spread rate, flame length and the intensity with a thermal

mapping of the fire.

Moving now to the multi rotor’s equipment it can be attached different cameras and

sensors in order to identify different things. It is possible to have:

• Visible camera: A common camera. This camera can identify the forest fire front

expansion, new fire spots, damage to infrastructures, location of people, among

others;

• Infrared camera: Also known as thermal camera. Can detect people and animals at

night, in foggy situations or locate fire spots;

• Radar: Measures the reflection of electromagnetic waves. Can detect people and

animals under trees and foliage;

• Chemical Sensors: Can detect toxic chemical compounds, smoke and the air quality;

• LIDAR: Device that measure the reflection of a laser pulse and can detect emissions

and see trough the fire smoke;

• Environmental sensors: Can provide meteorological data such as temperature, hu-

midity, wind speed and its direction, among others.

Depending on the situation it is possible to have a multitude of multi rotors with

different cameras or sensors to identify and look for different things.

Looking now to the algorithms that can be applied to these type of situations, one

can say that a way is to decompose path planning into two steps, as it is depicted in [38].

First, a polygonal path must be generated from the Voronoi graph by applying Dijkstra’s

algorithm, in which is possible to obtain the same results if a road map and A* search

algorithm are applied. Then, the second step is to refine a navigable path considering the

UAV’s maneuverability constraints.
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3
Supporting Tools

This chapter covers all the software that is essential for this work and dissertation. It

is explained why ROS is used and why this work is done with certain tools such as RViz.

It is also covered why the AirSim simulator from Unreal Engine 4 is used, as it initially

may not seem essential, but in the long term, it will prove to be very useful.

The last section of this chapter is dedicated to the software used to obtain images

from burnt areas in the world, the FlamMap. It is explained how FlamMap is used and

how essential it is for this dissertation.

3.1 ROS

The first section of this chapter is related to ROS or Robotic Operating System and it is

explained what it is and what is its primary objective in this dissertation.

ROS is an open source system for robots. This system provides services that someone

would expect from an operating system because ROS includes hardware abstraction,

package management, low level device control and message circulation between processes.

Beyond this, it also includes or provides tools and libraries for building and running code

across multiple platforms. Other similar platforms are Orocos [39], Orca [40], MOOS [41]

and Microsoft Robotics Studio [42], however this dissertation is done using ROS because

in my master’s degree I already had subjects where I worked with this software and RICS,

the research group that helped throughout this year already has projects and robots based

on this framework [43] and [35].
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The ROS runtime is a peer-to-peer network of processes distributed across multiple

machines that are communicating using the ROS communication infrastructure. This

system has several communication styles, including synchronous RPC-style communi-

cation, asynchronous streaming of data over topics and the possibility to store data on

a parameter server. This platform’s objective is not to be a framework with the most

features but instead trying to support code in robotics development and research. For

greater detail, please consider reading the ROS web page [44].

ROS is structured to have code processing blocks, called ROS nodes [45] and these

nodes are responsible for tasks. Each node is responsible for one task and these can ex-

change information. This information is transmitted through messages, which are data

structures and can have various types and are in charge of the communication between

the nodes [46]. These messages are published in topics that allow nodes to subscribe and

view its content. This means that in order for different nodes to communicate, they need

to be subscribed to a topic and in order to advertise a message to one, it must publish a

message to it.

The following image illustrates this communication, figure 3.1 shows a form of commu-

nication between two nodes, a publisher and a subscriber.

Figure 3.1: Representation of the communication between ROS nodes. [35]

ROS also allows services, which are a synchronous private way to exchange data.

These services can be advertised by a node and accessed by others and these nodes are

called clients and can request processes to other nodes.

In this dissertation, ROS is used as the platform to support the autonomous navigation,

which will be explained later.
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3.2 RViz Software

RViz is a ROS graphical interface that allows the user to visualize its robot’s state and a

lot more information, using plugins for different available topics [47].

In this section are only referenced the plugins used in this dissertation.

One important plugin is the Global Options, where the Fixed frame and Frame rate param-

eters are. These parameters allow the user, respectively to highlight the frame used as a

reference for all the others and the frequency in which the 3D view is updated.

Another essential plugin is the TF plugin, which allows the user to see the position and

the orientation of all the frames that compose the TF tree. TF is a ROS package that allows

the user to keep track of multiple coordinate frames over time. This package maintains

the relationship between the frames in the form of a tree structure. [48]

Some important parameters are Show names, Show axes and Update interval. These

allow the user to respectively enable/ disable the name of the links, the axes and set

the update time in seconds. Robot Model is another plugin that is worth mentioning as

this allows the user to visualize the robot model according to its description from the

URDF model. A URDF model is a package that contains C++ parsers for the Unified

Robot Description Format (URDF). These, are files with an XML format dedicated to

representing the model of the robot [49].

Some key parameters are the Visual enabled and the Collision enabled to, respectively

enable or disable the 3D model and the Collision box.

At last, there is the Grid plugin. As the name suggests, this plugin allows the user to

visualize a grid that is usually associated with the floor plane.

Some parameters are the Reference frame and the Cell size. These allow the user to choose

the reference for the grid coordinates and the dimensions, in meters, of each grid cell,

respectively.
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In the figure that follows, an RViz window is displayed.

Figure 3.2: Representation of some RViz panels. [50]

In Figure 3.2 it is possible to see in the Displays window (left side) some plugins the

user opened. On the main window is where the model and the environment are depicted.

For this dissertation, RViz is mainly used to visualize the planned paths, the envi-

ronment construction and it is used as a tool for debugging and monitoring the model.
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3.3 MoveIt!

MoveIt! is a software which aims to manipulate robotic arms. This tool tries to provide

the user with the latest advances in motion planning, control, manipulation, 3D percep-

tion, among others [51].

This platform is open-source, easy-to-use and it is developed for advanced robotics appli-

cations like navigation and manipulation control in a 3D environment.

Figure 3.3: Representation of MoveIt! in RViz. [52]

Not taking the full advantage of this software, as it is mainly used to provide an

obstacle free trajectory from the current position to the destination and constant moni-

toring of the robot model trajectory in a 3D monitoring system. This software also allows

the user to configure a robot by adding components responsible for interacting with the

robot actuators, also known as the robot joint controllers.

To configure MoveIt! for a robot, in this case, the UAV Matrice 100, some settings

were required. The description of the robot is necessary, also known as the URDF of

the robot. With this, the software is able to associate each joint value to the virtual

representation of the robot. Another requirement by MoveIt! is the state of the robot,

which can be represented by the model’s joint states, which are the angles between each

robot arm link.

To interact with MoveIt! it is provided an RViz plugin to allow some functionalities

like selecting the desire positions for the robot’s arms.

Another way to interact with this software is by using a C++ class called MoveGroupClass-

Interface, in which the communication with MoveIt! is simplified and some methods are

provided to define the robot, the planning types and other functionalities.
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In figure 3.4 it is depicted a basic representation of how a user can interact with

RViz and how MoveIt! interacts with the RViz software and a robotic arm.

Figure 3.4: MoveIt! interaction with the RViz software and the robot. [35]

3.4 Unreal Engine and AirSim

This chapter is dedicated to two softwares that were essential for the conclusion of

this dissertation. One of them being the platform Unreal Engine and the other being the

simulator AirSim.

Starting with the Unreal Engine, this is a game engine developed by the Epic Games

company. In 1998, Unreal Engine was initially created with the purpose of being a

first person shooter game. However, with the development of the Epic Games company,

nowadays Unreal Engine is much more than that. Unreal has been used in a variety of

other genres, including platforms, fighting games, RPGs, among others.

Written in C++, the Unreal Engine features a lot of portability and supports a wide range

of other platforms [53].

The latest release and the one used in this dissertation is Unreal Engine 4, which

was launched in 2014 and since 2015 it is free to download, with the source code available

on GitHub and on its main website [54]. Epic Games allows for its commercial use but

asks developers for 5% of revenues from sales.

Comparing to Unreal Engine, there was also another option, the game engine called

Unity.
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Unity is a cross platform game engine developed by Unity Technologies, first an-

nounced and released in June 2005. As of 2020, the engine has been extended to support

more than 25 platforms. Unity is very common in mobile games and can create 2D and

3D games as well as games with virtual and augmented reality. More recently, Unity has

been adopted by automotive, architecture and engineering industries to create and run

various kinds of simulations [55].

Now, that some information is given about both engines, it is answered why Unreal

Engine 4 is used instead of Unity. First, Unreal Engine already has some integration with

the ROS software and a flying simulator was already built for Unreal. Since this was not

the main focus of this dissertation, it would be easier and time would not have to be spent

creating a simulator.

Furthermore, Unreal Engine 4 is a simulator that is vastly used throughout these types

of applications and RICS, being a group that works a lot with robots and UAVs, already

uses this software.

Figure 3.5: Representation of a world in Unreal Engine 4. [56]

Depicted in figure 3.5 it is possible to see the main window of Unreal Engine 4.

Below the main window is the Content Browser. In this window, the user can browse for

props to place in the world and can edit them. On the right it is the World Outliner, where

the user can see all the props that are shown in the main window. The last window, below

the World Outliner is the Details window where the user, for each prop can choose its

rotation, its placement and even give them mobility, among others options.
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The next part of this dissertation is about the simulator used within Unreal Engine,

called AirSim. AirSim (Aerial Informatics and Robotics Simulation) is an open source

platform for aerial and ground vehicles. This simulator was developed by Microsoft and

it is built on Unreal Engine 4 with its main purposes being AI research, deep learning

and computer vision algorithms for autonomous vehicles [57].

AirSim provides twelve kilometers of roads, twenty city blocks and many worlds

for the user to test its algorithms. APIs are also provided for the user to retrieve data

and control the vehicles in an independent platform and are available in the follow-

ing programming languages C++, C#, Python and Java. This platform also supports

hardware-in-the-loop with steering wheels and flight controllers, such as the PX4 soft-

ware.

As it is said above and one of the reasons why Unreal Engine 4 and AirSim were

chosen to work with, was because some integration with the ROS software was already

done. Another reason is that AirSim has other features that other simulators did not have.

Some of these features are the manual drive, the programmatic control and the computer

vision mode. Starting with the manual drive, AirSim gives the user the option to plug in

an RC remote control to manually control the UAV in the simulator. As the UAV requires

much more keys than the standard arrow keys (used in a ground vehicle), in this way, it

is much easier to control it. The programmatic control allows the user to interact with

the vehicle using APIs and with these, it is possible to retrieve images, get the state of the

vehicle, control it and so on. The next feature is also very useful, the Computer Vision

mode. In this mode, it is possible not to have the vehicle or the physics engine active,

plus the keyboard can be used to go around the scene and collect images and other data.

In figure 3.6 it is possible to see a quadrotor in a city environment. It is also possible to

see a thermal view, a real time segmentation of the objects and the UAV’s view.

Figure 3.6: UAV in a city environment. Besides seeing the UAV in the world, it is possible
to see three views, a thermal, the one with the segmentation of the objects and the UAV’s
view. [58]
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In order to get the AirSim Simulator to work with ROS, another installation is

required. Following [59], it is possible to install the package "airsim_ros_pkgs", which

basically is a ROS wrapper over the AirSim C++ Client Library.

When built correctly, the ROS wrapper is composed of two ROS nodes. The first one,

being the wrapper over AirSim’s multi rotor C++ client library and the second one being

a simple PD position controller, which it will not be used.

In order to communicate with ROS and the RViz software within these two nodes,

publishers, subscribers and services were created. As the second node is not used, are

only explained publishers, subscribers and services for the first node.

Some important publishers are the /airsim_node/quadrotor/global_gps, /airsim_

node/quadrotor/odom_local_ned and the /airsim_node/quadrotor/image/camera.

Respectively these three publishers give the current GPS coordinates of the UAV in the

AirSim, the odometry in the frame and the image from the multi rotor’s camera.

Moving on to the subscribers, there are two very important. These are /airsim_node/

vel_cmd_body_frame and the /gimbal_angle_quat_cmd, which respectively give the

speed of the moving vehicle and the gimbal set point in quaternion.

As mentioned above, there are also services and two important ones are the /airsim_

node/quadrotor/land and the /airsim_node/quadrotor/takeoff, which respectively

land and lift off the UAV.

Within AirSim, there are a lot of environments or worlds. The one used in this dis-

sertation is the Blocks environment [60], mainly because it is lighter for the computational

unit being used.

In figure 3.7 it is possible to see the UAV in the Blocks environment. There is no sky

and there are few props but it is enough to test and run the algorithms. It is also possible

to see three views, a thermal, the one with the segmentation of the objects and the UAV’s

view.

Figure 3.7: UAV in the Blocks environment. Besides seeing the UAV in the Blocks envi-
ronment, it is possible to see three views, a thermal, the one with the segmentation of the
objects and the drone’s view.
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3.5 FlamMap

This section is about the FlamMap software.

FlamMap is a fire analysis application that runs in Windows OS. This software can sim-

ulate fire behaviour characteristics, like the spread rate, flame length, the fire’s intensity

and so on. This application can also simulate the fire growth and the spread of the fire and

its direction if some constants are given correctly, like for example, some environmental

conditions, weather and the needed fuel moisture [61].

Getting more in depth, this tool describes fire behaviour for constant environmental

conditions as it is said above and this is done by calculating the fire behaviour for each

pixel within the landscape file. These fire behaviour calculations include as variables the

surface fire spread, the flame length and the crown fire activity, which is the fire that

spreads from treetop to treetop.

Recently, FlamMap included another algorithm in its software called FARSITE. This

algorithm also allows FlamMap to calculate the dead fuel moisture and its conditioning

in each pixel based on slope, shading, elevation and weather.

However, FlamMap does its calculation as if the environmental conditions remained

constant and it does not simulate temporal variations in the fire behaviour caused by the

weather, which is something they want to implement in the next versions.

In the following image it is depicted the canopy view of an area in North America.

The greener the area, the most dense the vegetation is.

Figure 3.8: Example of a view in FlamMap program. In the left tab it is possible to see
the various options, themes and outputs presented by the FlamMap. According to the
output selected, this is presented in the image. The theme selected is the canopy view.

In figure 3.8 it is also possible to see other option themes that FlamMap offers, such

as the slope, fuel model and elevation of the terrain.

30



3.5. FLAMMAP

Following [61], the way FlamMap works is by creating a variety of vectors and raster

maps of potential fire behaviour characteristics, like spread rate and flame length.

The difference between a vector map and the raster map is that the vector map uses

points and line segments to identify locations, while the raster map uses a series of cells

to represent locations.

With both of these models, FlamMap can create various outputs based for example,

on the flame length or the spread rate over an entire landscape. These maps, can then be

viewed in FlamMap or exported to an image format or for later use in GIS (Geographic

Information System).

Below, in figure 3.9 the output Flame length is selected. The red areas were the areas

where the flames were more significant, as opposed to the yellow areas where they were

smaller. In the image there is also a blue line representing the river and a green area near

the blue line representing a zone the fire did not hit.

Figure 3.9: Example of the Flame Length output in FlamMap. In the left tab it is possible
to see the various options, themes and outputs presented by the FlamMap. According to
the output selected, this is presented in the image. The output selected is respective to
the Flame Length of the fire.
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4
System Architecture

This chapter mainly focuses on the systems’ description. In the first section of this

chapter, an introduction is given about why this was first done using simulators and how

data is acquired in the virtual simulations. It is also presented the system requirements

and the sensors needed in order for the simulation to work.

Following, it is given a description of the UAV used and finally, it is explained all

the integration done with the UAV and how the grid maps are created using the FlamMap

software. It is also mentioned how the communication is done between different soft-

wares.

4.1 Simulation Approach

When developing mobile robots, it is crucial not to test the implementations done in

real life and with the robot that will be used. In an initial phase, as these implementations

are just tests, some may go poorly and end up causing damage to the robot, to a person

or can even cause property damage. This is why it is important to test in a controlled

environment and by controlled environment it is meant using and taking benefit of virtual

simulators. Simulating the software developed offers a quick and easy way to test new

implementations done to the code that will act in real life.

With simulations, the developer has the ability to execute and test various simulations, as

well as build virtual environments that represent the real world. In these virtual worlds,

the developer can also debug its code and test its rigidity. However, they have a downside.
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These simulations are restricted to the processing and graphical power of the com-

puter. This means that there is a limit and a compromise between the complexity of the

simulation and the processing power of the unit being used.

Another critical aspect is the time invested in representing the real world in the virtual

simulation. Trying to create a more realistic world and adding physics like gravity, colli-

sions or wind force can take a lot of time and sometimes, these can be difficult tasks as it

is required to know a lot of the simulator’s code in order to optimize it so the computer

can handle such computations and calculus in the simulations.

Although it is very hard for the developer to 100% represent the real world in

the simulation because of all the complex computations, it is possible to simplify some

physics and interactions in order to maintain a reliable simulation output.

In this dissertation, a virtual simulation is necessary due to the robot’s value being used

in the harsh conditions of the forest fires. The objective of these simulators is to provide a

more controlled environment for developing and testing before addressing the real world.

4.2 System Requirements

In this dissertation, a virtual simulation is built to help with the development of the

navigation system in the UAV. The main requirements of the simulator in order to give a

reliable output are depicted below. After the list that follows, a brief explanation of every

single one is given.

• Availability of the equipment;

• Availability of the sensors;

• Simple physics engine;

• Communication with the software being developed;

• Low performance impact;

• Able to perform autonomous navigation with the equipment.

Starting with the first point, it had to be possible to integrate the equipment in the

simulation, in this case, the UAV DJI Matrice 100. However, this isn’t something already

available, if the developer wanted a similar model he had to create the schematics, the

meshes and the URDF, in order to be available in the RViz software.

For this, the model’s schematics were found online and from there, one was able to create

the URDF profile of the UAV using the software MoveIt Setup Assistant [62]. How the

UAV’s description was done will be better explained in the next section.
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The sensors’ availability in the simulations also played a significant role when choos-

ing the platform. Knowing this, the AirSim simulator already has implemented GPS and

IMU sensors, to later on, if the developer desires, they can locate the UAV and know its

position. Another important sensor that was used was the laser scan sensor in RViz. This

also allowed to perform the autonomous navigation with the UAV as it was possible to

identify the areas where the drone could not go and navigate within its limits.

As the main purpose of these simulations were to look very similar to real life, the simula-

tor in use already needed to have a physics engine where the computer being used to test

these could handle it in terms of performance. For this, the AirSim already has options to

integrate gravity, collision boxes and other effects the developer may want and they are

relatively light for the specifications of the computer being used.

Another key feature is being able to communicate between both softwares, RViz

and AirSim. As it is explained in section 3.4, with the AirSim ROS package, it is possible.

As ROS is a low performance software, the processing unit in the UAV is able to run it

and it also serves as a valuable feature in the development of the autonomous navigation.

The last point of the list above is being able to perform autonomous navigation with the

UAV and for this the RViz allowed the user to perform a series of tests to prove that the

equipment can navigate autonomously throughout the limits and borders of the areas

that were on fire.
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4.3 System Description

This section is relative to the description of the system in this dissertation. Here, are

described the interactions between the UAV, its components and a station computer.

In the figure depicted below, figure 4.1 it is possible to see how the connection is made

between the UAV, its sensors, the software and a computer station.

Figure 4.1: Interactions between the UAV’s sensors (in blue), its components and software
(in green) and a computer.

Starting with the DJI flight board controller or FCU (Flight Controller Unit), this is

a micro-controller that runs software that has the main functionality of controlling the

UAV. This unit is responsible for all the controllers for the stabilization and movement of

the UAV and it also provides data such as, its position, acceleration and velocity.

This FCU is composed of various sensors. However, the most important ones for this

dissertation are the GPS and IMU sensors. The GPS or Global Positioning Systems uses

satellites to calculate the position of the UAV in the world. The IMU sensors or Inertial

Measurement Unit, uses a combination of sensors like accelerometers and gyroscopes to

determinate the robot’s behaviour. It provides data like linear acceleration, orientation

and the velocity of the robot. This controller is represented by the environment on the

AirSim simulator.

Following the schematics above, next, is the Autonomous navigation computer. This

box represents the software that enables the autonomous navigation of the UAV. For this,

there are two possible processing units. One is the processing unit on the UAV, the CPU

that acts independently from any external connection. The other is a ground station, or

the Computer as it is represented in figure 4.1, which can be connected wirellessly to

the machine. This computer must have an Ubuntu or Linux operating System with ROS

installed.
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The Autonomous navigation computer also depends or needs input from the Sensors,
in this case, the camera and the laser scan that are represented by the RViz software. These

sensors gather information from the map that is exported from the FlamMap software.

The connection with the FCU also provides the system with the UAV precise location in

the world, due to the GPS. The distance and path that has traveled since the beginning

or lift off is tracked by the IMU sensors. The camera and the laser scan provide informa-

tion about its surroundings. These sensors detect nearby obstacles and most important

the burnt areas and the tree tops that serve as guidance to the UAV. The autonomous

navigation software is developed using the ROS environment, which will be explained in

another section.

4.4 UAV Description

This Chapter is about how the description of the UAV was built using the software

MoveIt!. This chapter is not about what MoveIt! is or how does it work, that is described

in section 3.3. Creating a UAV description in the MoveIt! software is a bit different than

creating a robotic arm. Here, the primary node used is the move_group node. As it is

shown in figure 4.2 this node merges all the other external nodes in order to provide a

group of ROS actions and services for the users and developers.

Figure 4.2: System Architecture with the integration of the move_group node. The User
Interface is represented by a gray color, the move_group node by a yellow color, the ROS
Parameter Server in green and in a blue are represented the sensors of the robot. [63]
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When creating the description of a robot in this software the concept is to define

various groups of joints and other elements that can perform the moving actions of a

robot arm, for example. Each joint has its own characteristics and can interact with

objects within its scene, that is defined by motion planning algorithms.

MoveIt! provides three interfaces for easier access to the actions and services the

move_group node has. The move_group_interface provides the user with a C++ interface,

the moveit_command supports python and the Motion Planning RViz plugin gives the

user a GUI interface. How the move_group node communicates with the UAV is by using

several ROS topics and actions. The UAV’s current state is received by the node and

information such as the position and orientation of the UAV are given to the /joint_

states topic. Consequently, in order to broadcast the state of the UAV, it is necessary to

launch the node /joint_state_publisher, as it is depicted on the right side of the figure

4.2. Also, using the ROS TF library, the move_group node receives constant information

about the UAV’s pose. The transform between the UAV’s base frame and the world or

map frame is also provided by this TF.

Finally, the ROS Param Server is used by the move_group node to get all the con-

figuration. This includes the description, the URDF, the SRDF of the UAV and other

information relative to its configuration like for example the joint limits and some other

variables related to motion planning. The URDF (Unified Robot Description Format)

is an XML file that describes all elements of the robot and the SRDF (Semantic Robot

Description Format) is intended to represent information about the robot that is not in

the URDF file.

The MoveIt! interface also provides the developer access to motion planning li-

braries, that can be accessed through ROS actions and services. If the user wants, they

can initiate a motion plan request by selecting the desired goal in RViz and the mo-

tion planner calculates the trajectory it will take to get the UAV to the destination. The

move_group node will create the desired trajectory and during the path it will detect any

obstacles identified by the sensors and avoid them. This is all done without violating the

velocity and acceleration constraints of the UAV model.
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4.4.1 MoveIt! Setup Assistant

This section is dedicated to the MoveIt! Setup Assistant. This software is used to

configure UAVs within the MoveIt! framework and generates the SRDF as well as other

configuration files necessary. In this chapter it is described the process and how the UAV

is created to later on be used in RViz.

The first thing to do is to locate on the computer the description of the model the

developer wants to use, the type of the file is a .xacro. Once it is loaded into the MoveIt!

Assistant the next step is to generate the self collision boxes. The default self collision

generator searches for pairs of links in the description files of the UAV that can be safely

disabled. This will decrease the planning processing time dramatically. The assistant will

then present the results, identifying the links and its possible collisions. As it is shown in

picture 4.3 all of these links are adjacent to each other and they can all be disabled.

Figure 4.3: MoveIt! Setup Assistant: Self Collisions tab.

Moving on to the Virtual Joints tab, these joints are used in order for the world to

know the position of the UAV. It is supposed to be defined only one virtual joint, attaching

the UAV’s base_link to the world_frame. The objective of this joint is to represent the base

of the robot in a Cartesian plane. Since the UAV is a multi degree of freedom object, the

joint type must be floating. The next tab of this setup is the Planning Groups tab. This

tab is responsible for describing different parts of the UAV. As in this dissertation, the

UAV is used as a single object, there is only one planning group.
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Next, there is the Passive Joints tab. However, since the UAV used does not have

any special operations happening internally required to create other joints that can move

freely from the UAV this process can be skipped. The last tab is responsible for creating

the configuration files that enable the developer to create the respective package needed

to include the robot in RViz and MoveIt!.

Beyond this, the setup assistant also creates a launch folder in order to launch the

robot in the RViz software. Some files that are important referencing are the quad.srdf,
ompl_planning.yaml, kinematics.yaml and joint_limits.yaml. Respectively, the srdf file is

where it is represented the semantic information relative to the UAV.

The ompl_planning.yaml is where the planning is described and the kinematics.yaml is

where the kinematic solver is specified. At last, the joint_limits.yaml file gives the de-

veloper some additional information about the joints in the respective planning groups

that aren’t stated in the URDF file. This allows for the controller to established realistic

trajectories for the UAV.

As this setup is finished, the joint_limits.yaml file must be updated. The information

that should be added are the acceleration and the velocity limits for the UAV. Besides

making the trajectories more realistic, it also makes the planning processes faster by

eliminating a set of other possible trajectories.

As a final result of this setup, the developer should obtain the UAV depicted in figure 4.4

and 4.5.

Figure 4.4: Top view of the UAV model DJI Matrice 100.

Figure 4.5: Front view of the UAV model DJI Matrice 100.
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4.4.2 Physics of the Model

The platform Unreal Engine 4 and the software AirSim already offer a suitable envi-

ronment for the UAV. The virtual world created within Unreal Engine already offers the

developer an internal physics engine with its own physics laws and all the aspects like

the weight of the robot, its inertia and all the respective dynamics. As this simulator is

just used to put things into perspective, the model used in AirSim may differ a bit from

the model in the RViz software, the DJI Matrice 100.

Within Unreal Engine, it is assumed the weight of the UAV is distributed and geometri-

cally centered. The UAV is represented as an object and it has its own collision boxes.

Following, it is explained the mechanics of the propellers of a UAV. It is common

for UAVs to have counter rotating propellers, this is because the rotational acceleration of

the propellers produces force in one direction. If all propellers were to rotate in the same

direction, the torque produced would be applied vertically to the center of the UAV’s

mass, thus creating an infinite spin and eventually causing the UAV to lose control and

crash. It is for this reason that multi rotor UAVs are built with counter rotating propellers.

In figure 4.6 is displayed this example.

Figure 4.6: Orientation of the propellers on the model used. [64]

The torque applied to the center of mass of the UAV can be represented by the

following equation: τ = K(F1 +F4−F2−F3) where τ means the total torque applied, K is

a constant that represents the sum of each propeller lifting force and F1, F2, F3 and F4,

respectively represent the lifting force produced by each individual motor.

Following Newton’s third law of physics, for every applied force, there’s an equal and

opposite reaction force to it, meaning that an upward torque is produced by motors 1

and 4 producing a clockwise motion. The same law can be applied to motors 2 and 3,

producing a counter clockwise motion.
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It is based on this principle that UAVs are able to fly and navigate. For example, this

is how the yaw is controlled, by applying more or less torque on these sets of propellers.

Yaw is the angle produced by the vertical axis Uz’, as it is depicted in figure 4.7.

Figure 4.7: Perspective view of a UAV and its axis. [65]

By rotating its yaw, the UAV will rotate on its center axis however, this is not how

the UAV navigates in the world. In order to navigate in the environment the user has to

apply changes to the pitch and roll angles. These angles are formed by rotating around

the horizontal axis of the UAV.

Sending commands to apply more torque or force to one side of the UAV will make

changes in the orientation, making the UAV tilt to one side, therefore increasing its speed

in that axis.

4.5 Grid Maps

This section is relative to grid maps, what they are and their purpose in this dissertation.

How FlamMap works has already been explained in section 3.5, in this chapter only the

various outputs of FlamMap and how to include them on the RViz software will be

covered.

As it is stated in [66], a grid map is a network of evenly spaced horizontal and vertical

lines used to identify locations on a map. Giving an example, someone can pick a location

on a map and divide it into a certain number of columns and rows, thus creating a grid.

A grid can also display locations projecting coordinates on a map.

There are many examples of grid maps, for example, below in figure 4.8 there is a map

divided into grids. There are five columns vertically, from the letter A to the letter E and

horizontally, there are five rows, from number 1 to 5.
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Figure 4.8: Grid map divided into five columns (A-E) and five rows (1-5). [66]

Another essential point of grid maps are graticules, which are parallel lines showing

the latitude and longitude on earth. These graticules can be used on a grid map to show

a location in coordinates, with degrees of longitude and latitude.

With this, it is possible to combine both maps displaying grids and graticules and it

is possible to add another type of measured grid called UTM or Universal Transverse

Mercator to later on display more precise information.

As it is explained in section 3.5, FlamMap can have various outputs, it has multiple

themes, these being Elevation, slope, aspect, canopy, among others and after inserting

some realistic inputs, the user is presented with some output files.

As it is depicted in figure 4.9 the developer can add some files and characteristics to the

simulation in order to make it more real. For example, fuel moisture is the amount of

water in a fuel, expressed as a percent of the dry weight of that same fuel, as it is explained

in [67]. The fuel moisture content in percentage is determined by dividing the difference

between the wet and dry weights by the dry weight and multiplying by 100 in order to

have a percentage. Files with information relative to fuel moisture can be added to the

simulation.

The developer can also include information relative to the wind. The direction can

be chosen, if it is blowing up or downhill and the speed and wind azimuth (direction of

the wind measured in degrees) can also be chosen. Characteristics of the canopy can also

be selected according to the preferences of the user. The foliar moisture content can be

selected and the user can choose the calculation method for the crown fire activity. In

this simulation, the method chosen is the Scott and Reinhardt method.
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Below it is also possible to choose specific settings for the fuel moisture. The user can

select a conditioning period however, in this simulation, fixed fuel moisture settings will

be used.

Figure 4.9: Inputs necessary to run a demonstration on FlamMap.

After applying all these changes to the simulation, the developer is presented with

a series of outputs. These outputs range from flame length to crown fire activity passing

trough the spread rate and fire spread direction.

According to the developer’s needs, these outputs can later on be exported into different

types of files, to be opened in different softwares. The most important types of files these

outputs can be exported to are ASCII grid files and images in the .png format. In this

dissertation, the exportation type used is .png, as it is depicted in figure 4.10. Later on,

the file will be imported to the RViz software.
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Crown fire is a forest fire that spreads from tree top to tree top and according to

[68] it can be segmented into four sections, these being:

• Non burnable: Portions of landscape that cannot burn, such as, bodies of water or

non-vegetated areas;

• Surface Fire: A fire that burns surface debris, like dead trees and leaves;

• Passive Crown Fire: A fire that spreads on tree tops in which a group of trees

becomes fuel for the fire and ignites. These trees can increase the spread rate.

• Active Crown Fire: Fire that spreads both in tree tops and in the surface. The

burning areas spread at the same rate.

Figure 4.10: Output Crown Fire Activity in .png format. The more red the area is, the
more it suffered from crown fire activity.

Once the image file is saved, it is possible to import it into the RViz simulation with

some more steps that will be explained in section 5.1.4.
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5
Autonomous Two Dimensional Navigation

This chapter is dedicated to the two dimensional autonomous navigation of the robot.

In the next section a brief explanation of 2D navigation is given and it is also shown its

purpose in this dissertation. Some settings and the map plane in the RViz software are

also taken into consideration in the next section.

Following, is the section where it is explained how it is possible to pinpoint the

robot using the AirSim simulator and the navigation package, within ROS. This is a very

important section of this chapter because, without this, it would be impossible for the

robot to know its precise localization in the world, whether it is in a virtual or real world.

The last section of this chapter is dedicated to the planners used within the 2D Navigation

and it is explained how it is possible for the robot to avoid certain areas and how the

tracking is done.

5.1 Navigation Stack Setup

This section is about the two dimensional Navigation Stack in ROS. This Navigation

Stack is no more than a package that receives data and other information from odometry

and sensors. It receives a goal given by the developer or user and it is responsible for

sending velocity commands to the robot in order for it to reach its final destination.

Giving a general overview of this stack, on a conceptual level it is fairly simple. The

requirements necessary in order to run these packages are that the robot must be able to

have ROS running, in order to receive and publish sensor data, using the correct message

types within this software. This stack also needs to be able to establish the communication

between the robot and other frames in order for the stack to know the location of the robot

and for example, where the floor or ground is relative to its position.
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For this and other important frames for this stack, a TF Tree or Transform Tree is also

necessary. This allows ROS to establish the connection between all possible frames for a

better understanding and co-relation between all systems.

In order for this Navigation Stack to work, some hardware requirements are also

necessary. A robot with a laser is required in order for the Navigation Stack to know the

robot’s surroundings and also, the preferable size form of the robot must be a square or

circular. This is because the navigation package was developed for robots that do not have

arbitrary shapes and sizes. Although it is possible, this stack may not take full advantage

of its calculations in some situations, for example when a large rectangular robot passes

through a narrow space like a doorway.

In order for this package to work, the Navigation Stack assumes that the robot is

already configured so that it can move around.

Below, in figure 5.1, it is depicted a diagram that shows this configuration. In the diagram,

it is possible to observe three different colored boxes. Starting with the blue ones, these

are components that must be created by the developer for each robot platform to work.

The gray boxes are optional requirements that are already implemented in the Navigation

Stack, but it is up to the developer to use them in the Navigation Stack. For example,

for this dissertation to work, the map_server component needs to be created, however the

amcl component was not required to do the autonomous navigation on the UAV. Lastly,

the white boxes are components that need to be implemented in the Navigation Stack.

The developer needs to change some settings and parameters accordingly in order to

make the autonomous navigation. All of this, will have its own section, section 5.3.

Figure 5.1: Schematics of the Navigation Stack Setup. [69]
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Connecting these boxes it is possible to see different message types, for example

cmd_vel under geometry_msgs/T wist, connecting the base controller box or odom under

nav_msgs/Odometry, connecting the odometry source box.

These message types and their content will be explained in section 5.1.1. For now, it is

just explained each box and what is their purpose on the Navigation Stack.

As it is referenced above, it is expected for the developer to install an updated

version of ROS on the robot being used.

Starting with the sensor transform box, it is required for the Navigation Stack that the

robot publishes the necessary information about all the coordination frames and their

relationships using Transforms.

Following, is the odometry source box. This part of the Navigation Stack is responsible

for acquiring all the information related to the robot’s odometry using Transforms and

sending data through the message type nav_msgs/Odometry.

Next is the base_controller box. This component is crucial because it is in charge of sending

velocity commands to the robot in order for it to move. The data is sent using the topic

cmd_vel under the message type geometry_msgs/T wist. If data is being sent to this topic,

it means the robot needs to have a node subscribing to the cmd_vel topic. This topic

must be capable of receiving linear velocities and angular velocities. The UAV’s node

available to receive this information is the /airsim_node/vel_cmd_body_frame that has

the similar type of message. Once this node receives the velocity commands, the data is

converted into motor commands and the UAV is able to move in the desired direction

with the desired acceleration and speed.

On the right side of the table it is possible to see the sensor sources box. In order

for the UAV to avoid obstacles, the Navigation Stack receives information from various

sensors. The stack assumes the data these sensors receive are being published to the

following sensor topics, sensor_msgs/LaserScan or sensor_msgs/PointCloud.

Although it is not required by the Navigation Stack, the map server is an optional param-

eter. This component was necessary on this dissertation and will have its own dedicated

section, section 5.1.4.

Finally, in the middle, it is possible to see the move_base box with two planners, two

costmaps and one recovery behaviour. The move_base group node provides a ROS inter-

face for the developer to configure and interact with the Navigation Stack on the robot.

This component of the Navigation Stack is vital on this dissertation as it is responsible

for providing the autonomous navigation of the UAV and has a whole section dedicated

to it, section 5.3.
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5.1.1 Sensor Information

This sub-section is dedicated to sensor streams and how messages work over the ROS

framework. In order for the Navigation Stack to work properly and safely, it is essential to

know how to publish data from sensors over ROS correctly. If in any case, the Navigation

Stack does not receive information properly from the required sensors, the robot will be

driving blindly and most likely, will end up hitting obstacles.

The Navigation Stack can acquire information from a whole range of sensors, as long as

the data is sent correctly. Examples of these sensors are lasers, sonars, cameras, infrared

sensors, among others.

In this dissertation, there is only one required sensor, a laser sensor. The way this

sensor works is by emitting a visible laser light towards a target or object. When hitting

the obstacle, the laser light is then reflected diffusely. There is also a receiver lens on

the sensor that focuses on that reflected light, which creates a spot or an obstacle on

the image. In the next paragraphs it is explained how to send and how the Navigation

Stack accepts data published by the sensor_msgs/LaserScan and sensor_msgs/P ointCLoud
message types.

To start, both of these message types contain a Transform frame and a time depen-

dent information, in a way it is possible to standardize how this information is sent, all

messages within ROS contain a Header type.

This Header type contains three fields, the seq field, the stamp field and the frame_id field.

The seq field corresponds to an identifier, that as the messages are sent from the publisher,

it automatically increases.

The stamp field is responsible for storing time information that is associated with data in

the message. Giving an example, in a LaserScan message, this field corresponds to the

time at which the scan was taken.

At last, the frame_id field stores the Transform frame information associated with the

message sent.

As long as the data coming from the sensor can be formatted into this message type, the

Navigation Stack can receive information and later on work with it in order to simulate a

real robot with these sensors in a virtual simulation.
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5.1.2 Odometry Information

This sub-section is relative to the odometry information, what is its message’s content

and how it can be published to the Navigation Stack. In order for this stack to know

and determine the robot’s location in the world and link various data to a static map

Transforms are used. Although Transforms are essential to give some information to the

Navigation Stack, they do not provide any information related to the UAV’s velocity. It

is because of this, the Navigation Stack requires any odometry source publishes both the

Transform with some information and a message from the type nav_msgs/Odometry with

data relative to the velocity and its content.

Next, it is described what parameters are sent in a message with the odometry type.

This message type is composed of a Header with a respective ID that is supposed to be the

parent coordinate frame. It also has a child coordinate frame and another two message

types within. These are the pose and the twist messages, that respectively correspond

to the position of the robot in the odometric frame and the robot’s velocity in the child

coordinate frame.

5.1.3 Transform Configuration

As it is mentioned above, the Navigation Stack requires the Transform software library

in order to work at its best. A transform tree tries to define, at an abstract level, the

translation and rotation between different coordinate frames. For example, in the figure

below, figure 5.2 it is possible to see the UAV DJI M100, which has a mobile base with a

laser mounted below. There are two coordinate frames, one called base_link corresponding

to the center of the robot and the other called base_laser corresponding to the center point

of the laser mount. For a better explanation, let’s assume the laser is receiving data from

its sensors in the form of distances, in other words, the frame base_laser contains data. If

the developer wants to take this data and use it to help the robot move and avoid obstacles,

a connection is needed from the frame base_laser to the frame base_link.

Figure 5.2: The UAV DJI M100 with a laser mounted below. Its frames are also depicted,
these being the base_link frame in the gravitational center of the robot and the base_laser
frame in the center of the laser mount.
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As it is depicted in the figure 5.2, the laser is five centimeters below the center of

the robot. When specifying the relation between these two coordinate frames, the devel-

oper needs to consider this distance. In order to get data from the base_laser frame to

the base_link frame the developer must apply the following translation (X:0.0m, Y:0.0m,

Z:0.05m). On the other hand, to transfer data in the opposite direction, the following

translation (X:0.0m, Y:0.0m, Z:-0.05m) must be applied.

In order for the ROS Navigation Stack to know these translations, this information must

be defined and stored in the Transform Tree. Each node on this tree represents a coordi-

nate frame and each node’s end represents a coordination frame. In this case, the base_link
frame is called the parent frame, and the base_laser is denominated the child frame.

Applied to this dissertation, the Transform Tree has more than two coordination frames.

Below, in figure 5.3 it is possible to see a diagram of the Transform Tree.

Figure 5.3: Diagram of the Transform Tree used. In blue it is possible to see the UAV’s
frames, in green the world’s frames and in yellow the frame responsible for the map.

As it is depicted in the diagram, the Transform Tree or TF Tree, starts with the

world frame and from there, it has many other branches. This coordinate frame is the

origin and it is designed to allow the interaction between various robots and maps, if the

developer wants it. In this case, only one map and one UAV are used, but it is possible to

add multiple UAVs and maps if desired. This first frame, is usually static, which means

it does not move in space or time and always has the same position, with its broadcaster

being the node /airsim_node.
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The following frame, is the world_ned frame, that has three child frames, the

drone_1, map and world_enu frame. Although it may seem the same, there is a reason

why these two world frames are included (ned and enu). The difference between these

two frames is its referential. For short range Cartesian representations, it is mostly used

the ENU convention, where the X is East, Y is North and Z is Up. For outdoor systems,

it is most desirable to work under the NED convention, where X is North, Y is East and

Z is Down. In this case, the following child frames all come down from the world_ned
frame, which means this is the referential used throughout this dissertation. Following

[70], has more information about these two referential and the standard units of measure

and coordinate conventions.

Next, on the TF Tree, it is the map frame with the broadcaster /new_map. Typically

this coordinate frame is a world fixed frame, which means it does not move in correlation

to the world frame. The map, usually is a long term global reference and in this disserta-

tion has the same origin as the drone_1 odom_local frame.

Following, the next frame, is the UAV’s frame, with the name drone_1. This, has the

GPS coordinates where the UAV starts in the AirSim simulator. In the map depicted in

the RViz software, this corresponds to the set of coordinates [0.0, 0.0, 0.0], which means

its origin. The child frame of the frame drone_1 is the frame drone_1 odom_local. This

coordinate frame is also a world fixed frame. In a typical setup a localization component

constantly re-computes the robot pose in which is saved in this frame, these computations

are based on an odometry source. This frame is useful as a short term local reference due

to its accuracy, however as the UAV goes further away from its initial point, some drifts

may occur leading to this frame being poor for long term reference. To avoid this, the

UAV always knows its position according to the GPS in the AirSim simulator, which will

have its dedicated chapter’s section.

The last pair of coordination frames are the base_link frame and the base_laser frame.

The base_link frame, usually is attached to the robot base, in this case the base of the UAV

and represents the UAV as one single object. If the developer wants to attach a laser,

a camera or other components and wants to represent it as a new coordination frame,

in order to have its own independent movement, the parent frame will be the base_link
frame and the child frame will be the laser or the new component frame, in this case is

the base_laser frame.

In figure 5.4 it is possible to see in the RViz software, the UAV, the map and three coordi-

nation frames represented.

53

/new_map


CHAPTER 5. AUTONOMOUS TWO DIMENSIONAL NAVIGATION

Figure 5.4: UAV with a view of three frames. It is possible to see the drone_1 odom_local
frame, the map frame and the base_link frame.

5.1.4 Building the Map Environment

This section is dedicated to explaining how the map is built in RViz and its various

parameters. In order for the UAV to navigate with the help of the Navigation Stack, a

static map must be present. The addition of a static map aids the Navigation Stack to

better locate the UAV and it can receive commands to navigate to a specific location within

the map.

After saving the image, the first step is to convert the .png file to a .pgm file, also

known as Portable Gray Map file. Next, a .yaml file must be created in order to launch

when the simulation starts, but first, some parameters need to be established in this file.

These parameters are the image, resolution, origin and occupied and free thresh values.

Starting with the image parameter, this is the path to the .pgm image file the de-

veloper wants to open. The resolution field, is the resolution of the map in meters per

pixels, in this dissertation the value is set to 0.5. Following, is the origin parameter that

represents the two dimensional pose of the lower left pixel in the map, in this case it is

[0.0, 0.0, 0.0]. The next parameters are the occupied thresh and the free thresh. Occupied

thresh is set to 0.55 and is the field that considers the occupancy of a pixel, values greater

than this one consider the pixel as occupied. On the opposite there is the parameter free

thresh, set to 0.54 that considers a pixel free if the occupancy probability is less than this

value.
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With this set, when the RViz starts, a map will appear in the simulation, as it is

depicted in the figure 5.5, where it is possible to see the UAV and the map in a gray scale.

Figure 5.5: Output of FlamMap in the RViz software. It is possible to see the static map
and the UAV in an orange color.
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5.2 Robot Localization

This section is dedicated to the robot localization. It is addressed how it is implemented

and how it works. The robot localization package is a collection of estimation nodes, each

one being an implementation of a state estimator for robots moving in two and three

dimensional space. In order for the developer to integrate the robot with GPS data, this

package also provides the node navsat_transform_node.

All of the estimation nodes in this robot localization package share similar features. Some

of them are:

• Being able to fuse any number of sensors, meaning the nodes do not restrict the

number of input sources. For example, if the robot has multiple IMUs or various

sources of odometry information, this package can support all of them;

• Can support multiple message types within ROS. Some examples are nav_msgs/

Odometry and sensor_msgs/Imu;

• Has sensor input customization, which means it is able to exclude data from sensors

independently;

• It is possible to do a continuous estimation. As soon as the package receives any

input from the sensors, it starts estimating. However, if there are long periods of

time where no data is received, the filter will continue to estimate the robot’s state.

In order to integrate the GPS data, the navsat_transform_node, within the Naviga-

tion package, transforms the GPS data from the AirSim simulator into a frame that is

consistent with the initial position and orientation in the world frame, inside the RViz

software. For this to work, some inputs are required. The navsat_transform_node requires

three sources of information and these three are the UAV’s current pose (position and

orientation) in the world frame, an heading with an earth-reference and geographic coor-

dinates expressed in latitude, longitude and altitude. This data can be obtained through

the following topics:

• GPS coordinates can be sent in the message type sensor_msgs/NavSatFix;

• The heading with the earth reference is in the message type sensor_msgs/Imu;

• The message containing the position and orientation of the UAV is in the message

type nav_msgs/Odometry.
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To configure the navsat_transform_node some parameters must be changed. First, a

launch file must be created in order to launch this node so the communication can start.

As this dissertation already needs two simulators and various data in order to work, to

keep it better organized, the launch command that launches the localization was put into

the main launch file of this project, the quad_2dnav.launch file. With this, when the

developer launches the main file with the UAV schematics, the visualization in the RViz

and the planning, the GPS navigation is launched as well.

The localization launch file is where some parameters need to be changed. In order for ev-

erything to communicate, the topics /imu/data, /gps/fix and /odometry/filter, must

be remapped respectively to, /airsim_node/drone_1/imu/Imu_transformed, /airsim_

node/drone_1/global_gps_transformed and /quad/ground_truth/odometry.

With this, the navigation package can receive data and information from other topics in

other simulators and applications in order to merge them.

5.2.1 AirSim Integration

This chapter’s section is relative to how the integration between the AirSim simulator,

the navigation package and the representation on the RViz was done. The primary use

of the AirSim simulator in this dissertation is to give a precise location using the GPS

system within the simulator. With this, python scripts were created in order to send and

receive information relative to the GPS data and to be able to perform the communication

between both software. The two airsim topics that send the desired data are the /airsim_

node/drone_1/global_gps and the /airsim_node/drone_1/imu/Imu however, both of

these topics have some information missing within each message.

As it was previously described, topics can have different message types, in this case,

the global_gps topic has messages from the type sensor_msgs/NavSatFix and the Imu topic

has messages from the type sensor_msgs/Imu.

In order for this dissertation to work, the data from the GPS and IMU sensors has to be

published to the Navigation stack to later on, be subscribed by the RViz software.

To accomplish this, two subscribers were created in order to get the data and messages

from the GPS and IMU to be published in the Navigation Stack.

However, some information was missing in both messages. In the GPS message being

sent, the header with the respective frame ID, the covariance matrix and its respective

type were missing. In the IMU message that was being published, information relative to

the covariance matrix was also missing. This information was the orientation, the angular

velocity and the linear acceleration.

Covariance matrices are used a lot in the robotics world [71]. These, are a way of

describing the existent relation between various variables and are a tool for estimating

the possible error in a numerical value and predicting this same value.
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Respectively to the GPS message, the frame ID added to the header was drone_1
because the message is relative to the UAV with this name. Regarding the covariance

matrix, a matrix with the value 0.01 in the diagonal and 10000 in the other values of the

matrix was added and the type is 1, which indicates it is an approximated covariance and

not the exact covariance.

Relative to the IMU message, the same covariance matrix was added to the orientation,

angular velocity and linear acceleration matrices. After completing the missing data in

both messages, they can then be published to the Navigation Stack.

In order for the UAV in the RViz software and the UAV in the AirSim simulator to

be connected, some changes were also performed. As it is pretended for both UAVs to

only act as one, their velocity and acceleration also need to be connected. With this, when

the UAV from the RViz software travels from point A to point B, the UAV in the AirSim

simulator will also travel from point A to point B with the same speed, acceleration and

vice-versa. Connecting both UAVs also means the UAV in the RViz software has the same

GPS coordinates as the UAV in the AirSim simulator, which is ideal. For this connection

to happen the topics containing all data regarding the UAV’s speed and acceleration must

be subscribed and then published in order for both UAVs to act as one. Whether the user

sends a UAV or the other to a specific location, the significant other must go too.

This was done by subscribing the topic /cmd_vel, which contains the information

relative to the velocity and acceleration of the UAV in the RViz simulation. After receiving

data from the topic, it has to be modified in order to publish it to the topic in the AirSim

simulator. The data has to be transformed because these two topics have different message

types. After putting all the useful data in the same type as the AirSim topic, the data can

then be published, for the /airsim_node/drone_1/vel_cmd_body_frame to subscribe.
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5.3 Autonomous Navigation

This section is relative to the autonomous navigation system of the UAV. In this first

section, an explanation of the node responsible for this system is given. Following, there

are two sub-sections relative to the costmaps and the planners used in this dissertation.

In the figure 5.1, with the schematics of the Navigation Stack setup, the main white

box or the move_base box (where are the planners and the costmaps) is what allows the

autonomous navigation system. Properly configured, when running the move_base node

on a robot the outcome should be the attempt for the robot to reach the desired goal with

a certain or specific tolerance given by the user. If there are no dynamic obstacles in the

environment, this node will help the UAV get to the desired objective specified by the

user.

If it cannot, it will give the information to the user that the robot failed its mission. This

node, the move_base node, is also capable of performing recovery behaviours if the robot

finds itself stuck.

The recovery process is displayed in figure 5.6.

Figure 5.6: Diagram of the move_base node recovery behaviour. [72]

Giving a brief explanation on how this is done, first the user specifies a closer region

to the UAV with a certain radius. Obstacles outside this region will be cleared from the

robot’s map. Next, within this region, the robot will perform a rotation to see what sides

are clear. If the robot finds a better route, it will then proceed to take that route and

continue the navigation. However, if this step fails, the robot will try again to clear its

map, this time more aggressively. After this, another clearing rotation will be followed.

If none of these steps work, the robot will consider itself stuck and will notify the user

that its mission has been aborted.

This node also provides the user an implementation of the SimpleActionServer which

consists in an action library that can take goals in the form of the message type geome-
try_msgs PoseStamped. The way this Action Library works is by providing communication

between the ActionClient and the ActionServer via the ROS Action Protocol, which is a

protocol built on top of ROS messages. Both of these servers provide a simple API for

users to request or execute goals.

59



CHAPTER 5. AUTONOMOUS TWO DIMENSIONAL NAVIGATION

In order for the server to communicate with the client some messages need to be

defined which is done using an action specification. These messages are the Goal, Feedback
and Result and both the client and the server communicate through this.

The Goal message is responsible for containing the information relative to the end point

or the final position of the UAV. The message type is PoseStamped and contains the

information of where the robot should move to, in the virtual world.

The Feedback message is a way to tell the ActionClient about the robot’s progress when

reaching the goal, it sends the current pose of the robot along the path it has to follow.

At last, the Result is the message sent from the ActionServer to the ActionClient when the

goal is completed. This message is only sent one time during the execution of the goal as

opposed to the Feedback message.

Now, that the move_base node is explained and clarified, the next sub-section is relative

to the Cost Maps.

5.3.1 2D Cost Maps

This section provides a more in depth look at the costmaps configuration used in this

dissertation. Before explaining all the parameters and their configuration, a costmap is

a grid map where each cell is assigned a specific cost. Costs with a greater value mean a

smaller distance between the robot and the obstacle. By receiving information and data

from the UAV’s sensors, a 2D occupancy grid is built around the UAV.

The costmap package within the move_base node provides the user with a config-

urable structure that is able to keep information relative to where the UAV should or

should not navigate through in the static map. This structure is called the occupancy grid.

In this dissertation, a static map is provided to the Navigation Stack, with this, it is possi-

ble for the costmap package to either mark an obstacle (save information in the costmap)

or clear an obstacle (remove information from the costmap). Marking operations are

nothing more than an index in an array that can change the cost of each individual cell.

On the other hand, clearing operations are operations that consist in ray tracing through

a grid for each observation reported.

It is known that each cell in the costmap can have 255 different cost values however,

the structure this package uses is only capable of representing three values. Basically,

all of the cells in this structure can either be unknown, occupied or free and each one of

these status has a special cost value assigned to it. For example, rows or columns with

a certain number of occupied cells are assigned with a lethal obstacle cost however, if a

group of cells has a certain number of free cells, they are marked with a free space cost.
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Relative to the number of times the map updates, this is directly influenced by the

parameter update_frequency, that is given in Hertz, Hz. Each cycle, data from various sen-

sors comes in and the marking and clearing operations are performed. These operations

are then projected into the static map for the user to see in the RViz software.

In figure 5.7 it is possible to see a graphic that helps explaining the inflation process. In-

flation is the process of propagating cost values out from the occupied cells that decrease

with the distance.

Figure 5.7: Graphic relative to the inflation parameter. On the Y axis is the cell cost and
on the X axis is the distance from the obstacle cell. As the distance from the obstacle cell
increases, the cell cost decreases. [73]

There are five different types of costmap values:

• Lethal: This cost means that there is an actual obstacle in the respective cell, so if

the center of the robot would be in this cell, a collision would happen;

• Inscribed: This cost means that the cost cell is less than the robot radius. If the

robot continues in this direction, it will definitely hit something, causing a collision;

• Possibly circumscribed: This cost is a similar cost to the inscribed cost, however it

uses the robot’s radius as a cutoff distance;

• Freespace: This cost is zero, and means that is a free cell and the robot can take this

path if desired;

• Unknown: Means that the cell has no information relative to its cost.

61



CHAPTER 5. AUTONOMOUS TWO DIMENSIONAL NAVIGATION

It should be noted that all the other costs are assigned to values between the cir-

cumscribed and free space. In this dissertation, there are three files regarding costmaps

and these are:

• costmap_common_params file;

• global_costmap_params file;

• local_costmap_params file.

These are the files where the settings are adjusted and the parameters are added

in order to define the costmaps of this work. The costmap_common_params file is where

information about the world’s obstacles is stored. This file also contains information

regarding the sensor’s topics.

In this file are the parameters obstacle_range and raytrace_range. These two parameters

are thresholds relative to the obstacle information that is put into the costmaps. The first

parameter sets the maximum range sensor reading, resulting in an obstacle being put

into the costmaps. For example, if this parameter is set to five meters, the information is

only updated to the map within a five meter distance of the UAV. The other parameter

determines the range to which the algorithm ray traces free space. If this value is set for

two meters for example, this means that the UAV will try to clear space in front of it up

to two meters away.

Next on the file, are the footprint and the inflation_radius parameters. As the name sug-

gests, the first parameter is the area of the footprint of the robot. In this case, the robot

is a UAV, so it is assumed a squared shape footprint. The inflation_radius parameter is

the maximum distance from obstacles at which a cost should occur. For example, if this

value is set to 0.2 meters, the algorithm will consider paths that stay 0.2 meters or more

away from any given obstacle.

Here, are also assigned the parameters robot_base_frame, transform_tolerance, update
and publish frequency. The first parameter is relative to the robot’s frame, in this case is

called drone_1. The second and third parameters are the frequency at which the algorithm

and the RViz software update, respectively. At last, the transform_tolerance parameter is

the tolerance in seconds, at which the transform is expecting any result or feedback. If it

does not get one inside this time window, it is possible the robot will get stuck.

Last, in this file, are the Layer Definitions. This is were the sensors are depicted and

other frames necessary for the costmaps. The map topic is here and it is enabled in order

to receive updates from the algorithms. The Observation_sources parameter defines the

list of sensors that will provide information to the costmap and these sensors are also

depicted with the respective frame, data type and the topic on which they provide such

information.
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Next it is the file global_costmap_params. This file is where the configuration op-

tions for the global costmap are stored. The parameters that come first in this file are the

global_frame and robot_base_frame that respectively, define the coordinate frame where

the costmap will run, in this case, is the map frame and the frame that is the reference for

the base of the robot, drone_1.

Next, are the parameters update_frequency, static_map and rolling_window. The first pa-

rameter is already explained above, the second is relative to the use of a static map and is

set to true. Finally, the rolling_window parameter is set to false as the simulation map is

static. If it was not, this parameter should be set to true because it keeps the robot in the

center of the area of the costmap as it moves in the world.

The last file related to costmaps is the local_costmap_params file. Here, some param-

eters are the same as in the file above, the ones that are different are the width, height and

resolution parameters. As it is intended, these parameters define the width and height of

the map in meters and the resolution in meters per cell.

In figure 5.8 it is depicted a map where the burnt areas are represented by the black

cells and the cells with a gray color are the areas where the UAV can safely navigate. On

the bottom left corner, it is possible to see the UAV with the local costmap being displayed.

All the black cells are identified by the costmap by having a blue color around them and

if the UAV wants to navigate pass through these cells, it has to avoid them and find a path

around them.

Figure 5.8: Figure where the local costmap is displayed. The black areas are the restricted
areas, or areas the UAV must avoid. Around the UAV are the local costmaps that border
line the black areas with a blue color.
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5.3.2 2D Planners

This section is relative to the planners used, and it is composed of one file, named

base_local_planner_params that has all the parameters needed for the planning algorithms.

The planners used can be divided in two types of planners. The planner used globally,

and the planner used locally. The global planner used is the navfn, as it is depicted in the

file. This planner uses an algorithm called Dijkstra and the main objective of this planner

is to find a global path with the minimum cost between the two given points, these points

being where the UAV is and where its goal is.

The parameters in this planner that have been changed from their default values are the

allow_unknown that specifies whether or not to allow the planner to create plans that

transverse the unknown space, which is set to true and the cost_factor and neutral_cost.
These last two parameters, together, determine the quality of the planned path calculated

by the algorithm. For example, if the robot goes around objects with a sharper turn or if

it tries to keep a greater safe distance from them, etc, this is all accounted in these two

parameters.

The other planner, that is used locally is called the Dynamic Window Approach or

DWA algorithm. An explanation more in depth is given in [74] however, a summary of

the implementation of this algorithm is as follows:

• 1. Discretely sample the robot’s control space (dx, dy, dtheta);

• 2. For each sampled velocity, this algorithm will perform a forward simulation to

predict what would happen if the velocity were to be applied;

• 3. Evaluate by scoring each trajectory resulting from the simulations;

• 4. Pick trajectory with the better scoring and send the associated velocity to the

robot;

• 5. Repeat the process.

Besides the steps shown above, this algorithm also maximizes an objective that

depends on three things. These are the progress of the target, the respective clearance

from obstacles and the forward velocity in order to produce the optimal velocity pair

(Vx, Vy). This algorithm, the DWA planner, depends a lot on the local costmap, which

provides useful information regarding the nearest obstacles.

Knowing this, it is crucial to tune the parameters for this planner in order to have an

optimal behaviour. There are a lot of parameters related to this planner and they are all

depicted in the file.
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The parameters are grouped into several categories. The first category in the file is

relative to the robot. Here are parameters that concern the robot’s velocity and acceler-

ation and its turning circle. The next category is called Goal Tolerance and here are set

three parameters that relate to the controller’s tolerance when achieving a goal.

The category that follows is relative to the speed samples mentioned above. It is here

where they are adjusted and the parameter sim_time also falls under this category. It is

referent to the time the algorithm takes when calculating a new simulation.

Next is the Trajectory Scoring category. This is one of the most important categories,

because the parameters that are adjusted here have a direct influence on the objective

function. This function relies on three components, these being, the progress to the goal,

the clearance from obstacles and the forward velocity. The function’s cost is calculated by

summing all of the components and the objective is to get the lowest cost.

The last category is called Oscillation Prevention and the parameters in here are respon-

sible for keeping the robot steady if it is oscillating. The oscillations occur for example, if

the robot needs to pass through a narrow zone (in between two obstacles) and the local

planner is producing paths leading to two opposite directions. If the robot oscillates

too much, the algorithm will assume it is stuck and therefore, will start the recovery

behaviour.

Depicted below, in figure 5.9 is an example of what is explained above.

Figure 5.9: Figure where the local costmap is displayed. It is possible to see a portion of
the map in a gray scale and the outlines in a blue color represent the borders of the areas
where the UAV cannot go. Also in gray, in the middle of the figure, it is possible to see
the UAV.

The robot is crossing some burnt areas that are being identified by the local planner.

It is possible to see the UAV in a gray color, in the center of the figure and directly below

its is footprint.
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6
Experimental Results

This chapter is relative to the experimental results. Here, are presented the virtual

simulations or experiments that are able to demonstrate the behaviour of the autonomous

navigation system. This chapter is divided in two sections. The first section is dedicated to

explaining how to set up the demonstration and the second section gives the experimental

results.

6.1 Simulation Setup

In this section it is explained how to setup everything in order to obtain optimal results

from the virtual simulations. To set up everything in order to work, some requirements

are necessary. These are a computer with Linux Operative System, the framework ROS

with the respective package dependencies installed in order to allow the communication,

as well as the RViz software, the Robot Localization Package and the move_base package

to allow the autonomous navigation. Unreal Engine 4 with the AirSim simulator is also

necessary, along with the description of the UAV DJI M100.

As it is mentioned above, only one file is needed to launch all the packages respon-

sible for the autonomous navigation. However, before launching this file, it is required to

launch other nodes or systems to make sure everything is communicating.

First, the user must launch the simulator Unreal Engine 4, where they can choose a wide

range of worlds or environments for the UAV. In this case, the environment chosen was

the Blocks environment.
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After UE4 is launched and the simulation starts, in order for the communication

between different simulations to be established, it is required to launch the airsim node,

roslaunch airsim_ros_pkgs airsim_node.launch. This is followed by typing another four

commands to connect both UAVs and to be able to transfer data and information between

them.

These commands are rosrun armdrone.py, rosrun cov_gps.py, rosrun cov_imu.py and rosrun
airsim_sub.py. All of these files are scripts that will be running in the background and

will handle the data being sent between both UAVs.

With the first command, the user can lift off the UAV in the AirSim Simulator by clicking

on a key, inside the terminal window. The second and third commands are responsible

for providing the missing information relative to the GPS, the covariance and the IMU of

the UAV. With this information completed, both UAVs will be perfectly in-sync.

Finally, the last command that will run the last required script is to enable the velocity

commands on both UAVs. With this, it is possible to move the UAV in one software

and the other UAV (in the other software) will also acquire the same velocity commands,

therefore going to the same location and acquiring the same GPS position.

After all these scripts are launched the user can go ahead and launch the main file,

roslaunch quad_2dnav.launch, which will start the RViz software, the map, the node with

the planning and costmap algorithms, among others.

In this paragraph a more detailed explanation of this launch file is given.

In ROS, launch files are very common to use. These files provide the developer a conve-

nient way to start multiple nodes as well as, initialize other parameters and requirements

necessary for the software to work. In this file, the first three nodes that start when this

file is launched are the joint_state_publisher node, which publishes in the Transform Tree

the UAV’s links, the laser that is virtually created in order to detect obstacles on the path

and the static map is also started with the information regarding the cost cells.

The other nodes in the file are depicted as two groups. The nodes for the Navigation Stack

and all its files for the costmaps and planners are a group and the other group has the

nodes that publish and subscribe information relative to the Transform Tree in order to

keep it connected.
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6.2 Simulation Results

In this section the results of various simulations are presented. During these last

months of finishing the dissertation, many tests were done in order for the autonomous

navigation system to perform at 100%.

However, not all of them are presented below, in the table 6.1. The results that are

presented here, are the ones that better demonstrate how the system works. These tests

differ from each other. Gradually the difficulty of the runs is increased by choosing paths

that are difficult to perform and take longer for the UAV to finish.

As it is possible to see, the runs displayed in the table 6.1 vary from tests where the

initial position and the final position of the UAV are 200 meters apart to tests where these

positions are almost 4 kilometers apart. The longest test performed is relative to the run

nº8, where the UAV covered an almost circular area and traveled nearly 4 kilometers in

just 17 minutes and 15 seconds with an average speed of 3.7 meters per second or 13.3

kilometers per hour.

After the table, figures of some runs are included for a better understanding of the

system. This allows to better explain how the system works and reference some of its

flaws or where the system may have less success.

In the table 6.1 it is possible to see ten runs performed by the autonomous navigation

system. Each test or run is composed by the distance the UAV traveled, by the time it

took for the UAV to reach its final position and by the average speed at which the UAV

performed the run.

Run Distance (m) Time (mm:ss) Average Speed (m/s) Notes

1 222 00:49 4.5 Goal reached
2 287 01:18 3.6 Goal reached
3 219 00:59 3.7 Goal reached
4 957 04:39 3.4 Goal reached
5 159 00:44 3.6 Rec. mode
6 462 01:34 4.9 Goal reached
7 2121 11.18 3.1 Goal reached
8 3900 17:15 3.7 Goal reached
9 330 01:41 3.2 Goal reached

10 1200 05:39 3.5 Goal reached

Table 6.1: Table where are depicted different tests performed to the system. For each
test performed there is the distance covered in meters, the time it took for the UAV to
complete it and its average speed in meters per second. The last column refers to any
additional notes.
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In figures 6.1 to 6.5 it is possible to see represented by a green line, the path assigned

for the UAV, this line represents the global path chosen by the user.

The initial position is where the UAV is at the moment and at the end of the line it is the

goal or the final position of the UAV.

The line in blue represents the local path of the UAV. The algorithm is always taking

into consideration its distance to the green line, its speed and orientation as well as the

distance to potential obstacles it may find in the area. Knowing this, the local path is

calculated by the DWA algorithm, while the global path is calculated by navfn algorithm.

Represented by the pink color are the obstacles or the burnt areas the UAV cannot go

through and has to navigate around them. The global path is always calculated in order

to avoid these areas and travel along their border.

Around the UAV, in a square shaped form, there is a point cloud. This represents

the proximity the UAV is to the desired goal. In the middle and the area around the green

line are warmer colors, that lead to the goal and in the extremes of the square are colder

colors representing areas that are further away from the desired objective.

In figure 6.1 it is possible to see the path assigned for the UAV. In this test only a straight

line was set for the UAV to follow. It has a distance of approximately 200 meters and

it took the UAV 49 seconds to reach the desired position. In table 6.1 it is possible to

see the average speed of the UAV and in this run is one of the highest, being 4.5 meters

per second. The reason why this run is one with the highest average speeds is because

the path chosen is in a straight line and around are few areas where the UAV cannot go,

therefore the algorithm calculated the best route and since it was safe, it applied almost

the maximum speed for the UAV to achieve the goal in the fastest time.
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Figure 6.1: Figure where the run nº1 is displayed. It is possible to see the global path
represented by the green line and the local path represented by the blue line. The red
arrow is the desired final position for the UAV. In a black color it is possible to see the
restricted areas, areas which the UAV must avoid and in a pink color are the areas in
sensor range.

Another test performed that is a good example to explain how the algorithm works

is the run nº3. It is possible to see in figure 6.2, that this run is a little bit more complex,

as the algorithm has more to take into consideration.

First, when the user sets the goal, the algorithm in charge for the global path has to

calculate a safe route for the UAV to reach the desired destination avoiding the burnt

areas, or the areas in the pink color.

After this, the DWA algorithm in charge for the local path needs to take into consideration

the speed of the UAV, the distance it is to the areas as well as if it is on track or not (on top

of the green line). With this said, in this run the UAV traveled a distance of 219 meters in

59 seconds, with an average speed of 3.7 meters per second or 13.3 kilometers per hour.

Comparing to the run nº1 it is possible to see this path is far more complex. Al-

though the distance is almost the same, the results show that it took the UAV 10 more

seconds to reach the goal. The average speed on which the UAV did this path is also lower

as this path has more curves and obstacles for the algorithm to compute.

Once more, represented by the point cloud, it is possible to see that the warmer colors

like red indicate the path the UAV should follow to reach its desired position.

Nevertheless, the UAV performed this run successfully and without any problem.
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Figure 6.2: Figure where the run nº3 is displayed. It is possible to see the global path
represented by the green line and the local path represented by the blue line. The red
arrow is the desired final position for the UAV. In a black color it is possible to see the
restricted areas, areas which the UAV must avoid and in a pink color are the areas in
sensor range.

In the figure that follows, figure 6.3 it is possible to see another run performed by

the UAV with the help of the autonomous navigation system.

As the run represented in figure 6.2 this one has approximately the same difficulty level.

It has a lot of areas for the algorithm to process and the path created needs to be precise

in order for the UAV to avoid these areas and navigate around them or in its limits. This

test has a distance of 159 meters and took the UAV 44 seconds to reach its final position.

As it is possible to see, in the moment the image was taken the local path of the UAV is

about to collide with a restricted area. Right after the blue line (local path) crossed the

pink hit boxes a recovery behaviour was initiated.

The algorithm processed the space it had around and the UAV started going backward to

avoid the restricted area. This only happens when the path is too narrow and the velocity

samples are not enough for the algorithm to calculate more path possibilities. Knowing

this, the UAV ends up taking the path chosen and it only knows it isn’t a feasible path

when it has already hit the restricted area and the recovery behaviour has to act. After

this it went forward again, but this time was closer to the global path (the green line) and

ended up reaching the desired goal without any more problems.
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Figure 6.3: Figure where the run nº5 is displayed. It is possible to see the global path
represented by the green line and the local path represented by the blue line. The red
arrow is the desired final position for the UAV. In a black color it is possible to see the
restricted areas, areas which the UAV must avoid and in a pink color are the areas in
sensor range.

The next two tests were runs that were performed in order for the UAV to cover a

bigger area and therefore test the integrity of the autonomous navigation system. In the

next figure, figure 6.4, it is possible to see the path the UAV follows in order to reach the

desired goal. Some way points were set in order for the UAV to follow and go through the

designated path. As it is displayed in the table, in the run nº7, the UAV did more than 2

kilometers and took 11 minutes and 18 seconds to reach its final destination. The UAV

performed this test successfully and not once had to enter the recovery mode.

In figure 6.4 it is possible to see the UAV starts its path by going north and circles around

small areas and goes to the left. In the end of this test, the UAV performs two tight turns

around areas that are on fire and travels within both limits. In none of these turns did

the UAV get stuck and had to enter the recovery mode.
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Figure 6.4: Figure where the run nº7 is displayed. It is possible to see the global path
represented by the green line and. The red arrow is the initial position and the black
arrow, the final position. In a black color it is possible to see the restricted areas, areas
which the UAV must avoid and in a pink color are the areas in sensor range.

In the last test displayed, in figure 6.5 the UAV performed a path that is similar to

a circular path around an area. The UAV started in the red arrow and ended in the black

arrow. This path has almost 4 kilometers and it took the UAV 17 minutes and 15 seconds

with an average speed of 3.7 meters per second to perform it. A series of way points were

set in the map and the UAV traveled through these paths successfully. Some paths that

should be highlighted are the path around the burnt area on top of the figure and the

path in the area below where the drone started. In both of these areas the path is very

narrow and the drone had to travel within the limits of these areas without going on top

of them. Once again, there was no need for the recovery behaviour to enter in action and

the UAV performed this run flawlessly.

Figure 6.5: Figure where the run nº8 is displayed. It is possible to see the global path
represented by the green line. The red arrow is the initial position and the black arrow,
the final position. In a black color it is possible to see the restricted areas, areas which the
UAV must avoid and in a pink color are the areas in sensor range.
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7
Conclusion and Future Work

This chapter is divided into two sections. One is related to the conclusion of this disser-

tation, the results presented are taken into consideration and are discussed.

The other section is relative to future work. Possible future developments and the conti-

nuity of this work are discussed and what would be the next ideal steps in order to have

a real and functional autonomous navigation system.

7.1 Conclusion

In order for a better understanding of this dissertation, the conclusion’s section is di-

vided into two sub-sections, these being the Simulators section and the Autonomous

Navigation section. In the first sub-section within 7.1 a conclusion related to the simula-

tors used is given and in the second sub-section is provided a conclusion related to the

autonomous navigation system and its algorithms.

In the beginning of this dissertation, a work plan was created to better split the

different tasks and establish a certain time to do them. The tasks that were set in the

beginning were all performed except one. Unfortunately, it wasn’t possible to do the

field tests or the real life simulations on the autonomous navigation system. Real life

tests were scheduled with the Fire Department to start controlled fires in order to test the

algorithms of this dissertation, however, due to the pandemic, these tests were postponed

and it was not possible to test this system in real life.
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7.1.1 Simulators

Since the beginning of this dissertation, a lot of papers were read. When the part

for testing simulators began, a lot of uncertainty was presented. Although it wasn’t

new, the best choice would be to use the ROS framework and the RViz software, the

graphical simulator was still missing. Once more, a lot of research was done and the

AirSim simulator seemed to be and it still is the best choice in my perspective. It is very

stable when running in machines with low processing power units and if the user wants,

they can increase the graphics for a better image to improve the quality and for the user

to be in a more immersive environment. Another point that led to choose this simulator

was the opportunity to have more worlds or environments available. Besides this, the

simulator already has some integration done with the ROS environment and this meant

the work could be focused on developing the autonomous navigation system.

What followed was trying to set up a simulation where a fire would be included

or the user could set an input from a forest fire and then test the UAV in a controlled

environment or a virtual simulation to see and adjust its behaviour accordingly.

For this, the FlamMap was used. Here, the developer could create a map and being

dependent from the output chosen, could then test the behaviour of the autonomous

navigation system on the UAV in a controlled environment.

After having both simulators working and the map with the desired output included in

the simulation, real conditions were added to better simulate what it would be in real

life. Gravity, momentum and collisions were added to the AirSim simulator to better

demonstrate the conditions the UAV would be in.

7.1.2 Autonomous Navigation

After both simulators were working and connected with the correspondent topics, the

next step in this dissertation would be to include an autonomous navigation system for

the UAV. A lot of research related to the planners and its algorithms was done. However,

quickly became evident the best planners to use would be the NavfnROS planner for the

global path and the DWA planner for the local path planning. Knowing this, a flexible

system for the UAV to navigate through a difficult environment was presented.

As it is explained in chapter 5 this navigation system was done using the operating system

ROS and mainly the package move_base as a way to allow and modify the path planning

of the UAV.

After a lot of testing and changing parameters for the UAV’s autonomous system to

be at 100%, the main objective of this dissertation, to create an autonomous navigation

system for UAVs to prevent forest fires was accomplished.
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7.2. FUTURE WORK

A lot of runs were performed to test the integrity of this system and although

in chapter 6 only ten were presented, the results give a good example of the overall

performance of the system.

In the eight runs performed (run nº1 to nº6, nº9 and nº10) and the two tests that were

done with a lot of way points (run nº7 and nº8) in only one run (run nº5) did the system

needed to start the recovery mode for the UAV to adjust its position accordingly and

create a new path to the desired goal.

However, although the system entered in this mode, these results only show that the

autonomous navigation system is prepared for these kinds of adversities and it is able to

recover from them with success.

As it is said above, there was only one task missing, that unfortunately was not

possible to do, due to the pandemic. This was to do field tests and test these planners in

a real world environment with controlled fires set by the fire department.

7.2 Future Work

This section is dedicated to possible future work of this dissertation.

Initially, the main goal of this dissertation was to develop a three dimensional autonomous

navigation system for the UAV DJI Matrice 100, however after some simulations done

in the virtual world, doubts started to appear because the computational power unit on

both the computer used and on the UAV could not handle such system.

In order to avoid this, it was changed to a two dimensional system in order to be lighter

for both processor units and the user, would be the one to set an altitude for the UAV.

Having said this, an area where this dissertation can improve is by trying new simulations

with the three dimensional system in order for the UAV to move in a three axis world.

Related to the simulators, some things can also be improved. Despite being success-

ful in the environment used and the static map where the algorithm was running, one can

improve by adding more worlds and more simulated environments to test the algorithm

of the autonomous navigational system. On the AirSim simulator, the graphics can also

be improved in order to give a better experience for the user.

Concerning the navigational system, some improvements can also be done, as this sys-

tem was only perfected in virtual simulations. From the best path chosen for the goal

to the recovery behaviours imposed if the sensors detected an object some things can be

improved when the UAV goes to testing in the real world.

The way this system was designed was to be an iterative process that keeps on

improving with experience and the more environments the algorithm has, the better. The

system is already implemented, functioning and working however, if necessary it is just

some parameters that need to be adjusted in order for the system to better embrace new

worlds and environments.
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CHAPTER 7. CONCLUSION AND FUTURE WORK

The algorithm for this type of applications was the most suitable one however, there

are other algorithms that are able to enrich the overall system performance and the user

experience and this is a point that can also be improved in the future.
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