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Abstract. This paper focuses on the extension of AGM that allows change for a belief

base by a set of sentences instead of a single sentence. In [FH94], Fuhrmann and Hansson

presented an axiomatic for Multiple Contraction and a construction based on the AGM

Partial Meet Contraction. We propose for their model another way to construct functions:

Multiple Kernel Contraction, that is a modification of Kernel Contraction, proposed by

Hansson [Han94] to construct classical AGM contractions and belief base contractions.

This construction works out the unsolved problem pointed out by Hansson in [Han99, pp.

369].
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Introduction

In logic of theory change, the standard model is AGM, proposed by Al-
chourrón, Gärdenfors and Makinson [AGM85]. During the ’90 the AGM
model was extended in several ways, among them: models of belief change
in which one or more of the postulates of the original AGM model are not
satisfied; models that allow for sequences of operations (iterated or global
functions); models that extend the language or the representation of the
belief state; models that modify the representation of a belief state by intro-
ducing belief bases, etc.

When a new model is proposed, not only are the intuitions of it impor-
tant, but also its axiomatic (which determines the behaviour of the functions)
and the ways to construct functions.

This paper focuses on the extension of AGM that allows change for a
belief base by a set of sentences instead of a single sentence. In [FH94],
Fuhrmann and Hansson presented an axiomatic for Multiple Contraction and
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a construction based on the AGM Partial Meet Contraction. We propose
for their model another way to construct functions: Multiple Kernel Con-
traction, that is a modification of Kernel Contraction, proposed by Hansson
[Han94] to construct classical AGM contractions and belief base contrac-
tions.

In section Background we introduce all the background needed to de-
velop our method: the AGM model, belief base functions, kernel contraction
and multiple contraction. In section Multiple Kernel Contraction we
present our proposal and its axiomatic characterization. Proofs are deferred
to an Appendix.

Background

Formal preliminaries: We will assume a language L that is closed under
truth-functional operations and a consequence operator Cn for L. Cn sat-
isfies the standard Tarskian properties, namely inclusion (A ⊆ Cn(A)),
monotony (if A ⊆ B, then Cn(A) ⊆ Cn(B)), and iteration (Cn(A) =
Cn(Cn(A))). It is supraclassical and compact, and satisfies deduction (if
β ∈ Cn(A ∪ {α}), then (α → β) ∈ Cn(A)). A � α will be used as an alter-
native notation for α ∈ Cn(A), � α for α ∈ Cn(∅) and Cn(α) for Cn({α}).
Upper-case letters denote subsets of L. Lower-case Greek letters denote el-
ements of L. 
 is an arbitrary tautology and ⊥ an arbitrary contradiction.

Belief Sets

In the AGM model of theory change [AGM85] belief states are represented
by belief sets, i.e., set of sentences closed under Cn. Changes in beliefs
are represented by operations on such sets. Among these operations, the
contraction of a belief set A by a sentence α should be a new belief set
A′ ⊆ A that does not contain α.

The most widely known method of contracting a sentence from a belief
set is partial meet contraction, introduced by Alchourrón, Gärdenfors and
Makinson [AGM85] in their seminal paper. For any set A of propositions,
A⊥α be the set of all maximal subsets of A that do not imply α. Let γ be
any function such that for any proposition α,γ(A⊥α) is a nonempty subset
of A if the latter is non-empty, and γ(A⊥α) = {A} in the limiting case that
A⊥α is empty.
The partial meet contraction on A that is generated by γ is the operation
∼γ such that for all sentence α:

A ∼γ α = ∩γ(A⊥α)
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One of the major achievements of AGM theory is the characterization of
partial meet contraction for belief sets in terms of a set of postulates:

Theorem 1 ([AGM85]). Let A be a belief set. An operator − on A is a
partial meet contraction function if and only if − satisfies:

Closure A−α is a belief set whenever A is a belief set.
Success If �� α , then A−α �� α.
Inclusion A−α ⊆ A.
Vacuity If A �� α, then A ⊆ A−α.
Extensionality If � α ↔ β then A−α = A−β.
Recovery A ⊆ Cn((A−α) ∪ {α}).

Other methods to construct contraction functions are Safe Contraction
[AM85], its generalization Kernel Contraction [Han94]; and contraction func-
tions based on Epistemic Entrenchment [GM88].

Belief Bases

In recent years, alternative models have been presented in which the belief
states are represented by belief bases, sets of sentences that are not neces-
sarily closed under logical consequence. Hansson characterizes partial meet
contraction for belief bases in terms of a set of postulates:

Theorem 2 ([Han92]). Let A be a belief set. An operator − on A is a partial
meet contraction function for A if and only if − satisfies success, inclusion,

Uniformity: If it holds for all subsets A′ of A that α ∈ Cn(A′) if and
only if β ∈ Cn(A′), then A − α = A − β.

Relevance If β ∈ A and β /∈ A−α then there is some set A′ such that
A−α ⊆ A′ ⊆ A and α /∈ Cn(A′) but α ∈ Cn(A ∪ {β}).

Uniformity is a strong version of extensionality, that is extended to sen-
tences that have the same “behaviour” in a belief base and relevance is the
postulate that represents the rationality criteria of minimal change.

Kernel Contraction

In [Han94] Hansson introduced Kernel Contraction, a generalization of Safe
Contraction. It is based on a selection among the sentences of a set A that
contribute effectively to imply α; and how to use this selection in contracting
by α. Formally:
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Definition 1 ([Han94]). Let A be a set in L and α a sentence. Then A⊥⊥α
is the set such that B ∈ A⊥⊥α if and only if:


B ⊆ A
B � α
If B′ ⊂ B then B′ �� α

A⊥⊥α is called the kernel set of A with respect to α and its elements are
the α-kernels of A.

Definition 2 ([Han94]). Let A be a set of sentences. Let A⊥⊥α be the
kernel set of A respect to α. An incision function σ for A is a function such
that for all sentences α:{

σ(A⊥⊥α) ⊆ ⋃
(A⊥⊥α)

∅ �= B ∈ A⊥⊥α, then B ∩ σ(A⊥⊥α) �= ∅

Definition 3 ([Han94]). Let A be a set of sentences and σ an incision
function for A. The kernel contraction −σ for A is defined as follows:

A−σα = A \ σ(A⊥⊥α).

An operator − for a set A is a kernel contraction if and only if there is
an incision function σ for A such that A ∼ α = A−σα for all sentences α.

Hansson also provided an axiomatic characterization for kernel contrac-
tion.

Theorem 3 ([Han94]). The operator − for a set of sentences A is a kernel
contraction if and only if it satisfies success, inclusion, uniformity and

Core-retainment If β ∈ A and β /∈ A−α then there is some set A′

such that A′ ⊆ A and α /∈ Cn(A′) but α ∈ Cn(A′ ∪ {β}).

Since core-retainment is weaker than relevance, it follows for belief bases
that all partial meet contraction are kernel contraction1.

Multiple Contraction

Another extension of the AGM contraction consists in extending the model
to contracting by sets of sentences [Fuh88, Nie91, FH94]. This extension
allows two variants: package contraction where all the sentences must be

1 For belief sets, partial meet contraction corresponds exactly to a special case called
smooth kernel contraction.
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removed from the belief base and choice contraction, where it is sufficient to
remove at least one of the sentences.
Fuhrmann and Hansson [FH94] propose the partial meet multiple contrac-
tion for choice and package. For package contraction we will redefine the
remainder operator “⊥” for sets by sets, whereas for choice contraction we
will introduce the operator “� ”.

Definition 4 (Package remainders [FH94]). X ∈ A⊥B if and only if:


X ⊆ A
B ∩ Cn(X) = ∅
If X ⊂ Y ⊆ A then B ∩ Cn(Y ) �= ∅

A⊥B is the set of all maximal subsets of A that do not overlap with B.

Definition 5 ([FH94]). X ∈ A� B if and only if:


X ⊆ A
B �⊆ Cn(X)
If X ⊂ Y ⊆ A then B ⊆ Cn(Y )

A� B is the set of all maximal subsets of A that do not imply the whole
elements of B.

It is important to note that B ∩ Cn(X) = ∅ means that X does not
imply any element of B (closely related with package contraction) whereas
B �⊆ Cn(X) means that there X does not imply all elements of B (closely
related with choice contraction).

Partial meet package and choice contraction are defined based based on
a selection from A ⊥ B and A� B respectively:

Definition 6 ([FH94]). γ is a package selection function for A if and only
if for all sets B:

1. If A⊥B is non-empty, then γ(A⊥B) is a non-empty subset of A⊥B.

2. If A⊥B is empty, then γ(A⊥B) = A.

An operator ÷ for A is an operator of partial meet package contraction
if and only if there is some package selection function γ such that A ÷ B =⋂

γ(A⊥B) for all set B.

Definition 7 ([FH94]). γ is a choice selection function for A if and only if
for all sets B:

1. If A� B is non-empty, then γ(A� B) is a non-empty subset of A� B.
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2. If A� B is empty, then γ(A� B) = A.

An operator ÷ for A is an operator of partial meet choice contraction
if and only if there is some choice selection function γ such that A ÷ B =⋂

γ(A� B) for all sets B.

Fuhrmann and Hansson axiomatically characterized choice and package
contraction as follows:

Theorem 4 ([FH94]). An operator ÷ for a set A is an operator of partial
meet package contraction if and only if it satisfies the following conditions:

P-success If B ∩ Cn(∅) = ∅ then B ∩ Cn(A ÷ B) = ∅.
P-inclusion A ÷ B ⊆ A.
P-relevance If β ∈ A and β /∈ A ÷ B, then there exists a set C, such

that A ÷ B ⊆ C ⊆ A and B ∩ Cn(C) = ∅ but B ∩ Cn(C ∪ {β}) �= ∅.
P-uniformity If every subset A′ of A implies some element of B if and

only if A′ implies some element of C, then A ÷ B = A ÷ C.

Theorem 5 ([FH94]). An operator ÷ for a set A is an operator of partial
meet choice contraction if and only if it satisfies the following conditions:

C-success If B �⊆ Cn(∅) then B �⊆ Cn(A ÷ B).
C-inclusion A ÷ B ⊆ A.
C-relevance If β ∈ A and β /∈ A ÷ B, then there exists a set C, such

that A ÷ B ⊆ C ⊆ A, and B �⊆ Cn(C) but B ⊆ Cn(C ∪ {β}).
C-uniformity If for every subset A′ of A it follows that B ⊆ Cn(A′) if

and only if C ⊆ Cn(A′), then A ÷ B = A ÷ C.

Multiple Kernel Contraction

The idea of Multiple Kernel Contraction is to define a constructive method to
contract a belief base by a set of sentences. Multiple partial meet contraction
is based on the maximal subsets of A that do not imply B (in its both means
of implication, package and choice). Multiple Kernel Contraction is based
on a selection among the elements of A that effectively contribute to imply
B. The method to construct multiple kernel contraction is rather similar to
kernel contraction for single sentences.

We must to define at first the kernel set of A with respect to B. We
distinguish between package and choice.

Definition 8 (Package Kernel Set). Let A,B be sets in L. Then A⊥⊥P B
is the set such that X ∈ A⊥⊥P B if and only if:
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X ⊆ A
B ∩ Cn(X) �= ∅
If Y ⊂ X then B ∩ Cn(Y ) = ∅

It is important to note that A⊥⊥P B is different from
⋃

α∈B A⊥⊥α. For
example let β1, β2 ∈ B, X ∈ A⊥⊥β1 , Y ∈ A⊥⊥β2 and X ⊂ Y . then
Y ∈ ⋃

α∈B A⊥⊥α, however by Definition 8, Y /∈ A⊥⊥P B.
The relationship among the elements from A⊥⊥P B and from

⋃
α∈B A⊥⊥α,

α ∈ B can be seen in the following observation:

Observation 1. If α ∈ B, B∩Cn(∅) = ∅ and A � α then for all X ∈ A⊥⊥α,
there exists ∅ �= Y ∈ A⊥⊥P B such that Y ⊆ X.

For Choice, the kernel set is defined as follows:

Definition 9 (Choice Kernel Set). Let A,B be sets in L. Then A⊥⊥CB is
the set such that X ∈ A⊥⊥P B if and only if:


X ⊆ A
B ⊆ Cn(X)
If Y ⊂ X then B �⊆ Cn(Y )

The following observation, inspired by the case of single sentences
[Han94], will be useful in the characterization of multiple kernel contrac-
tion:

Observation 2. The following conditions are equivalent:

1. For all subsets A′ of A: B ∩ Cn(A′) �= ∅ iff C ∩ Cn(A′) �= ∅
2. A⊥⊥P B = A⊥⊥P C

3. A⊥⊥CB = A⊥⊥CC

As in Kernel Contraction we must define an incision function to deter-
mine which sentences would be removed.

Definition 10. A function σ is a incision function for A if and only if it
satisfies for all B:

1. σ(A⊥⊥iB) ⊆ ⋃
(A⊥⊥iB)

2. If ∅ �= X ∈ A⊥⊥iB, then X
⋂

σ(A⊥⊥iB) �= ∅
where ⊥⊥i is ⊥⊥P or ⊥⊥C .
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The incision function gives rise to the multiple kernel contraction func-
tion.

Definition 11. Let σ be an incision function for A. The Multiple Kernel
Contraction ≈σ for A is defined as follows:

A ≈σ B = A\σ(A⊥⊥iB)

where ⊥⊥i is ⊥⊥P or ⊥⊥C .

• An operator ÷ for A is a multiple package contraction if and only if
there is some package incision function σ for A such that A ÷ B =
A ≈σ B for all the sets B.

• An operator ÷ for A is a multiple choice contraction if and only if there
is some choice incision function σ for A such that A ÷ B = A ≈σ B
for all the sets B.

Axiomatic Characterization of Multiple Kernel Contraction

Theorem 6. An operator ÷ for a set A is an operator of kernel package
contraction if and only if it satisfies the following conditions:

P-success If B ∩ Cn(∅) = ∅ then B ∩ Cn(A ÷ B) = ∅.
P-inclusion A ÷ B ⊆ A.
P-core-retainment If β ∈ A and β /∈ A÷B, then there exists a set C,

such that C ⊆ A and B ∩ Cn(C) = ∅ but B ∩ Cn(C ∪ {β}) �= ∅.
P-uniformity If every subset A′ of A implies some element of B if and

only if A′ implies some element of C, then A ÷ B = A ÷ C.

Theorem 7. An operator ÷ for a set A is an operator of kernel choice
contraction if and only if it satisfies the following conditions:

C-success If B �⊆ Cn(∅) then B �⊆ Cn(A ÷ B).
C-inclusion A ÷ B ⊆ A.
C-core-retainment If β ∈ A and β /∈ A÷B, then there exists a set C,

such that C ⊆ A, B �⊆ Cn(C) and B ⊆ Cn(C ∪ {β}).
C-uniformity If for every subset A′ of A B ⊆ Cn(A′) if and only if

C ⊆ Cn(A′), then A ÷ B = A ÷ C.

Inclusion and success are the two basic postulates for a contraction func-
tion. Uniformity is a strong version of extensionality, that is extended to
sentences that have the same “behavior” in a belief base, and core-retainment
is the postulate that represent the rationality criteria of minimal change and
is a postulate closely relate to the idea of ”kernel-set”, i.e., C ∪ {β} is a B-
kernel element of A.
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Conclusions and Remarks

We have defined multiple kernel contraction. This work can be considered
as an extension of previous models in different ways:

• We extend the model of kernel contraction to multiple contraction.

• We define a new constructive method for multiple contraction.

• Since, as in the singleton case, all the multiple partial meet contrac-
tions are multiple kernel contractions, our model is a generalization of
multiple partial meet contraction.

The connection with the supplementary postulates and its (probable)
relationship with multiple safe contraction still awaits research.
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Appendix: Proofs

Proof of Observation 1.
Let α ∈ B, B ∩ Cn(∅) = ∅ and A � α. Let X ∈ A⊥⊥α: then it follows

that X ⊆ A and (since α ∈ B) B ∩ Cn(X) �= ∅.
If X ∈ A⊥⊥P B, let Y = X and we done. Let X /∈ A⊥⊥P B, then (due the
compactness of the underlying logic) there exists a subset of X, X ′ such that
B∩Cn(X ′) �= ∅ and for all X ′′ such that X ′′ ⊂ X ′, it follows B∩Cn(X ′′) = ∅.
Hence X ′ ∈ A⊥⊥P B.

Proof of Observation 2.
(1. ⇒ 2.) Let A⊥⊥P B �= A⊥⊥P C. We can, without loss of generality,

assume that there exists X, such that X ∈ A⊥⊥P B and X /∈ A⊥⊥P C. If
C ∩ Cn(X) = ∅, we done, since B ∩ Cn(X) �= ∅ . If C ∩ Cn(X) �= ∅,
then by definition 8 (since X /∈ A⊥⊥P C), there exists Y ⊂ X, such that
C ∩ Cn(Y ) �= ∅. We done, since B ∩ Cn(Y ) = ∅.

(2. ⇒ 1.) Let X ⊆ A such that B ∩ Cn(X) �= ∅ and C ∩ Cn(X) = ∅.
Then (due the compactness of the underlying logic) there exists X ′ ⊆ X
such that X ′ ∈ A⊥⊥P B . Since X ′ ⊆ X and C ∩ Cn(X) = ∅ it follows by
definition 8 that X ′ /∈ A⊥⊥P C.
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(1. ⇒ 3.) Let A⊥⊥CB �= A⊥⊥CC. We can, without loss of generality,
assume that there exists X, such that X ∈ A⊥⊥CB and X /∈ A⊥⊥CC. If
C �⊆ Cn(X), we done, since B ⊆ Cn(X). If C ⊆ Cn(X), then there exists
by definition 9 (since X /∈ A⊥⊥CC) Y ⊂ X, such that C ⊆ Cn(Y ). But
B �⊆ Cn(Y ) and we done.

(3. ⇒ 1.) Let X ⊆ A such that B ⊆ Cn(X) and C �⊆ Cn(X). Then
(by definition 9 and due the compactness of the underlying logic ) there
exists X ′ ⊆ X such that X ′ ∈ A⊥⊥CB. Since X ′ ⊆ X y C �⊆ Cn(X) then
X ′ /∈ A⊥⊥CC.

Proof of Theorem 6.
Construction to Postulates: Let ≈σ be a Multiple Package Kernel Con-

traction operator for A.
P-success: Suppose by reductio that B ∩ Cn(∅) = ∅, α ∈ B and (A ≈σ

B) � α. Then there exists X ⊆ A ≈σ B such that X � α. Since X ⊆ A ≈σ

B ⊆ A there X ′ ⊆ X such that X ′ ∈ A⊥⊥α. Due to observation 1 there
exists X ′′ ⊆ X ′ and X ′′ ∈ A⊥⊥P B. By definition 10 there exists β ∈ X ′′

and β ∈ σ(A⊥⊥P B). Then it follows that β /∈ A\σ(A⊥⊥P B) = A ≈σ B, that
contradicts β ∈ X ′′ ⊆ A ≈σ B.

P-inclusion: It follows trivially from definition 11.
P-core-retainment: Let β ∈ A and β /∈ A ≈σ B. Then β ∈ σ(A⊥⊥P B).

It’s follows by definition 10 that σ(A⊥⊥P B) ⊆ ∪(A⊥⊥P B). Then there exists
D such that β ∈ D ∈ A⊥⊥P B. Let C = D \ {β}. Definition 8 yields
B ∩ Cn(C) = ∅ and B ∩ Cn(C ∪ {β}) �= ∅.

P-uniformity: Suppose that every subset A′ of A implies some element of
B if and only if A′ implies some element of C. By observation 2, A⊥⊥P B =
A⊥⊥P C, from which it follows that σ(A⊥⊥P B) = σ(A⊥⊥P C). Hence by
definition 11 A ≈σ B = A ≈σ C.

Postulates to Construction: Let ÷ be an operator for A that satisfies
P-success, P-inclusion, P-core-retainment, and P-uniformity. We will prove
that ÷ is a kernel package contraction.

Let σ such that for all B : σ(A⊥⊥P B) = A\(A÷B). We must prove that
σ is a package incision function for A, proving that: (a) σ is a function, (b)
σ satisfies conditions (1) and (2) from definition 10, and (c) that A ÷ B =
A \ σ(A⊥⊥P B).

(a) σ is a function: Let B, C ⊆ A such that A⊥⊥P B = A⊥⊥P C. By
observation 2 it follows that every subset A′ of A implies some element
of B if and only if A′ implies some element of C. Then by P-uniformity
A ÷ B = A ÷ C. Hence by definition of σ, σ(A⊥⊥P B) = σ(A⊥⊥P C).
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(b) Condition (1) hold: Let β ∈ σ(A⊥⊥P B). By P-core-retainment there
exists C ⊆ A such that B ∩ Cn(C) = ∅ and B ∩ Cn(C ∪ {β}) �= ∅. By
compactness it follows that there exists X ⊆ C∪{β} such that B∩Cn(X) �=
∅ and for all Y ⊂ X, B ∩ Cn(Y ) = ∅. Then by definition 8, X ∈ A⊥⊥P B.

Due to B ∩Cn(C) = ∅, B ∩Cn(X) �= ∅ and X ⊆ C ∪{β} it follows that
β ∈ X, and hence β ∈ ∪(A⊥⊥P B).

(b) Condition (2) hold: Assume that ∅ �= X and X ∈ (A⊥⊥P B). It
follows that B ∩ Cn(∅) = ∅ By P-success B ∩ Cn(A ÷ B) = ∅. Since
B ∩Cn(X) �= ∅, X �⊆ A÷B from which it follows that there exists β ∈ X y
and β /∈ A÷B. X ⊆ A yields β ∈ A \ (A÷B), then β ∈ σ(A⊥⊥P B). Hence
β ∈ X ∩ σ(A⊥⊥P B).

(c) A÷B = A\σ(A⊥⊥P B): It follows trivially from P-inclusion A÷B ⊆
A and σ(A⊥⊥P B) = A \ A ÷ B. This concludes the proof.

Proof of Theorem 7.
Construction to Postulates: Let ≈σ be a Multiple Package Kernel Con-

traction operator for A.
C-success: Let B �⊆ Cn(∅) and B ⊆ Cn(A). Suppose by reductio that

B ⊆ Cn(A ≈σ B). It follows by compactness that there exists X such that
X ⊆ A ≈σ B, B ⊆ Cn(X) and such that for all Y ⊂ X it follows that
B �⊆ Cn(Y ). Then X ∈ A⊥⊥CB fro which it follows by definition 10 that
X ∩ σ(A⊥⊥CB) �= ∅. Hence X �⊆ A ≈σ B. Absurd.

C-inclusion: It follows trivially from definition 11.
C-core-retainment: Let β ∈ A and β /∈ A ≈σ B. Then by definition of

≈σ, β ∈ σ(A⊥⊥CB). It follows by definition 10 that β ∈ ∪(A⊥⊥CB). Then
there exists D such that β ∈ D ∈ A⊥⊥CB. Let C = D \ {β}. Then by
definition 9, B �⊆ Cn(C) and B ⊆ Cn(C ∪ {β}).

C-uniformity: Suppose that for every subset A′ of A B ⊆ Cn(A′) if
and only if C ⊆ Cn(A′). By observation 2 A⊥⊥CB = A⊥⊥CC. Then
σ(A⊥⊥CB) = σ(A⊥⊥CC). Hence, by definition 11 A ≈σ B = A ≈σ C.

Postulates to Construction: Let ÷ an operator for A that satisfies C-
success, C-inclusion, C-core-retainment, and C-uniformity. We will prove
that ÷ is a kernel choice contraction. Let σ such that for all B : σ(A⊥⊥CB) =
A\(A÷B). We must prove that σ is a choice incision function for A, proving
that: (a) σ is a function, (b) σ satisfies conditions (1) and (2) from definition
10, and (c) that A ÷ B = A \ σ(A⊥⊥CB).

(a) σ is a function: Is proved in the same way of package, using C-
uniformity instead of P-uniformity.
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(b) Condition (1) hold: Let β ∈ σ(A⊥⊥CB). By C-core-retainment there
exists C ⊆ A such that B �⊆ Cn(C) and B ⊆ Cn(C ∪{β}). By compactness
it follows that there exists X ⊆ C ∪ {β} such that

B ⊆ Cn(X) and for all Y ⊂ X, B �⊆ Cn(Y ). Then by definition 9,
X ∈ A⊥⊥CB. Hence β ∈ ∪(A⊥⊥CB).

(b) Condition (2) hold: Let X �= ∅ and X ∈ A⊥⊥CB. Then B ⊆ Cn(X)
and is minimal. Due to X �= ∅, B �⊆ Cn(∅) and B ⊆ Cn(A). Assume
X ⊆ Cn(A ≈σ B), then B ⊆ Cn(A ≈σ B), absurd by C-success. Then
X �⊆ Cn(A ≈σ B) from which it follows that there exists β ∈ X such that
β �∈ A ≈σ B. Hence β ∈ σ(A⊥⊥CB).

(c) A÷B = A\σ(A⊥⊥CB): It follows trivially from C-inclusion A÷B ⊆
A and σ(A⊥⊥CB) = A \ A ÷ B. This concludes the proof.
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Departamento de Matemática.
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