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Abstract

While Ubiquitous Computing remains vastly applied in urban environments, it is still scarce in

oceanic environments. Current equipment used for biodiversity assessments remain at a high cost,

being still inaccessible to wider audiences. More accessible IoT (Internet of Things) solutions need

to be implemented to tackle these issues and provide alternatives to facilitate data collection

in-the-wild. While the ocean remains a very harsh environment to apply such devices, it is still

providing the opportunity to further explore the biodiversity, being that current marine taxa is

estimated to be 200k, while this number can be actually in millions.

The main goal of this thesis is to provide an apparatus and architecture for aerial marine

biodiversity assessments, based on low-cost MCUs (Microcontroller unit) and microcomputers. In

addition, the apparatus will provide a proof of concept for collecting and classifying the collected

media. The thesis will also explore and contribute to the latest IoT and machine learning techniques

(e.g. Python, TensorFlow) when applied to ocean settings. The final product of the thesis will

enhance the state of the art in technologies applied to marine biology assessments.
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· Internet of Things



Resumo

A computação ubíqua é imensamente utilizada em ambientes urbanos, mas ainda é escassa em

ambientes oceânicos. Os equipamentos atuais utilizados para o estudo de biodiversidade são de

custo alto, e geralmente inacessíveis para o público geral. Uma solução IoT mais acessível necessita

de ser implementada para combater estes problemas e fornecer alternativas para facilitar a recolha

de dados na natureza. Embora o oceano seja um ambiente severo para aplicar estes dispositivos,

este fornece mais oportunidades para explorar a biodiversidade, sendo que a taxa de marinha atual

é estimada ser 200 mil, mas este número pode estar nos milhões.

O objetivo principal desta tese é fornecer um aparelho e uma arquitetura para estudos aéreos

de biodiversidade marinha, baseado em microcontroladores low-cost e microcomputadores. Adi-

cionalmente, este aparelho irá fornecer uma prova de conceito para coletar e classificar a mídia

coletada. A tese irá também explorar e contribuir para as técnicas mais recentes de machine learn-

ing (e.g. Python, TensorFlow) quando aplicadas num cenário de oceano. O produto final desta

tese vai elevar o estado da arte em tecnologias aplicadas a estudos de biologia marinha.

Keywords: Ubiquitous Computing · Aerial Assessments ·Wildlife Monitoring ·Machine Learning

· Internet of Things
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1 Introduction

Our oceans, coasts, and estuaries are home to diverse living beings. These organisms take many

forms, from the tiniest single-celled plankton to the largest animal on Earth, the blue whale2 [1].

Understanding the life cycles, habits, habitats, and inter-relationships of marine life contributes

to the reduction of CO2 as well as to our understanding of the planet as a whole, which was

recently confirmed not just by scholars [2], however also by IMF (International Monetary Fund)3.

Us humans are constantly being influenced and rely on these species, and there is a need for

their better understanding and care. The changing climate caused by humans is a major risk to

all marine life and can be the final factor to cause extinction on species already at risk due to

overfishing [3].

Taking into consideration these concerns, the main goal of this thesis is to gain a better un-

derstanding of surface aquatic life, focusing on local and migratory marine megafauna species.

These species are known to the Madeira archipelago, which is a historically touristic island des-

tination located in the North-East Atlantic, known for significant occurrence of marine life [4,5].

This thesis studies to which extent it is possible to detect the whales, dolphins, turtles, sea lions,

and sea birds using IoT. Although these species make only a small sample size of the total species

population that occupies the oceans, nevertheless, they remain connected through diverse food

chains or migrations, and this thesis addresses the software and hardware necessities which can

provide more insights into the evolution of marine biodiversity.

Focusing on these species, this thesis will produce a low-cost aerial imagery apparatus, that can

be attached to the mast of a sea vessel, during the visual surveys. This device will consist mainly

of a MCU, using accessible IoT devices such as Raspberry Pi,4, a NVIDIA’s Jetson Nano5 or a

Coral Dev Board6, and a camera, pointed at the sea below it, to assess the marine species. One of

the important benefits of this apparatus is to obtain a more robust aerial imagery of marine life (a

top-down view). This allows collecting the marine-life top-down imagery, which usually remains
2The blue whale (Balaenoptera musculus) is a marine mammal that can grow up to 29.9 meters (98

ft) in length and with a maximum recorded weight of 173 tonnes (190 short tons), is the largest animal
known to have ever existed. Blue whales were abundant in nearly all the oceans on Earth until the be-
ginning of the twentieth century. For over a century, they were hunted almost to extinction by whaling
until protected by the international community in 1966.

3Recent report of whale impact by IMF, accessed Dec 30, 2019, from https://www.imf.org/
external/pubs/ft/fandd/2019/12/natures-solution-to-climate-change-chami.htm

4The Raspberry Pi is a low cost, credit-card sized microcomputer capable of supporting computer
monitor or TV. It is a little device which enables people of all ages to explore computing, and to learn
how to program in languages like Scratch and Python [6]

5NVIDIA Jetson Nano Developer Kit is a small, powerful computer allowing multiple neural net-
works in parallel for applications such as image classification, object detection, segmentation, and
speech processing, using 5 watts [7]

6The Dev Board is a single-board computer that targets performing fast machine learning infer-
encing in a small form factor, it uses an onboard Edge Tensor processing unit to achieve this perfor-
mance [8].

https://www.imf.org/external/pubs/ft/fandd/2019/12/natures-solution-to-climate-change-chami.htm
https://www.imf.org/external/pubs/ft/fandd/2019/12/natures-solution-to-climate-change-chami.htm
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inaccessible (from on-board the sea vessel). Moreover, such a system is designed to support marine

biologists to easily determine the abundance of species, using image vision algorithms for detection

and classification.

1.1 Motivation

This manuscript is motivated to increase marine literacy and impact the reduction of marine

litter given the targets by the UNSDG (United Nation Sustainable Development Goal) 14. Life

Below Water. From hereinafter, the manuscript describes some of the facts and figures regarding

biodiversity in oceanic settings, as well as an outline of the important issues which remain unsolved

when performing the biodiversity assessments.

1.1.1 Understanding Aquatic Biodiversity

The oceans cover 71% of the Earth’s surface, they contain 97% of the Earth’s water and represent

99% of the living space on the planet. They absorb around 30% of the carbon dioxide produced

by humans, which buffers the impact of global warming. They contain nearly 200 000 identified

species, however, the actual numbers are unknown and may be in the millions7. More than 3 billion

depend on marine and coastal biodiversity for their livelihood. Less known is the fact that the

oceans are the world’s largest source of protein [9]. Moreover, the global market value of marine

and coastal resources and industries is estimated at $3 trillion per year, which is equivalent to

about 5% of the global GDP. Over 200 million people are directly or indirectly employed by

marine fisheries [9].

Even though some existing policies and treaties encourage responsible use of ocean resources

and protected areas for marine biodiversity, they are not enough to combat the negative effects of

overfishing, the acidification of the ocean, and the worsening coastal eutrophication8. The ocean

acidification is due to the ocean absorbing the atmospheric CO2 (Carbon dioxide) which changes

the chemical composition of the water. Over the past 30 years observing the ocean acidity we can

see an average increase of 26% since the pre-industrial times, and at this rate, by the end of the

century, it is predicted to increase between 100 to 150% [10].

Our oceans are polluted with a wide variety of marine litter ranging from soda cans and plastic

bags to derelict fishing gear and abandoned vessels. Everyday trash is entering the oceans at an

alarming rate, it is estimated that by 2025 more than 250 trillion tons of plastic will make its

way into the sea. Marine litter beyond being unsightly, it’s dangerous to marine life, hazardous
7Assessed at 30 Dec 2019 - recent UNSDG Life Below Water facts and figures at https://

www.un.org/sustainabledevelopment/oceans/
8Eutrophication is when a body of water becomes overly enriched with minerals and nutrients which

induce excessive growth of algae. This process may result in oxygen depletion of the water body

https://www.un.org/sustainabledevelopment/oceans/
https://www.un.org/sustainabledevelopment/oceans/
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to human health. Marine animals can mistake marine litter for food, which is often fatal, or

become entangled in it. Furthermore, divers, swimmers, and beachgoers can be directly harmed

by encounters with marine litter or its toxins. The environmental damage caused by plastic litter

alone is estimated at $13 billion a year [11].

1.1.2 Overview of Issues to be Explored

Given the aforementioned importance of issues in aquatic settings, this manuscript leverages the

potential of aerial imagery, capable to assess marine biodiversity. Thus, it is important to outline

the three main issues when obtaining the biodiversity imagery from sea-vessels:

(i) Biodiversity Population Estimation is Based on Rule-of-Thumb

As it was observed when attending one of the whale-watching trips, when counting the marine

taxa from the sea vessel, marine biologists usually follow the rule of thumb technique to

estimate the population. This typically means that two or three biologists (including a skipper)

suggest a number from which an average is decided [12]. This technique allows to collect

the data, however yielding a very significant standard deviation, where more tools should be

implemented to obtain the fine resolution, producing a more correct estimation of the number

of species.

(ii) UAV (Unmanned Aerial Vehicle) Marine Assessments Continue to Be Obtrusive

As it was also assessed from one of the whale watching trips, due to the high impact of the wind

factor [13], (e.g. above Beaufort9 2), it is very challenging to operate a state of the art drone10

in these conditions, as they tend to drift. Moreover, drones which are capable of landing on

the water surface or which can withstand the waterproofing, remain at a very high cost11.

(iii) Low-Cost Aerial Survey Mechanisms Remain Unexplored in Ocean Setting

As it will be addressed throughout this manuscript, typical aerial assessments are obtained

using satellites imagery [14], which hinders access to the data or are costly to a typical marine

biologist. Therefore, the manuscript explores the low-cost solutions based on IoT for assessing

marine biodiversity, as well as the pros and cons of using such equipment on typical sensing

marine units (e.g. sea-vessel mast, UAV, etc), as some of the recent work suggests it as an

alternative approach to the obtained aerial imagery.

9The Beaufort scale is an empirical measure that relates wind speed to observed conditions at sea or
on land, it ranges from 0 (calm) to 12 (Hurricane force).

10Tested with https://www.dji.com/pt/phantom-2
11At the date of the manuscript, cost of the typical aerial drone is approximately EUR 1k.

While claimed to be waterproof, it is to some extent water safe. See e.g. HEX2O kit at https://
www.quadh2o.com/hexh2o/hexh2o-kit/. Retrieved at 30 Dec 2019

https://www.dji.com/pt/phantom-2
https://www.quadh2o.com/hexh2o/hexh2o-kit/
https://www.quadh2o.com/hexh2o/hexh2o-kit/
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1.2 Research Questions and Contributions

To address the previously outlined issues, this manuscript studies and provides empirical results

for assessing the low-cost marine biodiversity assessments, using aerial imagery. Studies reported

in this thesis support the next four research questions:

(i) [RQ1.] How to create low-cost aquatic IoT apparatus for assessing marine biodi-

versity using aerial imagery?

In this research question, this thesis will depict the best practices for creating the IoT device

capable of collecting, classifying, and reporting the confidence rates when detecting the species

from imagery gathered aboard sea vessels.

(ii) [RQ2.] To which extent the proposed apparatus can support the marine biologist

in counting the species?

Several user studies will be performed, mainly on usability and user experience, outlining the

pros and cons of using such a system in real-time, on-board the sea vessels.

(iii) [RQ3.] How accurate is the software for classification prediction and counting the

marine taxa?

This particular question will analyze, to which extent the automatic classification performs

compared to that of humans. More insights will be provided on understanding who performs

better in the classification of imagery, being a human, a computer, or combined (human and

computer).

1.3 Objectives

Practical goals of this manuscript are therefore directly tailored to the aforementioned research

questions and challenges and include next objectives:

– [O1.] Prototyping IoT apparatus for top-view surveys

– [O2.] IoT Software Development of the device

– [O3.] Mobile Application Software Development

– [O4.] Image vision classifiers to detect the marine mega fauna

– [O5.] Usability and HCI studies from deployment

1.4 Organization of the Manuscript

This manuscript is organized as follows: (i) Introduction section outlined the research questions,

problems and objectives of the thesis; (ii) Related work section portrays the analysis of current
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SoA (State of the Art) of all IoT devices available on market as well as the current techniques for

image vision biodiversity assessments in ecology; (iii) Methodology section describes the used

apparatus, comprised from system architecture and used algorithms for image vision classifica-

tion; (iv) Results section provides insights to the collected data as well as to the feedback from

the marine biologists; (v) Discussion will thoroughly describe collected results and provide novel

insights from the assessed imagery; and finally (vi) Conclusion will outline the constraints, con-

tributions, and future works of developing both hardware and software for performing biodiversity

assessments in oceanic environment.
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2 Related Work

Before providing the solution to assess the aerial imagery, the thesis reports the technology and

techniques (Section 2.1) as well as an overview of the previous works reported by the scholars

when deploying and testing IoT devices in aquatic setting (Section 2.2).

2.1 State of the Art

As aforementioned, current technologies to assess the marine megafauna exist, however remaining

at the significant high cost. Manuscript provides an overview of the SoA: (i) Section 2.1.1 depicts

technology and techniques currently applied to the aquatic wildlife monitoring. It also includes

an overview of best practices in assessing aerial imagery; (ii) Section 2.1.2 benchmarks the

prior machine learning techniques in detecting marine taxa; (iii) Section 2.1.3 reports the types

of imagery which can be collected; (iv) Section 2.1.4 outlines the diverse MSI (Multi-spectral

imagery) cameras accessible on market.

2.1.1 Tools for Aerial Assessments

To better understand how to design for biodiversity assessments using aerial imagery, an overview

of some technologies and techniques for aerial assessments is depicted in the following table 1. The

provided list of works is also outlined in the remainder of the section.

Table 1. Comparison of Technologies and Techniques for Aerial Assessments

Producer Cost Type Data Software Data
Type Retrieval

SPACEWHALE [15] * Satellite Images Data report HTTP
HDAS [16] * UAV Video Data report *
Balloon $ 100 Balloon Images/ MapKnitter SD card

Mapping kit [17] Video
DJI P4 [18] $ 6499 Drone MSI - SD card

RedEdge [19] + $ 6900 + Drone MSI - SD cardDJI M200 [20] £ 3200
AEROKATS [21] $ 165 Kite Images/ AEROKATS SD card

Video Mission Mapper
HEXH2OTM [22] $ 1049 Drone Images/ - SD card

Video
* Information is unavailable.

Among the plethora of technologies to study biodiversity, SPACEWHALE is a service that

provides a tool for automatic detection and identification of large whale species using VHR (Very

High Resolution) satellite imagery12, providing the information to the end-user through a report. It
12e.g. WorldView 3, a commercial EO (Earth Observation) satellite
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uses an algorithm, based on deep-learning techniques using CNN (Convolutional neural network),

that is trained using a large dataset of high-resolution aerial imagery gathered from aircraft sur-

veys. This footage gathered from aircraft surveys has a resolution of 2cm which is down-sampled

to 31cm so that it can match the WorldView 3 satellite imagery, as can be seen in the following

figure 1. Once a whale is identified, that image is used to re-train the algorithm, improving the

accuracy throughout time [15].

Fig. 1. SPACEWHALE training image down-sampling example. [Source: SPACEWHALE - MAPPING

WHALES FROM SPACE]

While this system provided a proof of concept for applying the space technology in detecting

the aquatic species, this manuscript argues that an apparatus of such kind has several issues: (i)

it provides solely the back-end side (sole SQL database as for the report), where offline analysis

need to be performed; (ii) data remains inaccessible, as there are no existing simplified pipelines

to the satellite imagery; and (iii) collected imagery remains at a high cost.

HDAS (HiDef Aerial Surveying) is a UK based company which provides aerial surveying im-

agery to third parties. Their system is deployed around the globe on an exclusive territory basis,

offering a HD (High-Definition) video platform deployed via an aircraft. On every contract, they

gather video footage and data that is later analyzed to identify the species that are captured

in the images. Such imagery can also assess the smaller taxa, such as sea birds, calculating the

bird’s flying heights. They also claim to have a unique technology that enables them to monitor

birds’ flight paths to avoid collisions. Most of their clients are energy companies that survey the

environment around their offshore oil plants or offshore wind farms [16]. In the following figure 2

an example of the footage gathered by this company can be seen.

https://business.esa.int/projects/spacewhale
https://business.esa.int/projects/spacewhale
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Fig. 2. Footage gathered from an HiDef aircraft. [Source: HiDef Aerial Surveying sample video images]

Although they produce very high-quality footage from their aerial surveys, these surveys can

be very costly. Moreover, their footage analysis and specie identification are performed offline

after the surveying mission is complete, tagged by the experts from the field, which takes a long

time depending on the length of the footage. Thus, this manuscript proposes an automatic image

analysis (with some input from end-users), and classification to be performed online.

Nevertheless, not all of the technologies assessing biodiversity need to be expensive. For in-

stance, Public Lab’s balloon mapping kit is a DIY solution that enables users to take their aerial

photos up to 305m. This kit consists of a balloon, a Dacron line, and a few accessories to help

set it up, that can have a camera attached to take aerial pictures. For windy days, they offer the

alternative Kite Mapping Kit. After taking the photos they can be added onto Public Lab’s tool

MapKnitter to stitch them into an online map, effectively making a crowdsourced map [17].

Fig. 3. Public Lab’s Balloon Mapping Kit. [Source: Public Lab Store]

Weather balloons are also used for telecommunication where the IoT reaches the low-altitudes [23].

Recently, the world record for the longest distance communication using LoRa (Long-Range). The

https://www.hidefsurveying.co.uk/
https://store.publiclab.org/products/balloon-mapping-kit?variant=7028822724
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balloons were tracked using The Things Network13, plain LoRa R© and by APRS and satellite

using Spot14. The first balloon the break the world record in 2019 had three direction 3D printed

Moxon Antennas placed at 120o and a reaction wheel(a type flywheel used for altitude control)

which stabilizes and prevents the probe from spinning. In this scenario keeping the probe from

spinning is very important since the LoRaWAN transmissions they used can take about a second

to finish. This balloon broke the world record several times during its flight however the final

record was established when it contacted Lisboa at 741km [24].

The second balloon, which holds the current world record, was aiming to reach the highest

altitude possible (>40 000m) and for that purpose, it was developed with optimizations to its lift

and the capsule weight. After the launch, due to an incoming storm, the balloon did not reach

the intended altitude, reaching up to 28 000m and then dropping to 18 000m before stopping the

transmissions. However, two days later the balloon flew by Açores at 33 200m sending its last

transmission before disappearing somewhere in the Atlantic. The record was set when the balloon

was flying at an altitude of 24 859m and sent a message that was received by 24 gateways, the

farthest of which was at a distance of 766km [24].

Balloons have been used in research for monitoring air pollution back to 1981 [25]. These bal-

loons are a great way to monitor air pollution because they have very high vertical and horizontal

mobility, and can monitoring at specific altitudes for extended periods. And the main benefit of

the balloons is that they are versatile and can get emission samples from both point and nonpoint

sources where the ground, tower, or aircraft sampling would have been inadequate or impractical.

The DJI P4 is an all-in-one solution that includes a drone with a multispectral camera attached

to it and software to analyze the imagery. The drone has a transmission range of 7km and a flight

time of 27 minutes, which is not nearly enough for our purpose that might require more than a

couple hours of flight at a time. It is targeted at farmers to gather data about their plots of land

and the vegetation health [18]. The data gathered by this device can be imported into free software

like DJI Terra or Pix4D for further analysis.

13An open-source and tech-savvy community, allowing participants to deploy IoT nodes and gateways
and to use open radio communication. (https://www.thethingsnetwork.org/)

14SPOT (is a french acronym that means "Satellite for observation of Earth") is a commercial high-
resolution optical imaging hyperlinkabbrEO satellite system operating from space.

https://www.thethingsnetwork.org/
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Fig. 4. False color image captured by a DJI P4 drone that highlights the vegetation making it easier to

see the weaker areas. [Source: DJI P4 MULTISPECTRAL AGRICULTURE DRONE]

Another solution that is mostly targeted at agriculture is the RedEdge multispectral camera

attached to a drone. Besides the false-color image that highlights vegetation, mentioned in the

previous solution, this one can also capture a false-color image that highlights water, as shown in

figure 5. However, this product is sold only as a camera and needs to be integrated with a drone

making it more expensive [26]. The data gathered by this device can be imported into free software

like Pix4D for further analysis.

Fig. 5. Example of a false color image that highlights water as light blue. [Source: Assessing Storm Im-

pact in Puerto Rico with Remote Sensing and Digital Volunteers]

Alongside the aerial surveys, the AEROKATS is an adequate solution offering simplistic aerial

surveys and kits at a low-cost. These kits use aeropods15 with some type of camera attached,

supporting the aerial imagery. They also have a website called AEROKATS Mission Mapper,

where people can see all the data submitted from previous AEROKATS missions through the

Survey 123 app [21].

The HEXH2OTM is a kit that contains all the body and electrical components to build a drone

designed to be used in an ocean environment. It has a flight time of 25 minutes, can achieve speeds

15Aerodynamically stabilized instrument platform for kites and tethered balloons

https://www.dronenerds.com/products/drones/enterprise-drones/phantom-4-enterprise/p4-multispectral.html
https://www.directrelief.org/2017/10/assessing-storm-impact-puerto-rico-remote-sensing-digital-volunteers/
https://www.directrelief.org/2017/10/assessing-storm-impact-puerto-rico-remote-sensing-digital-volunteers/
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of 55km/h, and carry payloads up to 2kg. Since it is designed to be water-resistant it can land on

the water to capture underwater imagery [22].

Although most of these solutions are adequate for our purpose some of them have significant

drawbacks. The SPACEWHALE and HDAS solutions provide great imagery however are not

available to the public and even though the pricing is not available, we can estimate that they

have a higher cost than the other solutions mentioned. The solutions involving drones are not

ideal for our surveys because they are very costly and drones are hard to control even on land

so deploying from a boat would be a greater challenge. Finally, the solutions using balloons or

kites are adequate, however, they use proprietary software which would hinder our data analysis.

Considering all of this the solution we propose is a custom-designed apparatus, with a MCU and

open source software, that can be deployed in diverse locations (e.g. attached to a balloon/kite or

the mast of a vessel).

2.1.2 Overview of Machine Learning Software

Nowadays, AI (Artificial Inteligence) is everywhere and one of its most popular applications is

ML (Machine Learning), in which computers, software, and devices perform tasks via cognition

similar to the human brain. ML is integrated with many services that people use every day, for

example, virtual personal assistants, traffic predictions while commuting, social media services

(people you may know, face recognition, etc), email spam filtering, search engine results refining,

product recommendations, etc [27].

To support these applications there are many engines and tools that developers can use to

implement machine learning models in several different ways. The following table 2 presents an

overview of several tools used for ML, with information pertaining in which programming languages

their interface can be used, their availability, release date and if they are open source.

Below, a brief overview of machine learning software is provided, covering some of the benefits

of each tool researched.

TensorFlow is an easy to use open-source ML framework, allowing the user to deploy across

a variety of platforms. It is one of the most well-maintained and used frameworks. It also allows

developing neural networks using flowgraphs [28].

OpenCV is a computer vision tool that is prebuilt with all the necessary techniques and algo-

rithms to perform several image and video processing tasks. As TensorFlow, it is an out-of-the-box

solution, however, takes a performance hit when working with massive data sets or very large im-

ages [29].
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Table 2. Comparison of Machine Learning software

Software Release Open Source Written in Interface Price
TensorFlow 2015 Yes C++, Python, C/C++, Free

Python, Java, Go, JS,
CUDA R, Julia, Swift

OpenCV 2000 Yes C/C++ C++, Python Free
SimpleCV 2012 Yes Python Python Free
MATLAB’s 2016 No C++, Java, MATLAB 1150 e

Deep Learning C, MATLAB
Toolbox
PyTorch 2016 Yes Python, C, Python, C++ Free

C++, CUDA
Keras 2015 Yes Python Python, R Free

Accord.NET 2010 Yes C# C# Free
Chainer 2015 Yes Python Python Free
Caffe 2017 Yes C++ Python Free

Deeplearning4j 2018* Yes Java, CUDA, Java, Scala, Python, Free
C, C++ Clojure and Kotlin

BigDL 2017* Yes Scala, Python Scala, Python Free
Apache MXNet 2017 Yes C++, Python, R C++, Python, Scala Free

Java, Julia, Scala MATLAB, R, Julia
JavaScript, Go, Perl Perl, Clojure, JavaScript

* Beta version.

SimpleCV is a simple tool for machine learning targeted at users that do not wish to get into

the depths of image processing, however focusing on quick prototyping [30].

MATLAB’s Deep Learning Toolbox is another adequate tool for image processing in a research

environment. It allows quick prototyping and its’ code is concise, making it easy to read and debug.

On the other hand, it can get a decrease in speed during execution suggesting it not be a handy

tool for a production environment [31].

PyTorch is a python library that enables users to build Deep Learning models and use them in

various applications. It focuses on the ease of use and makes it possible for even users with very

basic programming experience to use Deep Learning in their projects, which makes it a great first

tool to use for ML [32].

Keras is an open-source library design to simplify the creation of deep learning models, it can

be deployed on top of other AI tools like TensorFlow. It is a good tool to use when you need an

easy and fast prototype and is very user-friendly, modular, and versatile [33].

Accord.NET is a machine learning framework suitable for production-grade scientific com-

puting. You can build various applications in ANNs (Artificial Neural Network) statistical data

processing, image processing, between others. It is also one of the few tools that can be used with

C# [34].
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Chainer is an open-source deep learning framework written entirely in Python on top of the

NumPy and CuPy libraries. It is notable for its early adoption of the "define-by-run" scheme,

along with its performance on large scale systems. The first version was released in June 2015 and

has gained large popularity in Japan since then [35].

Apache MXNet is an open-source deep learning software framework used to train and deploy

deep neural networks. It allows fast model training due to being scalable and supports a flexible

programming model and also multiple programming languages, listed in table 2. The MXNet

library is portable and can scale to multiple GPUs and multiple machines [36].

CAFFE (Convolutional Architecture for Fast Feature Embedding) is an open-source deep learn-

ing framework, originally developed at the University of California, Berkeley. It supports several

different types of deep learning architectures with a focus on image classification and segmen-

tation. It supports CNN, RCNN (Region Based Convolutional Neural Networks), LSTM (Long

short-term memory) and fully connected neural network designs [37].

Deeplearning4j, a deep learning programming library written in Java for the Java virtual ma-

chine, is a framework with wide support for deep learning algorithms. It includes implementations

of the restricted Boltzmann machine, deep belief net, deep autoencoder, stacked denoising autoen-

coder, recursive neural tensor network, word2vec, doc2vec, and GloVe [38].

BigDL is a distributed deep learning library for Apache Spark which enables users to write their

deep learning applications as standard Spark programs, that can directly run on top of existing

Spark or Hadoop clusters [39].

For this thesis, TensorFlow will be analyzed as it provides threefold contribution: (i) it is a ML

tool with an accessible and readable syntax; (ii) provides adequate features and services compared

to other popular tools; and (iii) allows access to the documentation, tutorials, and out-of-the-box

examples. Another important feature is that it provides the TensorFlow Lite, which is a lightweight

machine learning solution for on-device inference allowing deployments and execution on mobile

and embedded devices, which seem adequate to be coupled with the used MCU proposed by this

manuscript.

2.1.3 Types of Imagery

While there are diverse possibilities to obtain the accuracy when detecting the species, image

classification remains limited as the collected image is subject to the passive (see Section 2.1.3.1)

or active imagery [40] (see Section 2.1.3.2). The main difference between these two is that passive

sensors are designed to detect electromagnetic emissions, these can be the result of the reflected

sunlight or produced locally (e.g. thermal radiation from vegetation in the infrared spectrum). And
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the active sensors, which are not dependent on the solar illumination, that consist of a transmitter

that sends out a specific electromagnetic signal and a sensor receiving the interaction of the signal

with the Earth’s surface. In this manuscript, a brief overview of both is outlined below, where an

emphasis on using the Passive Imagery is taken, as such technique can be easily manufactured [40].

2.1.3.1 Passive Imagery

A candidate of passive imagery types starts with panchromatic imagery. Panchromatic images

are created when the imaging sensor is sensitive to a wide range of wavelengths of light, typically

spanning a large part of the visible part of the spectrum. The panchromatic band is essentially black

and white, it has a wide bandwidth usually between 100-450 nanometers. The wide bandwidth

allows it to have a high signal to noise16, that is why panchromatic data is often available at the

highest spatial resolution.

Fig. 6. Image captured through a panchromatic band. [Source: From panchromatic to hyperspectral

EARTH OBSERVATION IN A MYRIAD OF COLORS]

The MSI, which is another passive imagery type, captures image data within specific wavelength

ranges across the electromagnetic spectrum. These wavelengths can be separated with filters or

instruments that are sensitive to particular wavelengths. The most common use of MSI is the

photos which most people take every day, the production of natural color by combining 3 bands of

the visible spectrum (red, green, and blue wavelengths). However, MSI is not limited to the visible

spectrum, different spectrums can be combined like IR (Infrared), UV (Ultraviolet), microwave or

others to allow observations which are not visible to the naked eye. A common example of this is

16Signal-to-noise ratio is used in imaging to characterize image quality. The sensitivity of an imaging
system (digital or film) is typically described in the terms of the signal level that yields a threshold level
of Signal-to-noise.

https://www.ohb.de/en/magazine/from-panchromatic-to-hyperspectral-earth-observation-in-a-myriad-of-colors/
https://www.ohb.de/en/magazine/from-panchromatic-to-hyperspectral-earth-observation-in-a-myriad-of-colors/
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false-color17, combining the IR, green and red spectral bands to show the vegetation highlighted

in red as shown can see in the following figure 7.

Fig. 7. Comparison between natural color (left) MSI and a highlighted vegetation false-color (right).

[Source: False color]

A common combination of passive imagery is Pan-sharpened imagery, which is a process that

merges panchromatic imagery with MSI. It aims to deliver the high-resolution images captured by

panchromatic bands and add color to them with the help of MSI, as can be seen in the following

figure 8.

Fig. 8. Example of pan-sharpened image. [Source: Spear Pan Sharpening]

Another example of passive imagery is Hyperspectral imagery, it collects and processes infor-

mation from across the electromagnetic spectrum. The main goal of this imagery is to collect the

spectrum for each pixel in the image of a scene, to find objects or identifying materials. Since

certain objects leave unique "fingerprints" in the electromagnetic spectrum, they can be identified

by this imagery. For example, using a spectral signature for oil can help geologists find new oil

fields.

Finally, there is Microwave Radiometry which is the measurement of the energy emitted at

millimeter-to-centimeter wavelengths (frequencies of 1-1000GHz) also known as microwaves. This

imagery can measure thermal electromagnetic radiation emitted by atmospheric gases and are

useful in a lot of fields like weather forecasting, climate monitoring, radio astronomy, etc.

17False color images are a representation of a multispectral image produced using any bands other
than visible red, green, and blue as the red, green and blue components of the display. False-color com-
posites allow us to visualize wavelengths that the human eye can not see (i.e. near-infrared and beyond).

https://en.wikipedia.org/wiki/False_color
https://www.harrisgeospatial.com/docs/SPEARPanSharpening.html
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2.1.3.2 Active Imagery

In terms of active imagery, there is the SAR (Synthetic Aperture Radar), which is the most common

active sensor used to observe the Earth from satellites. It is a sensor that emits electromagnetic

pulses towards the Earth’s surface and detects the return pulses which were reflected or scattered

by the surface features. It can be used to detect ships or oil spills or to monitor sea ice, forests,

soil moisture, critical infrastructure, etc.

Similar to SAR there is LIDAR (Light Detection And Ranging) which has the same principle

however, it works with IR, UV or visible wavelengths. LIDARs are used to measure precisely

topographic features, monitor growth or decline of glaciers, profile clouds, measure winds, study

aerosols, and quantifying various atmospheric components.

Radar Altimetry uses the ranging capability of radar to measure the surface’s topography

along a satellite track. They do this by measuring the time interval between the transmission and

reception of the electromagnetic pulse emitted by the sensor. A lot of different information can be

gathered from these measurements, such as the ocean topography, the lateral extent of sea ice and

altitude of large icebergs above sea level, the topography of the land, ice sheets, or the seafloor,

and it can also provide information for mapping the sea-surface wind speeds and significant wave

heights.

A relatively new category of satellite navigation applications is GNSS (Global Navigation Satel-

lite System) reflectometry, which involved transmitting and receiving microwave signals reflected

from various surfaces to extract information from various surfaces. This process involves the GNSS

satellite acting as the transmitter and an airplane or a LEO (Low Earth Orbit) as the receiver. The

receiver can also be placed on land if the goal is an altimetry application. The possibilities with

this GNSS reflectometry include wide-swath altimetry, sea-wind retrieval, humidity measurements

over land, and measurement of seawater salinity and ice-layer density.

Finally, Radar Scatterometry, which uses a microwave radar sensor to measure the reflection or

scattering effect produces while scanning the surface of the earth from an aircraft or a satellite. This

imagery can provide measures of wind speed and direction near the sea surface and information

such as sea ice coverage.

Although the active imagery could be very useful in what this thesis aims to achieve since these

sensors are very pricey they will not be used seeing as the goal of this thesis is to develop a low-cost

solution. Furthermore, they consume more power because they need an emitter component as well

as the receiver, which is another big downside since good energy autonomy is a must. Considering

this research into MSI, this thesis will explore the development of a modular apparatus that
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can be equipped with different cameras seeing as different light spectrums can contain valuable

information to aid the machine learning classification.

2.1.4 Multispectral Imagery Cameras

As stated previously in section 2.1.3, this thesis will focus on collecting the MSI, specifically the

RGB, the IV and the UV bands. There is a lot of data that can be gathered with this combination

of bands, and they can be used to more easily identify the species in a marine environment. In the

following table 3 there is a list of solutions already in the market to capture this type of imagery.

Table 3. Comparison between different Multispectral Imagery cameras.

Producer Cost Bands(nm) Application
Micasense RedEdge [41] $ 5,195.00 400-1500 Agriculture

MAIA WV [42] 13,500.00 e 390-950 Agriculture, Geology,
Industry, Nature

MAIA S2 [42] 15,200.00 e 433-900 Agriculture, Geology,
Industry, Nature

MAIA M2 [42] 2,400.00 e 395-950 Agriculture, Geology,
Industry, Nature

DJI P4 Multispectral [43] $ 6,499.00 434-866 Agriculture
Parrot Sequoia+ [44] $ 3,800.00 510-830 Agriculture
SlateRange 4P [45] $ 4,950.00 410-950 Agriculture
SlateRange 4P+ [46] $ 5,750.00 410-950 Agriculture

Sentera 6X [47] $ 6,349.00 445-860 Agriculture
Sentera Double 4K [47] $ 3,469.00 446-840 Agriculture
Sentera AGX710 [47] $ 4,299.00 446-850 Agriculture

Sentera NDVI or NDRE [47] $ 1,999.00 400-750 Agriculture
Sentera Quad Sensor [47] $ 4,599.00 450-825 Agriculture

Below, a brief overview of multi-spectral cameras is provided, covering some of the benefits of

aerial assessments.

Micasense RedEdge is a professional multispectral camera built with a metal case for extreme

durability, can capture five narrow spectral bands, generates plant and health indexes, and can

operate up to 60oC.

MAIA WV is a multispectral camera that is equipped with the same wavelength intervals as

the WorldView 2 satellite. It has an array of 9 sensors (1 RGB and 8 monochromes with relative

band-pass filters) to detect multispectral imagery between the 390nm and 950nm bands. Similar

to the MAIA WV we have the MAIA S2 which was built with the same wavelength intervals as

the Sentinel 2 satellite. It is an advanced multispectral camera with two narrow bands in Red

Edge regions and bands in Violet and Blue regions. For people that don’t need as many sensors,



18

there is the MAIA M2, which is a modular multispectral camera that has 2 modular sensors that

can be changed to match the user’s needs.

An all-in-one solution that includes a multispectral camera and a drone, to complete aerial

surveys, is the DJI P4 Multispectral. This multispectral camera has 6 sensors, one of which is

RGB, and the other 5 cover the bands Blue, Green, Red, Red Edge, and Near IR.

Parrot Sequoia+ was designed to be an affordable multispectral camera that is compatible with

all types of drones. With its multispectral and sunlight sensors, this camera analyses the plants’

vitality by capturing the amount of light they absorb and reflect.

SlantRange 4P is a multispectral sensor consisting of the three RGB bands, a NIR, a Red Edge,

and another Red band. It specializes in capturing high-resolution MSI which they claim is a major

benefit in an agriculture environment because it enables the users to measure the size and shape

of each plant, which provides more options for image analysis. The SlantRange 4P+ provides the

same features as the previously mentioned sensor however with twice the resolution.

Sentera provides a multitude of sensors ranging in capabilities and price, the most expensive is

the Sentera 6X which can capture MSI in the blue, green, red, red edge and NIR bands. Although

other sensors can capture MSI from five different brands, the Sentera 6X has separate high-quality

optical hardware to capture each band. Both the Sentera Double 4K and Sentera AGX710 can

capture MSI in the same five bands, as the previous sensor, using only two sensors which results

in lower quality results, they can also be easily swapped with other sensors that use Sentera’s

Lock-and-Go technology. Sentera Quad Sensor has four fully-customizable multispectral imagers

that can be used to collect NDVI (Normalized Difference Vegetation Index), Green NDVI, NDRE

(Normalized Difference Red Edge), and high-resolution color data, all in a single flight. Finally,

the Sentera NDVI or Sentera NDRE is a single sensor that has a variant that can capture only

NDVI and another that captures NDRE, it is the most affordable solution for people that can

work using only this data type.

After researching several commercially available multi-spectral cameras, no solution can target

the easy-to-setup application on the sea vessels as well as affordable price. Although most of

these cameras would probably work for the project, these cameras were not tested to detect

marine megafauna and remain mostly applied in agriculture. Conversely, the ocean is a rough

environment and water splashes can easily damage electronics or objects that fall into the sea,

hence, additional waterproofing and custom solutions should be invented to secure the deployments

in aquatic settings.
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2.2 Prior Research

In this section, this thesis will explore prior research on the following topics: (a) Section 2.2.1,

depicting the aerial image observations; (b) Section 2.2.2, providing the research in deploying

the IoT devices in marine environment; and (c) Section 2.2.3, reporting the overview of works

in image vision classification and algorithms, important to detect and classify the species. In the

following table 4 we can see a general overview of the projects studied.

Table 4. Overview of studied projects.

Author Project Data Setting Data
type

Nieukirk Drone up! Quantifying whale
Video Aquatic Offlineet al. [48] behavior from a new perspective

improves observational capacity

Borowicz Aerial-trained deep learning
Video Aquatic Offlineet al. [49] networks for surveying

cetaceans from satellite imagery

Murgai Development of an Automatic
Audio Aquatic Offlineet al. [50] Classification System for Cetaceans

Using their Vocalizations

Lopez Automated detection of
MSI Aquatic Offlineet al. [51] marine animals using

multispectral imaging

Armstrong Tethered balloon sampling Air Urban Offlineet al. [25] systems for monitoring Samplesair pollution

Fretwell Whales from space: Satellite Aquatic Offlineet al. [14] counting southern right whales Imageryby satellite

Radeta SeaMote-Interactive Remotely Video Aquatic Offlineet al. [52] Operated Apparatus for Aquatic /AudioExpeditions

Schoonmaker Spectral detection and MSI Aquatic Offlineet al. [53] monitoring of marine mammals

Kuznetsov Red balloon, green balloon, Air Urban Offlineet al. [54] sensors in the sky Samples

Jensen Detecting the attributes of a wheat
MSI Rustic Offlineet al. [55] crop using digital imagery acquired

from a low-altitude platform

Saghri BalloonSat: design, implementation,
MSI Urban Offlineet al. [56] and application of a low-cost tethered

weather balloon remote sensing station
POSEIDON-Passive-acoustic Ocean

Aquatic OfflineRadeta Sensor for Entertainment and Video
et al. [57] Interactive Data-gathering in /Audio

Opportunistic Nautical-activities
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2.2.1 Aerial Image Observations

The two most common ways to obtain aerial imagery in oceanic settings are aircraft surveys and

satellite imagery. There have been several research projects done on the topic of whale detection

from satellite imagery. In this case, the first step to perform this detection is to collect aerial

imagery of whales and train a classification model to correctly identify them. Two of the projects

([49] and [15]) used the same method to collect such imagery. They first obtained aerial imagery

from an aerial surveying company (see HDAS mentioned in section 2.1.1), serving as a baseline,

and then downsampled the images to simulate the satellite imagery.

Another work gathered satellite imagery, from the WorldView218 satellite19, surveying a cer-

tain region in the Golfo Nuevo Bay which is a bay that separates the Península Valdés from

Argentina’s mainland. The reason for the region chosen is that it is the largest breeding aggre-

gations of the whale species that was being studied [14]. After the imagery gathering, they ran

five analyses through the data (a manual analysis, two unsupervised classification techniques, and

two Thresholding 20 analysis) and compared the results against the manual analysis as we can

see in the following table 5, which shows that the Threshold Panchromatic analysis was the most

accurate, however, the manual still got more total whale detections.

Table 5. Comparison between automatic and manual whale detection. (Adapted from Whales from
Space: Counting Southern Right Whales by Satellite)

Unsupervised Threshold
Manual iso means kmeans Panchromatic band 5

Total signals 91 158 102 64 101
Probable 55 44 42 43 49
Possible 23 16 11 14 15

Band 5 only 13 1 0 0 13
Total found - 61 53 57 77
Found (%) - 67.0 58.2 62.6 84.6
Total missed - 30 38 34 14
Missed (%) - 33.0 41.8 37.4 15.4

False positives - 97 49 7 24
False positives(%) - 61.4 48.0 10.9 23.8

Correct(%) - 38.6 52.0 89.1 76.2

18DigitalGlobe’s WorldView-2 is a satellite sensor that was launched October 8, 2009, and provides
a high-resolution panchromatic band and eight (8) multispectral bands; four (4) standard colors (red,
green, blue, and near-infrared 1) and four (4) new bands (coastal, yellow, red edge, and near-infrared
2), full-color images for enhanced spectral analysis, mapping and monitoring applications, land-use
planning, disaster relief, exploration, defense and intelligence, and visualization and simulation envi-
ronments.

19This imagery was bought from the provider Digital globe.
20Image thresholding is a simple, yet effective, way of partitioning an image into a foreground and

background. This image analysis technique is a type of image segmentation that isolates objects by con-
verting grayscale images into binary images.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088655
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088655
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Besides satellites and aircraft surveys, several research projects used balloons. One of these

projects used white balloons and a triple colored led to indicate the air quality in a public park.

Using a volatile organic compounds sensor or a dual function diesel/exhaust sensor, these devices

change the color of the led depending on the air quality which could be optimally displayed at

night because the white balloon easily reflects the led color [54]. A big problem of these balloons

is that sometimes after a mission their location is unknown, so to tackle this problem a research

project developed a balloon that combined LoRa, cellular IoT, and live video transmission which

allows for better real-time monitoring of the apparatus, reducing the risk of losing the balloon [23].

Another project used a weather balloon with a multispectral camera to gather imagery of a parking

lot and count the number of occupied spots using machine learning [56]. Similar to this work, there

was a project that gathered multispectral imagery, also with a balloon and a camera, of a wheat

field to analyze crops health [55].

Aside from satellite, aircraft, and balloon, drones were also used in the analysis of whale to

assess the footage from an aerial view. During the whale sightings research spent 594 minutes with

whales, however, the whales were only visible from the traditional horizontal view for sole 104.8

minutes. On the other hand, with the footage gathered from the drone, the whales were visible

for 300.6 minutes which is an increase of 3 times from the traditional techniques [48].

While these works provide important ways to assess the aerial imagery, most of them remain

inaccessible or remain at a high cost. In the case of former, such as satellite or aircraft imagery,

they are not easily accessible to a wider audience. In this thesis, the proposed system opens the

door to wider audiences to design, deploy, and test the proposed system. As for the latter case,

it is possible to estimate that, even using the cheapest off the shelf aerial assessment technique

(Balloon mapping kit) in table 1, as well as the cheapest multispectral camera in table 3, the total

price would be in the thousands of euros. Furthermore, most of these tools require manual and

offline analysis of the data. The proposed research in this study will provide an automatic tool

that analyses the data in near real-time, allowing the user input for improving the classification

model.

2.2.2 IoT devices in Marine Environments

The internet of things, or IoT, is a system of interrelated computing devices, mechanical and

digital machines, objects, animals, or people, that are provided with UIDs (Unique identifier).

They can transfer data over a network without requiring human-to-human or human-to-computer

interaction. These devices seem to be an adequate way to monitor diverse environments (such as

aquatic ones) and gather data [58].
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Nowadays IoT devices can be deployed in diverse settings, including the seas. Due to the rapid

advancement in technology in the last two decades, the possibilities for devices to monitor the

ocean in general, or the water quality, fish farms, coral reefs, waves, and currents, among others,

are higher than ever before. This research targeting marine environment monitoring is crucial to

better understand the seas or climate change causes and effects. This results in a rise IoT devices

being created to expand the human knowledge of the oceans and take better care of it [58].

This research [58] studied 40 of the IoT devices developed for use in a marine environment,

depicting where this technology currently stands. Most of these devices were used for monitoring

or data gathering, and the environments they were deployed in range from the sea to rivers, pools,

lakes, and some were only tested in a lab environment.

Besides data gathering, some of the devices deployed in a marine environment are used to

provide a better experience to end-users like the POSEIDON (Passive-acoustic Ocean Sensor for

Entertainment and Interactive Data-gathering in Opportunistic Nautical-activities). The device

consists of a capsule that has two media acquisition tools, a hydrophone which will be submerged

and is connected to it through a 10m cable and a GoPro camera that will gather underwater

video samples, and connecting to it through a mobile app gives the user access the media that is

being collected. This PAM (Passive Acoustic Monitoring) device was used to enhance the whale

watching boat trips, in which people spend a few hours in a boat sailing, however only see whales

for a couple of minutes. With this device, during the downtime between whales surfacing the users

can use the mobile app to interact with the data collected [57]. An example of how a more active

device can be used in a marine environment is the SeaMote, which is a small remotely operated

surface vehicle that can be controlled through a mobile app [52].

Nevertheless, one of the biggest problems of these devices is the battery capacity. Since they

are deployed in a marine environment, they are not easily connected to a power outlet, thus most

of them work on a battery for a limited amount of time. This is the main reason why most of

such devices are only used for monitoring since this purpose doesn’t require much power and the

information gathered can be useful [58]. Provided research is an adequate contribution to this field

and provides an insight into the problems this thesis will have to overcome during the development

of its’ apparatus.

2.2.3 Detecting Aquatic Species using Machine Learning

As this thesis explores the usage of an IoT device and algorithms for image vision, it is important

to note that there is a large number of diverse aquatic animals, providing difficulty in counting and

classifying the exact number of taxa. A marine biologist needs a better resolution when counting

these species, as traditionally, visual surveys are conducted with one observer [4]. Conversely, some
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efforts used semi-automated pipelines to identify only cetaceans, using their most recent location

using satellite imagery and a convolutional neural network (CNN). The satellite imagery is divided

into tiles and the trained CNN would then classify whether a tile contains a whale. Their best

model managed to correctly classify 100% of the tiles that had whales and 94% of the tiles that

only contained water [49].

Fig. 9. Aerial-trained deep learning pipeline’s automated workflow. [Source: Aerial-trained deep learning
networks for surveying cetaceans from satellite imagery]

Not only images can be used for training the models. Even though the sound is very distant

from images to a neural network they are just numbers. In a research paper about developing

an automatic classification system for cetaceans [50], authors describe the system which classifies

different whale species based on the vocalization acoustic signals (either raw or preprocessed).

The dataset they used consisted of five different cetacean species, namely: blue whale, fin whale,

Cuvier’s Beaked whale, Sperm whale, and porpoise. For this classification task, they extracted

thirty-four features specific to acoustics. Besides the time domain and frequency features, there

are many features inspired by speech recognition and music classification applications, similar work

has been done in POSEIDON [57]. The classifiers used were the SVM (Support Vector Machines)

and the RF (Random Forest) [50].

https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0212532&type=printable
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0212532&type=printable
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Murgai et al provides insight to three diverse tests [50]. The first consisted of a binary classi-

fication that had the system detect if the sound was from a blue or a fin whale. These test results

yielded an accuracy of 95% for both classifiers. The second test had the system classify four species

(excluding the sperm whale which was not inculcated into the system). The results of this test

were successful as well with an accuracy of 93.2% for the RF and 91.1% for the SVM [50]. The

final test was an experiment to remove 15 features that were thought to be redundant. The results

prove this point because although the accuracy dropped to 87% for the SVM, the RF remained

at 93% [50].

Although this research used acoustics instead of imagery, which is the selected medium for this

thesis, it is of a contribution to know that machine learning systems can identify different species

with greater accuracy [50].

2.3 Overview of Multi-Spectral Imagery

As this manuscript explores the usage of aerial imagery, it is important to note several diverse

kinds of imagery inputs. Instead of relying solely on traditional colored photos (RGB), it is also

possible to use multispectral sensors to gather several filtered images. Such imagery conveys a lot

more data that is not present in the visible light spectrum21. These filtered images can also improve

the whale classification algorithms, executed by the image vision tools. In research about detecting

marine fauna using MSI, the study found that certain bands can detect submerged animals more

easily, as we can see in figure 10 [53].

Fig. 10. Multispectral images showing four different bands (in order blue 488nm, blue-green 532nm,

green 550nm, red 600nm). As we can see, the second and third bands show a few more animals than the

other two. [Source: Spectral detection and monitoring of marine mammals]

Lopez et al developed a system to automatically detect marine fauna using multispectral im-

agery [51]. The system starts by capturing four multispectral images that are then flat field-

corrected and calibrated to put into reflectivity units, and finally, they are used to generate a

composite image. This final image is then analyzed pixel-by-pixel by the system, which compares

it against several spectral and spatial filters. When this analysis is done the scores of the pixels
21The visible light spectrum is the segment of the electromagnetic spectrum that the human eye can

view. Typically, the human eye can detect wavelengths from 380 to 700 nanometers.

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6946/694606/Spectral-detection-and-monitoring-of-marine-mammals/10.1117/12.777740.short?SSO=1
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are blobbed together and only the detections that score high in spectra, shape, size, and density

that match a target animal target are retained as detections. After this data is generated the final

image is sent to the user which can validate the detection.

Fig. 11. Sperm whale detection by the automated MSI system. [Source: Automated Detection of Ma-

rine Animals Using Multispectral Imaging]

Another group developed an apparatus with two multispectral sensors that collect data with

sensors designed for the 480nm and 550nm bands, a LWIR (Long wave Infrared) and a commercial

color video camera. Instead of using this apparatus for aerial surveys, like the previous works, it was

designed to be mounted on solid ground and gather long-range imagery from land thus evaluating

the ability to use MSI and IR sensors to detect marine mammals (and their blows, breaches, etc.)

from a low-grazing angle system at great distances. This device was tested on the coasts of Hawaii

and demonstrated the ability to detect marine mammals at up to 8 US miles as seen in fig. 12,

furthermore it could gather imagery at night or with poor light conditions thanks to the IR sensor

as seen in fig. 13 although it has resolution and range limitations [59].

Fig. 12. Long range whale imagery [Source: Multispectral Observations of Marine Mammals.]

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7003132
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7003132
https://www.researchgate.net/profile/Tami_Wells/publication/253146981_Multispectral_observations_of_marine_mammals/links/53df57540cf2a76fb6682604/Multispectral-observations-of-marine-mammals.pdf
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Fig. 13. Whale imagery captured at night using an IR sensor [Source: Multispectral Observations of

Marine Mammals]

As it was found during this research, MSI will be a great tool to capture imagery of marine

fauna that is more easily detected compared to the traditional RGB imagery. Furthermore, the

IR band yielded great results regardless of the light conditions, which can’t be said of the RGB

bands. Therefore, the apparatus being modular is a must, seeing as we can replace the camera

to fit the survey conditions (e.g. replacing the RGB camera module with an IR one such as a Pi

NoIR Camera [60]).

2.4 Summary of the Related Work

As it can be assessed in the table 4, most of the aforementioned works collected data in an

offline manner, obtaining the data after the deployment. In this manuscript, the contribution of

an apparatus is to portray the data will be in real-time. Moreover, the aforementioned technologies

and techniques for assessing aerial imagery remain at a high cost (see Table 1), this manuscript

will provide a low-cost apparatus with a custom attachment solution, as it is a more accessible way

to collect the aerial imagery from the mast of sea vessels. Moreover, although MSIs remain at a

significantly high cost (as in Table 3) proposed apparatus will provide a modular design allowing for

several cameras to be swapped when necessary, providing low-cost alternatives to assess imagery.

Lastly, used algorithms to accurately classify and count the species will be based on TensorFlow

Lite, an open-source existing image vision and machine learning technique, allowing the ease of

access and programming languages (see Table 2).

https://www.researchgate.net/profile/Tami_Wells/publication/253146981_Multispectral_observations_of_marine_mammals/links/53df57540cf2a76fb6682604/Multispectral-observations-of-marine-mammals.pdf
https://www.researchgate.net/profile/Tami_Wells/publication/253146981_Multispectral_observations_of_marine_mammals/links/53df57540cf2a76fb6682604/Multispectral-observations-of-marine-mammals.pdf


27

3 Methodology

This section reports the motivation to develop an apparatus to support marine visual surveys

(Section 3.1), followed by the data treatment using machine learning (Section 3.2), outlining the

data gathering, collection, annotation, augmentation, as well as the steps for training the models

of marine megafauna and used software. Moreover, it provides an overview into the used apparatus

for performing the aerial surveys (Section 4), serving as an interface to support the collection of

data by marine biologists. Lastly, the study setup is described, providing the methods, obtained

data inquiry, experiments, and depicting insights into collecting, interpreting, and displaying the

accuracies of detected species (Section 5).

3.1 User Pre-Study

To understand the overall challenges which marine ecologist experience during their visual sur-

veys, two field trips, and two focus groups were performed with the marine ecologists (N=6 in

both groups). Where the first focus group explored the idea of an IoT apparatus capable of de-

tecting marine megafauna and the second focus group brought about the idea of a mobile marine

assistant tool, namely the mobile app. Additionally, the groups helped understand the challenges

of deploying such systems, for example, the severe weather conditions.

To better understand the issues with visual surveying methods, the first focus group was asked

the following questions, yielding the responses:

– (Q1) How proficient are you in reporting the sightings/estimating the species from the boat?

R: All six subjects had the expertise and proficiency in doing visual surveys from the sea-vessel.

– (Q2) Which protocol do you use when reporting the sightings/estimating the species from the

boat?

R: Most subjects used the CETUS Protocol[61], when cetaceans are observed on another

observer is called to confirm the sighting and specie then marking it down on paper.

– (Q3) Which tool do you use when reporting sightings/estimating the species from the boat?

R: All subjects reported the usage of binoculars.

– (Q4) Which pain(s) do you encounter when reporting the sightings/estimating the species

from the boat?

R: Most of the subjects pointed to subjective and rule of thumb estimation of the population

as an issue making it difficult to correctly count the wildlife.

– (Q5) Which factors do you feel may influence the accuracy of reported sightings/estimating

the species from the boat?
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R: The main reported difficulties are weather conditions (sun glare and sea state) and distance

to the species.

– (Q6) Do you think that an automated process of reporting the sightings/estimating the species

from the boat would be helpful (as an assisting tool)?

R: Most of the subjects pointed that it could be used if complemented with other survey

inputs(behavior, group size, number of calves) as well as that it may serve the non-expert

persons who are performing the surveys on regular ferries.

– (Q7) If yes, how do you envision the usage of such an automated system?

R: Most of them indicated that the system can be scouting the greater distance and that it is

a complementary tool.

– (Q8) If you obtained the important data in such a way, how would you use such collected

data afterward?

R: Having a database may be very helpful to determine migration routes, abundance, and

richness of species which helps to understand how the populations are varying through the

years.

The second focus group served as a design session where a prototype of a mobile app was

discussed. The main goal of this app would be to interface with the apparatus and provide real-

time imagery and statistics about the detections. This data will aid the marine ecologists in their

visual surveys mainly in reaching agreements in terms of the abundance of the marine megafauna

as well as confirmation of the classification.

3.2 Machine learning

Regarding machine learning, this chapter reports the performed process to achieve the trained

model that is capable of detecting the five different marine megafauna taxa (Turtle, Bird, Mysticeti,

Odontoceti, Pinniped). Firstly, it describes the tools and methods used to gather and treat the vast

amount of data (Section 3.2.1). Also, it provides the training protocol (Section 3.2.2). Lastly,

the process to convert the resulting model to a version compatible with the proposed apparatus

is described (Section 3.2.3).

3.2.1 Data gathering

In order to train the models, it is necessary to collect the imagery of marine megafauna. In this

section, process of data collection is described (Section 3.2.1.1), including the data annotation

(Section 3.2.1.2). Lastly, data augmentation process (Section 3.2.1.3) is depicted, allowing the

increase of the imagery, used for training the model.
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3.2.1.1 Data collection

The first step to achieve the desired model is gathering a vast amount of marine megafauna data

that will be later used for training the model. Images that depict any of the five marine megafauna

taxa (Turtle, Bird, Mysticeti, Odontoceti, Pinniped) were gathered from the internet and stored.

The total obtained imagery was 11971, averaging at around 2300 per species. The breakdown per

species can be seen in the following table 6.

Table 6. Number of collected images per each taxa.

Species Images
Mysticeti 2002
Odontoceti 1998
Pinniped 2380
Bird 3807
Turtle 1784
Total 11971

The imagery was collected from two different sources: the OID (Open Images Dataset) and

Google Image Search. To manage all the data, the platform supervise.ly22 was used. This particular

platform was used as it provides several tools to support the model training process, ranging from

image annotation23 to training and validating the ANN. Although it was possible to use it for all

the data treatment steps (data gathering, training, and testing), only data gathering, annotation,

and augmentation were chosen, due to the easiness of using the other platform for training and

validation (more description is provided in Section 3.2.2.1). After uploading all the aforementioned

collected imagery to supervise.ly, data annotation is described in the next step.

Fig. 14. Custom dataset stored and managed in supervise.ly.
22Accessible at https://supervise.ly/
23Image annotation is the human-powered task of annotating an image with labels and bounding

boxes. These labels are predetermined by the AI engineer and are chosen to give the computer vision
model information about what is shown in the image.

https://supervise.ly/
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3.2.1.2 Data annotation

For the ANN to correctly detect objects, it needs to be trained with annotated images. In other

words, every picture needs to have the selected objects (in this case, using a bounding box) and

a label indicating its type. An example of such annotation can be seen in Figure 15. To ensure

that the dataset would have an adequate number of images per marine megafauna taxa class,

manual data collection and annotation were performed using Google Image Search. However,

most of the imagery was collected from Open Images Dataset. The latter one was favorable as it

provides the data which are already annotated automatically by a neural network. Nevertheless,

it is important to outline several constraints, as this automated annotation process resulted in

two issues: i) double object annotation, meaning that an object was detected as belonging to

two different classes24. Moreover, a case of ii) grouped object annotation was spotted, which

occurred when several instances of an object were included in the same bounding box annotation.

To mitigate such issues, marine megafauna taxa classes were defined to mitigate the first issue,

by matching the visually similar species by grouping them. For instance, the Mysticeti parvorder

is a group of species known also to be baleen whales, named after their filter-feeder system. Also,

the Odontoceti parvorder is comprised of all toothed cetaceans, where some taxa are commonly

known as "whales" are included, such as the sperm whale and the killer whale (otherwise known

as "orca"). This distinction will therefore yield adequate results, as Mysticeti taxa have visual

features that are quite distinctive from those of Odontoceti taxa.

Fig. 15. Image annotated using supervise.ly

24For example, killer whales being tagged as both "whale" and "dolphin", due to the ongoing debate
in marine biology when classifying this particular specie.
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3.2.1.3 Data Augmentation

After data collection and data annotation, to increase the aforementioned dataset with more ver-

satile imagery in the training phase, data augmentation was performed. This method was chosen

as it increases the amount and diversity of the dataset without a need of searching and collecting

more imagery data. This was achieved by transforming the current dataset with different opera-

tions. The most common operations to augment image datasets are rotation, shearing, zooming,

cropping, flipping, and changing brightness, however, some image augmentation packages offer

more than 60 operations, such as in the case of imgaug 25 package.

Normally, by applying a single transformation to every image, it was possible to effectively

double the dataset, however seeing as the dataset already has an adequate quantity of imagery

there was no need to apply a great number of transformations. Therefore, the transformations were

applied to half of the images at random to simulate different conditions. Applied transformations

were:

i) flipping the image, which will simulate imagery of the same object from different angles

(figure 16);

Fig. 16. Image augmentation by flipping it horizontally.

ii) modifying the image’s hue26, which will simulate different lighting conditions (figure 17);

Fig. 17. Image augmentation using color transformation.

25Accessible at https://github.com/aleju/imgaug
26Hue, in the context of color and graphics, refers to the attribute of visible light due to which it is

differentiated from or similar to the primary colors: red, green and blue. The term is also used to refer
to colors that have no added tint or shade.

https://github.com/aleju/imgaug
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iii) applying a noise filter to the image, which will simulate low lighting conditions or bad

camera quality (figure 18);

Fig. 18. Image augmentation using noise.

iv) applying blur to the image, which will simulate fast moving objects that cannot be clearly

captured by a camera sensor (figure 19);

Fig. 19. Image augmentation using blur.

Using supervise.ly’s DTL (Data Transformation Language) a query is defined to perform data

augmentation in a view to prevent overfitting. The query steps are the following:

• image resize to 480x320 dimensions

• filtering out images in which the object area is less than 10% of the total image area

• random color jitter and noise

• randomly assign pictures for validation, train and test sets via tagging

3.2.2 Model training

This section describes process of training the model for object detection, firstly the tools used

(Section 3.2.2.1), then the training hardware (Section 3.2.2.2) and finally the training protocol

(Section 3.2.2.4).
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3.2.2.1 Tools

After gathering the required data and proceeding to the training, Google’s Colaboratory27 plat-

form was used. This platform allows the execution of jupyter notebooks28 which can be used to

manage the data files and run TensorFlow’s training functions. This platform was used due to the

hardware they provide, in the following section (Section 3.2.2.2) the importance of the hardware

is highlighted.

3.2.2.2 Training hardware

When running machine learning applications the hardware plays an important role in deciding its

performance or time to complete. When performing object detection it can improve or decrease

the detection rate depending on its power. If an object that we want to detect is moving with

some speed and the hardware that is performing the object detection is only capable of processing

one frame per second (as it was the case with a standalone RPi3) it will be difficult to accurately

identify the object. Furthermore, when training a model the entire process has to be executed so

by having powerful hardware this process can be drastically faster.

Seeing as a python script is enough to perform the training, it could be run in most computers

or even some MCU like the CDB29 (Coral Dev Board) however it would take a lot longer to finish

the process. Additionally the performance in machine learning tasks varies drastically between a

CPU (Central processing unit) and a GPU (Graphics processing unit), since they are design very

differently. In the following table 7 we can see an overview of their differences:

Table 7. Differences between CPUs and GPUs.

CPU GPU
Central Processing Unit Graphics Processing Unit

Several cores Many cores
Low latency High throughput

Good for serial processing Good for parallel processing
Can do a handful of operations at once Can do thousands of operations at once

27Colaboratory is a free Jupyter notebook environment requiring no setup and running entirely in the
cloud. Colaboratory allows the writing and executing of code, saving and sharing analyses, and access-
ing powerful computing resources, all from a browser.

28The Jupyter Notebook is an open-source web application that allows the creation and sharing of
documents that contain live code, equations, visualizations, and narrative text. Uses include data clean-
ing and transformation, numerical simulation, statistical modeling, data visualization, machine learning,
and much more.

29The Coral Dev Board is a single-board computer that is adequate to perform machine learning in-
ferencing in a small form factor. This dev board also has an integrated Edge TPU (Tensor Processing
Unit) coprocessor, which is a small application-specific integrated circuit that provides high performance
ML inferencing with a low power cost.
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The facts stated in the previous table 7 result in an extreme difference in the bandwidth

provided by these components, which is a major factor for machine learning tasks. In the following

figure 20 we can see the bandwidth of some common CPUs and GPUs that are optimized for

high-performance and general-purpose computing.

Fig. 20. Bandwidth comparison between CPUs and GPUs [Source: Do we really need GPU for Deep

Learning? - CPU vs GPU]

Therefore, before executing the jupyter notebook in Google Colaboratory, the runtime type

can be edited. In terms of programming language, it provides the choice between Python3 and

Python2 and regarding the hardware the choices available are None (only CPU), GPU and TPU.

The GPUs available in Colab often include Nvidia K80s (480 GB/s), T4s (320 GB/s), P4s (192

GB/s) and P100s (82 GB/s). In the following table 8 we can see the results of an experiment

performed where as model was trained with 1000 training steps and 50 evaluation steps using the

three different hardware configurations available, however due to the used versions of TensorFlow

and model architectures, the TPU times are higher than expected due to the configuration files

not being adequate to properly utilize this hardware.

Table 8. Model training time using different hardware configurations.

Hardware: CPU TPU GPU
100 Steps (s) 790.49 948.41 48.31
200 Steps (s) 773.98 999.31 39.11
300 Steps (s) 766.27 907.89 39.69
400 Steps (s) 838.05 1001.57 40.19
500 Steps (s) 792.19 964.29 41.82
Total time (s) 3960.97 4821.47 209.12

https://medium.com/@shachishah.ce/do-we-really-need-gpu-for-deep-learning-47042c02efe2
https://medium.com/@shachishah.ce/do-we-really-need-gpu-for-deep-learning-47042c02efe2
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Furthermore, to keep their server usage under control Google implemented a runtime limit for

each instance of the Colaboratory platform. Google Colab notebooks have an idle timeout of 90

minutes and an absolute timeout of 12 hours. Meaning, if a user does not interact with his Google

Colab notebook for more than 90 minutes, its instance is automatically terminated. Also, even if

the user keeps interacting with the notebook the absolute limit will only allow its execution up to

12 hours.

Ultimately, within the 12 hours time limit a TensorFlow model was trained using our custom

dataset and the following parameters: 70 000 training steps and a batch size of 12. Although the

training steps could not be increased within this time frame, an accuracy analysis of this trained

model yielded adequate results. This analysis was accomplished by using the resulting model to

examine several pictures of the marine megafauna and list the existing species in each alongside

an accuracy score. However, only an optimized model can be loaded by our target framework,

TensorFlow Lite, therefore further steps need to be performed to achieve it.

3.2.2.3 Model Quantization

Seeing as the CDB is a low powered device, low inference performance is expected therefore some

steps can be taken during the training phase to improve the overall performance of the apparatus.

Tensorflow Lite and the Tensorflow Model Optimization Toolkit provide tools to minimize the

complexity of optimizing inference, one of these tools is quantization, which works by reducing the

precision of the numbers used to represent a model’s parameters (default are 32-bit floating-point

numbers). Resulting in smaller model size and faster computation. Inference efficiency is partic-

ularly important for edge devices, such as mobile and Internet of Things (IoT) since they have

many restrictions on processing, memory, power consumption, and storage for models. Also, some

optimizations (i.e. quantization) are required to allow the use of specialized hardware for acceler-

ated inference like the Edge TPU present in the CDB. Therefore, our training uses a quantization

optimized model architecture based on the MobileNet V2.

It’s recommended to consider model optimization during the application development process,

seeing as post-training optimizations are possible but not as effective as optimization aware train-

ing. In the following tables 9 and 10 we can see an overview the quantization types and benchmarks

of an example model’s accuracy and latency using different optimizations. It should be noted that

not all quantizations support the intended hardware, in our case the TPU and that even though

post-training quantization is possible it should be avoided in order to minimize the accuracy loss.
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Table 9. Types of quantization available in TensorFlow Lite.

Technique Data Size Accuracy Supported
requirements reduction loss hardware

Post-training No data Up to 50% Insignificant CPU, GPUfloat16 quantization
Post-training No data Up to 75% Noticeable CPUweight quantization

Post-training Unlabelled
Up to 75% Small CPU, EdgeTPU,

integer quantization representative Hexagon DSPsample
Quantization-aware Labelled training Up to 75% Minimal CPU, EdgeTPU,

training data Hexagon DSP

Table 10. Latency and accuracy results for post-training quantization and quantization-aware training.

Model

Accuracy Latency (ms)
Post Quantization Post Quantization

Original Training Aware Original Training Aware
Quantized Training Quantized Training

Mobilenet-v1 0.709 0.657 0.70 124 112 64
Mobilenet-v2 0.719 0.637 0.709 89 98 54
Inception_v3 0.78 0.772 0.775 1130 845 543
Resnet_v2 0.770 0.768 N/A 3973 2868 N/A

3.2.2.4 Training protocol

In this section steps taken to complete the training, in the jupyter notebook mentioned earlier,

are briefly described. The notebook is set up so that it can easily be deployed in any machine and

executed as soon as needed since it downloads all the required files and libraries automatically.

Fig. 21. Jupyter Notebook hosted in Google Colaboratory which provides easy access to high perfor-

mance hardware.

This notebook was developed to automatically complete the training and download the re-

sulting model files. The user only needs to set up the training parameters, namely the dataset

download URL, number of training steps, batch size, and finally the model architecture. The
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dataset needs to be exported from supervise.ly and zipped before being uploaded to google drive,

where the download URL is provided and inserted into the parameters of the training. If the

training completes, a zip file containing the trained TensorFlow model files is automatically down-

loaded, and considering the platform’s time constraint a quantized model of 70 000 training steps

was the highest possible to achieve in the 12 hours. However, this model is not compatible with

the used tool TensorFlow Lite so a conversion is performed.

3.2.3 TensorFlow Lite conversion

In the previous section, after training is completed there are several resulting files, a typical

TensorFlow model consists of the following files: model-ckpt.meta, model-ckpt.data-xxxx-of-xxxx,

model-ckpt.index and checkpoint.

Using the previous files, a frozen graph was exported which is capable of being converted to

TensorFlow Lite allowing it to run in our apparatus. To perform this conversion TensorFlow pro-

vides a tool called TensorFlow Lite Converter that can get as an input a SavedModel, a tf.keras

model file or a frozen graph, and outputs a tflite file. The resulting file is a TensorFlow Lite Flat-

Buffer, it can be shipped to client devices, generally mobile devices or low-powered computers like

our CDB, where the TensorFlow Lite interpreter handles them on-device. This flow is represented

in figure 22 below.

Fig. 22. TensorFlow Lite work flow.

To run these tools some requirements need to be met, firstly the TensorFlow Lite Converter

tool needs to be downloaded from its repository30 then it needs to be compiled using bazel31.

To simplify this process a Docker container was created that already contains TensorFlow Lite

Converter built with Bazel. Docker uses OS-level virtualization to deliver software in packages

called containers. Containers are isolated from one another and bundle their software, libraries,
30Accessible at https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/toco
31Bazel is a free software tool that allows for the automation of building and testing of software.

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/toco
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and configuration files. Meaning, instead of installing several tools and dependencies in every

machine that might be used, we can simply install docker and build the container32. Afterward,

the only steps needed to convert the model files are to edit the script tflite_graph2tflite.sh with

the path to the original model files and execute it, the resulting TensorFlow Lite model will be

created in a tflite folder inside the original one.

3.2.4 Trained model performance on microcontrollers

A first prototype of the IoT apparatus was developed using a RPi3. To achieve real time object

detection a script that fetches each frame captured by the video camera and analyses it was used.

The image inference time in this first prototype was not adequate resulting in very low frame rates

for the annotated video (reaching as low as 0.8 frames per second). This low performance was not

adequate resulting in a noticeable delay in the real-time object detection and blurry video which

adds further difficulties in classifying the objects on the screen.

To improve the performance of the apparatus several models of microcomputers were consid-

ered. In the following table 11 we can see a performance benchmarks overview of different devices

performing object detection inference with the TensorFlow framework [62].

Table 11. Inference performance results from Jetson Nano, Raspberry Pi 3, Intel
Neural Compute Stick 2, and Google Edge TPU Coral Dev Board.

Model NVIDIA
Jetson Nano RPi 3 RPi 3 + Intel Neural

Compute Stick 2
Coral Dev
Board

SSD ResNet-18
(960x544) 5 FPS DNR DNR DNR

SSD ResNet-18
(480x272) 16 FPS DNR DNR DNR

SSD ResNet-18
(300x300) 18 FPS DNR DNR DNR

SSD Mobilenet-V2
(960x544) 8 FPS DNR 1.8 FPS DNR

SSD Mobilenet-V2
(480x272) 27 FPS DNR 7 FPS DNR

SSD Mobilenet-V2
(300x300) 39 FPS 1 FPS 11 FPS 48 FPS

DNR - Did not run.

The did not run results occurred frequently originated from limited memory capacity, due to

most of the models having a much higher resolution than the used 300x300. Additionally, unsup-

ported network layers or hardware/software limitations may have been the cause. Nevertheless,

seeing as our custom model used the SSD Mobilenet V2 (300x300) architecture we can focus on

32Accessible at https://bitbucket.org/wave-oceanus/docker-tf-odapi/src/master/.

https://bitbucket.org/wave-oceanus/docker-tf-odapi/src/master/.
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these results which reveal that the CDB provides the better performance in the same or smaller

form factor compared to the other devices. The final IoT prototype will use a CDB as the pro-

cessing unit for the object detection.

3.3 Summary of the Methodology

This section firstly reported on the user pre-study to understand issues with the existing surveying

methods, followed by an overview of the process used to achieve a trained ML model capable of

identifying the marine megafauna. The first step to create a model consists of creating a dataset

with a significant number of images depicting the megafauna, as reported in table 6. Furthermore,

several image transformations were used to artificially increase this dataset size, as seen in figures

16, 17, 18 and 19. Then the model training was described, as well as the tools and hardware used

which were both provided by Google’s Colaboratory platform. Furthermore, the decision making

process for choosing a model architecture was described, resulting in the Mobilenet_v2 being

selected as it provides an adequate performance for low powered devices. Finally, the performance

of several models and microcontrollers was analyzed, as seen in table 11, influencing the decision

on the hardware used for the system.

4 System

In short, the goal of this apparatus is to collect imagery of marine fauna and correctly classify them.

Furthermore, after classification, the system requests the user feedback to confirm the automatic

classification.

This section describes the apparatus and its components. It can be mainly divided into two

parts: (i) the hardware (Section 4.1), referring to the physical components of the system and (ii)

the software (Section 4.2) referring to the data collecting, machine learning, and the mobile app.

4.1 Hardware

The apparatus’ hardware consists of three main components: (i) the CDB, which is the micro-

controller responsible for collecting the data and detecting the species present in the imagery; (ii)

the camera, a Coral Camera Module is connected to the CDB, this camera will be used to gather

imagery of the marine fauna; and (iii) the mobile phone which is used to communicate with the

apparatus through the mobile app.
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Fig. 23. Coral Dev Board with a Coral Camera connected.

A CDB is adequate for this system since it has an onboard Edge TPU co-processor capable of

performing 4 trillion operations tera-operations per second. Furthermore, it is very efficient, using

only 0.5 watts for each tera-operation per second. Therefore it was integrated into this system

seeing as it can execute state-of-the-art mobile vision models in a power-efficient manner and at a

high frame rate.

Furthermore, a GPS (Global Positioning System) GP-735 module was attached to the CDB

which is used to fetch the location of the apparatus during each detection. This data can then be

used to draw maps about the routes species travel or heat maps displaying where there is a higher

concentration of individuals.

Fig. 24. GPS receiver GP-735 used to collect location data.

Furthermore, the modularity of the apparatus is displayed in the following figure 25 where

we can see the object detection being performed with an infrared Camera Module (Pi NoIR v2)

and a pre-trained model provided by TensorFlow called COCO (Common objects in context)

SSD (Single Shot MultiBox Detection) MobileNet. It is a model trained with common objects,

meaning it can be tested mostly anywhere unlike our trained model which will only detect the

predetermined species.
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Fig. 25. Real time object detection performed by the apparatus using COCO SSD MobileNet and an

infrared camera module.

4.2 Software

This section describes the operation of the system in general, by describing every software com-

ponent and how they interact with each other. Firstly, system’s behaviour is explained through a

flowchart (Section 4.2.1), then a diagram of the system architecture is described (Section 4.2.2).

Regarding the software, there are three main components: (i) the database (Section 4.2.3), (ii)

the scripts running on the apparatus (Section 4.2.4) and lastly (iii) the mobile app (Section

4.2.5).

4.2.1 Flowchart/Algorithm

This apparatus, in further, will have a simple behavior, the object detection will be performed

in real-time and if any object of interest is detected in the frame the unedited picture is saved,

furthermore a bounding box and a label will be drawn to identify the marine fauna present, this

image will also be saved and its data is stored in the database. Every picture that has marine

fauna identified will be added to a list called Unreviewed Detections which are the detections

waiting for user review. In a separate process, this list of images will then be displayed in the

mobile app and can be further analyzed by a user, they can then confirm or contest the automatic

classification performed by the system. Therefore, the detections can be either unreviewed or

reviewed depending on whether they received user feedback already. Furthermore, two images are

associated with every detection, one is the raw picture taken and the other is the edited image

with the bounding box around the objects and a label with its name.

In the following figure 26 we can see the flowchart representing the apparatus’ operation on the

left referring to the machine learning and data collecting. Also, the mobile app’s behavior related

to user feedback is displayed on the right.
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Fig. 26. System Flowchart, apparatus’s behaviour on the left and mobile app’s behaviour on the right.

4.2.2 System Architecture

As stated previously in section 4.1, the apparatus is composed of three components: (i) the CDB

microcontroller, responsible for all the processing in the system from the object detection with

TensorFlow to the data storing in the database and requesting user feedback through the mobile

app; (ii) the camera module, using a Coral Camera Module33 and the GPS GT-735 assuring the

collection of geolocation data of the detections. An overview of the system architecture can be

seen in figure 27.

Fig. 27. Apparatus system architecture.

33The Coral Camera is a 5MP camera designed for use with the Coral Dev Board, providing input for
computer vision use cases.
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The 24-pin serial connection between the camera and the CDB uses the MIPI CSI-2 communi-

cation protocol, which stands for Mobile Industry Processor Interface Camera Serial Interface 2. Its

high performance and low power, alongside low electromagnetic interference, are the fundamental

features of this connection. For the GPS module, the Universal asynchronous receiver-transmitter

communication protocol is used, the size of the data it supports is much more limited but al-

most all microcontrollers have dedicated hardware built into their architecture that supports this

protocol. Moreover, it only requires two wires to allow for communication between two devices.

All software components communicate with the database through the REST (Representational

state transfer) API (Application programming interface). It is developed with Python and the web

application framework Flask and enables reading and writing to the database using the library

MySQL connector.

The mobile app allows the user to view the automatic detections, the video feed of the appa-

ratus, and the statistics about the machine learning’s performance. Furthermore, users can input

their feedback about the validity of automatic detection. The following figure 28 shows how the

app communicates with the apparatus to make these features work.

Fig. 28. Mobile app system architecture.

4.2.3 Database

Seeing as the main goal of this system is to collect vast amounts of data automatically a database

was structured to store all the information needed. All details about the detections are stored in the

database, to accommodate this data a final database with three tables was designed represented

in figure 29.
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Fig. 29. Database schema.

Firstly, all tables have a primary key "id" which is necessary to distinguish each record in a

table and a "created_at" field storing a timestamp of the exact time a record was created.

The "class" table represents each type of object that the machine learning model was trained

for, in this case, the five marine megafauna species Mysticeti, Odontoceti, Pinniped, Turtle, and

Bird. If a new model is introduced in the system, the new classes will be introduced and the

operation will remain the same.

To store information pertaining to the imagery the "detection" table is used. Besides the com-

mon fields between all tables mentioned previously, this table contains the following information:

– image_path: a file path pointing to the location of the image saved in the internal storage

of the CDB;

– image_width and image_height: stores the resolution of the imagery, allowing for several

cameras with different resolutions to be used;

– lat and lon: latitude and longitude representing the geographic coordinates during the de-

tection;

– user_confirmation: represents the user feedback about a detection, if the value is NULL

then the user has not reviewed this detection else it can be 1 or 0 meaning the user agrees or

disagrees with the system’s automatic classification;

– comment: an optional field where the user can write more in-depth feedback about a certain

image.

The previous table only gathers information about the image and user feedback related to

detection but the "object" table is the one that relates it to the class, they are associated through
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the use of foreign keys34. The data stored by this object table is the most relevant for machine

learning, being the coordinates of the bounding box which represents the location of the object

in the image. The images and object coordinates can be imported in the future to increase the

dataset size in the training of a model. The following fields are present in the "object" table:

– detection_id: foreign key pointing to the detection in which this object is present;

– class_id: foreign key pointing to the class of this object;

– accuracy: the score given by TensorFlow, used to filter false positives when the value is below

a certain threshold;

– xmin, ymin, xmax, ymax: coordinates of the bounding box drawn around the object, these

values can be seen in the following figure 30 (note that when working with the OpenCV library

and images the top left corner is the point 0,0).

Fig. 30. Coordinates of the bounding box.

The relation between the tables are both one-to-many, in this kind of relationship one record

in a table can be associated with one or more records in another table. Meaning, each detection

can have one or more objects (e.g. multiple species or several objects of the same species) and a

class can be associated with multiple objects.

Storing all this data will be a major contribution to the training of a more robust model. This

imagery that is already annotated and reviewed by a user can be used in future machine learning

training increasing the dataset size and the performance of the model.

34A foreign key is a key used to link two tables together, it is a field (or collection of fields) in one
table that refers to the primary key in another table.
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4.2.3.1 API

An API was created to enable communication between the multiple software components and the

local database in the apparatus. For this purpose, the Python language was used alongside Flask

and Flask-RESTful libraries.

Flask is a WSGI (Web Server Gateway Interface)35 web application framework, its goal is

to provide a quick and simple setup to get an application running in a few minutes, with the

flexibility to scale up to complex applications. It uses Werkzeug to handle the details of WSGI,

which provides the following features:

– a full-featured request object with objects to interact with headers, query arguments, form

data, files, and cookies;

– a response object that can wrap other WSGI applications and handle streaming data;

– a routing system for matching URLs to endpoints and generating URLs for endpoints, with

an extensible system for capturing variables from URLs;

– HTTP utilities to handle entity tags, cache control, dates, user agents, cookies, files, and more;

– a threaded WSGI server for use while developing applications locally;

– Also, an interactive debugger that allows inspecting stack traces and source code in the

browser, allowing the developer to easily identify the cause of errors.

Moreover, the Flask-RESTful is an extension that provides a lightweight abstraction for Flask

that works with existing Object-Relational mapping and libraries. It also encourages best practices

with minimal setup. The structure of this framework consists mainly of resources and endpoints.

Resources are defined similarly to a Python class but with "Resource" as a parameter, moreover

they provide easy access to multiple HTTP (Hypertext Transfer Protocol) methods simply by

defining them on any resource. For example, there can be a person resource with the get and post

methods defined, the get method will return a list of persons from the database while the post

method enables the creation of a new entry in the table person. Finally, the endpoints are used to

set one or more URLs (Uniform Resource Locator) for each resource, allowing any app to access

the data of any resource through its URL. The endpoints can also contain path parameters in

the URL allowing data to be sent without a request body. The API was developed with these

practices using resources and endpoints to create, read, and update the data in the database with

the methods post, get and put respectively.

In total there are twelve resources in the API and they implement the following methods:

35Web Server Gateway Interface is a specification that describes how a web server communicates with
web applications, and how web applications can be chained together to process one request.
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– Index (/): this is the root endpoint, its the resource displayed when we access the IP of the

API without adding anything ahead;

• get: displays the message "API is running." for troubleshooting purposes.

– ClassList (/class): this endpoint is used to manage the class table;

• get: returns a list with all classes present in the database;

• post: inserts a new class in the database by receiving the new class name.

– ClassByID (/class/<int:id>): this endpoint is used to fetch the information of a single

class;

• get: returns a single class present in the database given its id.

– DetectionList (/detection): this endpoint is used to manage the detection table;

• get: returns a list with all detections present in the database;

• post: inserts a new detection in the database when receiving the values image_path,

image_width, image_height, latitude and longitude;

• put: used to insert the user feedback (1 if agrees or 0 if not) and their comment in a

certain detection.

– DetectionListUnreviewed (/detection/unreviewed): this endpoint is used to display

detections that still need user feedback;

• get: returns a list with the detections that have NULL value on the user_feedback field.

– DetectionByID (/detection/<int:id>/<int:raw>): this endpoint is used to display the

images associated with a detection;

• get: displays the detection image given its id and if the parameter "raw" is 0 the orig-

inal picture is display but for any other number the annotated image is shown with the

bounding boxes and labels.

– DetectionThumbnailByID (/detection/<int:id>/thumbnail): this endpoint is used to

generate and display a thumbnail for a certain detection;

• get: displays a 100x100 pixel detection image given its id.

– ObjectList (/object): this endpoint is used to manage the object table;

• get: returns a list with all objects present in the database;
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• post: inserts a new object in the database when receiving the values detection_id, class_name

(this is the value TensorFlow returns and is then used to fetch the class_id when inserting

the data), accuracy, xmin, xmax, ymin and ymax.

– ObjectByID (/object/<int:id>): this endpoint is used to fetch the information of a single

object;

• get: returns a single object present in the database given its id.

– ObjectByDetectionID (/object/detection/<int:id>): this endpoint is used to gather

all the objects contained in a certain detection;

• get: returns a list with all objects present in a specific detection given its id.

– ObjectByClassID (/object/class/<int:id>): this endpoint is used to gather all the ob-

jects of a certain class;

• get: returns a list with all objects of a certain class present in the database.

– NumberOfDetectionsAndAverage

(/statistics/numberofDetectionsAndAverage/<int:timeFrame>): this endpoint is used

to calculate the statistics about the number of objects detected and their average accuracy.

• get: returns a list with all classes, their number of objects, and the average accuracy, the

parameter "timeFrame" can be 0 to fetch all-time stats or any other number representing

the past x hours.

Every endpoint created was used in some way throughout the several software components

lifecycle, whether it was for testing or production described in the following sections 4.2.4 and

4.2.5.

4.2.4 Scripts

This section describes all the back-end components running in the apparatus and how they inter-

act with each other. There are mainly two components: the object detection program (Section

4.2.4.1) and the database (Section 4.2.3). Furthermore, since the apparatus is not connected to

a screen there is an API that streams the video feed processes by the machine learning through a

browser (Section 4.2.4.2).

4.2.4.1 Real time object detection

To perform the object detection in real-time a python program was used that is constantly running

until it is stopped manually or the apparatus is turned off. There are two main libraries that allow

this program to perform object detection for our purpose, which is TensorFlow and OpenCV. The
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OpenCV library contains the VideoCapture object providing an easy way to get the connected

video camera feed. And TensorFlow is the machine learning framework that was used through the

entire process of training the model, therefore using their library to run our model was the most

adequate solution. However, this library merely loads a model and runs the inference, hence the

output needs to be transformed in a way that is useful for our purpose [63]. In the case of our

custom model, it returns only a list of probabilities containing the coordinates, score, and name

of the class that was detected thus OpenCV was also used to draw the bounding box and label

around the objects using the data resulting from the inference since it has several functions that

allow for image manipulation.

A Python class called ObjectDetection was created to handle all the image processing and

machine learning inference related to TensorFlow. When initializing an instance of this class the

following parameters are required:

– trained model file path: a data structure that contains the logic and knowledge of the

trained machine learning network;

– label map file path: a text file listing all the classes present in the model;

– threshold: the minimum accuracy that detection must reach to be saved;

– useTPU flag: indicates if the device running this program has a TPU and will use it to

achieve a faster inference time.

A model folder can be used as a parameter instead of specifying the model and label map

files separately, this method assumes that those files will have the default names detect.tflite and

labelmap.txt respectively.

Regarding the image inference, a function called imageInferece was created that receives an

OpenCV image and after processing it will return the annotated picture and a JSON (JavaScript

Object Notation)36 object containing the data about it and the objects present in the detection.

Therefore to perform a simple image inference an instance of the ObjectDetection class needs to

be created and the function imageInference needs to be called and fed an OpenCV image.

As expected this class can only perform object detection on images (see figure 31), meaning we

need to adapt this functionality to also work on videos. Since videos are just frames in sequence,

we can intercept the video feed and perform the image inference for every frame before displaying

it, effectively executing the object detection in any video file or stream.

36JSON is a lightweight data-interchange format, easy for machines to parse and generate. It is also
easy for humans to read and write.
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Fig. 31. Original image on the left and annotated on the right

However, this inference requires a lot of processing power which has different negative results

for video files or streams. In case of a video file that is 30 frames per second, lets say the device

executing the inference is under powered managing to process only 10 frames per second it would

take three times the length of the video to finish annotating the entire footage. However this is

not a big problem because the length of the video is finite and the resulting annotated video

would be the same duration as the original. Although when working with video streams the result

needs to be obtained in real time, meaning that for a 30 frames per second the device needs to

be capable of processing 30 frames every second, in other words a frame every 33.33 milliseconds.

If the device cannot maintain this performance frames will be lost which could contain objects of

interest. These factors were considered when choosing a model architecture and device to ensure

stable performance. In the following table 12 a benchmark of the inference time between several

model architectures and devices.

This benchmark’s inference time was calculated using C++, in the case of Python there may

be some performance hit due to its overhead because it is more demanding to run. Also, the

supporting operations like image loading, saving, or resizing were not taken into account. However,

the selected device represented in the last column of the table 12 (CDB) manages to get adequate

performance for real-time inference with several model architectures including the one used in the

custom trained model which is MobileNet v2 SSD. Seeing as it can perform the inference in an

average time of 14 milliseconds, leaving a buffer of almost 20 milliseconds for other operations, in

our practical conditions the resulting annotated video stream was able to maintain 30 frames per

second. Although this performance varied depending on the temperature of the device, which will

throttle the processor’s frequency and turn on the cooling fan to avoid overheating, that being

said, most of the time it is stable.
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Table 12. Inference time (in milliseconds) benchmark between different model architec-
tures and devices. (Source: Edge TPU performance benchmarks)

Model architecture Desktop
CPU1

Desktop CPU1

+ Edge TPU
Embedded
CPU2

Embedded CPU
+ Edge TPU 3

DenseNet
(224x224) 380 20 1032 25

Inception v4
(299x299) 700 85 3157 102

MobileNet v1
(224x224) 53 2.4 164 2.4

MobileNet v2
(224x224) 51 2.6 122 2.6

MobileNet v1 SSD
(224x224) 109 6.5 353 11

MobileNet v2 SSD
(224x224) 106 7.2 282 14

ResNet-50 V1
(299x299) 484 49 1763 56

ResNet-50 V2
(299x299) 557 50 1875 59

ResNet-152 V2
(299x299) 1823 128 5499 151

SqueezeNet
(224x224) 55 2.1 232 2

VGG16
(224x224) 867 296 4595 343

VGG19
(224x224) 1060 308 5538 357

1 Desktop CPU: 64-bit Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz
2 Embedded CPU: Quad-core Cortex-A53 @ 1.5GHz
3 Coral Dev Board

4.2.4.2 Video streaming

Seeing as the apparatus was configured as a headless computer37 a way to monitor the video feed

is helpful. However, connecting a monitor to the apparatus would not be the optimal solution as

it would increase the system’s power consumption, it would be harder to deploy depending on the

size of the monitor, and to check the video feed a user would need to be in close proximity of the

device. All these would be inconvenient considering the proposed attachment solution of the device

to the mast of a vessel. To solve this problem a remote video streaming feed was implemented,

allowing its monitoring through the network either using the mobile app or a web browser to

access it.

37A headless computer is a computer system or device that has been configured to operate without
a monitor (the missing "head"), keyboard, and mouse. A headless system is typically controlled over a
network connection.

https://coral.ai/docs/edgetpu/benchmarks/
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The implemented solution was based on the flask-video-streaming38 repository developed

by Miguel Grinberg which utilizes a Flask API to transmit the video, making it easily accessible

remotely through an URL. This repository is easy to deploy seeing as it is consistent alongside the

rest of the developed scripts due to it using Flask which is the same framework, written in Python,

used by the database API and they share libraries like OpenCV, therefore most of its dependencies

are already installed. The OpenCV library is used to handle the video camera drivers and to fetch

the frames captured by it. They provide two ways to stream video to the browser, the first is to

fetch each frame from the camera and directly display it whilst the other fetches the images from

the memory of the device. Originally the streaming was deployed with the first option, meaning it

would connect to the camera directly, perform the image inference, and finally display it. However

there was a problem with this deployment seeing as there are optimizations developed to ensure

efficient operation, the video feed is only fetched when there is an active connection asking to

watch it, resulting in no image inference being performed without this stream active. To solve this

problem, the second option for streaming was used where it would stream images stored in the

memory of the device, and the machine learning script (section 4.2.4.1) was modified to save each

frame in the memory overwriting the previous one avoiding excessive usage. With this solution

the system works as intended, the object detection is constantly being performed independently,

and when there is a request to watch the video feed it will fetch the images stored in the memory

and display them as seen in figure 32.

Fig. 32. Real time object detection streaming to a browser.

4.2.4.3 Supervisor

As is evident from the current section 4.2.4 there are three Python scripts to manage, namely the

database API, the real-time object detection, and the video streaming. To more easily manage

38Accessible at https://github.com/miguelgrinberg/flask-video-streaming

https://github.com/miguelgrinberg/flask-video-streaming
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them Supervisor was used, which is a client/server system that allows the monitoring and control

of processes on UNIX based operating systems. It provides several features that are essential

to ensure that all the system’s components are operating properly. The structure is simple, any

program or command can be set up to be managed by Supervisor with a configuration file where

several properties can be defined, most notably:

– command: the console command to be executed, in this case, the python commands pointing

to each script;

– autostart: if set to true, this script will start automatically when Supervisor is started, which

is usually when the device is booting up;

– autorestart: if set to true, Supervisor will try to restart the script in case of any errors or

crashes;

– stdout_logfile: a path to a log file in which the output of the program will be written;

– stderr_logfile: a path to a log file in where the errors of the program will be written to if

any occur.

Hence, Supervisor basically watches these scripts, restart them if they fail, and ensure they

start on system boot. Furthermore, by specifying the log files we can quickly find out what is

happening at any time during their execution or what errors occur if any. Also, it provides an

event notification protocol and a remote procedure call protocol enabling external programs to

monitor the current status or even remotely issue commands to control the scripts, for example

from a mobile app.

4.2.4.4 WiFi Access Point

During the development of this system both the apparatus and the mobile phone communicated

with each other through the network. This was possible seeing as both were connected to the

same router’s access point, however, when deploying this apparatus in the field as a headless com-

puter(without monitor or peripherals) connecting it to a network would be difficult. Furthermore,

a WiFi access point may not be available near the deployment location, meaning the device would

function as expected because it does not require an internet connection except there would be no

way for the mobile app to access any data at the location.

To solve this issue a utility called RaspAP was installed, enabling the apparatus to also function

as a WiFi access point enabling the mobile phone to connect directly to it without any external

network equipment being required. The main reason for the selection of this tool is that it provides

a quick installer that automatically installs all the Linux packages and configuration files required,

and after a quick reboot the access point is operational. Furthermore, it sets-up a dashboard



54

accessible to any device connected to the access point that gives us control over the relevant services

and networking options. Particularly, WiFi’s network name and password configuration, network

traffic monitoring, and the list of connected clients. This dashboard’s main page is represented in

the following figure 33.

Fig. 33. RaspAP dashboard’s homepage displaying information about the hourly traffic and connected

devices.

4.2.5 Mobile App

The goal of this mobile app is to provide the user with a way to interact with the data collected and

the object detection being performed. Parallel to the object detection, the IoT will store and display

the data gathered and images containing objects of interest (in this case marine megafauna) which

can be analyzed by the user. This section describes the main three pages of the app: Detections

(Section 4.2.5.1), Video Feed (Section 4.2.5.2) and Statistics (Section 4.2.5.3). The app was

developed using Flutter for the reasons that it enables a faster development compared to native

apps and is cross-platform. The programming language used by flutter is Dart, it is object-oriented

and resembles the C language. Besides mobile apps, it can also be used to create web applications,

in which case it is transpiled39 to JavaScript meaning it runs on all web browsers [64].

Before delving into the app’s layout, the most important component developed was the data

service which is a file containing all the classes related to fetching and writing the data to the

database. Every other component of the app uses some class from this file be it for fetching the

data about the detection statistics or inputting the user feedback into the database. When an

instance of this class is initialized the first methods to be executed take care of setting the IPs

and ports for the data video streaming APIs. Besides this, the service’s main workload is to get

39Transpile, short for transcompile, means to compile (source code) by translating from one source
programming language to another, producing translated source code in the other language.



55

the data from certain API calls and translate them into custom Dart objects seeing as working

with the raw data returned by the Future object is much harder [65]. Moreover, three classes

were created in this data service to represent the data fetched by the app. These classes are: (i)

UnreviewdDetections, represents the detections for the user to review; (ii) Object, stores in-depth

information (species, number of objects, and average accuracy) about a selected detection; (iii)

NumberOfDetectionsAndAverage, stores the statistics regarding the number of detections of each

specie and average accuracy.

4.2.5.1 Detections

When launching the app, the detection page is the first to be displayed. This page starts by

trying to connect to the database, this is indicated by showing a loading animation and a message

saying "Fetching detections". To achieve this animation a CircularProgressIndicator class was used

alongside a Future class, both provided included in Flutter. The future class is used to represent a

potential value, or error, that will be available at some time in the future. Receivers of a Future can

register callbacks that handle the value or error once it is available, meaning that while the data

is being fetched a loading spinner animation is shown provided by the CircularProgressIndicator.

If the connection to the database fails an error message is displayed and it will be retried when

the page is reloaded (by switching pages or reopening the app). Both of the cases mentioned can

be seen in the following figure 34.

Fig. 34. Detections page trying to fetch data on the left and failed connection on the right.

An image grid containing all the unreviewed detections will be displayed if the data is success-

fully fetched, this list will then be used to fill an image grid view. To fetch this data two API calls

are used, it starts by loading the unreviewed detections data followed by the detections thumbnail



56

for each of them. Thumbnails (100 by 100 pixels) of the saved images are used in this grid view

otherwise the performance would deteriorate by loading all the full-sized imagery. Each individual

image will be loaded using the same strategy involving futures and loading animations allowing

us to visualize the progress of the download. In the following figure 35 we can see this grid view

being loaded.

Fig. 35. Detections page loading some images on the left and fully loaded on the right.

By clicking any of the images in the detections a new page will pop up displaying more detailed

info about the selected detection, for instance, the number of objects and their labels and the

average accuracy of the detections. This page fetches data from two API calls using the selected

detection id, first the objects detected and their accuracy and then the full-sized annotated image

of the detection. In case that the bounding box is too small to be properly read, this page uses

the Photo View widget to display the picture which has a zoom in/out feature by using a pinch

gesture, as seen in figure 36 allowing the user to thoroughly analyze it. With all this information

the user can then submit their feedback concerning the validity of the automatic classification.

There is also an optional comment that can be written by the user to provide further reasoning

for their response. This feedback is written into the database with yet another API call, using the

put method of the detection endpoint. The user can input their feedback of the images at any

time, they are stored locally and will be available until the data is migrated to a remote server for

further analysis or model training.
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Fig. 36. Detection Feedback page allowing the user to input their feedback and zoom in/out feature

shown on the right.

4.2.5.2 Video Feed

This page allows the user to monitor the status of the apparatus’ video, by checking if it is running

and if the object detection is working properly. The video stream displayed here is provided by the

streaming script described in section 4.2.4.2, seeing as it simply sends the video feed to a browser

this page consists of a web view with the URL pointing to it. The page’s CSS (Cascading Style

Sheets) was edited to fit the video to the size of the page while maintaining the aspect ratio of the

original resolution.

Fig. 37. Video Feed page displaying the apparatus’ current video feed performing object detection.

A list of detections of objects of interest displayed here can then be seen on the first page of

the app, however, as mentioned previously the user does not need to monitor this stream seeing

as this processing is constantly executing in the background.
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4.2.5.3 Statistics

The statistics page allows the user to get an overview of the data stored locally on the apparatus

and can be filtered by time. The data displayed on this page relates to the number of objects

detected and the average accuracy of each class in a certain time frame. This data is fetched

through an API call with has a "timeFrame" parameter in the URL which filters it, see section

4.2.3.1.

Displayed in the following figure 4.2.5.3, the data is shown as a list of classes in which each

element of the list has the following elements: the class name followed by the number of occurrences

in parenthesis, an average of all the occurrences score on the right and a progress bar bellow that

helps to visualize this accuracy. Moreover, when there is no data for a specific time frame a message

will be displayed as seen on the right of the figure.

Fig. 38. Page displaying statistics about the detections stored on the apparatus on the left and no data
in a certain time frame on the right.

4.3 Summary of the System

This section reported on the components present on the developed system. Firstly, the hardware

consisting of four main parts which are the CDB, the camera, the GPS module and a power

bank. Then a description of the software’s operation, as seen in figure 26, followed by an in depth

explanation all the different elements and how they communicate with each other. The main
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components are the database, the python scripts and the mobile app. The database was developed

using MySQL and is used to store all the data collected by the system. The python scripts are

responsible for analysing the camera feed and executing the ML on it using TensorFlow. And the

mobile app, developed with Flutter, allows the user to interact remotely with the system seeing

as it has no peripherals, namely a keyboard or screen. All these parts work together to identify

marine megafauna and gather data about them automatically.
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5 Experiments

To tackle the challenge in detecting, classifying, and predicting the marine species, several per-

formed experiments are described in this manuscript in the sections below. Section 5.1 describes

the research setting, outlining the location and sample size, while Section 5.2 provides an insight

into the study protocol in obtaining the data and testing the research questions.

5.1 Sample

Studies were conducted in Madeira island mostly in a lab setting, however, they aimed to simulate

the apparatus’ deployment conditions. For some of the experiments the dolphin footage gathered

was recorded by mobile phone during a whale watching trip in Madeira, however the remaining

footage was obtained online from unknown locations and appears to be gathered from sea vessels

and UAVs. Regarding the Human versus Machine experiment (Section 5.2.2), a total of 15

master students in computer engineering and interactive media design were participants. Seeing

as the specie classification was not a concern in this experiment no marine biology expertise was

required for this experiment. Furthermore, regarding the User Validation study (Section 5.2.1)

a total of 9 testers were invited to participate, 7 of them had no marine biology background

and were also master students of computer engineering. However, to gather valuable feedback

two of the invited participants are experts in the field, both having finished their PhDs and

are currently researchers in the field of marine ecology. One of the experts has participated in

more than 15 international projects and is interested in studying the marine ecology of island

habitats, in particular in biogeography, population and trophic ecology, telemetry, and habitat use

in cetaceans. While the other expert is a team member in 3 international projects and 2 national

projects (Portuguese), also a co-founder of the MONICET web-based monitoring platform which

aims to gather vast amounts of data gathered in whale watching trips and convert it into valuable

information for the public.

5.2 Study Protocol

To answer the aforementioned research questions, several experiments are described related to the

user experience (Section 5.2.1) and the machine learning’s performance (Section 5.2.2).

5.2.1 User validation

To understand the practicality of such a system user studies will be performed, mainly on usability

and user experience, outlining the pros and cons of using such a system in real-time, on-board the

sea vessels. User studies aim to answer "[RQ2.] To which extent the proposed apparatus can

support the marine biologist in counting the species?" by analyzing the user’s interactions
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with the system. For this study, users were asked to sit at a desk where the apparatus and mobile

app were set up. The camera was pointed at the user and a monitor was displaying the video feed

with the annotated objects allowing the user to better understand what is being classified. Test

to be performed will give users an understanding of the operation of the system as a whole, how

the detections are performed and stored for further inspection.

Invited users have explained the operation of the apparatus and some of its goals, afterwards,

they were asked to start the test. The first step of the test is to show the apparatus’ camera any

photo of the marine megafauna provided to them and watch the machine learning classification

occurring in real-time through the video stream, here users tested different photos in different

lighting conditions and angles and observed the annotated objects on the screen alongside the

accuracy score. User causing a detection is represented in figure 39, meaning this data will be

stored in the database. The next step was to browse the object detections saved utilizing the

mobile app, at this moment users were asked to select a couple of detections to analyze and report

their feedback on the classification (if it was correct or not). Finally, users were asked to explore

the statistics page of the app and filter the data displayed.

Fig. 39. User holding imagery of the marine mega fauna in front of the apparatus.

Eventually, after the tests were concluded, users were asked to fill a SUS (System Usability

Scale) questionnaire related to the system tested. SUS is a reliable tool for measuring the usability

of the system, it consists of 10 statements where the user rates each of them on a scale ranging

from strongly disagree to strongly agree. It has become an industry-standard due to being easy to

administer to participants and having reliable results even on small sample sizes [66]. To interpret

the scores in the SUS questionnaire for each participant we first sum the score for all odd-numbered

questions and then subtract 5, and we subtract from 25 the sum of the score for the even-numbered

questions. Then we add these two values and multiply them 2.5 resulting in the SUS score from 0

to 100. Although the score ranges from 0 to 100 it is not a percentage, the average SUS score is

68 therefore anything above it is good, furthermore scores above 80,3 are excelent [67].
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5.2.2 Human versus Machine

The system developed in this manuscript aims to complement marine biologist’s visual surveys,

therefore to verify how the object detection may perform during these surveys a comparison

test was performed. This test aims to answer "[RQ3.] How accurate is the software for

classification prediction and counting the marine taxa?" to compare the detection rate

of the machine against that of a human and assess if this automatic system can be adequate for

surveys. A user test was performed by playing the same collected video footage to human observers

and comparing it against and previously collected data by the machine. The human analysis was

performed by computer engineering master students who have not watched the gathered video

footage previously. Every subject had a stopwatch and counted how many seconds they observe

any wildlife in the video footage. Performing this experiment was possible in a classroom where a

projector was set up to allow a simultaneous test for every subject where every video was played

in succession, while the individual stopwatch times were reported for each one.

Regarding the machine, a video object detection Python script was used to perform the infer-

ence for every frame of the video while classifying and counting the number of objects using the

custom trained model40. Upon the completion of this inference, a list of objects and the number

of frames they were detected in was returned. This list could then be used to calculate the number

of seconds each specie was detected as well as the false positives seeing as each video only has one

specie and multiple could be detected.

Table 13. Sources of the collected test footage and their duration.

# Marine Megafauna Testing Footage Source Duration Perc.

1 Sea Turtles
(Chelonioidea)

https://youtu.be/36IquODDQCk (1:01-2:08)
https://youtu.be/q8RGB1QDZc0 (0:05-1:06)
https://youtu.be/Vx0-rzZQPag (0:05-1:06)

189s 0.08

2 Sea Birds
(Charafdriiformes)

https://youtu.be/EwPrXOtBoVg
https://youtu.be/0POWeKfyN2E
https://youtu.be/ah27TO-D5Qk

280s 0.11

3 Toothed Whales, Dolphins
(Odontoceti)

https://youtu.be/W-7zxhBr7Zo
https://youtu.be/MrEB_CxgctE
https://youtu.be/PDPLqI818Sc

802s 0.33

4 Baleen Whales
(Mysticeti)

https://youtu.be/EMybn5NtbtQ
https://youtu.be/yCqxJfuthls
https://youtu.be/LvF-lPxsi9I

604s 0.25

5 Seals
(Pinnipedia)

https://youtu.be/vwnXxQHf454
https://youtu.be/KCZg9DSIwX8
https://youtu.be/d8BLbfB2Oas

566s 0.23

TOTAL Testing Footage 2441s

40Example resulting annotated videos accessible at https://youtube.com/playlist?list=PLJX-
SO7nrPa5rN0wZfU1s9Khkodg6M7i4

https://youtube.com/playlist?list=PLJX-SO7nrPa5rN0wZfU1s9Khkodg6M7i4
https://youtube.com/playlist?list=PLJX-SO7nrPa5rN0wZfU1s9Khkodg6M7i4
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A total of approximately 41 minutes of video footage was gathered across the five megafaunas

(Odontoceti, Mysticeti, Pinniped, Sea birds, Sea turtles), split into three videos for each marine

megafauna adding up to fifteen as mentioned in table 13. Each video contains only one of them

allowing easier detections for the testers, focusing only on wildlife presence on the screen instead

of correctly classifying them.

Most the footage aims to somewhat simulate deployment conditions, except for the turtle

footage which could only be found from an underwater perspective, therefore why it is video

collected from a sea vessel as is displayed in figure 40.

Fig. 40. Footage gathered from a sea vessel displaying a dolphin swimming automatically annotated.

5.3 Summary of the Experiments

This section reported on the background and experience of the experiments’ participants, as well

as the two types of experiments performed to assess the performance and usability of the system.

The first experiment will focus solely on the ML’s performance compared to the humans. This is

achieved by having humans and the ML analyzing the same videos and essentially counting how

many seconds any marine megafauna is present on screen. And the final experiment will use the

SUS to evaluate the user experience and the system’s usability.
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6 Results

In this section, the results of the two studies performed will be presented. Firstly, results of the

Human versus Machine video object detection (Section 6.1) and subsequently the user validation

through system usability scale study of the system (Section 6.2).

6.1 Human versus Machine

The following figure 41 displays how many seconds each marine megafauna was detected in the

videos by the humans and the machine. This data was gathered from the experiment described in

section 5.2.2 where afterward the standard deviation and average total time of marine mega fauna

detection by the subjects was computed. Subsequently, results are compared to the machine.

Fig. 41. Human versus Machine experiment: Detection time comparison of the marine mega fauna in
seconds.

As is represented in the graph, the ML could detect the marine megafauna averaging about

51% of the time, compared to the humans. The biggest difference is present in the classes Dolphins,

Whales and Seals which is due to the animals being submersed during most of the videos making

it difficult for the machine to classify their distorted silhouette. This issue is diminished when

looking at the other classes, the Birds which were mostly seen in the sky and the Sea Turtles being

recorded only underwater avoiding the aforementioned distortion.

6.2 User Validation

Besides the first two questions, this questionnaire consists of a series of statements where the

user will rate each one using a five-level Likert Scale ranging from Strongly disagree (1) to

Strongly agree (5). The first three questions aim to gather data about the user demographics
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(age, gender) and their familiarity with technology. The following figures present the results of the

questionnaire. Firstly, the questionnaire started with three questions about the users, which are

the following:

– [UQ1.] Age.

Fig. 42. Age distribution of the participants.

– [UQ2.] Gender.

Fig. 43. Gender distribution of the participants.
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– [UQ3.] I am a tech-savvy person.

Fig. 44. Technological proficiency of the participants.

Following ten questions are related to the system usability scale, namely:

– [SUSQ1.] I would like to use this system frequently

Fig. 45. System usability scale question 1 results.
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– [SUSQ2.] I found the system unnecessarily complex

Fig. 46. System usability scale question 2 results.

– [SUSQ3.] I thought the system was easy to use

Fig. 47. System usability scale question 3 results.
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– [SUSQ4.] I think that I would need the support of a technical person to be able

to use this system

Fig. 48. System usability scale question 4 results.

– [SUSQ5.] I found the various functions in this system were well integrated

Fig. 49. System usability scale question 5 results.
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– [SUSQ6.] I believe there was too much inconsistency in this system

Fig. 50. System usability scale question 6 results.

– [SUSQ7.] I think that most people would learn to use this system quickly

Fig. 51. System usability scale question 7 results.
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– [SUSQ8.] I found the system very inconvenient to use

Fig. 52. System usability scale question 8 results.

– [SUSQ9.] I felt very confident operating the system

Fig. 53. System usability scale question 9 results.
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– [SUSQ10.] I needed to learn a lot of things before I could use this system

Fig. 54. System usability scale question 10 results.

Considering the results from the questionnaire, the SUS score was calculated for all participants

and averaged 83,33. According to SUS guidelines, a score between 68 and 80,3 is good and anything

above that is excellent, therefore this system is very promising in terms of user experience. However,

considering only the marine biologists questionnaires the resulting score is 72,5.

6.3 Summary of the Results

The results reported in this section provide valuable information concerning the performance and

usability of the developed system. Regarding the Human vs Machine experiment, as it can be

assessed in the figure 41 the ML could not perform at the same level as humans in all situations,

however, it can detect and classify the marine megafauna automatically without any user input.

Furthermore, the results from the SUS questionnaire show that the developed system can be used

by people of different areas without much problems.
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7 Discussion

This section will provide insight into the results gathered throughout the manuscript in findings

(Section 7.1), along with the limitations of the studies (Section 7.2), in addition to future work

(Section 7.3) and conclusions (Section 8).

7.1 Finding Analysis

Regarding the research questions posed in this manuscript, the following findings were obtained

when analyzing the results and methodology.

(i) [RQ1.] How to create low-cost aquatic IoT apparatus for assessing marine biodi-

versity using aerial imagery?

As mentioned in the state of art, there are a plethora of solutions available for aerial assess-

ment and multispectral imagery gathering however they mostly remain proprietary and at a

high cost. The solution proposed in this manuscript is in essence a modular low-cost system

capable of performing visual surveys automatically. Although it was developed with a CDB

and a Coral Camera costing around 140e, these components can be exchanged with a RPi

3 and any compatible camera module which costs around 70e. The performance would be

lower, however, for surveys where there is no sudden movement this solution is adequate.

However, as described in this manuscript, for marine megafauna surveys a higher performance

was required due to the rapid movements of the species in the video, to achieve adequate

performance for this a CDB was necessary to achieving faster inference times. Sometimes the

megafauna was only present in the video for a few hundreds of milliseconds which would be

impossible to detect with the performance of the former solution. That being said, the costs

mentioned only cover the MCU and the camera module seeing as a custom case was developed

with medium-density fibreboard and a laser cutter which were available to us. Nonetheless,

most of the MCU have mounting holes allowing for easy development of such custom cases.

Furthermore, instead of relying on costly aerial survey solutions (e.g. UAVs), the proposed

solution can be cheaply mounted in a high vantage point (the sea vessel’s mast).

(ii) [RQ2.] To which extent the proposed apparatus can support the marine biologist

in counting the species?

Given the results presented in section 6.2, the calculated SUS score of 83,3 indicates that

the system usability is excellent in general and is very promising in terms of user experience.

The system was very simple to use, as reported by the testers and allowed them to feel

more confident in the predictions when classifying the marine megafauna. However, when

considering only the marine biologists’ questionnaires the resulting score was 72,5. Although
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it is still above average, they provided some insight into what would make the system even

more practical. Firstly, it can only classify the 5 marine megafauna as of now which is not very

detailed and during surveys they observers try to classify the species as in-depth as possible.

One even suggested that there is a need for an individual identification system, in which the

apparatus could identify each individual through their dorsal fin’s unique pattern. This would

allow for better abundance surveys seeing as the system can omit duplicate counts for the

same individual (e.g. in 600 photos there were 10 individuals identified), whereas the current

system will count every detection as an individual. Also, the current solution has a stationary

camera that can be used to record only one side of the sea vessel, another suggestion was to

develop a rotating attachment that could capture imagery in a 360o view.

(iii) [RQ3.] How accurate is the software for classification prediction and counting the

marine taxa?

Regarding the system’s classification performance in section 6.1, in normal conditions, there are

still improvements to be made as it could only detect the marine megafauna about 51% of the

time compared to that of humans, as seen in figure 41. However, seeing as this is an independent

system it is a great complement to human visual surveys due to it continuously assessing the

marine megafauna automatically. It can also provide extra data when the observers are not

available (e.g. taking notes) as suggested by one of the participants in the tests, additionally,

the system helps maintain consistency between trips with different observers. Moreover, in

regular whale watching trips where there are no expert observers, the system can be deployed

by any user without technical knowledge and automatically collect vast amounts of data.

7.2 Limitations

Regarding machine learning there are a lot of improvements that can be achieved, firstly the dataset

size is comparatively small (around 20 000 images after augmentation) looking at other models

available online (the Common Objects in Context dataset contains more than 200 000 annotated

images). Increasing the dataset would be the first in achieving a more accurate classification, which

the system itself is working towards seeing as the images are being stored for future training of the

model. Additionally, due to the training hardware accessibility constraints, the model could only

be trained for a maximum of 12 hours, by increasing the training time can greatly increase the

classification accuracy. Another problem with the trained model is that it can only identify the five

marine megafauna. Seeing as it should be recording only the ocean it is adequate, however during

testing humans were sometimes classified as Pinnipeds or Birds resulting in some false positives.

Also, the field of view of the system is much narrower than that of a human observer and is of a

low resolution making it power efficient at the cost of the classification’s accuracy. Furthermore,

even though the deployment of the apparatus is very simple (simply securing the apparatus and
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providing power is enough) installing all the necessary software components will be difficult if the

user does not have some experience with software development.

Concerning the performed experiments, although the human versus machine experiment used

videos to simulate an expected deployment view it does not provide insight into problems that

might occur only in real deployment related to the environment. The video footage gathered was

captured in good weather conditions which facilitates the classification, considering other possible

weather conditions the performance of the system might drastically worsen.

7.3 Future work

As mention in the previous sections 7.1 and 7.2, some suggestions were provided by experts that

participated in the user test. The main goal of future works should be to achieve specific species

classification instead of just the five megafaunas proposed in this manuscript. An even more difficult

task would be to identify not only the species but also the individuals, allowing for an easier

abundance survey seeing as the system would not have duplicate counts of the same individual,

although this task might be too hard to perform from an aerial view since the way to identify such

individuals is through their dorsal fin’s unique pattern. However, a new component could be added

to the mobile app where the user could take a photo of any dorsal fin and the system would catalog

it. Furthermore, with access to training hardware without time constraints, an effort should be

put into training a more robust model until reaching a point where further training would only

provide negligible accuracy improvements. Incidentally, increasing the dataset size would greatly

benefit the classification’s performance yielding higher accuracy scores and reducing the number

of false positives, one way this can be achieved is by using the current solution to gather more

imagery. Regarding the hardware of the system, as suggested by the experts, a way to improve

the field of view should be looked at whether it be a rotation mechanism, multiple camera angles,

or a 360o camera.

Concerning the mobile app, a dashboard would be a great addition to allow for a higher degree

of control over the system. The current implementation only allows the users to interact with

the data stored and watch the video feed, more controls can be implemented such as a power

on/off allowing the user to remotely shut down the device temporarily to save power. Also, for

more advanced users, a page displaying the system usage of the CPU, memory and disk could be

created.
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8 Conclusions

Proposed IoT device throughout this dissertation is a first step in applying the real-time classi-

fication of the spotted marine species. Conversely, proposed system is primarily designed to aid

marine biologists (instead of exchanging them) in collecting the data about marine megafauna

during their visual surveys. It achieves this goal by providing the assisting tools which contribute

to the data gathering and validation based on real time imagery. Furthermore, this system con-

tributes to future works allowing the automatic imagery collection, allowing for the creation of big

data. Besides experts, customers, and service providers of marine leisure activities, for instance,

whale watching, diving, or boat rentals, can also use such system as a passive image sensor, as

they do not require an expertise in the contribution of the collected data. Indeed, proposed system

serves for versatile applications and can be considered as an aiding factor into the data collection

using the platforms of opportunities.

Proposed solution allows the storing, cataloging and autonomous alerting of the spotted species.

Consequently, system is envisioned to support research efforts both during the field expeditions as

well as on land during data analysis. Moreover, the simplicity and flexibility of the system ensure

(as seen in the usability tests) that it can be adapted and deployed mostly anywhere (e.g. on

UAV, ROV, AUV, USV, sea-vessel mast, Stand-Up Paddling, etc.). Several other devices can be

developed with this system as a base, such as, a submerged alternative that achieves underwater

wildlife. Also, by replacing the custom trained model there are new possibilities of objects to be

monitored, this flexibility allows the same system to monitor any kind of fauna or flora or even

marine litter.

Finishing the development of this apparatus required uniting technologies and techniques from

diverse areas. The knowledge acquired during my Bachelor’s and Master’s degrees helped with the

its development, however much research and learning was required to complete it. Specifically in

the areas of machine learning, model training, microcontrollers, software containers and flutter for

mobile app development.

Furthermore, working with experts in several fields of marine biology provided much insight

into the state of marine research. There are a lot of challenges regarding marine research that we

need to overcome when researching the seas, namely that it is an environment not easily access by

humans, it requires a lot of tools to perform studies (especially for underwater) and much remains

to be learned from fully exploring the oceans. Even so, further studying of marine environments

can provide knowledge essential to better understand our planet.
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Altogether, the proposed system for marine megafauna assessments provides several advantages

for the future field studies and is also a major contribution to future machine learning efforts in

bridging with the marine ecology.
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