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ABSTRACT 

Structural optimization has been growing in recent years, as it is an excellent tool 

to obtain reliable and high-performance products. In addition to reducing the waste of 

resources and emissions as well as the production cost, this can be applied in several 

areas from engineering to medicine. 

 The numerical method most used in recent decades to obtain structurally 

optimized parts is the finite element method (FEM) and it is included in the group called 

mesh-based methods. However, the application of these methods in parts with complex 

geometries and in large deformation problems result in low accuracy and instable 

solutions. In order to solve this problem, in the last decades, methods that are 

independent of a mesh have been developed to obtain unknown variables, called 

meshless methods. Although meshless methods are still recent and there are few 

documentations, these have been showing good results compared to the mesh-based 

methods, proving to be a good alternative. 

 Considering what has been said previously, this work has as main objective the 

study and analysis of parts subjected to structural optimization using mesh-based and 

meshless methods, in order to compare the results and verify the benefits of using a 

type of method instead of the other. 
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PALAVRAS CHAVE 

Optimização estrutural; Optimização topológica; Métodos sem malha; Método dos 

Elementos Finitos 

 

RESUMO 

A optimização estrutural tem vindo a crescer nos últimos anos, uma vez que é 

uma excelente ferramenta para a obtenção de produtos fiáveis e de alto desempenho. 

Para além de que reduz o gasto de recursos e emissões assim como o preço de produção 

das mesmas, esta pode ser aplicada em diversas áreas desde a engenharia à medicina. 

O método numérico mais utilizado nas últimas décadas para a obtenção de 

partes estruturalmente optimizadas é o método dos elementos finitos (MEF), o qual 

pode ser incluído no grupo denominado de métodos com malha. No entanto, a aplicação 

destes métodos em partes com geometrias complexas e em problemas com grandes 

deformações resultam em soluções com pouca precisão e de baixa estabilidade. De 

modo a solucionar este problema, nas últimas décadas, têm vindo a ser desenvolvidos 

métodos que são independentes de uma malha para a obtenção das varáveis 

desconhecidas, denominados de métodos sem malha. Apesar dos métodos sem malha 

ainda serem recentes e existir pouca documentação, estes têm vindo a mostrar bons 

resultados comparativamente aos métodos com malha provando ser uma boa 

alternativa. 

Tendo em conta o referido anteriormente, este trabalho tem como objectivo 

principal o estudo e análise de partes submetidas a optimização estrutural utilizando 

métodos com malha e sem malha, de modo a comparar os resultados e verificar os 

benefícios da utilização de um tipo de método relativamente ao outro. 
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1 INTRODUCTION 

1.1 Framework 

The search for better and more efficient parts to keep up to the competition inside 

the industry has always been a part of the objectives of a company. However, it gets to 

a point where no major improvements can be made to those parts. This is where 

structural optimization plays a big role, since performances can be optimized to its 

maximum and even reduce resources usage, and therefore production costs. 

Over the last decades, mesh-based numerical methods such as Finite Element 

Method (FEM), have been used to analyse and optimize diverse structural components. 

However, the application of these methods in parts with complex geometries and large 

deformation problems result in lower accuracy and solution stability. Thus, in the last 

decades, numerical meshless methods have been growing in popularity among the 

communities since they can adjust better to complex geometries and still obtain precise 

results.  

1.2 Motivation 

Since more and more industries rely on structural optimization to improve the 

performance of their products, it is of great importance to keep exploring and 

investigating this area of study. 

Nowadays, there is the civic duty and imposed objectives for companies to reduce 

their emissions and resource usage in order to move towards an efficient and 

sustainable world. Structural topology optimization allows to achieve these objectives 

because it removes a significant amount of material and therefore less resources are 

wasted, as well as emissions on the production of these parts. 

Although meshless methods have been studied and applied in various research 

works in the last decades and proven to be a good option compared with the mesh-

based methods, there are still few research works regarding this subject and room for 

improvement in some aspects. Hereupon, this thesis is an important contribution for 

the developed work that has been carried out around this area. 

1.3 Objectives 

The main focus of this thesis is to study the structural topology optimization using 

meshless methods and comparing its results with the mesh-based method FEM, to verify 

if the meshless methods are reliable and capable to produce accurate solutions. 
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Thus, the objectives of the present work can be summarized as it follows: 

 

• Analysis of benchmark problems, to acquire autonomy in the use of the 

proposed software; 

• Study domain discretization influence on optimized solutions; 

• Study mesh and optimization parameters influence on optimized 

solutions; 

• Compare the computational time between the methods used; 

• Verification of the benefits of applying structural topology optimization 

into an industrial application; 

• Demonstrate the potentialities of using meshless methods over mesh-

based methods. 

1.4 Document Structure 

The present work is divided in five chapters, with them being divided into various 

sections. 

Chapter 1, is a brief summary on the importance of this kind of work. It is also 

described the main objectives of this work. 

In chapter 2, numerical methods are introduced. Firstly, mesh-based methods are 

introduced following the focus of this work: meshless methods. In this chapter is also 

provided a state of the art of the meshless methods, as well as formulations of the 

numerical methods used throughout the development of this work. 

In chapter 3, it is explained the importance of structural optimization in the 

industry. It is provided the state of the art on this kind of research area, as well as recent 

and innovative works developed in the last two years. 

Chapter 5, is dedicated to the usage of structural topology optimization into two 

benchmark examples and one industrial application, using mesh-based and meshless 

numerical methods. 

The chapter 5 presents the conclusions obtained from this work, and future works. 
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2 Numerical Methods 

Over the last decades, the use of numerical methods to solve partial differential 

equations has been an essential key to solve various problems of engineering. However, 

in the last two decades meshless methods have gained some attention over the mesh-

based numerical methods like FEM and BEM, since these ones have some innate 

limitations when dealing with large deformations problems [1]. 

In this chapter, firstly, it is presented an overview of FEM and afterwards an 

explanation of the meshless method that will be used in this work. 

 

2.1 FEM 

FEM origins can be traced back to the 1950’s, firstly by M. J. Turner at Boeing 

where he generalized and perfected the Direct Stiffness Method. During the 1950’s and 

1960’s it started being popularized by four academics: J. H. Argyris, R. W. Clough, H. C. 

Martin and O. C. Zienkiewicz who were responsible to extend the method from 

aerospace industry into wider range of engineering applications [2]. 

Nowadays, FEM is one of the most used numerical methods in computation 

mechanics and can be used in diverse fields of applications such as the mechanical 

engineering [3]. 

FEM is a mesh-dependent approximation method where the continuum domain 

is discretized into a set of small finite elements, and each of these elements is connected 

to the others through common interfaces (nodes), forming a mesh. Shape functions are 

then constructed based in these elements in order to establish the system equations 

that can be used to determine the approximate solution in any point of interest of the 

domain [4]. 

The simple discretization concept, the low computational cost and the facility to 

program, makes FEM one compact numerical method when compared to the others. 

Nevertheless, when dealing with large deformation problems that require a constant 

update of the discretization mesh, FEM lacks on accuracy and solution stability, which 

brings disadvantages in some computational mechanics fields. Beyond that, in fluid flow 

analysis, the constant mesh update increases the computational cost [3]. 

2.2 Meshless Methods 

In opposition to the mesh-based numerical methods, in meshless methods the 

nodes can be arbitrary distributed, once the field functions are approximated within an 
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influence-domain rather than an element. Contrary to FEM no-overlap rule between 

elements, influence-domains may and must overlap each other in meshless methods 

[4]. Further in this chapter, it is presented the formulation of two meshless methods, 

the RPIM and the NNRPIM. 

2.2.1 Meshless Methods: State of the Art 

Meshless methods were developed with the objective to eliminate the difficulties 

associated with reliance on a mesh to construct the approximation [5]. Meshless 

methods can be divided in two classes: approximation meshless methods and 

interpolation meshless methods. The first class to appear were the approximation 

meshless methods [3, 6]. 

One of the oldest meshless methods is the Smooth Particle Hydrodynamics 

(SPH), by Lucy and Gingold and Monaghan [5]. This method is based in the kernel 

approximation and it was born to solve problems in astrophysics and, later on, widely 

used to solve free surface flow problems [3, 5]. In the same period, the diffuse element 

method (DEM) appeared, which is considered by many as the first mature meshless 

method for solid mechanics. The DEM constructs the approximation shape functions 

using the moving least square (MLS) approximants. In 1994, Belytschko and co-workers 

improved the DEM and developed one of the most popular meshless method, the 

element-free Galerkin method (EFGM), as it was one of the first meshless methods 

based on a global weak form. One year later, the SPH was modified to suit the demands 

of solid mechanics problems originating the reproducing kernel particle method (RKPM). 

Another method that derived from SPH was the meshless local Petroc-Galerkin (MLPG), 

a very popular method based on local weak forms [3–6]. The main difference between 

MLPG method and others such as EFGM and RKPM is that the local weak forms are 

generated on overlapping subdomains rather than using global weak forms. The 

integration of the weak form is then carried out in these local subdomains. The notion 

“truly” meshless was introduced by Atluri, since this method does not require a 

construction of a background mesh for integration purposes [5]. Another approximation 

method, distinct from the previous, is the Radial Basis Function Method (RBFM). It uses 

the radial basis functions, respecting a Euclidean norm, to approximate the variable 

fields within the entire domain or in small domains. 

Despite the fact that approximant meshless methods have been successfully 

applied in computational mechanics, all they lack the Kronecker delta property on the 

shape functions, which hinders the imposition of natural boundary conditions [4]. To 

solve this problem, interpolation meshless methods were developed in the last decades, 

such as the natural element method (NEM) and the point interpolation method (PIM). 

Later, an efficient version of PIM and one of the most applied in computational 

mechanics was developed, the Radial Point Interpolation Method (RPIM), which 

combines the polynomial basis of the PIM with a radial basis function. More recently, 

the combination between the NEM and the RPIM originated the Natural Neighbour 

Radial Point Interpolation Method (NNRPIM) [3, 4]. 
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2.2.2 Numerical Integration 

In order to perform the numerical integration of the integro-differential 

equations that rule the physical phenomenon, numerical methods using the Galerkin 

weak formulation require the construction of a background integration mesh and this is 

a significant percentage of the final computational cost of the analysis. The meshless 

methods used in this work use two different integration schemes, the Gauss-Legendre 

quadrate scheme and a nodal based integration scheme [3, 4]. 

2.2.2.1 RPIM 

In the Gauss-Legendre integration, the solid domain is divided in a regular grid, 

as Fig. 1 indicates. 

 
Fig. 1 - General Gaussian Integration mesh 

Then each grid-cell, Fig. 2,is transformed in an isoparametric square and filled 

with integration points, respecting the Gauss-Legendre quadrate rule. In Fig. 2 the cell 

is filled with 2 x 2 integration point. After that, the Cartesian coordinates of the 

quadrature are obtained using isoparametric interpolation functions. The weight of each 

integration point can be acquired multiplying the isoparametric weight of the 

integration point with the Jacobian matrix determinant of the respective grid-cell, Fig. 

3. 
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Fig. 2 - Transformation of the initial quatrilateral into an isoparametric square shape (2 x 2 integration points per 

integration cell) 

 
Fig. 3 - General Gaussian Integration mesh 

Notice that, if the grid fits the solid domain no pos-treatment is required. 

However, if the grid is larger than the solid domain all the integration points outside the 

solid domain must be removed, Fig. 4. 
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Fig. 4 - Fitted Gaussian mesh 

Generally, in meshless methods, it is used regular quadrature integration 

meshes, since it presents lower computational costs and it is simpler to apply. 

Consider the function 𝐹(𝒙) defined in the domain 𝛀 to perform the numerical 

integration. The global integration can be expressed by, 

 

∫𝑭(𝒙) 𝑑𝛺
 

𝛺

= ∑𝑤̂𝑖 𝑭(𝒙𝑖)

𝑛𝑔

𝑖=1

 
( 1 ) 

 

where 𝑤̂𝑖 is the weight of the integration point 𝒙𝒊. 

2.2.2.2 NNRPIM 

The main difference between Nodal Based integration scheme and the Gauss-

Legendre integration, is that the background integration scheme is constructed using 

uniquely the nodal distribution spatial information. Making meshless methods using this 

numerical integration scheme truly meshless, since no other information is necessary 

to: establish the nodal connectivity, determine the integration points and construct the 

shape functions [3, 4]. 

After the domain discretization with a nodal distribution, the Voronoї cells of 

each node are determined. The determination of Voronoї cells is presented in section 

2.2.3.2. Depending on the nodal discretization being irregular or regular, the areas that 

will be established by the Voronoї cells can be quadrilaterals or triangles, respectively. 

If the domain 𝛀 ⊂  ℝ2 is discretized by an irregular nodal set 𝑵 = {𝑛1, 𝑛2, … , 𝑛6}, Fig. 

5, this allows to construct the Voronoї cell 𝑉𝐼 of node 𝑛𝐼 and to determine the corners 

𝑃𝐼𝑖 of the polygonal shape defined by 𝑉𝐼, Fig. 5 (a). After that, the middle points, 𝑀𝐼𝑖, 
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between 𝑛𝐼 and each neighbour nodes are obtained, Fig. 5 (b). As a result, the Voronoї 

cells are divided in n quadrilateral sub-cells, 𝑆𝐼𝑖, being 𝑛 the number of natural 

neighbours of node 𝑛𝐼, Fig. 5 (c). 

 

 
 

 

(a) (b) (c) 
Fig. 5 – a) Voronoї cell and the intersection points (𝑃𝐼𝑖); b) Middle points (𝑀𝐼𝑖) and the generated quadrilaterals; c) 

Quadrilateral 𝑛𝐼𝑀𝐼4𝑃𝐼4𝑀𝐼5
 

However, if the domain 𝛀 ⊂  ℝ2 is discretized by a regular nodal set 𝑵 =

{𝑛1, 𝑛2, … , 𝑛6}, Fig. 6 (a), this will result in a Voronoї cell divided in 𝑛 triangular sub-cells, 

𝑆𝐼𝑖, being 𝑛 the number of natural neighbours of node 𝑛𝐼, Fig. 6 (c). 

 

  

 

(a) (b) (c) 
Fig. 6 - a) Voronoї cell and the intersection points (𝑃𝐼𝑖); b) Middle points (𝑀𝐼𝑖) and the generated triangles; c) 

Triangle 𝑛𝐼𝑃𝐼7𝑀𝐼1 

Afterwards, it is used the Gauss-Legendre numerical integration in order to 

establish the numerical integration. Thus, the sub-cell is subdivided again, however in 

this case only as quadrilaterals. Firstly, it is determined the centre of the geometric 

shape, 𝒙𝑪, then middles points on the quadrilateral edges are determined, 𝒙𝒊𝒋, and as a 

result new sub-quadrilaterals are defined, Fig. 7. Then, by applying the Gauss-Legendre 

quadrature to the obtained sub-quadrilaterals, it is possible to obtain the integration 

points, Fig. 7. This process permits to fill each sub-quadrilateral with k x k integration 

points. 
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Fig. 7 – Triangular and quadrilateral shapes and their respective integration points 𝒙𝐼 using the Gauss-Legendre 

integration scheme 

The integration weight of each integration point 𝒙𝒊 is obtained using the 

expression, 

𝑤̂𝐼 = 𝑤𝜂𝑤𝜉 (
𝐴□

4
) 

( 2 ) 

being 𝐴□ the area of the respective sub-quadrilateral, and 𝑤𝜂 and 𝑤𝜉 are the Gauss-

Legendre quadrature weights for an isoparametric quadrilateral cell. 

2.2.3 Nodal Connectivity 

2.2.3.1 RPIM 

In meshless methods, since there is no nodal interdependency, the nodal 

connectivity is imposed after the discretization of the domain. In RPIM the nodal 

connectivity is obtained by the overlap of the influence-domain of each node. These 

influence-domains are found by searching nodes inside an area or volume, respectively 

for the 2D problem and for the 3D problem, concentric with an interest (integration) 

point. However, the size or shape variation of these influence-domains can affect the 

performance and the final solution of the meshless method, Fig. 8 (a). 
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(a) (b) 

Fig. 8 – a) Influence-domains with different sizes and shapes; b) Example of a bad choice in the size of the influence-
domain 

Therefore, it is important that all the influence-domains in the problem contain 

approximately the same number of nodes, otherwise this can lead to unbalanced 

influence-domains, Fig. 8 (b), implying loss of accuracy. To avoid that, RPIM uses variable 

influence-domains, centred in the interest point 𝒙𝒊, which will perform a radial search 

to encompass 𝑛 nodes. 

2.2.3.2 NNRPIM 

In the NNRPIM, the way to determine the nodal connectivity is by using 

mathematical concepts such as the Voronoї diagram. These influence-domains are 

based on the geometric and spatial relations between the Voronoї cells obtained from 

the Voronoї diagram, therefore, the influence-domains are called influence-cells. The 

Voronoї diagram uses the concept of the natural neighbours and is applied to the nodal 

distribution in order to create the influence-cells. 
Consider the problem domain 𝛀 ⊂  ℝ2 discretized by a nodal set 𝑵 =

{𝑛1, 𝑛2, … , 𝑛𝑁}  ∈  ℝ2 with 𝑿 = {𝒙1, 𝒙2, … , 𝒙𝑁} coordinates. The Voronoї diagram of 𝑵 
corresponds to the division of the domain in Voronoї cells, 𝑉𝑖, which can be closed or 
convex. Each Voronoї cell is associated to the node 𝑛𝑖  in a way that any point in the 
interior of 𝑉𝑖 is closer to this node than any other node 𝑛𝑗 ∈ 𝑵 ⋀ 𝑖 ≠ 𝑗. The Voronoї cell 

is expressed by,  
 

𝑽𝑖 = {𝒙𝐼 ∈ Ω ⊂ Rd ∶  ‖𝒙𝐼 − 𝒙𝑖‖ < ‖𝒙𝐼 − 𝒙𝑗‖, ∀  𝑖 ≠ 𝑗} ( 3 ) 

 

being 𝒙𝒊 an interest point and ‖∙‖ the Euclidian metric norm. In the Fig. 9 it is 

represented the generic way to obtain a 2D Voronoї diagram. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 9 – a) Initial nodal set of potential neighbour nodes of node 𝑛0; b) First trial plane; c) Second trial plane; d) Final 
trial cell containing just the natural neighbours of node 𝑛0; e) Node 𝑛0 and the respective Voronoї cell 𝑉0; f) Voronoї 

diagram 

Considering the nodal set from Fig. 9, in order to determine the Voronoї cell 𝑉0 

of node 𝑛0, nodes 𝑛1 to 𝑛6 are chosen as potential neighbours of node n0. After that, 

one of these nodes is selected, in this case the node 𝑛2. Thus, the vector 𝒖20 is 

determined, 

 

𝒖20 =
(𝒙0 − 𝒙2)

‖𝒙0 − 𝒙2‖
 

( 4 ) 

 

being 𝒖20 = {𝑢20, 𝑣20, 𝑤20}. With this, it is possible to determine the plane 𝜋20, 

 

𝑢20𝑥 + 𝑣20𝑦 + 𝑤20𝑧 = (𝑢20𝑥2 + 𝑣20𝑦2 + 𝑤20𝑧2) 
( 5 ) 
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Afterwards, all the nodes that do not satisfy the following inequation, 

 

𝑢20𝑥 + 𝑣20𝑦 + 𝑤20𝑧 ≥ (𝑢20𝑥2 + 𝑣20𝑦2 + 𝑤20𝑧2) 
( 6 ) 

 

are excluded as natural neighbours of the node 𝑛0, Fig. 9 (b). This process is repeated 

for all the domain nodes, Fig. 9 (d). In the end, only the neighbour nodes of node 𝑛0 will 

remain, Fig. 9 (e). 

Repeating the process to determine a Voronoї cell for each node discretizing the 

domain, it is possible to construct the Voronoї diagram, Fig. 9 (f). In the Voronoї diagram, 

two types of influence-cells can be established, Fig. 10, according to the level of nodal 

connectivity: the first-degree influence cells (a) and the second-degree influence cells 

(b). 

  
(a) (b) 

Fig. 10 – a) First degree influence-cell; b) Second degree influence-cell 

When considering a first-degree influence cell only the natural neighbours of the 

point of interest are taken into consideration. However, if a second degree influence cell 

is considered, not only the natural neighbours of the point of interest are taken into 

consideration, but also the natural neighbours of these first ones, Fig. 10 (b). Being that 

the second-degree influence cell is larger than the first-degree, the second-degree 

influence cell, generally, offers better results. 

2.2.4 Interpolation Shape Functions 

In order to obtain a numerical solution, firstly we need to interpolate the 

unknown field functions. Both RPIM and NNRPIM, use the Radial Point Interpolators 

(RPI) technique to construct the respective interpolation shape functions. RPI combines 

polynomial basis functions 𝑝(𝒙) with radial basis functions 𝑟(𝒙) [3]. Besides that, since 

RPI possesses the Kronecker delta property, it permits a simpler imposition of the 

essential boundary conditions. 

Considering the function 𝑢(𝒙), defined in the domain Ω, and discretized by a set 

of 𝑛 nodes, at an interest point 𝒙𝑖, the function 𝑢(𝒙) contains all the interest points of 

the influence domain and can be expressed as, 
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𝑢(𝒙𝐼) = ∑𝑟𝑖(𝒙𝐼)𝑎𝑖(𝒙𝐼)

𝑛

𝑖=1

+ ∑𝑝𝑗(𝒙𝐼)𝑏𝑗(𝒙𝐼)

𝑚

𝑗=1

= 𝒓𝑇(𝒙𝐼)𝒂(𝒙𝐼) + 𝒑𝑇(𝒙𝐼)𝒃(𝒙𝐼) 

( 7 ) 

 

which can be written as, 

 

𝑢(𝒙𝐼) = {𝒓(𝒙𝐼)
𝑇, 𝒑(𝒙𝐼)

𝑇} {
𝒂(𝒙𝐼)
𝒃(𝒙𝐼)

} 
( 8 ) 

 

being 𝑎𝑖(𝒙𝐼) and 𝑏𝑖(𝒙𝐼) the non-constant coefficients of 𝒓(𝒙𝐼) and 𝒑(𝒙𝐼) respectively, 

which can be written as, 

 

𝒓(𝒙𝐼) = {𝑟1(𝒙𝐼), 𝑟2(𝒙𝐼), … , 𝑟𝑛(𝒙𝐼)}
𝑇 

( 9 ) 

𝒑(𝒙𝐼) = {𝑝1(𝒙𝐼), 𝑝2(𝒙𝐼),… , 𝑝𝑚(𝒙𝐼)}
𝑇 

( 10 ) 

𝒂(𝒙𝐼) = {𝑎1(𝒙𝐼), 𝑎2(𝒙𝐼), … , 𝑎𝑛(𝒙𝐼)}
𝑇 

( 11 ) 

𝒃(𝒙𝐼) = {𝑏1(𝒙𝐼), 𝑏2(𝒙𝐼),… , 𝑏𝑚(𝒙𝐼)}
𝑇 

( 12 ) 

 

This method uses the multi-quadratics radial basis function (MQ-RBF) [3, 7], 

which is defined by, 

 

𝑟(𝒙𝐼) = (𝑑𝐼𝑖
2 + 𝑐2)𝑝 

( 13 ) 

 
being 𝑐 and 𝑝 two MQ-RBF shape parameters defined in the literature as 𝑐 = 0.0001 
and 𝑝 = 1.0001 , respectively, in order to obtain accurate results, and 𝑑𝐼𝑖 the Euclidian 
norm between the integration point 𝒙𝐼 and the neighbour node 𝒙𝑖, 
 

𝑑𝐼𝑖 = √(𝒙𝑖 − 𝒙𝐼)2 + (𝒚𝑖 − 𝒚𝐼)2 
( 14 ) 

 

The RPI formulation requires a polynomial basis function, which for 2D problems 

can be defined as, 

 

𝒑(𝒙)𝑇 = [1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, … ] 
( 15 ) 

 

To assure a single solution, the polynomial equation needs to be included in the 

system of equations, 

 

∑𝑝𝑗(𝒙𝑖)𝑎𝑖(𝒙𝑖) = 0

𝑛

𝑖=1

 
( 16 ) 
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considering equation ( 8 ), and the previous assumptions, the function can be 

reformulated to, 

 

{
𝒖𝑠

𝟎
} = [

𝑹 𝑷
𝑷𝑇 𝟎

] {
𝒂
𝒃
} = 𝑴{

𝒂
𝒃
} 

( 17 ) 

 

where 𝒖𝑠, 𝑹 and 𝑷, considering a 2D problem, can be defined as, 

 

𝒖𝑠 = {𝑢1, 𝑢2, … , 𝑢𝑛}𝑇 ( 18 ) 

𝑹 = [

𝑅(𝑟11) 𝑅(𝑟21) … 𝑅(𝑟𝑛1)
𝑅(𝑟12) 𝑅(𝑟22) … 𝑅(𝑟𝑛2)

⋮ ⋮ ⋱ ⋮
𝑅(𝑟1𝑛) 𝑅(𝑟2𝑛) … 𝑅(𝑟𝑛𝑛)

] ( 19 ) 

𝑷 = [

1 𝑥1 𝑦1

1 𝑥2 𝑦2

⋮ ⋮ ⋮
1 𝑥𝑛 𝑦𝑛

] ( 20 ) 

 

Solving the following equation, 

 

{
𝒂
𝒃
} = 𝑴−1 {

𝒖𝑠

0
} ( 21 ) 

𝑴−1 = [
𝑹 𝑷
𝑷𝑇 𝟎

]
−1

 ( 22 ) 

 

the equation ( 17 ) can be solved to determine the non-constant coefficients 𝒂 and 𝒃. 

Replacing in the equation ( 8 ), the shape functions can be expressed as, 

 

𝑢(𝒙𝐼) = {𝒓(𝒙𝐼)
𝑇, 𝒑(𝒙𝐼)

𝑇}𝑴−1 {
𝒖𝑠

0
} = {Φ(𝒙𝐼),Ψ(𝒙𝐼)} {

𝒖𝑠

0
} ( 23 ) 

 

Where Φ(𝒙𝐼) is the shape function vector and Ψ(𝒙𝐼) is a vector with no relevant physical 

meaning, 

 

Ψ(𝒙𝐼) = {𝜓1(𝒙𝐼), 𝜓2(𝒙𝐼),… , 𝜓𝑚(𝒙𝐼)} 
( 24 ) 

 
Since this method possesses the Kronecker delta property 𝛿𝑖𝑗, 

 

𝜑𝑖(𝑥𝑗) = 𝛿𝑖𝑗 ( 25 ) 

 

for which, 
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𝛿𝑖𝑗 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

 
( 26 ) 

 

allowing to impose directly the essential boundary conditions in the stiffness matrix. 

Thus, the RPI shape function, Φ(𝒙𝐼), can be defined as, 

 

Φ(𝒙𝐼) = {𝜑1(𝒙𝐼), 𝜑2(𝒙𝐼),… , 𝜑𝑛(𝒙𝐼)} 
( 27 ) 

 

obtaining, 

 
{Φ(𝒙𝐼),Ψ(𝒙𝐼)} = {𝒓(𝒙𝐼)

𝑇𝒑(𝒙𝐼)
𝑇}𝑴−1

= {𝜑1(𝒙𝐼), 𝜑2(𝒙𝐼), … , 𝜑𝑛(𝒙𝐼), 𝜓1(𝒙𝐼),… , 𝜓𝑚(𝒙𝐼)} 
( 28 ) 

 

being 𝑛 the number of nodes inside the influence domain, and 𝑚 the number of 

polynomial terms of the polynomial basis function, where the 𝑛 ≫ 𝑚 rule should be 

respected in order to assure a stable function [4]. 

2.3 Solid Mechanics Fundamentals 

If loads are applied to solids or structures these become stressed. Those stresses 

lead to strains, which are deformation ratios. Solid Mechanics and Structural Mechanics 

deals with the relationship between stress and strain and the relationship between 

strain and displacements, for a given solid with defined boundary conditions. 

Depending on the material strain-stress curve, solids can have different 

behaviours. Solids can be elastic where the deformation in the solid caused by loading 

fully disappears with the unloading, or they can be plastic where they can show a 

residual deformation (which cannot be naturally recovered) that remains even after the 

unload. 

Material properties can also be divided in two types. Materials that have the same 

properties in all directions, which are called isotropic materials. For this type of material, 

it is only necessary to determine two independent material constants: the Young’s 

modulus and the Poisson’s ratio. On the other hand, if the material has different 

properties in different directions, they are called anisotropic, and for these ones several 

material constants are needed depending on the degree of anisotropy. 

Also, boundary conditions, which can be applied through forces or displacements, 

must be taken into consideration, as they play an important paper in mechanics. In this 

work only static forces will be considered, meaning that the stress, strain and 

displacement will not be considered as a function of time [4]. 

Throughout this section, the fundamentals of Solid Mechanics will be presented. 

Considering Ω ⊂ ℝ2, the solid domain contained in Γ, where Γ ∈ Ω ∶  Γ𝑢 ∪ Γ𝑡 = Γ⋀Γ𝑢 ∩

Γ𝑡 ≠ ∅, where Γ𝑢is the essential boundary and Γ𝑡 is the natural boundary, the linear 

elastostatic problem equilibrium equations can be expressed by, 

 



BIBLIOGRAPHIC WORK  40 

 

COMBINING RADIAL POINT INTERPOLATION MESHLESS METHODS WITH 
STRUCTURAL OPTIMIZATION APPROACHES  António Castro 

 

∇𝚲 + 𝒃 = 𝟎  in Ω ( 29 ) 

 

where ∇ is the divergence operator, 𝚲 is the Cauchy stress tensor, and 𝒃 is the body 

forces per unit volume. The natural boundary conditions are given by, 

 

𝚲 𝐧 = 𝒕̅ 
( 30 ) 

 

with 𝒕̅ being the traction on the natural boundary Γ𝑡 and 𝒏 the unit outward normal to 

the boundary of domain Ω. The essential boundary conditions are imposed with, 

 

𝐮 = 𝒖̅ 
( 31 ) 

 

where 𝒖̅ is the prescribed displacement on the essential boundary Γ𝑢. The Galerkin weak 

form of equation ( 29 ) can be written as: 

 

∫ 𝛿𝜺𝑇𝝈𝑑Ω
 

Ω
− ∫ 𝛿𝒖𝑇𝒃𝑑Ω

 

Ω
− ∫ 𝛿𝒖𝑇𝒕𝑑Γ

 

Γ𝑡
= 0. ( 32 ) 

 

In NNRPIM, the discrete system of equations is firstly developed for every 

integration point [7]. After that, the local systems of equations are assembled into the 

global system of equations, and finally, the final equation system is solved. Using the 

interpolation functions 𝜑𝑖(𝒙𝐼) obtained from equation ( 28 ), it is possible to define for 

an interest point 𝒙𝐼 ⊂ Ω the following approximation, 

 

𝑢(𝒙𝐼) = ∑𝜑𝑖(𝒙𝐼)𝑢(𝒙𝑖)

𝑛

𝑖=1

 
( 33 ) 

 

being 𝑢(𝒙𝑖) the nodal parameter of the 𝑖𝑡ℎ node belonging to the nodal set defining the 

influence-cell of interest node 𝒙𝐼. Taking into consideration the previous equation, it is 

possible to obtain the virtual displacement approximation, 

 

𝛿𝑢ℎ(𝒙𝐼) = {
𝛿𝑢ℎ(𝒙𝐼)

𝛿𝑣ℎ(𝒙𝐼)
} = ∑[

𝜑𝑖(𝒙𝐼) 0

0 𝜑𝑖(𝒙𝐼)
]

𝑛

𝑖=1

{
𝛿𝑢ℎ(𝒙𝐼)

𝛿𝑣ℎ(𝒙𝐼)
}

= ∑𝑯𝑖(𝒙𝐼)𝛿𝒖(𝒙𝐼)

𝑛

𝑖=1

 

( 34 ) 

 

and using the Hooke law, the strain and stress vectors on equation ( 32 ) can be 

correlated, 

 

𝜺 = 𝒔𝝈 ⟺ {

𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

} = [

𝑠11 𝑠12 𝑠13

𝑠21 𝑠22 𝑠23

𝑠31 𝑠31 𝑠33

] {

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

} 
( 35 ) 
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where 𝒔 is the compliance elasticity matrix for the general anisotropic material case. For 

the pane stress and plane strain formulations, respectively, these can be defined as, 

 

𝒔𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 =

[
 
 
 
 
 
 

1

𝐸11
−

𝑣21

𝐸22
0

−
𝑣12

𝐸11

1

𝐸22
0

0 0
1

𝐺12]
 
 
 
 
 
 

 ( 36 ) 

𝒔𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 =

[
 
 
 
 
 
 

1 − 𝑣31𝑣13

𝐸11
−

𝑣12 + 𝑣31𝑣23

𝐸22
0

−
𝑣12 + 𝑣32𝑣13

𝐸11

1 − 𝑣32𝑣23

𝐸22
0

0 0
1

𝐺12]
 
 
 
 
 
 

 ( 37 ) 

 
being 𝐸𝑖𝑗 the elasticity modulus, 𝑣𝑖𝑗 the material Poisson coefficient, and 𝐺𝑖𝑗 the 

distortion modulus in material direction 𝑖 and 𝑗. The stress vector can be obtained using 
the expression 𝝈 = 𝒄𝜺, being 𝒄 = 𝒔−1. The virtual strain vector can be obtained using 
the following equation, 
 

𝛿𝜺 = 𝑳𝛿𝒖 ⟺ {

𝛿𝜀𝑥𝑥

𝛿𝜀𝑦𝑦

𝛿𝛾𝑥𝑦

} =

[
 
 
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 
 
 

{
𝛿𝑢
𝛿𝑣

} 
( 38 ) 

 
Using the equation ( 34 ) it is now possible to develop the virtual strain vector to 

the following expression: 
 

𝛿𝜺(𝒙𝐼) = 𝑳𝛿𝒖ℎ(𝒙𝐼) = 𝑳∑𝑯𝑖(𝒙𝐼)𝛿𝒖(𝒙𝑖)

𝑛

𝑖=1

= ∑[𝑳𝑯𝑖(𝒙𝐼)]𝛿𝒖(𝒙𝑖)

𝑛

𝑖=1

= ∑𝑩𝑖(𝒙𝐼)𝛿𝒖(𝒙𝑖)

𝑛

𝑖=1

= ∑

[
 
 
 
 
 
 
𝜕𝜑𝑖(𝒙𝐼)

𝜕𝑥
0

0
𝜕𝜑𝑖(𝒙𝐼)

𝜕𝑦

𝜕𝜑𝑖(𝒙𝐼)

𝜕𝑦

𝜕𝜑𝑖(𝒙𝐼)

𝜕𝑥 ]
 
 
 
 
 
 

𝑛

𝑖=1

{
𝛿𝑢(𝒙𝑖)

𝛿𝑣(𝒙𝑖)
} 

( 39 ) 
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Substituting the virtual strain vector 𝛿𝜺(𝒙𝐼) obtained in equation ( 39 ), the stress 

vector 𝝈(𝒙𝐼) = 𝒄𝜺(𝒙𝐼) = 𝒄𝑳𝒖(𝒙𝐼), and the virtual displacement vector 𝛿𝑢ℎ(𝒙𝐼) from 

equation ( 34 ), the equation ( 32 ) can be rewrite for an interest point 𝒙𝐼: 

 

∑∑𝛿𝒖𝑖
𝑇

𝑛

𝑗=1

∫𝑩𝑖
𝑇𝒄𝑩𝑗𝑑Ω

 

Ω

𝒖𝑗

𝑛

𝑖=1

− ∑𝛿𝒖𝑖
𝑇 ∫ 𝑯𝑖

𝑇 {
𝑏𝑥

𝑏𝑦
} 𝑑Ω

 

Ω

− ∑𝛿𝒖𝑖
𝑇 ∫ 𝑯𝑖

𝑇 {
𝑡𝑥
𝑡𝑦

} 𝑑Γ𝑡

 

Γ𝑡

𝑛

𝑖=1

𝑛

𝑖=1

= 0 

( 40 ) 

 

Finally, after assembling the stiffness matrices 𝑲𝐼 obtained for each interest 

point, the previous equation can be written as: 

 

𝛿𝒖𝑇[𝑲𝒖 − 𝒇𝑏 − 𝒇𝑡] = 0 ⇔ 𝑲𝒖 = 𝒇𝑏 + 𝒇𝑡 
( 41 ) 

 

3 Structural Optimization 

Structural optimization is a specific field of computational mechanics that seeks to 

achieve the best performance for a structure, while satisfying various constraints such 

as a given amount of material or structural resistance or rigidity. Having an optimal 

structural design is becoming more and more important, since there is limited material 

resources, environmental impact and technological competition. 

Over the last three decades the topic of structural optimization has been applied to 

a wide range of design problems in many industries, such as mechanical, automotive, 

and civil industries, achieving a state where a growing number of engineers and 

architects start to use it and benefit from the optimization techniques. The usage of 

structural optimization on these industries can be a possible way to reduce the weight 

of a structure and by that, reducing the cost of the production but still not neglecting 

the high-performance. 

Structural optimization can be classified into three categories: size, shape and 

topology optimization. Size optimization is the easiest and earliest approach to improve 

structural performance, and its goal is to find the optimal design by changing the size 

variables such as the cross-sectional dimensions of trusses and frames, or the 

thicknesses of plates. Shape optimization modifies the predetermined boundaries to 

achieve the optimal designs, and it is mainly performed on continuum structures. 

Topology optimization for discrete structures, such as trusses and frames, can be 
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defined as the search for the optimal spatial order and connectivity of the bars. On the 

other hand, for continuum structures its goal is to find the optimal designs by 

determining the best locations and geometries of cavities in the design domains. 

 

3.1 Structural Optimization: State of the art 

Since the pioneer work of Michell [8] and the seminal work of Bendsøe and Kikuchi 

[9], structural topology optimization has become an effective design tool for obtaining 

efficient and lighter structures [10]. 

Continuum structural topology optimization has received extensive attention and 

progress over the past few years. Up to now, various families of structural topology 

optimization methods have been developed [10]. The structural topology optimization 

algorithms can be classified in various families: h-methods, e-methods and h/e-methods 

[11].  One of the most established families of methods is the one based on the 

homogenization approach first proposed by Bendsøe and Kikuchi [9], in which the 

structural form is represented by microstructures with voids  and the material 

throughout the structure is redistributed by using an optimality criteria procedure. 

Another approach within this family is the power-law approach, which is also called the 

solid isotropic microstructure with penalization method (SIMP) and originally introduced 

by Bendsøe, has got a fairly general acceptance because of its computational efficiency 

and conceptual simplicity [9, 10]. Another well-known family of structural topology 

methods is the one based on the evolutionary structural optimization (ESO) approach 

proposed by Xie and Steven [12] in which the material in design domain inefficiently 

used can be slowly removed. An opposite evolutionary process called additive ESO 

(AESO) was then presented by Querin [13], where the structure evolves from a base 

which is the minimum structural form required to carry the load regardless of the stress 

levels. The material is then added to high stress region to improve its effect. It is found 

that the AESO can efficiently add material where it is most needed, however it does not 

require the capability to remove any material. Since there are situations where stressed 

elements should be removed from structures, it is advantageous to combine the 

additive attribute of AESO with the removing attribute of ESO. For this reason, a new 

methodology has emerged called bi-directional evolutionary structural optimization 

(BESO) proposed by Querin [14], which had the capability to add and remove material. 

Another e-methods were developed like the hard-kill method by Hinton and Sienz [15] 

and the soft-kill method by Mattheck [16]. The h/e-methods are hybrid methods which 

contain attributes of both h- and e-methods in differing degrees. The first of these 

methods was introduced by Fuchs [17], who characterized the topology material in a 

manner similar to that of the original microcell model of Bendsøe and Kikuchi, using the 

“Aboudi-cell” method. 

With the growth of meshless methods, new studies of structural optimization 

started to be developed, and with them advantages over the studies using mesh-

dependent methods. In a study carried by Juan [18], where he combined the EFGM with 
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the ESO to carry out the topology optimization of continuum structures, EFGM proved 

to be a good method to reduce the weight of structures by its simplicity and fast 

convergence when compared with the utilization of FEM, Fig. 11Fig. 14. 

 

 
Fig. 11 - Cantilever beam model [18]. 

 

 
Fig. 12 - Optimization result obtained using EFGM 

[18]. 

 
Fig. 13 - Optimization result using FEM without 

sensitivity filtering (a) and using sensitivity filtering (b) 
[18]. 

 

 
Fig. 14 - Convergence history of the cantilever beam using EFGM [18]. 
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3.1.1 Recent works 

The structural optimization has been under development over the last decade 

and last years, due to its important applications in many fields. In this chapter some of 

the recent works are exposed, as well as its achievements. 

In a recent work proposed by Zhao [19], a new approach based on the graph 

theory and the set theory [20–22] is developed to control the number and size of interior 

holes of the optimized structures, because the structural complexity is usually 

characterized by the distribution and geometries of these holes. The study reveals that, 

by changing the initial layout of material, Fig. 15, or the constraints on the number, Fig. 

16, and size of the interior holes, Fig. 17, it is possible to achieve distinct high 

performance structural designs. Therefore, the methodology presented holds great 

promise in the emerging field of human-computer interactive design. 

 

 
Fig. 15 - Influence of the initial material layout ((a) and (c)) on the optimized design of a cantilever beam ((b) and 

(d)) with structural complexity control [19]. 
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Fig. 16 - Influence of the number of the holes on the optimized design of a cantilever beam. The initial design, 

optimized design, and evolution histories of volume fraction and normalized compliance of the beam are plotted 
from left to right for four different cases (a)-(c), (d)-(f), (g)-(i), (j)-(l) [19]. 

 

 
Fig. 17 - Influence of the hole size on the optimized design on a cantilever beam. (a) Two interior holes are 

included in the initial design. In the optimization, each hole is required to be not smaller than 0 for (b), 1/20 for 
(c), and 1/10 for (d) of the volume of the design domain [19]. 
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Another recent study was proposed by Liu [23]. In this work a fully parallel 

parameterized level set method [24, 25] with compactly supported radial basis functions 

(CSRBFs) [26–28] is developed based on both the uniform and non-uniform structured 

meshes, in order to produce large-scale or high-resolution structural topology 

optimization design. It was found that, in the optimized structures, the thin sheet-like 

components gradually replace the truss-like ones when refining the mesh, Fig. 19. The 

parameterization process of the level set function will become faster as long as the non-

uniformity of mesh is not very high and the supported radius of CSRBF is small enough. 

It was documented that more than 80% of the total computing time is always consumed 

for solving the structural state equations during the finite element analysis. 

 

 
Fig. 18 - Three-dimensional cantilever beam model and its load and displacement boundary conditions [23]. 

 

 
Fig. 19 - Optimized results based on four uniform structured meshes. All the results are colored by the 

displacement field in the 𝑦 direction [23]. 
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4 Numerical examples 

In this chapter it will be presented three numerical examples in order to validate 

the structural optimization process implemented in the software FEMAS. The first two 

numerical examples are benchmark models such as beams, plates and frames, the 

analysis of these will permit to acquire autonomy in the use of the proposed software 

and becoming familiar with different types of numerical methods and analyses. The third 

numerical example is an industry application. The primary softwares used were FEMAP 

(Siemens PLM Software, student version), which provides drawing tools to create a 

model and to construct the respective mesh, and FEMAS, a Finite Element and Meshless 

Analysis Software (cmech.webs.com), which is a freeware academic software capable to 

analyse models using either the FEM or meshless methods. 

4.1 Numerical example 1: Cantilever Beam 

The first numerical example is a cantilever beam, fixed on the left side and loaded 

with a concentrated force (𝐹) of 3 kN at the middle of the right side, Fig. 20. The problem 

domain has a rectangular shape with 160 mm of length, 100 mm of height and 1 mm of 

thickness.  

 

 
Fig. 20 - Cantilever beam model. 

 

The elastic material properties are chosen as Young’s modulus (𝐸) = 207 𝐺𝑃𝑎, 

Poisson’s ratio (𝜐) = 0.3 and Yield Stress (𝜎𝑦) = 200 𝑀𝑃𝑎. 

The results documented in the literature generally resemble the shape of Fig. 21. 
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Fig. 21 – Cantilever beam optimized shape obtained from literature [29]. 

4.1.1 Domain discretization type influence 

To study the influence of the domain discretization in the optimization process, 

a structural optimization analysis is performed considering a regular mesh of 640 

quadrilateral elements, Fig. 22 (a), and another one using a regular mesh of 1280 

triangular elements, Fig. 22 (b). In this study, the optimization method used is FEM, 

considering a linear static plane stress approach and the optimization criterion was the 

minimization of the VM effective stress. 

 

  
(a) (b) 

Fig. 22 – Cantilever beam regular mesh using 640 quadrilateral elements (a) and 1280 triangular elements (b). 

 

In Table 1, it is presented the optimal solutions along with the iteration at each 

solution, considering DR of 4%, 5% and 10% for both types of domain discretization. As 

expected, the discretization using triangular elements, for the same number of divisions 

presents the double of elements as the one using quadrilateral elements. Rather than 

that, both meshes were capable of producing good structural shapes, however, the one 

with quadrilateral elements got optimal shapes closer to the one documented in 

literature. 
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Table 1 – Cantilever beam optimized solutions using quadrilateral and triangular elements for DR of 4%, 5% and 
10%. 

DR Quadrilateral Elements Triangular Elements 

4%       
25 56 83 12 20 80 

5%       
18 30 35 9 23 43 

10%       
4 8 10 3 4 5 

 

4.1.2 Mesh influence and optimization parameters 

In order to obtain an optimal solution like the one documented in the literature, 

Fig. 21, it is important to analyse how the mesh and optimization parameters influence 

the optimal solutions. To study this, a structural optimization is performed and analysed 

using FEM, RPIM and NNRPIM, considering a linear static plane stress approach and the 

optimization criterion was the minimization of the VM effective stress. In FEM analysis, 

a classic FEM formulation is used considering four node quadrilateral elements. In 

relation to RPIM, sixteen nodes inside the influence domain are considered and a 

Gaussian integration is performed using quadrilateral integration cells with 2 x 2 

integration points. As in the NNRPIM, second-degree influence cells and a full 

integration are considered. Concerning the RPI shape functions in RPIM and NNRPIM, 

the following parameters are assumed: c=0.0001, p=0.9999 and constant polynomial 

basis. 
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The structural optimization analysis is performed considering a regular mesh of 

693 nodes, Fig. 23 (a), and a regular mesh of 2665 nodes, Fig. 23 (b). Also, the analysis is 

performed considering DR of 2%, 3%, 4%, 5% and 10%. To avoid stress concentrations, 

that may lead to inaccurate solutions, the load of 3 kN is distributed over three nodes. 

 

 

  
(a) (b) 

Fig. 23 – Cantilever beam regular quadrilateral mesh using 693 nodes (a) and 2665 nodes (b). 

 

In Table 2 and Table 3, is presented the solutions obtained from the structural 

optimization analysis using a regular mesh of 693 and 2665 nodes respectively, along 

with the iteration at each solution and the respective mass reduction. 
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Table 2 – Cantilever beam structural optimization solutions using FEM, RPIM and NNRPIM and DR of 2%, 3%, 4%, 5% 
and 10% for a regular quadrilateral mesh of 693 nodes. 

DR Optimization Method Structural Optimization Solutions 

2% 

FEM    
5 8.2% 10 13.2% 12 13.8% 

RPIM    
5 6.1% 15 10.7% 24 15.8% 

NNRPIM    
20 26.9% 120 40.3% 145 62.5% 

3% 

FEM    
15 29.4% 35 39.6% 55 41.7% 

RPIM    
10 12.2% 15 15.5% 21 25% 

NNRPIM    
18 30.5% 30 38.1% 53 37.3% 

4% 

FEM    
25 41.3% 56 48.8% 83 63.7% 

RPIM    
42 35.6% 63 41.4% 85 40.9% 

NNRPIM    
10 29.1% 17 35.5% 53 48.2% 

5% 

FEM    
18 45.4% 30 37.9% 35 54.9% 

RPIM    
30 23.9% 37 34.4% 58 48.5% 

NNRPIM    
16 31.2% 20 31.6% 28 59.3% 

10% 

FEM    
4 27.2% 8 40.9% 10 35.9% 

RPIM    
3 16.5% 4 22% 5 25.7% 

NNRPIM    
6 32.2% 13 47.9% 22 63.1% 
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Table 3 - Cantilever beam structural optimization solutions using FEM, RPIM and NNRPIM and DR of 2%, 3%, 4%, 5% 
and 10% for a regular quadrilateral mesh of 2665 nodes. 

DR Optimization Method Structural Optimization Solutions 

2% 

FEM    
29 26.4% 45 30.6% 52 27.8% 

RPIM    
44 31% 90 39.7% 114 50.1% 

NNRPIM    
45 37.7% 104 77.4% 165 79.2% 

3% 

FEM    
18 25.3% 48 35.5% 101 45.1% 

RPIM    
17 26.8% 33 35.7% 52 43.9% 

NNRPIM    
62 42.2% 85 49.8% 115 75.5% 

4% 

FEM    
21 29.9% 36 39.4% 57 54.7% 

RPIM    
25 34.8% 34 38.4% 57 45.5% 

NNRPIM    
27 39.1% 48 42.8% 62 76.1% 

5% 

FEM    
18 35.4% 27 42.1% 55 63.4% 

RPIM    
9 24.9% 41 44.2% 63 52.5% 

NNRPIM    
12 30.4% 28 48.4% 32 68.3% 

10% 

FEM    
6 37.9% 8 39.5% 10 58.3% 

RPIM    
5 24.5% 8 33.7% 11 40.2% 

NNRPIM    
6 24.9% 8 44.1% 12 84.5% 



  57 

 

COMBINING RADIAL POINT INTERPOLATION MESHLESS METHODS WITH 
STRUCTURAL OPTIMIZATION APPROACHES  António Castro 

 

After obtaining the structural optimization solutions presented in Table 2 and 

Table 3, a summary of the optimal solutions that reached the shape of the one reported 

in the literature is shown in Table 4. As it can be seen, some analyses did not reach the 

optimal shape reported in literature unlike others. Considering a mesh with 2665 nodes 

over a mesh of 693 nodes results in a higher number of solutions. However, both meshes 

were able to produce good solutions under specific parameters and numerical methods. 

When considering a mesh with 693 nodes, it is possible to verify that proper 

solutions could not be achieved with DR of 2% and 3% with any of the numerical 

methods. Since in these cases the DR is too low, this can explain the fact that the 

algorithm cannot manage to evolve the structure towards an optimal solution and 

therefore stopping the process at early iterations. Beyond this, no optimal solutions 

were obtained when using the RPIM for any DR. However, when considering 4%, 5% and 

10% DR, FEM and NNRPIM were able to achieve remarkable solutions. Even though, the 

best results were obtained when considering a DR of 5% for both FEM and NNRPIM. 

With these parameters, both methods were able to produce an optimal solution 

between 55% and 60% mass reduction from its original structure and a shape identical 

to the one referred in the literature. Although both FEM and NNRPIM produced optimal 

solutions, a smoothest shape is obtained with FEM rather than NNRPIM. 

On the other hand, when using a mesh with 2665 nodes, proper solutions were 

achieved when using a DR of 2% and 3%, yet at later iterations. Nonetheless, the better 

and higher number of solutions were obtained for a DR between 4% and 5%, reaching 

mass reductions around 75% in some cases. When comparing the numerical methods, 

it is important to refer that solutions were obtained when using RPIM even though in 

lower number, and both FEM and NNRPIM can achieve optimal solutions over a wider 

variety of DR. Lastly, this mesh produces more refined shapes in comparison with the 

mesh of 693 nodes. 

 
Table 4 – Summary of the cantilever beam optimal solutions that reached the shape referred in literature. 

693 nodes 

 2% 3% 4% 5% 10% 

FEM - -       
25 18 30 35 4 8 

RPIM - - - - - 

NNRPIM - -      
17 20 28 13 22 

2665 nodes 

 2% 3% 4% 5% 10% 

FEM -       
101 36 57 27 55 10 

RPIM  - -  - 
114 63 

NNRPIM    -     
45 104 165 48 62 32 12 
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4.1.3 Computational Time 

In this chapter it is covered the impact of each numerical method regarding the 

computational time. In Fig. 24 and Fig. 25, it is shown the graphs that represent the 

computational time for the respective iteration, using 693 and 2665 nodes respectively. 

As it was expected, when optimizing a structure using a mesh with 2665 nodes over a 

mesh with 693 nodes, for the same iteration it takes around 5 times more. When 

comparing the numerical methods, FEM is the faster following RPIM and NNRPIM. As 

for the influence of the DR, no major differences are observed. Therefore, the 

computational time is not affected when using different percentages of DR. However, 

when observing Fig. 26, it is possible to notice that using a higher DR, permits to obtain 

optimal solutions earlier. 
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e) 

Fig. 24 – Cantilever beam computational time per iteration using a regular quadrilateral mesh of 693 nodes, FEM, 
RPIM and NNRPIM for DR of 2% (a), 3% (b), 4% (c), 5% (d) and 10% (e). 
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e) 

Fig. 25 - Cantilever beam computational time per iteration using a regular quadrilateral mesh of 2665 nodes, FEM, 
RPIM and NNRPIM for DR of 2% (a), 3% (b), 4% (c), 5% (d) and 10% (e). 
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b) 

Fig. 26 – Cantilever beam computational time per DR using a regular quadrilateral mesh of 693 nodes (a) and 2665 
nodes (b), for solutions that reached the shape referred in literature. 

4.1.4 Cantilever Beam Variant 

After obtaining the results of the structural optimization for the standard 

cantilever beam, the idea of how holes in the structure would affect the process of 

optimization arise. To study this, two holes were implemented in the design domain of 

the structure, Fig. 27. Firstly, a mesh of 1294 triangular elements randomly distributed 

was created, Fig. 28 (a). Then a structural optimization analysis was performed using 

FEM and a DR of 5%, obtaining the structure present in Fig. 28 (b). 

 

 
Fig. 27 – Cantilever beam model variant. 
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(a) (b) 

Fig. 28 – Cantilever beam variant irregular mesh of 1294 triangular elements (a) and its optimization solution (b). 

Since this structure was not expected, a new structural optimization analysis was 

performed using FEM, RPIM and NNRPIM, but this time using a different mesh of 1020 

triangular elements uniformly distributed through the domain, Fig. 29. The optimal 

solutions obtained from this optimization, Fig. 30, shows that using a uniformly mesh 

over a randomly distributed one has a significant impact on the results obtained, once a 

randomly distributed mesh is not capable to produce well-defined structures. 

 

 
Fig. 29 – Cantilever beam variant regular mesh of 1020 triangular elements. 

 

   
a) b) c) 

Fig. 30 – Cantilever beam variant optimized solutions using FEM (a), RPIM (b) and NNRPIM (c) using a regular mesh 
of 1020 triangular elements. 

Comparing these optimal solutions with the ones obtained without the holes in 

the structure, it is possible to see a detour from the zone where the trusses would 

normally cross, since the program had to adjust its optimization due to the presence of 

the holes in the new structure. Furthermore, all numerical methods were able to 

produce identical solutions, and as for the percentage of mass reduction the 

implemented holes did not make a significant impact, as 50% mass reduction was 

reached in every method. 
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4.2 Numerical Example 2: Simply supported Beam 

The following numerical example is a simply supported beam, with the two 

bottom corners fixed and a concentrated force (𝐹) of 1 kN loaded at the center of the 

bottom surface, Fig. 31. The problem domain has a rectangular shape with 10 m of 

length, 5 m of height and 1 m of thickness. 

 
Fig. 31 – Simply supported beam model. 

The elastic material properties are chosen as Young’s modulus (𝐸) = 100 𝐺𝑃𝑎, 

Poisson’s ratio (𝜐) = 0.3 and Yield Stress (𝜎𝑦) = 100 𝑀𝑃𝑎. 

The results documented in the literature generally resemble the shape of Fig. 32. 

This structure was obtained with approximately 20 % of the initial volume and it was 

obtained with a discretization of 25 x 50 four-node elements. 

 

 
Fig. 32 – Simply supported beam optimized shape obtained from literature [30]. 
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4.2.1 Mesh influence and optimization parameters 

As in the previous numerical example (Cantilever Beam), several structural 

optimization analyses are performed using FEM, RPIM and NNRPIM, considering a linear 

static plane stress approach and the VM effective stress chosen as the optimality 

criterion. The numerical method formulations and parameters used in this example are 

equal to the previous example as well. 

The structural optimization analysis is performed considering a regular mesh of 

1326 nodes, Fig. 33 (a), and a regular mesh of 5151 nodes, Fig. 33 (b). Also, the analysis 

is performed considering DR of 4%, 5% and 10%. To avoid stress concentrations, that 

may lead to inaccurate solutions, the load of 1 kN is distributed over five nodes. 

 

  
(a) (b) 

Fig. 33 – Simply supported beam regular quadrilateral mesh using 1326 nodes (a) and 5151 nodes (b). 

 

In Table 5 and Table 6, is presented the solutions obtained from the structural 

optimization analysis using a regular mesh of 1326 and 5151 nodes respectively, along 

with the iteration at each solution and the respective mass reduction. 
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Table 5 – Simply supported beam structural optimization solutions using FEM, RPIM and NNRPIM and DR of 4%, 5% 

and 10% for a regular quadrilateral mesh of 1326 nodes. 

DR 
Optimization 

Method 
Structural Optimization Solutions 

4% 

FEM 
   

68 44.3% 102 45.5% 107 44.7% 

RPIM 
   

33 32.7% 49 32.4% 54 32.7% 

NNRPIM 
   

107 48.4% 181 55.3% 199 68.1% 

5% 

FEM 
   

17 40.5% 21 43.4% 73 42.3% 

RPIM 
   

13 31.3% 29 33% 50 35% 

NNRPIM 
   

46 45% 87 54.6% 141 57.3% 

10% 

FEM 
   

23 45.7% 25 44.8% 46 55.4% 

RPIM 
   

6 31.2% 38 41.8% 43 44.7% 

NNRPIM 
   

15 45.3% 17 50.9% 18 43.7% 
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Table 6 - Simply supported beam structural optimization solutions using FEM, RPIM and NNRPIM and DR of 4%, 5% 
and 10% for a regular quadrilateral mesh of 5151 nodes. 

DR 
Optimization 

Method 
Structural Optimization Solutions 

4% 

FEM 
   

52 40.9% 85 43% 91 43.7% 

RPIM 
   

38 35.6% 78 41.8% 93 40.7% 

NNRPIM 
   

49 52.9% 62 53.5% 80 56.7% 

5% 

FEM 
   

65 46.3% 76 43.4% 81 44.6% 

RPIM 
   

52 38.3% 78 41.9% 84 38.8% 

NNRPIM 
   

56 58.9% 82 61.9% 94 65.3% 

10% 

FEM 
   

9 35.9% 11 38.6% 13 44.4% 

RPIM 
   

15 47.4% 16 45.8% 20 46.7% 

NNRPIM 
   

11 42.5% 12 45.6% 13 48.7% 
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In Table 7 is presented a summary of the optimal solutions that reached the 

shape documented in the literature. Observed the results, both meshes were able to 

produce optimal solutions with a similar shape to the one reported in the literature, 

however the mesh with 5151 nodes produces a higher number of optimal solutions over 

the mesh with 1326 nodes. 

Considering a mesh with 1326 nodes, it can be noticed that the algorithm 

struggles to remove material inside the structure, incapacitating the structure to reach 

shapes similar to the one referred in the literature. Nonetheless, proper solutions were 

obtained when using FEM, being that the better and higher number of solutions were 

obtained using a DR of 10%. Important to refer that RPIM could not achieve proper 

solutions, in contrary of NNRPIM that achieved a proper solution when using a DR of 4% 

although at a later iteration. 

For a mesh with 5151 nodes, a higher number of proper and well-defined 

solutions is obtained. When using this mesh instead of the previous with 1326 nodes, it 

is possible to verify that the algorithm can remove material inside the structure in every 

case. Whilst the algorithm removed material inside the structure when using RPIM, this 

was not sufficient as it did not achieve coherent solutions. Both FEM and NNRPIM were 

able to achieve proper solutions for all DR, yet the higher number of solutions were 

obtained for a DR of 5%. 

 
Table 7 - Summary of the simply supported beam optimal solutions that reached the shape referred in literature. 

1326 nodes 

 4% 5% 10% 

FEM      
107 21 23 25 46 

RPIM - - - 

NNRPIM  - - 
199 

5151 nodes 

 4% 5% 10% 

FEM      
91 65 76 81 13 

RPIM - - - 

NNRPIM         
49 62 80 56 82 94 12 13 
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4.2.2 Computational Time 

As in the cantilever beam example, it is possible to conclude from Fig. 34 and Fig. 

35, that higher mesh density has a high impact on the computational time. Regarding 

the numerical methods, the same pattern as in the cantilever beam example can be 

seen, being NNRPIM the numerical method that takes more time per iteration followed 

by RPIM and FEM. However, when using the mesh with 5151 nodes, a change can be 

observed as RPIM is the method that takes more time per iteration followed by FEM and 

NNRPIM. As for the DR influence, the same conclusions can be taken from the cantilever 

beam example, Fig. 36. 

 

  
a) b) 

 

 
c) 

Fig. 34 – Simply supported beam computational time per iteration using a regular quadrilateral mesh of 1326 nodes, 
FEM, RPIM and NNRPIM for DR of 4% (a), 5% (b) and 10% (c). 
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a) b) 

 

 
c) 

Fig. 35 - Simply supported beam computational time per iteration using a regular quadrilateral mesh of 5151 nodes, 
FEM, RPIM and NNRPIM for DR of 4% (a), 5% (b) and 10% (c). 
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a) 

 
b) 

Fig. 36 – Simply supported beam computational time per DR using a regular quadrilateral mesh of 1326 nodes (a) 
and 5151 nodes (b), for solutions that reached the shape referred in literature. 

 

4.3 Handbrake Lever 

The application of structural optimization to design industry parts is commonly 

used. Such computational technique is important since it increases the performance of 

structural parts, while granting less material usage which subsequently means lower 

prices to fabricate them. 

In this chapter, structural optimization is implemented into a handbrake lever from 

a standard road car. As in benchmark examples, the structural optimization is performed 

using FEM, RPIM and NNRPIM, as well as its parameters and formulations. The analysis 

is performed considering DR of 4%, 5% and 10% for 2D and 5% for 3D model. 
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The optimization process follows the following stages: 

 

1. Using the software Solidworks, the structure geometry is designed; 

2. The structure geometry is exported to FEMAP, where the nodal meshes are 

created; 

3. Imported to FEMAS, the boundary conditions are defined; 

4. Structural optimization is performed using FEM, RPIM and NNRPIM. 

 

Considering the dimensions and shape of Fig. 37, 2D and 3D geometries are 

designed, Fig. 38. 

The essential and natural boundary conditions applied to the Handbrake Lever are 

shown in Fig. 39. Important to refer that boundary regions are set to non-design regions 

(red colour) to stay intact to re-modulation due to its function. 

The elastic material properties are chosen as Young’s modulus (𝐸) = 200 𝐺𝑃𝑎, 

Poisson’s ratio (𝜐) = 0.3, Yield Stress (𝜎𝑦) = 200 𝑀𝑃𝑎. 

 

 
Fig. 37 – Handbrake lever dimensions from a standard road car. 
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a) 

 
b) 

Fig. 38 – Handbrake lever 2D (a) and 3D (b) model. 

 

 

 
Fig. 39 – Essential and natural boundary conditions applied to the handbrake lever. 
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4.3.1 2D 

Firstly, a 2D structural optimization analysis is performed. The design domain is 

discretized by 1828 nodes and 3394 triangular elements. In Table 8, is presented the 

solutions obtained from the structural optimization analysis, along with the iteration at 

each solution and the respective mass reduction. From Table 8, it is possible to verify 

that under specific combinations of DR, all methods reached identical solutions. 

However, consistent and smoother solutions were obtained for a DR of 5%, achieving 

mass reductions around 50%. 

 
Table 8 – Handbrake lever 2D model structural optimization solutions using FEM, RPIM and NNRPIM and DR of 4%, 

5% and 10% for a mesh of 1828 triangular elements. 

DR 
Optimization 

Method 
Structural Optimization Solutions 

4% 

FEM   
27 40.1% 34 44% 

RPIM  
7 3.4% 

NNRPIM    
20 42.4% 24 38.4% 82 47.1% 

5% 

FEM    
18 36.7% 64 37.6% 81 42.5% 

RPIM    
27 33.9% 30 42% 43 44.9% 

NNRPIM   
16 46.5% 22 49.2% 

10% 

FEM  
8 42.4% 

RPIM  
7 29.4% 

NNRPIM   
7 46.3% 9 46.8% 
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4.3.2 3D 

Secondly, a 3D structural optimization analysis is performed. In this case, since 

the handbrake geometry is symmetrical along the plane Oxy, only half of the structure 

was analysed providing increased mesh density in the study. The design domain is 

discretized by 5183 nodes and 15397 tetrahedral elements. In Table 9, is presented the 

solutions obtained from the structural optimization analysis, along with the iteration at 

each solution and the respective mass reduction. From Table 9, optimal solutions like 

the ones obtained for 2D model can be obtained, with any of the numerical methods. 

With this optimization, mass reductions around 55% are achieved. 

Although good solutions can be obtained using 3D models, the analysis of these 

ends up being inefficient due to the computational time being around twenty times 

higher than using 2D models, Fig. 40. 

 
Table 9 - Handbrake lever 3D model structural optimization solutions using FEM, RPIM and NNRPIM and DR of 5% 

for a mesh of 15397 tetrahedral elements. 

 

  

 
a) b) 

Fig. 40 - Computational time per iteration comparison between 2D and 3D models using FEM, RPIM and NNRPIM for 
a DR of 5%. 
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DR 
Optimization 

Method 
Structural Optimization Solutions 

5% 

FEM    
28 34.7% 30 37.5% 35 54.8% 

RPIM    
29 33.2% 37 49.7% 45 41.1% 

NNRPIM    
24 52.5% 32 53.5% 39 53.7% 
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4.3.3 Proposed optimal topology design and structural analysis 

Considering the solutions obtained from the structural optimization Table 8 and 

Table 9, two optimal designs are now proposed, Fig. 41. In these proposed designs, 

diagonal trabeculae were inserted in the optimal solutions in order to maintain only 

triangular shapes in the structure to confer more stiffness. 

 

  
a) b) 

Fig. 41 – Proposed optimal design 1 (a) and 2 (b). 

 

To evaluate the structural performance of the new designs, a structural analysis 

is performed between the original structure and the proposed designs. In Table 10 and 

Table 11 are presented the displacement and stress fields of the original and proposed 

designs, using FEM, RPIM and NNRPIM, for 2D and 3D models respectively. By observing 

these fields, it is possible to verify that the maximum displacement is obtained at the 

extremity of the handbrake where the force is applied, both for the original and for the 

proposed designs. As for the VM effective stress, higher stress concentrations occur for 

the proposed designs. In Table 12 and Table 13 are shown the results of the structural 

analysis performed on the original and proposed designs for 2D and 3D models 

respectively. As it was expected, higher displacement and VM effective stress values are 

obtained for the proposed designs. Thus, the proposed designs have a lower stiffness 

compared to the original. However, when divided the stiffness of the structure by its 

volume fraction, a structural gain is obtained for the optimized structures, achieving 

values around 30%. When comparing the displacement and VM effective stress 

obtained, between the different numerical methods they all get close values, with RPIM 

being the method to normally get higher values. Comparing the 2D and 3D models 

results, it is possible to verify that the values obtained from the 3D models are normally 

two times higher. 
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Table 10 – Displacement and stress fields of the original and proposed designs using FEM, RPIM and NNRPIM for 2D 
model. 

 
Numerical 

Method 
Displacement VM Stress 

Original 

FEM   

  

RPIM   

  

NNRPIM   

  

Proposed 
Design 

1 

FEM   

  

RPIM   

  

NNRPIM   

  

Proposed 
Design 

2 

FEM   

  

RPIM   

  

NNRPIM   
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Table 11 - Displacement and stress fields of the original and proposed designs using FEM, RPIM and NNRPIM for 3D 
model. 

 
Numerical 

Method 
Displacement VM Stress 

Original 

FEM   

  

RPIM   

  

NNRPIM   

  

Proposed 
Design 

1 

FEM   

  

RPIM   

  

NNRPIM   

  

Proposed 
Design 

2 

FEM   

  

RPIM   

  

NNRPIM   
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Table 12 – Structural analysis results for 2D model. 

 Original Proposed design 1 Proposed design 2 

 FEM RPIM NNRPIM FEM RPIM NNRPIM FEM RPIM NNRPIM 

𝑉𝑓 100 % 61.25 % 64.44 % 

𝑢𝑦
𝑚𝑎𝑥 [𝑚] 8.39 x 10-8 9.21 x 10-8 8.58 x 10-8 10.86 x 10-8 11.80 x 10-8 10.83 x 10-8 10.39 x 10-8 11.31 x 10-8 10.40 x 10-8 

𝜎𝑉𝑀
𝑚𝑎𝑥  [𝑃𝑎] 10.58 x 103 11.35 x 103 10.15 x 103 12.52 x 103 15.24 x 103 13.87 x 103 10.08 x 103 11.79 x 103 11.37 x 103 

𝐾 [𝑁 𝑚⁄ ] 2.34 x 109 2.13 x 109 2.28 x 109 1.80 x 109 1.66 x 109 1.81 x 109 1.89 x 109 1.73 x 109 1.88 x 109 

𝐾 𝑉𝑓⁄ [𝑁 𝑚⁄ ] 2.34 x 109 2.13 x 109 2.28 x 109 2.94 x 109 2.71 x 109 2.96 x 109 2.93 x 109 2.68 x 109 2.98 x 109 

Structural 

Gain 
- - - +25.64 % +27.23 % +29.82 % +25.21 % +25.82 % +30.70 % 

 
Table 13 – Structural analysis results for 3D model. 

 Original Proposed design 1 Proposed design 2 

 FEM RPIM NNRPIM FEM RPIM NNRPIM FEM RPIM NNRPIM 

𝑉𝑓 100 % 61.25 % 64.44 % 

𝑢𝑦
𝑚𝑎𝑥 [𝑚] 23.67 x 10-8 31.26 x 10-8 28.91 x 10-8 32.91 x 10-8 42.72 x 10-8 39.01 x 10-8 30.81 x 10-8 39.86 x 10-8 36.92 x 10-8 

𝜎𝑉𝑀
𝑚𝑎𝑥  [𝑃𝑎] 29.12 x 103 33.14 x 103 32.46 x 103 42.98 x 103 43.70 x 103 46.22 x 103 32.31 x 103 31.82 x 103 36.41 x 103 

𝐾 [𝑁 𝑚⁄ ] 8.28 x 108 6.27 x 108 6.78 x 108 5.96 x 108 4.59 x 108 5.02 x 108 6.36 x 108 4.92 x 108 5.31 x 108 

𝐾 𝑉𝑓⁄ [𝑁 𝑚⁄ ] 8.28 x 108 6.27 x 108 6.78 x 108 9.73 x 108 7.49 x 108 8.20 x 108 9.87 x 108 7.64 x 108 8.24 x 108 

Structural 

Gain 
- - - +17.51 % +19.46 % +20.94 % +19.20 % +21.85 % +21.53 % 
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5 CONCLUSIONS AND PROPOSALS OF FUTURE WORKS 

In this work, the structural optimization was approached using meshless methods such 

as RPIM and NNRPIM and comparing to mesh-based method FEM. 

 

Firstly, two benchmark examples reported in the literature were studied in order to 

validate the structural optimization process implemented in the software FEMAS. Thus, it 

was possible to determine how domain discretization, mesh and optimization parameters 

influence the optimization process. 

After analysing the benchmark examples, considering the domain discretization, mesh 

and optimization parameters, the following conclusions were withdrawn: 

 

• The usage of a uniformly distributed domain discretization significantly 

increases the achievement of good results; 

• Refined meshes produce more detailed, smooth, and consistent solutions 

over sparser meshes; 

• Under a combination of specific numerical method and domain discretization, 

using a DR of 2% and 3% it is possible to obtain optimal solutions. However, 

better and consistent results can be obtained for a DR between 4%, 5% and 

10% with a higher variety of combinations; 

• The higher the nodal density, the higher computational time per iteration; 

• Normally between the numerical methods, NNRPIM takes more time per 

iteration following RPIM and FEM; 

• Although the usage of higher DR reaches optimal solutions at earlier 

iterations, these tend to be coarse and less consistent. 

 

Based on the conclusions withdrawn from the benchmark examples, a new structural 

optimization process was implemented, this time regarding an industrial application. Since 

the competition inside the automobile industry is increasingly higher, it becomes more and 

more important to increase the performance and efficiency of each part while granting a 

lower production cost. This is where the structural optimization plays a relevant role, 

because it can be applied to almost any kind of part and reduce its weight while granting 

the necessary mechanical properties to perform its function. 

In this case a handbrake lever from a standard car was optimized reaching the 

following conclusions: 
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• Under specific combinations of parameters, both FEM, RPIM and NNRPIM 

were capable of reaching identical solutions; 

• Based on the optimal solutions obtained, two proposed designs were 

developed and analysed, achieving mass reductions around 40% and not 

compromising the function of the part; 

• Although good results have been achieved with 3D model, this analysis is 

inefficient since the computational time is much higher when compared with 

the 2D model; 

• Despite higher displacements on the optimized models and therefore lower 

stiffness, when comparing the stiffness with the mass reduction, gains 

between 17% and 30% can be obtained. 

 

Hereupon, it is possible to conclude that numerical meshless methods, despite 

having a higher computational time and required attention to the parameters imposed, can 

be a good alternative to the mesh-based numerical methods. 

 

To conclude, it is important to highlight some difficulties and limitations that were 

felt throughout the development of the work. Due to nearly no background experience on 

how to work with the softwares used on this thesis, sometimes problems came up delaying 

the developed work. Since numerical methods require high computational costs, 

limitations on time and nodal mesh density had to be imposed, sometimes making it 

impossible to acquire smoother, detailed, and consistent solutions. 

 

5.1 Future Works 

Based on the work developed in this thesis, there are still some aspects that can be 

improved and studied in greater detail. The following future developments are then 

proposed: 

 

• Further study of the optimization parameters would be necessary to obtain 

smoother and more consistent solutions; 

• In order to validate the optimized solutions obtained, 3D models could be printed 

and tested; 

• An automated process could be created for a better integration between the 

three softwares used; 

• Improvements on FEMAS software could be made for better management of 

results and live visualization of these. 
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