
Miguel Pino

Bachelor of Computer Science and Engineering

UAV Cloud Platform for
Precision Farming

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Informatics Engineering

Adviser: Luís Miguel Campos, R&D Director,
PDMFC

Co-adviser: João Costa Seco, Associate
Professor, Universidade Nova de Lisboa

Examination Committee

Chairperson: Carlos Augusto Isaac Piló Viegas Damásio
Raporteur: Paulo Orlando Reis Afonso Lopes
Members: Luís Miguel Campos

João Costa Seco

February, 2021

UAV Cloud Platform for Precision Farming

Copyright © Miguel Pino, Faculty of Sciences and Technology, NOVA University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Acknowledgements

Firstly, I would like to thank my advisers for providing me with the opportunity to

research and develop in the growing field of Unmanned Aerial Vehicles applications.

Without them, I couldn’t have the possibility to collaborate in a European project and use

my skills to make advancements in this technology.

Next, I want to thank my friends and colleagues that worked directly with me on this

project and that without their help, I am sure the outcome would be very different. I want

to show my gratitude to Guilherme Rolo, João Falé Madeira, and Ricardo Sacoto Martins,

for all the work they developed and for the constructive criticism they gave regarding

this dissertation. Furthermore, I would like to thank Dário Pedro and João Carvalho for

their guidance during the process, and for the opportunity to improve my thesis with the

publication of an article regarding this technology.

Last but not least, I need to thank my close family and friends for their advice and

patience while I worked and developed my thesis. I want to directly thank Adriana

Fonseca, Inês Serra, and Marta Gomes for always reminding me that I am capable and

good enough to be doing this work. Moreover, I want to show my appreciation for the

time you took to make sure everything was going as supposed, and every time you took

the time to make sure I was all right. Finally, I want to thank my parents. For not only

making sure I always knew which course to take, but also for never letting me feel I

wouldn’t be supported in every way, shape, or form regardless of the path I choose.

v

Abstract

A new application for Unmanned Aerial Vehicles comes to light daily to solve some

of modern society’s problems. One of the mentioned predicaments is the possibility for

optimization in agricultural processes. Due to this, a new area arose in the last years of the

twentieth century, and it is in constant progression called Precision Farming. Nowadays,

a division of this field growth is relative to Unmanned Aerial Vehicles applications.

Most traditional methods employed by farmers are ineffective and do not aid in the

progression and solution of these issues. However, there are some fields that have the

possibility to enhance many agriculture methods, such fields are Cyber-Physical Systems

and Cloud Computing. Given its capabilities like aerial surveillance and mapping, Cyber-

Physical Systems like Unmanned Aerial Vehicles are being used to monitor vast crops, to

gather insightful data that would take a lot more time if being collected by hand. However,

these systems typically lack computing power and storage capacity, meaning that much

of its gathered data cannot be stored and further analyzed locally. That is the obstacle that

Cloud Computing can solve. With the possibility to offload computing power by sending

the collected data to a cloud, it is possible to leverage the enormous computing power

and storage capabilities of remote data-centers to gather and analyze these datasets.

This dissertation proposes an architecture for this use case by leveraging the advan-

tages of Cloud Computing to aid the obstacles of Unmanned Aerial Vehicles. Moreover,

this dissertation is a collaboration with an on-going Horizon 2020 European project that

deals with precision farming and agriculture enhanced by Cyber-Physical Systems.

Keywords: Cyber-Physical Systems, Unmanned aerial vehicles, Cloud Computing, Preci-

sion Farming

vii

Resumo

A cada dia que passa, novas aplicações para Veículos aéreos não tripulados são inventadas,

de forma a resolver alguns dos problemas actuais da sociedade. Um desses problemas, é

a possibilidade de otimização em processos agrículas. Devido a isto, nos últimos anos do

século 20 nasceu uma nova área de investigação intitulada Agricultura de alta precisão.

Hoje em dia, uma secção desta área diz respeito à inovação nas aplicações com recurso a

Veículos aéreos não tripulados.

A maioria dos métodos tradicionais usados por agricultores são ineficientes e não

auxiliam nem a evolução nem a resolução destes problemas. Contudo, existem algumas

áreas científicas que permitem a evoluçao de algumos métodos agrículas, estas áreas são os

Sistemas Ciber-Físicos e a Computação na Nuvem. Dadas as suas capacidades tais como a

vigilância e mapeamento aéreo, certos Sistemas Ciber-Físicos como os Veículos aéreos não

tripulados estão a ser usados para monitorizar vastas culturas de forma a recolher dados

que levariam muito mais tempo caso fossem recolhidos manualmente. No entanto, estes

sistemas geralmente não detêm grandes capacidades de computação e armazenamento, o

que significa que muitos dos dados recolhidos não podem ser armazenados e analisados

localmente. É aí que a Computação na Nuvem é útil, com a possibilidade de enviar estes

dados para uma nuvem, é possível aproveitar o enorme poder de computação e os recursos

de armazenamento dos datacenters remotos para armazenar e analisar estes conjuntos de

dados.

Esta dissertação propõe uma arquitetura para este caso de uso ao fazer uso das vanta-

gens da Computação na Nuvem de forma a combater os obstáculos dos Veículos aéreos

não tripulados. Além disso, esta dissertação é também uma colaboração com um projecto

Europeu Horizonte 2020 na área da Agricultura de alta precisão com recurso a Veículos

aéreos não tripulados.

Palavras-chave: Sistemas Ciber-Físicos, Veículo aéreo não tripulado, Computação na

Nuvem, Agricultura de alta precisão

ix

Contents

List of Figures xiii

List of Tables xv

Glossary xvii

Acronyms xix

1 Introduction 1

1.1 Motivation and Context . 1

1.2 Objectives . 2

1.3 Solution Overview . 3

1.4 Document Structure . 3

2 Problem Analysis 5

2.1 Precision Farming . 5

2.1.1 Advantages of Precision Farming 6

2.1.2 Challenges of Precision Farming 6

2.2 AFarCloud Project . 7

2.2.1 Organization . 7

2.2.2 PDMFC Connection . 8

2.2.3 Impact on Precision Farming . 9

2.3 Requirements Elicitation . 9

2.3.1 Stakeholders . 10

2.3.2 Requirements . 11

2.3.3 Use Case Diagrams . 15

3 State of the art 19

3.1 Cloud Computing . 19

3.2 Cyber-Physical Systems . 21

3.2.1 Overview . 21

3.2.2 Applications for Cyber-Physical Systems 23

3.2.3 Challenges . 23

3.2.4 Unmanned Aerial Vehicles . 24

xi

CONTENTS

3.2.5 HEIFU . 27

3.3 Framework Concepts . 27

3.3.1 Robot Operating System . 28

3.3.2 Node.js . 29

3.3.3 InfluxDB . 31

3.4 Communication Protocols . 31

3.4.1 WebSocket . 31

3.5 Related Work . 31

3.5.1 FlytOS . 32

3.5.2 QGroundControl . 33

4 Approach 35

4.1 First Prototype . 35

4.2 Architecture . 39

4.3 Backend . 40

4.3.1 Server . 40

4.3.2 Database . 41

4.4 Middleware . 45

4.4.1 REST API Endpoints . 45

4.4.2 WebSockets . 46

4.5 Frontend . 47

4.5.1 User Interface . 48

5 Validation and Critical Review 53

5.1 Production Environment . 53

5.2 Case Studies . 54

5.2.1 Case Study 1 - 1 UAV (Simulation) with 4 Users 54

5.2.2 Case Study 2 - 4 UAVs (Simulation) with 4 Users 57

5.3 Round Trip Time (RTT) Test . 60

5.4 UAV video stream test . 61

6 Conclusion 63

6.1 Summary . 63

6.2 Contributions . 64

6.3 Future Work . 65

Bibliography 67

A Accepted Paper - UAV Cloud Platform for Precision Farming 73

I Prototype User Interfaces 81

xii

List of Figures

2.1 Use Case Diagram for Drone, Map, and Mission Functionalities 16

2.2 Use Case Diagram for Platform Management Functionalities 17

3.1 Cloud Architecture: Relation of architectural layers and business models . . 20

3.2 A Service-Oriented Architecture for CPS . 22

3.3 Multi-Rotor UAV . 25

3.4 Fixed-Wing UAV . 25

3.5 Single-Rotor UAV . 26

3.6 Fixed-Wing Hybrid VTOL UAV . 26

3.7 Hexa Exterior Intelligent Flying Unit (HEIFU) 27

3.8 Representation of ROS communication protocol 29

3.9 Node.js event loop diagram . 30

3.10 QGroundControl Interface . 33

4.1 Vehicles Page . 36

4.2 Vehicles Menu Expanded . 36

4.3 Missions Page . 36

4.4 Missions Menu Expanded . 36

4.5 Sensors Page . 37

4.6 Sensors Menu Expanded . 37

4.7 Sensors Menu Expanded Graph . 37

4.8 Reports Page . 38

4.9 Carbon Footprint Page . 38

4.10 Weather Page . 38

4.11 Platform Component Diagram . 39

4.12 Entity-Relation Diagram for the Relational Database 42

4.13 Sequence Diagram - WebSocket Data Transfer 47

4.14 UAV Real-time Monitor Interface . 48

4.15 Mission Builder Interface . 49

4.16 Map Indexes Interface . 50

4.17 2D Map Visualization Interface . 50

4.18 GUI for Mission Replay . 51

xiii

LIST OF FIGURES

5.1 Case Study 1 - Percentage of CPU usage . 55

5.2 Case Study 1 - Percentage of RAM usage . 56

5.3 Case Study 1 - Data Input in Megabytes . 56

5.4 Case Study 1 - Data Output in Megabytes . 57

5.5 Case Study 2 - Percentage of CPU usage . 58

5.6 Case Study 2 - Percentage of RAM usage . 58

5.7 Case Study 2 - Data Input in Megabytes . 59

5.8 Case Study 2 - Data Output in Megabytes . 59

I.1 First Prototype - Vehicles Page . 81

I.2 First Prototype - Vehicles Menu Expanded . 82

I.3 First Prototype - Missions Page . 82

I.4 First Prototype - Missions Menu Expanded . 83

I.5 First Prototype - Sensors Page . 83

I.6 First Prototype - Sensors Menu Expanded . 84

I.7 First Prototype - Sensors Menu Expanded Graph 84

I.8 First Prototype - Reports Page . 85

I.9 First Prototype - Carbon Footprint Page . 85

I.10 First Prototype - Weather Page . 86

I.11 3D Map Visualization Interface . 86

xiv

List of Tables

2.1 Drone Functionalities . 12

2.2 Missions Functionalities . 12

2.3 Maps Functionalities . 12

2.4 Platform Functionalities . 13

2.5 Usability Requirements . 14

2.6 Reliability Requirements . 14

2.7 Performance Requirements . 15

2.8 Supportability Requirements . 15

3.1 UAV types summary . 26

3.2 UAV types comparison . 27

3.3 Similar platforms comparison . 32

5.1 Production Server Specifications . 54

xv

Glossary

Back end Commonly referred as the data access layer of a piece of software in

web development. It handles the connections of the application to a

database or middleware.

Bitrate Corresponds to the number of bits that are conveyed or processed per

unit of time in telecommunications and computing.

CIR Color-infrared (CIR) aerial photography renders the scene in colors not

normally seen by the human eye, is widely used for interpretation of

natural resources.

Cloud Robotics Field of robotics that attempts to invoke cloud technologies such as

cloud computing, cloud storage, and other Internet technologies cen-

tered on the benefits of converged infrastructure and shared services

for robotics.

Front end Commonly referred as the presentation layer of a piece of software in

web development. Can be comprised of many user interfaces and can

be implemented in multiple frameworks.

Gazebo Is an open-source 3D robotics simulator. Gazebo offers the ability to

accurately and efficiently simulate populations of robots in complex

indoor and outdoor environments.

Heatmap Graphical representation of data where the individual values contained

in a matrix are represented as colors.

IMU An inertial measurement unit (IMU) is an electronic device that mea-

sures and reports a body’s specific force, angular rate, and sometimes

the orientation of the body, using a combination of accelerometers, gy-

roscopes, and sometimes magnetometers.

xvii

GLOSSARY

Middleware Is computer software that provides services to software applications

beyond those available from the operating system.

NDRE The Normalized Difference Red Edge Index (NDRE) is a metric that can

be used to analyse whether images obtained from multi-spectral image

sensors contain healthy vegetation or not.

NDWI The Normalized Difference Water Index (NDWI) is used to monitor

changes related to water content in water bodies. As water bodies

strongly absorb light in visible to infrared electromagnetic spectrum,

NDWI uses green and near infrared bands to highlight water bodies.

RGB The RGB color model is an additive color model in which red, green,

and blue light are added together in various ways to reproduce a broad

array of colors.

TCP Transmission Control Protocol (TCP) is one of the main protocols of the

Internet protocol suite, that allows two computers to communicate.

Three-tier architecture Three-tier architecture is a well-established software application ar-

chitecture that organizes applications into three logical and physical

computing tiers: the presentation tier, or user interface; the applica-

tion tier, where data is processed; and the data tier, where the data

associated with the application is stored and managed.

YAML Is commonly used for configuration files and in applications where data

is being stored or transmitted.

xviii

Acronyms

API Application Programming Interface.

CPS Cyber-Physical Systems.

CSV Comma-separated Values.

DSS Decision Support System.

GPS Global Positioning System.

GUI Graphical User Interface.

HEIFU Hexa Exterior Intelligent Flying Unit.

HTTP Hyper Text Transfer Protocol.

HTTPS Hyper Text Transfer Protocol Secure.

IoT Internet-of-Things.

JSON JavaScript Object Notation.

NDVI Normalized Difference Vegetation Index.

ODM OpenDroneMaps.

OOP Object Oriented Programming.

REST Representational State Transfer.

ROA Resource-Oriented Architecture.

ROS Robot Operating System.

RTT Round Trip Time.

SOA Service-Oriented Architecture.

xix

ACRONYMS

SOAP Simple Object Access Protocol.

TSDB Time-series Database.

UAS Unmanned Aircraft Systems.

UAV Unmanned Aerial Vehicle.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

VTOL Vertical Take-off and Landing.

WSN Wireless Sensor Network.

WSS WebSocket Secure.

XML Extensible Markup Language.

YOLO You Only Look Once.

xx

C
h
a
p
t
e
r

1
Introduction

1.1 Motivation and Context

The usage of Unmanned Aerial Vehicle (UAV) has become increasingly widespread over

the years, and the potential applications that are already in development are endless [1].

We can find by researching this field various applications that go from habitat mapping [2]

to monitor above-ground biomass (AGB) [3], all the way to identify erosion and deposition

in an agricultural landscape [4]. All these applications are possible due to the high-

mobility nature and ease of development characteristic of the UAV [5]. Not only has the

UAV gained popularity over the overall consumer, but it also has entered many industries,

being a high demand solution for certain professional situations. However, there are still

some obstacles we need to overcome regarding the capabilities of these UAVs.

In the first place, the low computational power of the on-board computers present

in UAVs limits the computation of complex algorithms. A solution to this problem is

to offload the computational power by connecting a UAV to the internet. By having a

cloud infrastructure capable of communication with the UAV, we can send relevant data

from the UAV sensors to the cloud application and run the algorithms there. The second

obstacle is the low storage capacity of the UAV due to its small size. One could employ the

same cloud solution for this problem since it is also possible to offload storage capacity.

If we integrate a UAV in a cloud platform designed for this purpose, we could meet these

two requirements [6].

It was due to these obstacles that the possibility to integrate UAV with the field of pre-

cision farming appeared, and that led to implementation of the AFarCloud project. The

lack of productivity in agricultural processes led farmers to adopt a new kind of paradigm

called precision farming, where high-tech solutions can automate many traditional work

procedures. These solutions can be the use of a Wireless Sensor Network (WSN) with

1

CHAPTER 1. INTRODUCTION

the capability to get real-time values of sensors positioned across crop fields or even the

implementation of fully automatic devices that can perform jobs such as, seeding, har-

vesting, sorting, packaging and livestock management [7]. However, a holistic system

that could gather sensor information from a WSN and feed it to a Decision Support Sys-

tem (DSS) is still missing. Moreover, this system could also provide inputs for automatic

devices based on gathered information instead of being manually fed by users. The main

focus of the AFarCloud project is to propose a holistic system oriented to precision farm-

ing. With improvements in agricultural Cyber-Physical Systems, and the application of a

network of sensors and cameras connected through the Internet-of-Things to “ (...) provide
a distributed platform for autonomous farming that will allow the integration and cooperation
of agriculture Cyber Physical Systems in real-time to increase efficiency, productivity, animal
health, food quality and reduce farm labor costs.“ [7].

In that context, this dissertation proposes a platform capable of interconnecting Cyber-

Physical Systems (CPS), in this case, multiple UAVs, and WSNs through the internet with

the ability to develop custom solutions over it. This document will present the core

functionalities of the platform and some additional custom features.

1.2 Objectives

The purpose of this dissertation is the development of a platform that connects multiple

UAVs to a web platform. The objectives are part of the European project AFarCloud,

namely:

1. Registration and configuration of UAV in the platform by assigning a type, token,

and organization, plus the management tools such as token revocation, peripherals

administration, and sensor calibration;

2. In-flight real-time monitoring with GPS coordinates, velocity, IMU, battery, flight

mode, and video stream;

3. Automated mission planning tool for a single UAV and for multiple UAV;

4. Gathering of all flight data in a time-series database for big data queries;

5. Possibility to replay a flight mission information, gps coordinates, velocities, and

video stream if present, through the platform.

Another goal for this project is the need to create an easily extended platform. Given

the nature of the AFarCloud project, we developed a feature regarding a field of precision

farming, dedicated to the creation, processing, and analysis of multispectral maps. These

maps resulted from the upload of aerial pictures collected from UAVs during a flight

mission. After the upload, these images must be processed and stitched together to create

different indexes that would then overlap over a satellite map.

2

1.3. SOLUTION OVERVIEW

1.3 Solution Overview

The proposed solution is a cloud platform deployed in a private environment that will

connect end-users to a UAV. This platform gives the possibility of offloading most of

the intensive computing tasks that may be needed to run by the UAV to accomplish a

user-specified task. Furthermore, it leverages the enormous data storage capacity of cloud

computing data centers by sending most of the data sensed from devices present on the

UAV to the cloud.

This system is based on the typical Three-tier architecture where there will be a

presentation tier (user interface or Front end), a logic tier (Back end), and a data tier

(database) [8]. Furthermore, a middleware layer is also present. This layer will be respon-

sible for the connection to a WebSocket gateway that collects and broadcasts the data

from the UAV as close to real-time as possible. Moreover, a media gateway will also be

a part of the middleware layer, making possible for a low latency transmission of video

streams.

1.4 Document Structure

This dissertation is organized in the following way:

• Chapter 1: Introduction - Summarizes the motivation and context of this disserta-

tion and presents a small overview of the proposed solution.

• Chapter 2: Problem Analysis - Defines the domain of the problem and its relation

to PDMFC and AFarCloud. There is also documented the software development

process by describing the stakeholders and their needs, plus summarizing all this

information in multiple diagrams.

• Chapter 3: State of the art - Summarizes the research done regarding the state-of-

the-art for the technologies used. Furthermore, it also specifies the related work

found regarding the work described in this dissertation.

• Chapter 4: Approach - Elaborates on the solution overview by presenting the archi-

tecture of the project in detail.

• Chapter 5: Validation and Critical Review - Presents multiple case studies per-

formed in conjunction with the team of PDMFC. Subsequently, the data regarding

these tests was analyzed and discussed in this chapter.

• Chapter 6: Conclusion - Enumerates the conclusions drawn from this dissertation

and presents the future work.

3

C
h
a
p
t
e
r

2
Problem Analysis

This second chapter describes the problem, first by answer the question of what Precision

Farming is, then by presenting not only its advantages but also its challenges. After this,

there is an introduction to the AFarCloud project. Moreover, the connection between

PDMFC and AFarCloud is described. Then, the impacts that this European project plans

to have on the Precision Farming field are presented. The last section of this chapter

corresponds to the requirements elicitation for the platform. This section includes a study

regarding the stakeholders and the platform’s requirements derived from the analysis of

the mentioned study.

2.1 Precision Farming

Precision farming or precision agriculture is the introduction of information technology

(IT) solutions to agricultural processes [9]. This introduction led to the creation of farming

management systems that leverage data to make insightful and environment-conscious

decisions.

The traditional method of agriculture is an open feedback loop in the sense that its

outputs aren’t automatically used to impact the input. For over many years, farmers have

used the results of a former successful harvest to optimize parameters on future crops.

Agriculture engineers used this loop process only qualitatively, which lead many times

to imprecise feedback. Unfortunately, there were some external factors that were also

unpredictable, like the weather and pest infestations. The goal of precision farming is to

define a Decision Support System (DSS) for a whole farm [10]. A DSS is an information

system that requires data as input to generate decision-making activities. Sensors all

around the farm gather data from their environment and feed it to the DSS. The type of

data may vary from soil humidity to air quality and temperature. Then with the help of

5

CHAPTER 2. PROBLEM ANALYSIS

some already developed and tested algorithms, the DSS provides the user with guidelines.

These guidelines, with the corresponding GPS coordinates, will ensure the maximum

growth for the crops, given that we have confidence in the algorithms chosen for the DSS.

Another field that helped in the improvement of precision farming is the use of UAV

for capturing multispectral and RGB images [11]. These images can then be stitched

together by using image processing algorithms that result in the creation of map projec-

tions. These maps retain per each pixel more information than the values for red, green,

and blue. They can register the value of near-infrared and red-edge spectrum values,

that some algorithms can use to process and produce a Normalized Difference Vegetation

Index (NDVI). A knowledgeable professional can use the data provided by this index to

measure and evaluate the health of the crops and the needs for water or fertilizer inputs.

2.1.1 Advantages of Precision Farming

There are two main benefits of precision farming, the first is related to, the maximization

of profits, and the second minimizing the impact on the environment:

By utilizing these insightful decisions, a farmer can optimize the amount of water,

fertilizer, chemicals, and more. By maximizing these factors, a farmer will start to notice

the improvement of his crop performance [12, 13]. Furthermore, the knowledge of the

correct amounts of these substances will also minimize its wasteful use, translating in

fewer costs for the farmer. There is also possible to use these indexes to identify pests in

a more timely manner. By gathering information from multiple indexes and combining

this information, it is possible to study and analyze which combination is best suited to

identify pests. As of now, a colleague is using this platform to generate different indexes

(RGB, NDVI, NDRE, CIR, NDWI) from aerial photographs [14]. The DSS then notifies

the farmer that a crop in a given location is suffering from a disease, giving the farmer

more time to take action.

The right timing and quantity of water and chemicals used on crops reduce their

impact on the whole environment. First, regarding the less consumption of water, thus

minimizing the unnecessary waste of water. Second, by using the bare minimum amount

of fertilizers and pesticides to ensure the optimal growth of the crops while also preserv-

ing the environment.

2.1.2 Challenges of Precision Farming

Dobermann [15] exposed one of these challenges by writing, "Researchers and farmers can

easily collect huge amounts of information: but assessing the quality of this information,

transforming it into meaningful management decisions, and evaluating potential benefits

and risks has proven to be a difficult task". This means that it is still hard to extract

knowledge from these systems regardless of the amount of collected data if there isn’t a

competent entity capable of deducing such conclusions. In order to reach such results,

6

2.2. AFARCLOUD PROJECT

there is a need for insights from agriculture engineers, crop scientists, and more, to make

sense of the gathered data.

Another challenge that precision farming faces even nowadays is the low rate of adop-

tion. Although the adoption’s rate of seed genetics and precision steering has exceeded

50% due to its viability, the same doesn’t apply to precision farming [16]. This low adop-

tion rate is due to the initial requirement of a significant investment of capital and time,

although this adoption could result in cost savings through more precise management of

inputs [17]. These investments encompass not only the installation and acquisition of new

equipment but also the time needed to learn how to use these technologies accordingly.

This overhead expense is what makes the difference between Precision Farming and the

seed genetics example. Although seed genetics is also expensive to develop, the adoption

process is simple in comparison with Precision Farming. Due to the overhead expense

and complexity of the adoption process of Precision Farming, many farmers may choose

not to implement it even though it can bring insights to minimize costs and therefore

increase the profit of a harvest.

2.2 AFarCloud Project

Aggregate Farming in the Cloud (AFarCloud) is an European project that aims to provide

a distributed platform for autonomous farming that will integrate with CPS in real-time

to increase efficiency, productivity, and reduce labor costs. This project also aims to

make farming robots accessible to more users by enabling farming vehicles to work in

a cooperative mesh. "This project is co-funded by the ECSEL Joint Undertaking and by

national programmes and funding authorities" 1. Some concrete services that will be

provided to the users are:

• Enable reliable, high-performance, real-time and secure data exchange for CPS.

• UAVs for accurate plant health analysis and process high-quality maps during every

stage of crop growth.

• Resource Optimization, through the use of Wireless Sensor Network (WSN) and

real-time monitoring of the principal parameters in crop and livestock activities, in

order to minimize unintended impacts on wildlife and the environment in many

agricultural production systems.

2.2.1 Organization

The AFarCloud project divided the planned work into eight distinct Work Packages(WP),

each with its independent purpose. These WP’s are as follows:

1http://www.afarcloud.eu/

7

CHAPTER 2. PROBLEM ANALYSIS

• WP1. Project Management’s first objective is to monitor all project activities and

ensure that all parties follow the project plan and the quality plan established. This

WP is also responsible for tracking the progress of the overall project and make sure

that tasks regarding more than one WP are well coordinated.

• WP2. System Requirements, Architecture Specification, and Implementation

are responsible for user and system requirements for the AFarCloud platform. Aside

from this, WP2 is also responsible for implementing the Semantic Middleware that

will encompass a secure communication system for the platform.

• WP3. Intelligent Coordination and Decision-support Solutions for Autonomous

Operations aims at the design and implementation of a mission management tool

that will be able to orchestrate (semi)-autonomous missions in the domain of pre-

cision agriculture. Moreover, this WP is also responsible for the development of a

graphical user interface that will allow human-robot but also human-system inter-

action.

• WP4. Environment Characterization Platform’s main task is the orchestration of

multiple data input streams provided by not only the deployed distributed sensors

but also by cloud and big data analytics systems.

• WP5. Sensor and Actuator Development aims at the design and implementation

of the necessary sensors to monitor, sample, and actuate over multiple plants and

animals.

• WP6. Autonomous System Development and Legacy System Integration focus on

the development of autonomous systems such as Unmanned Aerial Vehicle (UAV)

and Unmanned Ground Vehicles (UGVs). Furthermore, integration technologies

regarding these solutions are also to be made by partners under this WP.

• WP7. Demonstrators Definition, Integration, Verification, and Validation are re-

sponsible for the development and configuration of the overall infrastructure for

the demonstrations and validation of the AFarCloud objectives.

• WP8. Innovation and Business Management, Dissemination, Exploitation, and

Standardization’s focus is the dissemination of news and articles related to the

project, being State-of-the-Art articles, or the publication of results from AFarCloud

demonstrations.

2.2.2 PDMFC Connection

Projeto Desenvolvimento Manutenção Formação e Consultoria (PDMFC), Lda is an IT

company founded in 1993, that participates in national and European projects such as

Portugal 2020 and Horizonte 2020. These projects typically fall in areas such as informa-

tion governance, security, cognitive, cloud, digital transformation, among others. Aside

8

2.3. REQUIREMENTS ELICITATION

from this, PDMFC is part of PDM Group covering areas such as IT, Telecommunications,

Gaming, Marketing, Electronics, Finance Investments, and Social Economy.

PDMFC is one of the 56 partners that make up the AFarCloud consortium and one of

the five Portuguese parties involved. PDMFC is present in many Work Packages, but the

ones that are related to this dissertation are WP3 (Intelligent Coordination and Decision-

support Solutions for Autonomous Operations) and WP4 (Environment Characterization

Platform). For the first one, WP3, the developed work was regarding a user interface

that facilitates the interaction between human-robot. It was mainly for this finality

that the Beyond Skyline platform was co-developed by 3 Portuguese partners PDMFC,

APPS4MOBILITY, AND BEYOND VISION. The main focus of this dissertation is the

design, development, and validation of the mentioned platform. Regarding WP4, the

work developed was a mobile user interface for accessing different input data streams

such as sensors data, cow’s collars data, UAVs data, UGV’s data, and weather data.

2.2.3 Impact on Precision Farming

As mentioned before, precision farming has many benefits, such as reduction of costs

and human burden, optimization of the amount of water and chemicals used, among

others. However, there are some challenges to overcome, like the lack of knowledge that

professionals can derive from all the collected data, but also the limitation of time in

manual work. Because of this, there is not enough time to analyze all the data, and most

of it gets discarded. Aside from all the benefits that the solution from AFarCloud will

bring, by being a product for Precision Farming, it also tries to mitigate this challenge

with the introduction of a Decision Support System (DSS). One of the specified Work

Package’s focus is on the design and development of a DSS that will feed on data from

input streams and also data from past decisions and missions to help support the user’s

next decision. The objective is to reach a point when the DSS has enough experience

and data to predict what would be the best decision to make next, and suggest it to the

user. In the first phase, the user will always have to make some manual operation so

the system can perform the specified next action. In the second phase, the system will

be autonomous enough to come up with the next move and to carry it out without any

human supervision.

2.3 Requirements Elicitation

This section introduces the stakeholders identified for the AFarCloud project and which

are their struggles and needs. With this information, the AFarCloud was capable of

defining the functional and non-functional requirements for the platform. With this

specification of various system functions, we were able to create Use Cases for each

stakeholder, which summarizes the possible actions each user could make on the system.

9

CHAPTER 2. PROBLEM ANALYSIS

Subsequently, to further define each step that the system needs to perform to reach an

objective, the author produced some Activity Diagrams.

2.3.1 Stakeholders

The following stakeholders are entities that will personally use the platform or have a

direct interest in the outcome of the former. The identification and interviews of these

entities were all conducted before the development of this dissertation. The following

bullet list presents a summary of each stakeholder, what are their work needs and respon-

sibilities, and what they need to achieve with the platform.

• Farm Owner: Is the owner of agricultural land and is responsible for the production

decisions to maximize its profits. It needs to be capable of taking insight from past

collected data to make these decisions and be able to have an overall view of the

farm at all times. Regarding the platform, the Farm Owner will have an Admin

role, meaning he can see every information and take any action.

• Farm Operations Manager: Normally, when a production farm is sizable, and the

Farm Owner can’t manage all its workers, it needs a Farm Operations Manager. This

entity is most common to know all the technical aspects of all agricultural processes

on-going on the farm, leaving only the financial and economic responsibilities to

the Farm Owner. Regarding the platform, he has the Operations Manager role that

has all the permissions of the admin except actions concerning organizations.

• Farm Worker: Is typically a worker on a farm and will use the platform to submit

some of its work. For example, a worker responsible for a drone mission will need

to download the mission from the platform, set up the drone, perform the mission,

and finally report the results. Another example is that a worker might need to

check the sensors of a given area to use the data to make decisions. Regarding the

platform, the Farm Worker as the lowest level of permissions and has the User role.

• Farm Administrative: Is equivalent to the Farm Worker with the added responsi-

bility of a set of bureaucratic tasks. Regarding the platform, this user has a specific

role and can manage several users. The Administrative must perform most of these

tasks through the platform.

• Drone Services Providers: A farm can own a fleet of drones, or it can rent third-

party drones from a Drone Services Provider. Regarding the platform, the Drone

Services Provider is an external user that is capable of renting drones to several

farms in a service manner.

• Platform Managers: This is the one responsible for maintaining the proper func-

tioning and correctness of the whole platform. It will manage the different orga-

nizations present on the platform and the respective admin users. Regarding the

platform, the Platform Managers will have the Platform Administrator role.

10

2.3. REQUIREMENTS ELICITATION

2.3.2 Requirements

This section will present the requirements that the AFarCloud partner produced during

the interviews with the stakeholders. Moreover, this list of requirements was extended

with more functionalities that were discussed with PDMFC. All the requirements will

be numbered to simplify their connection with the work developed, further detailed in

next chapters. Functional requirements will have the prefix (FR) and the Non-Functional

Requirements will have the prefix (NFR).

2.3.2.1 Functional

From the interviews with the stakeholders, it was possible to extract some functional

requirements that we can translate into platform functionalities. These requirements

were grouped into four sections, each pertaining to a different topic:

• Functional requirements connected to UAVs are detailed as Drone Functionalities

int Table 2.1.

• The requirements regarding the creation and management of missions on the plat-

form are described as Mission Functionalities and are defined in Table 2.2.

• The Maps Functionalities encompasses all the possible actions a user can make

over each map and are enumerated in Table 2.3.

• Lastly, all the functional requirements concerning the managing and administrating

of the platform are under Platform Functionalities. These pertains all the func-

tionalities regarding users, permissions, roles, and organizations management, and

are represented on Table 2.4.

All tables follow the same structure, giving the ID and name of each functional re-

quirement, and a small description of a user should achieve with each functionality.

11

CHAPTER 2. PROBLEM ANALYSIS

ID Name Description

FR 1 Create Drone The administrative must be able to add a new drone to the
platform

FR 2 Edit Drone The administrative must be able to edit drone’s details
FR 3 Delete Drone The administrative must be able to remove a drone from the

platform
FR 4 View Drone The worker must be able to view the drone’s details
FR 5 List Drones The worker must be able to list existing drone that he has

access to
FR 6 Provide Drone The drone provider must be able to add a drone to an organ-

isation
FR 7 Withdraw Drone The drone provider must be able to withdraw a provided

drone

Table 2.1: Drone Functionalities

ID Name Description

FR 8 Create Mission The administrative must be able to create a new mission
FR 9 Edit Mission The administrative must be able to edit a mission’s details
FR 10 Delete Mission The operations manager must be able to delete a mission
FR 11 View Mission The worker must be able to view the mission’s details
FR 12 Execute Mission The worker must be able to execute a previously created

mission
FR 13 Monitor Mission The worker must be able to monitor an on-going mission
FR 14 List Missions The worker must be able to see the list of created missions
FR 15 Mission Analysis The operations manager must be able to analyse data from

previous executed missions

Table 2.2: Missions Functionalities

ID Name Description

FR 16 Create Map The administrative must be able to create a new map
FR 17 Edit Map The administrative must be able to edit a map’s details
FR 18 Delete Map The operations manager must be able to delete a map
FR 19 View Map The worker must be able to view the map’s details
FR 20 List Maps The worker must be able to see the list of processed maps
FR 21 Map Analysis The operations manager must be able to analyse data from

processed maps

Table 2.3: Maps Functionalities

12

2.3. REQUIREMENTS ELICITATION

ID Name Description

FR 22 Create User The operations manager must be able to create a new
user

FR 23 Edit User The operations manager must be able to edit a user’s
details

FR 24 Delete User The operations manager must be able to delete a user
FR 25 View User The operations manager must be able to view the user’s

details
FR 26 List Users The operations manager must be able to see the list of

all user’s for his organization

FR 27 Create Role The administrative must be able to create a new map
FR 28 Edit Role The administrative must be able to edit a role’s details
FR 29 Delete Role The administrative must be able to delete a role
FR 30 View Role The administrative must be able to delete a role
FR 31 List Roles The administrative must be able to list all roles

FR 32 Create Permission The operations manager must be able to create a new
permission

FR 33 Edit Permission The operations manager must be able to edit a permis-
sion’s details

FR 34 Delete Permission The operations manager must be able to delete a per-
mission

FR 35 View Permission The operations manager must be able to view the per-
mission’s details

FR 36 List Permissions The operations manager must be able to list all permis-
sions

FR 37 Create Organization The platform administrator must be able to create a
new organization

FR 38 Edit Organization The platform administrator must be able to edit a orga-
nization’s details

FR 39 Delete Organization The platform administrator must be able to delete a
organization

FR 40 View Organization The platform administrator must be able to view the
organization’s details

FR 41 List Organizations The platform administrator must be able to list all or-
ganizations

Table 2.4: Platform Functionalities

2.3.2.2 Non-Functional

In contrast to functional requirements that concern specific functions on the system, non-

functional requirements specifies factors that should be part of the system. Typically

these requirements are detailed in the system architecture design. For the architecture

design of this platform, we arranged the non-functional requirements in four different

categories: Usability, Reliability, Performance, and Supportability.

13

CHAPTER 2. PROBLEM ANALYSIS

Usability concerns the ability of a system to provide an effective and efficient environ-

ment for its users to perform their tasks. These concerns might be physical, technical, or

even legal since some processes might have specific regulations that the platform should

have in consideration. From the interviews with the stakeholders, these are the usability

requirements for the platform.

ID Name Description

NFR 1 Online The platform must provide its services online
NFR 2 Notifications and real-time The users must be able to use the services in

real-time and get real-time notifications of up-
dates

NFR 3 User Friendly The interface for the platform must be user
friendly

NFR 4 Simple and Easy-to-Use The interface must be user driven to simplified
its use

NFR 5 Easy in-platform navigation All users must be able to effortlessly navigate
the platform

NFR 6 Legal rights protection The Platform must protect legally its users
rights

Table 2.5: Usability Requirements

To ensure safety and function without failure, we also make sure to introduce some

reliability requirements. Reliability not only gives respect to the security of the platform

concerning topics like data encryption (NFR 7) and security protocols (NFR 8), but it also

encompasses the reliability (NFR 11) and the ability of the platform, given some condi-

tions, to keep functioning for some time. Table 2.6 presents the reliability requirements.

ID Name Description

NFR 7 Encryption Mechanisms The platform must provide encryption mecha-
nisms

NFR 8 Security Protocols The platform must have data transmission secu-
rity protocols

NFR 9 Security Password The users must use a password to gain access to
the platform

NFR 10 Quality The platform must ensure quality of service
NFR 11 Reliability All services provided by the platform must be re-

liable
NFR 12 Interoperability The platform must be interoperable

Table 2.6: Reliability Requirements

Performance requirements for the platform are to ensure performance, low response

time (NFR 14), high processing power (NFR 15), large storage capacity (NFR 18), among

others. Given the nature of this platform and the real-time connection with UAVs, there

was more emphasis on this point. Particularly on the subject of processing power and

14

2.3. REQUIREMENTS ELICITATION

storage capacity. UAVs produce a variety of data every second that they on, and most of

that data is useful for the user to monitor. Aside from this, to be able to analyze prior

flights and extrapolate the reasons why they went well or not, there is a need to store

a large amount of data for each flight. Another point that stakeholders mentioned in

interviews were the need for the platform to be steadily available (NFR 16). Especially

the insurance that the platform will always be available when a given UAV has taken

flight.

ID Name Description

NFR 13 Efficency The platform must be efficient
NFR 14 Low Response Time The platform must have low response time
NFR 15 High Processing Power The platform must provide enough processing

power so the services can be used smoothly
NFR 16 Availability The platform must be constantly available
NFR 17 Functionality The platform must always provide a fully func-

tional session for a user
NFR 18 Large Storage Space The platform must have sufficient storage space for

storing information and data

Table 2.7: Performance Requirements

Regarding supportability, stakeholders were more concerned with the importance of

maintenance of the platform (NFR 19). Moreover, they were preoccupied with upgrad-

ability (NFR 20) and the insurance that future updates, like the addition of features,

would not cause the platform to mal-function. There was also great concern regarding

the fault tolerance (NFR 22) and the ability of the platform to maintain proper function

even when there is some type of error.

ID Name Description

NFR 19 Maintenance The platform must be regularly maintained
NFR 20 Upgradability The platform must keep functioning with future updates
NFR 21 Adaptability The platform must be able to adapt to new user require-

ments
NFR 22 Fault Tolerance The platform must be design to handle crashes

Table 2.8: Supportability Requirements

2.3.3 Use Case Diagrams

This section presents two use case diagrams, one for the Drone, Map, and Mission func-

tionalities (Fig. 2.1), and other for the Platform functionalities (Fig. 2.2). All the func-

tionalities presented in these use cases correspond to at least one functional requirement.

These use cases demonstrate the interactions between the different roles and the system

in a summarized and visual way.

15

CHAPTER 2. PROBLEM ANALYSIS

Administrative

Worker

Platform
Manager

Operations
Manager

Drone
Provider

Owner

Create Drone

Edit Drone

View Drone

List Drones

Provide Drone

Withdraw
Drone

View Mission

List Missions

<<include>>

<<include>>
Execute
Mission

Monitor
Mission

Delete Mission

Mission
Analysis

Create Map

Edit Map

Delete Drone

Create Mission

Edit Mission

Delete Map

List Maps

View Map

Map Analysis

Figure 2.1: Use Case Diagram for Drone, Map, and Mission Functionalities

16

2.3. REQUIREMENTS ELICITATION

Administrative

Worker

Platform
Manager

Operations
Manager

Drone
Provider

Owner

Create User

Edit User

Delete User

View User

List Users

<<include>>

Create Role

Edit Role

Delete Role

View Role

List Roles

View
Permission

List
Permissions

Create
Permission

Edit
Permission

Delete
Permission

<<include>>

Create
Organization

Edit
Organization

Delete
Organization

View
Organization

List
Organizations

Figure 2.2: Use Case Diagram for Platform Management Functionalities

17

C
h
a
p
t
e
r

3
State of the art

The third chapter presents the state-of-the-art of relevant technologies regarding the

development of the platform. First, there is given an introduction to what is Cloud

Computing, how it is organized in layers, and the different types of clouds that exist. Next,

there is explained what composes a Cyber-Physical System, some of the modern ways to

use it, what are its inherent challenges, and finally, what is an Unmanned Aerial Vehicle.

After this, some relevant Framework Concepts are explained, such as the Robot Operating

System, Node.js, and InfluxDB. Together there is also described one communication

protocol called WebSocket. Finally, there is presented the research regarding the related

work.

3.1 Cloud Computing

NIST1 defined Cloud Computing in 2011 as “(...) a model for enabling ubiquitous, conve-

nient, on-demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services)” [18].We can think of Cloud

Computing as the provisioning of both the applications (service) hosted on the infrastruc-

ture on a data center but also the infrastructure itself, where there is the possibility to use

computer resources in a pay-as-you-go subscription model [19]. According to multiple

studies we can separate Cloud Computing in four architectural layers, Hardware/Data

center, Infrastructure, Platforms, and Applications [20, 21, 22].

The hardware layer: This corresponds to the lowest level layer, where there is the pos-

sibility to manage the physical resources of the cloud, such as servers, routers, switches,

among others. These are physically implemented on data centers where servers are orga-

nized in racks.

1National Institute of Standards and Technology

19

CHAPTER 3. STATE OF THE ART

Applications

Hardware

Infrastructure

Platforms
Platform as a Service (PaaS)

Software as a Service (SaaS)

Infrastructure as a Service
(IaaS)

CPU, Memory (RAM), Storage Disks (SSD/HDD)

Virtual Machines, Load Balancers,
Virtual Local Areas Networks (VLANs)

Software Frameworks (Java/Python),
Databases (MySQL, MongoDB)

Web Services, Business Applications

Figure 3.1: Cloud Architecture: Relation of architectural layers and business models

The infrastructure layer: This layer is also called the virtualization layer since it gen-

erates and manages a pool of computing and storage resources, it’s also considered an

essential component of cloud computing since it enables the possibility of dynamic re-

source allocation.

The platform layer: Consists of the operating systems and applications frameworks,

and leverages the infrastructure layer in order to minimize the effort of deploying appli-

cations directly to virtual machines containers.

The application layer: Known as the highest level layer and consists of the actual

cloud applications, it benefits of automatic-scaling to achieve better performance and

availability.

In spite of this, there is also a service-driven business model that provides multi-

ple services to the customers based on different requirements, these can be divided into

Infrastructure as a Service (IaaS), that manages and provides infrastructural resources

on-demand, such as Virtual Machines, Private Networks, Memory (RAM), Storage Disks,

among others; Platform as a Service (PaaS), that offers the possibility of utilizing operation

systems and software development frameworks for the implementation of IT solutions;

and Software as a Service (SaaS), that refers to the provisioning of on-demand applications

over the Internet [23]. The relation between the architectural layers (Hardware, Infras-

tructure, Platforms, and Applications) and the business models (IaaS, PaaS, and SaaS) is

visually represent in figure 3.1.

20

3.2. CYBER-PHYSICAL SYSTEMS

The last point to consider when defining Cloud Computing is the type of cloud that

the application will be deployed or implemented. There are 3 main types of cloud. These

are a Private Cloud, a Public Cloud and a Hybrid Cloud [24].

Public Cloud: consists of service providers that offer their resources through a network

that has public access. This type of cloud has some advantages such as the possibility to

start using it without any initial investment, and the possibility of shifting the respon-

sibilities regarding security and availability to these providers. However, there are also

some disadvantages like the lack of control over the data that flows through the network

and some security settings.

Private Cloud: it was designed to be managed solely by a single organization, although

some parts could be assigned to an external provider and it could be hosted either inter-

nally or externally. This type of cloud presents the highest degree of control over the way

that data gets passed around and also regarding the performance and availability of the

system as a whole.

Hybrid Cloud: It’s a combination of both a public cloud and a private environment,

where the last could be a private cloud or just an on-premises solution, with the goal of

addressing the limitations of the types mentioned above. While part of the solution could

be hosted on a typical public cloud leveraging the benefit of no initial investment, the

other part can be self-deployed by the organization over a private cloud where they have

a fine-grained control over all the data that gets thrown around. This is a more flexible

approach where it’s possible to maintain control over the security of the application but

still facilitating on-demand scalability.

Given the aforementioned characteristics and the functional requirements of CPS

mentioned in section 3.2, such as real-time processing and storage, many researchers have

developed studies in which they use the resources of cloud computing to enhance a Cyber-

Physical Systems [25]. These studies fall on a field called Cloud Robotics, a term coined

by James Kuffner in 2010 [26], where the idea of offloading massive computation tasks

to remote servers hosted on a cloud was born. With this solution there is the possibility

to offload the computation power and storage requirements of a CPS like a UAV to the

cloud, by connecting these assets to a network, leveraging the advances made in network

technologies and high-speed networks. This was exactly what was done in [27] where

there was require to perform real time mapping, localization, autonomous navigation

and object recognition.

3.2 Cyber-Physical Systems

3.2.1 Overview

Edward A. Lee defined Cyber-Physical Systems in 2006 as “(...) integrations of computa-

tions with physical processes. Embedded computers and networks monitor and control

21

CHAPTER 3. STATE OF THE ART

User

Internet

Control	System

Service	Tier

Physical	Devices

Target
Environment

ActuatorsSensors

Environment	Tier

Control	Tier

Database

Figure 3.2: A Service-Oriented Architecture for CPS

the physical processes, usually with feedback loops where physical processes affect com-

putations and vice versa.“ [28]. This tells us that, at that time, CPS were perceived as

systems with a physical part that produces inputs from sensing its surroundings, and

continuously send these values to a virtual part of the system so they could be analyzed

and acted upon. This is the feedback loop where the values coming from the physical

part directly impact the computations made on the virtual part and the resulting outputs

of that computations are used as inputs for the physical part. This definition continues to

evolve, like when Ji Feng He stated the importance of computation, communications, and

control (3C) in regards to environmental perception [29], where he explains the mutual

effects of the feedback loop on the virtual and physical processes in order to monitor or

control a mechanism by leveraging real-time sensing and dynamic control in the safest,

reliable and efficient way possible.

In its early stages, CPS had a two-tier architecture, one physical tier that senses the

present environment and communicate that data to the computing tier that analyzes the

data and then make the decision on which action the physical tier would execute. How-

ever, in 2010, Hyun Jung La proposed a three-tier architecture for CPS [30] that included

a control tier, a service tier, and an environmental tier and all would be interconnected

through the internet like it is shown in Figure 3.2.

The control tier functions as the “brain” of the system where data comes in from

physical devices and based on the analysis of that data, a service from the service tier

is activated to complete a specific task. This tier also functions as the entry-point of

22

3.2. CYBER-PHYSICAL SYSTEMS

any human-related input and can also include a database with the purpose to store the

mentioned data. The service tier encapsulates all the services provided by the system in

a typical modular web service way, where each service should be reusable and designed

with adaptability [31] and commonality [32] in mind. The environment tier aggregates

not only all the physical devices of the system, such as sensors or actuators, but also the

target environment where these devices are located. Although these devices can run their

own applications, that normally consist of transferring the information needed for the

other parts of the system, they are heavily restricted by the limited resources that the

underlying devices possess.

3.2.2 Applications for Cyber-Physical Systems

After the overview of what is a Cyber-Physical System, it makes sense to enumerate some

of the modern applications being developed with CPS. Currently, there are multiple

researchers conducting work using CPS in various fields, such as medical devices, aviation

software, traffic control, and safety, advanced automotive systems, distributed robotics,

biosystems, communication systems, among others [33]. From these numerous fields,

we can understand that CPS is a very versatile concept that can be applied to multiple

problems. Moreover, there were advancements made in other areas of research, such as

Industry 4.0, where CPS is one of the components [34]. Some applications in this area

can be sensor and actuator networks, intelligent robots and machines, big data, among

others. In this context, CPS function more like an embedded system that can control

physical processes.

There is some work being done in recent years regarding the collaboration of the fields

of precision farming and CPS. Most of this work is in the area of sensing and monitoring.

The next two examples demonstrate this point. The first one is a study of the development

of a cyber-physical system architecture to monitor potato crops [35]. The purpose of this

system is the monitoring of vegetation conditions. They used sensors at ground level

to measure multiple soil properties such as nitrogen levels, pH, potassium, phosphorus,

among others. The second one presents other architecture for the same circumstances,

where it describes a cloud-enabled CPS platform [36]. The authors divided the platform

into two sections, the edge and the cloud layer. In the edge, they deploy sensors and

gateways, while in the cloud layer they deploy computational services. The purpose

of this platform is to help agriculturists to monitor the ever-changing environmental

conditions of their crops, as well as their historical data.

3.2.3 Challenges

This first challenge that most researchers working in this field commonly have to deal

with is the limited processing and storing capabilities of most physical devices [37] such

as wireless sensors, mobile robots, and so on. Although there is the possibility to enhance

these devices with more processing power and storage capacity this would translate in

23

CHAPTER 3. STATE OF THE ART

the increase not only in size but also in the cost of these physical devices. This increase

in size and cost would negatively impact most use cases of CPSs, since many of them

rely on the small size and cost of these devices. The second challenge naturally present

on these systems is the amount of data that physical devices are capable of producing

over time. This not only brings us to the first challenge where there is a need for great

computing resources to analyze and extract insightful information from these data but

also delves into the problem of big data and the need for abundant storage resources.

It was due to the challenges mentioned above that many researchers suggest the use of

cloud computing, also referred by Cloud Robotics [26], as a viable solution for these [38],

[39].

3.2.4 Unmanned Aerial Vehicles

To understand the option for choosing a multi-rotor UAV in the development of this

platform first, we need to know that there are four different types of UAV. Each one

has different characteristics and is suitable for different use cases. An Unmanned Aerial

Vehicle (UAV) can be defined as an aircraft that carries no human pilot or passengers,

typically it is part of an Unmanned Aircraft Systems (UAS) which is composed of a UAV, a

ground-based control and the communication between the two. The flight of a UAV can be

controlled in two ways, guided by a pilot on the ground-based control that actively sends

commands to the UAV, or it can fly autonomously on pre-programmed flight plans [40].

Presently there are four main UAV categories where each UAV must fall into, these

are Multi-Rotor, Fixed-Wing, Single-Rotor, and Fixed-Wing Hybrid [41].

Multi-Rotor (Fig. 3.3) are the most common type of UAVs, and also the cheapest, which

are used by not only professionals but also amateurs, mainly for aerial photography and

aerial video surveillance, this is due to the fact that they give the most control over

position and framing. The big drawback of this type of UAVs is their big limitations when

it comes to endurance and speed, not only this but they also require a lot of energy just to

fight gravity and stabilize themselves, so they drain their batteries relatively fast during

a flight (20 to 30 mins). These can be further classified based on the number of rotors

present on the UAV, they are Tricopter (3 rotors), Quadcopters (4 rotors), Hexacopters

(6 rotors) and Octocopters (8 rotors).

Fixed-Wing (Fig. 3.4) cannot lift vertically and can’t hold their position while in the

air because of their “wing” like normal airplanes, this type of UAV is much more energy-

efficient than multi-rotor ones. Due to the lack of need in fine-grained control of the

stabilization of this type of UAVs, they can also make use of a gas engine which increases

their autonomy to more than 16 hours and allows them to cover much longer distances.

The downsides are that they cannot hover, so there isn’t the possibility to process aerial

mappings, and because of their size the launching phase is a lot trickier since they need a

runaway or a catapult launcher to get them into the air. The landing phase is also more

complicated to process, as they will require a runway, a parachute or a net to recover them

24

3.2. CYBER-PHYSICAL SYSTEMS

Figure 3.3: Multi-Rotor UAV

safely. Another downside is their higher cost of manufacturing and a bigger learning curve

when it comes to piloting.

Figure 3.4: Fixed-Wing UAV

Single-Rotor (Fig. 3.5) look very similar in design and structure to actual helicopters

since it has one big sized rotor plus a small sized one on the tail of the UAV to control

the heading. Benefits of much greater efficiency over the multi-rotor and can also be

powered by a gas motor for even longer endurance. This higher efficiency is due to a

rule of aerodynamics that the larger the rotor blade is and the slower it spins, the more

efficient it is. In terms of complexity, operational and manufacturing costs, the single-

rotor is coming in first when compared with the other. However, the big drawback is the

danger that their big spinning blades pose, the long sharp blade of a single-rotor can be

fatal and also cause big property losses when not taking the proper caution.

Fixed-Wing Hybrid (Fig. 3.6), also known as Vertical Take-Off and Landing (VTOL)

combines the benefits of Fixed-Wing models (higher flying time) with that of rotor based

models (hover). A vertical lift is used to lift the UAV up into the air from the ground.

Gyros and accelerometers work in automated mode (autopilot concept) to keep the UAV

stabilized in the air. Remote based (or even programmed) manual control is used to guide

the UAV on the desired course [42].

The table 3.1 presents a structured summary of the main advantages and drawbacks

of each UAV type, but also it introduces some of the most common and typical use cases

for each one.

As is described in the previous table, the multi-rotor UAVs most common use cases are

25

CHAPTER 3. STATE OF THE ART

Figure 3.5: Single-Rotor UAV

Figure 3.6: Fixed-Wing Hybrid VTOL UAV

UAV Types Advantages Drawbacks Use Cases

Multi-Rotor
Easy Accessibility
Cheap Manufacturing
VTOL and Hover Flight

Short Flight Times
Small Autonomy
Small payload capacity

Aerial Photography
Aerial Surveillance

Fixed-Wing

Long Endurance
Fast Flight Speed
Covers Higher Distances
Higher Autonomy (>16 hours)

"Launching and Landing
Complexity (No VTOL)"
Expensive
High Learning Curve

Pipeline Inspections
Aerial Mapping

Single-Rotor
VTOL and Hover Flight
Long Endurance (Gas Engine)
More Efficient than Multi-Rotors

Expensive
High Learning Curve
More Dangerous

"Aerial LIDAR
laser scanning"

Fixed-Wing
Hybrid

VTOL and Hover Flight
"Not perfect at either
Hovering or moving forward"
Still in development

Drone Delivery

Table 3.1: UAV types summary

aerial photography and surveillance. That is why we chose this UAV type for our platform

since those are some of the main features. After this definition of what is a UAV and in

which categories they can be separated, table 3.2 introduces a more detailed comparison

in regards of autonomy (the quantitative capacity for a flight of a UAV), accessibility (the

easiness of maneuvering said UAV), cost (the manufacturing cost of a UAV), Hover &

VTOL (the ability to hover in specified position and capability to vertically launch and

26

3.3. FRAMEWORK CONCEPTS

land), and flight speed (the maximum speed a UAV can reach during flight).

UAV Types Autonomy Accessibility Cost Hover & VTOL Flight Speed

Multi-Rotor Low Very High Low Very High Low
Fixed-Wing Very High Low High Low Very High

Single-Rotor High Low Very High Medium High
Fixed-Wing Hybrid Medium Medium TBD High Medium

Table 3.2: UAV types comparison

3.2.5 HEIFU

Hexa Exterior Intelligent Flying Unit (HEIFU) is a custom made solution, aimed at the

agricultural sector, developed in a collaboration between PDMFC and Beyond Vision.

The HEIFU is equipped with an onboard computer running Ubuntu and Robot Operating

System (ROS). This is an open platform that allows the integration of different inputs

and is used to run multiple tasks, such as image processing, data relaying, remote control

of a UAV (and more). HEIFU can be used with different communication systems, such

as a mobile network (3G, 4G or 5G) or Wi-Fi connection. HEIFU is a Hexacopter, as it

can be seen in figure 3.7, with a dimension of 1.4m in the diagonal wheelbase. The UAV

weight is around 6.2Kg, including battery, and the hovering time is around 38min with a

battery of 16Ah.

Figure 3.7: Hexa Exterior Intelligent Flying Unit (HEIFU)

3.3 Framework Concepts

In this section, there will be given a short description of each framework used to reach the

goals mentioned in chapter 2. The first framework is ROS which was used as a Middle-

ware to make the communication between the UAVs and the Back end of the application

27

CHAPTER 3. STATE OF THE ART

possible. The next framework is NodeJS, a popular open-source asynchronous javascript

runtime which enabled a cycle of request/response from the user to the server. Followed

by the communication protocol WebSocket, which consists of full-duplex communica-

tions channels over a single TCP connection. Lastly, there is also a small description of

what is InfluxDB, and why is it advantageous to use if in this context.

3.3.1 Robot Operating System

Joseph L. defines Robot Operating System (ROS) as a: “robot application development

platform that provides various features such as message passing, distributed computing,

code reusing, (...)” in [43], but to put it simply ROS is a collection of tools and libraries for

robotics development that aims to simplify the task of developing complex robot software.

ROS started in 2007 by Morgon Quigley with the name Switchyard, as a part of a research

project being conducted in Stanford. ROS has three levels of concepts: the Filesystem

level, the Computation Graph level, and the Community level [44], however, we are

not be getting into much detail over the last one. The ROS Filesystem level refers to any

resource that is maintained on a hard disk, such as:

• Package: It’s considered to be the building blocks of ROS software, they may contain

ROS runtime processes (nodes), a ROS dependent library, datasets, configuration

files, among others. As it’s said in [45]: “the philosophy is to make a piece of

software that could work in other robots with only little changes to the code”.

• Message types: It refers to the definition of the data structure for messages sent in

ROS.

• Service types: This are the typed definition for the request/response data structures

for services in ROS.

The ROS Computation Graph level is the abstraction of a peer-to-peer network of ROS

processes that work together to accomplish the specified task for a given software and

includes the following:

• Nodes: It corresponds to processes that perform computation tasks. These can be

written in C++ (roscpp) or Python (rospy).

• Master: It provides name registration and lookup to nodes and services in the ROS

environment, can be called a “nameservice”.

• Messages: This is the communication unit for the ROS system, all the communica-

tion is made through messages, be it node-to-node or node-to-service and vice-versa.

These data structures, comprised of typed fields, can have primitive types such as

integers, floats, strings, booleans, or others, or arrays of these primitive types. These

messages are sent and received through channels called topics.

28

3.3. FRAMEWORK CONCEPTS

Figure 3.8: Representation of ROS communication protocol

• Topics: Transport system via which messages are routed to different nodes using

a publish/subscribe semantics. If a node has data to send, it must subscribe to a

given topic and sent the data using a defined message type. On the other side, if

a node need this data, it must subscribe to the same topic and will await the data

expecting it to be in the structure defined previously.

• Services: When there is the need for a request/reply type of interaction, in which a

component may not continue to work properly while waiting for the data provided

by another component and must block until it gets this data, the publish/subscribe

method is not the most appropriated. This is the purpose of services, which are

defined by a pair of message structures: one for the request and one for the reply 2.

A piece of ROS software starts by initiating the ROS Master node that will enable the

communication between the required nodes and services. The publisher nodes start to

emit data in the form of messages to a designated topic and the corresponding subscriber

nodes then consume the messages gathering the data transmitted. A visual representation

of this process can be seen in Figure 3.8.

3.3.2 Node.js

Due to the shift of application development from desktop programs to web (browsers)

and mobile apps, JavaScript usage has increased in the last decade. It is logical that, given

this fact, the appearance of new ways to create and deploy JavaScript applications comes

to life. Node.js, launched in 2009, is a server-side javascript runtime environment 3, based

on Google’s runtime implementation denominated as V8, focusing on performance and

low memory consumption [46].

2http://wiki.ros.org/Services
3https://nodejs.org/en/about/

29

CHAPTER 3. STATE OF THE ART

Stack

callback1 callback2 callback3 callback4

WebAPIs

Event Loop

Task Queue

DOM (Document)

ajax (XMLHttpRequest)

setTimeout

main()

foo()

bar()

console.log()

onClick

Figure 3.9: Node.js event loop diagram

The JavaScript runtime is comprised of a heap, where memory is allocated for vari-

ables and functions, and a stack, where JavaScript functions are queued. Aside from

this, Node.js also includes an event loop that periodically checks the stack for queued

functions and runs them. A function can do a simple computation of assigning values

to variables or it can call a WebAPI like setTimeout or onClick. This WebApis typically

include a callback function that should be called in the future and are respectively placed

in a task queue. When the event loop sees that there isn’t any function left to be run in the

stack, it starts to push the callback functions in the task queue to the stack. This process

can be seen graphically in figure 3.9.

With this system in place, Node.js can achieve a non-blocking single-thread that is

capable of answering thousands of requests made to the same server [47] concurrently.

This was the main factor that led to the adoption of a Node.js server for this platform.

30

3.4. COMMUNICATION PROTOCOLS

3.3.3 InfluxDB

InfluxDB is a high-performance data store written specifically for time series data or, in

other words, InfluxDB is a Time-series Database (TSDB). InfluxDB provides an SQL-like

query language for interacting with data. It allows for high throughput ingest, compres-

sion and low latency querying, being able to handle millions of data points per second [48].

Dealing with that much data over a long period can lead to storage concerns, to counter-

act this InfluxDB automatically compacts data to minimize storage space. Since this is a

time-driven database, every table has a time column that registers discrete timestamps

and is the corresponding primary-key of each entry. The remaining attributes or columns

of each table are either called fields or tags. The difference between these fields and tags

is that the latter are indexed, meaning that the queries performed on tags are faster when

compared to queries made to fields [49]. Another concept introduced by InfluxDB is a

measurement, this groups fields and tags by a given name, much like a table in SQL, so

it’s possible to get all values for a pre-determined set.

3.4 Communication Protocols

3.4.1 WebSocket

Since the platform will handle low latency information coming from the UAVs, we needed

to address this problem. A common technique used in many web-platforms is long-

polling, where the client constantly checks the server for new data. Until a decade ago,

this way of getting low latency data was as good as it gets. However, as more client

requests reached the server, a predictable problem became more apparent. The latency

between client and server increased since each connection is kept open for as long as

possible. When the connection times out, the client is notified and makes a new request,

repeating the process. Thus the idea of a new protocol, identified as WebSocket, was

born. As I. Fette and A. Melnikov described [50], WebSocket allows a long-held, bi-

directional and full-duplex TCP socket connection to establish between client and server.

This procedure starts with the client sending an HTTP request to the server asking to

connect to a WebSocket. This process is known as a WebSocket handshake. After the

server accepts this request, it replaces the HTTP connection by a WebSocket connection.

The server maintains this last connection for each client, using it to push data as close to

real-time as possible to the client. From this point on, a client can publish a message to a

specific channel identified by a topic, and each client that is subscribed to that topic will

receive the message.

3.5 Related Work

During the initial phase of this project, research was conducted to find similar platforms

that have some of the same functionalities provided by the proposed solution. There

31

CHAPTER 3. STATE OF THE ART

was found only one holistic platform that had similar characteristics, the FlytOS4, and

although it presented the same idea of connecting UAVs to the cloud, with the possibility

to gather data and actuate over these UAVs, one characteristic that it lacks in compari-

son to the one proposed in this project is the possibility of mission planning. However,

it is possible to conduct mission planning using another tool called QGroundControl5

although this is not considered to be a UAV management platform since it cannot store

data sent by the UAV and has the limitation of using radio telemetry for communication.

This comparison is also resumed in table 3.3.

Functionalities Our Platform FlytOS QGroundControl

Online Asset Management Yes Yes No
Online Visualization Yes Yes No

Online Control Yes Yes No
Mission Planning Yes No Yes

Table 3.3: Similar platforms comparison

3.5.1 FlytOS

The decision for not using the FlytOS solution in the AFarCloud project was based on

three main reasons, the need for a high-level mission planning tool, the lack of support

for the custom made UAV HEIFU and absence of a communication protocol for Wireless

Sensor Network.

1. The main factor that led this platform to not be considered as an option in the

first place is the lack of a complex mission planning functionality that allows the

creation of a UAV mission with the possibility to specify particular tasks such as

vine map detection using RGB and Heatmaps.

2. Although this platform supports many DJI6 UAVs it didn’t provide full support for

the UAV solution that was made for the AFarCloud project (HEIFU).

3. Another component of the AFarCloud project is the need for collecting and ana-

lyzing data gathered from a Wireless Sensor Network, in spite of being the focal

point of this work, it is still a component that was taken into consideration when

weighing the pros and cons.

32

3.5. RELATED WORK

Figure 3.10: QGroundControl Interface

3.5.2 QGroundControl

Although this platform provides a tool (Fig. 3.10) capable of attaining the complexity

needed for mission planning in a use case of the AFarCloud project, it doesn’t go much

further than that. This platform only allows us to connect a single UAV through a Pixhawk

in order to receive and send data related to the real-time flight, but also there isn’t a

possibility to collect this data and further analyzing it in a cloud server. Another point

in which this platform falls short in comparison with the others is the incapability of

managing a set of connected UAVs.

4https://flytbase.com/flytos/
5http://qgroundcontrol.com/
6https://www.dji.com/

33

C
h
a
p
t
e
r

4
Approach

This fourth chapter has two parts, the first one addresses the prototype that was devel-

oped by following the guidelines of the AFarCloud project, and it is composed of just user

interfaces. The second part is a more detailed report on the development of the platform,

where it is discussed the selected architecture for the system and its components. Further-

more, this description is divided into the Backend, the Middleware, and the Frontend, so

we will be able to get into more detail about each part of the system.

4.1 First Prototype

The prototype for the platform was developed by following the guidelines of the AFar-

Cloud project for a mobile web application. This application had the functional require-

ments 1 through 7 related to UAVs, and 8 through 15 regarding the missions. These were

two of the main building blocks for this prototype since they were the focal point of the

mobile web application. Aside from this, the AFarCloud consortium also asked for other

functionalities. They were: integration with a real-time weather API, list and monitoring

of placed sensors, and reports page creator. Since the purpose of this prototype was to

integrate with an already implemented middleware, it was only possible to ensure the

fulfillment of the usability non-functional requirements.

The first figure (Fig. 4.1) presents the main page for the vehicles. This page has a

satellite world map centered on the location of a specified farm and shows all the available

assets. The currently connected vehicles have a green icon, while the idle ones have a

blue icon. The draggable side panel lists all the UAVs and UGVs and their corresponding

names. When a user expands the side menu, more information appears (Fig. 4.2). Here

the user can confer the current battery of each asset and which sensor or actuator is

attached to it.

35

CHAPTER 4. APPROACH

Figure 4.1: Vehicles Page Figure 4.2: Vehicles Menu Expanded

The second set of screenshots pertains to the mission functional requirements. Here

we have the same satellite map with some changes like the vehicles shown are only the

ones that are assigned to a currently active mission. Moreover, we have a geographic

presentation of every mission with a drawn polygon on the map (Fig. 4.3). Next to it, we

have Fig. 4.4 with the draggable side panel expanded, showing relevant information for

each mission. The data can be the number of tasks and what each one has to accomplish,

the current status of the mission, and a start and end time for each task. The user can

also check which vehicle is assigned to each mission. Furthermore, the user can stop an

on-going mission.

Figure 4.3: Missions Page Figure 4.4: Missions Menu Expanded

The next set of screenshots concerns the placed sensors and how the user can monitor

and analyze their data. On Fig. 4.5, we can see the sensors page with the satellite map

and the draggable side panel. Each placed sensor is present on the map with an icon on

their exact coordinates. By clicking on this icon, the user can see which sensor this icon

refers to and the last registered value. By dragging the side panel (Fig. 4.6), an extensive

list of all sensors appears where a user can see their information in more detail. This

information includes the type of the sensor, the last recorded value, the recorded time,

and value domain. Contrary to the other expanded side panels, this one has an additional

36

4.1. FIRST PROTOTYPE

feature. The user can click on an entry of the sensors list, and the interface will show a

graph. This graph displays the values registered by that sensor in a given period (Fig. 4.7).

With this, the user can easily create a timeline for each area with different characteristics

in mind, like soil humidity, temperature, air pressure, among others.

Figure 4.5: Sensors Page Figure 4.6: Sensors Menu Expanded

Figure 4.7: Sensors Menu Expanded Graph

The reports page has a unique functionality of generating reports for different pur-

poses. Although this page does not utilize the visual capacities of the satellite map it was

decided, in conjunction with the AFarCloud consortium, to use the same design to make

it more visually consistent for the user (Fig. 4.8). The side panel lists all the possible

reports the user can generate, such as the carbon footprint report and a total mix ration.

The carbon footprint uses the middleware to calculate the carbon footprint of milk pro-

duction, giving insight to the farmer of how much greenhouse gas the milk production

is emitting. (Fig 4.9). To generate the report, the user must input some values on each

specific field and choose the year for which the carbon footprint report is being generated.

The last screenshot and part of the prototype description concern the weather page.

This page utilizes a real-time API that produces weather data for client applications. For

this specific case, we used three different endpoints of this API, the endpoint regarding

the current weather, the endpoint that gives the temperature at separate times of the day,

and the seven-day forecast endpoint. In Fig. 4.10, we can distinctively see each one of

37

CHAPTER 4. APPROACH

Figure 4.8: Reports Page Figure 4.9: Carbon Footprint Page

these endpoints displayed. The current weather section has some additional information

like humidity, wind speed, visibility, and UV index. For the hourly and seven-day forecast

sections, it’s only displayed the temperature value and the expected weather conditions.

Figure 4.10: Weather Page

38

4.2. ARCHITECTURE

Hardware

Client-Side

Server-side

«component»
Gateway

«component»
UAV

«component»
Time Series DB

«component»
Relational DB

«component»
ODM

«component»
User Interface

Figure 4.11: Platform Component Diagram

4.2 Architecture

In contrast with the prototype, the platform encompasses all the functional and non-

functional requirements, meaning that the platform will have a more defined set of func-

tionalities, each with some degree of complexity. Given this fact, there was a need for a

more robust architecture that would be able to tackle all the requested functionalities.

The following component diagram (Fig. 4.11) presents a visual representation of the

defined architecture.

On the left side, we have the hardware section that is fully represented by the UAV

component. Recalling that the platform focal point is its integration in a CPS, the hard-

ware corresponds directly to the physical part on Cyber-Physical Systems. This UAV was

custom-made for the platform by another division of the team. This component can com-

municate with the whole system by connecting to the gateway and exchange information

through it.

The gateway is one of the components that make up the server-side section, and it

is responsible for enabling the communication between all the parts of the system. To

communicate with each other all components must exchange information through the

gateway, regardless if they are inside or outside the same section. However, the method

by which a component communicates can differ between Rest endpoints or Websockets,

depending on the need for low latency communication. For example, the communication

method needed to transmit information from the UAV to the rest of the components

should use Websockets. While the data that the relational database exchanges can use a

Rest endpoint.

The relational database is where the system stores all the information regarding the

users and artifacts needed to manage the platform. But also, where data concerning the

39

CHAPTER 4. APPROACH

UAV such as model, hashed token, and ID, are also saved. Here is where we found the

first problem during the planning phase because the UAV produces a reasonable amount

of data that needs to be registered. Since relational databases make use of a well-defined

schema to maintain its integrity, there are some constraints there need to be addressed.

The registration of large quantities of data in a relational database can be costly, and

because of the schema, there are restrictions on the type of data. However, since we also

needed to classify this information with a timestamp, it was an obvious choice to use a

time-series database. This kind of database can handle a large number of writes to it,

and it has the added benefit of each table occurring to be organized by timestamp. The

focal point of the time-series database is to register various measures of the UAV, such as

GPS coordinates, velocities, among others. With these metrics, it is possible for us in the

future to analyze these data and check where something went wrong.

The last component present in the server-side abstraction is the OpenDroneMaps, or

most known by the initials ODM. The OpenDroneMaps is an open-source command

toolkit for processing UAV imagery, and it can turn 2D images captured by the UAVs into

classified point clouds or 3D textured models.

Finally, for the client-side abstraction, we have the user interface component, which

is composed of multiple Graphical User Interface (GUI) that are provided to the users

by the server. We decided to develop these interfaces using Angular, supported by the

research presented in previous chapters. Each functional requirement has its independent

graphical interface, to achieve not only a separation of concerns but also more specificity

in each one. Just like the other components, the user interfaces can require the needed

information from the gateway. However, the functioning of the interfaces is dependent

on the authentication service that commands the user to input a password that matches a

saved hash on the relational database. The user can make use of the previous method, or

it can also use a saved token to have access to the gateway resources.

4.3 Backend

Every application needs a logic tier that can accomplish tasks through computation op-

erations. A developer can write these functions in numerous different programming

languages, being the responsibility of the developer to choose the most adequate one for

the project at hand. Nowadays, programmers can choose from multiple languages to

write server-side code, such as C, Java, Javascript, Python, or PHP, to name just a few.

Each one has its advantages and disadvantages, meaning that these languages can be

leverage differently whatever the goal might be.

4.3.1 Server

For this specific case, there was a need for fast development, scalability, and high through-

put of requests and responses. With these points in mind, the decision to use NodeJS

40

4.3. BACKEND

was a natural one. As was mentioned beforehand, the foundation of NodeJS sits on the

fact that it can handle many connections concurrently while keeping one single thread.

Because of this, the first limitation when using NodeJS is the execution of high compu-

tational tasks that can lead to a block on the event loop, preventing the runtime from

answering anymore more requests while it hasn’t finished. However, if the developers

consider this restriction during the planning phase, they can mitigate it while accomplish-

ing a channel of high throughput communication. Contrary to the way Java or C normally

handles each connection by assigning it to a new thread from beginning to end, possi-

bly maxing out the server RAM, NodeJS will use callback functions on its single thread

(event loop). While in the first case, if the connection requests for database operations,

the thread will be blocked until it finishes that operation. In the second case, the event

loop will fire another callback function for the database operation and go immediately

to sleep, waiting for a new request from the client. Furthermore, this process makes

this type of server code more scalable by leaving a big chunk of RAM available for more

instances of the server to be put to work.

The fact that a developer has to write NodeJs server-side code in Javascript is also

somewhat a disadvantage. Javascript is an interpreted language implying that it doesn’t

need a compiler to translate the human-readable code into a computer-readable (ma-

chine) code. This means that interpreted languages are faster in the development phase

because they can jump the "build"step, and the machine can execute the code as it is.

Contrarily, compiled languages compile the source code directly into machine code that

the processor can execute being faster and more efficient than interpreted languages at

run time. However, this gap in run time performance has been shrinking with improve-

ments in technology. The point here is that developers using interpreted languages like

Javascript can only find errors at run time and cannot utilize tools such as types, generics,

and interfaces. Given this, we decided to utilize a NodeJS framework that could mitigate

these issues. For this, we choose to use NestJS. Mainly NestJS is a NodeJS backend frame-

work that employs Typescript to introduce strong typing rules as well as some practices

of Object Oriented Programming (OOP).

4.3.2 Database

The database topic has two sub-topics, one for each of the different types of databases

the platform needed. Firstly, there was a need for a system to store data persistently,

which ensures the consistency of configuration data regarding users, drones, and other

objects. For this purpose, it was decided the design and develop of a relational database

recurring to a SQL schema to enforce certain restraints and conditions. The second sub-

topic discussed in this section is the reason why it was necessary to introduce a time-series

database in this architecture and how the integration went.

41

CHAPTER 4. APPROACH

User_Role

Mission

PK UniqueID

string Name

bool isActive

date CreatedDate

uuid DroneID (FK)

uuid UserID (FK)

uuid OrganizationID (FK)

Drone

PK UniqueID

string Name

byte[] Hash

bool isActive

date CreatedDate

date LastConnected

bool onMission

uuid OrganizationID (FK)

Feature_Role

Organization

PK UniqueID

string Name

string Description

Map

PK UniqueID

date CreatedDate

int Progress

string PanelImagesPath

string MissionImagesPath

uuid UserID (FK)

uuid OrganizationID (FK)

Feature

PK UniqueID

string Name

date CreatedDate

uuid OrganizationID (FK)

Role

PK UniqueID

string Name

uuid OrganizationID (FK)

User

PK UniqueID

string Name

byte[] Hash

string Description

date CreatedDate

byte[] Token

uuid OrganizationID (FK)

Figure 4.12: Entity-Relation Diagram for the Relational Database

42

4.3. BACKEND

4.3.2.1 Relational

The diagram in Fig. 4.12 presents the SQL schema for the relational database. By ana-

lyzing it, we can see that every entity is directly related to the organization entity by a

foreign key. The logic behind these relationships is that every organization needs to have

its roles, features, users, and assets, separated from other organizations. Given that our

platform first users would-be partners and farms associated with the AFarCloud project,

there was needed a way to have a clear separation of permissions and assets. When a

platform manager introduces a new organization to the platform, a set of default roles

is automatically added in parallel. This set includes the owner, the operations manager,

the administrative, and worker roles. Concurrently, the platform also adds the feature

objects related to each one of these roles to the system. These features correspond to each

role’s permission, and it is the logic behind the management of what each user can do in

the platform. It was chosen that the representation of this tuple, role-feature, would be

done in a relationship table with the primary keys of each table. There is anther place

where this relationship table was used to express the relation between two concepts, it

was used for user-role, to represent the relationship between each user and its corre-

sponding role. Aside from the organization and the role, the user table also stores a hash

of the user’s password. Moreover, a token related to the last session of that user is also

registered here. This token has an expiration policy attached to it, and the system will

revoke it after this timestamp.

The last three entities of the entity-relation diagram correspond to the asset objects of

the platform they are the Maps, Drones, and Missions.

• The map entity registers the date of its creation and the current processing progress.

This progress can indicate if there are still missing the upload of panel or mission im-

ages. The ODM service then stitches these images together and enhances whichever

features are present on them. Each map is related to a user and organization by

their corresponding foreign keys.

• The author designed the drone entity with the requirements of the UAVs in mind.

Each drone object will have a universally unique identifier (UUID), the same as all

other entities, and the date when a drone provider added it to the system. Moreover,

a boolean field will indicate whether the UAV is currently active or not, and another

one if it is on a Mission. Also, a timestamp field registers the last time that UAV was

online on the platform. Lastly, this table also stores the hash of an authentication

token for each UAV; without this token, a UAV cannot do any action on the platform.

• An administrative can register a mission on the system by giving it a name that

briefly describes the mission, and assign a UAV to it. This assignment will translate

into the creation of a foreign key to the drone table. Aside from this drone table,

the organization and the user table will also have foreign keys to an entry of the

43

CHAPTER 4. APPROACH

mission table. The system also stores the date of creation for each mission, and a

boolean value will indicate if the mission is currently on-going.

4.3.2.2 Time-series

As mentioned before in this document, the purpose of the Time-series Database (TSDB) is

to store n-tuples of data in "pairs"of timestamps and values. Briefly, this means that each

entry on this database will have a timestamp corresponding to the time the subject inputs

one or multiple values. This method of persistently storing data is more efficient than

using a relational database, for example, because it can leverage compression algorithms

to reduce the size of data tables.

The first step in developing a TSDB is the design phase, like with a relational database,

it is necessary to define a schema. These are a set of fundamental rules every subject has

to comply with when adding new data entries. Specifically, for the InfluxDB, this process

goes by assigning fields and tags to each table. The first concept that needs clarification

is the field that combines a string key and a value or collection of values that can be

strings, floats, integers, or booleans. Every field entry has a timestamp associated with

it. However, this data structure is not indexed, meaning that queries over fields will scan

all points that match a given time interval. That can lead to slow and not performant

searches on the time-series database. To achieve faster queries, the developer must make

use of the tag data structure since this one is indexed. They are quite similar to fields

except in the value section, where there is only permitted the use of strings. Although

these are the basic building blocks for the TSDB InfluxDB, there is one last concept that

should be defined. The measurement serves as a collection of fields, tags, and their

corresponding timestamps. This structure is mainly an organization abstraction, and it

can be perceived as a table in a relational database. Every measurement must have a

name comprised of a string, and the developer can then apply different retention policies

to each measurement. This retention policy can specify how long the database will keep

the data under a measurement, or how many copies of that data must the database keep

for replication purposes.

The applications of the TSDB on the use case regarding UAVs are the following. First,

there was the necessity to record the GPS coordinates of the drones while they were flying.

These flights could be manually controlled or an autonomous mission. The UAV used

during development produces these values with a 3 Hz frequency, meaning that we get

three discrete values every second. The drone publishes these data to the respective topics,

and our backend then registers these values on the InfluxDB. So for this first application,

we created a measurement designated GPS with a field-set of latitude, longitude, and

altitude. The best choice to represent these values in the field was the float representation.

Then, to map these GPS coordinates with the corresponding UAV we added a tag with

the string regarding the droneID. Since tags are indexed, as we mentioned before, the

queries to return the GPS data from a specific drone would be very performant. The

44

4.4. MIDDLEWARE

second application concerns the velocities of the UAV during the same described flights.

Here we created a measurement titled Vel, which is short for velocity. This table has three

float fields analogous to the GPS table, corresponding to the drone velocity in each axis

of the tri-dimensional space. These fields are the x velocity (vel_x), which corresponds

to forward and backward movement, the y velocity (vel_y), which corresponds to the

left and right movement, and the z velocity (vel_z), which corresponds to upward and

downward movement. Similar to the GPS table, the Vel measurement also has a tag which

registers the source droneID.

4.4 Middleware

Many developers use the concept of middleware across multiple fields of software de-

velopment. Middleware designates a mechanism that enables the communication and

control of data between two software components. This tool became common to use when

there was a great need to adapt legacy systems to work with new software and frame-

works. Nowadays, one of the middleware’s purposes is in distributed systems, with the

introduction of multiple development tools and frameworks for developing applications

and the need to deploy these applications in various infrastructures. All these factors

contribute to increasing the complexity of software development, and there was needed a

middle layer that could facilitate the connection between these different tools, being them

from the client or server-side. The first use case in our platform that needed a middleware

solution was the platform’s API.

4.4.1 REST API Endpoints

An Application Programming Interface (API) is a software contract that defines a com-

munication protocol between two agents, typically a client and a server, that enforces

rules between the requests and responses sent from and to each other. This example

falls in the category of web development and describes a commonly used type of APIs

designated Web APIs. These Web APIs utilize either Hyper Text Transfer Protocol (HTTP)

or Hyper Text Transfer Protocol Secure (HTTPS), the latter being a safer extension of the

former. Moreover, there is also a need to specify the acceptable structure in which the

messages must be formated. The more frequent options here are the Extensible Markup

Language (XML) or JavaScript Object Notation (JSON). The final point in this Application

Programming Interface contract is the adoption of a communication protocol over HTTP

or HTTPS. In the past, the more common choice for the communication protocol was the

Simple Object Access Protocol (SOAP), when Web APIs were provided as web services,

and Service-Oriented Architecture (SOA) was the prevailing practice. In recent years,

this paradigm has been shifting towards the adoption of web resources instead of web

services. This is mainly due to a grower demand for the transition from the regular Web

1.0 to Web 2.0. For this standard, the Representational State Transfer (REST) protocol was

45

CHAPTER 4. APPROACH

born with the introduction of another software design practice called Resource-Oriented

Architecture (ROA). Together with HTTP, a developer can specify which kind of method

a Uniform Resource Identifier (URI) will depend on, the more familiar ones being the

POST, GET, PUT, and DELETE methods.

Given the present complexity in the communication layer with CPSs, the REST proto-

col over HTTPS was adopted to achieve flexibility and security, respectively. Regarding

the message structure, it was decided the use of JSON since both the client and the server

were being developed with a javascript framework.

4.4.2 WebSockets

Another central point of this work is the transfer of data, as close to real-time as possible,

produce by our CPSs, the UAVs. The computational layer of each UAV operates over Robot

Operating System (ROS), meaning each one has access to the topics ROS provides. These

topics cover a range of fields over which a UAV can produce data every second or with

even greater frequency. These can be GPS coordinates, velocity in different directions,

battery percentage, propellers speed, among others. Whenever a drone is connected, it

will continuously publish values under these topics, even if these values are currently

stable.

For our use case, we used the first three topics described above, and we will use the

first one as an example. So for each segment of a GPS coordinate (latitude, longitude,

and altitude), the UAV will have access to a correspondent ROS topic (/location/latitude,

/location/longitude, and /location/altitude). At a given frequency, in the HEIFU case is 3Hz,

the UAV publishes its current latitude, longitude, and altitude values to these channels.

Any trustworthy agent could listen to these values by subscribing to the corresponding

topics. That is the first use case for WebSockets on our platform. We configured the

connection over WebSocket Secure (WSS) of a separate socket connection for each topic of

the UAV. This configuration goes through the process described in chapter 3, section 3.4.1,

where the client sends the server an HTTP request asking to connect to the WebSocket.

The server responds with an OK response and sends this response over to the client.

This process is known as the handshake protocol. After this, a long-held, bi-directional

channel is established between the two agents. This socket subscribes to one of the UAV

topics, and on-listening to a new message, it will propagate that value over its channel

to any connected agent, in this case, that would be the backend server. The controller

assigned to this task will then register the values on the time-series database and, through

another socket, will disseminate the values to requiring agents. On this end, the requiring

agent is the client interface on the user’s browser. The diagram in Fig. 4.13 shows an

example of the mechanism behind the use of WebSockets on the platform.

46

4.5. FRONTEND

:UAV :Backend :InfluxDB :Frontend

socket.connect()
OKsocket.connect()

OK

socket.send(data)
writeToGPSInflux(data)

OK

socket.send(data)

Figure 4.13: Sequence Diagram - WebSocket Data Transfer

4.5 Frontend

The final section in this approach chapter describes the user interfaces developed as

the frontend of the platform. These interfaces were implemented using the Angular

framework due to multiple facts.

The first practical advantage of implementing a platform with this framework is that

the model-view-controller was built-in from its creation. Its component-based architec-

ture brings not only more quality of code but also a separation of concerns. Having

components, services, and models separated like classes that one must explicitly import

enforces these rules and maintains the overall consistency of the project.

The second fact that lead to the choice of this framework is the entanglement of RxJS

in Angular in regards to asynchronous programming [51]. RxJS is a library designed

to handle asynchronous data to maintain the responsiveness of a user interface when

waiting for new data to arrive. It does this by handling events independently and in

parallel with the use of observables. Rather than continuously send requests to the server

to check if new data is available (pooling), a component can subscribe to an observable

and wait for the server to push some data. Moreover, RxJS offers a set of operators capable

of manipulating the data as it arrives, meaning that when data reaches the component is

ready to be presented.

Finally, another factor that solidifies our choice of this framework was its performance,

derivative from Angular’s hierarchical dependency injection. Dependency injection is

a design pattern used in software development, first approached in Java programming

language. Its main idea is that there should be a dependency injector that is responsible

for connecting components to its dependent services, alternatively to the case that each

component should explicitly ask for his dependencies [52].

47

CHAPTER 4. APPROACH

4.5.1 User Interface

Figure 4.14: UAV Real-time Monitor Interface

Figure 4.14 presents the monitor interface for UAV connected in real-time, being pos-

sible to see the video stream of the attached camera, right above are the GPS coordinates

and IMU indicator. In this section we also have a small 3D UAV that replicates the an-

gular movement of the real UAV. This angular movement corresponds to the pitch, roll,

and yaw. In the bottom bar, it is shown the vertical and horizontal velocities, the current

altitude and the remaining battery. On the left side, below the zoom control, there is a

section showing three buttons, the take-off, the return-to-launch (RTL), and the setpoint

from top to bottom. The setpoint functionality gives the option to the user to set a point in

the map with latitude, longitude, and altitude, and the selected UAV will autonomously

move to that location. Under this, there is also a card that contains a dropdown of all con-

nected UAVs. Moreover, two slide buttons show the possibility to command the selected

UAV using an AC controller or the keyboard.

The screenshot in Fig. 4.15 corresponds to the mission builder user interface. Here

a user can start to define an autonomous mission by first choosing the location of take-

off. After this, the user can add any number of waypoints and adjust the parameters of

each one. These parameters can be the waypoint altitude, the flight speed, the wait time,

among others. For the interface to accept the mission as valid, it must also include a

land step. The user can complete all these procedures without selecting a UAV to assign

the mission to it. However, the user must first choose a UAV if it wants to specify which

type of action the UAV must perform on a particular waypoint. Since the interface needs

to first validate with the server, which peripherals that UAV has access to know which

options it can display to the user. These actions can be, take an aerial photograph, collect

48

4.5. FRONTEND

Figure 4.15: Mission Builder Interface

data from the sensor, among others.

Regarding the multispectral maps, Fig. 4.16 displays their index interface, where a

user can check the list of already created maps, what is their type, when was created, and

in which processing stage it is. Moreover, on the bottom left section of each map card,

the user has access to a set of buttons that enables the following functionalities from left

to right.

• Visualize: This button is only available to the user when the map has finished

processing and is in the Complete stage. When a user clicks on this icon, the system

redirects the user to the interface described in Fig. 4.17.

• Download: The option to download the finished processed map is also only avail-

able to the user when it is complete. With this, the user can download the maps

resulted from the aerial photographs taken by the UAV and processed by the ODM

with every distinct spectrum.

• Edit: Here the user has the option to edit any details regarding the resources needed

to process a multispectral map. These aspects can be the upload of images and the

selection of which features to process.

• Cancel/Delete: Finally, if the map is currently processing and by any means, the

user needs to stop the processing, it can use the cancel button. However, if the map

is already complete, this button switches to become a delete button.

49

CHAPTER 4. APPROACH

Figure 4.16: Map Indexes Interface

The 2D map indexes interface, in Figure 4.17, presents a timeline on the left side with

the list of all maps created nearby, chronologically ordered. It is possible to select more

than one map to compare various indexes between different maps. The right side displays

a set of sliders capable of changing the opacity of each index. When selecting one map

the user can toggle the 3D view and access the interface shown in Figure I.11. In the 3D

interface, the user is present with a collection of points forming a point cloud that was

collected with a camera placed in the UAV that surveyed the area.

Figure 4.17: 2D Map Visualization Interface

50

4.5. FRONTEND

Figure 4.18: GUI for Mission Replay

Finally, Figure 4.18 presents the replay flight mission GUI, where for each UAV, a list

displays all completed flights, and the user can replay each one. When the user selects a

flight, the platform opens a satellite map with a marker showing the location of the drone

at each timestamp. Moreover, a line is displayed representing the path the UAV took over

the duration of the flight. On the right side of this map, the platform presents the play,

pause, and stop buttons for each respective action. Furthermore, the team decided to

add a graph to show the user the horizontal and vertical velocities of the UAV during the

flight.

51

C
h
a
p
t
e
r

5
Validation and Critical Review

The fifth chapter summarizes all the tests, results, and scientific articles that were per-

formed regarding the platform. First, there is given an introduction to the environment

used on these tests. After this, there are described the different use cases that were de-

fined to use as validation. Furthermore, the results from these tests are also displayed

and discussed in this chapter. Finally, there are descriptions of the two articles published

that present results worth mentioning since they also validate a part of the platform.

5.1 Production Environment

The last task regarding the development of this platform was the implementation of a

production environment. This environment is necessary to enable the planning and exe-

cution of tests and demonstrations. Although the development environment is currently

working on Kubernetes, we decided to implement the production environment on a sin-

gle server with the tool Docker-compose. Due to this, every component of the platform

is inside a container, specifically built for each. A YAML file was produced that corre-

sponded to the specifications for each docker and configured all the pipelines necessary

to maintain the well-functioning of the environment.

The aftermost tests were conducted in conjunction with a team in the production

environment. For these tests, it was selected various metrics to validate the functioning

of the platform. But before these metrics are further detailed, to make sense of these

metrics, there is necessary to describe the specifications of the server. The specifications

are as follow:

The description of these specifications is relevant because the metrics we choose to

register were: percentage of CPU usage, percentage of RAM usage, data input in GB, and

data output in GB. Among other fields, these are some of the metrics possible to attain

53

CHAPTER 5. VALIDATION AND CRITICAL REVIEW

Name Value

Architecture x86_64
CPU Model AMD EPYC 7502P 32-Core Processor
Number of CPUs 64
Threads per Core 2
CPU (MHz) 1497.610
CPU max (MHz) 2500.000
CPU min (MHz) 1500.000
RAM (GB) 248

Table 5.1: Production Server Specifications

from the bash command "docker-stats". However, one peculiarity of the docker stats is

that it gives the percentage of CPU usage relatively to one CPU core. Therefore, this

amount can be higher than 100%, meaning it is currently using two or more CPU cores.

The default behavior of containers under a docker-compose architecture is to utilize as

much of the machine resources as needed. If the developer doesn’t delimit restraints over

these resources, this is the default behavior.

To collect and register this set of metrics, it was necessary to write a script in Python

that calls "docker stats"and print the formatted output to a CSV file. Later, this output

was cleaned and analyzed, producing a dataset that is graphically displayed in the next

sections.

5.2 Case Studies

This section presents the decided use cases used to validate the developed platform.

For each one, the server was running the testing script for the entire duration of the

experiment. First, a brief introduction to each use case is presented, followed by the

resulting graph and further explanation of the values.

5.2.1 Case Study 1 - 1 UAV (Simulation) with 4 Users

The first experiment consisted of connecting a simulation of one UAV to the production

environment of the platform. To accomplish this, a team member must first register this

UAV on the platform and get a config file. The platform generates this config file that

contains a token necessary for the UAV to connect to the backend sockets. After this, the

team member started the UAV simulation on Gazebo after having uploaded the config

file to the UAV storage. In this phase, the UAV will already appear online on the platform,

and it is possible to select on the monitor page and see it’s battery, velocities, location, and

camera stream. It was at this point that the script was initiated, and it began registering

the metrics regarding the docker containers of each component of the platform. After

this step, four users logged in to the web application and navigated to the monitor page.

54

5.2. CASE STUDIES

Figure 5.1: Case Study 1 - Percentage of CPU usage

Here they all selected this UAV and got access to the video stream from its camera. At

this phase, it was commanded the UAV to move in a simple route while we watched the

video stream, and the data showed on the monitor page. The duration of this test was

sensibly more than 10 minutes, where the connection to the UAV or its video stream was

not lost a single time.

The script registered the collected data to a CSV file that was later cleaned. It was

necessary to use Python to accomplish this task, where most of the work was to remove

unwanted metrics and adjust the units for the relevant ones. The graph in Fig. 5.1 shows

the percentage of CPU usage of each component during the test. The containers shown

in this graph are the loadbalancer, the frontend, the backend, the InfluxDB, and the

MySQL. It is relevant to add the Webrtc Janus container to the following graphs giving

that it was the component in charge of managing the video streams for the platform.

We can understand from the figure that the container requesting most of the CPU was

the backend, hitting a little more than 50% for a single core. As mentioned before, the

percentage of CPU usage concerns one CPU core. The next two containers that used

more of the CPU were the Janus and the MySQL, this is because the first was responsible

for serving the video streams to the users, and the second for registering information

regarding the logs of the platform.

Regarding the percentage of RAM usage, Fig. 5.2, we could conclude that none of the

containers required much of the RAM to accomplish their work. The component with the

highest registered value was MySQL, although this value didn’t exceed 1 percent.

The next two figures represent the total amount of data, in Megabytes (MB), that were

sent from and to the server during the time of the experiment. In Fig. 5.3, we can observe

the container that had the most data sent to it was the Webrtc Janus, rounding the 520

MB, followed by the MySQL, and the backend. This is understandable given that the

Janus works as a mid-point between the UAV and the frontend. All the data regarding the

55

CHAPTER 5. VALIDATION AND CRITICAL REVIEW

Figure 5.2: Case Study 1 - Percentage of RAM usage

video stream has to go through this Webrtc so it can send it to the users on the frontend.

The reason the frontend is not present in any of the two data I/O graphs is because the

amount of data input and output of the container during the test was zero.

Figure 5.3: Case Study 1 - Data Input in Megabytes

Regarding the data output by each container (Fig. 5.4), we can examine that the high-

est value was also from the Janus. The components that precede the highest value on

data output after Janus is the backend and the MySQL, respectively. Although we had

four users watching the same UAV video stream, the data doesn’t show a proportional

increase in the amount of data. Since we had about 500MB of video stream data input, it

would be expected to have four times this amount of data output (4 x 500MB = 2000MB

or 2GB). This variable is due to the difference of Bitrate associated with each user. Since

the network connectivity will influence the Bitrate at which a user can receive the video

stream, each user will experience different Bitrates. Therefore the Janus gateway will

56

5.2. CASE STUDIES

serve the video stream with variable quality for each user depending on their designated

Bitrate.

Figure 5.4: Case Study 1 - Data Output in Megabytes

5.2.2 Case Study 2 - 4 UAVs (Simulation) with 4 Users

The second experiment had a similar environment to the first one, the variable being the

number of UAV simulations that were running on the server. For this test, we started four

simulations each, with its video stream. The preparations steps described for the setup

of the UAV were the same in this case study as it was in case study 1. After we connected

all four UAVs to the production environment of the platform, four users accessed the

frontend and proceeded to the monitor page. At this phase the script was initiated, and

the server started registering the same metrics onto a Comma-separated Values (CSV) file.

For this experiment, each user was free to change the selected UAV, therefore changing

the video stream they were watching, with the constraint that they were always watching

one of the streams. The duration of this test was also 10 minutes, during which there

weren’t any disconnection to the UAVs. The video streams were stable, and there wasn’t

any loss in connection.

Fig. 5.5 shows the graph of CPU usage, where we can analyze that the backend was

working in an interval of 50 to 80%. Followed by MySQL at 20%, and Janus between 5 and

20%. In this case study, we can examine an increase of about 20% in the working interval

of the backend. Given the slightly higher workload, it has given the three additional

UAVs. The graph also shows the double CPU usage of the MySQL component. With this

insight, we can expect that the introduction of more UAVs will not bring an exponential

increase in resource usage.

The RAM usage graph (Fig. 5.6) shows that MySQL was the most demanding, accom-

panied by Janus and InfluxDB. Similarly to the first experiment, none of these compo-

nents used more than 1% of the RAM.

57

CHAPTER 5. VALIDATION AND CRITICAL REVIEW

Figure 5.5: Case Study 2 - Percentage of CPU usage

Figure 5.6: Case Study 2 - Percentage of RAM usage

Concerning the data input and output of the system, Fig. 5.7 shows us the Janus had

the highest amount of data input, with total data input of 840MB. The next components

with more data input are respectively MySQL with 570MB, and backend with 520MB.

Here we can observe that almost all containers have slightly double the amount of data

input in the second experiment, except for the loadbalancer. Once again, it is reinforced

that the addition of more UAVs will not exponentially increase the resource usage of the

server.

On the opposite side, the data output graph for this experiment (Fig. 5.8) shows

that the container with the highest amount was again the Janus. However, this time the

amount of data output from Janus (800MB) was lower than the data input (840MB). The

explanation for this fact is on the reason given for the data output of the first test did not

equal the "n"users times the amount of data input for the Janus container. Not only can

58

5.2. CASE STUDIES

Figure 5.7: Case Study 2 - Data Input in Megabytes

each UAV have a different input Bitrate meaning each video stream will produce distinct

amounts of data, but also each user can have a different Bitrate explaining the varying

quantity of data each user will get. In this case, we have another factor that contributed

to the fact that the data output was similar to the data input. Since each user could only

see one video stream at a time, we would not have sixteen times (four video streams times

four users) the amount of video stream data. As we can examine, we only had about

the same amount of data input as of data output, indicating that the number of users

watching will directly influence the amount of data output for the Janus component.

Figure 5.8: Case Study 2 - Data Output in Megabytes

To further emphasize the former statement, we can observe that the amount of data

the Janus output on the first test was substantially higher than on the second test, meaning

that it is not the introduction of more UAVs that will increase the overall data transmission

of the platform but the addition of more users. Understandably, given that one video

59

CHAPTER 5. VALIDATION AND CRITICAL REVIEW

stream can be seen by multiple users, but a single user cannot see various video streams

at the same time.

The registration and analysis of these metrics are not only useful as a validation

tool but also as an improvement mechanism. We deliberately chose to orchestrate the

containers in a docker-compose file without any resource requirements and restrictions.

Without the resource limits on the file, each component is working on a best-effort policy,

meaning every container will scale vertically as much as it requires. This policy is not an

optimal decision for a production environment since it can lead to a component to take

more resources than it should. Nevertheless, we followed this best-effort paradigm to run

tests and subsequently analyze the resulting data. With this knowledge, we will study

and provide a minimum and maximum limit on the resources for each component for

optimum performance.

5.3 Round Trip Time (RTT) Test

Aside from all the experiments conducted by the author, other team members performed

some tests regarding the Round Trip Time (RTT) of a message sent through the platform

[53]. These colleagues described the mentioned test in the following article. For this

test, the authors measured the time for a message to arrive from the frontend to the UAV.

They built an autonomous mission through the mission builder on the platform that

commands the UAV to took-off and went to 120m of altitude and then descended to the

ground. They repeated this mission 15 times in one day, with the particularity that the

frontend was running on a machine in a different city each time. Then, they measured

the RTT in distinct phases of the process and presented the results in a table.

After analyzing the resulting data, the authors found relevant results worth to discuss.

First was that the RTT between the UAV and the backend remained stable, even when

the frontend was in a different country. Given that the backend is currently attached

to a server in Lisbon and the UAV took flight in Portugal makes sense for these values

to be inside the same range. Since the variable was the location of the frontend, here is

where the values for the RTT varied the most. They noted that when the frontend was in

a place near the server running the backend, the RTT rounded the 13ms. But when the

user was using the frontend from a distant location (e.g.) Sidney, the RTT rose to 352ms.

However, the authors also elaborate that: "In aviation, the maximum RTT delay from a

flying handling perspective is of approximately 300 ms". Another conclusion the authors

inferred from the results was that connectivity played a big part in the performance of the

platform. This conclusion came from the tests done in Portugal, where tests in locations

near the server’s region would perform similarly to tests done in the north of the country,

farther from the server.

60

5.4. UAV VIDEO STREAM TEST

5.4 UAV video stream test

There was another article accepted in a conference regarding the video stream functional-

ity of the platform [54]. In the article, the authors write about the possibility to combine

computer vision algorithms to enhance the UAV capability with autonomous collision

avoidance. Firstly the authors five a small overview of the platform. Afterward, they go

into further detail about the inner workings of the video streams. They explain how the

media gateway briefly mentioned in this dissertation utilizes a Coturn server to establish

a connection to the client.

For the benchmarks, the authors used Google Chrome’s tool for debugging WebRTC,

which collects statistical information about ongoing streams. For this test, they used a

Realsense D435i and an Insta360 Pro. They observed that the average number of frames

decoded was 30, which also corresponds to the desired frame rate. Although the Insta

360 had more frame drops than the Realsense, this is understandable given that the 360

stream requires a more stable network environment.

61

C
h
a
p
t
e
r

6
Conclusion

6.1 Summary

This dissertation started in collaboration with an European research project under the

Horizon 2020 (H2020) program. Firstly by designing and implementing the detailed

prototype and secondly by presenting it to the consortium. Subsequently, as a part of

the research and development team at PDMFC, it was necessary to start specifying the

necessities for the platform. This research led to not only to the requirements elicitation

described on this document, but also to more research, now focusing on the state of the

art of technology. In this research, there was given an overview of different relevant fields

like Cyber-Physical Systems, Cloud Computing, and Unmanned Aerial Vehicles, followed

by more specific topics regarding framework technologies such as the Robotic Operating

System, NodeJS, and InfluxDB, and even the communication protocol named WebSockets.

Subsequently, the research focused on encountering other types of work that had similar

functionalities. This examination led to the discovery of the QGroundControl and the

FlytOS. Although they were each a UAV platform, the research showed that none satisfies

all the requirements.

After the requirement elicitation and research phase were concluded, the natural stage

that followed was the implementation phase. For this purpose, it was produced some

Unified Modeling Language (UML) diagrams regarding the architecture of the system

(component diagram) and a compilation of each user use cases (use case diagram). Fur-

thermore, there was conceived an entity-relation diagram to demonstrate the relations

between each platform user. The development started with the implementation of the

frontend using Angular. Then there was the need to have REST API’s ready to be called

by these interfaces. There is when the PDMFC team started to develop the backend using

63

CHAPTER 6. CONCLUSION

a NodeJS framework called NestJS, which enforces typing and object-oriented program-

ming. Concurrently, there was started to be done advancements for the transmission

of low latency data by utilizing WebSocket technology. Regarding the video stream ca-

pabilities of the platform, a WebRTC gateway based on Janus was implemented, that

resulted in the article stated in section 5.4. Lastly, regarding the tests and validation

phase, there were performed multiple tests with the cooperation of team members that

resulted in some knowledge concerning the internal functioning of the platform. The

team will use most of the insights gained at this last phase as ground knowledge for fu-

ture work. Another point worth mentioning is the participation in a conference where a

paper summarizing the work done on this platform [55] was presented. The article starts

by explaining the current trend on UAV’s and their possible applications. Moreover, it is

presented the proposed architecture and a summary of each component. Finally, it is also

showed the results of the research concerning the related work and discusses the pros

and cons of each one.

6.2 Contributions

Although there was one initial objective that was achieved, the points specified in the

following list were all accomplished:

• A tool regarding the registration and management of multiple UAV;

• Flight real-time monitoring with GPS coordinates, velocity, IMU, battery, flight

mode, and video stream;

• Automated mission planning tool for single UAV;

• Graphic User Interface for replaying flight missions.

The objective that was not possible to achieve in the timeline of this dissertation

was the planning of autonomous missions with multiple UAVs. This was mainly due

to the difficulties on performing field tests for the autonomous mission planning on a

single UAV, that lead to a lack of time to implement this feature. Aside from the goals

stipulated in the objectives section, we also supported the team in other developments.

Such as the implementation of a management and visualization tool for multispectral

maps. This task included not only the logic behind the processing of aerial photographs

taken by the UAV and the integration with the platform’s backend. But also the list and

details interface for the resulting multispectral maps. The author displays this work in

section 4.5.1 and Figure I.11 of annex I. Furthermore, the design and orchestration of the

production environment were of the entire responsibility of the author, with the guidance

of the infrastructure team from PDMFC.

Regarding scientific dissemination, we also wrote an article with the same title as

the present dissertation, where a summary of the work here described is documented.

64

6.3. FUTURE WORK

This paper was submitted to the 2020 12th International Symposium on Communication

Systems, Networks, and Digital Signal Processing (CSNDSP) (CSNDSP2020) in July of

2020. There was another paper submitted to the same conference by some team members.

That is the paper the author mentioned in section 5.4 that discusses the results regarding

the low latency video stream accomplished on the platform. Finally, on the same topic,

other members of the team wrote an article with the title: "FFAU—Framework for Fully

Autonomous UAVs"for the Remote Sensing 12.21 (Oct. 2020). This article proposes

an autonomous framework that allows the full control of UAVs as remote clients with a

supervisor cloud-based platform. This article is relevant for the validation of the platform

since it has a section regarding a field test performed where the authors measured the

Round Trip Time (RTT).

6.3 Future Work

Although the far majority of stipulated tasks were accomplished, there are a few features

the team can plan to implement to improve the platform capabilities. Moreover, some

tweaks came directly from the insights gained through the testing and validation phase,

resulting in a minimum and maximum requirements for each component. These will

result in the improved performance of our production environment, therefore also guar-

anteeing a more reliable service. Moreover, the team also identified the need to add a

monitoring and logging component to the production server. First, to visualize the met-

rics close to real-time and understand the underlying functioning of the platform during

peak workloads. Second, to identify and alert the maintainers of possible problems that

can result in downtime of the system.

After we ensure our production environment is more robust and reliable, we can start

to focus on introducing new functionalities and use cases. These functionalities are the

following:

• The integration of computer vision algorithms to enhance the UAV capability with

autonomous collision avoidance, as specified in one of the articles. The team is

already working on this feature, exploring the YOLO framework to understand the

best way to run it on the on-board computer on the UAV.

• After the team performs more tests on the built-mission functionality and its func-

tioning is validated, we will start to implement the capability of orchestrating

swarm missions. Where a user can select a specific area on a map, and the plat-

form autonomously assigns multiple UAVs to work cooperatively to achieve the

required tasks.

• Presently, we are working on the implementation of a solar-powered charging

station for UAVs. This station will double as a take-off and landing area for au-

tonomous use cases. After the completion of this station, we will have the task to

65

CHAPTER 6. CONCLUSION

integrate the station into the platform.

• Currently, our UAVs communicate over a 4G modem that allows them to connect

with the platform. In the future, we want to integrate our UAVs with the 5G network

to enhance the efficiency in the transmission of real-time data. Being this data, UAV

metrics, or camera video streams.

66

Bibliography

[1] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N. S.

Othman, A. Khreishah, and M. Guizani. “Unmanned Aerial Vehicles (UAVs): A

Survey on Civil Applications and Key Research Challenges.” In: IEEE Access 7

(2019), pp. 48572–48634. doi: 10.1109/ACCESS.2019.2909530.

[2] E. Alvarez-Vanhard, T. Houet, C. Mony, L. Lecoq, and T. Corpetti. “Can UAVs fill

the gap between in situ surveys and satellites for habitat mapping?” In: Remote
Sensing of Environment 243 (2020), p. 111780. issn: 0034-4257. doi: https://

doi.org/10.1016/j.rse.2020.111780.

[3] A. Navarro, M. Young, B. Allan, P. Carnell, P. Macreadie, and D. Ierodiaconou. “The

application of Unmanned Aerial Vehicles (UAVs) to estimate above-ground biomass

of mangrove ecosystems.” In: Remote Sensing of Environment 242 (2020), p. 111747.

issn: 0034-4257. doi: https://doi.org/10.1016/j.rse.2020.111747.

[4] B. U. Meinen and D. T. Robinson. “Mapping erosion and deposition in an agricul-

tural landscape: Optimization of UAV image acquisition schemes for SfM-MVS.”

In: Remote Sensing of Environment 239 (2020), p. 111666. issn: 0034-4257. doi:

https://doi.org/10.1016/j.rse.2020.111666.

[5] L. Gupta, R. Jain, and G. Vaszkun. “Survey of Important Issues in UAV Communi-

cation Networks.” In: IEEE Communications Surveys Tutorials 18.2 (2016), pp. 1123–

1152. doi: 10.1109/COMST.2015.2495297.

[6] M.-G. Avram. “Advantages and challenges of adopting cloud computing from an

enterprise perspective.” In: Procedia Technology (2014). doi: https://doi.org/10.

1016/j.protcy.2013.12.525.

[7] Aggregate FARming in the CLOUD (AFarCloud). 2018. (Visited on 01/2020).

[8] R. C. Shah, S. Roy, S. Jain, and W. Brunette. “Data MULEs: modeling and analysis

of a three-tier architecture for sparse sensor networks.” In: Ad Hoc Networks 1.2

(2003). Sensor Network Protocols and Applications, pp. 215 –233. issn: 1570-8705.

doi: https://doi.org/10.1016/S1570-8705(03)00003-9.

[9] H. Auernhammer. “Precision farming—the environmental challenge.” In: Comput-
ers and electronics in agriculture (2001). issn: 0168-1699, doi: https://doi.org/

10.1016/S0168-1699(00)00153-8.

67

https://doi.org/10.1109/ACCESS.2019.2909530
https://doi.org/https://doi.org/10.1016/j.rse.2020.111780
https://doi.org/https://doi.org/10.1016/j.rse.2020.111780
https://doi.org/https://doi.org/10.1016/j.rse.2020.111747
https://doi.org/https://doi.org/10.1016/j.rse.2020.111666
https://doi.org/10.1109/COMST.2015.2495297
https://doi.org/https://doi.org/10.1016/j.protcy.2013.12.525
https://doi.org/https://doi.org/10.1016/j.protcy.2013.12.525
https://doi.org/https://doi.org/10.1016/S1570-8705(03)00003-9
https://doi.org/https://doi.org/10.1016/S0168-1699(00)00153-8
https://doi.org/https://doi.org/10.1016/S0168-1699(00)00153-8

BIBLIOGRAPHY

[10] A. McBratney, B. Whelan, T. Ancev, and J. Bouma. “Future directions of precision

agriculture.” In: Precision agriculture (2005). doi: https://doi.org/10.1007/

s11119-005-0681-8.

[11] S. Candiago, F. Remondino, M. De Giglio, M. Dubbini, and M. Gattelli. “Evaluating

multispectral images and vegetation indices for precision farming applications

from UAV images.” In: Remote sensing (2015). doi: 10.3390/rs70404026. url:

http://dx.doi.org/10.3390/rs70404026.

[12] M. A. Zamora-Izquierdo, J. Santa, J. A. Martínez, V. Martínez, and A. F. Skarmeta.

“Smart farming IoT platform based on edge and cloud computing.” In: Biosystems
Engineering 177 (2019). Intelligent Systems for Environmental Applications, pp. 4

–17. issn: 1537-5110. doi: https://doi.org/10.1016/j.biosystemseng.

2018.10.014. url: http://www.sciencedirect.com/science/article/pii/

S1537511018301211.

[13] R. Finger, S. M. Swinton, N. El Benni, and A. Walter. “Precision Farming at the

Nexus of Agricultural Production and the Environment.” In: Annual Review of
Resource Economics 11.1 (2019), pp. 313–335. doi: 10.1146/annurev-resource-

100518-093929. url: https://doi.org/10.1146/annurev-resource-100518-

093929.

[14] J. P. Matos-Carvalho, F. Moutinho, A. B. Salvado, T. Carrasqueira, R. Campos-

Rebelo, D. Pedro, L. M. Campos, J. M. Fonseca, and A. Mora. “Static and Dynamic

Algorithms for Terrain Classification in UAV Aerial Imagery.” In: Remote Sensing
(2019). doi: 10.3390/rs11212501.

[15] A. Dobermann, S. Blackmore, S. E. Cook, V. I. Adamchuk, et al. “Precision farming:

challenges and future directions.” In: 2004.

[16] G. X. Gao, P. K. Enge, L. A. Davis, et al. Global Navigation Satellite Systems: Report of
a Joint Workshop of the National Academy of Engineering and the Chinese Academy of
Engineering. National Academies Press, 2012. isbn: 978-0-309-22275-4. doi: 10.

17226/13292. url: https://www.nap.edu/catalog/13292/global-navigation-

satellite-systems-report-of-a-joint-workshop-of.

[17] D. Schimmelpfennig. Farm profits and adoption of precision agriculture. Tech. rep.

2016. doi: http://dx.doi.org/10.22004/ag.econ.249773.

[18] P. Mell and T. Grance. “The NIST Definition of Cloud Computing.” In: Application
Performance Management (APM) in the Digital Enterprise. Elsevier, 2011, pp. 267–

269. isbn: 9781617617843. doi: 10.1016/B978-0-12-804018-8.15003-X. url:

https://linkinghub.elsevier.com/retrieve/pii/B978012804018815003X.

[19] G. I. Nikolov. Cloud Computing and Government: Background, Benefits, Risks. Nova

Science Publishers, Inc., 2011. isbn: 1617617849.

68

https://doi.org/https://doi.org/10.1007/s11119-005-0681-8
https://doi.org/https://doi.org/10.1007/s11119-005-0681-8
https://doi.org/10.3390/rs70404026
http://dx.doi.org/10.3390/rs70404026
https://doi.org/https://doi.org/10.1016/j.biosystemseng.2018.10.014
https://doi.org/https://doi.org/10.1016/j.biosystemseng.2018.10.014
http://www.sciencedirect.com/science/article/pii/S1537511018301211
http://www.sciencedirect.com/science/article/pii/S1537511018301211
https://doi.org/10.1146/annurev-resource-100518-093929
https://doi.org/10.1146/annurev-resource-100518-093929
https://doi.org/10.1146/annurev-resource-100518-093929
https://doi.org/10.1146/annurev-resource-100518-093929
https://doi.org/10.3390/rs11212501
https://doi.org/10.17226/13292
https://doi.org/10.17226/13292
https://www.nap.edu/catalog/13292/global-navigation-satellite-systems-report-of-a-joint-workshop-of
https://www.nap.edu/catalog/13292/global-navigation-satellite-systems-report-of-a-joint-workshop-of
https://doi.org/http://dx.doi.org/10.22004/ag.econ.249773
https://doi.org/10.1016/B978-0-12-804018-8.15003-X
https://linkinghub.elsevier.com/retrieve/pii/B978012804018815003X

BIBLIOGRAPHY

[20] W. Venters and E. A. Whitley. “A Critical Review of Cloud Computing: Researching

Desires and Realities.” In: Journal of Information Technology 27.3 (Sept. 2012),

pp. 179–197. issn: 0268-3962. doi: 10.1057/jit.2012.17. url: http://

journals.sagepub.com/doi/10.1057/jit.2012.17.

[21] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.

Konwinski, G. Lee, D. Patterson, and A. Rabkin. “A view of cloud computing.”

In: Communications of the ACM 53.4 (Apr. 2010), p. 50. issn: 00010782. doi:

10.1145/1721654.1721672. arXiv: 05218657199780521865715. url: http://

portal.acm.org/citation.cfm?doid=1721654.1721672.

[22] Q. Zhang, L. Cheng, and R. Boutaba. “Cloud computing: state-of-the-art and

research challenges.” In: Journal of Internet Services and Applications (2010). issn:

1867-4828. doi: 10.1007/s13174-010-0007-6. url: http://link.springer.

com/10.1007/s13174-010-0007-6.

[23] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu. “Everything as a

Service (XaaS) on the Cloud: Origins, Current and Future Trends.” In: 2015 IEEE
8th International Conference on Cloud Computing. IEEE, 2015. doi: 10.1109/CLOUD.

2015.88. url: http://ieeexplore.ieee.org/document/7214098/.

[24] L. Qian, Z. Luo, Y. Du, and L. Guo. “Cloud computing: An overview.” In: IEEE
International Conference on Cloud Computing. Springer. 2009, pp. 626–631. isbn:

978-3-642-10665-1.

[25] S. Kamburugamuve, L. Christiansen, and G. Fox. “A Framework for Real Time

Processing of Sensor Data in the Cloud.” In: Journal of Sensors 2015 (2015), pp. 1–

11. issn: 1687-725X. doi: 10.1155/2015/468047. url: http://www.hindawi.

com/journals/js/2015/468047/.

[26] J. J. Kuffner. “Cloud-Enabled Robots.” In: IEEE-RAS International Conference on
Humanoid Robots, NashVille,TN,USA. 2010. url: https://ci.nii.ac.jp/naid/

10031099795/en/.

[27] D. Di Paola, A. Milella, G. Cicirelli, and A. Distante. “An Autonomous Mobile

Robotic System for Surveillance of Indoor Environments.” In: International Journal
of Advanced Robotic Systems 7.1 (Mar. 2010), p. 8. issn: 1729-8814. doi: 10.5772/

7254. url: http://journals.sagepub.com/doi/10.5772/7254.

[28] E. A. Lee. “Cyber-physical systems-are computing foundations adequate.” In: Posi-
tion paper for NSF workshop on cyber-physical systems: research motivation, techniques
and roadmap. Vol. 2. Citeseer. 2006, pp. 1–9.

[29] E. A. Lee. “Cyber Physical Systems: Design Challenges.” In: 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed Com-
puting (ISORC). 2008, pp. 363–369. doi: 10.1109/ISORC.2008.25.

69

https://doi.org/10.1057/jit.2012.17
http://journals.sagepub.com/doi/10.1057/jit.2012.17
http://journals.sagepub.com/doi/10.1057/jit.2012.17
https://doi.org/10.1145/1721654.1721672
https://arxiv.org/abs/0521865719 9780521865715
http://portal.acm.org/citation.cfm?doid=1721654.1721672
http://portal.acm.org/citation.cfm?doid=1721654.1721672
https://doi.org/10.1007/s13174-010-0007-6
http://link.springer.com/10.1007/s13174-010-0007-6
http://link.springer.com/10.1007/s13174-010-0007-6
https://doi.org/10.1109/CLOUD.2015.88
https://doi.org/10.1109/CLOUD.2015.88
http://ieeexplore.ieee.org/document/7214098/
https://doi.org/10.1155/2015/468047
http://www.hindawi.com/journals/js/2015/468047/
http://www.hindawi.com/journals/js/2015/468047/
https://ci.nii.ac.jp/naid/10031099795/en/
https://ci.nii.ac.jp/naid/10031099795/en/
https://doi.org/10.5772/7254
https://doi.org/10.5772/7254
http://journals.sagepub.com/doi/10.5772/7254
https://doi.org/10.1109/ISORC.2008.25

BIBLIOGRAPHY

[30] H. J. La and S. D. Kim. “A service-based approach to designing cyber physical

systems.” In: Proceedings - 9th IEEE/ACIS International Conference on Computer and
Information Science, ICIS 2010. 2010. isbn: 9780769541471. doi: 10.1109/ICIS.

2010.73.

[31] J. S. Her, H. J. La, and S. D. Kim. “A Formal Approach to Devising a Practical

Method for Modeling Reusable Services.” In: 2008 IEEE International Conference on
e-Business Engineering. IEEE, 2008, pp. 221–228. isbn: 978-0-7695-3395-7. doi:

10.1109/ICEBE.2008.20.

[32] S. H. Chang, H. J. La, and S. D. Kim. “A Comprehensive Approach to Service

Adaptation.” In: IEEE International Conference on Service-Oriented Computing and
Applications (SOCA ’07). 2007, pp. 191–198. doi: 10.1109/SOCA.2007.2.

[33] J. Shi, J. Wan, H. Yan, and H. Suo. “A survey of Cyber-Physical Systems.” In: 2011
International Conference on Wireless Communications and Signal Processing (WCSP).
2011, pp. 1–6. doi: 10.1109/WCSP.2011.6096958.

[34] I. Dumitrache, I. S. Sacala, M. A. Moisescu, and S. I. Caramihai. “A conceptual

framework for modeling and design of Cyber-Physical Systems.” In: Studies in
Informatics and Control 26.3 (2017), pp. 325–334. doi: https://doi.org/10.

24846/v26i3y201708.

[35] C.-R. Rad, O. Hancu, I.-A. Takacs, and G. Olteanu. “Smart Monitoring of Potato

Crop: A Cyber-Physical System Architecture Model in the Field of Precision Agri-

culture.” In: Agriculture and Agricultural Science Procedia 6 (2015). Conference

Agriculture for Life, Life for Agriculture, pp. 73 –79. issn: 2210-7843. doi: https:

//doi.org/10.1016/j.aaspro.2015.08.041. url: http://www.sciencedirect.

com/science/article/pii/S2210784315001746.

[36] K. Antonopoulos, C. Panagiotou, C. P. Antonopoulos, and N. S. Voros. “A-FARM

Precision Farming CPS Platform.” In: 2019 10th International Conference on Infor-
mation, Intelligence, Systems and Applications (IISA). 2019, pp. 1–3. doi: 10.1109/

IISA.2019.8900717.

[37] R. Chaâri, F. Ellouze, A. Koubâa, B. Qureshi, N. Pereira, H. Youssef, and E. To-

var. “Cyber-physical systems clouds: A survey.” In: Computer Networks 108 (2016),

pp. 260–278. issn: 13891286. doi: 10.1016/j.comnet.2016.08.017.

[38] A. Koubaa, B. Qureshi, M.-F. Sriti, Y. Javed, and E. Tovar. “A service-oriented Cloud-

based management system for the Internet-of-Drones.” In: 2017 IEEE International
Conference on Autonomous Robot Systems and Competitions (ICARSC). Section 3.

IEEE, Apr. 2017, pp. 329–335. isbn: 978-1-5090-6234-8. doi: 10.1109/ICARSC.

2017.7964096. url: http://ieeexplore.ieee.org/document/7964096/.

70

https://doi.org/10.1109/ICIS.2010.73
https://doi.org/10.1109/ICIS.2010.73
https://doi.org/10.1109/ICEBE.2008.20
https://doi.org/10.1109/SOCA.2007.2
https://doi.org/10.1109/WCSP.2011.6096958
https://doi.org/https://doi.org/10.24846/v26i3y201708
https://doi.org/https://doi.org/10.24846/v26i3y201708
https://doi.org/https://doi.org/10.1016/j.aaspro.2015.08.041
https://doi.org/https://doi.org/10.1016/j.aaspro.2015.08.041
http://www.sciencedirect.com/science/article/pii/S2210784315001746
http://www.sciencedirect.com/science/article/pii/S2210784315001746
https://doi.org/10.1109/IISA.2019.8900717
https://doi.org/10.1109/IISA.2019.8900717
https://doi.org/10.1016/j.comnet.2016.08.017
https://doi.org/10.1109/ICARSC.2017.7964096
https://doi.org/10.1109/ICARSC.2017.7964096
http://ieeexplore.ieee.org/document/7964096/

BIBLIOGRAPHY

[39] B. Qureshi and A. Koubâa. “Five Traits of Performance Enhancement Using Cloud

Robotics: A Survey.” In: Procedia Computer Science 37 (2014), pp. 220–227. issn:

18770509. doi: 10.1016/j.procs.2014.08.033. url: https://linkinghub.

elsevier.com/retrieve/pii/S1877050914009983.

[40] The UAV. url: https://www.theuav.com/ (visited on 01/2020).

[41] Types of Drones: Multi-Rotor vs Fixed-Wing vs Single Rotor vs Hybrid VTOL. 2016.

url: https://www.auav.com.au/articles/drone-types/ (visited on 01/2020).

[42] Types of Drones – Explore the Different Models of UAV’s. 2017. url: http://www.

circuitstoday.com/types-of-drones (visited on 01/2020).

[43] L. Joseph. Mastering ROS for Robotics Programming. 2015. isbn: 9781783551798.

doi: 10.1007/s13398-014-0173-7.2. arXiv: arXiv:1011.1669v3.

[44] A. M. Romero. ROS/Concepts. 2014. url: http://wiki.ros.org/ROS/Concepts

(visited on 02/2020).

[45] A. Martinez and E. Fernández. Learning ROS for robotics programming. Packt Pub-

lishing Ltd, 2013. isbn: 1782161449.

[46] “Node.js: Using JavaScript to Build High-Performance Network Programs.” In:

IEEE Internet Computing 14.6 (Nov. 2010), pp. 80–83. issn: 1089-7801. doi: 10.

1109/MIC.2010.145. url: http://ieeexplore.ieee.org/document/5617064/.

[47] C. R. Pereira. Aplicações web real-time com Node. js. Editora Casa do Código, 2014.

isbn: 8566250141.

[48] P. Dix. InfluxData (InfluxDB) | Time Series Database Monitoring & Analytics. 2017.

[49] S. N. Z. Naqvi, S. Yfantidou, and E. Zimányi. “Time series databases and influxdb.”

In: Studienarbeit, Université Libre de Bruxelles (2017).

[50] I. Fette and A. Melnikov. The websocket protocol. 2011. (Visited on 01/2020).

[51] Angular RxJS Integration. https://angular.io/guide/rx-library. Accessed: 12-02-

2020.

[52] D. Prasanna. Dependency Injection: Design Patterns Using Spring and Guice. Man-

ning Pubs Co Series. Manning, 2009. isbn: 9781933988559. url: https://books.

google.pt/books?id=b6O6OgAACAAJ.

[53] D. Pedro, J. P. Matos-Carvalho, F. Azevedo, R. Sacoto-Martins, L. Bernardo, L. Cam-

pos, J. M. Fonseca, and A. Mora. “FFAU—Framework for Fully Autonomous UAVs.”

In: Remote Sensing (2020). doi: 10.3390/rs12213533. url: https://doi.org/10.

3390/rs12213533.

71

https://doi.org/10.1016/j.procs.2014.08.033
https://linkinghub.elsevier.com/retrieve/pii/S1877050914009983
https://linkinghub.elsevier.com/retrieve/pii/S1877050914009983
https://www.theuav.com/
https://www.auav.com.au/articles/drone-types/
http://www.circuitstoday.com/types-of-drones
http://www.circuitstoday.com/types-of-drones
https://doi.org/10.1007/s13398-014-0173-7.2
https://arxiv.org/abs/arXiv:1011.1669v3
http://wiki.ros.org/ROS/Concepts
https://doi.org/10.1109/MIC.2010.145
https://doi.org/10.1109/MIC.2010.145
http://ieeexplore.ieee.org/document/5617064/
https://books.google.pt/books?id=b6O6OgAACAAJ
https://books.google.pt/books?id=b6O6OgAACAAJ
https://doi.org/10.3390/rs12213533
https://doi.org/10.3390/rs12213533
https://doi.org/10.3390/rs12213533

BIBLIOGRAPHY

[54] R. Sacoto-Martins, J. Madeira, J. P. Matos-Carvalho, F. Azevedo, and L. M. Cam-

pos. “Multi-purpose Low Latency Streaming Using Unmanned Aerial Vehicles.”

In: 2020 12th International Symposium on Communication Systems, Networks and
Digital Signal Processing (CSNDSP). 2020, pp. 1–6. doi: 10.1109/CSNDSP49049.

2020.9249562.

[55] M. Pino, J. P. Matos-Carvalho, D. Pedro, L. M. Campos, and J. Costa Seco. “UAV

Cloud Platform for Precision Farming.” In: 2020 12th International Symposium on
Communication Systems, Networks and Digital Signal Processing (CSNDSP). 2020,

pp. 1–6. doi: 10.1109/CSNDSP49049.2020.9249551.

72

https://doi.org/10.1109/CSNDSP49049.2020.9249562
https://doi.org/10.1109/CSNDSP49049.2020.9249562
https://doi.org/10.1109/CSNDSP49049.2020.9249551

A
p
p
e
n
d
i
x

A
Accepted Paper - UAV Cloud Platform for

Precision Farming

73

UAV Cloud Platform for Precision Farming
Miguel Pino(1,4), J. P. Matos-Carvalho(2,4), Dário Pedro(3,4), Luı́s M. Campos(3) and João Costa Seco(4,5)

(1) Apps4Mobility, 7800-295 Beja, Portugal;
(2) Beyond Vision, 3830-352 Ílhavo, Portugal;

(3) PDMFC, 1300-609 Lisboa, Portugal;
(4) FCT, NOVA University of Lisbon, 2829-516 Caparica, Portugal;

(5) NOVA Laboratory for Computer Science and Informatics, NOVA LINCS, Caparica, Portugal;

Abstract—The advancements made on Unmanned Aerial
Vehicles (UAV) related areas such as Cyber-Physical Sys-
tems and Embedded Systems made them more suitable for
some industry-specific problems. Applications in fields like
Precision Agriculture and Aerial Mapping could benefit
considerably with the introduction of UAV use cases. How-
ever, there are still some obstacles nowadays in UAV related
topics like low processing power and storage capacity. To
develop robust and complex systems integrating these UAVs
first, we need to address these problems. This paper pro-
poses a cloud platform capable of two-way communication
with UAVs and further management of multiple UAVs.

Index Terms—CPS, UAV, Cloud Computing, Communi-
cation Protocols

I. INTRODUCTION

An Unmanned Aerial Vehicle (UAV) consists of a
small, manually or autonomously controlled aircraft that
doesn’t need an onboard human pilot. One characteristic
of these aircraft is its high-mobility granted by its small
size. Nowadays the capabilities of these aircraft can be
enhanced with cameras capable of capturing multispectral
pictures from high-altitudes. Common scenarios present
in fields such as aerial surveillance, industrial automation,
and precision agriculture would benefit from the integra-
tion of UAVs in regards to efficiency and performance.

However, these aircraft present some obstacles. In the
first place, low computational power limits the computa-
tion of complex algorithms. A solution to this problem is
to offload the computational power by connecting a UAV
to the internet, we could send the data necessary to run
the algorithm, and then get the results back and act on
it. The second obstacle is the low storage capacity of the
UAV due to its small size. The latter solution could also be
applied here since it is possible to offload storage capacity.
If we integrate a UAV in a cloud platform designed for
this propose, we could meet these two requirements.

This paper proposes a cloud platform developed for
precision farming use cases. Such use cases consist of

planning autonomous missions for collecting aerial map-
ping pictures from different spectrum’s and multiple sen-
sors. The first use case urges from the need to analyze the
vineyard’s life cycle through RGB mapping and heatmaps
to folow its development. It is also possible to prevent
vineyard pests and diseases by analyzing indicators on
multispectral maps. The second use case came from the
need to introduce temperature, humidity, and air quality
sensors on vineyards. Farm owners use data collected
from these sensors as insight for making the best decision.

The organization of this paper is as follows, after this
introduction, we present the related work after this, we
describe the experimental setup followed by the detailed
implementation of the platform. Finally, we show the
results obtained in some tests with our platform, and
successively we compare and discuss these result data.

II. RELATED WORK

The possible applications for an autonomous small
aircraft able to capture aerial images are vast. Although
there are many applications for UAVs use cases nowadays,
a robust and reliable system to implement them is still
missing [1]–[4]. Most UAV providers offer UAVs as an
independent device, without any connection to a platform
capable of managing them or, for example, planning an
autonomous flights. Moreover, there is a lack of applica-
tions that take full advantage of the aerial photography
capabilities of these UAVs.

There is an open-source tool used for manual flight
control and autonomous flight planning called QGround-
Control [5]. It provides configuration and support for
UAVs that run PIX4 or Ardupilot. Its user interface uses
a satellite map to display the current connected UAVs and
enables the user to plan a mission by adding waypoints
to the map. Furthermore, it also presents the number of
connected satellites, the UAV battery life, and the current
UAV flight mode. Aside from these functionalities, there
is not much that this tool can offer since it cannot store

data persistently on a database, it can only give insights
on real-time data.

There is also a platform that presents itself as an holistic
cloud platform to connect UAVs, that offers a variety
of features. FlytOS [6] provides plugins for autonomous
planning, collision avoidance, and thermal camera inte-
gration. However, this is proprietary software that requires
the user to have some knowledge to implement and
start using this custom made solution. Not only this but,
the authors of this article could not find evidence that
indicated the possibility to analyze multiple spectrums of
aerial pictures or even compare different indexes. This
platform also lacks a feature that the user can use to get
some insights by reviewing previous flights, with this a
user can analyze aspects of the flight to find what went
according to plan.

In addition to the platforms described above, there are
softwares that focus on building geographic maps from
UAV sampling. The studied and compared software are
Pix4Dmapper, Photoscan, Aerial Photo Survey (APS) [7].
The Pix4Dmapper, developed by Pix4D, uses techniques
based on aerial triangulation [8] and BBA (Block Bundle
Adjustment) to calculate the positions and orientation of
each image [9]. Another concurrent is APS, a software
built by Menci Software, where the mosaic originates
from Digital Terreain Model (DTM), also providing point
clouds, orthomatics and also topographic contour lines
skills [7]. Finally, there is Photoscan, a software devel-
oped by Agisoft, based on photographic triangulation,
capable of generating point cloud of covered area, DTM,
DSM and orthomosaic from the processing of multispec-
tral imagery [7].

A well-known open source platform that uses methods
similar to Pix4Dmapper is called WebODM [10], [11]
where an interface is developed where it is possible to
upload images and save them in an internal database (both
the input images and the results of the maps).

Although these frameworks produce maps from images
coming from an RGB and multispectral camera, they
currently have no ability to integrate in realtime with
drones, which in a way is a disadvantage when the goal
to communicate over long distances and produce maps
right after the flight. Thus, this article aims to design and
implement an architecture that allows a swarm of UAVs to
be in constant communications from an unlimited distance
to the end user and integrate the mapping algorithms.

III. EXPERIMENTAL SETUP

A. Proposed System Architecture

From a high-level point of view, there are three funda-
mental parts for the system architecture, a UAV, a server-
side, and a client-side as it can be seen in Figure 1.

The UAV corresponds to the physical part of our Cyber-
Physical System and is our main point of actuation over
the environment. A gateway makes the connection be-
tween the UAV and the server possible, by connecting the
data sent from Robotic Operating System (ROS) topics
to WebSockets. The UAV publishes data such as GPS
coordinates and linear and angular velocities to a ROS
topic, in which a WebSocket is subscribed and listens for
updates to forward them to the server. The user interface
then gets this data from the server via WebSocket also,
to display the real-time location and speed of the UAV.
Subsequently, this generated data is processed and stored
in a time-series database for future queries.

Aside from this, there is a component called WebODM
that is in charge of processing incoming map data. A UAV
can capture aerial pictures of a landscape with different
camera types, that then need to undergo a process of
processing and stitching to be presented to a user. A user
can then get insights from multiple spectrums pictures of
a landscape and use them to support his next decisions.

Finally, the client-side includes all the user interfaces
necessary for the access of the user to the main features of
the platform. A list view presents all the registered drones,
followed by a small description and some information
such as if they are currently active and if not when was
the last time they were. A monitor view displays all the
currently active drones with the possibility to select any
of them and start to monitor it, checking GPS coordinates
and velocities. Furthermore, if the UAV has a camera
attached to it, a video stream will be displayed on this
page. For the maps processing, there is also a maps
list that presents all available maps with the possibility
to review each one individually. We can examine the
different indexes with one another or even with the
progress of the same index over time.

Hardware

Client-Side

Server-side

«component»
Gateway

«component»
UAV

«component»
Time Series DB

«component»
Relational DB

«component»
ODM

«component»
User Interface

Fig. 1. Platform Component Diagram

B. UAV Design

Hexa Exterior Intelligent Flying Unit (HEIFU) is a
custom made solution, aimed at the agricultural sector,
developed by a collaboration between PDMFC and BEV.
The HEIFU is equipped with an onboard computer run-
ning Ubuntu and ROS. This is an open platform that
allows the integration of different inputs and is used to run
multiple tasks, such as image processing, data relaying,
remote control of a UAV (and more). HEIFU can be
used with different communication systems, such as a
mobile network (3G, 4G or 5G) or Wi-Fi connection.
HEIFU is a Hexacopter, as it can be seen in Figure 2,
with a dimension of 1.4m in the diagonal wheelbase. The
UAV weight is around 6.2Kg, including battery, and the
hovering time is around 38min with a battery of 16Ah.

Fig. 2. Unmanned Aerial Vehicle - HEIFU.

Some of the Hexa Exterior Intelligent Flying Unit
(HEIFU) specifications are [12]: An Ardupilot (Pixhawk)
hardware is used to control the low level operation. This
hardware contains the IMU and GPS to know the UAV’s
position and orientation. Also, the Pixhawk connects to
the Jetson nano embedded system via MAVlink protocol
and the UAV’s battery [13]. Lastly, to control the UAV’s
motors it is connected to a UHF receiver; An Jetson nano
is used to control the high level operation. It receives
data from the distance sensor (depth cameras), the RGB
camera and communicates with external devices via Wifi
link; A RGB camera with a gimbal stabilizer, is installed
capturing onboard images at a resolution of 640x480
pixels; The camera and lens specifications are known,
allowing the field of view (FOV) and the pixel size in
meters to be computed [14].

C. Communication Protocol

Since the platform will handle real-time information
coming from the UAV, we needed to address this problem.
A common technique used in many web-platforms is
long-polling, where the client constantly checks the server
for new data. Until a decade ago, this way of getting real-
time data was as good as it gets. However, as more client

requests reached the server, a predictable problem became
more apparent. The latency between client and server
increased since each connection is kept open for as long
as possible. When the connection times out, the client is
notified and makes a new request, repeating the process.
Thus the idea of a new protocol, identified as WebSocket,
was born. As I. Fette and A. Melnikov described [15],
WebSocket allows a long-held, bi-directional and full-
duplex TCP socket connection to establish between client
and server. This procedure starts with the client sending
an HTTP request to the server asking to connect to a
WebSocket. This process is known as a WebSocket hand-
shake. After the server accepts this request, it replaces the
HTTP connection by a WebSocket connection. The server
maintains this last connection for each client, using it to
push data in real-time to the client.

IV. IMPLEMENTATION

This section describes the implementation process of
the platform starting by the backend, then the middleware,
and finishing with the frontend. Typically a web platform
is comprised only of a backend and a frontend, although
sometimes there is a need to include some middleware
logic. Moreover, we followed a standard design pattern in
the industry called model-view-controller (MVC), which
tries to keep the computation of each domain independent
of one another. The backend involves all the server-
side logic (controller), algorithms and heavy computation
tasks, and database persistence (model) regarding data
produced on the platform. On the other side, the frontend
takes care of the presentation layer (view) since it will
include all the user interfaces. Due to advancements
made in recent years to frontend frameworks, there is
a possibility to add some logic to these user interfaces.
Finally, the middleware serves as a connector between
the back and frontend, comprising all the frameworks and
logic necessary.

A. Backend (NodeJs)

A server is needed to make a remote connection
between two or more devices. In this case, we needed a
server that can handle real-time communication. Requests
to the server are processed as a loop in a ”non-blocking”
manner hence achieving low latency and high throughput.

The JavaScript runtime is comprised of a heap, where
memory is allocated for variables and functions, and a
stack, where JavaScript functions are queued. Aside from
this, Node.js also includes an event loop that periodically
checks the stack for queued functions and runs them. A
function can do a simple computation of assigning values
to variables or it can call a WebAPI like setTimeout
or onClick. This WebApis typically include a callback

function that should be called in the future and are
respectively placed in a task queue. When the event loop
sees that there isn’t any function left to be run in the
stack, it starts to push the callback functions in the task
queue to the stack.

With this system in place, Node.js can achieve a
non-blocking single-thread that is capable of answering
thousands of requests made to the same server [16]
concurrently. This was the main factor that led to the
adoption of a Node.js server for this platform.

B. Middleware (ROS)

Robot Operating Systems (ROS) has three levels of
concepts: the Filesystem level, the Computation Graph
level, and the Community level [17]. ROS also provides
support for a wide range of programming languages; the
possibility of visualizing data (e.g., the content of topics,
nodes, packages, coordinate systems graphs and sensor
data); and the possibility to write and execute code in a
modular way, increasing robustness and also contributing
to the standardization of this framework [18].

1) ROS Packages: First, the basic concept that the
reader needs to acknowledge is the ROS package. This is
where nodes’ source and header files, executable scripts,
launch files, among others are stored and organized.

2) ROS graph Layer: One of the packages installed
from source is ros comm contains the ROS middle-
ware/communications’ packages, known as ROS “Graph”
Layer. These concepts can be found in any book, and on
the ROS wide online documentation, although, some will
be briefly introduced here given their relevance to the
content of this dissertation.

The ROS Master is what makes it possible to different
nodes to find and communicate with each other. As a
distributed approach will be used in this paper, it will
be initialized on one machine and nodes will be able to
communicate with it from a remote machine [19].

Given that ROS is a distributed computing frame-
work, it allows network connections and information
exchange to perform different tasks. Messages allow a
publish/subscribe pattern of Topics (the message named
bus - its identifier), whereas Services provide a re-
quest/response behaviour. Therefore, while ROS topics
are unidirectional, with ROS Services, one node is the
server, from whom, a client may request a service and
after completion of a procedure, send a reply [19]. This is
done with Nodes, which can be seen as system’s processes
and may run in different machines.

Finally, Bags will be used extensively on this paper, as
they allow to save the information being transmitted via
different topics and the Parameter Server allows different
Parameters to be accessible from a node. These can be

loaded from a launch file or from inside a node and can
be declared in a YAML file.

C. Frontend (Angular)

Angular is an open-source framework maintained by
Google, that aims to develop client-side web applications.
Not only this, but Angular also currently has long-term
support for version 8 [20], which gives some assurance
for platforms developed under this framework.

The first practical advantage of developing a platform
with this framework is that the model-view-controller was
built-in from its creation. Its component-based architec-
ture brings not only more quality of code but also a
separation of concerns. Having components, services, and
models separated like classes that one must explicitly
import, enforces these rules, and maintains the overall
consistency of the project.

The second fact that lead to the choice of this frame-
work is the entanglement of RxJS in Angular in regards
to asynchronous programming [21]. RxJS is a library
designed to handle asynchronous data to maintain the re-
sponsiveness of a user interface when waiting for new data
to arrive. It does this by handling events independently
and in parallel with the use of observables. Rather than
continuously send requests to the server to check if new
data is available (pooling), a component can subscribe
to an observable and wait for the server to push some
data. Moreover, RxJS offers a set of operators capable
of manipulating the data as it arrives, meaning that when
data reaches the component is ready to be presented.

Finally, another factor that solidifies our choice on
this framework was its performance, derivative from
Angular’s hierarchical dependency injection. Dependency
injection is a design pattern used in software development,
first approached in Java programming language. Its main
idea is that there should be a dependency injector that is
responsible for connecting components to its dependent
services, alternatively to the case that each component
should explicitly ask for his dependencies [22].

The next images are screenshots from user interfaces
of the platform:

Figure 3 presents the monitor page for UAV connected
in real-time, being possible to see the video stream of
the attached camera, right above are the GPS coordinates
and IMU indicator. In this section we also have a small
3D UAV that replicates the angular movement of the
real UAV. In the bottom bar, it is shown the vertical
and horizontal velocities, the current altitude and the
remaining battery.

The 2D map indexes page, in Figure 4, presents a
timeline on the left side with the list of all maps created
nearby, chronologically ordered. It is possible to select

Fig. 3. UAV Real-time Monitor Page.

more than one map to compare various indexes between
different maps. The right side displays a set of sliders
capable of changing the opacity of each index. When
selecting one map the user can toggle the 3D view and
access the interface shown in Figure 5. In the 3D interface
the user is present with a collection of points forming a
point cloud that was collected with a camera placed in
the UAV that surveyed the area.

Fig. 4. 2D Map Indexes Page.

Fig. 5. 3D Map Page.

V. EXPERIMENTAL RESULTS

This section aims to compare the three tools/platforms
described in the related work, with the one that this paper
proposes. We used six different features as indicators for
this comparison.

The first feature was the possibility to setup/configure
a UAV through the platform by registering a new UAV to
a platform and configure certain aspects. These aspects
could be the setup of a token for security reasons or
the configuration of peripherals possible to integrate on
the UAV. The second feature is the possibility to manage
multiple UAVs, not only to view its current status and
location but also with the capability to change some of
its configurations. The third feature concerns the realtime
monitoring of a UAV in regards to GPS coordinates,
velocities, and video stream if a camera is attached. The
fourth feature is the ability to send commands to a UAV
directly from the platform a user could actuate on the
UAV from the platform without the use of a remote
control. The fifth feature corresponds to the planning
of autonomous flights, the proposed platform provides a
specific user interface that offers the user the capacity
to determine some characteristics of the mission. The
sixth and final feature concerns the creation, processing,
and stitching of maps from multiple spectrums originated
from aerial pictures collected by the UAV.

Functionalities WebODM QGroundControl FlytOS Proposed Platform

UAV Setup/Configuration - X X X

Multiple UAV Management - - X X

UAV Monitoring - - X X

UAV Online Navigation - - - X

Autonomous Flight - X - X

Maps Processing X - - X

TABLE I
TABLE OF SIMILAR PLATFORMS COMPARISON

These are the central points that the proposed platform
offers in comparison with other pre-existence tools or
platforms. The proposed platform is capable of addressing
all the use cases described in table I, highlighting the
third, fifth, and sixth features. These were the use cases
taken into consideration in the time of its development.
The possibility of not only being able to monitor the UAV
movement in realtime but also to collect and process any
aerial pictures taken as soon as possible was the main
interest of this platform.

VI. CONCLUSIONS

The main focus of this paper was to propose a robust
platform that could fit the six use cases described in

the results section while accomplishing a reliable and
secure system. It was necessary to research fields such
as software design patterns, realtime communication, and
time-series databases to achieve this goal. Along with
this research, we found some tools that could satisfy at
least one of our use cases, however, none could satisfy
everything. During the process of development of this
platform came across some difficulties, particularly in
the video stream part. The stream of video from the
camera present on the UAV was a challenge in regards to
managing which user could access a specific video stream.

The applications for this platform are endless, the
simple fact of connecting a UAV to a cloud platform
opens a group of possibilities in terms of industrial
automation, aerial surveillance, civil construction, and
building maintenance, among others. By adding features
such as multi-spectrum camera integrations and map
processing it is possible to extend the applications of this
platform for other fields such as crop health surveillance,
cattle management, and vine gap detection. Lastly, there
are still points to improve on the platform regarding the
management and configuration of UAVs, currently, we are
developing a feature to calibrate internal UAV sensors
directly from the platform.

ACKNOWLEDGMENT

This work is supported by the European Regional
Development Fund (FEDER), through the Regional Op-
erational Programme of Lisbon (POR LISBOA 2020)
and the Competitiveness and Internationalization Oper-
ational Programme (COMPETE 2020) of the Portugal
2020 framework [Project 5G with Nr. 024539 (POCI-
01-0247-FEDER-024539)]. This project has also received
funding from the ECSEL Joint Undertaking (JU) under
grant agreement No 783221. The JU receives support
from the European Union’s Horizon 2020 research and
innovation programme and Austria, Belgium, Czech Re-
public, Finland, Germany, Greece, Italy, Latvia, Norway,
Poland, Portugal, Spain, Sweden. In last this work was
also supported by SECREDAS project, which received
funding from the Electronic Component Systems for Eu-
ropean Leadership Joint Undertaking (ECSEL-JU) under
grant agreement nr.783119 and TeamUp5Gfuse, which
received funding from the MSCA-ITN European Train-
ing Networks (MSCA-ITN-ETN) under grant agreement
nr.813391.

REFERENCES

[1] Evşen Yanmaz, Saeed Yahyanejad, Bernhard Rinner, Hermann
Hellwagner, and Christian Bettstetter. Drone networks: Commu-
nications, coordination, and sensing. Ad Hoc Networks, 68:1 –
15, 2018. Advances in Wireless Communication and Networking
for Cooperating Autonomous Systems.

[2] A. Ollero, S. Lacroix, L. Merino, J. Gancet, J. Wiklund, V. Re-
muss, I. V. Perez, L. G. Gutierrez, D. X. Viegas, M. A. G.
Benitez, A. Mallet, R. Alami, R. Chatila, G. Hommel, F. J. C.
Lechuga, B. C. Arrue, J. Ferruz, J. R. Martinez-De Dios, and
F. Caballero. Multiple eyes in the skies: architecture and
perception issues in the comets unmanned air vehicles project.
IEEE Robotics Automation Magazine, 12(2):46–57, 2005.

[3] L. Gupta, R. Jain, and G. Vaszkun. Survey of important issues
in uav communication networks. IEEE Communications Surveys
Tutorials, 18(2):1123–1152, 2016.

[4] Emad Ebeid, Martin Skriver, Kristian Husum Terkildsen, Kjeld
Jensen, and Ulrik Pagh Schultz. A survey of open-source uav
flight controllers and flight simulators. Microprocessors and
Microsystems, 61:11 – 20, 2018.

[5] T. Dardoize, N. Ciochetto, J. Hong, and H. Shin. Implementation
of ground control system for autonomous multi-agents using
qgroundcontrol. In 2019 Workshop on Research, Education and
Development of Unmanned Aerial Systems (RED UAS), pages
24–30, 2019.

[6] Flytos. https://flytbase.com/flytos/. Accessed: 12-02-2020.
[7] Daniel Silva, Gerard Toonstra, Henrique Souza, and Túllio

Pereira. Qualidade de ortomosaicos de imagens de vant pro-
cessados com os softwares aps, pix4d e photoscan. 01 2014.

[8] J. D. Renwick, L. J. Klein, and H. F. Hamann. Drone-based
reconstruction for 3d geospatial data processing. In 2016 IEEE
3rd World Forum on Internet of Things (WF-IoT), pages 729–
734, 2016.

[9] How to verify that there is enough overlap between the images.
https://support.pix4d.com/hc/en-us/articles/203756125-How-
to-verify-that-there-is-Enough-Overlap-between-the-Images.
Accessed: 12-02-2020.

[10] Webodm. https://github.com/OpenDroneMap/WebODM. Ac-
cessed: 12-02-2020.

[11] H. Surmann, R. Worst, T. Buschmann, A. Leinweber, A. Schmitz,
G. Senkowski, and N. Goddemeier. Integration of uavs in
urban search and rescue missions. In 2019 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR),
pages 203–209, 2019.

[12] Emad Samuel Malki Ebeid, Martin Skriver, and Jie Jin. A
survey on open-source flight control platforms of unmanned
aerial vehicle. 08 2017.

[13] A. Koubâa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith, and
M. Khalgui. Micro air vehicle link (mavlink) in a nutshell: A
survey. IEEE Access, 7:87658–87680, 2019.

[14] J. P. Matos-Carvalho, J. M. Fonseca, and A. Mora. Uav
downwash dynamic texture features for terrain classification
on autonomous navigation. In 2018 Federated Conference on
Computer Science and Information Systems (FedCSIS), pages
1079–1083, 2018.

[15] Ian Fette and Alexey Melnikov. The websocket protocol, 2011.
[16] Caio Ribeiro Pereira. Aplicações web real-time com Node. js.

Editora Casa do Código, 2014.
[17] Aaron Martinez Romero. Ros/concepts, 2014.
[18] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg. A survey of

research on cloud robotics and automation. IEEE Transactions
on Automation Science and Engineering, 12(2):398–409, 2015.

[19] Lentin Joseph. Mastering ROS for Robotics Programming. Packt
Publishing, December 2015.

[20] Angular long-term support. https://angular.io/guide/releases. Ac-
cessed: 12-02-2020.

[21] Angular rxjs integration. https://angular.io/guide/rx-library. Ac-
cessed: 12-02-2020.

[22] Dhanji R Prasanna. Dependency injection. 2009.

A
n
n
e
x

I
Prototype User Interfaces

Figure I.1: First Prototype - Vehicles Page

81

ANNEX I. PROTOTYPE USER INTERFACES

Figure I.2: First Prototype - Vehicles Menu Expanded

Figure I.3: First Prototype - Missions Page

82

Figure I.4: First Prototype - Missions Menu Expanded

Figure I.5: First Prototype - Sensors Page

83

ANNEX I. PROTOTYPE USER INTERFACES

Figure I.6: First Prototype - Sensors Menu Expanded

Figure I.7: First Prototype - Sensors Menu Expanded Graph

84

Figure I.8: First Prototype - Reports Page

Figure I.9: First Prototype - Carbon Footprint Page

85

ANNEX I. PROTOTYPE USER INTERFACES

Figure I.10: First Prototype - Weather Page

Figure I.11: 3D Map Visualization Interface

86

	List of Figures
	List of Tables
	Glossary
	Acronyms
	Introduction
	Motivation and Context
	Objectives
	Solution Overview
	Document Structure

	Problem Analysis
	Precision Farming
	Advantages of Precision Farming
	Challenges of Precision Farming

	AFarCloud Project
	Organization
	PDMFC Connection
	Impact on Precision Farming

	Requirements Elicitation
	Stakeholders
	Requirements
	Use Case Diagrams

	State of the art
	Cloud Computing
	Cyber-Physical Systems
	Overview
	Applications for Cyber-Physical Systems
	Challenges
	Unmanned Aerial Vehicles
	HEIFU

	Framework Concepts
	Robot Operating System
	Node.js
	InfluxDB

	Communication Protocols
	WebSocket

	Related Work
	FlytOS
	QGroundControl

	Approach
	First Prototype
	Architecture
	Backend
	Server
	Database

	Middleware
	REST API Endpoints
	WebSockets

	Frontend
	User Interface

	Validation and Critical Review
	Production Environment
	Case Studies
	Case Study 1 - 1 UAV (Simulation) with 4 Users
	Case Study 2 - 4 UAVs (Simulation) with 4 Users

	Round Trip Time (RTT) Test
	UAV video stream test

	Conclusion
	Summary
	Contributions
	Future Work

	Bibliography
	Accepted Paper - UAV Cloud Platform for Precision Farming
	Prototype User Interfaces

