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ABSTRACT
The beneficial association of seedlings with arbuscular mycorrhizal fungi (AMF) is thought to improve early tree

establishment through increased uptake of poorly labile soil nutrients (particularly P) and enhancing plant tolerance

to biotic and abiotic factors. Seedlings of Juniperus brevifolia, an endemic woody plant of the Azores archipelago with

potential commercial value, was grown in the nursery with and without inoculation by a commercial plant growth

promoter consisting of AMF isolated from the Azores (MICOazorica). Treatments were arranged in a randomized

complete block design in a greenhouse. At six months after planting, all AMF-inoculated plants were colonized. The

percentage of colonization varied between 46% and 96% (Mean 70%). At harvest, all physical parameters were

significantly greater in AMF-inoculated plants relative to uninoculated plants. Based on the obtained results, we

strongly advise the use of native AMF, in strategies used in restoration programs in the Azores.
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INTRODUCTION

The Azorean native forests despite their current small area [1]
harbour a greater and more diverse pool of endemic plants and
animals than any other native and human-modified habitats of
this archipelago. Juniperus brevifolia (Cupressaceae) is the dominant
tree species in native Azorean mountain woodlands, e.g.
Juniperus-Laurus forests, Juniperus-Ilex forests and Juniperus-
Sphagnum woods [2]. Agriculture is important in the cultural
cycle of Azores, and its intensification over recent decades, has
resulted in a loss of biological diversity and the degradation of
soil structure [3]. Consequently, most of Azorean native forest
has been converted to agricultural lands, contributing to a
considerable decrease of endemic vegetation of up to 90% in the
Juniperus population, though the situation varies among islands
[4,5]. Consequently, J. brevifolia is classified as vulnerable (VU)
on the IUCN Red List [6]. Several efforts have been made to
restore these unique ecosystems, but success has been limited
because of the difficulty of multiplication and establishment of

these endemic species due to their adaptation to natural habitats
[7,8]. Thus, urgent action to restore and expand native forest is
required to avoid continued loss of endemic species [1,3,9].

Mycorrhizas are symbiotic associations that involve a great
diversity of plants (> 80%) and fungi from ascomycetes,
basidiomycetes, and the Glomeromycota, the last all of which are
thought to form arbuscular mycorrhizal fungi (AMF) being of
greatest agronomic interest. AMF live in symbiosis with the roots
of most terrestrial plants, increasing the update of water and
nutrients, especially phosphorus, in exchange for carbohydrates
from the plant [10]. This symbiotic relationship may improve
host plant productivity [11], drought resistance [12], tolerance to
soil pathogens [13,14] and heavy metals [15], and establishment
and survival as a crop [16-22]. Beyond benefitting the growth of
their host, AMF confer other ecosystem services, such as
reducing soil erosion by promoting soil aggregation through the
production of the glycoprotein glomalin [23].
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AMF have also been shown to influence plant community
structure [24-26], to drive plant community succession [27,28]
and to regulate plant invasive success [29]. Given the different
benefits that plant communities can either directly or indirectly
receive through associating with AMF, the reintroduction of
native AMF has the potential to promote native plant growth in
restorations and to improve soil health and ecosystem quality
[30-32].

The application of AMF inoculants in agriculture is increasing,
but its success is limited because AMF show a broad range of
functional diversity [33,34] and their effect is within the
mutualism-parasitism continuum [35,36]. Therefore, deciding
on the appropriate inoculum for native plants is a very
important step. Native inocula, adapted not only to the local
environment conditions but also to a particular host, may
perform better than exotic inocula [21,37-39]. A basic
understanding of the biology of AMF and an improvement in
inoculum production and inoculation technology are required
to advance the management of these fungi.

Here we aimed to determine the potential role of AMF native
inoculum on survival and physiological aspects of J. brevifolia
seedling plants under nursery conditions, to improve the success
of native plant establishment in restored ecosystems.

MATERIALS AND METHODS

Effectiveness of the native AM fungi

J. brevifolia seedling plants donated by nurseries of Direcao
Regional dos Recursos Florestais (Azores Government) were
inoculated with the native AMF inoculum produced by
MICOazorica Lda. composed of a mixture of Cetraspora sp.,
Claroideoglomus etunicatum, Rhizophogus sp., Funneliformis mosseae
and Gigaspora sp.. MICOazorica inoculum (PCT/
PT2020/050001) consists of rhizospheric samples containing
spores, hyphae and mycorrhizal root fragments.

The mycorrhizal potential in this inoculum determined by the
serial dilution technique [40] and estimated by the most
probable number (MPN) is greater than 85 infective mycorrhizal
propagules per gram of substrate. The experiment included two
treatments with 16 replicates per treatment: an uninoculated
control and AMF-inoculated plants. Initially, seedlings were
grown in a disinfested substrate recommended for forest plants
(Siro Florestal) mixed with sterilised volcanic soil (3:1). From
each seedling plant, five 1-cm root fragments were collected and
stained to check AMF colonisation.

Seedling found to be mycorrhiza-free were individually
transplanted to 1-litre pots of the same substrate. At
transplantation, each pot for AMF inoculation received 7 g of
AMF native inoculum and, each uninoculated control pot
received the same quantity of disinfested (autoclaved) inoculum.
Pots were disposed in the greenhouse in a completely
randomised design for 6 months. Pots were watered every 2 days
and fertilized once a month with 100 ml of half-strength
modified (P-free) Hoagland’s solution.

Harvest and data collection

Plants were harvested 6 months after inoculation. Plant fresh
weight, separated into shoot and root, shoot and root length,
number of branches, number of secondary roots, and shoot and
root dry weights were measured. Measurements of shoot height,
root length, number of branches and number of secondary roots
were taken at the beginning and the end of the experiment. The
shoot and root systems were separated, and the fresh weights
measured only at the end of the experiment. Shoot and root dry
weights were measured after oven-drying at 72°C for 48 hours.

Analysis of mycorrhizal colonization

A sample was taken of fresh roots (± 5% in fresh weight) for
estimation of mycorrhizal colonization level by staining and
subsequent microscopic evaluation. Root fragments were cleared
and stained as described by Melo et al. [41]. AMF colonization
rates were determined by the magnified intersection method
[42] under a compound microscope (Axioimager A1, Zeiss) at
400x magnification.

Data analyses

Comparisons of growth measurements between inoculated and
non-inoculated plants were tested by one-way ANOVA using
MINITAB Release 13.31 [43]. Mycorrhizal dependency (MD)
was calculated as:

Percentage mycorrhizal responsiveness = [(Dry Mass mycorrhizal
plant - Dry mass non-mycorrhizal plant)/Dry mass mycorrhizal
plant] × 100 [44].

RESULTS

Mycorrhizal colonization

All non-mycorrhizal controls remained uncolonised. All
inoculated plants were mycorrhizal with colonisation ranging
from 46% to 96% with a mean of 70 ± 3.95%. Hyphae and
arbuscules predominated, and approx. 15% of sample fields of
view contained spores (Table 1 and Figure 1).

Table 1: F and p values from one-way Anova of growth response of J.
brevifolia sixth months after AMF inoculation. * p<0.05; ** p< 0.01; ***
p< 0,001; n.s = not significant; a = development of plants at the time of
harvest; b = root system of plants at the time of harvest.

Main effects F P-
value

Control
plants

AMF plants

Initial shoot height 0.14 n.s 4.44 ± 0.13 a 4.39 ± 0.08 a

Final shoot height 2.67 n.s 13.27 ± 0.65 a 14.55 ± 0.46
a

Increase shoot height 4.12 * 8.81 ± 0.57 a 10.16 ± 0.42
b

Initial root length 2.08 n.s 4.06 ± 0.12 a 3.666 ± 0.13
a
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Final root length 21.25 *** 20.25 ± 0.44
a

23.56 ± 0.57
b

Increase root length 32.07 *** 16.19 ± 0.38 a 19.91 ± 0.53
b

Initial plant height 3.09 n.s 8.50 ± 0.20 a 8.04 ± 0.17 a

Final plant height 13.14 ** 33.51 ± 0.93 a 38.11 ± 0.86
b

Increase plant height 20.16 *** 25.00 ± 0.81 a 30.06 ± 0.79
b

Initial number of
branches

0.33 n.s 3.69 ± 0.22 a 3.50 ± 0.24 a

Final number of
branches

20.54 *** 28.38 ± 2.40
a

42.75 ± 2.1
b

Increase of branches 23.8 *** 24.69 ± 2.27 a 39.25 ± 1.93
b

Initial number of
secondary roots

0.4 n.s 3.44 ± 0.20 a 3.25 ± 0.21 a

Final number of
secondary roots

27.2 *** 7.13 ± 0.49 a 12.69 ± 1.06
b

Increase of secondary
roots

30.87 *** 3.69 ± 0.47 a 9.44 ± 0.99
b

Initial fresh plant
weight

0 n.s 1.94 ± 0.23 a 1.87 ± 0.19 a

Final fresh plant
weight

9.24 ** 2.37 ± 0.20 a 3.09 ± 0.20
b

Increase in fresh plant
weight

38.69 *** 0.34 ± 0.06 a 1.21 ± 0.13 b

Final shoot fresh
weight

6.57 * 1.94 ± 0.17 a 2.59 ± 0.19 b

Final shoot root weight 18.6 *** 0.30 ± 0.03 a 0.51 ± 0.04 b

Increase in fresh
weight of plant

38.69 *** 0.34 ± 0.06 a 1.34 ± 0.13 b

Shoot dry weight 6.46 * 0.66 ± 0.06 a 1.21 ± 0.15 b

Root dry weight 8.86 ** 0.16 ± 0.02 a 0.35 ± 0.02
b

Plant dry weight 7.77 ** 0.68 ± 0.07 a 1.56 ± 0.16 b

Mycorrhizal
dependency (%)

- - - 56.18

Colonised root length
(%)

- - - 100

Mycorrhizal
colonisation (%)

- - - 70.00 ± 3.95

Arbuscules (%) - - - 23.00 ± 2.20

Spores (%) - - - 15.38 ± 2.60

Hyphae (%) - - - 64.63 ± 5.62

Figure 1: Roots of J. brevifolia seedling plants colonised by different
mycorrhizal structures: (a) spores; (b) hyphae and (c) arbuscules.

Effect of native inoculum on plant growth

After six months of treatment, the effect of inoculation on the
growth of J. brevifolia plants was assessed (Figure 2). Mycorrhizal
treatment applied had significant effects on the growth and
biomass production of J. brevifolia plants (Table 1 and Figure 3).
Mycorrhizal dependency was estimated at 56.18% (Table 1).

Figure 2: (a) Development of J. brevifolia plants at the time of harvest;
(b) Development of the root system of J. brevifolia plants at the time of
harvest.)
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Figure 3:  Shoot growth of the inoculated plants compared to the control plants.



Increase in shoot height differed significantly between the two
treatment (One-way Anova: F1,31 = 4.2, P<0.05) (Table 1).
Inoculation with native inoculum resulted in an increment of
about 14% in the shoot growth of the inoculated plants
compared to the control plants (Figure 3a).

The root length varied significantly between the two treatments
The roots of the inoculated plants were significantly longer than
those of the controls (One-way Anova: F1,31 = 21.25, P<0.001)
(Table 1) (Figure 3b), which was reflected in a higher increment
of the root growth of the inoculated plants (One-way Anova:
F1,31 = 32.07, P<0.001) compared to the control plants (Figure
3c). Significant differences were also observed between the two
treatments in the final height of the plant (One-way Anova: F1,31
= 13.14, P<0.01), as well as in the increment of plant height
(One-way Anova: F1,31 = 20.16, P<0.001) (Table 1). The height of
the inoculated plants was 17% higher than the control plants
(Figures 3d and 3e respectively).

The application of AMF native inoculum also influenced the
final number of branches (One-way Anova: F1,31 = 20.54,
p<0.001) and consequently its increament (One-way Anova: F1,31
= 23.80, P<0.001) (Table 1). The number of shoots was higher in
inoculated plants than in control plants (Figure 3f), causing an
increment of 37% in the inoculated plants in relation to control
plants (Figure 3g).

The number of secondary roots also varied significantly between
the treatments (One-way Anova: F1,31 = 27.20, P<0.001) (Table
1). Inoculated plants developed more secondary roots than
controls (Figure 3h). Increment of secondary roots also differed
significantly between the two treatments (One-way Anova: F1,31
= 30.87, P<0.001) (Table 1). The native inoculum resulted in an
increment of 60% of secondary roots compared with controls
(Figure 3i).

Biomass differed between the two treatments (Table 1).
Inoculated plants had higher shoot (One-way Anova: F1,31 =
6.57, P<0.05) and root (One-way Anova: F1,31 = 18.60, P<0.001)
fresh weights than control plants (Figures 3j and 3k respectively)
and final fresh weight (One-way Anova: F1,31 = 9.24, P<0.01) of
the inoculated plants (Table 1) was higher than the control
(Figure 3l), resulting in an increase of 70% in the fresh weight
(One-way Anova: F1,31 = 38.69, P<0.001) (Figure 3m). A similar
pattern was obtained in relation to the dry weight of the plant,
i.e., both shoot (One-way Anova: F1,31 = 6.46, P<0.05) and root
(One-way Anova: F1,31 = 8.86, P<0.01) dry weights vary
significantly between the two treatments (Table 1). Inoculated
plants showed the highest shoot and roots dry weights (Figures
3n and 3o respectively). Consequently, the total dry weight
(One-way Anova: F1,31 = 7.77, P<0.01) of the inoculated plants
was higher than in the control plants (Figure 3p).

DISCUSSION

Previously studies have recommend the use of native fungi as an
effective strategy for efficient mycorrhizal inoculation in natural
ecosystems [21,32,39,30,45]. The positive effect of AMF native
inoculation was not only due to the direct effect of AMF
inoculation, i.e., in this study, an increase of 60% in the root
system of J. brevifolia inoculated plants resulting in higher root
system robustness, but also, as shown for carob, due to the pre-
colonisation by a well-adapted AMF community specific to the
plant host, which promote the tolerance of inoculated plants to
environmental stresses [21]. Similarly, Barea et al. [46] concluded
that the use of native AMF consortia has the maximum effect in
the restoration of degraded lands of the Mediterranean. Manaut
et al. [21] demonstrated that native AMF consortia inoculation
of Ceratonia siliqua L. seedlings more than doubled seedling
survival and significantly improved seedling height and collar
diameter.

The success of habitat restoration strategies strongly depends on
the quality of the seedlings, which is fundamentally dependent
on seedling growth under nursery conditions as well as their
transplantation into field conditions [47,48]. These results show
that inoculation with Azorean native AMF stimulated the
growth of J. brevifolia plants under nursery conditions,
demonstrating high mycorrhizal dependency of J. brevifolia

.

These results indicate that it may be beneficial to inoculate with
suitable AMF in the nursery because most substrates used in the
Azores often are sterilised to reduce or eliminate certain pests
and diseases. Doing so also destroys any beneficial
microorganisms such as AMF [49].

Some forest species may require AMF for optimum
establishment and growth. Thus, inoculation at the early
nursery stages of plant development can potentially benefit
successful establishment and growth of these seedlings after
outplanting [50-52].

Although the commercial native inoculum used in this study is
composed of AMF species isolated from different islands of
Azores archipelago, they all originated from long term organic
farms. Moreover, all component fungi were previously detected
in the rhizosphere of different endemic plants [53] including in
the rhizosphere of J. brevifolia [54]. It is likely that these are
physiologically and genetically adapted to the environmental
stress conditions of the target areas.

The AMF richness in AMF inocula is considered to improve
inocula effectiveness. Many commercial mycorrhizae inoculum
comprise either a single or a limited number of AMF species.
Thus synergistic interactions among the AMF species of the
native inoculum could be responsible for the promotion of J.
brevifolia plants growth [55]. Hoeksema et al. [56] in a meta-
studies showed that plant response was substantially lower when
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plants were inoculated with single AMF species, compared with
inoculations with multiple AMF species. Different AMF species
have different hyphal growth patterns, anastomoses and
branching frequencies, and these differences possibly reflect
different strategies and the occupation of different niches within
the roots and rhizosphere [57]. Adding, many species that are
common in commercial inoculum are considered as early
successional species such as Rhizophagus intraradices, Funneliformis
mosseae and Rhizophagus aggregatus given their capacity to
proliferate with disturbance [58], while species that are sensitive
to disturbance, i.e, Acaulospora, Cetraspora and Gigaspora are
typically absent in commercial inocula [39]. Because, AMF
composition changes during succession, some commercial
inoculum composed of early successional species have been
shown to reduce growth and establishment of late successional
plants [59,60]. In this study, J. brevifolia plants were inoculated
by a commercial native inoculum composed of either early or
late successional species. For this reason, we suggested the
incorporation of native and late successional AMF species for
restoring native plant communities.

CONCLUSION

To sum, this work highlights the importance of applying AMF
native inoculum in the early stages of juniper establishment, to
overcome the stress of transplantation, and enhance survival
and establishment in the forest. To be efficient in restoration
programs the commercial inoculum should be composed of
AMF species from both early and late successional stages to
improve the growth and establishment of late successional plants
as the major of endemic plants including J. brevifolia. This is
particularly important in the case of endemic species, given the
difficulty of propagation of these species. Providing optimal
symbiont establishment would be expected to facilitate the
recovery of rare and ecologicaly important species such as J.
brevifolia, and the restoration of their habitats. Further studies
are needed to improve our knowledge of how best to apply and
use these beneficial organisms to successfully incorporate them
into restoration strategies and other sustainable commercial
cropping systems.
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