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Abstract

In this paper, for heavy-tailed models and through the use of probability weighted moments

based on the largest observations, we deal essentially with the semi-parametric estimation of the

Value-at-Risk at a level p, the size of the loss occurred with a small probability p, as well as the

dual problem of estimation of the probability of exceedance of a high level x. These estimation

procedures depend crucially on the estimation of the extreme value index, the primary parameter in

Statistics of Extremes, also done on the basis of the same weighted moments. Under regular variation

conditions on the right-tail of the underlying distribution function F , we prove the consistency and

asymptotic normality of the estimators under consideration in this paper, through the usual link of

their asymptotic behaviour to the one of the extreme value index estimator they are based on. The

performance of these estimators, for finite samples, is illustrated through Monte-Carlo simulations.

An adaptive choice of thresholds is put forward. Applications to a real data set in the field of

insurance as well as to simulated data are also provided.
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1 Introduction, preliminaries and scope of the article

Let X1, X2, . . . , Xn be a set of n independent and identically distributed (i.i.d.), or even possibly weakly

dependent and stationary, random variables (r.v.’s), from a population with distribution function (d.f.)

F . Let us arrange them in ascending order, to get the order statistics (o.s.’s) X1:n ≤ · · · ≤ Xn:n. Suppose

that we are interested in the estimation of a high quantile of probability 1 − p, or equivalently, in the

estimation of the Value-at-Risk (VaR) at a level p, the size of the loss occurred with a small probability

p, given by

VaRp ≡ χ1−p := F←(1− p) = inf{x : F (x) ≥ 1− p}, (1.1)

with the notation F← standing thus for the generalized inverse function of F . Moreover, we are also

interested in the estimation of the probability of exceedance of a high level x = xn,

p = px := 1− F (x) =: F (x). (1.2)

Extreme Value Theory (EVT) provides a great variety of results that enable us to to deal with alternative

approaches in the statistical analysis of extreme events. Those approaches are essentially based on the

well-established limiting results described in the following.

1.1 Main limiting results in EVT

The main limiting result in EVT can be attributed to Gnedenko (1943), who fully characterized the pos-

sible non-degenerate limiting distribution of the linearly normalised maximum, (Xn:n − bn)/an, an > 0,

bn ∈ R. Such a limit is of the type of the general extreme value distribution (EVD),

EVγ(x) :=

{
exp(−(1 + γx)−1/γ), 1 + γx > 0 if γ 6= 0

exp(− exp(−x)), x ∈ R if γ = 0.
(1.3)

When such a non-degenerate limit exists, we say that F belongs to the max-domain of attraction of

EVγ and denote this by F ∈ DM(EVγ). The shape parameter γ is related with the heaviness of the

right-tail F = 1− F and it is often called the extreme value index (EVI).

Another seminal result in the field of EVT is due to Balkema and de Haan (1974) and Pickands

(1975). If we properly scale the excesses over a high threshold u, the limit distribution of those scaled

excesses is the Generalized Pareto distribution (GPD), strongly related with the d.f. EVγ(x), in (1.3),

and defined by,

GPγ(x) := 1 + lnEVγ(x) =

{
1− (1 + γx)−1/γ , 1 + γx > 0, x > 0 if γ 6= 0

1− exp(−x), x > 0 if γ = 0
(1.4)

(see, for instance, Embrechts et al., 1997, Section 3.4, and Reiss and Thomas, 2007, Section 1.4, for

more details).
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1.2 Most relevant approaches in the field of Statistics of Univariate Extremes

We shall briefly refer the three most important approaches in the area of Statistics of Univariate Ex-

tremes: the block maxima (BM) method, the peaks-over-threshold (POT) or even the peaks-over-random-

threshold (PORT) methods and the largest observations (LOB) method. For a more detailed review,

with extensive associated references, see Gomes et al. (2008) and Beirlant et al. (2012).

• The first method, the BM method, is of a parametric nature: we work with a sample of maxima of

adequate blocks of observations, and estimate the parameters (λ, δ, γ) of the EVD, EVγ((x− λ)/δ),

λ ∈ R, δ > 0, γ ∈ R, with EVγ(x) given in (1.3). This method is known to be possibly inefficient,

due to the fact that the loss of information in each block can be catastrophic.

• In the second approach, the POT method, inference is performed through the use of the sample

of excesses over a high deterministic threshold u. The limiting d.f. of these excesses is, up to

a scale factor, the distribution GPγ(x), in (1.4), and the method can be of a parametric or a

semi-parametric nature. Note that the high threshold can also be a random value, leading to the

PORT methodology, a terminology recently introduced in Araújo Santos et al. (2006).

• The third approach, the LOB method, is the one we shall consider in this paper. It uses the largest

k observations to make inference about the right tail F = 1 − F , assuming only that F belongs

to a wide sub-domain of DM(EVγ).

1.3 Estimators under study

Under the largest observations framework, and whenever dealing with heavy-tailed models, the classi-

cal semi-parametric EVI and VaR-estimators are the Hill (Hill, 1975) and Weissman-Hill’s estimators

(Weissman, 1978), with functional expressions

γ̂Hk,n :=
1

k

k∑
i=1

(lnXn−i+1:n − lnXn−k:n) (1.5)

and

Q̂Hk,n(p) := Xn−k:n c
γ̂Hk,n
k , ck ≡ ck(p) :=

k

np
, k = 1, 2, . . . , n− 1, (1.6)

respectively, which are pseudo-maximum likelihood estimators, consistent in the whole D+
M :=

DM(EVγ)γ>0, provided that k is intermediate, i.e. if

k = kn →∞ and k/n→ 0, as n→∞. (1.7)

In a way dual to (1.6), and given a high level x = xn, the probability p = px of exceedance of such a

level can be estimated by

p̂Hk,n(x) :=

(
k

n

)
C̃
−1/γ̂Hk,n
k , C̃k ≡ C̃k(x) :=

x

Xn−k:n
, k = 1, 2, . . . , n− 1. (1.8)
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Under further adequate restrictions on k, we can guarantee the asymptotic normality of the estimators

γ̂Hk,n, Q̂Hk,n(p) and p̂Hk,n(x), in (1.5), (1.6) and (1.8), respectively. But most of the times, these estimators

exhibit a large variance for small k, a strong bias for moderate k, sample paths with very short stability

regions around the target value and a very peaked mean square error (MSE) structure, as a function of

k. This has led researchers to the search of alternative estimators, with a smaller MSE.

Since heavy-tailed models only have mean value if γ < 1, methods based on sample moments have

been rarely considered when we work with such a type of distributions. But in many practical fields

like in finance or insurance, for example, we usually have a positive EVI smaller than one, and even

smaller than 1/2. In this article, and for the estimation of the above mentioned parameters of extreme

events, we now revisit the use of a probability weighted moments (PWM) method based on the largest

observations, developed in Caeiro and Gomes (2011) for the EVI.

The PWM method is a generalization of the method of moments. It also consists in equating sample

moments with their corresponding theoretical moments, and then solving those equations in order to

obtain estimates of the different parameters under play. The PWM of a r.v. X are defined by

Mp,r,s := E(Xp(F (X))r(1− F (X))s),

where p, r and s are any real numbers (Greenwood et al., 1979). When r = s = 0, Mp,0,0 are the

usual noncentral moments of order p. Hosking et al. (1985) advise the use of M1,r,s, because then the

relations between parameters and moments have usually a much simpler form. Also, when r and s are

integers, F r(1− F )s can be written as a linear combination of powers of F or 1− F . So it is usual to

work with the particular case,

ar := M1,0,r = E(X(1− F (X))r), r ≥ 0,

and the associated estimator,

âr =
1

n

n−r∑
i=1

(n− 1− r)!(n− i)!
(n− 1)!(n− i− r)!

Xi:n =
1

n

n∑
i=1

(n− i)(n− i− 1) . . . (n− i− r + 1)

(n− 1)(n− 2) . . . (n− r)
Xi:n. (1.9)

For γ < 1 and for d.f.’s like the EVD, EVγ((x− λ)/δ), with EVγ(x) given in (1.3), the Pareto d.f.,

Pγ(x; δ) = 1− (x/δ)−1/γ , x > δ, (1.10)

and the GPD, GPγ(x/δ), with GPγ(x) defined in (1.4), the PWM have simple expressions, which allow

a straightforward estimation of the EVI, γ. For the EVD, see Hosking et al. (1985) and the improved

versions in Diebolt et al. (2007, 2008). As an example, the Pareto PWM (PPWM) and the generalized

Pareto PWM (GPPWM) estimators of γ are valid for γ < 1, and given by

γ̂PPWM = 1−
(

â1

â0 − â1

)
and γ̂GPPWM = 1− 2â1

â0 − 2â1
, (1.11)
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respectively, where â0 and â1 are given in (1.9). The estimator γ̂GPPWM , in (1.11), was introduced and

studied in Hosking and Wallis (1987).

We shall consider in this paper, the PPWM estimators of VaRp and px, the parameters respec-

tively defined in (1.1) and (1.2), associated with the PPWM EVI-estimators studied in Caeiro and

Gomes (2011). Those estimators are semi-parametric in nature and, for comparison with the equiv-

alent estimators based on the Hill EVI-estimator, in (1.5), are based on the top k + 1 largest o.s.’s,

Xn−k:n ≤ Xn−k+1:n ≤ · · · ≤ Xn:n. Under such a framework, the estimators â0 and â1, in (1.9), should

be replaced by,

â0(k) :=
1

k + 1

k+1∑
i=1

Xn−i+1:n and â1(k) :=
1

k + 1

k+1∑
i=1

i

k + 1
Xn−i+1:n,

respectively. The PPWM EVI, VaR and p-estimators, based on the largest values are

γ̂PPWM
k,n := 1− â1(k)

â0(k)− â1(k)
, (1.12)

Q̂PPWM
k,n (p) :=

â0(k) â1(k)

â0(k)− â1(k)

( k
np

)γ̂PPWM

k,n
(1.13)

and

p̂PPWM
k,n (x) :=

(
k

n

)(x(â0(k)− â1(k))

â0(k)â1(k)

)−1/γ̂
PPWM

k,n
, (1.14)

respectively, with k = 1, 2, . . . , n− 1, and are consistent whenever γ < 1.

De Haan and Ferreira (2006) considered, also for γ < 1, the semi-parametric GPPWM EVI-

estimator, based on the sample of excesses over the high random level Xn−k:n, i.e.,

γ̂GPPWM
k,n := 1− 2â?1(k)

â?0(k)− 2â?1(k)
, (1.15)

with k = 1, 2, . . . , n− 1, and â?s(k) :=
∑k

i=1 (i/k)s (Xn−i+1:n−Xn−k:n)/k , s = 0, 1. For a finite-sample

comparison between the PPWM EVI-estimators in (1.12) and the GPPWM EVI-estimators in (1.15),

see Caeiro and Gomes (2011).

1.4 Scope of the article

In Section 2, after reviewing a few results already available in the literature, we state a lemma and a

theorem related with the asymptotic properties of the PPWM-estimators, defined in (1.13) and (1.14), of

the above mentioned parameters of extreme events, the Value-at-Risk at the level p and the probability

px of exceedance of a high level x, defined in (1.1) and (1.2), respectively. The performance of these

estimators, for finite samples, is illustrated, in Section 3, through a Monte-Carlo simulation study. In

Section 4, we put forward an adaptive choice of thresholds, again on the basis of bootstrap computer-

intensive methods. Applications to a real data set in the field of insurance as well as to a simulated

data set are provided in Section 5.
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2 Asymptotic Behaviour of the Estimators

2.1 Most common first and second-order frameworks for heavy tails

For heavy-tailed models, i.e., models with a positive EVI, we assume that F has a Pareto-type right-tail,

i.e., with the notation a(t) ∼ b(t) if and only if a(t)/b(t)→ 1, as t→∞,

F (x) = 1− F (x) ∼ (x/C)−1/γ ⇐⇒ U(t) ∼ C tγ , C > 0, γ > 0, (2.1)

where C is a scale parameter and U(t) := F←(1− 1/t), t > 1. Note that models with the Pareto-type

right-tail, in (2.1), have a regularly varying (RV) right-tail with a negative index of regular variation

equal to −1/γ (with the notation F ∈ RV−1/γ), and belong to the max-domain of attraction D+
M.

Indeed, more specifically and for all x > 0, we have,

F ∈ D+
M ⇐⇒ lim

t→∞

F (tx)

F (t)
= x−1/γ

(
F ∈ RV−1/γ

)
⇐⇒ lim

t→∞

U(tx)

U(t)
= xγ

(
U ∈ RVγ

)
, (2.2)

i.e. F (x) = x−1/γL
F

(x) and U(t) = xγLU (t), where L
F

and LU are both slowly varying functions (i.e.

they both belong to RV0), not necessarily converging to constants, as happens if condition (2.1) holds.

To guarantee the consistency of many semi-parametric estimators, we usually need to assume that k

is intermediate, i.e., that k is a sequence of integers in [1, n[, such that (1.7) holds. To obtain information

on the non-degenerate distributional behaviour of semi-parametric estimators of parameters of extreme

events, we often assume a second-order condition, like

lim
t→∞

lnU(tx)− lnU(t)− γ lnx

A(t)
=
xρ − 1

ρ
⇐⇒ lim

t→∞

U(tx)
U(t) − x

γ

A(t)
= xγ

xρ − 1

ρ
, (2.3)

valid for all x > 0, where ρ ≤ 0 is a second-order parameter controlling the speed of convergence of

U(tx)/U(t) to xγ , as t→∞. We then say that U is of second-order regular variation, with parameters

γ and ρ, and denote such a fact by U ∈ 2RV ρ
γ . If the limits in (2.3) exist, they are necessarily of the

above mentioned types and |A| ∈ RVρ (Geluk and de Haan, 1987; see also de Haan and Ferreira, 2006).

Moreover, we have

U ∈ 2RV ρ
γ ⇐⇒ F ∈ 2RV ρ̃

−1/γ , with ρ̃ = ρ/γ

and a rate function Ã related with A, in (2.3), through the relation Ã(t) = A(1/F (t))/γ2. The validity

of condition (2.3), with ρ < 0, is equivalent to condition (2.1).

2.2 Auxiliary results on intermediate order statistics

In the sequel, let us denote (Y1, . . . , Yn) a random sample of size n from a strict Pareto model, with d.f.

Pγ(x; 1), Pγ(x; δ) given in (1.10). Let (Y1:n, . . . , Yn:n) denote the sample of associated ascending o.s.’s.

We first state without proof the following results on the asymptotic behaviour of intermediate o.s.’s (see

de Haan and Ferreira, 2006, for details).
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Lemma 2.1. If (1.7) holds, then for the intermediate Pareto o.s. Yn−k:n, k Yn−k:n/n
p→ 1 and conse-

quently, Yn−k:n
p→ ∞, as n→∞. Moreover,

Bk,n :=
√
k
(
k Yn−k:n/n− 1

) d−→ B, a standard normal r.v., (2.4)

and Cov(Br,n, Bs,n) =
√
r s (1− s/n)/(s− 1), r < s.

Lemma 2.2. Under the first-order framework in (2.2), let us assume that k is intermediate, i.e., (1.7)

holds. Then, for the intermediate o.s. Xn−k:n

( d
= U(Yn−k:n)

)
, Xn−k:n/U(n/k)

p→ 1, and consequently,

Xn−k:n
p→ ∞, as n → ∞. If we further assume the validity of the second-order framework in (2.3),

then, as n→∞, the asymptotic distributional representation

Xn−k:n/U(n/k)
d
= 1 + γ Bk,n/

√
k + op(A(n/k))

holds, where Bk,n is the asymptotically standard normal sequence of r.v.’s in (2.4).

2.3 Asymptotic behaviour of the EVI-estimators under play

Regarding the Hill estimator, γ̂Hk,n, in (1.5):

Proposition 2.1 (de Haan and Peng, 1998, Theorem 1). Under the second-order framework in (2.3),

and for intermediate k, i.e. if (1.7) holds, the asymptotic distributional representation

γ̂Hk,n
d
= γ +

σHZ
H
k√
k

+ bHA(n/k)(1 + op(1)), σH = γ, bH =
1

1− ρ
,

holds, with ZHk asymptotically standard normal. Consequently, if we choose k such that√
k A(n/k)→ λA, finite and not necessarily null,

√
k(γ̂Hk,n − γ)

d−→
n→∞

N

(
λA

1− ρ
, γ2

)
.

We next refer the following results related with the asymptotic behaviour of the PPWM EVI-

estimator, γ̂PPWM
k,n , in (1.12):

Proposition 2.2 (Caeiro and Gomes, 2011, Proposition 2.4). Under the conditions of Proposition 2.1,

and with ZPPWM
k asymptotically standard normal, the asymptotic distributional representation

γ̂PPWM
k,n

d
= γ +

σPPWMZ
PPWM
k√
k

+ bPPWMA(n/k)(1 + op(1))

holds for any γ < 1/2, as n→∞, where

σ2
PPWM

:=
γ2(1− γ)(2− γ)2

(1− 2γ)(3− 2γ)
and bPPWM :=

(1− γ)(2− γ)

(1− γ − ρ)(2− γ − ρ)
. (2.5)

Consequently, if we choose k such that
√
k A(n/k)→ λA, finite and not necessarily null,

√
k
(
γ̂PPWM
k,n − γ

)
d−→

n→∞
N
(
λA bPPWM , σ

2
PPWM

)
.

Remark 2.1. It is obvious that σ2
H

:= γ2 < σ2
PPWM

, for every 0 < γ < 1/2. On the other hand,

bPPWM < bH = 1/(1− ρ), unless ρ = 0. An asymptotic comparison of H and PPWM EVI-estimators at

optimal levels can be seen in Caeiro and Gomes (2011).
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2.4 Main asymptotic results

If we combine the results of Lemma 2.1 with the fact that Xn−k:n
d
= U(Yn−k:n) and the results in Drees

(1998), we first state, without the need of a proof, the following lemma:

Lemma 2.3. For intermediate k, i.e., whenever (1.7) holds, and under the second-order framework in

(2.3), but with ρ < 0, (2.1) holds and, if p = pn is a sequence of probabilities such that

ck ≡ ck(p) = k/(np)→ ξ ∈ (0,∞], as n→∞, (2.6)

then, with

Ck ≡ Ck(p) :=
(
pYn−k:n

)−1
=

nck
kYn−k:n

,

and VaRp = U(1/p),
VaRp
Xn−k:n

/Cγk − 1

A(n/k)

p−→ ξρ − 1

ρ
=: hρ(ξ), (2.7)

as n → ∞. By continuity arguments, hρ(ξ) = −1/ρ, if ξ = ∞. If we furthermore assume that x = xn

is a sequence of high levels such that

C̃k ≡ C̃k(x) = x/Xn−k:n
p→ ξ̃ ∈ (0,∞], as n→∞, (2.8)

and the rate function Ã satisfies γ2Ã(t) = A(1/F (t)), with A given in (2.3), then, as n→∞,

F (x)
1/Yn−k:n

/C̃
−1/γ
k − 1

Ã(Xn−k:n)

p−→ ξ̃ρ̃ − 1

ρ̃
= hρ̃(ξ̃)

with ρ̃ = ρ/γ and hρ(ξ) defined in (2.7).

Corollary 2.1. Under the conditions of Lemma 2.3, if p = pn is a sequence of probabilities and x = xn

a sequence of high thresholds such that (2.6) and (2.8) hold, then, as n→∞,

C̃k(VaRp)

cγk(p)
= 1 + op(1) as well as

C̃k(x)

cγk(F (x))
= 1 + op(1).

Just as happens with the semi-parametric EVI-estimators γ̂Hk,n and γ̂PPWM
k,n , in (1.5) and (1.12),

respectively, let generally γ̂•k,n be any semi-parametric estimator of γ, such that, with Z•k asymptotically

standard normal, σ• > 0 and b• ∈ R,

γ̂•k,n
d
= γ +

σ•Z
•
k√
k

+ b• A(n/k)(1 + op(1)), as n→∞. (2.9)

Consequently, if
√
kA(n/k)→ λA , finite

√
k
(
γ̂•k,n − γ

) d−→
n→∞

N
(
λA b•, σ

2
•
)

=: G•. (2.10)
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More generally than Theorem 4.1 in Beirlant et al. (2008), and Proposition 5 in Caeiro and Gomes

(2009), we now state the following theorem, a generalization to the case ξ < ∞ of Theorem 4.3.8 and

4.4.7 in de Haan and Ferreira (2006).

Theorem 2.1. Under the conditions of Lemma 2.3, let us further assume that p = pn is a sequence of

probabilities such that, as n→∞,

(A1) ck ≡ ck(p) = k/(np)→ ξ, ξ ∈ (0,∞], ln ck = o(
√
k),

(A2) rkA(n/k)→ ηA ∈ R,

with

rk =

{ √
k if ξ ∈ (0,∞)√
k/ ln ck if ξ =∞.

Then, with VaRp = F←(1 − p) = U(1/p), Q̂Hk,n(p), Q̂PPWM
k,n (p), generally denoted Q̂•k,n(p), B and G•

given in (1.1), (1.6), (1.13), (2.4) and (2.10), respectively, ρ < 0 and hρ(ξ) given in (2.7),

rk
(

ln Q̂•k,n(p)− ln VaRp

) d−→
n→∞

Np =

{
(ln ξ)G• + γB − ηAhρ(ξ) if ξ ∈ (0,∞)

G• + ηA/ρ if ξ =∞.

Indeed, we have the validity of the asymptotic distributional representation

ln Q̂•k,n(p)− ln VaRp
d
= ln ck

(
γ̂•k,n − γ

)
+ γB −A(n/k)hρ(ξ) + op(A(n/k)).

On the other hand, let x = xn be a sequence of levels such that, as n→∞,

(B1) C̃k ≡ C̃k(x) := x/Xn−k:n
p→ ξ̃ ∈ (0,∞], ln C̃k = op(

√
k),

(B2) R̃k A(n/k)
p→ η̃A ∈ R,

with

R̃k =

{ √
k if ξ̃ ∈ (0,∞)√
k/ ln C̃k if ξ̃ =∞.

Then, similarly as before, with px, p̂Hk,n(x) and p̂PPWM
k,n (x), generally denoted p̂•k,n(x), defined in (1.2),

(1.8) and (1.14), respectively,

R̃k
(

ln p̂•k,n(x)− ln px
) d→
n→∞

Nx =

{
(ln ξ̃)G•/γ2 + B − η̃Ahρ̃(ξ̃)/γ2 if ξ̃ ∈ (0,∞)

(G• + η̃A/ρ̃)/γ2 if ξ̃ =∞.

If ξ̃ =∞ and
√
kA(n/k)→ λA, finite,

γ2
√
k

ln C̃k

(
p̂•k,n(x)

px
− 1

)
d−→

n→∞
G•. (2.11)
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Indeed, as n→∞, we have the validity of the asymptotic distributional representation,

p̂•k,n(x)
d
= p

{
1 +

ln C̃k
γ2

(γ̂•k,n − γ)(1 + op(1)) +
B√
k

+
Ã(n/k)(1 + op(1))

ρ̃

}
,

with Ã(t) = A(1/F (t))/γ2.

Proof. The proof follows straightforwardly from the results in Lemma 2.3, and is left to the reader.

Remark 2.2. With x = U(1/p), and since γ > 0, we can replace (B1) by (A1). And we have ξ̃ = ξγ.

Also, if ξ̃ =∞, we can choose R̃k =
√
k/(γ ln ck) (or equivalently, C̃k = cγk).

Corollary 2.2 (de Haan and Ferreira, 2006, Theorem 4.3.8). For intermediate k, i.e., whenever (1.7)

holds, and under the second-order framework in (2.3), but with ρ < 0, if p = pn is a sequence of

probabilities such that (A1) and (A2) hold with ξ =∞, and if
√
kA(n/k)→ λA, finite, then,

√
k

ln ck

(
Q̂•k,n(p)

VaRp
− 1

)
d−→

n→∞
G•,

given in (2.10). We can indeed write the asymptotic distributional representation,

Q̂•k,n(p)
d
= VaRp

{
1 + ln ck(γ̂

•
k,n − γ)(1 + op(1)) +

γB√
k

+
A(n/k)(1 + op(1))

ρ

}
.

Corollary 2.3 (de Haan and Ferreira, 2006, Theorem 4.4.7). Under the conditions of Corollary 2.2, if

we consider that x = U(1/p), then

γ
√
k

ln ck

(
p̂•k,n(x)

p
− 1

)
d−→

n→∞
G•.

Remark 2.3. For γ > 0, the asymptotic dominant behaviour of Q̂•k,n(p) and p̂•k,n(x) is thus fully

determined by the asymptotic behaviour of γ̂•k,n.

Remark 2.4. In a certain dualistic way, the above conditions on the sequence of probabilities p = px

and the Value-at-Risk, VaRp, regarded as a level VaRp = x = xn can be interchanged. From the second

half of Corollary 2.1, for instance, when x = xn is such that C̃k = C̃k(x) satisfies the conditions

of Theorem 2.1, it is readily understood that the sequence ck ≡ ck(F (x)) = k/(n F (x)) satisfies the

condition C̃
1/γ
k (x)/ck(F (x))

p→ 1, as n → ∞, and consequently, also the conditions on ck assumed in

Theorem 2.1. Alternatively, when p = pn is such that ck = ck(p) satisfies the conditions in Theorem 2.1,

from the first half of Corollary 2.1 we see that C̃k(U(1/p))/cγk(p)
p→ 1. Consequently, the conditions on

C̃k(U(1/p)) assumed in Theorem 2.1 also hold.

Remark 2.5. Because of this dualistic interpretation, i.e. more specifically from the fact that

C̃k(x)/cγk(F (x))
p→ 1, as n → ∞, it is also easily understood how, for the exceedance probability

estimator, p̂•k,n(x), and with

rk(x) =

{ √
k if ξ̃ ∈ (0,∞)√
k/ ln ck(F (x)) if ξ̃ =∞,
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we can state in an equivalent way that, as n→∞, rk(x)
(

ln p̂•k,n − ln p
) d−→
n→∞

Nx/γ.

3 Simulation results

In this section, we have implemented a multi-sample Monte Carlo simulation experiment of size 5000×10,

to obtain the distributional behaviour of the new semi-parametric VaR-estimators Q̂PPWM
k,n (p), in (1.13),

comparatively with the behaviour of the classical estimators Q̂Hk,n(p), in (1.6), for p = 1/n (ξ = ∞),

p = n−1/(1−2ρ)/10 (ξ finite and non-null at optimal levels) and p = 0.01 (ξ = 0, a value out of the

scope of Theorem 2.1), for n = 50, 100, 200, 500, 1000, 2000, 5000, 10000 and 20000, and for the

following underlying parents: the Fréchet(γ) parent, with d.f. F (x) = exp(−x−1/γ), x > 0, γ > 0

(ρ = −1) and the Burr(γ, ρ) parent, with d.f. F (x) = 1− (1 + x−ρ/γ)1/ρ, x > 0. For the same models,

we have also dealt with the dual problem of estimation of p (again known to be equal to the same

values as before), the probability of exceedance of a high level x = VaRp, through the new estimator

p̂PPWM
k,n (x), in (1.14), comparatively with the behaviour of the classical estimators p̂Hk,n(x), in (1.8).

We have further considered the non-parametric (NP) V arp-estimator, X[n(1−p)]+1:n, and px-estimator,

p̂x = {#Xi > x, 1 ≤ i ≤ n}/(n+ 1).

3.1 Simulated mean values and root mean squared errors of the VaR-estimators

To ilustraste the finite sample behaviour of the VaR-estimators, we present, in Figures 1 and 2, the

simulated mean value (E) and root mean square error (RMSE) patterns of the normalised values of

Q̂Hk,n(p) and Q̂PPWM
k,n (p), denoted Q

H
:= Q̂Hk,n(p)/VaRp and Q

PPWM
:= Q̂PPWM

k,n (p)/VaRp, respec-

tively, as functions of k, the number of top o.s. used, for Fréchet(0.25) and Burr(0.25,−0.75) parents,

respectively, and sample size n = 500. Similar patterns were obtained for the other simulated models

and other values of n.

3.1.1 Finite sample behaviour of the VaR-estimators at simulated optimal levels

In Table 1, we present the simulated mean values of the above mentioned normalised VaRp-estimators,

denoted H and PPWM, for the sake of simplicity, at their simulated optimal levels kH0 and kPPWM
0 ,

respectively, for p = 1/n. We also present the simulated mean values of the normalised NP estimator of

VaRp. In Table 2, we present, in the first row, the simulated relative efficiencies (REFF ) of Q̂PPWM
k,n (p),

p = 1/n, comparatively with the Weissman-Hill estimator, whenever computed at their simulated

optimal levels, i.e., the simulated values of

REFFPPWM |H := RMSE
(
Q̂H
n,kH0

(p)
)
/RMSE

(
Q̂PPWM
n,kPPWM

0
(p)
)
.

We also present, in the second row of each entry, the equivalent REFF indicator of the NP estimator of

VaRp. In the third row, we present the simulated value of RMSE
(
Q̂H
n,kH0

(p)
)
, also for p = 1/n, so that

we can easily recover the RMSE of the other estimators. In all tables the “best” values are written in

bold.
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Figure 1: Simulated mean values (above) and root mean squared errors (below) for the Fréchet(γ) model,

γ = 0.25, n = 500 and p = 1/n (left), p = n−1/(1−2ρ)/10 (center) and p = 0.01 (right).
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with (γ, ρ) = (0.25,−0.75), n = 500 and p = 1/n (left), p = n−1/(1−2ρ)/10 (center) and p = 0.01 (right).
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Table 1: Simulated mean values of the normalised NP and semi-parametric VaRp-estimators under

consideration, at their simulated optimal levels, for p = 1/n.

n 50 100 200 500 1000 2000 5000 10000 20000

H 0.921 0.931 0.938 0.945 0.948 0.950 0.980 1.083 1.087

Burr(0.25,−0.2) PPWM 0.824 0.985 1.036 1.032 1.040 1.050 1.062 1.068 1.072

NP 0.864 0.874 0.882 0.892 0.896 0.899 0.901 0.905 0.907

H 0.932 0.928 0.932 1.017 1.175 1.164 1.148 1.137 1.125

Burr(0.5,−0.5) PPWM 0.770 0.857 1.034 1.079 1.049 1.005 1.031 1.019 1.104

NP 0.873 0.878 0.880 0.886 0.885 0.886 0.883 0.884 0.885

H 0.959 0.962 1.058 1.066 1.062 1.057 1.050 1.046 1.042

Burr(0.25,−0.75) PPWM 1.013 1.041 1.053 1.057 1.057 1.055 1.049 1.045 1.040

NP 0.914 0.917 0.918 0.920 0.920 0.919 0.918 0.919 0.919

H 1.001 1.044 1.050 1.050 1.045 1.042 1.036 1.030 1.027

Fréchet(0.25) PPWM 1.031 1.038 1.042 1.044 1.043 1.041 1.035 1.031 1.027

NP 0.916 0.913 0.912 0.915 0.917 0.919 0.920 0.919 0.919

H 1.035 1.051 1.052 1.045 1.040 1.034 1.028 1.023 1.020

Burr(0.25,−1.5) PPWM 1.033 1.039 1.044 1.044 1.040 1.036 1.029 1.024 1.021

NP 0.919 0.918 0.919 0.921 0.920 0.920 0.918 0.919 0.919

H 0.990 1.247 1.220 1.168 1.144 1.117 1.090 1.075 1.063

Burr(0.75,−1.5) PPWM 0.724 0.769 0.823 0.900 0.962 1.024 1.109 1.069 0.896

NP 0.900 0.897 0.898 0.913 0.911 0.912 0.903 0.904 0.904

Table 2: Simulated values of the indicators REFFPPWM |H (first row), REFFNP |H (second row) and

RMSEH := RMSE
(
Q̂H
n,kH0

(p)
)

(third row) for the VaRp estimation, p = 1/n.

n 50 100 200 500 1000 2000 5000 10000 20000

PPWM|H 1.381 1.999 1.299 1.207 1.181 1.181 1.219 1.180 1.158

Burr(0.25,−0.2) NP|H 0.931 0.933 0.947 0.947 0.951 0.949 0.960 0.905 0.859

RMSEH 0.372 0.340 0.316 0.292 0.279 0.268 0.254 0.235 0.217

PPWM|H 1.659 2.181 2.535 1.516 1.310 1.144 0.977 0.873 0.800

Burr(0.5,−0.5) NP|H 0.965 0.963 0.992 0.972 0.903 0.790 0.688 0.610 0.544

RMSEH 0.537 0.516 0.505 0.485 0.444 0.391 0.329 0.290 0.255

PPWM|H 1.107 1.121 1.102 1.067 1.046 1.032 1.027 1.024 1.021

Burr(0.25,−0.75) NP|H 0.952 0.953 0.914 0.790 0.701 0.614 0.514 0.447 0.388

RMSEH 0.220 0.217 0.204 0.175 0.155 0.136 0.113 0.098 0.085

PPWM|H 1.118 1.091 1.064 1.041 1.019 1.005 0.998 0.996 0.995

Fréchet(0.25) NP|H 0.944 0.857 0.762 0.623 0.526 0.448 0.363 0.306 0.257

RMSEH 0.204 0.182 0.160 0.133 0.115 0.098 0.079 0.067 0.057

PPWM|H 1.103 1.071 1.029 1.001 0.992 0.980 0.976 0.974 0.971

Burr(0.25,−1.5) NP|H 0.928 0.828 0.726 0.585 0.496 0.412 0.324 0.268 0.221

RMSEH 0.200 0.178 0.156 0.128 0.109 0.091 0.071 0.058 0.048

PPWM|H 2.209 2.176 1.945 1.586 1.289 0.995 0.679 0.491 0.393

Burr(0.75,−1.5) NP|H 0.962 0.861 0.740 0.522 0.421 0.320 0.261 0.211 0.178

RMSEH 0.810 0.729 0.603 0.466 0.383 0.309 0.234 0.189 0.154

Tables 3 and 4 are similar to Tables 1 and 2, respectively, but for p = n−1/(1−2ρ)/10. Finally, Tables

5 and Table 6 are similar to Tables 1 and 2, respectively, but for a fixed value p = 0.01.
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Table 3: Simulated mean values of the normalised NP and semi-parametric VaRp-estimators under

consideration, at their simulated optimal levels, for p = n−1/(1−2ρ)/10.

n 50 100 200 500 1000 2000 5000 10000 20000

H 0.995 0.944 0.919 0.902 0.899 0.899 0.948 1.064 1.061

Burr(0.25,-0.2) PPWM 1.176 1.039 1.031 1.041 1.051 1.056 1.057 1.055 1.053

NP 0.523 0.594 0.660 0.744 0.804 0.862 0.793 0.848 0.903

H 0.887 0.928 0.941 0.975 0.982 1.051 1.043 1.038 1.030

Burr(0.5,-0.5) PPWM 0.790 0.857 0.946 1.075 1.059 1.022 0.965 0.974 0.981

NP 0.715 0.878 0.773 0.818 0.856 0.920 0.924 0.987 0.962

H 0.958 0.971 0.993 1.021 1.018 1.015 1.012 1.010 1.009

Burr(0.25,-0.75) PPWM 1.020 1.028 1.027 1.023 1.020 1.017 1.013 1.011 1.009

NP 0.799 0.897 0.915 0.936 0.961 0.980 0.988 0.988 0.992

H 0.955 1.022 1.024 1.020 1.016 1.013 1.010 1.008 1.007

Fréchet(0.25) PPWM 1.024 1.023 1.021 1.018 1.016 1.014 1.011 1.009 1.007

NP 0.866 0.891 0.938 0.960 0.990 0.992 0.991 0.995 0.998

H 0.977 1.020 1.017 1.014 1.010 1.008 1.006 1.005 1.004

Burr(0.25,−1.5) PPWM 1.012 1.018 1.014 1.013 1.011 1.009 1.006 1.005 1.004

NP 0.942 0.922 0.956 0.982 0.992 0.996 0.996 0.999 0.998

H 0.984 0.995 1.039 1.037 1.030 1.023 1.017 1.013 1.010

Burr(0.75,−1.5) PPWM 0.777 0.844 0.891 0.936 0.957 0.972 0.984 0.989 0.993

NP 0.909 0.818 0.899 0.964 0.987 0.995 0.992 0.999 0.996

Table 4: Simulated values of the indicators REFFPPWM |H (first row), REFFNP |H (second row) and

RMSE0 := RMSE
(
Q̂H
n,kH0

(p)
)

(third row) for the VaRp estimation, p = n−1/(1−2ρ)/10.

n 50 100 200 500 1000 2000 5000 10000 20000

PPWM|H 2.547 1.627 1.354 1.171 1.138 1.186 1.214 1.173 1.150

Burr(0.25− 0.2) NP|H 1.657 1.297 1.135 1.002 0.976 0.984 0.913 0.894 0.873

RMSEH 0.875 0.606 0.468 0.352 0.307 0.283 0.237 0.206 0.179

PPWM|H 1.963 2.181 2.283 1.922 1.276 1.125 1.023 0.990 0.961

Burr(0.5,−0.5) NP|H 1.149 0.963 1.051 0.989 0.956 0.911 0.858 0.814 0.815

RMSEH 0.608 0.516 0.405 0.314 0.261 0.213 0.161 0.132 0.108

PPWM|H 1.099 1.089 1.079 1.052 1.033 1.023 1.017 1.011 1.006

Burr(0.25,−0.75) NP|H 0.868 0.925 0.897 0.846 0.834 0.818 0.800 0.780 0.776

RMSEH 0.214 0.174 0.141 0.104 0.083 0.066 0.049 0.039 0.032

PPWM|H 1.093 1.080 1.053 1.028 1.010 0.997 0.989 0.987 0.985

Fréchet(0.25) NP|H 0.901 0.839 0.827 0.784 0.771 0.760 0.748 0.740 0.736

RMSEH 0.177 0.137 0.106 0.076 0.060 0.047 0.034 0.027 0.021

PPWM|H 1.071 1.054 1.019 0.994 0.987 0.978 0.973 0.970 0.966

Burr(0.25,−1.5) NP|H 0.910 0.848 0.832 0.821 0.810 0.802 0.795 0.785 0.781

RMSEH 0.149 0.114 0.087 0.062 0.047 0.036 0.025 0.020 0.015

PPWM|H 1.522 1.323 1.207 1.083 1.028 0.988 0.957 0.940 0.928

Burr(0.75,−1.5) NP|H 0.939 1.021 0.944 0.870 0.839 0.818 0.813 0.794 0.791

RMSEH 0.512 0.379 0.288 0.196 0.148 0.112 0.078 0.059 0.046
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Table 5: Simulated mean values of the normalised semi-parametric and NP VaRp-estimators under

consideration, at their simulated optimal levels, for p = 0.01.

n

n 50 100 200 500 1000 2000 5000 10000 20000

H 0.893 0.931 0.955 0.972 0.976 0.989 0.996 0.998 0.999

Burr(0.25,−0.2) PPWM 0.975 0.985 0.990 0.993 0.994 0.995 0.998 0.999 0.999

NP 0.638 1.400 1.162 1.059 1.029 1.015 1.006 1.003 1.001

H 0.955 0.928 0.964 0.986 0.988 0.991 0.996 0.999 1.000

Burr(0.5,−0.5) PPWM 0.841 0.857 0.879 0.902 0.914 0.973 0.984 0.989 0.992

NP 0.589 1.870 1.285 1.095 1.046 1.023 1.009 1.004 1.002

H 0.932 0.962 1.004 1.017 1.010 1.006 1.003 1.002 1.001

Burr(0.25,−0.75) PPWM 0.944 1.041 1.032 1.020 1.013 1.009 1.004 1.002 1.001

NP 0.763 1.234 1.096 1.035 1.017 1.009 1.003 1.002 1.001

H 1.071 1.044 1.035 1.023 1.016 1.011 1.007 1.004 1.003

Fréchet(0.25) PPWM 1.050 1.038 1.030 1.021 1.016 1.012 1.007 1.005 1.003

NP 0.769 1.193 1.086 1.033 1.016 1.008 1.003 1.002 1.001

H 1.070 1.051 1.036 1.023 1.016 1.011 1.007 1.005 1.003

Burr(0.25,−1.5) PPWM 1.052 1.039 1.032 1.022 1.016 1.012 1.007 1.005 1.003

NP 0.773 1.212 1.093 1.034 1.017 1.009 1.003 1.002 1.001

H 1.459 1.247 1.142 1.072 1.050 1.032 1.020 1.013 1.009

Burr(0.75,−1.5) PPWM 0.736 0.769 0.799 0.842 0.934 0.962 0.982 0.989 0.994

NP 0.535 2.938 1.510 1.157 1.074 1.036 1.014 1.007 1.003

Table 6: Simulated values of the indicators REFFPPWM |H (first row), REFFNP |H (second row) and

RMSE0 := RMSE
(
Q̂H
n,kH0

(p)
)

(third row) for the VaRp estimation, p = 0.01.

n

50 100 200 500 1000 2000 5000 10000 20000

PPWM|H 1.144 1.091 1.059 1.030 1.010 0.996 0.986 0.984 0.980

Burr(0.25,−0.2) NP|H 0.939 0.360 0.529 0.644 0.707 0.749 0.785 0.803 0.818

RMSEH 0.487 0.340 0.243 0.154 0.110 0.078 0.049 0.035 0.025

PPWM|H 3.129 2.181 1.768 1.396 1.167 1.013 0.987 0.969 0.954

Burr(0.5,−0.5) NP|H 1.666 0.168 0.445 0.669 0.751 0.797 0.825 0.831 0.836

RMSEH 0.917 0.516 0.345 0.213 0.150 0.105 0.066 0.047 0.033

PPWM|H 1.173 1.121 1.087 1.050 1.029 1.018 1.011 1.006 1.002

Burr(0.25,−0.75) NP|H 1.038 0.378 0.579 0.722 0.774 0.807 0.829 0.832 0.837

RMSEH 0.309 0.217 0.154 0.096 0.068 0.048 0.030 0.022 0.015

PPWM|H 1.144 1.091 1.059 1.030 1.010 0.996 0.986 0.984 0.980

Fréchet(0.25) NP|H 0.939 0.360 0.529 0.644 0.707 0.749 0.785 0.803 0.818

RMSEH 0.268 0.182 0.129 0.083 0.060 0.043 0.028 0.020 0.015

PPWM|H 1.117 1.071 1.026 0.998 0.989 0.979 0.973 0.970 0.966

Burr(0.25,−1.5) NP|H 0.918 0.351 0.496 0.628 0.687 0.727 0.762 0.778 0.794

RMSEH 0.259 0.178 0.126 0.081 0.059 0.042 0.027 0.020 0.014

PPWM|H 3.384 2.176 1.566 1.104 1.007 0.961 0.943 0.940 0.944

Burr(0.75,−1.5) NP|H 1.948 0.065 0.313 0.553 0.655 0.715 0.764 0.781 0.798

RMSEH 1.326 0.729 0.455 0.269 0.188 0.132 0.084 0.059 0.042
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Some remarks:

1. Regarding mean values at optimal levels, and whenever ξ = ∞, the PPWM VaRp estimator

performs better than the classical Weissman-Hill estimator, in a large variety of situations, beating

always the NP-estimator, unless we work with a Burr(0.75,−1.5) model, for which the PPWM

estimators are not valid. If ξ is finite the outperformance of the PPWM VaRp-estimator becomes

clear when γ + ρ > 0, and for small values of n whenever γ + ρ ≤ 0. For large n and γ + ρ < 0,

the NP-estimator appears then as an interesting alternative.

2. Regarding RMSE, or equivalently REFF-indicators, the PPWM VaRp estimators performs better

than the Weissman-Hill quantile estimator at optimal levels, for all n, provided that γ+ρ > 0 and

ξ = ∞ or ξ finite and non-null. But in this region of the (γ, ρ)-plane, even for finite ξ (possibly

null), the H (the best for large n) and the PPWM (the best for small n) estimators are never

beaten by the NP estimator.

3. The new PPWM quantile estimator can be used as an alternative to the Weissman-Hill estimator,

specially for small to moderate sample sizes, but also for large samples, in most situations. All

the simulated results suggest that its RMSE is never much bigger than the one of Weissman-

Hill’s estimator RMSE and it has often a smaller bias than the Weissman-Hill estimator. At

their optimal levels and for small sample sizes, the PPWM VaRp estimator is usually much more

efficient than Weissman-Hill’s estimator.

4. The asymptotic properties of the new PPWM quantile estimators do not hold for the Burr model

with (γ, ρ) = (0.75,−1.5). But even in this example, the PPWM estimators are more efficient

than the Weissman-Hill estimators at their simulated optimal levels, for small up to moderate

sample sizes.

3.2 Simulated mean values and root mean squared errors of the px-estimators

Figures 3 and 4 are equivalent to Figures 1 and 2, respectively, but for the estimation of p = px =

1 − F (x) = 1/n, i.e. x =
(
− ln(1 − 1/n)

)−γ
for the Fréchet(γ) parent, and x =

(
n−ρ − 1

)−γ/ρ
for the

Burr(γ, ρ) parent. In Figure 3 and Figure 4, we have considered a sample size n = 500, again from

Fréchet(0.25) and Burr(0.5,−0.5) parents, respectively.

3.2.1 Finite sample behaviour of the px-estimators at simulated optimal levels

Tables 7 and 8 are similar to Tables 1 and 2, respectively, for the estimation of px, with x = F←(1−1/n).

Tables 9 and 10 are equivalent to Tables 7 and 8, respectively, now for the estimation of px, with

x = F←(1 − n−1/(1−2ρ)/10). Also, Tables 11 and 12 are equivalent to Tables 7 and 8, respectively,

for the estimation of px, with x = F←(1 − 0.01). We have decided to work with the normalised semi-

parametric estimators p̄H = p̂H
n,kH0

(x)/px and p̄PPWM = p̂PPWM
n,kPPWM

0
(x)/px, as well as with the normalised

NP estimator of px. For the sake of simplicity, these estimators are again denoted respectively H, PPWM

and NP.
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Figure 3: Simulated mean values (above) and root mean squared errors (below) for the Fréchet(γ)

model, with γ = 0.25, n = 500 and p = 1/n (left), p = n−1/(1−2ρ)/10 (center) and p = 0.01 (right).
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Table 7: Simulated mean values of the normalised NP and semi-parametric px-estimators under con-

sideration, at their simulated optimal levels, for x = F←(1− 1/n).

n

n 50 100 200 500 1000 2000 5000 10000 20000

H 1.046 1.044 1.032 1.027 1.025 1.023 1.031 1.189 1.261

Burr(0.25,−0.2) PPWM 0.737 0.984 1.156 1.122 1.123 1.134 1.159 1.183 1.212

NP 0.981 0.996 1.001 1.005 1.004 0.997 0.994 0.996 1.003

H 1.039 1.040 1.027 1.154 1.230 1.256 1.252 1.252 1.237

Burr(0.5,−0.5) PPWM 0.671 0.823 1.039 1.182 1.139 1.127 1.138 1.152 1.176

NP 0.981 0.996 1.001 1.005 1.004 0.997 0.994 0.996 1.003

H 1.037 1.053 1.176 1.230 1.237 1.236 1.211 1.197 1.180

Burr(0.25,−0.75) PPWM 1.154 1.146 1.170 1.209 1.229 1.228 1.211 1.194 1.175

NP 0.981 0.996 1.001 1.005 1.004 0.997 0.994 0.996 1.003

H 1.069 1.171 1.192 1.196 1.185 1.177 1.150 1.130 1.117

Fréchet(0.25) PPWM 1.125 1.136 1.160 1.184 1.185 1.176 1.154 1.132 1.114

NP 0.968 0.969 0.970 0.992 0.990 1.002 0.999 0.998 0.999

H 1.132 1.176 1.197 1.185 1.169 1.145 1.116 1.098 1.083

Burr(0.25,−1.5) PPWM 1.145 1.153 1.176 1.187 1.176 1.156 1.126 1.104 1.087

NP 0.977 0.989 0.997 1.004 1.004 0.997 0.994 0.996 1.003

H 1.132 1.176 1.197 1.185 1.169 1.145 1.116 1.098 1.083

Burr(0.75,−1.5) PPWM 0.648 0.704 0.772 0.867 0.944 1.022 1.129 1.187 1.091

NP 0.977 0.989 0.997 1.004 1.004 0.997 0.994 0.996 1.003

Table 8: Simulated values of the indicators REFFPPWM |H (first row), REFFNP |H (second row) and

RMSEH := RMSE
(
p̂H
n,kH0

(x)
)

(third row) for the px-estimation, with x = F←(1− 1/n).

n

n 50 100 200 500 1000 2000 5000 10000 20000

PPWM|H 1.809 3.054 1.584 1.325 1.252 1.206 1.181 1.162 1.148

Burr(0.25,−0.2) NP|H 0.659 0.675 0.690 0.696 0.705 0.711 0.716 0.709 0.698

RMSEH 0.635 0.665 0.685 0.697 0.710 0.711 0.710 0.703 0.696

PPWM|H 1.638 2.391 2.935 1.538 1.323 1.183 1.038 0.938 0.861

Burr(0.5,−0.5) NP|H 0.698 0.710 0.723 0.721 0.702 0.668 0.605 0.553 0.498

RMSEH 0.673 0.700 0.718 0.722 0.707 0.668 0.603 0.549 0.497

PPWM|H 1.187 1.128 1.097 1.065 1.042 1.024 1.017 1.015 1.016

Burr(0.25,−0.75) NP|H 0.719 0.726 0.727 0.683 0.630 0.570 0.485 0.423 0.367

RMSEH 0.693 0.715 0.722 0.683 0.634 0.570 0.482 0.420 0.366

PPWM|H 1.122 1.098 1.070 1.038 1.011 0.998 0.990 0.989 0.991

Fréchet(0.25) NP|H 0.730 0.700 0.655 0.560 0.494 0.423 0.343 0.288 0.241

RMSEH 0.710 0.688 0.641 0.558 0.488 0.423 0.341 0.287 0.241

PPWM|H 1.105 1.076 1.034 0.994 0.983 0.968 0.966 0.966 0.966

Burr(0.25,−1.5) NP|H 0.729 0.696 0.641 0.541 0.464 0.390 0.305 0.250 0.203

RMSEH 0.703 0.684 0.635 0.542 0.467 0.390 0.303 0.248 0.203

PPWM|H 1.505 1.624 1.657 1.539 1.341 1.085 0.760 0.550 0.420

Burr(0.75,−1.5) NP|H 0.729 0.696 0.641 0.541 0.464 0.390 0.305 0.250 0.203

RMSEH 0.703 0.684 0.635 0.542 0.467 0.390 0.303 0.248 0.203
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Table 9: Simulated mean values of the normalised NP and semi-parametric px-estimators under con-

sideration, at their simulated optimal levels, for x = F←(1− n−1/(1−2ρ)/10).
n

50 100 200 500 1000 2000 5000 10000 20000

H 1.197 1.138 1.078 1.037 1.028 1.024 1.053 1.137 1.168

Burr(0.25,−0.2) PPWM 1.236 1.237 1.168 1.134 1.133 1.140 1.148 1.150 1.154

NP 0.990 0.995 1.004 1.002 1.002 0.996 0.995 0.996 0.998

H 1.044 1.040 1.058 1.084 1.100 1.086 1.078 1.070 1.059

Burr(0.5,−0.5) PPWM 0.727 0.823 0.930 1.093 1.234 1.089 1.065 1.056 1.050

NP 0.981 0.996 1.003 1.001 1.003 1.002 1.002 1.001 1.001

H 1.050 1.077 1.079 1.078 1.073 1.058 1.046 1.039 1.036

Burr(0.25,−0.75) PPWM 1.156 1.123 1.108 1.091 1.078 1.066 1.053 1.044 1.037

NP 0.980 0.990 0.999 1.003 1.002 1.001 1.001 1.000 1.001

H 1.088 1.083 1.085 1.077 1.062 1.052 1.041 1.032 1.026

Fréchet(0.25) PPWM 1.123 1.098 1.085 1.073 1.063 1.054 1.042 1.034 1.028

NP 0.973 0.983 0.988 0.994 0.995 0.999 1.001 1.001 1.000

H 1.083 1.079 1.069 1.060 1.047 1.032 1.024 1.019 1.014

Burr(0.25,−1.5) PPWM 1.136 1.097 1.077 1.058 1.047 1.037 1.026 1.020 1.016

NP 0.977 0.989 0.994 1.000 1.000 1.001 1.001 1.000 1.000

H 1.083 1.079 1.069 1.060 1.047 1.032 1.024 1.019 1.014

Burr(0.75,−1.5) PPWM 0.641 0.691 0.741 0.874 0.919 0.949 0.972 0.982 0.988

NP 0.977 0.989 0.994 1.000 1.000 1.001 1.001 1.000 1.000

Table 10: Simulated values of the indicators REFFPPWM |H (first row), REFFNP |H (second row) and

RMSEH := RMSE
(
p̂H
n,kH0

(x)
)

(third row) for the px-estimation, with x = F←(1− n−1/(1−2ρ)/10).

n

n 50 100 200 500 1000 2000 5000 10000 20000

PPWM|H 2.541 1.585 1.387 1.278 1.233 1.202 1.181 1.158 1.140

Burr(0.25,−0.2) NP|H 0.656 0.665 0.667 0.676 0.695 0.707 0.720 0.719 0.719

RMSEH 1.164 1.078 0.983 0.883 0.821 0.754 0.670 0.605 0.549

PPWM|H 2.085 2.391 2.795 2.471 1.491 1.223 1.057 0.966 0.904

Burr(0.5,−0.5) NP|H 0.689 0.710 0.728 0.746 0.750 0.749 0.744 0.748 0.748

RMSEH 0.797 0.700 0.612 0.497 0.423 0.356 0.281 0.236 0.199

PPWM|H 1.193 1.146 1.106 1.069 1.047 1.035 1.024 1.017 1.011

Burr(0.25,−0.75) NP|H 0.721 0.733 0.748 0.757 0.756 0.765 0.763 0.759 0.759

RMSEH 0.678 0.573 0.479 0.370 0.303 0.247 0.187 0.151 0.123

PPWM|H 1.129 1.097 1.069 1.037 1.016 1.002 0.992 0.990 0.988

Fréchet(0.25) NP|H 0.738 0.741 0.747 0.745 0.741 0.741 0.735 0.728 0.726

RMSEH 0.617 0.495 0.395 0.292 0.232 0.184 0.136 0.107 0.085

PPWM|H 1.136 1.089 1.047 1.011 0.999 0.989 0.979 0.975 0.970

Burr(0.25,−1.5) NP|H 0.742 0.753 0.762 0.775 0.777 0.775 0.779 0.775 0.775

RMSEH 0.521 0.412 0.324 0.234 0.183 0.141 0.100 0.077 0.060

PPWM|H 1.170 1.054 0.944 0.853 0.838 0.834 0.838 0.843 0.850

Burr(0.75,−1.5) NP|H 0.742 0.753 0.762 0.775 0.777 0.775 0.779 0.775 0.775

RMSEH 0.521 0.412 0.324 0.234 0.183 0.141 0.100 0.077 0.060
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Table 11: Simulated mean values of the normalised NP and semi-parametric px-estimators under con-

sideration, at their simulated optimal levels, for x = F←(1− 0.01).
n

n 50 100 200 500 1000 2000 5000 10000 20000

H 1.093 1.044 1.037 1.031 1.019 1.010 1.005 1.003 1.001

Burr(0.25,−0.2) PPWM 0.975 0.984 0.989 0.992 0.992 0.993 0.996 0.998 0.999

NP 0.986 0.996 1.001 1.002 1.002 1.001 1.001 1.000 1.000

H 1.067 1.040 1.065 1.051 1.038 1.024 1.011 1.007 1.003

Burr(0.5,−0.5) PPWM 0.803 0.823 0.836 0.863 0.878 0.889 0.896 0.976 0.984

NP 0.986 0.996 1.001 1.002 1.002 1.001 1.001 1.000 1.000

H 1.052 1.053 1.092 1.062 1.048 1.035 1.017 1.010 1.006

Burr(0.25,−0.75) PPWM 1.132 1.146 1.120 1.081 1.057 1.038 1.020 1.012 1.007

NP 0.986 0.996 1.001 1.002 1.002 1.001 1.001 1.000 1.000

H 0.990 1.171 1.127 1.089 1.062 1.044 1.029 1.018 1.013

Fréchet(0.25) PPWM 1.152 1.136 1.112 1.084 1.063 1.047 1.030 1.020 1.013

NP 0.948 0.969 0.982 0.994 0.995 0.999 1.000 1.000 1.000

H 1.108 1.176 1.132 1.089 1.063 1.042 1.028 1.019 1.013

Burr(0.25,−1.5) PPWM 1.131 1.153 1.125 1.090 1.066 1.047 1.030 1.020 1.014

NP 0.974 0.989 0.999 1.002 1.002 1.001 1.001 1.000 1.000

H 1.108 1.176 1.132 1.089 1.063 1.042 1.028 1.019 1.013

Burr(0.75,−1.5) PPWM 0.660 0.704 0.744 0.784 0.806 0.927 0.968 0.982 0.990

NP 0.974 0.989 0.999 1.002 1.002 1.001 1.001 1.000 1.000

Table 12: Simulated values of the indicators REFFPPWM |H (first row), REFFNP |H (second row) and

RMSEH := RMSE
(
p̂H
n,kH0

(x)
)

(third row) for the px-estimation, with x = F←(1− 0.01).

n

n 50 100 200 500 1000 2000 5000 10000 20000

PPWM|H 2.976 3.054 3.122 3.155 3.163 3.176 3.163 3.144 3.155

Burr(0.25− 0.2) NP|H 0.654 0.675 0.695 0.714 0.721 0.725 0.730 0.726 0.727

RMSEH 0.904 0.665 0.489 0.317 0.227 0.161 0.102 0.072 0.051

PPWM|H 2.578 2.391 2.125 1.728 1.447 1.191 0.881 0.835 0.832

Burr(0.5,−0.5) NP|H 0.680 0.710 0.733 0.756 0.766 0.774 0.783 0.780 0.783

RMSEH 0.940 0.700 0.516 0.336 0.241 0.172 0.110 0.078 0.055

PPWM|H 1.137 1.128 1.101 1.073 1.056 1.047 1.040 1.035 1.032

Burr(0.25,−0.75) NP|H 0.692 0.726 0.743 0.764 0.778 0.789 0.802 0.802 0.808

RMSEH 0.957 0.715 0.523 0.339 0.245 0.176 0.112 0.080 0.057

PPWM|H 1.108 1.098 1.068 1.037 1.016 1.002 0.993 0.991 0.987

Fréchet(0.25) NP|H 0.693 0.700 0.706 0.725 0.741 0.757 0.777 0.794 0.805

RMSEH 0.950 0.688 0.492 0.320 0.232 0.169 0.110 0.079 0.057

PPWM|H 1.108 1.076 1.036 1.004 0.995 0.985 0.979 0.975 970

Burr(0.25,−1.5) NP|H 0.695 0.696 0.698 0.717 0.732 0.745 0.765 0.775 789

RMSEH 0.957 0.684 0.490 0.318 0.231 0.166 0.107 0.077 0.055

PPWM|H 1.934 1.624 1.353 1.055 0.866 0.802 0.821 0.843 868

Burr(0.75,−1.5) NP|H 0.695 0.696 0.698 0.717 0.732 0.745 0.765 0.775 789

RMSEH 0.957 0.684 0.490 0.318 0.231 0.166 0.107 0.077 0.055
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Despite of the fact that there is not a clear agreement between the behaviour of the PPWM px and

VaRp-estimators, the final conclusions related with RMSEs do not differ too much from the ones we

have previously drawn for the PPWM VaRp-estimator. In what concerns the pattern of mean values,

and for ξ finite, the NP-estimator outperforms the semi-parametric ones for all simulated models and for

almost all values of n. Just as before, the new quantile estimator p̂PPWM
x can be used as an alternative

to p̂Hx , specially for small to moderate sample sizes, but also for large samples, in most situations. All

the simulated results suggest that the RMSE of p̂PPWM
x is never much bigger than the one of p̂Hx . At

their optimal levels and for small sample sizes, p̂PPWM
x is usually much more efficient than p̂Hx . The

variance of the NP-estimator is terribly high. Regarding RMSE, the NP-estimator can never beat the

semi-parametric ones, at optimal levels, even when ξ is finite.

4 The bootstrap methodology in the estimation of optimal thresholds

We now put forward an adaptive choice of thresholds, again on the basis of bootstrap computer-intensive

methods. Indeed, due to the specificity of these PPWM estimators, and contrarily to what happens

with the Hill estimators, in (1.5), the most common estimators of a positive EVI, a direct estimation

of the optimal sample fraction (OSF), done on the basis of estimates of scale and shape second-order

parameters, is problematic. The use of bootstrap computer intensive methods helps us to provide an

adaptive choice of the optimal number of o.s.’s to be used in the estimation, and will be the topic of

discussion in this section.

Again with γ̂•k,n denoting either the Hill or the PPWM EVI-estimators, in (1.5) and (1.12), respec-

tively, let us use the notation

k0 ≡ k•0(n) := arg min
k
MSE(γ̂•k,n).

Under a semi-parametric framework, and under the validity of the second-order condition, in (2.3), with

ρ < 0, let us parameterize the function A(·) as A(t) = γβtρ, where β 6= 0 and ρ < 0 are generalized

scale and shape second-order parameters. Then, with E denoting the mean value operator, a possible

substitute for the MSE of any classical EVI-estimator γ̂•k,n is, cf. equation (2.9),

AMSE(γ̂•k,n) := E
(
σ•Z

•
k/
√
k + b•A(n/k)

)2
= σ2

•/k + b2• γ
2 β2 (n/k)2ρ,

depending on n and k, and with AMSE standing for asymptotic mean squared error. We get (Dekkers

and de Haan, 1993),

k0|•(n) := arg min
k
AMSE

(
γ̂•k,n

)
=
(
(−2ρ) b2• γ

2β2 n2ρ/σ2
•
)−1/(1−4ρ)

= k•0(n)(1 + o(1)).

For the Hill estimator, we have, in (2.9), σH = γ and bH = 1/(1− ρ). Consequently, with (β̂, ρ̂) any

consistent estimator of the vector (β, ρ) of second-order parameters, we have an asymptotic justification

for the estimator

k̂H0 :=
[(

(1− ρ̂)2n−2ρ̂/(−2ρ̂β̂2)
)1/(1−2ρ̂)]

, (4.1)
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where, as usual, [x] denotes the integer part of x. Moreover, provided that
√
k (n/k)ρ → λ, finite,

and with bk,n,ρ = 1 + β(n/k)ρ/(1− ρ),
√
k
{
γ̂Hk,n/γ − bk,n,ρ

}
is approximately N (0, 1). We may then get

approximate 100(1− α)% confidence intervals (CI’s) for γ,(
γ̂Hk,n/

(
bk,n,ρ + ξ1−α/2/

√
k
)
, γ̂Hk,n/

(
bk,n,ρ − ξ1−α/2/

√
k
))
, (4.2)

where ξp is the p-quantile of a N (0, 1) d.f. If λ = 0, we may replace in (4.2) the bias summand

β(n/k)ρ/(1− ρ) by 0, i.e., bk,n,ρ = 1.

The same does not happen with the PPWM EVI-estimators, with an asymptotic variance (σ2
PPWM

)

and a dominant component of bias (bPPWM ) dependent on γ (see equation (2.5)). In this situation, it is

sensible to use the bootstrap methodology for the adaptive PPWM EVI-estimation. Just as in Gomes

and Oliveira (2001), for the estimation of γ through the Hill estimator, and in Gomes et al. (2011,

2012), for adaptive reduced-bias estimation, let us more generally consider the auxiliary statistics,

T •k,n := γ̂•[k/2],n − γ̂
•
k,n, k = 2, . . . , n− 1, (4.3)

which converge in probability to the known value zero, for any intermediate k, enabling thus easily the

simulation of their MSE through the non-central moment of order two. On the basis of results similar

to the ones in Gomes et al. (2000) and Gomes and Oliveira (2001), we can get, for the auxiliary statistic

Tk,n, in (4.3), the asymptotic distributional representation,

Tk,n ≡ T •k,n
d
= σ• Q

•
k/
√
k + b•(2

ρ − 1) A(n/k) + op(A(n/k)),

with Qk asymptotically standard normal, and (b•, σ•) given in (2.9). The AMSE of Tk,n is thus minimal

at a level k0|T (n) such that
√
k A(n/k)→ λ′

A
6= 0, i.e. a level such that

k0|•(n) = k0|T (n) (1− 2ρ)
1

1−2ρ (1 + o(1)).

Then (see the above mentioned papers for further details), given the sample Xn = (X1, . . . , Xn) from

an unknown model F , for any n1 = o(n), and a bootstrap sample X∗n1
= (X∗1 , . . . , X

∗
n1

), denote T ∗k1,n1
,

1 < k1 < n1, the corresponding bootstrap auxiliary statistic. With the obvious notation k∗0|T (n1) =

arg mink1 AMSE
(
T ∗k1,n1

)
,

k∗0|T (n1)/k0|T (n) = (n1/n)
− 2 ρ

1−2 ρ (1 + o(1)).

Consequently, for another sample size n2 = n2
1/n, we have

(
k∗0|T (n1)

)2
/k∗0|T (n2) = k0|T (n)(1 + o(1)), as

n→∞. On the basis of the estimation of k∗0|T , we are now able to estimate k0|T , and next k•0(n). With

k̂∗0T denoting the sample counterpart of k∗0T , we can build the k0-estimate,

k̂•∗0 ≡ k̂•∗0 (n;n1) := min

(
n− 1,

[(1− 2ρ̂
) 1

1−2ρ̂
(
k̂∗0|T (n1)

)2
k̂∗0|T ([n2

1/n] + 1)

]
+ 1

)
, (4.4)
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and the γ-estimate

γ̂•∗ ≡ γ̂•∗(n;n1) := γ̂•
k̂•∗0 (n;n1),n

. (4.5)

Note also that, with ck(p) defined in (1.6), on the basis of (2.2), for the estimation of VaRp, and on the

basis of (2.11) with c̃k the observed value of C̃k, in (1.8), for the estimation of px = F (x), we get

k•0|p := arg min
k

AMSE
(
Q̂•k,n(p)

)
= arg min

k
(ln ck)

2AMSE
(
γ̂•k,n

)
,

and

k•0|x := arg min
k

AMSE
(
p̂•k,n(x)

)
= arg min

k
(ln c̃k)

2AMSE
(
γ̂•k,n

)
.

A few practical questions, some of them with answers out of the scope of this paper, may be raised

under the set-up developed: How does the asymptotic method work for moderate sample sizes? What

is the type of the sample path of the new estimator for different values of n1? Is the method strongly

dependent on the choice of n1? Although aware of the theoretical need to have n1 = o(n), what happens

if we choose n1 = n? Answers to these questions are expected not to be a long way from the ones given

in previous papers (see Hall, 1990; Draisma et al., 1999; Danielsson et al. 2001; Gomes and Oliveira,

2001; Gomes et al., 2009, 2011, 2012), and some of them will be given in Section 5 of this article, on

the basis of the analysis of real and simulated data.

4.1 An algorithm for adaptive estimation of parameters

The estimates ρ̂, of the second-order parameter ρ, are the ones already used in previous papers. See

for instance the algorithm provided in Gomes and Pestana (2007). Now, with • denoting either H or

PPWM , the algorithm is the following:

1. Given an observed sample (x1, x2, . . . , xn), compute the estimates γ̂•k,n, Q̂•k,n(p) and p̂•k,n(x), k =

1, 2, . . . , n− 1.

2. Compute, for the tuning parameters τ = 0 and τ = 1, the observed values of the most simple

ρ-estimators introduced and studied in Fraga Alves et al. (2003), and also used in the algorithm

of Gomes and Pestana (2007). Such estimators depend on the statistics

V
(τ)
k,n :=



(
M

(1)
k,n

)
−
(
M

(2)
k,n/2

)1/2
(
M

(2)
k,n/2

)1/2
−
(
M

(3)
k,n/6

)1/3 if τ = 1

ln
(
M

(1)
k,n

)
− 1

2
ln
(
M

(2)
k,n/2

)
1
2

ln
(
M

(2)
k,n/2

)
− 1

3
ln
(
M

(3)
k,n/6

) if τ = 0,

where

M
(j)
k,n :=

1

k

k∑
i=1

(
lnXn−i+1:n − lnXn−k:n

)j
, j ≥ 1,
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M
(1)
k,n ≡ H(k), in (1.5). They have the functional form

ρ̂τ (k) := min

(
0,

3(V
(τ)
k,n − 1)

V
(τ)
k,n − 3

)
.

3. Consider {ρ̂τ (k)}k∈K, with K = ([n0.995], [n0.999]), compute their median, denoted ητ , and compute

Iτ :=
∑

k∈K (ρ̂τ (k)− ητ )2, τ = 0, 1. Next choose the tuning parameter τ∗ = 0 if I0 ≤ I1; otherwise,

choose τ∗ = 1.

4. Work with ρ̂ ≡ ρ̂τ∗ = ρ̂τ∗(k1), k1 = [n0.999].

5. Next, consider a sub-sample size n1 = o(n), and n2 = [n2
1/n] + 1.

6. For l from 1 until B = 250, generate independently B bootstrap samples (x∗1, . . . , x
∗
n2

) and

(x∗1, . . . , x
∗
n2
, x∗n2+1, . . . , x

∗
n1

), of sizes n2 and n1, respectively, from the empirical d.f. F ∗n(x) =

1
n

n∑
i=1

I{Xi≤x} associated with the observed sample (x1, . . . , xn).

7. Denoting T ∗k,n ≡ T •∗k,n the bootstrap counterpart of T •k,n, defined in (4.3), obtain t∗k,n1,l
, 1 < k < n1,

t∗k,n2,l
, 1 < k < n2, 1 ≤ l ≤ B, the observed values of the statistic T ∗k,ni , i = 1, 2.

For k = 2, . . . , ni − 1, compute

MSE∗1(ni, k) =
1

B

B∑
l=1

(
t∗k,ni,l

)2
, i = 1, 2,

as well as

MSE∗p(ni, k) = (ln ck)
2MSE∗1(ni, k), MSE∗x(ni, k) = (ln c̃2

k)MSE∗1(ni, k), i = 1, 2.

8. Obtain, for i = 1, 2,

k̂∗0|T (ni) := arg min
1<k<ni

MSE∗1(ni, k), (4.6)

k̂∗0|p(ni) := arg min
1<k<ni

MSE∗p(ni, k), (4.7)

k̂∗0|x(ni) := arg min
1<k<ni

MSE∗x(ni, k), (4.8)

and return to Step 6. whenever k̂∗0|•(n2) ≥ k̂∗0|•(n1).

9. On the basis of (4.6), compute the threshold estimate k̂•∗0 ≡ k̂•∗0 (n;n1), in (4.4), for the adaptive

EVI-estimation. Compute also the threshold estimates, k̂•∗0|p ≡ k̂•∗0|p(n;n1) and k̂•∗0|x ≡ k̂•∗0|x(n;n1),

on the basis of an equation similar to (4.4), but with k̂∗0|T replaced by k̂∗0|p and k̂∗0|x, in (4.7)

and (4.8), according as we are interested in the adaptive VaRp-estimation or the px-estimation,

respectively. Return also to Step 6. whenever these k-estimates are equal to n− 1.

10. Obtain the adaptive EVI-estimate, γ̂•∗ ≡ γ̂•∗(n, n1) := γ̂•
k̂•∗0 ,n

, already provided in (4.5).
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11. Finally, compute the adaptive VaRp- and px-estimates,

Q̂•∗p ≡ Q̂•∗p|γ̂ := Q̂•
k̂•∗
0|p,n

, p̂•∗x ≡ p̂•∗x|γ̂ := p̂•
k̂•∗
0|x,n

,

with k̂•∗0|p and k̂•∗0|x obtained in Step 9.

Remarks:

(i) If there are negative elements in the sample, n should be replaced by n+ =
∑n

i=1 I[Xi>0] (the

number of positive values in the sample). Analogously for n1 and for n2.

(ii) The Monte-Carlo procedure in Steps 6. to 11. of the Algorithm can be replicated r times if we

want to associate standard errors to the OSF’s estimates and to the γ, VaRp and px bootstrap

estimates. The value of B can also be adequately chosen.

5 Applications to simulated and real data

5.1 A simulated data set

In order to have an indication on the way the algorithm in Section 4.1 performs, and to further motivate

its use, prior to its validation through a surely highly time-consuming simulation, a topic out of the

scope of this paper, we first apply it to an arbitrarily simulated sample, with size n = 500, from a

Fréchet model, with γ = 0.25. The algorithm here presented led to the ρ-estimate ρ̂ ≡ ρ̂0 = −1.173,

obtained at the level k1 = [n0.999
0 ] = 496. The associated β-estimate is β̂ ≡ β̂0 = 0.901. Then, we

got k̂H0 = 102, with k̂H0 provided in (4.1), and an associated EVI estimate equal to 0.285, clearly over-

estimatimating the true value γ = 0.25. The associated approximate 95% confidence interval, in (4.2),

is (0.2266, 0.3277), with a size 0.1011.

The application of the algorithm presented in Section 4.1 of this paper, with a sub-sample size

n1 = [n0.955] = 378, and B = 250 bootstrap generations, led us to k̂PPWM∗
0 = 52 and to the adaptive

PPWM EVI-estimate PPWM∗ ≡ γ̂PPWM
∗ = 0.254. This same algorithm applied to the Hill estimators

leads us to k̂H∗0 = 167 and to the adaptive Hill EVI-estimate H∗ ≡ γ̂H∗ = 0.284. These values are

pictured in Figure 5, where we also present the estimates under study as a function of k. The most

adequate estimate seems neatly to be the one associated with the PPWM methodology, particularly

due to the smoothness of the stability region of the estimates as a function of k. Similar conclusions

can be drawn for the VaRp and px-estimates.

For the estimation of VaR1/(2n) = VaR0.001, equal to 5.623 for this Fréchet sample, and through the

PPWM estimators, we were led to a choice of k equal to 52 and to the VaR0.001 estimate, Q̂0.001 = 5.987,

slightly overestimating the true value of VaR0.001 = 5.623. For the estimation of p = 1/(2n) = 0.001,

the PPWM methodology led us to a k-value equal to 51 and p̂ = 0.0013, quite close to p. Regarding

the classical estimators of VaRp and p, we were led to a k-value equal to 167, in both cases, and to the

estimates 5.638 and 0.002, respectively.
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Figure 5: Non-adaptive (as a function of k) and bootstrap adaptive Hill (H) and PPWM EVI-estimates, for a Fréchet sample of

size n = 500 and γ = 0.25 (left), and a zoomed figure for 40 ≤ k ≤ 170 (right).

5.1.1 Resistance of the methodology to changes in the sub-sample size n1

In Figure 6, we picture at the left, as a function of the sub-sample size n1, ranging from n1 = [n0.9] = 268

until n1 = [n0.9999] = 499, the bootstrap EVI-estimates associated with the Hill and the PPWM

estimators, in (1.5) and (1.12), respectively. The pictures in the center and the right are similar to the

picture at the left, but related with the corresponding adaptive bootstrap estimation of VaR0.001 = 5.623

and p = 0.001, respectively.
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Figure 6: Bootstrap Hill (H) and PPWM EVI-estimates of γ (left), V ar0.001 = 5.623 (center) and p = 1/(2n) = 0.001 (right), as

functions of n1.

The low sensitivity of the PPWM estimates to changes of the subsample size n1 seems also to be

a point in favour of these new estimators. Whereas the bootstrap PPWM EVI, VaRp and p-estimates

lie in the intervals (0.254, 0.259), (5.977, 6.002) and (0.00127, 0.00131), respectively, the bootstrap

Hill-type EVI, VaRp and p-estimates lie in the intervals (0.272, 0.285), (5.273, 6.254) and (0.0010,

0.0029), respectively. Note however that the reasonably high volatility of the bootstrap Hill VaRp and

px-estimates as a function of n1 can lead us to estimates closer to the target for some of the values of

the sub-sample size n1.
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5.2 A case study in the field of insurance

We shall next consider an illustration of the performance of the adaptive PPWM EVI-estimates under

study, comparatively with the same methodology applied to the Hill EVI-estimates, again through the

analysis of automobile claim amounts exceeding 1,200,000 Euro over the period 1988-2001, gathered

from several European insurance companies co-operating with the same re-insurer (Secura Belgian Re).

This data set was already studied in Beirlant et al. (2004), Vandewalle and Beirlant (2006) and Beirlant

et al. (2008) as an example to excess-of-loss reinsurance rating and heavy-tailed distributions in car

insurance. See also Gomes et al. (2009). A preliminary graphical analysis of the data, xi, 1 ≤ i ≤ n,

n = 371, leads us to an immediate conclusion that data have been censored to the left and that the

right-tail of the underlying model is quite heavy. The sample paths of the ρ-estimates associated with

τ = 0 and τ = 1 lead us to choose, on the basis of any stability criterion for large k, the estimate

associated with τ = 0. The algorithm here presented led us to the ρ-estimate ρ̂0 = −0.74, obtained

at the level k1 = [n0.999] = 368. The associated β-estimate, based on the β-estimator in Gomes and

Martins (2002), was β̂0 = 0.80. Then, we got the estimate k̂H0 = 55, with k̂H0 provided in (4.1), and an

associated adaptive EVI estimate equal to 0.291. The associated approximate 95% confidence interval,

in (4.2), is (0.2115, 0.3432), with a size 0.1317.

The application of the algorithm presented in Section 4.1 of this paper, with a sub-sample size

n1 = [n0.955] = 284, and B = 250 bootstrap generations, led us to k̂PPWM∗
0 = 58 and to the adaptive

PPWM EVI-estimate PPWM∗ ≡ γ̂PPWM
∗ = 0.272. This same algorithm applied to the Hill estimates

leads us to k̂H∗0 = 52 and to the adaptive Hill EVI-estimate H∗ ≡ γ̂H∗ = 0.299. These values are pictured

in Figure 7, where we also present the EVI-estimates under study as a function of k. Again, similar

results have been obtained for the V arp and px-estimates.

0.25

0.29

0.33

40 80 120

  

! 

H

  

! 

k

0.1

0.2

0.3

0.4

0.5

0 150 300

! 

PPWM
*

= 0.272

    

! 

H
*

= 0.299

  

! 

k

  

! 

PPWM

  

! 

H

! 

PPWM
*

= 0.272

    

! 

H
*

= 0.299

  

! 

52   

! 

58

Figure 7: Hill (H) and PPWM EVI-estimates for the SECURA data, as a function of k (left), and a zoomed figure for 40 ≤ k ≤ 120

(right).

For the estimation of VaR1/(2n) = VaR0.0013, and through the PPWM estimators, we were led

to a choice of k equal to 59 and to the VaR estimate, Q̂1/(2n) = 10, 658, 360. For the estimation of

p = P(X > Xn:n) = 1/(n + 1) = 0.0027, the PPWM methodology led us to a k-value also equal to 59
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and p̂ = 0.0040, reasonably above the true value of p. Regarding the classical estimators of VaRp and

p, we were led to k-values respectively equal to 52 and 53, and to the estimates 11, 356, 460 and 0.0053,

respectively. The overestimation of the p-estimate is now more flagrant.

Figure 8 is similar to Figure 6, but for the insurance data.
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Figure 8: Bootstrap Hill (H) and PPWM EVI-estimates of γ (left), V ar1/(2n) (center) and p = 1/(n + 1) = 0.0027 (right), as

functions of n1.

The bootstrap PPWM EVI, VaRp and p-estimates are indeed quite stable as a function of the

sub-sample size n1. The bootstrap PPWM EVI-estimates vary from a minimum value equal to 0.271

until 0.273, with a median equal to 0.273, equal to the value obtained for the bootstrap EVI estimate

associated to the arbitrarily chosen sub-sample size n1 = [n0.955] = 284. We can indeed guarantee the

two decimal figures, i.e. the EVI-estimate 0.27. Up to three decimal figures, all bootstrap px-estimates

were equal to 0.004. Regarding the bootstrap VaRp-estimates, we got values between a minimum equal

to 10618780 and a maximum equal to 10673260, with a median 10658360. Again, the low sensitivity

of the PPWM estimates to changes of the subsample size n1 seems again to be a point in favour of

these new estimators. Whereas the bootstrap PPWM EVI, VaRp and p-estimates lie in the intervals

(0.271, 0.273), (10618780, 10673260) and (0.0040, 0.0042), respectively, the bootstrap Hill-type EVI,

VaRp and p-estimates lie in the intervals (0.283, 0.315), (10764560, 11660710) and (0.0045, 0.0063),

respectively. As already detected in previous papers, and in the most diversified comparisons, the Hill

estimates are clearly over-estimating the true value of the EVI. As mentioned before, the most adequate

estimate seems neatly to be the one associated with the PPWM methodology, particularly due to the

smoothness of the stability region of the estimates as a function of k.
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