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Abstract

A key task of the human immune system is the recognition and surveillance of peptides pre-
sented by the HLA complex on the surface of body cells. In this way, abnormalities can be dis-
covered rapidly to elicit targeted immune responses. The identification of the HLA-presented
immunopeptidome is thus of tremendous interest for research questions ranging from basic
immunological processes to the design of immunotherapies such as vaccinations against in-
fectious diseases and cancer. With the advancement of technical developments in biological
high-throughput methods such as mass spectrometry it has become possible to identify thou-
sands of sequences of HLA-presented peptides from a single sample of cells or human tissues.
This has enabled researchers to directly investigate the peptide sequences presented in the hu-
man body and gain information on their properties. However, the acquisition and evaluation
of large amounts of mass spectrometry measurements and HLA peptide sequence character-
istics is a highly complex task that requires the development of sophisticated experimental
and computational methods. This research work has focused on the evaluation and improve-
ment of existing methodology to identify HLA-bound peptides and further to investigate var-
ious aspects of the immunopeptidome presented by human non-malignant and cancer tissues.
An essential part of this effort was the development of novel automated, digital processing
pipelines for HLA immunopeptidomics data. Specifically, two pipelines - “MHCquant“ that
achieved superior sensitivity in contrast to existing software solutions and “DIAproteomics“
that allowed to explore the application of the novel method of data-independent acquisition
to immunopeptidomics were developed. Application of the “MHCquant“ pipeline to the cur-
rently largest existing immunopeptidomics data set of human non-malignant tissues, allowed
to construct the novel data resource “The HLA Ligand Atlas“. This benign reference data set
is of great significance for the comparison with diseased-state tissues and was thoroughly
evaluated for differences across the human population, tissue specificity and the presence of
cryptic peptides from non-canonical genomic origins. Finally, the HLA immunopeptidome of
multiple clinical hepatocellular carcinoma samples was analysed in combination with next
generation genomic sequencing measurements in an in-depth multi-omics approach in order
to discover tumor-associated mutated antigens as suitable targets for cancer immunotherapy.
While the effort did not result in the determination of particular mutated antigens, it was pos-
sible to pinpoint tumor somatic mutations that are likely presented as epitopes. Ultimately,
the missing findings are discussed as a consequence of technological limitations and the low
mutational burden of hepatocellular carcinoma. The developed computational workflows as
well as the investigated data sets were made publicly available to serve the scientific com-
munity of future generations as a standard to reanalyze and compare novel results with and
advance the holistic understanding of immunological processes in the human body.
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Zusammenfassung

Eine zentrale Komponente des humanen Immunsystems ist die Erkennung und Überwachung
von Peptiden, die durch den HLA Komplex auf der Oberfläche von körpereigenen Zellen prä-
sentiert werden. Auf diese Weise wird es ermöglicht Abnormalitäten frühzeitig zu erkennen
und zielgerichtete Immunantworten auszulösen. Die Identifizierung des HLA-präsentierten
Immunopeptidoms ist daher von enormen Interesse für Fragestellungen in der Erforschung
von grundlegenden immunologischen Prozessen, sowie der Konzipierung von Immunthera-
pien wie z.B. Impfstoffen gegen Infektionskrankheiten und Krebs. Im Zuge der voranschrei-
tenden technologischen Entwicklungen biologischer Hochdurchsatz-Methoden wie z.B. der
Massenspektrometrie, ist es möglich geworden, tausende Sequenzen HLA-präsentierter Pepti-
de aus einer einzelnen Zell- oder menschlicher Gewebeprobe zu bestimmen. Dies erhebt For-
scher in die Position, die Peptidsequezen des humanen Körpers unmittelbar zu identifizieren,
nachzuverfolgen und Informationen über deren Eigenschaften zu gewinnen. Nichtsdestotrotz,
ist die Erhebung und Auswertung grosser Mengen an Massenspektrometrie-Messungen, so-
wie die Charakterisierung der HLA-Peptidsequenzen eine hoch komplexe experimentelle so-
wie Computer-gestützte Herausforderung. Diese Forschungsarbeit hat daher die Evaluierung
und Verbesserung der bestehenden Methodik zur Identifizierung von HLA-Peptiden, sowie
die Erforschung der Aspekte des Immunopeptidoms von gesunden und Krebs erkrankten hu-
manen Geweben zum Thema. Ein wichtiger Teil dieser Arbeit bestand dabei in der Entwick-
lung neuer, automatisierter, digitaler Prozessierungs-Pipelines für HLA-Immunopeptidomik
Daten. Insbesondere die beiden Pipelines “MHCquant“, welche eine höhere Sensitivität im
Gegensatz zu existierenden Software Lösungen aufzeigen konnte sowie “DIAproteomics“,
mit welcher die neuartige Methode der daten-unabhängigen Aufnahme für die Immunopep-
tidomik exploriert werden konnte, wurden hierfür entwickelt. Weiterhin wurde durch An-
wendung der “MHCquant“ Pipeline der derzeitig grösste Immunopeptidomik Datensatz an
humanen, nicht-erkrankten Geweben erhoben und in der Datenbank “HLA Ligand Atlas“ zu-
sammengefasst. Diese gesunde Referenz, welche eine starke Bedeutung für den Vergleich mit
erkrankten Gewebeproben hat, wurde vielseitig ausgewertet im Hinblick auf Unterschiede
innerhalb der humanen Bevölkerung, Gewebespezifizität und der Präsenz kryptischer Pep-
tide aus nicht-kanonischen genomischen Regionen. Im letzten Teil wurde die Arbeit durch
die Analyse eines Satzes klinischer hepatozellulärer Karzinom-Gewebeproben ergänzt, welche
in Kombination mit genomischen Sequenzierungs-Methoden der nächsten Generation durch
einen Multiomics-Ansatz tiefgehend durchsucht wurden, um Tumor-assoziierte Antigenziel-
strukturen für die Krebsimmuntherapie zu definieren. Während hierbei keine mutierten An-
tigene identifiziert werden konnten, war es möglich einige Tumor-somatische Mutationen zu
detektieren, welche durch eine hohe Wahrscheinlichkeit zur HLA-Präsentation herausstachen.
Deren fehlende direkte Detektion wurde schliesslich im Hinblick auf die Limitierung der Tech-
nologie sowie der niedrigen Mutationslast hepatozellulärer Karzinom Gewebe diskutiert. Die
entwickelten Computermethoden sowie die erforschten Datensätze wurden veröffentlicht, um
sie der Forschungsgemeinschaft für zukünftige Generationen als Standard für Re- und Neu-
analysen bereitzustellen, sowie um das Verständnis immunologischer Prozesse im humanen
Körper voranzubringen.
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Introduction
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2 Introduction

1.1 Motivation

The immune system is one of the most essential components of an organism, defending it
against the diversity of invading pathogens. All multicellular but some single cellular organ-
isms too, have developed an immune system that will guarantee survival of its species for a
given life span. The two branches of innate and adaptive immunity have evolved subsequently
and are shared similarly by humans and a wide span of organisms rendering it a very well
conserved and powerful system [1, 2]. All the various kinds of pathogens such as bacteria,
viruses, fungi or even physical pathogens are upon discovery attacked by the immune system
and have in turn shaped their infection in order to evade the host immune response as well as
possible [3]. Medicine and drug development have therefore traditionally focused on support-
ing the immune system with varieties of antibiotic, -viral and -fungal compounds or biologics.
Upon treatment of sick patients with these therapies the bacterial, viral or fungal load in
their bodies will be reduced [4]. In this way the exhausted immune system is able to recover
and successfully defeat the remaining pathogens. In addition, the immune system has the
extraordinary capability to establish a biological memory of previous pathogenic infections
and acquire long term immunity. An initially acquired immune response can then prevent a
second infection with the same pathogenic organism in the future [5]. The early discovery of
this effect by Louis Pasteur and Edward Jenner was the foundation of vaccination technology,
which has greatly improved the life expectancy and lead to the nearly complete extinction of
several widespread viral infections among the world human population [6].

However, non-infectious diseases for example inherited diseases such as genetic and age-
related dysfunction or cancer are difficult to be recognized by the immune system as it usually
tolerates self antigens [7]. Genetic mutation-driven cancer is one of the main non-pathogenic
disease causes of death in the human population and numbers are expected to rise within
the coming decades [8]. While a multitude of different approaches have been developed in
order to treat cancer ranging from surgery to radio-, chemo- or targeted pharmaceutical ther-
apies, no single entirely successful therapy exists to treat the various types and modalities of
cancer in humans. Yet, it has been shown that even though non-pathogenic, various cancer
ontologies are not invisible to the immune system. This has given rise to the modern field
of immunotherapy trying to actively stimulate a patient’s immunity in the course of a can-
cer infection or maybe even preventively [9]. In order to achieve this stimulation, different
approaches have been proposed [10]. A promising strategy are epitope-based multipeptide
vaccines, that achieve immune stimulation through exposure to the peptide biomolecules (epi-
topes) that are presented through the HLA cell surface receptor to the adaptive immune
system [11, 12].

The state-of-the-art approach to identify these immunogenic epitopes is immunoaffinity pu-
rification of HLA-peptide receptor complexes, followed by LC-MS/MS measurements and
labor-intensive T-cell immunogenicity testing [13]. With the rise of high-throughput biological
MS technology, thousands of epitopes can be identified from a measurement and hundreds of
MS runs can be taken within 2-3 weeks using a single MS instrument [14]. Hence, this tech-
nology has enabled scientists to attempt to measure almost all active biomolecules exposed to
the immune system. The exact knowledge of these biomolecules and their sequences, in par-
ticular HLA-presented peptides, is of profound importance for basic research in immunology
and provides a major advancement for the entire field of immunotherapy far beyond epitope-
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based vaccination [15].

The increase in the number of complex measurements produced by high-throughput methods
such as biological MS also requires scalable automated computational methods to analyze
the massive amount of data [16]. Few computational methods are currently able to handle
MS data on a large scale, as most were developed in a time when the analysis was carried
out manually on single processing computers instead of high-performance computing (HPC)
clusters [17, 18]. Moreover, robust storage of the data is a challenge, since one measurement
alone can take up to several Giga bytes in size [19]. Evaluating immunopeptidomics MS mea-
surements is especially difficult in contrast to common bioanalytical procedures in protein and
peptide MS in other contexts. This is due to the fact, that HLA-presented peptides are unspecif-
ically cleaved and thus span a very large sequence search space when comparing spectra to
possible peptide matches of the human proteome. As a consequence, the sensitivity-specificity
trade-off between robust false discovery rates and identifying all peptides of interest in every
MS run is particularly cumbersome. Hence, at the start of this research work, to the best of my
knowledge no method existed that was tailored to deal with immunopeptidomics analysis,
but by the end of this research work several methods had been proposed. [20–23]

Along these lines, this thesis focuses in four chapters on the computational analysis of large-
scale clinical MS data in the context of cancer immunotherapy. Next to the development of
scalable high-throughput computational methods, a unique data set of thousands of mea-
surements of for the immune system highly relevant HLA-presented peptide biomolecules of
multiple human tissues of several healthy donors was analysed. Ultimately, this work aims
to contribute to the basic understanding of the human immune system and benefit future
research on the therapy of a diverse range of diseases, in particular cancer.

The first two chapters focus on the methodological side of the analysis of immunopeptidomics
experiments, comparing benefits and disadvantages of existing methodology and establishing
novel computational analysis workflows and demonstrating their capabilities. In particular
two new robust data analysis pipelines were implemented "MHCquant" and "DIAproteomics".
MHCquant enables researchers to pipeline the standard immunopeptidomics MS measure-
ments with higher throughput and higher sensitivity than previously existing methods. DI-
Aproteomics allows to analyse protein and peptide MS measurements acquired using the
modern, different technique of data-independent MS acquisition having several advantages
in terms of reproducibility and identification depth over the standard approach.

The following two chapters show the results of large studies with clinical patient material.
An emphasis is given on the discovery of HLA presented peptides in human tissues and on
tumor immunology. Hereby multiple immunological research questions were adressed such
as the variability of the immunopeptidome across tissues and individuals within the human
population and the feasibility of identifying tumor-associated antigens. Hepatocellular carci-
noma, a disease with limited treatment options [24, 25] was chosen as an example and tissue
samples of a cohort of cancer patients were investigated using immunopeptidomics analysis.
In particular the samples were searched for the presence of tumor-specific mutated neoanti-
gens as suitable targets for personalized cancer immunotherapy.

Finally, all research projects are summarized and related to each other in a last concluding
chapter. Ultimately, a concise outlook on future developments in the field is given towards the
end.





CHAPTER 2

Background

5



6 Background

2.1 Immuno-Oncology

This section highlights general principles and concepts of the human immune response and
the various cellular components that mediate the corresponding effects. In addition, the cell
surface protein complex - the major histocompatibility complex (MHC) is introduced in detail
and its central function within the immune system. Ultimately, an outline is given on how
therapeutic vaccination can activate the immune system in a clinical context towards recent
developments to treat infectious diseases or cancer.

2.1.1 The human immune system

Anatomic and physiologic defense

In humans, the immune system is composed of multiple layers of response to pathogens. The
most immediate and a constantly active part of the immune system are the anatomic barriers
at the periphery of human bodies such as the skin, the oral mucosa, intestine and respiratory
epithelium. These physical barriers have evolved to make it difficult for pathogens to penetrate
towards the inside of the body. In addition, fluids covering the surfaces of these peripheries
contain non- or broadly specific antimicrobial enzymes and proteins that are also referred to
as part of the mucosal immune system. Ultimately, physiological defense related reactions of
the body to combat an infection such as elevated body temperature (fever) and the acidic pH
of the stomach preventing some pathogens from entering the intestine are considered part of
the human immune defense [26–28] (Figure 2.1).

Innate immunity

Despite anatomic and physiological defense against infection, the immune responses are
grouped into two major branches – innate and adaptive immunity. Innate immunity is consid-
ered to be the older evolutionary conserved branch [1]. The first reactions of inflammation in
an infected area, phagocytosis and the recruitment of different primary effector cells belong to
this category. In particular macrophages or granulocytes that non-specifically incorporate and
digest pathogens, are first responses of innate immunity. Moreover, natural killer (NK) cells,
when recruited to the inflammation sites, are broadly targeting abnormal cells for example
infected or mutated cells of changed phenotype and induce cell death in those cells. While the
response typically arises within minutes after infection it can last for multiple days [2, 26–28].

Adaptive immunity

The adaptive immune response is usually triggered within hours – days later than the initial
innate inflammation reaction. This is due to the fact that it involves very specialized B- and
T-cells that first have to be selected from a pool of vast geneticly diverse immune cells. Upon
exposure to the respective antigens, only those cells that are able to specifically recognize
antigens of the infecting pathogen may differentiate and expand to form an active immune
response. Throughout this process, antigen presenting cells migrate from the infected area to
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Figure 2.1: The layers of the immune defense of the human body against infection and corresponding active
response mediating cells and biomolecules, as well as time scales of the involved processes are illustrated as
table. (Table adapted from [26])

the peripheral organs of the lymphatic system. There they can initiate the clonal expansion of
specialized B- and T-lymphocytes that have matching receptors that are able to bind pathogen
antigens. In the case of T- cells antigens are presented as peptide fragments of their source
protein through the MHC receptor presentation pathway. Once expanded, the specialized B-
and T-cells migrate to the infection site and target the infecting pathogens causing them to
undergo cell death. Consequently, the adaptive immune response is more complex but very
specific. By the activation of B and T memory cells, serum levels of the selected B- and T-cells
that were able to target the infecting pathogen can be maintained for long time frames. This
thus provides a way for the body to rapidly combat and prevent a second large infection with
the same pathogen and result in up to lifelong immunity [26–28].
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The lymphatic system

All immune cells involved in the innate or adaptive immune system are distributed over the
blood stream and the lymphatic system. Similar to the blood vessels the lymph vessels span
the entire human body to provide immune cells to and take up antigens from every pos-
sible location. The main central lymphoid organs are the thymus and the bone marrow, as
they contain immune progenitor cells for T- and B- cells respectively. These stem cell like
progenitors are able to mature into a variety of lymphocytes and possess the ability to de-
velop receptors that can target any kind of antigen. The peripheral lymphoid organs comprise
the lymph nodes and other mucosal tissues such as the tonsil, intestine, peyer’s patch or
bronchus-associated lymphoid tissue (BALT) [29]. Mature naive lymphocytes derived from
the progenitor cells recirculate between the peripheral immune tissues and can be activated
upon antigen encounter. In order to present antigens from infection sites to the immune sys-
tem, the lymph fluid, a mixture of antigen presenting cells and circulating lymphocytes from
the extracellular matrix of peripheral tissues is continuously drained through the lymphatic
system [26–28].

2.1.2 T cell-mediated adaptive immunity

The T-cell repertoire

The development of a person’s T-cell repertoire and its maturation in order to acquire the ca-
pability to recognize a certain antigen takes place in the thymus. It involves the maturation of
T-cell clones of innumerable genetic diversity by combinatorial genetic recombination during
childhood. Throughout this process, the clones are selected in two stages: (1) positive selection
- by recognizing the MHC-I or -II complex it is ensured that only T-cells that are capable of
binding to the MHC survive and (2) negative selection - the T-cell clones that bind the MHC
presented peptides of the host organism itself too strongly are eliminated, in order to circum-
vent autoimmunity. The remaining T-cell clones are thus able to recognize only foreign MHC
presented antigens and carry a large diversity of T-cell receptors due to their genetic diversity.
During homeostasis, the individual T-cell clones exist in low copy numbers. However, upon
activation of particular T-cell clones by recognition of antigens with their specific receptors
during an infection, their clonal expansion can be triggered to produce millions of cells and
elevate their blood serum levels [26–28].

There are two distinct classes of cells that drive T-cell mediated adaptive immunity and many
other types of lymphocytes orchestrate the process. Both classes of cells can be distinguished
by the CD co-receptor molecules carried on their cell surface.

CD8-positive T-cells

CD8+ T-cells carry the CD8 co-receptor of the T-cell receptor and are mainly involved in the
recognition of intracellular antigens presented by the MHC class I complex. Upon activation
and recognition of foreign antigens, CD8+ T-cells are in most cases cytotoxic. Consequently,
they will trigger a controlled cell death of respective recognized cells such as for example
virus-infected cells [26–28] (Figure 2.2 A).
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Figure 2.2: A) CD8+ T-cell activation: The CD8 and T-cell receptor co-recognize the MHC class I - peptide
complex. Activation upon recognition of a foreign antigen peptide induces cytotoxic activity of the T-cell
towards the presenting cell. B) CD4+ T-cell activation: The CD4 and T-cell receptor co-recognize the MHC
class II - peptide complex. Activation upon recognition of a foreign antigen peptide can result in the recruitment
of regulatory T-cells, cytotoxic B-cells or macrophages.

CD4-positive T-cells

CD4+ T-cells carry the CD4 co-receptor of the T-cell receptor on their surface and are mainly
involved in the recognition of extracellular antigens presented by the MHC class II receptor
complex. Activation upon antigen recognition in contrast to CD8+ T-cells in most cases does
not lead to cytotoxic activity. In contrast, activation of CD4+ T-cells can stimulate their differ-
entiation into various different types of T helper cells, depending on different factors such as
the presence of certain cytokines. T helper cells are mainly involved in recruiting other cells to
an infection site for example B-cells, macrophages or other phagocytes. In addition, regulatory
T-cells (Treg) are a class of T helper cells that are able to down regulate cytotoxicity of CD8+
T-cells preventing for example autoimmunity [26–28](Figure 2.2 B).

Antigen presenting cells

Ultimately, T-cell activation relies on another important class of lymphocytes, which are re-
ferred to as professional antigen presenting cells (APCs) - for example macrophages and den-
tritic cells (DCs). Both are able to take up antigens or even entire cells, digest them and present
peptide fragments of those antigens via their surface MHC receptors. By this they are able to
prime and activate T-cells and simulate their differentiation into the respective subtype [26–
28].
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2.1.3 The MHC receptor complex and antigen presentation

MHC protein function

The major histocompatibility complex (MHC) is a cell surface protein complex and is referred
to as human leukocyte antigen (HLA) complex in humans. Its function to present peptide
fragments of antigens to the surveilling T-cells is a central component of the adaptive immune
response. The two different classes of receptors (HLA class I and HLA class II) are inherently
linked to the T-cell populations (CD8+ and CD4+) that interact with them via their respective
T-cell receptors. Moreover, peptides are loaded onto the receptors of the respective HLA class
via two distinct molecular pathways. Peptides that stem from intracellular proteins are mainly
presented through HLA class I receptors and peptides that stem from extracellular proteins
are mainly presented by HLA class II receptors. Both HLA I and II share the structural fea-
ture of forming a concave peptide binding pocket and being anchored into the membrane via
lipophilic membrane-spanning domains [28].

Genetic origin and diversity

The HLA I complex is encoded by either the HLA-A, B or C gene locus and the invariant b2
microglobulin gene giving rise to at most six different HLA I gene products in a single human
if all genes are heterozygous. In contrast, the HLA II complex is encoded by the DR, DP and
DQ gene loci. It functions as a dimer of two homogenous protein chains out of these loci,
creating a high number of possible combinatorically assemblies. The HLA genomic region is
the most polymorphic region in the human genome and thus within the human population
there exists a vast genetic diversity for HLA I and II molecules that vary in single nucleotide
polymorphisms at different locations. Consequently, in the diverse human populations across
the world different genetic traits for the HLA gene are over- or underrepresented [30].

HLA I protein structure characteristics

The HLA I complex is composed of a large a and the small b2 microglobulin protein chains
froming four different structural domains (a1-3 and b 1). (Figure 2.3 A) Its binding pocket is
formed exclusively by the a chain and requires peptides to fit tightly within the pocket and
restricts their length to a short range of about 8-12 amino acids [28] (Figure 2.3 B). Across
the diversity of HLA-I receptors, most peptides are intensively bound via specific interaction
with two defined anchor residues at the beginning (position 2) and the C-terminal end of the
peptide sequence. Sequence motifs derived from bound peptides clearly display the specificity
of the dominantly interacting two anchor residues [31–33] (Figure 2.3 C).

HLA II protein structure characteristics

The HLA II complex assembles as a dimer of nearly equally sized a and b chains forming four
structural domains, too (a 1-2 and b 1-2). (Figure 2.3 A) The binding pocket is formed at the
interface of the two protein chains. The pocket is less tight and allows also longer peptides of
about 8-25 amino acids to bind into the groove with their ends bulging out of the pocket at
both sides [28] (Figure 2.3 B). Most interactions occur therefore between the receptor and a
binding core located towards the center of HLA-II bound peptide sequences. Binding motifs
of these peptide sequence cores are less clearly defined by specific residues and positions and
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their investigation remains a challenge [39, 40] (Figure 2.3 C).

Antigen presentation pathways

As mentioned above, peptides presented by the HLA-I and -II receptors stem from distinct
molecular pathways in order to be presented on the cell surface. Oversimplified, the two
pathways can be described as follows: The HLA-I antigen presentation pathway involves pro-
teolytic cleavage of intracellular, cytosolic proteins by the proteasome and immunoproteasome
followed by transmembrane transportation through the TAP transporter into the ER. In the
ER, the HLA-I and b2-microglobulin chain are bound to the peptides and folded into a protein
complex by the help of chaperones. The resulting HLA –peptide complex is then transportet
via vesicles to the cell surface. In contrast, HLA-II presented peptides are generated from
proteins that are taken up from the extracellular environment via endo- or phagocytosis. Pro-
teins are digested into peptides by lysosomal proteases of the endosomal pathway and the
late endosome is fused with HLA-II loaded vesicles that were generated in the ER. While
the HLA-II binding groove is blocked by the invariant chain protein li upon assembly in the
ER, li is digested and replaced upon fusion with the late endosome allowing to reload the
HLA-II molecule with other peptides. Finally, resulting HLA-II-peptide complexes, too are
transported to the cell surface via vesicles [41].

2.1.4 Vaccination and cancer immunotherapy

Vaccine design

Traditionally, vaccines have been created against infectious diseases from injections of whole
inactivated or live attenuated pathogens, which would stimulate the immune system to de-
velop active and memory B-and T-cells against their antigens. As it may prove difficult to
establish cell cultures of various pathogens in vitro, the production of the traditional whole
organism vaccines can result in being a cumbersome, slow and impractical process. In ad-
dition, some organisms or inactivated whole viral particles might also lead to detrimental
immune responses or could lead to unforeseen host responses that would rather be avoided.
Therefore today many more approaches of creating vaccines have been established such as
vector-, nucleic acid- or protein-based vaccines of which some reduce the vaccine cocktail to
selected antigens [42]. Moreover, cancer immunotherapeutic approaches have been proposed,
to stimulate a patients immune system, even retroperspectively after onset of the disease with
vaccine cocktails containing tumor-associated antigens [11]. In particular, in this context, fo-
cusing the vaccine design on a limited set of antigens instead of whole cells or lysates is
anticipated to be a therapeutically beneficial strategy [43].

Epitope-based vaccines

Peptides that are presented by the HLA receptor and are capable of eliciting an immune
response via T-cell recognition (epitopes) are interesting targets for actively stimulating the
immunesystem. Identifying specific epitopes of pathogens or diseased cells that are HLA
matched to the majority of the population and combining them into a multi-peptide cocktail
hence provides an efficient way for rational vaccine design. In contrast to vaccination with the
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entire pathogen or cells, epitopes would also provide a way to enable easier and low priced
large scale production of vaccines [43]. Thus, within the last decades epitope-based vaccines
have gained interest in order to attempt treatment of a variety of diseases ranging from viral
infections to various types of cancer. In fact, it has been proposed and taken to practice to
generate off-the-shelf warehouse peptide vaccine cockatils for given HLA alleles and tumor
entities [44, 45].

The origins of cancer associated antigens

Whereas viral peptides are likely to be immunogenic as they don’t participate in the T-cell mat-
uration process, it is far more difficult to identify immunogenic epitopes presented by various
tumor cells. Cancer specific immune responses can be elicited by either tumor-specific anti-
gens (TSAs) that are uniquely present in tumor cells or tumor-associated antigens (TAAs) that
can be present in normal cells as well but are more abundant in tumor cells. Several scenarios
have been proposed for the formation of TSAs and TAAs: (1) tumor-specific genetic alterations
such as somatic mutations [46], frameshifts [47] or alternative splicing [48], (2) tumor-specific
altered gene expression [49] and (3) tissue specific gene expression [9]. Genetic alterations can
give rise to TSAs for example mutated peptides presented by the HLA complexes, so called
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“neoepitopes”. Altered gene expression of tumors can result in the expression of non-mutated
proteins that are not expressed or underrepresented in normal cells and the corresponding
presentation of their epitopes. Ultimately tissue specific expression such as for example in
melanocytes might give rise to non-mutated epitopes that are almost exclusively found in
melanoma [9] (Figure 2.4).

Challenges for the translation into clinical practice

Despite significant advances in the development of immunotherapies by the use of epitope-
based therapeutic vaccines, in particular the discovery of cancer-associated epitopes remains
challenging. Unfortunately, until today cancer vaccines have to a large part failed to prove
efficacy [49, 50]. However, it has been argued that the potency of cancer vaccines could in-
crease strongly in combination with more effective adjuvants, prioritized selection of epitopes
for vaccine cocktails, integration with multi-omics data or in combination with adoptive T-
cell transfer [51, 52]. In addition, the discovery of checkpoint inhibitors that can be used to
stimulate activity of cytotoxic T-cells could also be used in combination therapies to increase
effectivity of cancer therapies. However, boosting efficacy of immunotherapies has to be ap-
proached with care as this can eventually cause severe autoimmune reactions as adverse side
effect [53, 54]. Yet, given that cancer causes one of the highest death tolls world wide [8],
the successful establishment of protein therapeutic vaccines against cervical cancer such as
Gardasil or Cervavix [55, 56] and promising results in personalized cancer neoepitope vac-
cines [57], epitope-based cancer vaccines still hold great potential [58].
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2.2 Mass spectrometry of HLA-presented peptides: Immunopeptidomics

This section introduces concepts of the mass spectrometry (MS) technology using the example
of HLA-presented peptides (immunopeptidomics). A broad overview of the sample prepara-
tion and purification using liquid chromatography prior to MS is given, as well as the descrip-
tion of the key components of MS instruments. Finally, the operation modes of measurement
and the recorded signals that correspond to peptides are explained in detail.

2.2.1 Sample preparation

In order to prepare tissue samples for an immunopeptidomics analysis using MS, it is nec-
essary to purify the HLA-bound peptides in a complex procedure of multiple steps: (1) The
tissue samples need to be homogenized using physical forces using for example a scalpel,
potter and sonicator. At all times samples are treated in a cold room and kept in a lysis buffer
solution, containing detergent to lyse the cellular membrane and a protease inhibitor that
prevents degradation of peptides and proteins. (2) The homogenized tissue solution needs
to be centrifuged and filtrated under sterile conditions separating the soluble protein solu-
tion containing the HLA-peptide complexes from other insoluble parts. (3) The HLA-peptide
complexes are immunoaffinity purified using HLA-I or HLA-II pan-specific antibody-coated
beads. (4) Subsequently, mild acid is used to dissociate the HLA-peptide complexes and elute
them off the antibody-coated beads. (5) Using ultrafiltration peptides can then be separated
of the HLA complexes. (6) Finally, the received peptide solution is then purified a few more
times by filtering it with a hydrophobic column and the resulting solution of peptides can be
then directly injected into the LC-MS/MS system [14] (Figure 2.5).

2.2.2 Liquid chromatography

MS-based analytical chemistry is most commonly coupled to liquid chromatography (LC)
prior to injection of analytes into the instrument. The application of chromatography reduces
the complexity of the sample for the MS measurement, by separting peptides according to
their polar/hydrophobic properties along a chromatographic column. Various types of sol-
vents (mobile phase) and column materials (stationary phase) have been applied for peptide
chromatography, however one of the most commonly applied methods is termed “reversed
phase” and will be explained here further. It involves a polar solvent (ethanol/acetonitrile and
water) and a hydrophobic C18 column. The C18 hydrocarbon chains are attached to a solid sil-
ica base and create strong hydrophobic interactions with molecules that are transported across
its surface through the chromatography procedure. The polar solvent on the other hand sol-
ubilizes the peptides through polar interactions and transports the sample analyte through
the column, accelerated by a pump machinery. In addition, a gradient can be dynamically
applied throughout the chromatography increasing the ratio of the solvent-to-water mixture
to decrease its polarity and solubilize rather hydrophobic peptides as well towards the end of
the procedure [59] (Figure 2.6).
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Figure 2.5: Experimental workflow to extract HLA-I and -II bound peptides: Biological samples such as from
cells or tissues are homogenized, followed by highly specific immunoaffinity chromatography and further pu-
rification to yield only the presented peptide ligands without the receptor complex.

2.2.3 Electrospray ionisation

In order to enter the low-pressure gas phase inside the MS instrument, analytes need to un-
dergo a phase-transition from the liquid chromatography solubilized mobile phase. In addi-
tion peptides have to be ionized, to be accelerated by an electromagnetic field steering analyte
molecules through the instrument. Many methods have been established to achieve this, but
the most common and sensitive method earning their creators the Nobel prize, is refered to as
“soft” electrospray ionization (ESI) [60]. In this method the solute is pumped through a cap-
illary that is subjected to a strong electric field. Cone shaped drops at the tip of the capillary
(Taylor cone) diffuse into an aerosol of highly positively charged droplets that is accelerated
by the electric field pointing into the MS instrument. Throughout their trajectory, the volume
of the droplets continuously shrinks until reaching the Rayleigh limit, which causes complete
dissociation (Coulomb explosion) of the droplet into solute and analyte ions because of the
extreme charge repulsion. The resulting analyte ions are non-fragmented and carry the proto-
nation charge, which allows to assess their mass-to-charge ratio inside the MS instrument.

2.2.4 Mass spectrometry

MS instruments are composed of four basic units: (1) ion source, (2) mass filter, (3) mass an-
alyzer and (4) detector. Different systems of these four components exists and here we focus
on the setup of the Thermo Lumos Orbitrap Fusion mass spectrometer, applied in all studies
addressed by this doctoral thesis. (Figure 2.7)

Ion source

The ion source comprises the components that contribute to the ionization of the analyte at
the entry point of the MS. In the case of ESI, analytes exiting the injection capillary enter
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Figure 2.6: Coupled liquid chromatography: Analytes are separated by hydrophobic interactions with the sta-
tionary phase. Injection into the MS instrument occurs via electrospray ionisation (ESI) through a capillary
subjected to a strong electric field.

a small inlet hole, followed by heating elements and a low pressure cell inside the first MS
chamber. Thereby the droplets leaving the injection capillary can completely ionize and an
ion beam will be created. In addition, commonly an electrodynamic ion funnel counter-acts
the Joule expansion and focuses the beam. Finally ions bypass an active beam guide, to filter
out neutrally charged particles that have entered through the inlet to ensure that only charged
ions enter the following mass filter [61, 62].

Quadrupole mass filter

A quadrupole mass filter consists of four parallel metal rods creating an oscillating electrical
field due to a mix of direct and alternative current. Through variation of the oscillation fre-
quence, only ions of a certain mass-to-charge range are capable of passing the quadrupole
with a stable trajectory and are filtered out from the rest. Hence, after the mass filter only ions
of a certain mass-to-charge range continue its path through the MS instrument to the mass
analyzers. Commonly, a C-trap follows the quadrupole mass filter in order to bring packages
of ions into the same phase before passing them on to the orbitrap mass analyzer [63].

Orbitrap mass analyzer

In a first stage (MS1), ions are trapped in a multipole and sent to the orbitrap mass analyzer.
The ions measured in the orbitrap stem from the intact, non-dissociated peptide analytes
injected into the MS instrument (precursor ions). The ions are trapped in a circulating trajec-
tory “orbit” around an electrical field surrounding the core rod. By measuring the oscillation
frequency spectrum and deconvoluting the signal into spectral components using Fourier
transformation, the ion mass-to-charge ratios trapped in the field can be determined in high
resolution (MS1 precursor spectrum). The amplitude of each frequency component then cor-
responds to the intensity of a given peptide analyte which is frequently used to determine its



18 Background

Io
n 

so
ur

ce
M

S1
 m

as
s a

na
ly

ze
r

M
S2

 m
as

s a
na

ly
ze

r
D

et
ec

to
r

M
as

s fi
lte

r

U
ltr

a-
hi

gh
 fi

el
d 

or
bi

tr
ap

Q
ua

dr
up

ol
e

Ac
tiv

e 
be

am
gu

id
e

Io
n

so
ur

ce
El

ec
tr

od
yn

am
ic

io
n 

fu
nn

el

C-
tr

ap

Io
n 

ro
ut

in
g

m
ul

tip
ol

e

Li
ne

ar
 io

n 
tr

ap

In
je

ct
io

n 
ca

pi
lla

ry

LC
 sy

st
em

M
S1

M
S2

m
/z

m
/z

Intensity

Intensity

+ +
-

-

Fi
gu

re
2.

7:
Te

ch
ni

ca
l

se
tu

p
of

th
e

Th
er

m
o

Lu
m

os
Fu

si
on

m
as

s
sp

ec
tr

om
et

er
:

Io
ns

ar
e

gu
id

ed
fro

m
th

e
LC

-s
ys

te
m

to
th

e
m

as
s

an
al

yz
er

an
d

de
te

ct
or

re
su

lti
ng

in
th

e
ac

qu
is

iti
on

of
pr

ec
ur

so
r

M
S1

an
d

fr
ag

m
en

tM
S2

sp
ec

tr
a.

(F
ig

ur
e

w
ith

pe
rm

is
si

on
ad

ap
te

d
fro

m
"h

tt
ps

://
pl

an
et

or
bi

tr
ap

.c
om

/o
rb

itr
ap

-fu
si

on
-lu

m
os

")



2.2 Mass spectrometry of HLA-presented peptides: Immunopeptidomics 19

Precursior peptide ion

Fragmentation sites

N
N

N
N

H

H

H

H2

O

O

O

OR1

R2

R3

R4

OH

H

a1
b1

c1
a2

b2
c2

a3
b3

c3

x3
y3

z3
x2

y2
z2

x1
y1

z1
+

Prefix

Suffix

Figure 2.8: The characteristic a,b,c and x,y,z fragmentation sites of a peptide precursor ion [66].

abundance in the injected sample at a later stage [64].

Collision-induced fragmentation

Oftentimes the determined MS1 precursor mass is highly ambiguous, as multiple different
peptide species could result in isobaric observed masses within an instruments detection tol-
erance. Therefore, to unambigously identify the peptide sequence of an analyte entirely, the
ions are physically fragmented into smaller pieces. Hence, in a second stage (MS2) all ions
kept in the multipole ion route are subjected to a fragmentation method such as collision-
induced dissociation (CID) or high-energy collision dissociation (HCD) [65].

Throughout the fragmentation procedure, the precursor ions are bombarded with neutral no-
ble gas atoms (He, Ne, Ar) that transmit their kinetic energy (EKin) and cause the precursor
ions to undergo intramolecular dissociation into fragments. Among the various fragmentation
products, in particular characteristic prefix and suffix ions of peptides are created. The most
abundant fragments observed after this type of dissociation are commonly b and y fragment
ions that split the peptide at its amide bond connecting two distinct amino acids. (Figure
2.8) [66] :

[MH]+Precursor + EKin ! [MH]+⇤
Precursor ! [MH]+Fragment(a|b|c|x|y|z) + [M]Fragment(a|b|c|x|y|z) (2.1)

Linear ion trap mass analyzer

The mass-to-charge ratio of the resulting peptide fragment ions can be measured using a lin-
ear ion trap. Similar to a quadrupole a linear ion trap is composed of four metal rods that
create an oscillating electric field of high frequency. Consequently, it is able to trap ions in
of selected mass-to-charge ranges its inner volume by varying the oscillation frequency and
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thereby selectively passing them on to a detector (MS2 fragment spectrum).

Detector

While the orbitrap mass analyzer is able to detect the mass-to-charge ratio and their intensity
simultaneously, the linear ion trap needs an additional detector to analyze the intensity of a
given ion. The ions are thus forwarded to additional elements such as an electron multiplier
or faraday cup that register the incidence of a charged particle hitting the detector surface. The
resulting signal is then massively amplified turning the weak detection into a strong current
that is recorded [63].

MS signal components of peptide ions

The signals of a peptide that are recorded using a MS instrument span in the RT and mass-to-
charge dimension. As peptides are composed of atoms and are subjected to natural isotope
abundances, the same peptide species is usually represented by multiple isotope variants that
have slightly different masses according to isotope mass shifts. The average abundances of the
different isotope species can be accurately estimated by the so called "Averagine model" [67].
Hence, the entire MS1 signal recorded from a single peptide is not mono-isotopic and instead
is regarded as the collective group of isotope mass peaks and their corresponding RT elution
profiles. The terminology for this group of signals varies in literature and scientific discussions
but is commonly named MS1 feature, peak group or mass trace. (Figure 2.9 A).

MS2-level fragment mass signals for a given precursor ion are commonly termed "transitions".
Depending on the acquisition mode used during the measurement, transitions of the same
precursor are acquired few times to only once or highly redundant to multiple times span-
ning the RT range. Thus the resulting MS2 signal of a peptide differs among these approaches
and is the group of mass peaks corresponding to all analyte fragments in one specifically trig-
gered MS2 spectra ( Figure 2.9 B) or all fragment mass peaks in combination with their RT
elution profiles ( Figure 2.9 C).

Due to fluctuations of the background signal, chemical impurifications from the mobile phase
or buffer and contaminants MS signals are also influenced by noise signals that do not stem
from peptide analytes [68]. Extracting the RT elution profile of a specific mass peak group only
in contrast to all other peaks is referred to as an extracted ion chromatogram (XIC) and can be
advantageous to focus on the signals of interest. XICs of fragment ions are only available when
measuring in targeted acquisition modes such as reaction-monitoring or data-independent ac-
quisition. Mass peaks belonging to the same peptide ion in an XIC should follow the same RT
elution profile, which is a property used by targeted approaches to accurately identify peak
groups.
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2.2.5 Data acquisition modes

The simultanious acquisition of both, MS1 level precursor and MS2 level fragment spectra after
peptide dissociation requires complex timely coordination of the two levels of spectra acqui-
sition. In most acquisition techniques the MS instrument triggers an MS1 spectrum at regular
time intervals, measuring the ions that are sequentially eluting from the LC system. How-
ever, regarding the MS2 level, the MS instrument needs to select at a given timepoint, which
among the multitude of co-occurring precursor ions are sent for fragmentation. A number
of different acquisition techniques have been established that can be set during an MS mea-
surement to influence the way MS1 level and MS2 level spectra are concurrently acquired [69].

Data-dependent acquisition mode (DDA)

In practice the most common way of operating an MS instrument in discovery proteomics has
been achieved using the DDA mode. For each acquired MS1 spectrum the top n most intense
precursor ions are selected for fragmentation. Moreover, it is possible to specify a “dynamic
exclusion time”, that will prevent the MS instrument from acquiring fragment spectra of the
same precursor mass repeatedly if it is very abundant. This is achieved by briefly appending
precursor masses that were already triggered for MS2 fragmentation to a dynamic exclusion
list (Ldynex) which is subsequently excluded from fragmentation for the specified time (tdynex).
The DDA mode of spectral acquisition results in high quality spectra for most peptides in the
sample. Ideally, each precursor analyte recorded on MS1 level is fragmented once with a cor-
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Figure 2.10: Schematic for the data-dependent acquisition mode (DDA): MS2 fragment spectra (black crosses)
are triggered dynamically based on the most abundant intensities of MS1 precursors (top 3) in the LC-MS
peak map (illustration generated from in-house immunopeptidomics MS measurement of lung tissue). Below
the algorithm for the DDA approach that is carried out by the MS instrument is sketched in pseudo code.

responding MS2 spectra. As a result from this approach, fragmentation events are randomly
distributed over the highly abundant peaks in the LC-MS peak map. However, sections of the
LC-MS peak map that contain less intense ions are not covered by this approach. (Figure 2.10)

Data-independent acquisition mode (DIA)

When operating the MS instrument in DIA mode, there is no dependence of the MS2 frag-
mentation event on the intensity of the MS1 precursor ion. In contrast, the LC-MS peak map
is divided into a regular grid of windows and at each timepoint all windows are sequen-
tially triggered for fragmentation. The cycle time (tcycle) refers to the time how long one cycle
of fragmentation of all windows lasts. Hence, it is possible to trigger fragmentation events
in a much more reproducible way, covering nearly all including low abundant peaks in the
LC-MS map. However, due to the cofragmentation of multiple precursor ions occuring in the
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Figure 2.11: Schematic for the data-independent acquisition mode (DIA): MS2 Fragment spectra are triggered
in a reproducible grid of windows (black arrows) covering the entire LC-MS peak map (illustration generated
from in-house immunopeptidomics MS measurement of lung tissue) Below the algorithm for the DIA approach
that is carried out by the MS instrument is sketched in pseudo code.

same window, the resulting spectra are more complex, highly redundant and require decon-
volution to be interpreted by the human eye. Nevertheless, advanced computational methods
have been developed to confidently and automatically analyze DIA MS data [70] (Figure 2.11).
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2.3 Computational approaches in immunology & mass spectrometry

This section summarizes computational approaches that are applied for immunology and gen-
eral MS data interpretation. An overview over HLA binding affinity prediction algorithms is
given and the steps of peptide identification from MS raw data are explained. Finally, the
open-source software toolbox OpenMS to analyse MS data is introduced and concepts of com-
putational workflow systems, continuous integration and containerization for good practice
in programming and data analysis are introduced.

2.3.1 HLA binding affinity prediction

A milestone achievement in computational immunology has been to predict from sequence,
which partial peptide sequences of a given protein or antigen are likely to be presented by
the HLA receptor of a certain allotype. Therefore a great variety of computational approaches
have been developed to achieve this goal [71].

Accordingly, the discovery and gathering of knowledge on peptide sequence motifs corre-
sponding to the various HLA types has been used to train predictive models to recognize
sequence patterns and transfer them to any unknown input sequence. Among these, existing
methods vary concerning the data they have been trained with in the way peptide sequences
are encoded by descriptors, the mathematical, predictive models chosen and how the pre-
diction error is minimized. (Figure 2.12) Attempts to benchmark the multitude of existing
methods for HLA class I predictions, reveal superiority of particular approaches for given
alleles and test data, but indicate rather similarly good overall performance levels [72].

Early methods are based on position specific scoring matrices (PSSM) [32, 73] that derive a
scoring matrix for a given residue in a given position of the sequence. These methods were
improved using a large branch of methods that have been based on modern machine learning
approaches such as support vector machines [74], artificial neural networks [75, 76] and most
recently deep learning [77].

Exceptional among these are pan-allele prediction methods that do not only encode the pep-
tide sequence to feed to the model but also the HLA receptor sequence [78]. In this way,
peptide affinities can be successfully predicted for HLA alleles, which have only been scarcely
studied and little is known about the actual peptide sequences bound to it. While some meth-
ods have been trained with binding affinity data to derive a regression model, other methods
have focused on the prediction of presentation probability based on the separation of random
sequences from naturally HLA-presented peptides identified using MS. Most recently, these
two approaches have been combined as well [37].

While HLA class I peptide binding affinity prediction has proven to be quite accurate, many
HLA class II sequence motifs have yet to be identified. This is due to the greater combinato-
rial receptor variety as well as to the sequence binding core that is more difficult to identify
in advance and feed into a predictive model. Ultimately, recent developments on sequence
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Figure 2.12: Machine learning based peptide HLA affinity predictions: Most approaches encompass and differ
in the stages of (1) descriptor encoding, (2) model training and (3) model selection. A peptide can be numer-
ically encoded in various ways for example via position specific scoring matrices (PSSM), physicochemical
properties and auto- or cross-correlations of these values. Its binding affinity to a given HLA allele (some
methods encode the receptor sequence in addition) serves as label for the subsequent training step. During the
training procedure a chosen algorithm such as a support vector regression (SVR) or neuronal network (NN)
optimizes its internal parameters with the objective to minimize the prediction error for the given label values
of all training instances. Finally in a model selection step different trained models can be compared based on
a general accuracy measure evaluated for each model. A common measure is for example the area under the
receiver operator curve (AUC) that takes into consideration the number of false positive (FP), true positive
(TP), false negative (FN) and true negative (TN) events when evaluating the predictions on a test data set.
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deconvolution methods and complex representations of all possible sequence cores have been
derived in order to derive more accurate prediction models for HLA class II [40, 79].

2.3.2 Mass spectrometry database search

Peptide identification

High-throughput dentification of peptide sequences from raw MS spectra is a complex com-
putational task. The multitude of search strategies can be divided into database search and de
novo peptide identification. Database search relies on a database of protein sequences, that are
in silico digested into peptides and matched against mass spectra, whereas de novo identifica-
tion attempts to reconstruct the peptide sequence only from the contained fragment masses
in the spectrum. For database search of HLA peptides, a protein database human proteome is
unspecifically cleaved into all possible peptides of a given length range. For a given peptide
spectrum match, candidates are first preselected according to their precursor mass. Next, the
resulting candidates are in silico fragmented into possible fragment ions (commonly only b-
and y-ions are considered) [66]. The masses of the theoretical fragment ions are then used to
build a theoretical fragment spectrum assigning a simplified binary intensity values of 1 or 0
if a corresponding fragment mass is present or not. This simplification step is taken because
of the difficulty to accurately predict continuous theoretical fragment intensities, which has
only recently been achieved [80, 81]. Ultimately, theoretical fragment mass spectra of all pep-
tide candidates are compared with measured MS2 spectra and ranked according to a scoring
scheme. The best ranking peptide spectrum match (PSM) is then considered the most likely
candidate for a given spectrum. (Figure 2.13)

Peptide spectrum match scoring

The entire process of matching a peptide to a given spectrum for all measured spectra against
the entire database of proteins is computationally demanding and depends on the size of the
used database. Over the last decades multiple “search engines” that carry out the process
have been developed. They differ by the scoring scheme and preselection of peptide candi-
dates. One very common, simple scoring function for comparing two vectors of the theoretical
spectrum x and experimental spectrum y that is employed by the sequest [82] or Comet search
engine [83] is the cross-correlation function:

CXY(t) =

•Z

�•

x(t)y(t + t)dt (2.2)

The similarity score (xcorr) for discrete discrete signals such as encountered in mass spectrom-
etry is then calculated as:

xcorr = x0y0 �
 

Ât=75
t=�75 x0yt

151

!
(2.3)
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Figure 2.13: MS database search of MHC peptides: A database of protein sequences is in silico cleaved un-
specifically into all possible candidate peptide sequences of a given length range. Among those only candidates
are considered that match to the experimental MS1 spectrum within the precursor mass tolerance. Next the
peptide sequence candidates are in silico fragmented into b and y ions to produce a theoretical spectrum for each
candidate. Finally, the best peptide spectrum match (PSM) for a given fragment MS2 spectrum is determined
by a specific scoring scheme.

Here, xcorr represents the cross product of the discrete input signals of the candidate theoret-
ical spectrum with its experimental acquired spectrum that is translated by windows of -75
– 75 Da relative to its origin (the weight of the lightest amino acid glycin equals 75 Da). It
implies that the score of the cross-correlation at t = 0 is substracted by the average cross cor-
relation of random matches when shifting by a non-proteinogenic mass. Rewriting equation
2.3 as:

xcorr = x0

 
y0 �

Â75
�75 yt

151

!
(2.4)

allows to rapidly compute spectral comparisons with preprocessed input spectra averaged
over the translation window. Finally, in addition sparse vector data structures to efficiently
represent spectra are used to reduce memory use [83].

False discovery rate estimation

Taking the top scoring rank of all peptide candidate to a given spectrum is not enough. To cor-
rectly identify most sequences in high-throughput proteomics, it is important to define what
is a good scoring match or not. This is due to the fact that many spectra are of insufficient qual-
ity to be correctly identified by any match and some spectra might stem from contaminants
in the instrument or peptides not included in the database that should not be identified by a
false match. To separate good PSMs from insufficient quality ones, it is therefore necessary to
derive a score threshold that determines the rate of correct peptide identifications.
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In database search this is achieved by matching in addition to the correct “target” peptide
sequences the same amount of random “decoy” peptide sequences that are not supposed to
exist in the searched sample. Decoy sequences should be as similar in their sequence proper-
ties as possible to target sequences in order to avoid any bias. In practice this is for example
achieved by reversing or shuffling of all target sequences.

By evaluating the PSM score distributions of target and decoy sequences, it is then possible
to compute a score threshold, that if used for filtering, will result in PSMs that contain only
a certain percentage of “decoy” PSMs (Figure 2.14 A). The application of the score threshold
is commonly used in proteomics studies to approximate the expected false discovery rate: [84,
85]

E{FDR} =
b

a + b
=

|{di > t; 1, ..., md}|
|{ fi > t; 1, ..., m f }|

(2.5)

Here di represent the decoy PSM scores and fi all PSM scores and their respective total num-
bers (md and m f ) passing the FDR threshold t.

The FDR can then be calculated on various levels of abstraction such as on the level of PSMs,
Peptides or Proteins [86] (Figure 2.14 B). However, the search engine score is not the only
criterion to differentiate good “target” from random “decoy” PSMs. In fact many other factors
give hints about the quality of a given PSM such as for example the retention time, precursor
mass deviation, or score difference to the second best ranking peptide candidate (dCn). There-
fore a number other approaches have been developed that achieve a better discrimintation by
multivariate “target-decoy” separation [87]. For instance, the Percolator algorithm [88] is an
iterative machine learning strategy to separate targets and decoys to attempt a more accurate
approximation of the FDR. This often results in more or different peptide identifications than
with an univariate FDR estimation and is therefore at this time applied in most proteomic
workflows.

Finally, there are two more important considerations when estimating the FDR: (1) It needs to
be considered that the FDR threshold is influenced by the size of the database search space.
This is because finding good separations between targets and decoys gets more difficult due
to a greater variance in their score distributions. Hence, less targets will be found at high confi-
dence in large search spaces. (2) When considering the estimation of a FDR on large data sets,
error accumulation can lead to drastic underestimation when comparing locally and globally
evaluated computed FDR results (Figure 2.14 B) [89]. This is because the target identifica-
tions for example of a set of human proteins are likely rediscovered in various measurements
but the randomly observed decoy identifications do not reoccur. Thus, the discovery of decoy
sequence identifications will accumulate in a large set of measurements and lead to an imbal-
ance when assessing the FDR [90]. Especially on the protein or peptide level of abstraction
errors accumulate quickly over many measurements repeatedly adding different false discov-
ered proteins or peptides with every sample.
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Figure 2.14: A) The score distributions of target and random decoy PSMs are illustrated, among which targets
on average achieve better scores than decoy peptide identifications. Thus, it is possible to set a score threshold to
accept only a certain percentage of decoy discoveries as an estimate of the FDR from all peptide identifications.
B) Effects on target/decoy identification ratios for FDR estimation based on the level of PSMs, peptides and
proteins and the number of MS runs. In contrast to decoy PSMs, targets present in a sample are typically
discovered by several PSMs from multiple MS runs and can be often associated to a shared set of peptides and
proteins. This illustrates the problematic of an increasing imbalance of decoy and target identifications for FDR
estimation, due to error accumulation with higher numbers of MS measurements.
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One approach to estimate the FDR of very large data sets more accurately has been achieved
by modelling the probability of false positive identifications as a hypergeometric distribution
(Phg) [91] :

E{FDR} =
E[h f p|ht, hc f , qexp(N)]

ht

=
1
ht

Â
h f p

h f p · Phg(h f p|htp, hc f , qexp(N))
P(htp|hc f , qexp(N))

P(ht|hc f , qexp(N))

with :

Phg(h f p|htp, hc f , qexp(N)) =
(N�htp

h f p
)( htp

hc f �h f p
)

( N
hc f
)

and :

P(htp|hc f , qexp(N))

P(ht|hc f , qexp(N))

htp = ht - hfp
=

N � hc f + 1
N + 1

(2.6)

Here h f p is modelled as a random variable representing all false positive identifications, ht all
identifications, htp all true positive identifications, hc f all target identifications being matched
by at least one false positive PSM and qexp(N) the parameters of the proteomics experiment
including the database size N.

2.3.3 Computational frameworks for mass spectrometry

Diversity of analysis software

The entire computational workflow for the identification and possibly quantification of pep-
tides or proteins from MS raw measurements requires very specialized analysis processes. It
involves multiple individual steps such as “decoy” sequence generation, “database search”
and “FDR estimation". All of these steps can be highly customized and parametrized and can
make use of a multitude of existing software solutions. Several software frameworks for exam-
ple the OpenMS framework for computational MS [17, 92, 93] or the Trans Proteomic Pipeline
(TPP) [94] exist, that allow executing individual MS data processing steps. In particular, the
OpenMS framework has been applied and extended throughout this thesis work. OpenMS
is implemented in C++ and is an open-source library that provides unrestricted access to a
multitude of MS-related functions and maintained by a community of developers.

The OpenMS toolbox

The OpenMS software allows interaction through a multi-layer software architecture. The fun-
damental functions of the C++ library are not only available as part of a code library, but
they are also directly applicable by more than 180 executable task-specific C++ tools that were
built from the code base and read and write results in standardized formats [17, 93]. In ad-
dition bindings to easy-to-use scripting languages such as Python and R are provided that
allow rapid prototyping of desired applications. Moreover, it is possible to wrap existing soft-
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Figure 2.15: A) The multi-layer software architecture of the OpenMS toolbox: The foundation of the software
is based on a comprehensive C++ code library that includes many functions and algorithms for basic tasks
regarding mass spectrometry. From this more than 180 executable application-specific C++ tools have been
generated and the code is also accessible via bindings to scripting languages such as Python or R. Finally work-
flow systems can be build around tools and scripts to connect the building blocks into functional systems [17,
92, 93, 95].
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ware tools that are not yet integrated into the OpenMS code by creating “third-party adapter
tools”. In this way it is possible to create whole workflows combining different processing
steps in the desired order with a given parametrization. (Figure 2.15) In contrast to “black-
box” closed-source MS software [96] this gives an enormous flexibility to the development of
analysis workflows such that they can be tailored to specific problems. Finally, many of the
available OpenMS tools are parallelizable - meaning that they allow scalable execution times
on large computer systems. This is another major advantage to many software solutions as
large amounts of data can be processed in parallel on high-performance computing systems.

2.3.4 Workflow systems

Diversity of worklow systems

A workflow describes the orderly consecutive execution of a chain of processes. Hereby, the
linkage between each process can range from simple linear to complex multi-connected de-
pendencies. Several workflow systems such as KNIME [97], Nextflow [98] or Snakemake [99]
exist that can be used for the arrangement of steps in a given workflow. For instance, the KN-
IME workflow system is graphical, allowing to arrange execution steps symbolized as nodes
via directed edges in a graphical user interface (GUI) [95]. Nextflow on the other hand for
example does not provide a GUI but allows to define clearly structured processes in the java
based groovy language that are executed in the respective order. Hence, these systems are
powerful as they allow easy understanding, sharing and reproducibility of complex work-
flows such as required for the analysis of MS data. As bioinformatics pipelines should be
designed according to the FAIR (findable, accessible, interoperable and reusable) data prin-
ciple [100], workflow systems and publishing them in online available hubs or repositorys
provide a feasible solution to attain to the FAIR principles [101] (Figure 2.16).

Continuous integration and deployment

Continuous integration and deployment are modern techniques for agile software develop-
ment. It involves the continuous testing and installtion of the software on various systems
throughout the development. Only when passing all tests an introduced change should be
accepted. Today continuous integration and deployment have become a state-of-the-art pro-
gramming practice, in order to ensure reliable performance when changing features and pro-
cesses in high-quality computational software [102]. Continuous build systems allow auto-
mated testing of rudimentary functions, classes, integrated tools and entire workflows [103].
Hence, when developers commit a change to the code base, the new code and its effect on
a given tool or workflow will be first automatically tested by various predefined unit tests,
small or real sized test data sets. Once executed the test results will be communicated back to
the developer establishing a feedback loop. The continuous integration and deployment there-
fore ensures the production of the anticipated results and prevent unforeseen changes. For
these reasons, all workflows established as part of this thesis and the OpenMS computational
toolbox itself are developed using continuous integration systems.

Containerization

Ultimately, in order to achieve reproducibility and interoperability of workflows on the vari-
ous available computer systems and their respective environments, containerization has been
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Figure 2.16: An example of an OpenMS data analysis workflow implemented through the graphical workflow
system KNIME. Nodes correspond to individual computational steps in the analysis pipeline and edges indicate
data input and output flow between the steps.

proven to be a successful solution. Containers such as provided through docker [104] or sin-
gularity [105] are lightweight virtual machines that are independent of the used computer
system and work as a portable environments that can be set up to contain all dependencies
required by a given program [106]. Hence, using containers to store and execute a given work-
flow allows to execute the workflow on any system with the exact environment it requires for
successful execution.





CHAPTER 3

MHCquant

"Automated and reproducible data analysis for immunopeptidomics"

This chapter includes partially identical or adapted content with permission from:

MHCquant: Automated and Reproducible Data Analysis for Immunopeptidomics

L. Bichmann, A. Nelde, M. Ghosh, L. Heumos, C. Mohr, A. Peltzer, L. Kuchenbecker, T.
Sachsenberg, J. S. Walz, S. Stevanović, H.-G. Rammensee, O. Kohlbacher.

J. Proteome Res. 18, 3876–3884 (2019)

A detailed description of the contributions to the project by coauthors is provided in the
Appendix D
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3.1 Introduction

Numerous experimental methods have been developed and optimized to efficiently purify
and extract HLA ligands from biological samples [14, 107, 108], yet computational approaches
in immunoinformatics have only scarcely targeted the processing of MS raw data, specifically
regarding the HLA-presented peptidome [71, 109, 110].

A major drawback is that the immunopeptidome arises from rather unspecific cleavage steps,
hence the database search space is much larger than that of tryptic peptides from a typical pro-
teomics experiment [20, 21]. The fact that a significant proportion of the immunopeptidome
may be derived from post-translational splicing and non-canonical reading frames renders
the problem even more complex [111–115]. The Human Immunopeptidome Project (HIPP)
has thus identified the lack of tailored MS data processing strategies as a major hurdle to
improving current analysis protocols [113, 116]. Dealing with these large search spaces and
big data sets has led to false discoveries and therefore also requires a robust estimate and
rigorous control of false discovery rates (FDRs) to prevent accumulation of false positive iden-
tifications [84, 114, 117]. In addition, accurate quantification of epitope abundance with few
missing values remains a challenge and could lead to new immunological insights [118].

With the increasing availability of suitable clinical samples there is now a high demand for
automated, reproducible pipelines allowing quick processing of experimental data, as well as
the large-scale re-analysis of the growing wealth of public data, for example from reposito-
ries such as PRIDE [119] or SysteMHC [120]. Previously, immunopeptidomics data has been
processed using various other tools and pipelines [112, 114, 120, 121], however at the time
of this work there existed no containerized, version-controlled workflow solution specifically
tailored to immunopeptidomics data. Recently, the field has attracted more researchers in this
area and a similar new approach has been developed [22] and others might follow.

This chapter introduces MHCquant - a novel open-source computational pipeline to identify
and quantify HLA-presented peptides from large-scale HPLC-MS raw data. The processing
steps encompass database search, FDR estimation, label-free quantification, and HLA-binding
affinity prediction. The FDR can be evaluated on multiple levels (PSM, peptide, or protein)
and an optional setting allows to refine the FDR on the subset of confident and predicted
binding PSMs leading to the rescue of high-confidence PSMs below the conventional FDR
threshold [117]. Moreover, the pipeline is containerized, versioned, and available as part of
the nf-core initiative for reproducible bioinformatics workflows [101]. Container-based virtu-
alization allows portability, numerical stability, and efficient parallel execution on HPC en-
vironments enabling reproducible results for high-throughput computational analysis. In ad-
dition, the KNIME integration platform [97] offers easy to use and customizable workflows
within a data analysis environment [122]. The workflow has been integrated into the biomed-
ical data management platform qPortal of the Quantitative Biology Center Tübingen as a
web-based option [19]. In contrast to other available proteomics software, MHCquant applies
targeted feature extraction as a method for label-free quantification and achieves nearly com-
plete quantification of all identified peptides, which can be transferred across runs [16]. At the
heart of the identification workflow, we use well-stablished tools (i.e., Comet and Percolator),
which are both computationally efficient and highly sensitive ensuring sensitive discovery of
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neoepitopes.

While we compared MHCquant’s performance on a benchmark data set of HLA-I immunopep-
tidomics samples, where it yields a superior identification rate compared to other solutions, all
settings can be adapted for HLA-II data as well. Application of the MHCquant workflow to a
previously published melanoma data set (PRIDE: PXD004894 and SysteMHC: SYSMHC00023)
revealed fourteen instead of eleven identified mutated neoepitopes reported in the initial pub-
lication (27% increase). Experimental validation with spectra of synthetic peptides confirmed
these identifications.
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3.2 Materials and Methods

Biological samples

In order to generate a comprehensive benchmark data set for MHC ligand identification, we
generated LC-MS/MS runs from both healthy donors and established cancer cell lines. A
data set of 38 HLA immunopeptidomics raw files from peripheral blood mononuclear cells
(PBMCs) obtained from nine healthy donors as well as four JY cell line samples were used
to assess the performance of the pipeline at each processing step. PBMCs from tissue sam-
ples were collected at the University Hospital of Tübingen after written informed consent of
donors in accordance with the Declaration of Helsinki. Four-digit HLA typing was carried out
by the Department of Hematology and Oncology, University Hospital Tübingen, Germany us-
ing sequence-based typing (Luminex). HLA typing characteristics of samples are provided in
(Table C.1). JY cells were cultured to obtain 2x107) cells, centrifuged at 1,500 rpm for 15 min
at 4 °C, washed twice with cold PBS and aliquoted in four vials containing 75x106 cells frozen
at -80 °C. For the assessment of the quantification performance, four separate aliquots were
spiked with 66 isotope-labeled peptides with known HLA restrictions yielding concentrations
of 0.1, 1, 10, and 100 fmol respectively. A detailed table of the exact sequences utilized, as well
as heavy isotope labels is contained in the original publication bichmann et al. [123] Support-
ing Material Table S3.

Peptide synthesis

Peptides were synthesized using the automated peptide synthesizer Liberty Blue (CEM) using
the 9-fluorenylmethyl-oxycarbonyl/tert-butyl (Fmoc/tBu) strategy. In case of isotope-labeled
peptides V(13C5, 15N), L(13C6, 15N) or P(13C5, 15N) was used. For the carbamidomethylation of
synthetic peptides 1 mM dithiothreitol was added, after 1 h of incubation at room temperature
5.5 mM iodoacetamide was added and incubated in the dark for 1 h.

Analysis of HLA ligands by LC-MS/MS HLA complexes were isolated by standard immuno-
affinity purification [124, 125] using the pan-HLA-I specific W6/32 antibody (produced in-
house) as previously described [126]. Sample amounts and applied antibody amounts are
specified in Supporting Material Table S1. HLA-peptide extracts were analyzed in two to five
technical replicates. Peptides were loaded on a 75 µm x 2 cm C18 Nano Trap Column and
separated by nanoflow high-performance liquid chromatography (RSLCnano, Thermo Fisher
Scientific) using a 50 µm x 25 cm PepMap rapid separation liquid chromatography column
(Thermo Fisher Scientific) and a gradient ranging from 2.4 % to 32.0 % acetonitrile over the
course of 90 min. Eluting peptides were analyzed in an online-coupled LTQ Orbitrap Fusion
Lumos mass spectrometer (Thermo Fisher Scientific, Resolution: 120,000 for MS1 acquisition
and 30,000 for MS2, both at 200 m/z) equipped with a nano electrospray ion source using data
dependent acquisition mode (DDA) employing a top speed collision-induced dissociation frag-
mentation method (CID, normalized collision energy 35%). Survey scans were performed in
the orbitrap at a resolution of 120,000. MS/MS scans were detected in the orbitrap at a reso-
lution of 30,000. Dynamic exclusion was set to 7 s. Mass range was set to 400-650 m/z with
charge states 2+ and 3+ selected for fragmentation.
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Validation of synthetic peptide spectra

All potentially novel identified mutated neoepitopes were synthesized as synthetic peptides
and analyzed using the identical method and instrumental settings as described in a previ-
ous publication [46]. Measurements were carried out at the Proteome Center Tübingen on an
online-coupled QExactive mass spectrometer. Spectra were inspected and annotated using the
OpenMS tool TOPPView (version 2.4.0).

Bioinformatic pipeline construction

MHCquant is an integrated data processing pipeline (Figure 3.1) implemented in Nextflow
and KNIME. It includes a range of different tools from the OpenMS software package (version
2.4) [17] and other scientific software from the proteomics and immunoinformatics domain
(Table 3.1). Some of the steps are optional and will only be carried out if it was specified when
executing the workflow. The processing steps of MHCquant are discussed in the following in
detail:

pipeline input The input to the pipeline is four-fold and specified in a sample sheet: a set
of LC-MS/MS raw files (mzML or raw format), a protein database (in FASTA format), a variant
calling file (VCF format) containing putative neoantigenic mutations and a file specifying the
HLA allotypes (in TSV format).

raw file conversion In a first, optional step provided DDA raw MS measurements
(Thermo Raw vendor format) are converted to the open, XML-based mzML format [127].

decoy-generation In order to compute a FDR based on the target-decoy approach ran-
dom decoy sequences need to be generated and appended to the input fasta database. For this
all sequences in the input fasta database are reversed in a first step and appended using the
OpenMS-DecoyGenerator tool.

addition of variants to the protein database If specified annotated genomic
variants from the input VCF file are translated into mutated protein sequences and appended
to the provided FASTA database using the Fred 2.0 Immunoinformatics framework [128].
Within this procedure transcripts that contain the annotated variant are fetched from the on-
line availble Ensembl database [129] using the BioMart API [130]. The corresponding single
nucleotide changes caused by the variant are introduced to the transcripts and their respective
translated protein sequences are appended to the protein database.

database search The database search is carried out applying the proteomic search en-
gine Comet [83] and unspecific enzymatic restriction allowing to search the mass spectrometry
data for all possible peptides of a defined mass, length and charge range. It is wrapped into
the OpenMS adapter tool CometAdapter that was implemented in C++ and added to the
OpenMS software code base for this purpose. In this way it is possible to execute the database
search in a standardized way with well defined parameters and an XML-based output format
(IdXML) that can be read by follow-up OpenMS processing tools. A multitude of parameters
are available to tune the search engine to match the respective instrumental requirements for
example the precursor and fragment mass tolerances. In addition, it can be specified whether
to search for fixed or variable mass shifts caused by post-translational modifications that can
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be selected from all available pre-defined OpenMS modifications in the MS data and which
fragment types should be included in the PSM scoring.

identification-based retention time alignment MHCquant corrects for reten-
tion time shifts across replicate MS runs that serve as input to the pipeline. For this a linear
retention time alignment is computed based on shared identifications across runs passing a
given q-value threshold. This functionality is integrated by applying the OpenMS MapAligner-
Identification tool.

fdr estimation The FDR is computed on the merged set of all identifications using the
post-scoring tool Percolator (version 3.0.1) [88]. Merging the identifications of a given sample
group is beneficial for the FDR scoring as it reduces the error accumulation to each sample-
group instead of for each individual MS run. Moreover, the semi-supervised machine learn-
ing strategy of the Percolator algorithm gets access to more training data for its FDR scor-
ing model, which should improve its accuracy. Percolator is executed by using the OpenMS
PSMFeatureExtractor that computes multiple scores for each PSM, excluding enzymatic re-
striction specificity information for the scoring model and passes them to the OpenMS Perco-
latorAdapter tool to train the scoring model.

subset fdr estimation In order to obtain a better FDR estimate, MHCquant has the
option to re-evaluate the FDR on the subset of PSMs passing either a conventional q-value
or a given predicted affinity threshold (subset FDR mode). Corresponding reversed decoy or
target counterparts of identified sequences in this subset are kept for the rescoring as well,
even when not fullfilling the q-value or affinity score thresholds. A smiliar variant of this
technique had previously been applied successfully to similar problems in metaproteomics
yielding superior results [117].

label-free quantification Targeted, identification-based, label-free quantification is
achieved through the OpenMS tool FeatureFinderIdentification [131]. In this step the areas of
MS1 chromatograms in proximity to the PSM of a given peptide identification are integrated.
Similar to the matching-between-runs procedure, PSMs that were identified in another MS
runs of the same sample group can be transferred and their MS1 area integrated in a targeted
manner in other MS runs as well to reduce missing values in the peptide quantification.

feature linking Quantified peptides of each MS run from the same sample group are
finally linked across runs to create consensus features. This functionality is provided through
the application of the OpenMS tool FeatureLinkerUnlabeledKD. Conflicting identifications
mapping to the same feature are removed by choosing the best scoring identification.

text and mztab export Finally, results are exported in plain tab separated text and the
community standard format mzTab [132].

mhc affinity prediction If specified, exported peptide sequences can be annotated
with affinity prediction results based on MHCflurry, [133] MHCnugget [77] in the Nextflow
implementation and predictors available in the ImmunoNodes toolbox (SYFPEITHI, NetMHC
and PickPocket) in the KNIME implementation [122]. All MHC binding predictions within
the workflow are carried out on corresponding unmodified peptide sequences.
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Option:

Figure 3.1: Simplified scheme of the MHCquant peptide identification workflow: MS raw files (mzML), a
protein database (FASTA), a variant calling file (VCF) and an HLA allele table serve as input. Database
matching is carried out using the Comet search engine. Identifications from each sample are used to carry
out a retention time alignment using MapAlignerIdentification (OpenMS). The false discovery rate (FDR) is
calculated based on reversed decoy sequence hits using Percolator. Optionally, the FDR can be re-evaluated on
the subset of PSMs passing either a conventional q-value or a binding affinity threshold, yielding increased
identification rates. The resulting identifications are quantified using FeatureFinderIdentification (OpenMS).
Search results are exported as community standard format (mzTab), as a summary table and scored by available
binding predictions.
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Step Requirement Name Employed software tool

1 (optional) Generate proteins
from variants

FRED2.0 Python library
Preprocessing

D
ata

2 (optional) Generate decoy-
database

OpenMS-DecoyGenerator

3 (optional) DDA raw file conver-
sion

ThermoRawFileParser

4 (optional) Peak picking OpenMS-PeakPickerHiRes

5 required Database search OpenMS-CometAdapter

search

D
atabase

6 required Peptide indexing OpenMS-PeptideIndexer

7 required Calculate FDR for ID-
based RT alignment

OpenMS-
FalseDiscoveryRate RT

alignm
ent

Identification-based

8 required Select IDs by FDR for
RT alignment

OpenMS-IDFilter

9-11 required ID-based RT align-
ment

OpenMS-
MapAlignerIdentification

12 required Merging of all IDs OpenMS-IDMerger

13 required Extract PSM features
for FDR scoring

OpenMS-
PSMFeatureExtractor estim

ation

FD
R

14 required FDR scoring OpenMS-
PercolatorAdapter

15 required Filter by q-value OpenMS-IDFilter

16-19 (optional) Predict MHC class I
affinities of all PSMs

MHCFlurry

estim
ation

SubsetFD
R

20 (optional) Filter by q-value or
MHC affinity

OpenMS-IDFilter

21 (optional) Rescore SubsetFDR OpenMS-
PercolatorAdapter

22 (optional) Filter by SubsetFDR
q-value

IDFilter



3.2 Materials and Methods 43

Step Requirement Name Employed software tool

23 required Quantify IDs targeted OpenMS-
FeatureFinderIdentification

Q
uantification

Label-free

24 required Link extracted features OpenMS-
FeatureLinkerUnlabeledKD

25 required Resolve conflicts OpenMS-
IDConflictResolver

26 required Export text OpenMS-TextExporter sum
m

ary

O
utput

27 required Export mzTab OpenMS-MzTabExporter

28 (optional) Predict MHC class I
affinites

MHCFlurry prediction

M
H

C
affinity

29-31 (optional) Predict MHC class II
affinites

MHCNuggets

32 (optional) Predict theoretical
class I neoepitopes

FRED2.0 Python library

annotation

N
eoepitope

33 (optional) Predict theoretical
class II neoepitopes

FRED2.0 Python library

34 (optional) Resolve class I neoepi-
topes

Custom Python script

35 (optional) Resolve class II neoepi-
topes

Custom Python script

Table 3.1: Detailed description of all steps within the Nextflow implementation of the MHCquant workflow
version 1.2.6. The steps and their names may vary across versions of MHCquant as well as between the KNIME
implementation of the workflow. Some of the steps are grouped together in this table but the implementation
involved the creation of several steps due to file-handing, reformatting, pre- or post-processing files of precedent
or follow-up steps. All analysis in this chapter was carried out with the Nextflow implementation.
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neoepitope annotation In order to make sure that peptide identifications associated
with mutated proteins appended to the protein database in a previous step indeed contain
the mutation, all theoretical peptides of the specified length range containing the mutation
are generated. This set of theoretically possible peptides is finally compared with all peptide
identifications and the common peptides, the causing genetic variant and source gene are
reported in a csv file.

containerization and workflow systems The aforementioned tools are integrated
in a pipeline and containerized into an online accessible docker image [104]. Implementation
in Nextflow [98] as well as in KNIME allows easy execution on various HPC and compter
infrastructures [97]. Implementation in Nextflow based on the nf-core community template
for reproducible bioinformatics workflows [101] allows easy execution on various HPC and
compute infrastructures such as google cloud or amazon web services. Moreover support for
multiple functionalities is provided such as for various container systems (e.g., docker, singu-
larity, podman) and environment management platforms (e.g. Conda).

Reanalysis of existing data and benchmarking

In order to assess the performance of available proteomic search engines we processed the
aforementioned data set acquired for this study (PRIDE: PXD011628) as well as a published
melanoma data set [46] containing neoepitopes (PRIDE: PXD004894).

mass spectrometry database search For all search tools unspecific cleavage was set
as enzyme specificity and oxidation of methionine residues as the only variable modification
(maximum number of modifications per peptide set to three) was selected. In order to achieve
a fair comparison, all benchmark search results were assessed with a FDR on the level of PSMs.
In contrast, the reanalysis of the malignant melanoma data set [46] required carbamidomethy-
lation of cysteines as additional fixed modification, as iodacetamide was used in the respective
purification protocol and the FDR was assessed on peptide-level. The precursor charge was
fixed to 2-3 to narrow the search space and avoid susceptibility to the identification of contam-
inant proteins [134] and the precursor mass tolerance was set to 5 ppm. For MHCquant all
search results in this publication were achieved using the Nextflow implementation (revision
1.2.6 - https://www.openms.de/mhcquant/). Within MHCquant the Comet search engine (ver-
sion 2016.01 rev. 3) [83] parameter fragment tolerance bin was set to 0.02 Da and the fragment
bin offset to 0 as recommended for high-resolution instruments. Fragmentation was set to CID
and neutral losses were enabled for peptide-spectrum matching. The digest mass range was
set to 800-2,500.

Where applicable, identical parameters were used for the other search tools and the per-
colator enzyme specificity was set to no enzyme. In order to benchmark the performance
MS-GF+ [135], the Comet search engine step within MHCquant was replaced with the MS-
GF+ search engine (version 2017.01.13) and the instrument option was set to high resolution.
PEAKS [136] was used within PEAKS Studio (version 8.5) and only database search and no de
novo results were used for the benchmark. SequestHT [82] and Mascot (version 2.2.04) [137]
were used within Proteome Discoverer (version 1.4) including Percolator (version 2.0.4). For
MaxQuant (version 1.6.3.3) [96] the additional first search peptide tolerance was set to 20 ppm
and the instrument type to Orbitrap. Match between runs was enabled – using a match time
window of 0.7 min and an alignment time window of 20 min. In addition, the MaxQuant
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protein-FDR Parameter was set to 0.9 to have comparable results with the other search en-
gines and filter on PSM FDR only. All search engine results were filtered by a stringent length
criterion of 8-12-mers only in order to compare only the most abundant HLA bound pep-
tides. While this is the default setting of MHCquant, these length restrictions can be readily
modified by changing the corresponding parameters.

hla affinity prediction Epitope binding affinity predictions for PSM subset filtering
were computed using MHCflurry (version 1.0) and a binding affinity threshold of 500 nM -
the default setting of the MHCquant (revision 1.2.6) Nextflow implementation. For the bench-
mark results, predicted HLA binding peptides were defined as the union of the predicted
binders from NetMHCpan (version 4.0), [37] NetMHC (version 4.0), [138] MHCflurry (version
1.0) [133] SYFPEITHI (version 1.0), [32] and PickPocket (version 1.0) [139]. For NetMHC and
NetMHCpan rank score thresholds of <2%, for MHCflurry and PickPocket molar affinities
<500 nmol/l and for SYFPEITHI half-maximal scores were required for classification as pre-
dicted binding peptides. Overlaps of search results and binding predictions were computed
using Jvenn [140].

retention time prediction Retention time predictions were carried out as an addi-
tional post-processing step external to the pipeline. For this the OpenMS tools RTModel and
RTPredict based on nu-support vector regression (oligo-kernel, n =0.5, p =0.1, c =1, degree =1,
border_length =22, kmer_length =1, S=5) [141–143] were employed. Training was performed
on the peptide retention times of the 100 most confident consensus identifications (lowest q-
value) of each sample without modifications. Subsequently all other peptide identifications of
the corresponding samples were predicted using the trained models. The default parametriza-
tion was kept and not further optimized using a cross-validation since most retention times
were predicted within +/- 12.5min of their experimentally determined retention times. The
performance of the search engine results from the benchmark was evaluated applying a linear
least squares fit to compute a 99 % prediction interval for the regression of predicted versus
observed retention time using the scipy [144] and sklearn Python modules [145].
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3.3 Results

MHCquant is more sensitive than previous approaches

In order to assess the performance of the MHCquant pipeline, we compared the HLA-I
peptide identifications from an in-house benchmark data set of nine PBMC and four JY
cell line samples against the open source available proteomic search engine MS-GF+ [135]
within OpenMS, the commercially licensed search engines PEAKS within PEAKS Studio, Se-
questHT [82] and Mascot [137] within Proteome Discoverer and the Andromeda search engine
within MaxQuant [96].

We evaluated the performance of each search tool (1) by the number of peptide identifications
that are predicted HLA-binders at a q-value threshold of 1%, (2) by the rate of predicted HLA-
binding peptides among all peptide identifications. (Figure 3.4 A) To avoid bias of a specific
epitope prediction method we applied five different HLA binding prediction tools (NetMHC-
pan 4.0 [37], NetMHC 4.0 [138], MHCflurry [133], SYFPEITHI [32] and PickPocket [139]).

MHCquant in subset FDR mode identified the highest number of unique, predicted HLA-
binding peptide sequences, directly followed by PEAKS and MHCquant in default mode.
Peptide hits produced by all search engines follow the expected [41, 146] distribution of pep-
tide lengths ranging from 8-12 amino acids and a maximum at length nine. Regarding the
quality of peptide identifications, all search engines reveal rates of 87 % to 99 % HLA bind-
ing peptides among their identifications as seen previously for PBMC and JY samples [147].
Moreover, for none of the investigated search engines we observed evidence for any motif bias
as all tools performed equally across the various allotypes, non-tryptic and tryptic restriction
sequence endings Figure ?? and Figure A.4 in the data set. SequestHT, Mascot, and MaxQuant
achieve slightly higher and PEAKS the lowest rates of binders among their identifications in
comparison with the other tools. Conversely, SequestHT, Mascot, and MaxQuant (Figure 3.4
A) yield a smaller absolute number of identified predicted HLA-binders.

The overlap of peptide identifications between search engines indicates that most unique iden-
tifications are revealed using MHCquant and PEAKS (Figure 3.4 B) and the rate of predicted
binders among these unique identifications is greater 70 %. In fact, all additional unique iden-
tifications yielded using MHCquant’s subset FDR refinement option are predicted binders.

In conclusion, we find that the MHCquant pipeline provides the best trade-off between the
number of identified peptides, the rate of predicted HLA-binders among the search engines
tested in this benchmark.

Validation of identified peptides using a retention time predictive model

In order to gain more confidence into the uniquely identified peptides of MHCquant applied
in our benchmark, we evaluated the retention time prediction error for all the peptides iden-
tified at 1% FDR in consensus of all search engines (all) and those that were identified by
MHCquant in default and subset mode uniquely (unique). The predictive model was trained
on the retention times of the 100 most confident consensus peptide identifications.
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Figure 3.4: Comparison of the pipeline performance. A) The absolute number of identified peptides that are
predicted HLA-binders and the rate of predicted HLA-binding peptides among all identifications (median an-
notated) from 13 samples (9 PBMC and 4 JY) comparing the described MHCquant pipeline at 1% PSM-FDR
against PEAKS (PEAKS Studio), MS-GF+ (OpenMS), SequestHT, Mascot (Proteome Discoverer) and An-
dromeda (MaxQuant). B) Uniquely identified peptide numbers and their corresponding percentage of predicted
binders (indicated in brackets) across the different search engines and their overlap.
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Finally, the reliability of peptide identifications of MHCquant was assessed by the correspond-
ing percentage of points within the prediction interval comparing (1) all+unique (2) unique
(3) unique from a single sample and (4) decoy identifications. In particular the results provide
confidence in the additionally identified peptides of MHCquant since 84 - 98% of the addition-
ally identified peptides in contrast to 34 % percent of random decoy peptide hits lie within the
99% prediction interval of retention time predictions that were trained on the search engine
consensus identifications. (Figure 3.5) However, it is also evident that there is a greater vari-
ance among the increased peptide identifications retrieved using the subset FDR mode. Hence,
it indicates that while more peptides can be discovered in this way, running the MHCquant
workflow in this mode might be underestimating the actual FDR to some extend.

The influence of subset filtering on the identification performance

In order to better understand the effect of subset FDR re-evaluation, we computed the respec-
tive quantities of spectra, PSMs and peptides at each of the consecutive processing steps for
MHCquant in both subset and default PSM FDR mode of action.

While the MS samples contain on average around 25,000 MS/MS spectra, the retention through
the pipeline shows that these result in around 15,000 target PSMs. Subsequent subselection
of PSMs based on predicted HLA-binding affinity or an initial q-value threshold of 1 % PSM-
FDR drastically reduces the number of target PSMs to a subset of around 6,000 in subset FDR
mode. Re-evaluation of the FDR on the reduced subset of PSMs leads to a median number
of 4,000 unique peptides that can be identified at 1 % PSM-FDR control, computed through
Percolator (Figure 3.6). As compared to assessing the FDR on the entire set of PSMs in median
12 % more peptides are identified in this way. PSM features that had the highest impact for
the iterative refinement procedure of Percolator were mass accuracy-based only and we were
unable to identify other features improving this step further.

Using targeted label-free quantification 99 % of these identified peptides can be achieved [131].
Ultimately, depending on the sample characteristics, around 87 % to 99 % of the unique iden-
tified and quantified peptides are predicted to be HLA-binders of the respective alleles of a
given patient.

Validation of the peptide quantification performance

In an additional experiment to validate the quantification performance of MHCquant, 66
isotope-labelled spike-in peptides in a log10 concentration series from 100 fmol to 0.1 fmol
were spiked into JY cells and separately measured. All samples were co-processed treating
identifications across runs as internal.

As a result, 58 of these peptides were identified and could be quantified in all runs. When
separately processing the MS runs of each concentration step, fewer spiked-in peptides could
be identified, especially at concentrations below 10 fmol. Hence, the transfer of IDs across
the MS runs that is an intrinsic step of the MHCquant workflow, allowed to quantify these
peptides even at concentrations lower than 10 fmol. Consequently, the quantification results
reveal a linear trend for the spiked-in peptide concentrations. (Figure 3.7 A) In addition, all
predicted HLA-binding peptide LFQ-intensities of the JY cell background were compared in
a volcano analysis (Figure 3.7 B), highlighting peptide LFQ-intensity stability in the JY cell
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Figure 3.5: Comparison of retention time predictions and observed retention times for search engine consensus
within the benchmark (All) and unique identifications of MHCquant (Unique). Each tile in the plot represents
the corresponding set of peptide identifications mentioned in the upper left. Points represent peptide identifica-
tions in a given set of samples and are colored by its 2d-kernel density computed over the point distribution.
N depicts the number of points in each tile and the percentage of points that fall in the prediction interval (red
lines) is annotated in the lower right.
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Figure 3.6: Number of spectra or peptides identified in each of the steps (depicted on the right) comparing
MHCquant in the default (blue) and subset FDR mode (orange). The initially large number of spectra is
drastically reduced to a subset of target PSMs in subset FDR mode. Re-evaluation of the FDR on this subset
results in an increase of around 12 % more uniquely identified peptides compared to the default mode. 99 %
of the peptides satisfying the FDR condition undergo targeted, label-free quantification and binding affinity
predictions estimate that in median 95 % of these final peptides are HLA-binders.
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differing in their chromatography. D) Quantified intensities of the same peptides across two replicates result in
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background in contrast to the spike-in peptides.

The performance of the integral step of ID-based retention time alignment within MHCquant
(Figure 3.7 C) was evaluated on two chromatographically distinct samples from our dataset
(PBMC001, PBMC008), resulting in a correction of retention time differences across the two
runs. Finally, the reproducibility of all peptide intensities measured in two replicate measure-
ments of JY cells (Figure 3.7 D) was compared, resulting in a high correlation across measure-
ments.

Discovery and confirmation of mutation-derived neoepitopes

To check whether the increase in sensitivity of MHCquant over other commonly applied
search tools could lead to new discoveries in published immunopeptidomics data sets, we
reprocessed the MS raw measurements of a recent malignant melanoma study, containing
mutated neoepitopes that were previously identified using the MaxQuant environment 1.5.3.
Consequently, we were able to corroborate all of the previously published neoepitope hits
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using MHCquant (Table 3.2).

Patient Neoepitope Mutation UniProt Gene MHC Restriction

Mel8 SPGPVKLEL P169L A0A0C4DGU5 NOP16 B*07:02

Mel5 ETSKQVTRW E161K Q06546 GABPA A*25:01
YIDERFERY Q125R Q15019 37500 A*01:01

Mel15 GRTGAGKSFL S1342F Q92887 ABCC2 B*27:05
RLFKGYEGSLIK P46L B4E3T4 RBPMS A*03:01
GRIAFFLKY S363F Q96C24 SYTL4 B*27:05
RIKQTARK T4I Q6NXT2 H3F3C A*03:01
ASWVVPIDIK E689K P80192 MAP3K9 A*03:01
KLILWRGLK P333L Q86XI2 NCAPG2 A*03:01
KLKLPIIMK M1482I Q13023 AKAP6 A*03:01
LPIQYEPVL P52L Q15436 SEC23A B*35:03
FVPPTAISHF S584F Q9NR30 DDX21 B*35:03
ETLKPGTC*VKR P778L P49790 NUP153 A*68:01
SRFLSQLDK E183K Q13535 ATR B*27:05

Table 3.2: Identified neoepitopes from published melanoma data set [46]. Mutated amino acids are colored in red
in the peptide sequence. The additionally identified peptides at the bottom of the table are highlighted in bold
letters and the cysteine residue marked with an asterisk carries a carbamidomethyl modification. For each peptide
the highest scoring MHC restriction is annotated in addition.

Moreover, we discovered three additional hits for novel potentially mutated neoepitopes (Ta-
ble 3.2) that were not reported in the original publication and verified them by comparison
to spectra of their synthetic peptide counterpart (Figure 3.8 and Figure B.1). All three peptide
hits show quantities in a similar range as the previously detected neoepitopes that rank in the
middle of all intensities in the samples. One of the peptide hits (NUP153 P778L) carries a cys-
teine carbamidomethyl modification, which may have prevented its detection in the original
publication. Yet, carbamidomethyl modified peptides represented only about 2% of all identi-
fied peptides in our reanalysis with MHCquant. In conclusion, MHCquant allows searching
immunopeptidomics data in a reproducible way and its increased sensitivity can potentially
lead to novel discoveries.



3.3 Results 55

E T L K P G T C V K R

F V P P T A I S H F

S R F L S Q L D K

Synthesis

Experiment

a2+

y1+ b2+
y2+

y72+

y3+

y82+

y5+
y4+

y6+

y7+ y8+

y1+ y2+
y3+

b3+
b4+

b5-H2O+

y5+ b6+ b7+
y7+

b8+

[M+H]2+

100

50

100

50

0

100

50

100

50

0

MZ [Th]

B

C

D

100

50

100

50

0

1100900500300100

Synthesis

Experiment

Experiment

Synthesis

In
te

ns
ity

 [%
]

In
te

ns
ity

 [%
]

In
te

ns
ity

 [%
]

H3F3C

MAP3K9
DDX21

ATR

NCAPG2

NUP153

RBPMS
SYTL4

ABCC2

AKAP6

SEC23A

A

1100900700500300100

y1+

y3+NH33+

y2+
y62+

y72+

2+y3+

[M+H]-H2O3+3+

y4+

y5+
y6+

y7+

b2+

log10 Intensity

R
an

k

1100900700500300100

35.000

30.000

25.000

25.000

20.000

15.000

10.000

  5.000

700

y82+

y92+
y10

E183K

E689K

S584F

T4I

P778L

P333L
S363F

P46L
S1342F

M1482I

P52L

  5   6   7   8   9   10   11

Figure 3.8: Relative LFQ intensities (A) and peptide spectrum matches (B-D) of additional potential neoepitopes
- experimentally determined (upper) and synthetic (lower) peptide. The mutated amino acid is highlighted in
red. b- (green), y- (brown) and a-ions (blue) are annotated for important fragments.

Computational runtime

The runtime of the workflow was tested by a set of two replicate measurements (PBMC007)
on a 3.1 GHz dual core (+HT) Intel Core i7 processor setting 8 GB RAM as maximum memory
limit. Spectral batch processing was set to 500 to avoid reaching the memory limit. Subse-
quently processing of each file took approximately one hour with the comet database search
being the most memory and CPU-intensive step followed by the targeted quantification pro-
cedure. Parallel execution of the workflow on a 28 core high-performance computing (HPC)
node of the de.NBI cloud infrastructure finished processing of three JY replicate measurements
in 10 min (Figure A.2). Finally, processing of the entire HLA-Ligand-Atlas dataset (described
in Chapter 5 ) was carried out on an in-house multi-core HPC node, which accounts to 771
and 720 MS runs from 246 HLA-I samples that were processed in 7h 49min (894 CPU-hours)
and 240 HLA-II samples in 18h 18min (4756 CPU-hours).
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3.4 Discussion

In this work the open-source, containerized computational pipeline MHCquant, tailored to au-
tomatically process large-scale immunopeptidomics HPLC-MS/MS data sets was presented.
We showed that selecting the proteomic search engine Comet combined with the Percolator
FDR estimation on the subset of high-confidence or predicted HLA-binding PSMs outper-
forms other commonly applied search tools and provides the best trade-off between the num-
ber of identified peptides and the rate of predicted HLA-binders in our benchmark. Moreover,
the identification and quantification performance of MHCquant was validated using orthog-
onal approaches. At last, the re-analysis of a published melanoma dataset using MHCquant
resulted in reproduction of published results and the identification of additional potential
neoepitopes that were previously not discovered.

Yet, there are still remaining challenges to be improved upon in the future when analysing
immunopeptidomics data. For instance the analysis of non-canonical or cryptic peptides re-
quires the use of very large databases [23, 148]. While this was not tested in this study, most
likely MHCquant will share common problems encountered in proteomics when dealing with
large search spaces [20]. The subset FDR approach that is an option in MHCquant might help
in this regard, but there might be improved methods to achieve similar or better results in
the future. In fact, the criterion of how a given FDR threshold for filtering is set itself could
be reconsidered, as there might be valid and important peptide spectra for instance mutated
neoepitopes recorded in an MS run that are only revealed at a higher FDR threshold. Cost
versus benefit tradeoffs might provide a way to do this, however this was not further explored
in this work [149].

In addition, recent improvements on the insilico prediction of fragmentation spectra intensi-
ties will likely contribute to the creation of better search engines in the future [80, 81, 150].
While at this time approaches for prediction using these complex algorithms are very time
and computation intensive, once better accessible they are likely to outperform the simple
cross correlation scoring function of Comet and those of other common search engines.

Finally, also technological improvements in MS such as ion mobility and data-independent
acquisition are likely to improve sensitivity of immunopeptidomics MS measurments but are
currently not featured by the MHCquant workflow [151, 152].

However, at this time we figure the MHCquant pipeline is a reliable and sensitive tool to pro-
cess immunopeptidomics data efficiently and it is provided for free to the science community,
with the intention to improve reproducible results for the detection of neoepitopes.
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CHAPTER 4

Data-independent acquisition

"Immunopeptidomics using DIA-SWATH mass spectrometry"

This chapter includes partially identical or adapted content with permission from:

DIAproteomics: A multi-functional data analysis pipeline for data-independent
acquisition proteomics and peptidomics,

L. Bichmann, S. Gupta, G. Rosenberger, L. Kuchenbecker, T. Sachsenberg, O. Alka, J.
Pfeuffer, O. Kohlbacher, H. Röst

bioRxiv 2020.12.08.415844 (2020)

A detailed description of the contributions to the project by coauthors is provided in the
Appendix D
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4.1 Introduction

Recently, data-independent acquisition (DIA) using sequential windowed acquisition of all
theoretical fragment ion mass spectra (SWATH-MS) has attracted much attention in the field
of proteomics due to its ability to overcome shortcomings of the classical data-dependent
(DDA) strategy [69, 153, 154]. Moreover, because of its outstanding performance in repro-
ducibility and quantification, DIA is likely to become a state-of-the-art technology in clinical
mass spectrometry (MS) [155]. The main advantages are its capacity to (1) acquire fragment
spectra in a reproducible grid based fashion over the entire mass and retention time range,
(2) sample fragment spectra for nearly all precursor ions present in a sample and (3) enable
to trace elution profiles of fragments and integrate their individual quantities at a greater dy-
namic range [156]. Yet, this comes at the cost of an increased complexity of the acquired mass
spectra, due to simultaneous fragmentation of multiple precursor ions [157]. Nonetheless, DIA
has the promising potential to achieve a greater identification rate and quantification range,
more reproducibility and fewer missing values than DDA.

Consequently, DIA SWATH-MS has been applied in the field of immunopeptidomics [147,
158] as well. However, in order to adapt the DIA methodology from the classic tryptic pro-
teomic experiment for immunopeptidomics, different settings have to be dealt with. Generally,
less complex peptide extracts are spiked into the mass spectrometer due to the immunopurifi-
cation as part of the MHC ligand extraction procedure. In addition, typically a much narrower
mass-to-charge (m/z) range is measured and fewer transitions of peptide fragments are ob-
served, as shorter peptides are encountered in particular for MHC class I. Retention time
alignment across very heterogeneous MS runs of different MHC composition is hindered by
the lack of shared peptide content.

A key step in order to process DIA data is the generation and application of high-quality spec-
tral libraries in order to interpret the complex DIA spectra with more sensitivity. [159] These
libraries can be derived from previously acquired DDA measurements in two ways - (1) as
a pan master library (ML) uniting multiple samples or (2) as a sample specific library (SSL)
from the exact same sample. Ultimately, public repositories such as the SWATHAtlas [160] and
SysteMHCAtlas [120] provide collections of previously acquired spectral libraries. In particu-
lar MHC allele-specific master libraries provided through the SysteMHC Atlas are promising
strategies to process DIA data, as they allow to limit the inflated search space of unspecif-
ically cleaved MHC peptides in DDA immunopeptidomics database search approaches [20,
161]. However, the library should match the instrument and acquisition method settings of
the respective DIA experiment in order to be comparable, as different instruments, ionization
methods and corresponding parameters such as collision energies produce vastly different
fragment spectra pattern.

Previously, it has been attempted to generate a draft map of the murine and human im-
munopeptidome of various tissues using liquid chromatography coupled to tandem MS (LC-
MS/MS) following immunopurification of the respective MHC-bound peptidome [162, 163].
Both studies have employed the classical approach of DDA shotgun MS acquisition. In this
chapter the results from an explorative analysis applying DIA SWATH-MS to a large-scale
study of the human immunopeptidome of various autopsy body donor tissue samples are
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described.

For this we employed the open-source software framework OpenMS [17] and specifically the
OpenSWATHWorkflow [70] wrapped into a containerized nextflow analysis pipeline as part of
the nf-core initiative for reproducible bioinformatics research. In addition, the pipeline makes
use of state-of-the art methods such as pyprophet for FDR assessment [164] and dialignR [165]
for precise retention time alignment and transfer of identifications across runs. While compar-
ing DDA and DIA processing results in general, we also investigated the difference between
the use of SSLs and patient or HLA allele-specific MLs. Ultimately, we demonstrate that using
DIA SWATH-MS for immunopeptidomics may increase peptide identifications and reveals
similar patterns of immunopeptidome presentation in the same tissues across different indi-
viduals.
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4.2 Materials and Methods

Patient material and sample preparation

The samples were acquired and prepared identically as described in our previous study on the
DDA analysis of the HLA-Ligand-Atlas immunopeptidomics ressource (see Chapter 5) [163].
In fact, the same samples used in this study were measured in a pairwise manner acquir-
ing first three DDA and then two DIA replicate measurements directly after each other for
each sample. This ensured very similar retention time behaviour and instrumental spectral
quality in the respective DDA and DIA measurement pairs. In addition, a dilution series of
JY cell immunopeptidome purifications, that were prepared identically as described in Chap-
ter 3, was generated in linear steps from 0.2 to 0.0125 fmol and measured using DIA and DDA.

LC-MS DIA-SWATH Acquisition

DIA methods consisted of tSIM spectra in profile mode at a resolution of 120,000 at m/z
200 with a target value of 1.5x105. DIA isolation windows were adjusted to precursor den-
sity resulting in different non-overlapping isolation window widths as described in Table C.2.
Spectra were acquired in Top20 mode for both tSIM scans, DIA 1 and DIA 2 experiments
with 100 ms maximum injection time. Similar to the DDA acquisition method, we limited the
precursor mass range to accommodate HLA class I and class II ligands without including
contaminating precursor species.

HLA class I ligands were fragmented with CID at a collision energy of 35% and an activation
Q of 0.25. The Orbitrap resolution was set to 30,000. The tSIM scan isolation was performed in
the quadrupole with an isolation width of m/z 252 centered at m/z 525. Thereby, we obtained
isolation windows ranging from m/z 399 – 651. HLA class II ligands were fragmented with
HCD with a collision energy set to 30%. The Orbitrap resolution was also set to 30,000. How-
ever, the tSIM isolation was centered at m/z 700 with an isolation width of m/z 502 resulting
in a mass range of 449 to m/z 951.

Bioinformatic pipeline construction

In order to process the large amounts of immunopeptidomics DIA-SWATH measurements
acquired in this project, the bioinformatics pipeline DIAproteomics was constructed. DIApro-
teomics is an automated analysis pipeline implemented in Nextflow [166] that can be broadly
partitioned into the following parts: Optional spectral library and iRT generation from pro-
vided DDA data, optional spectral library merging and RT alignment, DIA library search,
false discovery rate (FDR) estimation, MS2 chromatogram alignment across runs, and out-
put summary (Figure 1). Each of these parts involves one or more required or optional steps
within the workflow (Supplementary Information Table S1 and Figure S1). An experimental
design needs to be provided in the form of an input sample sheet specifying DDA and DIA
samples, libraries or iRT standards that should be co-processed in one batch. The processing
steps of the pipeline are discussed in the following in detail:
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DDA search results
(pepXML and mzML)

Spectral library generation
(EasyPQP)

DIA library search
(OpenSwathWorkflow)

FDR rescoring
(Pyprophet)

Chromatogram alignment
(DIAlignR)

Merge and RT align
multiple spectral libraries

Summary statistics
(MSstats)

Output plots
(pdf)

iRTs / ciRTs
(tsv or pqp)

Spectral library
(tsv or pqp)

Mass spectrometry files
(Raw or mzML)

Figure 4.1: Simplified scheme of the DIAproteomics peptide identification workflow: MS raw files (Raw or
mzML), internal retention time standards (iRTs / ciRTs) and a spectral library (tsv or pqp) and the correspond-
ing DIA swath window table serve as input. Optionally, the spectral library can be generated from DDA search
results (pepXML) and raw files (Raw or mzML) using the EasyPQP software. The library search of the DIA
raw data is then carried out using the OpenSwathWorkflow. The false discovery rate (FDR) is calculated based
on decoy library hits using Pyprophet. The resulting extracted chromatograms of peptide identifications of all
input files are aligned and matched (DIAlignR). Finally, the search results are exported as a summary table
(tsv).
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pipeline input The input to the pipeline is multi-fold and specified in a sample sheet: a
set of DIA-SWATH HPLC-MS raw files, a spectral library (in tsv, pqp or TraML format), a set
of iRT standards (in tsv, pqp or TraML format). Alternatively, the spectral library and iRTs can
be generated from a set of DDA HPLC-MS raw files and corresponding peptide identifications
(pepXML format or others).

raw file conversion In a first, optional step provided DDA and DIA raw MS mea-
surements (Thermo Raw vendor format) are converted to the open, XML-based mzML for-
mat [127].

spectral library generation If specified the library is generated using EasyPQP
(available at https://github.com/grosenberger/easypqp) which matches the provided search
results (for example in pepXML format) and the corresponding DDA raw measurements to
annotate and store peptide transitions and their properties in a tab-separated table [167]. The
library is transformed into an assay containing a specified number of transitions of b- and
y-ions falling into a custom mass-to-charge range using the OpenSwathAssayGenerator. Sub-
sequently, decoy transitions that can be generated by OpenMS in multiple ways such as re-
versed or shuffled are added to the library using the OpenSwathDecoyGenerator. Finally, the
generated library will be exported in the peptide query parameter (pqp) sqlite-based data for-
mat. Optionally, all steps of the library and decoy generation can be skipped, and an existing
library can be used instead.

pseudo irt generation If specified, a given number of highly confident peptide identifi-
cations spanning the entire RT range will be selected and exported to serve as iRT-standards in
the DIA library search step. This is important, for example, if no iRT-standard kit was spiked
into the samples before the DIA measurements. Selected iRTs will be exported in the peptide
query parameter (pqp) sqlite-based data format. However, if provided, a set of user-defined
iRTs can be used instead.

spectral library merging If multiple libraries per sample are provided, for example
when stemming from a set of technical replicates, the libraries can be optionally merged and
will then undergo a linear RT alignment onto the same reference. When merging is enabled,
the best scoring peptide identification is kept in the library omitting a lower scoring duplicate.

spectral library rt alignment When RT alignment is enabled, the multiple input
spectral libraries will be pairwise aligned onto the same reference. This is achieved by com-
puting a minimum spanning tree connecting all provided libraries by shared peptide overlap.
Hence the library having the highest overlap in shared peptides with all other libraries will be
the central reference for the other libraries. Importantly, this strategy is also applicable when
aligning very distant libraries onto the same reference that share no consensus peptide identi-
fications among all libraries [168]. However, it requires peptides to be shared between all pairs
of libraries, resulting in a connected tree.

dia spectral library search DIA library search is carried out using the OpenSwath-
Workflow, implemented within the OpenMS toolbox. The spectral library and iRT-standards
are used to search all input DIA raw measurements individually with a customizable parametr-
ization. The swath windows can be determined from the data. Finally, extracted ion chro-
matograms (XICs) of the searched peptide transitions (mzML) are exported and the output
features and transition properties are stored in OpenSwathWorkflow files (osw).
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Step Requirement Description Employed software tool

1 (optional) DDA raw file conversion ThermoRawFileParser

and
iRT

s

Spectrallibrary

2 (optional) DDA library generation EasyPQP
3 (optional) Assay generation OpenSwathAssayGenerator
4 (optional) Library merging and alignment Custom Python script using

the libraries networkX, scipy
5 (optional) Pseudo iRT generation Custom Python script
6 (optional) Decoy generation OpenSwathDecoyGenerator

7 (optional) DIA raw file conversion ThermoRawFileParser

search

D
IA

8 required DIA spectral library search OpenSwathWorkflow

9 required DIA search output merging Pyprophet

estim
ation

FD
R

10 required Global false discovery rate esti-
mation

Pyprophet

11 required Export of scoring results Pyprophet

12 required Chromatogram indexing OpenMS-FileConverter

alignm
ent

C
hrom

atogram

13 required Chromatogram alignment DIAlignR
14 (optional) Reformatting Custom Python script
15 (optional) Statistical post processing MSstats
16 (optional) Output visualization Custom R script

Table 4.1: Detailed description of all steps within the Nextflow implementation of the DIAproteomics workflow
version 1.1.0. The steps and their names may vary across versions of DIAproteomics.
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false discovery rate estimation The OpenSwathWorkflow output files (osw) are
merged sample-wise as defined in the experimental design (sample sheet). The merged file is
then scored using the PyProphet target-decoy FDR estimation procedure. Finally, the level of
confidence such as local transition- or global peptide or protein level-based can be define [164].
The PyProphet scoring results will then be exported as a tab-separated table per DIA MS run
and the results will be visualized in a pdf report.

ms2 chromatogram alignment As the last processing step, the extracted and scored
MS2 chromatograms will be aligned using the DIAlignR software. This involves matching
chromatograms between runs that can be aligned and integrating their transition areas. The
sum of the integrated areas per peptide will be reported as peptide quantities in a TSV file.
For this procedure, DIAlignR provides several FDR estimates that can be customized within
the workflow to define cut-offs for transitions that should be excluded from matching between
runs. This allows to match confidently identified peak groups (FDR < 1%) in one MS run with
less confident identifications (FDR > 1%) from other runs [169, 170].

output summarization The output is summarized in a pairwise manner on peptide
or protein level using the MSstats post-processing software [171]. In addition, it is possible
to export a number of diagnostic plots illustrating peptide and protein identification results,
their quantities and properties.

containerization and workflow systems The aforementioned tools are integrated
in a pipeline and containerized into an online accessible docker image [104]. Implementation
in Nextflow [98] based on the nf-core community template for reproducible bioinformatics
workflows [101] allows easy execution on various HPC and compte infrastructures such as
google cloud or amazon web services. Moreover support for multiple functionalities is pro-
vided such as for various container systems (e.g., docker, singularity, podman) and environ-
ment management platforms (e.g. Conda).

Analysis of human tissue immunopeptidomics DIA SWATH data

All spectral libraries were generated from DDA runs deposited in PRIDE as part of the previ-
ously analyzed HLA-Ligand-Atlas data set (PXD019643) (see Chapter 5).

dda data processing DDA replicates were processed using the nf-core containerized
bioinformatics workflow MHCquant 1.2.6 [123] (see Chapter 3), The nextflow-based workflow
implementation comprises tools of the OpenMS toolbox for computational MS applying the
database search engine comet and local FDR assessment using Percolator 3.0. MHCquant
settings for high-resolution instruments involving a precursor mass tolerance of 5 ppm and
a fragment bin tolerance of 0.02 Da were applied. The swissprot database (stand June 2018)
and “unspecific cleavage" was set as database and enzymatic restriction setting for the peptide
identification procedure. Replicate measurements were co-processed by assessing the FDR on
the merged set of identifications and aligning them to a common RT reference.

sample specific spectral libraries (ssl) Generation of the spectral libraries was
carried out externally to the pipeline, since at the time of the analysis no containerized version
of the respective steps existed within DIAproteomics. Identifications resulting from the DDA
data processing were filtered by a 5% peptide level q-value cut off and used for spectral library
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generation with the SpectraST 5.0 software as part of the Trans-Proteomic-Pipeline. Finally, the
generated spectral libraries of replicate runs were merged, keeping the best scoring peptide
identification for a set of replicates.

pan master spectral libraries (ml) SSLs were combined into pan patient and pan
allele master libraries by applying a pairwise linear RT alignment as no common reference
could be constructed across all MS runs of one patient or allele. The libraries were merged by
keeping only the best scoring peptide out of each library. As for the pan A*02:01 HLA-allele
master library only peptide hits passing the binding affinity prediction threshold were used for
generating the library. The pairwise linear retention time alignment was carried out along the
edges of a minimum spanning tree linking all samples of a given patient or allele to a central
reference (Figure A.8) as described earler. The MST was constructed using functionalities of
the Python library networkX [172].

dia data processing DIA measurements were processed using a developmental version
of the nf-core containerized bioinformatics workflow DIAproteomics (state: December 4th,
2019 - https://www.openms.de/diaproteomics/). The nextflow-based workflow implementa-
tion comprises tools of the OpenSwathWorkflow v.2.4 [70], FDR assessment using pyProphet
v.2.1.3 [164] and chromatogram alignment using DIAlignR v. 1.1 [165] (see Figure 4.1 and
Figure A.6). The internal retention time alignment between spectral library and DIA run was
carried out based on a LOESS alignment using up to 250 high-scoring DDA peptide identifi-
cations spanning the entire retention time range. As for the OpenSwathWorkflow, m/z and
retention time extraction windows of 20ppm and 600 seconds were chosen respectively. The
FDR was assessed on local peptide level applying a q-value threshold of 1%. DIAlignR chro-
matogram alignment was carried out using an upper FDR limit of 5%, a sampling time of 1.4
and gapQuantile of 0.9, as a set of optimal parameters for high resolution orbitrap data.

Computation of Jaccard coefficients between samples

We investigated the similarity between replicates, samples and tissues by pairwise compar-
isons of all peptide identification results. When comparing DDA and DIA results the overlap
was calculated for common peptide identifications. When comparing tissues across donors
only peptide identifications that were retrieved from more than one sample were considered.
The Jaccard index was calculated by dividing the set intersection by the set union for all
pairwise comparisons:

j =
A \ B
A [ B

(4.1)

Hierarchical clustering of tissues according to peptide quantities

The matrix of peptide quantities across samples resulting from the DIAlignR output was used
for hierarchical clustering approach. Only the four patients (AUT-DN04, -DN12, -DN14 and
-DN15) sharing the allele HLA-A*02:01 and among those, only tissues that are shared by at
least two individuals were considered for the approach. The clustering was carried out with
the Python package seaborn v. 0.8.1 using euclidean distance and average linking as cluster
parametrization.
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4.3 Results

DIA achieves greater reproducibility among replicates than DDA

In order to compare the reproducibility of DIA and DDA we assessed the pairwise set overlap
between groups of replicate MS measurements. (Figure 4.2 B-D) DIA results were retrieved ap-
plying a sample specific spectral library generated from the respective DDA replicate measure-
ment. In addition, the analysis here was performed without incorporating matching between
runs or chromatogram alignment, to see compare the intrinsic capability of both approaches.

On average DIA yields 95% overlap among pairwise comparisons of replicates in contrast to
75% overlap using DDA. The reproducibility of peptide quantities across two replicate MS
runs is achieved equally well by DDA and DIA and most peptide quantification results agree
well between both approaches (Figure A.7).

When comparing retrieved peptide identifications in a linear concentration series of JY cell
immunopeptidome purifications, it is very evident that using DIA it is possible to identify
more peptides at low concentrations than with the DDA approach. (Figure 4.2 E) Therefore,
the greater reproducibility achieved comes likely due to the greater dynamic range - the fact
that DIA is able to all theoretical fragment ions (including low abundance fragments) in a
grid-based fashion in contrast to the “shotgun” DDA sampling approach. (Figure 4.2 A).

Pan master spectral libraries increase transfer of peptide identifications among samples

The results of a DIA analysis depend entirely on the spectral library employed, similar to the
size and content of the database used in a database search approach for peptide identification
in DDA. (Figure 4.2 A) Ideally, a spectral library contains the spectra of all peptides present
in the measured sample, in order to identify them correctly by spectral matching. As HLA-
presented peptides should be to the largest part similar across tissues and only to a small
extent tissue specific (see Chapter 5), we compared the performance of a SSL generated from
the respective DDA runs of the sample with a pan patient ML generated from all DDA runs
of patient AUT-DN12.

While maintaining a similar percentage of retrieval of the same peptides identified in the
DDA runs (ML: 72% and SSL: 77.6%), applying a pan patient ML resulted in an increase of
33% identified peptides. (Figure 4.3 A, C) These additionally discovered peptides correspond
to HLA presented peptides found in other tissues of the same patient and do not stem from
source proteins that serve a tissue specific role. Moreover, the greatest amount of peptides
retrieved using the ML and SSL both (ML: 90.1% and SSL 79.4%) are found within less than
50 seconds from their library retention time. (Figure 4.3 B, D) Hence, applying pan master
libraries has retrieved a large fraction of peptides with a global FDR 1% not identified using a
“shotgun” DDA approach.

When assessing properties of the additional peptide identifications using the ML in contrast
SSL approach, differences in their quantities as well as confidence of identification (p-values)
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Figure 4.2: A) Overview scheme of the MS data acquisition methods DDA and DIA and the respective differ-
ent procedure applied for peptide identification. B) Three DDA replicate measurements and the percentage of
consensus peptide identifications among them. C) Two DIA replicate measurements and the percentage of con-
sensus peptide identifications among them. D) Multiple pairwise replicate comparisons for DDA and DIA and
the Jaccard overlap of peptide identifications among them. E) Comparison of retrieved peptide identifications
in a linear concentration series of JY cell immunopeptidome purifications from 0.2 to 0.0125 fmol measured in
three DDA and two DIA replicates.
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can be found. (1) The additional identifications are distributed at the lower end of the intensity
spectrum in contrast to the DDA reconfirming identifications found using the SSL approach
(Figure 4.3 E). This is similar to the greater reproducibility in accordance with the fact that
the DIA methodology is capable of retrieving less intense peptide ions out of each MS run
due to the greater dynamic range. (2) However, the additional peptide identifications have
less significant p-values (Figure 4.3 F). It indicates that the peptide-spectrum matches are in
general of worse quality, which could be due to low fragment ion intensities or noise.

DIA and DIAlignR increase the Jaccard overlap between different samples

To check whether the increased reproducibility and retrieval of peptide identifications within
the DIA results corresponds to a greater overlap across different samples of the same patient,
we searched 10 different tissues of the same patient with the same pan patient ML. In addition,
the resulting extracted MS2 chromatograms were aligned using the DIAlignR software.

Indeed, the additional peptide identifications yielded from the DIA pan patient ML resulted
in a significantly greater share of peptides among all samples than using the classical DDA
approach. (Figure 4.4) The manual inspection of the XICs of some of the additional iden-
tified peptides in DIA in contrast to DDA confirmed the presence of the transition peak
groups in multiple DIA but not all DDA MS runs (Figure B.2). Moreover, in combination
with chromatogram alignment using DIAlignR the overlap of peptides shared across samples
was increased significantly even further. In particular, the sparsity of the peptide identification
matrix across samples was tremendously reduced by 15.1% from 69.1% to 54.2% using DDA
and DIAlignR respectively. However, the results also indicate that there is a large biological
variety across samples in the HLA-immunopeptidome of different tissues and samples, as the
sparsity can’t be reduced to less than half of the entire matrix.

Finally, we aimed at comparing the identification increase per sample and relating it to the
sample complexity. We observe that the peptide identification increase varies largely across
samples and is slightly related to the number of MS1 features detected in a sample. Con-
sequently, a slight trend can be seen that the more complex a sample, the more beneficial
spectrum identification using the DIA methodology will be, as MS1 features can give an ap-
proximation of the total number of analytes simultaneously present in a given sample.

DIA and DDA reveal tissue similarity of the immunopeptidome across multiple donors

In order to investigate the effect of increased peptide identifications across multiple donors
and tissues, a ML for the allele HLA-A*02:01 was generated. The spectra of all peptides pre-
dicted to bind HLA-A*02:01 were retrieved from all DDA samples from four patients (AUT-
DN04, -DN12, -DN14 and -DN15) carrying this particular allele to build the library. Applying
the pan allele ML to all DIA measurements of these patients in combination with the MS2 chro-
matogram alignment approach using DIAlignR revealed the same effect of increased shared
peptide identifications across samples. (Figure 4.5)

In addition, unsupervised hierarchical clustering of the resulting peptide identification ma-
trix yielded multiple clusters of samples of the same or similar tissue across different donors.
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Figure 4.3: Overlap of DDA and DIA peptide identifications using A) a sample specific libray (SSL) or C) a
pan master library (ML) of all samples of patient AUT-DN12. The pan master library successfully transfers
identifications of other other samples to this sample and thus increases identifications by 33 %. Deviations of
the retention times of the DIA MS runs and the corresponding used libary B) SSL and D) ML are shown on
the right. Corresponding differences in E) intensity and F) p-value distributions of peptides identified through
either both or only one of the approaches (SSL or ML) are depicted.
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Figure 4.5: Comparison of peptide identifications resulting from DDA, DIA and DIA in combination with
DIAlignR applying a pan allele ML to multiple tissues of different individuals (AUT-DN04, -DN12, -DN14
and -DN15) having the HLA-Allele A*02:01. A) The hierarchically clustered heatmap corresponds to results
applying DIA in combination with DIAlignR, that illustrate peptide quantities (grey scale indicates log10
intensity) across all samples. Clusters of the same tissue across individuals are highlighted in red. B) Boxes
indicate pairwise Jaccard overlaps of peptide identifications for each method. DIA and DIAlignR result in
significantly higher Jaccard overlaps across all samples and same tissues across individuals reveal similar
immunopeptidomes.

When comparing pairwise Jaccard overlaps of all samples, DDA as well as DIA and DIA in
combination with DIAlignR yielded higher similarities of the same or similar tissues across
donors. These results indicate that there is clear evidence for not only a patient but also a
tissue specific bias when analyzing immunopeptidomes.
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4.4 Discussion

In this study we have investigated the use of cutting edge DIA SWATH-MS in immunopep-
tidomics in comparison with the standard DDA approach. We have found that DIA leads
to greater reproducibility across replicates and the application of MLs can result in a larger
number of shared peptide identifications across samples. In particular when moving to clin-
ical settings these two factors - reproducibility and comparability - are crucial and therefore
of significant interest to the field. Finally, for the first time, we applied DIA to a large set of
human tissue immunopeptidomics samples and were able to demonstrate tissue similarity on
immunopeptidome level across multiple donors. In addition, the open-source bioinformatics
workflow DIAproteomics that was constructed for this analysis is provided publicly accessible
to the science community and is applicable to general proteomic and peptidomic data sets as
well.

Having the possibility to fragment all precursor ions, lead to the rediscovery of many more
peptides in each DIA run among those previously found in other DDA runs. Moreover, DIA
outperformed the DDA database search approach most likely through limiting the large un-
specific cleavage search space to a fixed spectral library of interest. In addition, the chro-
matogram alignment approach DIAlignR [165] was able to increase Jaccard overlaps signifi-
cantly. Consequently, DIA analysis for immunopeptidomics can be strongly improved by com-
bining it with MS2 chromatogram alignment. In contrast to similar approaches for DDA eg.
matching between runs (MBR) [96], DIAlignR can make use of FDR control thresholds com-
puted during the DIA scoring procedure. Hence, alignment across runs provides more con-
fidence in DIA than DDA. In addition, DIAlignR makes use of MS2 chromatograms, which
have better signal-to-noise ratios as compared to MS1-chromatograms used by the general
MBR approach.

As the sparsity of the peptide identification data matrix still remained at approximately 50%,
even when combining DIA with DIAlignR, the variance across samples is intrinsically large
in immunopeptidomics. Consequently, even though in our analysis we are able to showcase
similarity of tissues on immunopeptidome level it is accompanied by a strong patient and
sample specific bias. However, most likely this variance is partially caused by the incomplete
sampling of the immunopurification procedure, too.

Ultimately, a major goal in immunopeptidomics would be to tailor personalized therapies to
the HLA alleles of a given patient and provide off-the-shelf warehouse peptide vaccine cock-
tails for various tumor ontologies [44]. The here described results indicate that there might be
difficulties achieving this goal, considering the great individual variance of the immunopep-
tidome across patients and tissues even within a single shared HLA allele. Yet, future research
in this area could lead to new insights into which HLA-bound peptides are omni-present in
multiple patients or exclusive to particular tissues.

Nevertheless, in agreement with previous studies [147, 158] we conclude that the DIA method-
ology has key advantages over the DDA approach for immunopeptidomics studies and hope
that our provided comprehensive data set will lead to deeper insights in the human im-
munopeptidome to possibly advance the field of immunotherapy.
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5.1 Introduction

Advances in biotechnology have lead to recent breakthroughs in biological and medical re-
search such as the sequencing of the human genome (genomics) [173, 174], the entire as-
sessment of human gene expression (transcriptomics) [175] as well as the mapping of the
human proteome (proteomics) [176–178]. These discoveries are considered milestones as they
enabled to construct for the first time a draft map of all sequences involved at the respective
biomolecular layers and lead to an understanding of biological processes at a higher level of
complexity. In the context of the immune system, the HLA immunopeptidome represents an-
other independent consecutive layer that has to not been completely mapped so far. Despite
the proteome and transcriptome origin of HLA-presented peptides, no quantitative correlation
with their precursors on other biologicial levels such as mRNA transcripts and proteins has
been achieved [179–181]. Theoretical approaches based on in silico HLA-binding predictions
of all possible peptide sequences of a given length in combination with transcriptomics and
proteomics data are limited and currently provide the only option to investigate the entire
human immunopeptidome [182, 183].

Thus, direct experimental evidence of naturally presented HLA ligands is necessary to possi-
bly gain understanding of the immune system by annotating those that are potential target
peptides to T-cells. In particular the field of immunotherapy in the context of cancer treatment
benefits from this enhanced insight. Here, approaches have been aiming to identify tumor-
specific HLA-presented antigens by comparing benign and malignant immunopeptidomes of
diverse cancer entities [46, 184, 185]. Yet, a major impediment often still resides in the lack
of a reference of the immunopeptidome of healthy individuals for the comparison [111, 148,
180]. Due to the scarce availability of benign human tissue, common alternative strategies are
frequently based on morphologically normal tissue adjacent to the tumor (NAT) as a control
reference. However, it has been demonstrated that NATs are suitable only under restrictions,
since they may been infiltrated by the disease and have been suggested to represent a rather
intermediate state between healthy and malignant tissues, with a pan-cancer-induced inflam-
matory response [186]. Finally, for some tumor entities such as for example affected regions in
the brain, it is surgically impossible to extract NATs without causing permanent damage to a
given patient. Moreover, in order to prevent off-target adverse side effects such as in particular
severe autoimmunity, it is necessary in all cancer entities to investigate the presence of poten-
tial tumor-associated targets (TAAs) on benign tissues when administering immunotherapies
to patients [53, 54, 187].

Consequently, this chapter highlights the results of the HLA Ligand Atlas study, throughout
which we collected and profiled the immunopeptidome of benign tissues originating from
research autopsies. The subjects had not been diagnosed with any malignancy and have de-
ceased of other causes, an approach previously described as a surrogate source of normal
tissue [186, 188]. Although these donors cannot be referred to as “healthy” since they may be
affected by a range of undiagnosed non-cancerous diseases, we designate their analyzed tis-
sue samples as benign to emphasize morphological normalcy and absence of malignancy. In
the same way, the well-stablished Genotype-Tissue Expression Consortium [175, 189] (GTEx)
provided an ample resource of transciptome RNA sequencing data of tissues originating from
autopsy specimens that have been classified as benign. The tremendous importance of investi-
gating the HLA ligandome in health and disease using mass spectrometry (MS) has been well
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recognized and outpointed multiple times [14, 15], particularly to improve precision medicine
for cancer therapy, [185, 190, 191]. Moreover, insilico HLA-binding prediction algorithms have
been shown to be improved by integrating information recovered from MS experiments [33,
40, 192, 193].

The results from the analysis of this dataset might enable us to add to the complexity of our
holistic understanding of many biological processes in adaptive immunity and disease. In
particular the definition of tumor exclusivity for cancer immunotherapy benefits from the be-
nign human reference, when defining TAAs originating from non-mutated self-peptides [180,
194, 195], MiHAs [196], cryptic peptides [111, 148, 197, 198], and proteasomally-spliced pep-
tides [112, 114, 115, 199]. In addition, the HLA Ligand Atlas hereby offers a further orthogonal
level for neoantigen prioritization [22] based on HLA presentation of the native non-mutated
counterpart, as suggested by the hotspot hypothesis [185, 200]. Even our understanding of
autoimmunity and response to infectious diseases can be advanced by furthering our knowl-
edge of the tissue-wide healthy-state immunopeptidome.

Multiple public repositories maintaining immune-related data have been established, such as
the IEDB [201], SysteMHC [120], the 10,000 immunomes project [202], and the DC cell at-
las [203]. The results of this work are provided publicly in an user-friendly web interface at
https://HLA-Ligand-Atlas.org and we envision that the scientific community will integrate
this new resource with the existing databases to improve the holistic understanding of the
HLA-ligandome and immunology in general.
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5.2 Materials and Methods

Experimental model and subject details

Human tissue samples were obtained post mortem during autopsy performed for medical
reasons at the University Hospital Zürich. The study was approved by the Cantonal Ethics
Committee Zürich (KEK) (BASEC-Nr. Req-2016-00604). For none of the included patients a re-
fusal of post mortem contribution to medical research was documented and study procedures
are in accordance with applicable Swiss law for research on humans (Bundesgesetz über die
Forschung am Menschen, Art. 38). In addition, the study protocol was reviewed by the ethics
committee at the University of Tübingen and received a favourable assessment without any
objections to the study conduct (Project Nr. 364-2017BO2).

None of the subjects included in this study was diagnosed with any malignant disease. Tissue
samples were collected during autopsy, which was performed within 72 hours after death.
Tissue organ annotation was performed by a board-certified pathologist. Tissue samples were
immediately snap-frozen in liquid nitrogen. Thymus samples were obtained from the Univer-
sity Children Hospital Zürich, Switzerland. Thymus tissue was removed during heart surgery
or for other medical reasons. Tissue samples from residual material not required for diag-
nostic or other medical purposes were obtained after informed consent from the parents of
the respective children, in accordance with the principles of the Declaration of Helsinki. The
study was approved by the Cantonal Ethics Committee Zürich (KEK) (EC-Nr. 2014-0699, PB-
2017-00631) on February 27th 2015.

Furthermore, two benign ovarian tissue samples were collected for the project (OVA-DN278
and OVA-DN281). Both patients were post-menopausal and had a bilateral ovarectomy for
cystadenofibromas, which were diagnosed by histopathologic examination of the specimen.
The samples were obtained from a normal part of the ovary. The study was approved by the
ethical committee of the University of Tuebingen (354-2011BO2).

HLA typing

Multiple HLA typing approaches were performed for the different sources of patient material.
Autopsy subject AUT-DN08, AUT-DN16, and two benign ovary samples (OVA-DN278 and
OVA-DN281) were typed at the Department of Transfusion Medicine of the University Hospi-
tal of Tübingen.

High-resolution HLA typing was performed by next-generation sequencing on a GS Junior Se-
quencer using the GS GType HLA Primer Sets (both Roche, Basel, Switzerland). HLA typing
was successful for HLA-A, -B, and -C alleles. However, HLA-II typing was only reliable for
the HLA-DR locus, and incomplete for the HLA-DP and -DQ loci. Therefore, we performed
exome sequencing of lung tissue for remaining autopsy subjects. Exome sequencing data was
processed and OptiType was employed to extract HLA-I and an in-house modified develop-
ment version was used to type HLA-II alleles carried out by A. Szolek.
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Finally, sequence-based typing was performed for the five thymus samples by sequencing ex-
ons 1-8 for HLA-I alleles and exons 2-6 for HLA-II alleles (Histogenetics, Ossining, NY).

HLA immunoaffinity purification

HLA-I and -II molecules were isolated from snap-frozen tissue using standard immunoaffinity
chromatography. The antibodies employed were the pan-HLA-I-specific antibody W6/32 [204],
and the HLA-DR-specific antibody L243 [126], produced in house (University of Tübingen, De-
partment of Immunology) from HB-95, and HB-55 cells (ATCC, Manassas, VA) respectively.
Furthermore, the pan-HLA-II-specific antibody Tü39 was employed and produced in house
from a hybridoma clone as previously described [205]. The antibodies were cross-linked to
CNBr-activated sepharose (Sigma-Aldrich, St. Louis, MO) at a ratio of 40 mg sepharose to 1
mg antibody for 1 g tissue with 0.5 M NaCl, 0.1 M NaHCO3 at pH 8.3. Free activated CNBr
reaction sites were blocked with 0.2 M glycine.

For the purification of HLA-peptide complexes, tissue was minced with a scalpel and further
homogenized with the Potter-Elvehjem instrument (VWR, Darmstadt, Germany). The amount
of tissue employed for each purification is documented in Supplementary Table 1. This infor-
mation is not available for seven tissues, annotated as n.d. in said table. Tissue homogeniza-
tion was performed in lysis buffer consisting of CHAPS (Panreac AppliChem, Darmstadt,
Germany), and one cOmpleteTM protease inhibitor cocktail tablet (Roche) in PBS. Thereafter,
the lysate was sonicated and cleared by centrifugation for 45 min at 4,000 rpm, interspaced by
1 h incubation periods on a shaker at 4°C. Lysates were further cleared by sterile filtration em-
ploying a 5 µm filter unit (Merck Millipore, Darmstadt, Germany). The first column contained
1 mg of W6/32 antibody coupled to sepharose, whereas the second column contained equal
amounts of Tü39 and L243 antibody coupled to sepharose. Finally, the lysates were passed
through two columns cyclically overnight at 4°C. Affinity columns were then washed for 30
min with PBS and for 1 h with water. Elution of peptides was achieved by incubating four
times successively with 100 – 200 µl 0.2% TFA on a shaker. All eluted fractions were subse-
quently pooled. Peptides were separated from the HLA molecule remnants by ultrafiltration
employing 3 kDa and 10 kDa Amicon filter units (Merck Millipore) for HLA-I and HLA-II,
respectively. The eluate volume was then reduced to approximately 50 µl by lyophilization
or vacuum centrifugation. Finally, the reduced peptide solution was purified five times us-
ing ZipTip Pipette Tips with C18 resin and 0.6 µl bed volume (Merck,) and eluted in 32.5%
ACN/0.2% TFA. The purified peptide solution was concentrated by vacuum centrifugation
and supplemented with 1% ACN/0.05% TFA and stored at -80°C until LC-MS/MS analysis.

Time Series Experiments

We performed time series experiments to assess the suitability of tissues obtained from autop-
sies as a source of human organs for the characterization of the benign immunopeptidome.
We evaluated the degradation profile of the immunopeptidome, when tissues were stored at
4°C for up to 72 h after tissue removal, to mimic the conditions at autopsy. The time series
experiment was repeated in three benign tissues from different individuals: one benign liver
obtained at autopsy (AUT-DN16 Liver), and two benign ovaries removed surgically (OVA-
DN278 and OVA-DN281). The tissues were extracted and incubated at 4°C until a certain time
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point and flash-frozen in liquid nitrogen until HLA ligand extraction. As more tissue was
available form AUT-DN16 Liver, tissue samples were frozen after 8 h, 16 h, 24 h, 48 h, and 72
h. Due to the limited sample amount obtained from OVA-DN278 and OVA-DN281, only three
time points could be accounted for: 0 h, 24 h, and 72 h. The HLA immunoaffinity purification
was performed as mentioned, with the exception that mass-to-volume ratio in ovary samples
was adjusted to the lowest mass across all time points before loading onto sepharose columns.

Mass spectrometric data acquisition

HLA ligand characterization was performed on an Orbitrap Fusion Lumos mass spectrome-
ter (Thermo Fisher Scientific, San Jose, CA) equipped with a Nanospray FlexTM Ion Source
(Thermo Fisher Scientific) coupled to an Ultimate 3000 RSLC Nano UHPLC System (Thermo
Fisher Scientific). Peptide samples were loaded with 1% ACN/ 0.05% TFA on a 75 µm x 2
cm Acclaim™ PepMapTM 100 C18 Nanotrap column (Thermo Fisher Scientific) at a flow rate
of 4 µl/min for 10 min. Separation was performed on a 50 µm x 25 cm PepMap RSLC C18
(Thermo Fisher Scientific) column, with a particle size of 2 µm. Samples were eluted with a
linear gradient from 3% to 40% solvent B (80% ACN, 0.15% FA in water) at a flow rate of 0.3
µl/min over 90 min. The column was subsequently washed by increasing to 95% B within 1
min, and maintaining the gradient for 5 min, followed by reduction to 3% B and equilibration
for 23 min.

Data acquisition was performed as technical triplicates in data-dependent mode, with cus-
tomized top speed (3 s) methods for HLA-I- and HLA-II-eluted peptides. HLA-I peptides
have a length distribution ranging mostly between 8 - 12 amino acids, therefore, the scan
range was restricted to 400 - 650 m/z and charge states of 2 - 3. MS1 and MS2 spectra were
detected in the Orbitrap with a resolution of 120,000 and 30,000 respectively. Furthermore, we
set the automatic gain control (AGC) targets to 1.5x105 and 7.0x104 and the maximum injec-
tion time to 50 ms and 150 ms for MS1 and MS2, respectively. The dynamic exclusion was set
to 7 s. Peptides were fragmented with collision-induced dissociation (CID) while the collision
energy was set to 35%.

HLA-II peptides have a length distribution in the area of 8 - 25 amino acids , thus the scan
range was set to 400 -1,000 m/z and the charge states were restricted to 2 - 5. Readout for
both MS1 and MS2 were performed in the Orbitrap with the same resolution and maximum
injection times as for HLA-I peptides. The dynamic exclusion was set to 10 s and AGC values
employed were 5.0x105 and 7.0x104 for MS1 and MS2, respectively. Higher-energy collisional
dissociation (HCD) fragmentation with 30% collision energy was employed for HLA-II pep-
tides.

Database search with MHCquant

MS data obtained from HLA ligand extracts was analyzed using the nf-core (Ewels et al., 2020)
containerized, computational pipeline MHCquant [123] (release 1.5.1 - https://www.openms.
de/mhcquant/) with default settings. The workflow comprises tools to analyze LC-MS/MS
data of the open-source software library OpenMS (2.5) [17]. Identification and post-scoring
were performed using the OpenMS adapters to Comet 2016.01 rev. 3 [82] and Percolator
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3.4 [88] at a local peptide level false discovery rate (FDR) threshold of 1% among the tech-
nical replicates per sample. Subsequently, we estimated the global FDR by dividing the sum
of expected false positive identifications from each sample (1% peptide level FDR) by the total
number of identified peptides in the entire dataset (HLA-I: 4.5% FDR, HLA-II: 3.9% FDR) [91,
206]. The human reference proteome (Swiss-Prot, Proteome ID UP000005640, 20,416 protein
sequences) was used as a database reference. Database search was performed without enzy-
matic restriction, with methionine oxidation as the only variable modification. MHCquant
settings for high-resolution instruments involving a precursor mass tolerance of 5 ppm and
a fragment bin tolerance of 0.02 Da were applied. The peptide length restriction, digest mass
and charge state range were set to 8-12 amino acids, 800-2500 Da and 2-3 for HLA-I and 8-25
amino acids, 800-5000 Da and 2-5 for HLA-II, respectively.

HLA binding prediction

Peptide binding predictions were computed based on the subject’s HLA alleles. For HLA-
I ligand extracts, we employed SYFPEITHI [32] and NetMHCpan-4.0 [38] in ligand mode
(default). The SYFPEITHI score was computed by dividing the sum of amino acid-specific
values for each position in the tested peptide by the maximally attainable score for the respec-
tive HLA allotype [207]. HLA-II ligand extracts were annotated with NetMHCIIpan-4.0 [38],
MixMHC2pred [40] in ligand (default) mode and SYFPEITHI.

Peptides were categorized as strong binders against a given HLA allotype if either netMHCpan-
4.0, netMHCIIpan-4.0 or MixMHC2pred reported a percentile-rank score  0.5. Peptides that
failed this criterion defined by a reported as weak binders if any of the tools reported a
percentile-rank score  2.0. All peptide-HLA allotype associations within these limits were
included in the dataset, i.e. a single peptide sequence can be reported as a binder against mul-
tile allotypes of the same donor. Unless allele associations are specified, all peptides including
those that were not classified as binders against any subject’s allotype were included in the
analysis.

Quality control thresholds based on binding prediction and length distribution

We defined the fraction of predicted binders of a sample as the ratio of predicted binders
divided by the total number of peptide identifications. Technical replicates with a fraction of
predicted binders lower than 50% for HLA-I and lower than 10% for HLA-II ligand extracts
were excluded from the data set. Furthermore, individual replicates were removed from the
data set if the mode of the length distribution differed from nine amino acids for HLA-I and
was not in the interval 12-18 for HLA-II (Figure 5.1).

Quantitative time series analysis

Database search of LC-MS/MS data from the three time series experiments was performed
with MHCquant 1.5.1 as previously described (Bichmann et al., 2019). Identifications were
matched between runs (Tyanova et al., 2016) based on retention time alignment and targeted
feature extraction (Weisser and Choudhary, 2017) to integrate respective MS1 areas for all time
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Figure 5.1: Overview of the quality control workflow: A) Data from three LC-MS/MS runs (technical replicates)
per sample (one tissue from one subject) were processed with MHCquant with a local peptide-level FDR of 1%.
Identified peptides were categorized into peptides predicted as strong, weak, or non-binders. Samples were
filtered, employing the specified binding prediction and peptide length mode cut-off thresholds respectively. B)
Violin plots (left) depict the percentage of peptides predicted to be HLA-binders per LC-MS/MS run and the
quality control cut-off for LC-MS/MS runs employed for HLA-I and -II immunopeptidomes. Dot plots (center)
depict the mode of the peptide length distribution encountered per LC-MS/MS run and the quality control cut-
off employed for HLA-I and -II. The number of LC-MS/MS runs (HLA-I - blue and HLA-II orange) failing the
QC thresholds is indicated by red dots.
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points and technical replicates. MS1 areas (x) were normalized to z-scores (standard scores)
per MS run by subtracting the mean and dividing by the standard deviation:

z =
x � µ

s
(5.1)

The trajectory of scaled MS1 areas was clustered by k-means unsupervised clustering with 6
seeds using the tslearn (v.0.3.1) Python package. All trajectories are related to the first time
point by subtracting its median z-score from all other timepoints in the respective analysis.

Comparison of the HLA-Ligand-Atlas data base with IEDB and SysteMHC

All peptides contained in the HLA Ligand Atlas database were compared with peptides listed
in the IEDB and SysteMHC databases for HLA-I and HLA-II ligands separately. The list of pep-
tides stored in the IEDB was obtained by downloading the file “epitope_full_v3.zip” from the
“Database Export” page. The obtained table was subsequently filtered for positive MS assays,
linear peptides and human origin. Peptides with modifications were removed. Peptides stored
in the SysteMHC database were obtained by downloading the file “180409_master_final.tgz"
from “Builds_for_download” page. The obtained table was subsequently filtered for human
as organism.

Principal component analysis of HLA-I and -II source proteins

To assess the divergence between source proteins of HLA-I and -II peptides, a principal com-
ponent analysis (PCA) of HLA-I and -II samples was computed. For this a binary matrix
was constructed spanning all samples and proteins covered by any HLA-I or -II peptide and
annotating its presence (true) or absence (false) in a given sample. The first two principal com-
ponents of the matrix were then computed using the scikit-learn Python package (v 0.23).

Gene ontology (GO)-term enrichment

GO term enrichment analyses were performed with the Panther 15.0 database (Released 2020-
02-21) with the integrated “statistical overrepresentation test” (Release 2019-07-11). Gene iden-
tifiers of proteins presented exclusively by either HLA-I or -II allotypes were queried against
the “GO cellular component complete” database using the default “Homo sapiens genes” ref-
erence list. GO terms were sorted by Fisher’s exact raw p-value, and top 10 scoring terms
reported as overrepresented and their corresponding p-values were selected for illustration.

Tissue-specific source proteins were defined as HLA-I or -II source proteins identified exclu-
sively in one tissue (Table S5). Gene identifiers of tissue-specific HLA-I and -II source proteins
were queried against the “GO biological process complete” database, with the only difference
that only the top 5 scoring terms reported as overrepresented were selected for illustration.
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Tissue-specific gene set enrichment

Analogously to the GO-term enrichment, tissue-specific HLA-I and -II gene identifiers were
separately queried against the GTEx database for gene set enrichment analysis. Gene sets with
upregulated gene expression profiles per tissue “GTEx tissue sample gene expression profiles
up” were retrieved using the gseapy implementation (v.0.9.15, 2019-08-07) through the enrichr
API. All tissues covered in the HLA Ligand Atlas were matched and compared against all tis-
sues in the GTEx database that co-occur in the HLA Ligand Atlas. Fisher’s exact raw p-values
for the enrichment were computed for each pairwise comparison.

HLA-I peptide yield correlation to expression of immune-related genes

We computed a linear model to compare the median HLA-I peptide yields per tissue with
gene expression values (RPKM) of the following genes involved in the HLA-I presentation
pathway: HLA-A, HLA-B, HLA-C, immunoproteasome, constitutive proteasome, TAP1, and
TAP2. Median HLA-II peptide yields per tissue were correlated to genes involved in the HLA-
II presentation pathway: HLA-DRB1, HLA-DRA, HLA-DQB1, HLA-DQA1, HLA-DPB1, HLA-
DPA1. The corresponding gene expression values were taken from a previously published
study [182].

An ordinary least squares linear model correlating gene expression and log10 median HLA-
I/-II peptide yields was computed using R (v.3.5) and the corresponding stats (v.3.5) package
reporting R2, F-statistic p-value, and spearman rho. The cross correlation between all immune
related genes and their individual linear models were computed using R (v.3.5) and the cor-
responding packages corrplot (v. 0.84) and ggplot2 (v.3.2.1). As the expression levels of the
investigated genes are highly covariant, the regression would be overfitting when correlating
peptide yields to multiple genes involved in the antigen presentation pathway, thus the anal-
ysis was limited to a single gene at a time.

Computation of Jaccard coefficients between samples

We investigated the similarity between organs and subjects by pairwise comparison of all sam-
ples in the HLA Ligand Atlas. Comparisons were performed both on HLA-I and -II peptide
level and HLA-I and -II source protein level. The Jaccard index was calculated by dividing the
set intersection by the set union for all pairwise comparisons:

j =
A \ B
A [ B

(5.2)

Identification of cryptic peptides with Peptide-PRISM

Identification of cryptic HLA-I peptides from MS data was performed as recently described in
detail [23]. Briefly, de novo sequencing was performed with PEAKS Studio X ( [136]) (Bioinfor-
matics Solutions Inc., Canada). Top10 sequence candidates were exported for each fragment
ion spectrum. Database matching of all sequence candidates and stratified FDR-filtering was
performed with Peptide-PRISM using the 6-frame translation of the human genome (GRCh38)
and the 3-frame translation of the human transcriptome (Ensembl 90). Matched peptides were
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filtered to 10% FDR and peptides were predicted as binder to the corresponding HLA alleles
by NetMHCpan-4.0 [37].

Retention time model for cryptic peptide validation

Retention time predictions were carried out using the OpenMS (2.5.0) RTModel based on
the oligo-kernel n-support vector regression (n =0.5, p =0.1, c =1, degree =1, border_length
=22, kmer_length =1, S=5) [141–143]. The model was trained on all peptide identifications
of canonical peptides identified with MHCquant and applied to all cryptic peptide identifi-
cations resulting from peptide-PRISM. Predictions were evaluated by applying a linear least
square fit to compute the 99% prediction interval around the predicted versus measured re-
tention times using the statsmodels (v.0.11) function wls_prediction_std.

Synthesis of isotope labeled peptides

Peptides were synthesized using the Liberty Blue Automated Peptide Synthesizer (CEM) fol-
lowing the standard 9-fluorenylmethyl-oxycarbonyl/tert-butyl strategy. After removal from
the resin by treatment with trifluoroacetic acid/triisopropylsilane/water (95/2.5/2.5 by vol.)
for 1 h, peptides were precipitated from diethyl ether, washed three times with diethyl ether
and resuspended in water prior to lyophilization. Purity and identity of the synthesis products
were determined by C18-HPLC (Thermo Fisher Scientific, Darmstadt, Germany) and LTQ Or-
bitrap XL mass spectrometer (Thermo Fisher Scientific), respectively. A table listing the exact
peptide sequences and their heavy isotope labels is contained in the original publication of
Marcu, Bichmann and Kuchenbecker et al. [208] in the corresponding supplementary material
tables S3

Spectrum validation

We selected 36 cryptic peptides, identified with 1% FDR for spectral validation with isotope-
labelled synthetic peptides. Selected peptides were strong binders to the corresponding HLA
alleles of the respective subject, with a netMHCpan-4.0 binding % rank <0.5. Isotope-labeled
synthetic peptides were spiked into a sample matrix of native HLA eluted peptides from a
JY cell line at a concentration of 20 fmol/µl, with the purpose of showing spectrum identity
between the native and synthetic peptides. The spectral similarity was computed analogous
to the normalized spectral contrast angle [209] between eluted peptide spectra and synthetic
isotope-labelled peptide spectra:

l(S1, S2) = 1 � 2cos�1(S1 · S2)
p

(5.3)

where the spectra were encoded as intensity vectors (S1 and S2) based on their theoretical
b- and y-fragment ions by using the mzR (v2.16.2), msdata (v0.20.0) and protViz (v0.4) R
packages. Intensities of matching y- and b-ion pairs as encoded in the intensity vectors were
compared, thereby avoiding the necessity to correct for the mass shift caused by the isotope.
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Database
(PostgreSQL) web framework

(Pyramid)
SQL framework
(SQLalchemy)

Memory cache
(memcached)0

Back End

Front End

Table visualization
(DataTables)

Plot library
(Bokeh)

Plot library
(ApexCharts)

Template framework
(Bootstrap)

Figure 5.2: Architecture of the public webserver: The webserver is build on a Python back end using the
libraries pyramid and sqlalchemy that accesses a SQL database storing all information on identified HLA
peptides their respective meta-information. The front end was build using the HTML, CSS and JavaScript
template framework Bootstrap and multiple javascript libraries eg. DataTables, Bokeh and ApexCharts. The
Figure was adapted from a version drafted by Leon Kuchenbecker who developed the web application.

In order to compare the score distribution of the selected cryptic peptide identifications with
a negative control distribution, the same score was additionally computed for the comparison
of the same cryptic spectra paired with 1000 randomly sampled spectra containing fragment
peaks matching to the same peptide sequence label. Peaks present in at least one of the spec-
tra were considered for the cross product (S1 · S2). Intensities of missing peaks in the one
spectrum compared to the other were set to zero.

Data storage and web interface

Data was stored and managed using the biomedical data-management platform qPortal [19]
(Project ID: MNF ELK QHIPP). HLA-I and -II peptides were complemented with their tissue
and HLA allotype association and stored in an SQL database. The database is versionized and
all data analysis was based on the release 2020.06. A visualization of all tables in an entity
relationship database scheme of the SQL database is shown in Figure 5.3.

In addition, a public web server was implemented that allows users to formulate queries
against the database, visualize results and allows data export for further analysis. A scheme
illustrating the architecture and implementation of the webserver is shown in Figure 5.2. The
web front-end was implemented in HTML, CSS and JavaScript based on the front-end
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framework Bootstrap 4. It is hosted by an Apache webserver. Memory caching is enabled us-
ing the library memcached. The table plugin DataTables was used to provide rapid browsing
and filtering for tabular data. Interactive plots were designed using Bokeh and ApexCharts.
The design of the SQL database and the development of the web application was carried out
by Leon Kuchenbecker as contribution to the project.

Raw data availability

The LC-MS/MS immunopeptidomics data comprised in the HLA Ligand Atlas has been de-
posited to the ProteomeXchange Consortium via the PRIDE partner repository [119] with the
dataset identifier PXD019643. LC-MS/MS runs and sample not adhering to the implemented
quality control thresholds are deposited as well.
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5.3 Results

Overview of natural HLA Ligands contained in the HLA Ligand Atlas data resource

Throughout this study we have measured the natural HLA immunopeptidome from 29 dis-
tinct organs obtained from 21 research autopsy body donors, surmounting to 1,283 LC-MS/MS
runs from 227 mostly paired HLA-I (198) and -II (221) samples using a thorough experimental
and computational strategy (Figure 5.4 A). All results are provided publicly in a user-friendly
web interface at https://HLA-Ligand-Atlas.org. The majority of tissue samples was obtained
from only 14 subjects, while five thymus samples (removed during heart surgery) and two
ovary samples (removed preventively) where contributed by additional individuals. Overall,
we identified 89,471 HLA-I and 145,190 HLA-II peptides at a local peptide-level FDR of 1%
and estimated upper bound of the global peptide-level FDRs of 4.5% and 3.9% for HLA-I and
-II peptides, respectively. In a thorough comparison with the main known publically available
databases: SysteMHCAtlas [120] and the IEDB [201], this data set boosts the total number
of registered HLA ligands from 356,477 to 388,436 for HLA-I and from 74,016 to 192,889 for
HLA-II (Figure 5.4 B). The resulting peptide identifications could be attributed to a total of 51
HLA-I and 81 HLA-II allotypes. (Figure 5.5 A)

While limited in the number of different individuals represented in the data resource, the
subjects do cover among the most frequently occuring allotypes representing a large part
of the human population. Hence, we sought to approximate the worldwide population cov-
erage of HLA allele frequencies comprised in the HLA Ligand Atlas. For this purpose, we
computed population coverages using the IEDB Analysis Resources (http://tools.iedb.org/
population/) [201]. As a result, we observe a population representation frequency of 95.1%,
73.6%, 93%, for HLA-A (n=16), -B (n=21), and -C (n=14) alleles, when considering at least
one HLA allele match per individual respectively. Within the same constraints 78.8%, 99.5%,
98.2%, 92.3% for HLA-DPB1 (n=9), -DQA1 (n=11), -DQB1 (n=12), and DRB1 (n=19) alleles are
represented respectively (Table C.3).

Allotype characteristics of identified natural HLA ligands

The identified peptides in the immunopeptidomics experiments fit to the well-known length
distributions encountered for HLA class I (mostly 8-12mers) and class II ligands (mostly 8-
25mers). The mode of the overall peptide length distribution indicates the highest abundance
of 9mers (60%) for HLA-I and 15mers (18%) for HLA-II. (Figure 5.5 A) In addition, we ob-
serve a strong difference in the source proteins covered by HLA-I and -II ligands. Indeed,
gene ontology enrichment of proteins that are exclusively covered by HLA-I and -II ligands
confirmed the well-established fact that the cellular compartments associated with the HLA-
I antigen presentation pathway are primarily intracellular where as for HLA-II extracellular
proteins [41] (Figure 5.5 B,C).

While 85% of the HLA-I ligands are predicted to bind to the respective subject’s HLA allo-
type, this holds true for only 49% of the HLA-II ligands. A major shortcoming of HLA-II
binding prediction models is their strong bias towards 15mers, while most HLA-II peptides
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Figure 5.4: A) Experimental and computational high-throughput analysis workflow: Diverse samples of differ-
ent donors and tissues were collected, purified and filtrated for MHC peptides to undergo LC-MS/MS acqui-
sition. Raw MS data evaluation was achieved using the MHCquant bioinformatics pipeline, binding affinity
prediction and a stringent quality control scheme to be released on the web page hla-ligand-atlas.org. (Figure
adapted from the original version by Ana Marcu) B) Peptide overlap of the HLA Ligand Atlas with two large
existing public databases containing MHC peptides: IEDB and SysteMHC.
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the number of peptides matching to each allele by binding predictions. In addition, the length distribution of
identified peptides for HLA-I and -II as well as predicted non-binders is shown in the center. (Figure adapted
from the original version by Leon Kuchenbecker) B) The divergence of source proteins of HLA-I and -II peptides
is shown based on an unsupervised principal component analysis of HLA-I (blue dots) and -II samples (orange
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respect to their cellular localization.
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Figure 5.6: A, B) HLA-I peptide yields per tissue and subject are illustrated in a heatmap for HLA-I and –II.
The color range is in accordance with the number of peptides identified in each sample as indicated in the legend
on the right (HLA-I – blue, HLA-II – orange).

across all other length variants are at a disadvantage. Certain HLA allotypes, such as HLA-
A*02:01, -B*15:01, and -C*04:01 are predicted with the highest number of unique strong and
weak HLA-I binders. Similarly, HLA-DRB1 alleles were predicted to bind most of the HLA-II
ligands characterized. The increased number of peptides presented on a subset of HLA alleles
can be attributed to their frequency among the analyzed individuals, to their potentially high
copy number on cells, or perhaps to positive binding prediction biases towards frequent HLA
alleles. (Figure 5.5 A)

Different modes of immunopeptidome variation across samples

When investigating the immunopeptidome diversity across all samples for both HLA-I and -II
alleles, we observed a strong variance in the number of presented peptides identified across
donors and tissues. (Figure 5.6) Consequently, we assessed the extent of similarity and het-
erogenity of the immunopeptidome on both source protein and HLA ligand level between
individuals and tissues. For this purpose, we computed pairwise overlaps between all sam-
ples by means of the Jaccard similarity index either on the level of identified HLA ligands or
on the level of the respective corresponding source proteins.

As a result, we made several observations: (1) In most comparisons samples of the same indi-
viduals are more similar than samples from the same tissue or random comparisons (2) gener-
ally, source protein level in contrast to the HLA ligand level comparisons result in higher
overlaps between samples due to the less direct influence of a individual HLA allotypes
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I (blue) and HLA-II (orange) on source protein and peptide level, respectively. The dendrogram illustrates
the nearest neighbours based on the similarity between tissues and subjects. C, D) Violin plots illustrate the
distribution of the Jaccard similarity index for each pairwise comparison between the same subject - different
tissues; different subjects - the same tissue, and different subject - different tissues on source protein and peptide
level, respectively. (Figure adapted from the original version by Leon Kuchenbecker)
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and (3) inter-tissue and random overlaps are slightly higher for HLA-II rather than HLA-I
molecules. The high heterogenity of the HLA immunopeptidome between subjects is addi-
tionally demonstrated by the results of a hierarchical clustering analysis based on the Jaccard
similarity matrix. (Figure 5.7) While the result might seem partially biased due to the intrinsic
HLA allotype differences across the individuals, we consistently reproduced the effect also
when focusing on allele matched samples and peptides only.

Interestingly, the analysed thymus samples stand out from the other samples regarding hetero-
geneity and antigen coverage. In fact, a lower degree of subject individuality and an increased
share of covered source proteins is revealed, resulting in multiple of the thymus samples be-
ing the nearest neighbours in the hierarchical clustering of HLA-I and -II source protein and
HLA-II peptide Jaccard similarities.

HLA ligand identifications vary consistently across tissues

Despite the inter-individual (i.e. inter-allotype) variance, there exists a trend of peptide iden-
tifications across tissues. Evidently, tissues gradually separate into higher and lower HLA
peptide yielding for both HLA classes (Figure 5.8). Tissues that represent the lower end of
the spectrum of both HLA-I and -II identifications across all subjects include the skin, aorta,
brain, and the gallbladder. In contrast, tissues such as the thymus, lung, spleen, bone mar-
row, and kidney (Figure 5.8 A, B) are at the higher end of the spectrum of HLA-I and -II
peptide identifications. In accordance with these results, most of these high yielding organs
have well-characterized immune-related functions or are central components of the lymphatic
system [26].

In order to systematically evaluate this effect, we employed a linear model correlating the
median number of identified HLA-I/-II peptides with RNA expression values (RPKM) of
immune-related genes. The corresponding RNA sequencing data for this comparison was re-
trieved from a recent study targeting the respective genes across a wide number of individuals
and tissues [182] (Figure 5.8 C, D; Figure 5.9 ). In accordance, we observe a significant corre-
lation between expression values of immune-related genes and HLA-I and -II peptide yields.
The highest correlation was detected between genes of the immunoproteasome and the num-
ber of HLA-I ligand identifications per tissue (R2=0.506, rho=0.775, p=0.0001). As for HLA-II,
ligand identifications correlate best with the expression of the HLA-DRB1 gene (R2=0.221,
rho=0.416, p=0.0236) among all comparisons.

Small subsets of HLA ligand source proteins are tissue-exclusive

To evaluate the degree of tissue-specificity within the immunopeptidome, we grouped all sam-
ples by their tissue of origin and extracted the sets of HLA ligands and their source proteins
exclusively found in one tissue. Among those, we observe a particularly small number of
HLA-I (ranging from five in mamma to 681 in thymus, on average 1.3% of the proteins found
in a given tissue), and HLA-II (ranging from seven in ovary to 541 in thymus, on average 4.1%
of the proteins found in a given tissue) ligand source proteins identified exclusively in one
organ (Figure 5.10).
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correlation coefficient is depicted in the top left corner for each comparison.
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Despite the low number of detected tissue-exclusive HLA ligands, we sought to determine
whether their source proteins reflect organ-specific biology and whether this effect is con-
served between the transcriptome and immunopeptidome. For this purpose, known transcrip-
tome upregulated genes per tissue (retrieved from the GTEx repository) were compared with
our detected sets organ-exclusive HLA-I and -II source proteins (Figure 5.10 A, B, left hand
side). Indeed, we observe that organ-specific biology is conserved between transcriptome and
immunopeptidome, since HLA-I and -II source proteins exhibit an enrichment for upregu-
lated genes from the respective tissue. In addition, functional proximity between organs such
as the tongue, heart and muscle or brain and cerebellum is reflected in this analysis. At last,
gene ontologies (GO) of those HLA ligand source proteins found exclusively on one tissue are
indicative of respective organ-specific functions, too for example “adaptive immune response”
for the thymus or “nervous system development” for the brain. (Figure 5.10 A, B, right hand
side)

However, clear associations between enriched gene sets and gene ontologies of HLA-I/-II
source proteins are not evident in all examined organs. For example the spleen or the testis
do not show clear enrichment for transcriptome-upregulated genes even though possessing a
number of tissue-exclusive protein identifications. Moreover, in general it appears that organ-
specific traits are more evident for HLA-I- as opposed to HLA-II source proteins, as supported
by lower p-values with GTEx enriched transcripts and function-specific GO terms.

Thus, in summary we observe a slight tissue-specific influence on the immunopeptidome, in
particular HLA-I, however this effect ranges from low to not evident in all organs investigated
in our study.

Cryptic peptides are prevalent in benign immunopeptidomes

Since recently cryptic peptides (also known as non-canonical peptides) have gained much in-
terest as new sources of HLA-presented peptides [112, 148, 198] and have been claimed to be
mainly tumor-associated [197], we did an additional assessment of our data with respect to
these targets. As our inital database search was restricted to the set of known reviewed protein
sequences, here we researched the HLA-I-restricted LC-MS/MS data with Peptide-PRISM [23]
(Figure 5.11 A) a recently developed database independent de novo search strategy.

Results from this search identified 1,466 cryptic peptides in the benign immunopeptidome,
including one that was previously thought to be tumor-associated only [197] (Figure 5.11 F).
Of note, different HLA allotypes appear to have unequally frequent presentation propensities
for cryptic peptides, as for example nearly 15% of all identified cryptic peptides were at-
tributed to A*11:01, followed by B*07:02 and A*03:01 (Figure 5.11 B). The finding is supported
by 41.13% of these cryptic peptides being identified in more than one individual of the HLA-
Ligand-Atlas cohort (Table S3). Moreover, when validating their chromatographic retention
time behaviour with a predictive model, both cryptic and conventional peptides share similar
properties and most cryptic peptide identifications elute in close proximity to the predicted
value (Figure 5.11 D).

The genomic origin of the identified cryptic HLA-I ligands can be classified into the following
categories with decreasing frequency: 5’-UTR (48%), followed by Off-Frame (34%), ncRNAs
(12%), 3’-UTR (2%), intergenic (2%), and finally intronic regions (1%) (Figure 5.11 C). In accor-
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Figure 5.11: Cryptic peptides are prevalent in benign immunopeptidomes: A) Spectra were searched with
Peptide-PRISM to identify peptides of cryptic origin. Briefly, de novo sequencing was performed, and top
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measured retention times (RT) of cryptic peptides with their predicted RTs trained on canonical peptide RTs.
Corresponding R2, pi (width of the prediction interval – red dashed lines), and frac (the number of peptides
falling into the prediction interval) are indicated in the bottom right. E) 36 cryptic peptides were selected for
spectral validation with synthetic peptides. The similarity between the synthetic and experimental spectrum
was computed by correlation scores in contrast to 1000 random comparisons. F) Exemplary spectral comparison
of the cryptic peptide SVASPVTLGK and its synthesized heavy isotope-labelled counterpart (P+6). Matching
b (red) and y ions (blue) are indicated as well as the isotope mass shifted ions (orange stars) of the synthesized
peptide. (Figure adapted from the original version containing parts by Andreas Schlosser, Leon Kuchenbecker
and Ana Marcu)
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dance with previous studies [23, 198] the predominant origin of cryptic peptides is from the
5’-UTR.

Finally, we chose the 36 cryptic peptides with the most evidence (low q-value and shared
among subjects) for spectral validation by comparison with a synthetic counterpart. Next to
manually verifying the cryptic peptide identifications, we computed a similarity score between
the spectra obtained from the experimental vs. synthetic peptides (Figure 5.11 E). In contrast
to randomly selected comparisons, similarity scores were highly elevated among the exper-
imental vs. synthetic peptides, reassuring the quality of these peptide identifications. Thus
these results suggest that cryptic peptides are not per-se tumor-specific, yet their frequency
might be reduced in benign tissues [23].

Quantitative time series of immunopeptidome degradation

In order to exclude a time dependent decay of the immunopeptidome that might have influ-
enced the results of our analysis, we additionally carried out a time series experiment of two
benign ovaries and one benign liver. As a result we did not observe a profound qualitative
or quantitative degradation of the immunopeptidome for up to 72 h after tissue removal, as
neither the ratio of predicted HLA binders to non-binders (Figure 5.12 left hand side) nor
a large fraction of the peptide intensities (Figure 5.12 right hand side) changed significantly
throughout the time course. Only, This supports the feasibility of employing autopsy tissue as
material for immunopeptidomics assays and reassures the quality of the acquired data.
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Figure 5.12: The time series experiment was carried out on three biological samples from three subjects (A: AUT-
DN16 Liver, B: OVA-DN278, C: OVA-DN281). Bar plots (left hand side) indicate the number of identified
HLA-I predicted binders (blue) and predicted non-binders (grey) across technical replicates and time points
for each time series. Time series (right hand side) indicate individual clusters (K-Means using four seeds) of
trajectories of quantified MS1 intensity across technical replicates and time points. Intermediate trend lines
for each cluster are indicated in blue and the percentage of trajectories populating a given cluster is annotated
at the top edge of each plot. The trajectories of all time points were set in relation to the initial time point.
The analysis reveals that the number of identified peptides and their percentage of predicted HLA-binders is
constant and that most trajectories do not vary much across time points.
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5.4 Discussion

In this work we measured and analysed the currently largest high-resolution MS study of the
immunopeptidome of non-malignant human tissues. We cover a multitude of different HLA-I
and -II alleles, which are among the most frequent in the human population and thus make
this dataset interesting to worldwide research in immunology. In addition, we sampled most
organs and tissue types of the human body including central components of the immune sys-
tem such as the thymus, that is often not accessible to common research biobanks. Moreover,
for the first time this enabled us to do a comprehensive comparison of the variation of the
immunopeptidome across these tissues, since all samples were handled and measured under
the same conditions.

Throughout the analysis of the data described, we were able to confirm several well-established
facts and some new discoveries about HLA peptide presentation. For example, we were able
to reproduce the general length distribution of HLA-I and -II peptide ligands and their re-
spective intracellular and extracellular origin, respectively. In addition, we confirm previous
observations of hotspots of peptide presentation within a given protein sequence [200]. In
particular, we also observe that many MS-based discovered HLA-II ligands are not predicted
to bind to any of the subjects HLA alleles, highlighting the ongoing need for better prediction
methods of HLA-II peptides.

When comparing variability across samples, tissues and individuals we encountered a very
large general heterogeneity and an overweight of the inter-individual factor. Clearly, the im-
munopeptidomes of subjects rather than tissues are more similar, regardless of the level on
which the data analysis is based on in contrast to observations of human proteome or transcrip-
tome studies [175, 178, 189]. However, this and the fact that the similarity between samples is
in general very sparse, even on source protein-level, can be attributed to the underlying HLA
alleles leading to different peptides and corresponding proteins presented by in each sub-
ject. This observation is in accordance with a previous study, showing that melanoma metas-
tases from the same patient show substantial differences in their immunopeptidomes [210].
Nonetheless, it should be kept in mind that identification of both source proteins and HLA
ligands is intrinsically biased, due to its affectedness by inherent inadequate sampling and
detection in MS.

The investigation of the immunopeptidomes across tissues lead to the discovery that there are
rather quantitative than qualitative differences evident. Despite our finding that there are only
few tissue specific HLA ligands and corresponding source proteins, there is a clear difference
between the amount peptides that are isolated and identified from the various tissues. This is
in accordance with tissue-wide proteomics studies finding only small numbers of organ exclu-
sive protein identifications [178]. Moreover, in two even more systematic, quantitative follow
up analyses of the human proteome and transcriptome across multiple tissues the conclusion
was drawn that differences between tissues are more likely quantitative than defined by the
presence or absence of certain proteins [211, 212].

The fact that the immunoproteasome might play a role with respect to the different amounts of
peptides found across healthy tissues, including tissues for which no primary immunological
function would be expected, is supported by two independent proteomic studies identifiying
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the immunoproteasome in the entire healthy human proteome as well [176, 178]. In addition,
immunoproteasom expression has recently been claimed to be take strong influences on the
presented HLA peptidome repertoire and is thus associated with response to checkpoint in-
hibitor therapy in Melanoma [213].

Less strong correlates found for HLA-II on the other hand, is a comprehensible result, since
the immunoproteasom is not involved in the HLA-II presentation pathway. Only the HLA-DR
protein chain is a strong and variable contributor to the dimeric HLA-II molecules, in contrast
to the invariant a chain, which might support the weak correlation found in this case. More-
over, higher expression values for HLA-DRB1 compared to other HLA-II allotypes have been
described in early studies on gastric epithelium for example [214] as well. However, during
the immunopurification procedure we applied the Tü39L243 antibody, having high specificity
for HLA-DR but possibly lower specificity for different other HLA-II allotypes. Hence, we
cannot exclude a skewed identification ratio towards HLA-DRB allotypes. Finally, it should
be noted that the high paired yield of HLA-I and -II ligands in some of the tissues could be
indicative of an increased infiltration by different immune cells. However, since bulk tissue
was analyzed and an attempt of sorting factions of cells was not in the scope of the study, a
definite statement whether the peptide presentation occurred in tissue cells itself or rather on
tissue-infiltrating immune cells cannot be made.

At last, we validated and confirmed the presence of non-canonical or cryptic peptides in the
benign immunopeptidome. This fact highlights that these peptide species are to some extend a
natural phenomenon and raises the importance for comparing findings in cancer tissues with
healthy human tissues instead of NATs [186]. Nevertheless, our findings are still preliminary
and will need to be analysed more quantitatively in the future.

With this work we hope to contribute to various branches of research in immunology ranging
from basic understanding of immunological processes to infectious disease or cancer therapy
in the future. Finally, the raw MS measurements are provided to the public and we encourage
reanalysis of the data with future methods and search databases as it might lead to new in-
sights such as the identification of additional peptides not included in our evaluation at this
stage.
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6.1 Introduction

Hepatocellular carcinoma (HCC) is among the cancer malignancies with the highest death
toll on a global scale [24] and with very limited therapeutic options. Long-term survival in
advanced stages in disease progression is rare [25]. Even though the microenvironment of the
liver is tolerogenic and supresses immune responses [215], antigen-specific T-cell responses do
occur [216]. Immune infiltration of HCCs by T-cells [217] and spontaneous immune responses
have been shown to correlate with longer survival [218], however their overall impact is rather
weak and insufficient on their own in the liver. Thus, immunotherapies that could unleash the
full potency of the immune system hold great promise.

Immune checkpoint (ICP) inhibitors have recently tracted much attention in cancer immuno-
therapy, and might allow to achieve an increase of effectiveness to fight malignancies [219].
In contrast to established cytostatic pharmaceutical treatments, this new class of drugs has
enabled long-term survival in advanced and metastatic disease previously considered incur-
able [220]. Induced T-cell activity against mutated neoepitopes arising from somatic tumor
mutations has been proposed as a likely mode of action for ICP inhibitors [221].

Accordingly, elevated mutational load and respectively raised neoantigen qualities [222] were
determined to be strong correlates for survival after ICP therapy of several tumors [223] in-
cluding in melanoma (Mel) [224], lung cancer [225] and colorectal carcinoma [226]. In addition,
evidence suggests that T-cell responses to neoantigens can generate tremendous clinical effects,
such as demonstrated in case reports on advanced Mel [227] and metastatic cholangiocarci-
noma [228].

Ultimately, success and feasibility of neoantigen-targeted cancer immunotherapy is likely to
depend on the tumor entity, since their mutational loads can vary strongly [229, 230]. As re-
vealed by NGS, in HCC only a small proportion of about 10 % of patients showed mutations
potentially accessible for tailored drug therapy [231]. However, HCCs fall into the mid range
of mutational burden among the different tumor entities and preliminary data for ICP in-
hibitors showed objective response rates in 15–20 % of patients combined with a manageable
safety profile [232]. Thus, neoantigens are in principle an interesting case for therapeutic in-
tervention in HCC.

This chapter showcases an in-depth multi-omics analysis encompassing whole exome and
transcriptome sequencing, combined with proteome and HLA ligandome profiling in selected
HCC patients aiming to obtain evidence for the natural presentation of exome-derived mu-
tated HLA ligands. In contrast to the expectations on this project, neoantigens remained elu-
sive to the approach used, hence the biological difficulty as well as technological limits for
this therapeutic strategy in HCC in contrast to Mel is discussed. In order to distinguish be-
tween the different types of evidence ranging from variants, predictions and experimentally
validated neo-epitopes (NElig) on the various layers of biological complexity, we use the fol-
lowing glossary of definitions:
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Abbreviation Description

Var Somatic variant (SNVs, InDels, frameshift variant)
Varns Non-synonymous somatic variant
Varexp Expressed non-synonymous somatic variant
PNE Predicted neo-epitope
PNEexp Predicted neo-epitope with evidence on transcript level
PNEprot Predicted neo-epitope with evidence on proteome level
NElig Neo-epitope with evidence on HLA ligandome level
WTlig Wild-type peptide corresponding to PNE with evidence on

HLA ligandome level



110 Multi-omics discovery of neoantigens in hepatocellular carcinoma

6.2 Materials and Methods

Ethics approval and informed consent

This study was conducted in accordance with the Declaration of Helsinki and approved by
the local institutional review board at the University Hospital of Tübingen, Germany. All par-
ticipants provided written informed consent before study inclusion.

Clinical specimens

Clinical specimens from patients (n=16) undergoing liver resection for hepatocellular carcino-
mas (HCC) encompassing both non-malignant and malignant liver tissue as well as peripheral
blood were obtained directly after surgery and cryo-preserved (for patient characteristics see
Table C.10). HCC diagnosis and predominant tumor fraction within samples were histologi-
cally confirmed by an expert pathologist. All included patients were negative for chronic viral
hepatitis (hepatitis B and/or C) and without systemic pretreatment for their malignancy.

Next-Generation Sequencing

Extraction of DNA/RNA from fresh frozen tissue and PBMCs was performed using the All-
Prep DNA/RNA Kit (Qiagen) from fresh frozen tissue and PBMCs, respectively.

For whole exome sequencing (WES) samples (HCC023-027, HCC034, and HCC036) were pre-
pared using the SureSelectXT Human All Exon v5 or v6 Kit (Agilent, Waldbronn, Germany).
For whole transcriptome sequencing (WTS) samples were prepared with the TruSeq Stranded
mRNA Kit (Illumina, Eindhoven, Netherlands). Paired-end sequencing was performed with
the HiSeq 2500 or NextSeq500 System (Illumina).

For WES DNA libraries were prepared for samples (HCC028, HCC030, HCC035, and HCC038-
045) with SureSelect XT Human All Exon v6 Kit (Agilent, Waldbronn, Germany) and se-
quenced in paired-end mode on a HiSeq 4000 System (Illumina, Eindhoven, Netherlands).
RNA library preparation was performed using the SMARTer Stranded Total RNA-Seq Kit v2 –
Pico Input Mammalian (Clontech, Saint-Germain-en-Laye, France) and sequenced on a HiSeq
4000 System (Illumina, Eindhoven, Netherlands).

Protein in-gel digestion for shotgun proteome analysis

Eluted protein samples were purified by SDS-PAGE. Coomassie-stained gel pieces were di-
gested using trypsin. Extracted peptides were desalted using C18 Stage tips and subjected to
LC-MS/MS analysis.
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Mass spectrometric analysis of shotgun proteome analysis

Liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses were performed
on an EasyLC nano-HPLC (Proxeon Biosystems, Roskilde, Denmark) coupled to an LTQ Orbi-
trap Elite (Thermo Fisher). Peptide mixtures were separated on a 15 cm fused silica emitter of
75 µm inner diameter (Proxeon), in-house packed with reversed-phase ReproSil-Pur C18-AQ
3 µm resin (Dr. Maisch GmbH, Ammerbuch, Germany). Peptides were injected with solvent
A (0.5 % acetic acid) at a flow rate of 500 nl/min and separated at 200 nl/min. Separation was
performed using a linear 130 min gradient of 5-33 % solvent B (80 % ACN in 0.5 % acetic acid).
Each of four samples was run as one technical replicate. LTQ Orbitrap Elite was operated in
the positive ion mode. Precursor ions were acquired in the mass range from 300 to 2,000 m/z
followed by MS/MS spectra acquisition of the 20 most intense precursor ions. Higher-energy
CID (HCD) MS/MS spectra were acquired with a resolution of 15,000 and a target value of
40,000. The normalized collision energy was set to 35, activation time to 0.1 ms and the first
mass to 120 Th. Fragmented masses were excluded for 60 s after MS/MS. The target values
were 1E6 charges for the MS scans in the Orbitrap and 5,000 charges for the MS/MS scans
with a maximum fill time of 100 ms and 150 ms, respectively.

Isolation of naturally presented HLA ligands from tissues for HLA ligandomics

HLA-I peptide complexes were isolated from HCC and corresponding (non-malignant) liver
tissue samples by immunoaffinity purification as described previously [233] , using the pan-
HLA-I specific monoclonal antibody W6/32 [126] (produced in-house at the Department of
Immunology) and eluted using 0.2 % trifluoroacetic acid.

Mass spectrometric analysis for HLA ligandomics

Peptide extracts were separated by UHPLC (UltiMate 3000 RSLCnano System, Dionex) at a
flow rate of 175 nl/min using a 50 µ25 cm C18 column (PepMap RSLC, 2 µm particle size,
Thermo Fisher) and a linear gradient ranging from 3 to 40 % solvent B over the course of 90
min (Solvent A: 0.15 % formic acid; Solvent B: 80 % ACN) in several technical replicates, as
described previously [233].

Eluting peptides were analyzed in an online-coupled LTQ Orbitrap XL mass spectrometer
(Thermo Fisher) operated in automated data-dependent acquisition (DDA) mode. In the Or-
bitrap, survey scans of peptides with 400-650 m/z as well as 2+ and 3+ as permitted charge
states were recorded at a resolution of 60,000 with subsequent selection of the five most abun-
dant precursor ions for collision-induced dissociation (CID). The normalized collision energy
was set to 35, activation time to 30 ms and the isolation width to 2.0 m/z. MS/MS spectra
were acquired in the linear ion trap (LTQ) and corresponding precursor ions were dynami-
cally excluded for 3 s after fragmentation. Each sample was acquired in up to five technical
replicates.

To enhance sensitivity of neo-antigenic peptide identification, selected ion monitoring (SIM;
LTQ Orbitrap XL) and parallel reaction monitoring (PRM) (Orbitrap Fusion Lumos, Thermo
Fisher) for selected samples was additionally performed. A table listing the exact peptide se-
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quences and their heavy isotope labels is contained in the original publication of Löffler and
Mohr et al. [234] in the corresponding supplementary material tables S7 and S8.

Heavy isotope-labelled synthetic peptides for the SIM approach were purchased from Thermo
Fisher. Synthetic peptide retention times (RT) were assessed in an HLA-I peptide matrix eluted
from JY cells. Subsequently, these were used to create a scheduled SIM method triggering
fragmentation of PNEs (2+ precursor ions) independent of their relative abundance in pa-
tient peptide extracts. Due to the number of PNEs, three SIM measurements were scheduled
and thus several measurements per tumor sample were necessary. SIM scans of HCC025 and
HCC026 were performed with the same UHPLC settings as top 5 CID measurements, whereas
HCC027 SIM acquisition was performed using a 50 µm × 50 cm C18 column (PepMap RSLC,
2 µm particle size, Thermo Fisher) and a linear gradient ranging from 3 to 40 % solvent B over
the course of 140 min. The normalized collision energy was set to 35, activation time to 30 ms
and the isolation width to 1.5-2.0 m/z.

Heavy isotope-labelled synthetic peptides for PRM targeted tandem MS (PRM tMS2) were
manufactured in-house by solid-phase peptide synthesis at a purity >60 %. PRM tMS2 meth-
ods targeting the heavy isotope-labelled synthetic peptide or its natural counterpart (2+ and
3+ precursor ions) were created using Skyline v4.1 [235, 236]. The retention time (RT) as well
as the amount of each synthetic peptide necessary for reliable detection was assessed by titra-
tion in an HLA-I peptide matrix eluted from JY cells. Synthetic peptide purity as determined
by high performance liquid chromatography (HPLC) and 75 % peptide content (reference val-
ues of nitrogen determination: 20 % TFA and 5-10 % H 2 O) were considered for weighed-in
amounts. Peptides dissolved in 10 % DMSO were spiked at 4 – 20 fmol/µl and 5 µl were
injected for PRM tMS2 measurements on an Orbitrap Fusion Lumos.

Raw files of these titration measurements were processed with Proteome Discoverer v1.4
(Thermo Fisher) using the SEQUEST HT search engine [82]. Based on synthetic peptide RTs
±12 min, PRM tMS2 data acquisition of tumor and autologous non-malignant liver samples
was scheduled. Peptide extracts were separated by UHPLC (UltiMate 3000 RSLCnano System,
Dionex) at a flow rate of 300 nl/min using a 50 µm × 25 cm C18 column (PepMap RSLC, 2
µm particle size, Thermo Fisher) and a linear gradient ranging from 3 to 40 % solvent B over
the course of 90 min (Solvent A: 0.15 % formic acid; Solvent B: 80 % ACN). Eluting peptides
were analyzed in an online coupled LTQ Orbitrap Fusion Lumos mass spectrometer (Thermo
Fisher). In the Orbitrap, survey scans of precursor ions (HCC025: 320-670 m/z, HCC026: 300-
650 m/z; 2+ and 3+ as permitted charge states) were recorded at a resolution of 120,000 with
subsequent selection for collision-induced dissociation (CID). The normalized collision energy
was set to 35 and the isolation width to 1.4 m/z. At a resolution of 60,000, MS/MS spectra
were acquired in the Orbitrap.

In addition to PRM tMS2 measurements, one top five run in DDA mode (HCC025: 320-670
m/z, HCC026: 300-650 m/z) per sample was performed. In the Orbitrap, survey scans of
precursor ions (HCC025: 320-670 m/z, HCC026: 300-650 m/z; 2+ and 3+ as permitted charge
states) were recorded at a resolution of 120,000 with subsequent selection for collision-induced
dissociation (CID). The normalized collision energy was set to 35 and the isolation width to
1.4 m/z. At a resolution of 30,000, MS/MS spectra were acquired in the Orbitrap.

Synthetic peptides in an HLA-I peptide matrix were back-to-back eluted and acquired in
scheduled PRM tMS2 (4 fmol/µl) or in top 5 DDA mode (10 fmol/µl), respectively. DDA mea-
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surements of synthetic peptides (10 fmol/µl), were processed with Proteome Discoverer v1.4
(Thermo Fisher) using the SEQUEST HT search engine [82] and served as spectral library for
analysis of scheduled PRM tMS2 data in Skyline [235, 236].

PatientID Whole exome sequencing Transcriptomics Proteomics HLA ligandomics
T+N T+N T+N T+N

HCC023 3 3 3 3

HCC024 3 3 3 3

HCC025 3 3 3 3

HCC026 3 3 3 3

HCC027 3 3 3 3

HCC028 3 3 7 3

HCC030 3 3 7 3

HCC034 3 3 3 3

HCC035 3 3 7 3

HCC036 3 T only 3 3

HCC038 3 3 7 3

HCC040 3 3 7 3

HCC041 3 3 7 3

HCC042 3 3 7 3

HCC043 3 3 7 3

HCC045 3 3 7 3

Table 6.1: Overview of biological omics layers that were assessed per patient in the study. Tissue samples per
patients are labeled as tumor (T) and non-malignant (N) and if not available (7).

Bioinformatics analysis

Variant calling from whole exome sequencing data

Generated reads were processed using the megSAP pipeline (https://github.com/imgag/
megSAP) and the ngs-bits package (https://github.com/imgag/ngs-bits) by the Department
of Medical Genetics and Applied Genomics (Tübingen, Germany) [HCC023-HCC027, HCC034,
HCC036].

Adapter trimming was performed with SeqPurge [237] . Reads were mapped against the
Genome Reference Consortium Human Build 37 (GRCh37) using BWA-mem [238] and Sam-
blaster [239] was used for duplicate annotation. Local realignment of reads in target regions
was done with ABRA [240]. Overlapping reads were trimmed with an in-house tool for reduc-
tion of false-positive variants with very low allele frequencies.

Somatic variant calling was performed using Strelka and Strelka2 [241, 242] . Derived variants
were annotated with SnpEff/SnpSift [243, 244] , vcflib (https://github.com/ekg/vcflib), and
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dbNFSP [245]. High-confidence variants were obtained using custom filter criteria and further
annotated with in-house variant frequencies, tumor RNA depth and allele frequencies. RNA
reads were preprocessed to remove adaptor sequences in the same way and then mapped
with STAR [246] to the same reference genome.

Otherwise, sequenced reads were demultiplexed with Illumina bcl2fastq 2.19. and Skewer
0.2.2 [247] was used for adapter trimming, followed by read mapping with an in-house version
of BWA-mem [238] v0.72 against an in-house version of hg19. Local realignment of reads in
target regions was done with ABRA [240]and duplicate reads were discarded using SAMtools
v0.1.18 [248] . Somatic variants, called with a proprietary software (CeGaT GmbH, Tübingen,
Germany), were filtered for a minimal coverage of 30x in tumor and non-malignant tissue
and an allele frequency greater than 0.05 in tumor tissue and three-fold less in non-malignant
tissue. In case of HCC028, HCC030, HCC035, and HCC038-HCC045, somatic mutations were
annotated using SnpEff 4.1k [243]

HLA typing from whole exome sequencing data

Typing at four-digit resolution using WES data was performed by OptiType [249] for HLA-I
alleles and confirmed in selected cases by molecular HLA typing (using clinically validated
LUMINEX and sequence-based typing) during clinical routines (see Supplementary Table 3).

Gene expression analysis from transcriptome sequencing data

Gene expression values were calculated as fragments per kilobase of exon per million reads
mapped (FPKM) of the corresponding transcripts and RNA tumor sequencing depth at the cor-
responding variant position. Mapping of RNA reads was done using TopHat 2 (v2.0.12) [250]
. Adapters were removed beforehand with CutAdapt (–discard-trimmed) based on FastQC
results (v0.10). Counts for mapped RNA reads were calculated using HTSeq (0.6.1p2) [251] .
FPKM values were calculated as follows:

FPKM =
109xC
NxL

(6.1)

where, L is the exon length in base pairs for the corresponding gene, C is the number of reads
that mapped to a gene (number of counts from HTSeq run), and N is the total number of
unique mapped reads in the sample.

Proteomic data analysis

Proteome MS data from in-gel digestions was processed for protein identification using with
MaxQuant software suite v.1.5.2.8 using the Andromeda search engine [96]. The human ref-
erence database was obtained from UniProt (taxonomy ID 9606, containing 91,646 protein
entries and 285 commonly occurring laboratory contaminants) and concatenated with the
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patient-specific mutanome. Endoprotease trypsin was fixed as protease with a maximum of
two missed cleavages. Oxidation of methionines and N-terminal acetylation were specified
as variable modifications, whereas carbamidomethylation of cysteines was defined as a fixed
modification. Initial maximum allowed mass tolerance was set to six ppm. A FDR threshold
of 1 % was applied at peptide and protein level.

Label-free protein quantification was done using MaxQuant v1.5.0.0 [96] . Parameter groups
were defined for non-malignant liver- and tumor-derived raw files, respectively. The multiplic-
ity was set to one. Protein N-terminal acetylation as well as oxidation of methionine residues
were selected as variable modifications, whereas carbamidomethylation of cysteine residues
was set as fixed modification. TrypsinP was selected as enzyme with specific digestion mode.
Further, the match type MatchFromAndTo was specified and the number of MaxMissedCleav-
ages was set to two. Requantification and matching between runs were enabled. As a refer-
ence, the Swiss-Prot reviewed human proteome (version UP000005640, derived: 16/02/2016)
was utilized.

HLA ligandomics data analysis

MS data analysis obtained from HLA-immunoprecipitates was assessed using a Python imple-
mented development version of the MHCquant bioinformatics workflow (see Chapter 3) avail-
able in the qPortal instance [19] at the Quantitative Biology Center, Tübingen under the name
"Ligandomics ID Coprocessing 2.1" [123]. It uses the same functionalities as the Nextflow and
KNIME implementations of MHCquant (see Chapter 3) provided by tools of the open-source
software library for LC/MS OpenMS 2.3 [17]. Identification and post-scoring were performed
using the OpenMS adapter to Comet 2016.01 rev. 3 [83] and Percolator (3.1.1) [88] . HLA ligand
identification was performed against a personalized version of the human reference proteome
(Swiss-Prot, reviewed UP000005640), including the patient-specific mutanome.

Database search was carried out without enzymatic restriction and oxidation of methionine
residues as the only dynamic modification (maximal number of modifications per peptide
set to 3). The digest mass range was set to 800-2,500. Precursor charge was fixed to 2-3 and
the precursor mass tolerance was set to 5 ppm. In addition, a fragment bin tolerance of 1.0
Da and a fragment bin offset of 0.4 Da was set and neutral losses were included for each
peptide spectrum match (PSM). A 5 % PSM FDR threshold was calculated using Percolator,
based on a competitive target-decoy approach using reversed decoy sequences and merged
identifications of all replicate runs if available. Peptide quantification was achieved using
MapAlignerIdentification and FeatureFinderIdentification [131] with default settings. IDs of
replicates were treated as internal IDs and the median intensity of consensus features was
used as final quantification value. Only quantified identifications were considered to be valid
hits. HLA-I annotation was performed using an in-house version of SYFPEITHI [32] , netMHC
4.0 [138] , and netMHCpan 3.0 [37, 78].

HLA affinity prediction for PNElig

Peptides of 8-11 amino acids length were constructed by sliding a shifting window of the pep-
tide length over the affected mutated positions. Resulting peptides were filtered against the
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human proteome (UniProt UP000005640, 02/29/16) and the Ensembl proteome reference (re-
lease 84, 04/27/2016) to avoid the selection of identical peptides, contained within wild-type
proteins. In case of frameshift mutations, the reading frame offset was monitored in order to
determine sequences of alternative reading frames, resulting in altered amino acid sequences
and therefore yielding neo-epitopes. Transcript information was retrieved via BioMart, based
on the stable database version of GRCh37 (http://feb2014.archive.ensembl.org). HLA binding
prediction was performed with SYFPEITHI [32] , netMHC 4.0 [138], and netMHCpan 3.0 [37,
78].

The workflow was implemented using FRED2 [128] . All reported predictions include vari-
ant details, mutated peptide sequence, HLA allele, prediction method, corresponding binding
score, half maximal score, and a qualitative distinction between binding and non-binding
peptides, which is based on the score of the corresponding method. SYFPEITHI-predicted
peptides were considered binders, when prediction scores exceeded half of the maximal score
of the corresponding HLA allotype matrix. According to netMHC and netMHCpan, predicted
peptides with affinities (IC 50 values in nM)  500 nM were selected. Results were further an-
notated with gene expression values, protein quantification values, and the results of HLA
ligandome analysis.

Database matching for prioritization of WTlig

HLA ligandome database queries refer to the in-house database maintained at the Department
of Immunology encompassing > 300,000 unique HLA-I peptides identified through MS/MS in
diverse tissues (non-malignant as well as with pathologies including malignancies). Database
matching was carried out using rSQL, querying for an exact string match of the respective
wild-type ligand (Wlig ) matching to the respective predicted neo-epitope (PNE). All HLA-I
allotypes of our HCC and Mel cohort were covered by respective samples in the database.
Each sample containing the respective ligand was counted as a separate match.

333,431 different HLA-I peptides have been identified on benign (n=631), malignant (n=780) or
(n=115) human samples with pathologies including both primary tissues and (established) cell
lines. In total, the database comprises 2,646,952 HLA-I peptides corresponding to 49 different
HLA alleles, encompassing 18 HLA-A, 27 HLA-B, and 14 HLA-C alleles, including duplicates.

Queries against the Immune Epitope Database (IEDB; http://www.iedb.org/) [201] were
performed after filtering for HLA-I ligands, annotated as positive, positive-high, positive-
intermediate, and positive-low.

Data storage and management

All data was stored, managed, as well as partially analysed via the qPortal instance [19] at the
Quantitative Biology Center, Tübingen, if not stated otherwise (Project IDs: IVAC HEPA VAC
and MNF RAMMENSEE). In addition, the LC-MS/MS proteomics and immunopeptidomics
data has been deposited to the ProteomeXchange Consortium via the PRIDE partner reposi-
tory [119] with the dataset identifiers PXD013057 and PXD004894.
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6.3 Results

Traces of mutation-derived HLA ligands on different omics levels

With the aim to identify individual somatic tumor mutations resulting in natural HLA ligands
presented to T-cells, hence neo-epitopes, analyses of malignant and non-malignant liver tissue
resected during surgery for HCC from 16 patients was performed. This multi-omics approach
encompassed the search for evidence of neo-epitopes on different biological levels including
exome (n=16), transcriptome (n=16), shotgun proteome (n=7) as well as the HLA ligandome
(HLA-presented peptides; n=16). (Figure 6.2, Table 6.1)

exome On average 151±40 somatic variants (Var), including single nucleotide variants, in-
sertions/deletions, and frameshift variants, were detected per HCC, when referenced against
DNA from blood. 44% of these (66±19) caused changes in the amino acid sequence of the
encoded protein (i.e., Varns - non-synonymous variants). When assessing the number of pre-
dicted HLA-binding neo-epitopes (PNE) per patient suitable to bind to their individual set
of HLA alleles, an average number of 244±77 peptides from Varns per patient was predicted,
exceeding the binding threshold.

transcriptome Additional orthogonal evidence for PNEs was gained by annotating them
with RNA level transcriptome data. These expression annotated predicted peptides (PNEexp)
decreased the total amount of PNE by half (49±8 % of PNE) to an average of 118±40 predicted
peptides.

proteome In order to gain combined additional evidence for PNEs on transcriptome and
proteome level, PNE were annotated with log2-intensities of shotgun proteome data of HCCs
when available (n=7). For a total of 159 PNE, corresponding source proteins (n=33) were de-
tectable (on average for 22.7±21.1 PNEprot per patient). Only in one patient, no such evidence
for PNE-associated proteins was found (HCC034), whereas only a fraction of 9.8±8.6% of PNE
had additional evidence on shotgun proteome level.

ligandome To assess the existence of mutated HLA ligands with confidence, uHPLC-
coupled MS/MS was employed to identify naturally presented HLA ligands from HCC and
adjacent-benign liver tissue. (Figure 6.2 C) These analyses yielded on average 1403±621 HLA-I
presented peptides from HCC (FDR 5%, length 8-11 AA) and 1159±525 peptides from the
non-malignant liver samples (FDR 5%, length 8-11 AA). After prediction of binding affinities
for the respective patient HLA allotypes, an average of 1026±451 peptides per tumor and
867±450 peptides per non-malignant liver sample remained. On average, 51±11% of these
HLA ligands were shared between matched malignant and benign liver samples. 73±10% of
all MS-detected peptides identified on tumor tissue were predicted binders. Similar numbers
were observed for non-malignant tissue (72%±11%). The amount of shared predicted binders
of MS-detected peptides between matched malignant and benign liver samples averaged at
58%±12%. Importantly, we did not find evidence for naturally presented mutated HLA ligands
in HCC, independent of filtering criteria. However, we were able to identify one wild-type
HLA ligand (WTlig) corresponding to PNE in two patients each.
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Figure 6.2: Evidence for predicted neoepitopes on different Omics levels. A) Somatic (Var) and non-somatic
variants (Varns), peptide search space (PSS), resulting predicted neoepitopes (PNE) and their evidence on the
various Omics levels transcriptome (PNEexp), proteome (PNEprot) and HLA ligandome (NElig) are compared
for the HCC and the Mel dataset. The numbers represent the mean ± standard deviation. B) Numbers of
peptides per patient on all included omics leves resulting from processing with the here used insilico neoepitope
identification pipeline. Total counts based on the peptide search space are annotated in black, and NElig if
available are shown in red. (Figure A and B adapted from the original version by Christopher Mohr) C) HLA
ligandomics peptide yields of the HCC cohort (left) in contrast to Mel (right) for tumor (blue) and benign
(yellow) tissue samples. Predicted HLA binder ratio is indicated as second axis on the right and non-binding
peptides are added to the bar plot in grey.
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Benchmarking HCC and Mel HLA ligandomics datasets

To demonstrate the high sensitivity of our neoepitope identification pipeline, we additionally
processed a publicly available data set of five Mel patients as a reference. The amounts of
Varns and PNE show remarkable differences between HCC and Mel. (Figure 6.2) Whereas in
two cases, Mel samples showed comparable properties to HCCs with respect to the numbers
of Varns and PNE (Mel8, Mel16), numbers were substantially increased in the majority of Mel
samples (Mel5, Mel12, Mel15). This corresponds to an average of 531 Varns in Mel in compar-
ison to 66 in HCC, resulting in a eight-fold larger peptide search space (PSS) in Mel. Derived
PNE amounted to an average of 243 in HCC in contrast to 1.550 in the Mel data set.

Assessing respective data on a per patient basis (Figure 6.2 B), it is obvious that the HCC data
set is more homogenous (PSS: 2.500 to 10.000, PNE: 111 to 382), whereas in Mel the PSS
ranges from 4.000 to 84.000 (PNE: 169 to 3717) resulting from a substantially different TMB.

Using our ligandomics identification pipeline, we were able to reprocess the melanoma raw
MS data that had been described by Bassani-Sternberg et al. [46]. The ligandomics peptide
yields are significanlty lower for our HCC samples than those encountered for Mel (Figure
6.2 C). While we were able to reconfirm all of the neo-epitopes (NElig) in their MS data set
[Mel5 (n=2); Mel8 (n=1); Mel15 (n=8)], we further discovered one additional NElig for Mel12
and three additional NElig for Mel15. However, only one NElig was discovered in a sample
(Mel8) with mutational burden properties comparable to our HCC cohort.

Therefore, our comparatively homogenous HCC cohort and their analyzed tumor tissue sam-
ples, for which no NElig were discovered, differ substantially (by at least one order of mag-
nitude) from that of Mel, with regard to the mutational load and the amount of identifiable
HLA-presented peptides.

Evidence for mutated proteins on shotgun proteome level

Despite the lack of identification of NElig in our HCC cohort on HLA ligandome level, we
aimed at gathering the best available evidence for the presence of mutated proteins on shot-
gun proteome level. A tryptic digest of cell lysates was used, knowing that detection of re-
spective variants is difficult, the sensitivity of the technique limited [252] and governed by a
variety of influencing factors.

As a result, we detected two somatic mutations on proteome level in HCC025 and HCC026.
(Figure 6.3) In HCC025, the variant ALB (K375E) was identified, which was corroborated
on both exome (Var) and transcriptome level (Varexp). However, in addtion we detected this
Var in non-malignant liver tissue and peripheral blood from the respective patient, possibly
explained by the fact that the tumor synthesized a mutated ALB protein secreted into circu-
lation. In contrast, for HCC026, a Varexp in the helicase RECQL (H19R) was verified based on
an additional tryptic cleavage site introduced through the gained arginin. This resulted in a
truncated protein undetectable in the corresponding non-malignant liver tissue (Figure 6.3 B).
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Figure 6.3: Evidence for mutated proteins in the shotgun proteome and database matching. A) Annotated spec-
tra of albumin (ALB) showing sequences of wild-type (LAKTYETTLEK; top) and mutated (LAETYETTLEK;
bottom) protein measured by LC-MS/MS. B) Annotated spectra of RecQ like helicase (RECQL) showing se-
quences of the peptide AVEIQIQELTER resulting from an additional tryptic cleavage side added directly in
front of this sequence through a mutation from histidine (H) to arginine (R), evidenced in HCC tissue only.
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Figure 6.4: Targeted PRM measurement results of the putative PNEs ETYETTLEK and SITSELHAV arising
from the mutations ALB K375E and RECQL H19R. Extracted ion chromatograms (XICs) of the corresponding
peptide transitions in a matrix of 20 fmol spiked in synthetic peptide into JY cell extract in contrast to untreated
non-malignant and malignant tissue samples. No evidence for the presence of the same transition peak group
is apparent in any of the tissue samples. (Figure adapted from the original version by Lena Freudenmann)

Targeted mass spectrometry for discovery of mutated HLA ligands

In order to gain addtional confidence in the lack of identifiable NElig in HCC and exclude
technical limitations of our DDA based MS search, targeted MS/MS measurements were em-
ployed for multiple promissing candidate NElig. 17-20 PNE from three HCCs (HCC025-27)
were selected for a single-ion monitoring (SIM) approach using heavy isotope-labelled pep-
tides as a reference. Of particular interest in this regard were peptides harbouring the mu-
tations confirmed by proteomics (PNEprot), ALB (HCC025/ ALB K375E) as well as RECQL
(HCC026/ RECQL H19R). For HCC025-26, therefore additional PRM measurements targeting
the best ranking predicted mutated HLA ligands as well as corresponding wild-type HLA
ligands were performed, covering the positions of interest. However, none of these attempts
could not confirm any of these PNEprot as a naturally presented HLA ligand (Figure 6.4).
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Figure 6.5: A) Database matching of natural HLA ligands with wild-type peptide sequences (with diverse
HLA restrictions) covering the exact position evidenced as mutated in ALB. B) Database matching of natural
HLA ligands with wild-type peptide sequences (with diverse HLA restrictions) covering the exact position
evidenced as mutated in RECQL. C) Number of database matches of wild-type ligands (WTlig) corresponding
to predicted mutated neoepitopes (PNE). PNE with additional evidence in HCC and Mel are highlighted - (1)
black: wild-type sequence of PNE contained in database; (2) yellow: wild-type sequence peptide corresponding
to PNE confirmed in autologous tissue as natural HLA ligand by MS; (3) blue: mutated protein confirmed by
shotgun proteomics - PNEprot; (4) red: PNE confirmed as natural HLA ligand by MS - NElig.
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Prioritizing predicted mutated HLA ligands in absence of HLA ligandome evidence

Ultimatly, lacking detection of a mutated HLA ligand does not necessarily equal absence due
to several reasons: inter alia 1) the detection limits of the MS instrumentation, 2) ionizability
of respective peptides and 3) unkown temporal dynamics of the HLA ligandome landscape.
Here we therefore propose a knowledge based approach using previously measured wild-
type HLA ligands corresponding to a PNE (WTlig) as one way for prioritize PNE. Hence, we
assume the more frequently a WTlig was detected in previous measurements the more likely
it is the corresponding PNElig counterpart will exist if the mutation does not negatively im-
pact its HLA binding affinity. To this end, we compared the number of database matches of
all WTlig in HCC and Mel to our in-house database of HLA ligands measured over the last
decades. (Figure 6.5)

The two pinpointed PNEprot in ALB (59 matches) and RECQL (17 matches) give rise to the
two most frequently found WTlig in our database for those particular patients. In addition,
nearly all patients carry at least one mutation that could potentially give rise to a PNE whose
WTlig were measured multiple times in the past. In accordance, some of the directly observed
NElig on Mel and their corresponding WTlig produced multiple hits in our database, such as
GABPA (20 matches), SYTL4 (8 matches), NUP153 (2 matches) and outstandingly SEPT2 (298
matches). In addition, WTlig TENS1/3 (54 matches) of patient HCC27 and SPECC1L-ADORA
(33 matches) of patient HCC28 were detected in their own ligandome extract, highly favour-
ing the presence of its NElig counterpart as well, although it could not be detected. These 4
ligands and WTlig SEPT2 have been documented in the IEDB previously as well. Ultimately,
these results question ligandome level detection depth and may prove utility of large available
knowledge bases for HLA immunopeptidomics [116].

Alternative targets for immunotherapy of HCC

Nontheless, as mutated HLA ligands are less frequent and more difficult to be identified in
HCC than Mel in our approach, other targets with potential therapeutic relevance might be re-
vealed such as HLA ligands from known cancer testis antigens. Hence, we screened our HCC
dataset for proteins previously described as cancer-testis antigens (CTAs) [253] and found
eight different HLA-I ligands mapping to six CTA.

These few CTA encompass ARMC3 (Q5W041), ATAD2 (Q6PL18), MAEL (Q96JY0), PRAME
(P78395), proteins of the SSX family, and TFDP3 (Q5H9I0) (Table 6.2). However, comparing
these identified peptides to the recently published resource of naturally presented HLA lig-
ands on benign tissues (HLA Ligand Atlas) [163] revealed that two of these (AYAIIKEEL-
ARMC3 and SLLQHLIGL - PRAME) are presented in the healthy state as well. Hence, to
avoid autoimmune reactions these two should rather not be considered for targets in HCC
immunotherapy.
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CTA (UniprotID) HLA peptide HLA restriction Patient ID

ARMC3 (Q5W041) EQIEDLAKY A*26:01 HCC045
ATAD2 (Q6PL18) AYAIIKEEL A*24:02 HCC023
ATAD2 (Q6PL18) AEFRTNKTL B*44:03 HCC045
MAEL (Q96JY0) MVVLDAGRY A*26:01 HCC045
PRAME (P78395) SLLQHLIGL B*08:01 HCC041

SSX1 (Q16384) AFDDIATYF C*04:01 HCC035
SSX * RLRERKQLV B*08:01 HCC041

TFDP3 (Q5H9I0) EVVGELVAKF A*26:01 HCC045

Table 6.2: CTAs as alternative targets for immunotherapy of HCC: Identified peptides that match to known
CTAs such as SSX1 (Q16384); SSX2 (Q16385); SSX3 (Q99909); SSX4 (O60224); SSX6 (Q7RTT6); SSX7
(Q7RTT5); SSX9 (Q7RTT3)
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6.4 Discussion

In this work we have aimed to discover genome mutations in a small cohort of HCC pa-
tients that would give rise to HLA ligands presenting these mutations to their immunesystem
and that would be amendable for personalized immunotherapy. By choosing a mutli-omics
approach to search the various levels of biological complexity involving the genome, tran-
scriptome, proteome and HLA ligandome we were seeking to trace mutations of prioritized
therapeutic relevance. While we were not able to get direct experimental evidence for the pre-
sentation of particular mutated HLA ligands in any of the HCC patients, despite in depth
orthogonal search including targeted MS approaches, we managed to pinpoint mutations
present in several omics layers and found a number of promissing PNElig candidates for im-
munotherapy. In fact, almost all HCC patients revealed to express RNA sequences (PNEexp)
and translate proteins (PNEprot) of multiple of those genes affected through cancer somatic
mutations and that were predicted to be HLA-presented. In addition, some of the mutations
are in regions that were previously directly observed to be presented on HLA peptides in other
samples (WTlig). Finally, when searching for non-mutated immunological targets we observe
a few peptides matching to known cancer testis antigens that might provide an alternative to
neoepitope based immunotherapy to some patients.

When comparing our approach and computational analysis pipeline to the recently published
study of Mel [46], we were able to reproduce the results and indeed identify mutated HLA lig-
ands. Hence, we derive several explanations for the discovery of mutated neoepitopes in Mel
but not in HCC. Firstly, Mel is among the tumor entities with high mutational load in contrast
to HCC [229], resulting in several magnitudes higher amounts of possible neoepitope can-
didates (PNE) in Mel than HCC. Thus tumor biology and mutational load are fundamental
underlying factors when considering suitability of immunotherapeutic approaches. In addi-
tion, the HLA immunopeptidome yields identified in the Mel data set in contrast to the HCC
cohort differ by several magnitudes as well, allowing to identify a much greater amount of
HLA-presented peptides per patient and mapping them to the mutated search space. Finally, a
much larger amount of the predicted neoepitopes in the Mel cohort have non-mutated counter
parts (WTlig) that we have previously identified in other measurements, increasing the odds
of finding this ligand in an MS experiment.

In conclusion, we figure that immunotherapy is a less promissing option in tumors of lower
TMB such as HCC, because NElig are a probabilstically rare encounter rather than in entities
of high TMB such as Mel. However, since we found evidence on various omics layers for
tumor somatic mutations and were able to identify peptides from non-mutated cancer testis
antigens this study should not hinder the enthusiasm for a wider scope in the exploration of
immunological targets for HCC. The therapeutic window for late stage HCC patients is small
also for other approaches [25] and small amounts of mutations might be suitable enough to
induce personalized T-cell therapy [216]. Ultimately, other targets for example from alterna-
tively spliced [48] or cryptic translation events [197] may be found in the future giving rise to
a greater selection of suitable targets.
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Conclusion

This thesis describes the computational analysis of HLA immunopeptidomics mass spectrome-
try data and discusses its relevance for several topics ranging from basic research in immunol-
ogy to clinical applications. While half of the research work is devoted to the computational
development and comparative analysis of mass spectrometry methodology to measure the
HLA bound immunopeptidome, the other half focuses on the biological discovery and its sig-
nificance for general human and tumor immunology.

methodological advancements

In Chapter 3, MHCquant [123] - a novel automated computational pipeline to process large
sets of mass spectrometry measurements was described. The pipeline is containerized and can
be efficiently executed on HPC systems, which allowed to analyse more than 1400 MS runs in
about 26 hours. This facilitates immunopeptidome research enormously, since at the time of
this thesis this was an endeavour that would have taken weeks to months if carried out manu-
ally using existing commercial or other software solutions. Moreover, the automated analysis
also provides a way to work more reproducibly and enables easy and coherent reprocessing
of previous MS experiments with improved methods or newer versions at a later stage. In
addition we found that the employed open-source search engine Comet [82] in combination
with the Percolator algorithm [88] for FDR scoring vastly outperformed other search engines
with respect to the number of peptides discovered in each MS experiment. Confidence in the
correctness of the additionally identified peptides was gained by assessing their properties
with respect to their chromatographic retention time behaviour and sequence motifs that are
predicted to fit well to corresponding HLA allotypes. Finally, when employing the workflow
to a data set of Melanoma cancer samples [46], we retrieved three novel mutated neoepi-
tope peptide identifications that were previously not found. As evidence of neoepitopes is
of tremendous interest to cancer immunotherapy, this clearly demonstrates the potential that
new MS data processing methods have for the field of immunopeptidomics, which has been
pointed out by other researchers in the field as well [15, 22, 113].

In the following Chapter 4, the application of data-independent acquisition mass spectrometry
(DIA-SWATH MS) - a recently developed technological improvement that had shown great ad-
vantages for clinical applications [155] - was investigated for application to immunopeptidome
analysis. As part of this work DIAproteomics - an additional automated and containerized
computational processing pipeline for DIA data was constructed. In contrast to DDA - the
commonly applied method for measuring MS samples, we confirmed findings for proteomics
studies [69, 153, 154] that DIA achieves a much greater reproducibility among replicate mea-
surements and a higher share of peptide identifications across samples. As DIA is able to
trigger MS2 fragmentation of nearly all precursors present in a sample, it can overcome the
shortcoming of DDA’s inadequate sampling. As a result, this enables the additional identi-
fication of lower abundant precursor ions in particular. However, even when using DIA the
total number of shared peptide identifications across samples of different tissues and patients
is still quite low. While this results is influenced by the incomplete immunpurification pro-
cedure, it indicates that there is a great biological variance present across samples and this
should be taken into account when designing general immunotherapeutic strategies for T-cell
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therapy or peptide vaccination [44] of multiple patients. Nevertheless, same tissues of differ-
ent patients share commonly presented peptides, when focusing on a particular HLA allele,
which are found with higher sensitivity when applying the DIA methodology.

immunological discoveries

Having the bioinformatic pipelines at hand to coherently process large amounts of immunopep-
tidomics data, in a highly collaborative project we set out to acquire and analyse samples
of human tissues. As a result, Chapter 5 highlights the findings of the currently largest set
of immunopeptidomics samples from non-malignant human research autopsy body donors.
Similar to breakthrough discoveries such as the sequencing of the human genome [173, 174]
or the mapping of the human proteome [176–178], we anticipate that with this research we
have contributed to the decoding of the human immunopeptidome as another orthogonal
biological layer as human tissue-dependent antigen processing has never been explored as
extensive before. The acquired set covers 29 distinct tissues including the thymus, 51 HLA-I
and 81 HLA-II individual HLA allotypes and all data was released into a publically available
webservice free to download and explore for the scientific community [163]. In total, we ob-
served a great variance in the amount of HLA peptides identified, their sequences and source
proteins. Sources of variability were coming from the different tissues analysed, the character-
istics of donors, their respective HLA allotypes and the technical variability ot the immunpu-
rification and DDA measurements. While the donor characteristics exceeded the inter-tissue
variability, we were able to decipher a small extend of tissue specific effects present in the im-
munopeptidome. Most significantly, we observed different amounts of peptides presented by
the various tissues, gradually separating them into high and low yielding tissues. This could
be linked to immune related gene expression as well as central functions of these tissues in
the immune system or high degrees of immune infiltrating cells. In addition, the small sets of
source proteins of tissue specific HLA ligands do reflect organ specific biology when querying
their gene ontologies. Ultimately, we researched the acquired samples with a de novo peptide
identification method [23] and were able to validate the presence of cryptic peptides stemming
from non-canonical regions of the genome. This highlights the importance of investigating the
healthy state immunopeptidome, as these peptides had previously been claimed to occur in
tumor tissues only. [254] In conclusion, the assembled dataset is therefore a great benefit for
the research of various aspects of human immunology ranging from basic biological questions
to tumor immunotherapy.

At last, in Chapter 6 the same methodology was applied in another collaborative effort to the
HLA immunopeptidome of hepatocellular carcinoma with the aim to discover tumor exclu-
sive antigens suitable for immunotherapies such as neoantigen-based vaccines. By choosing a
multi-omics approach through the combination with NGS exome and transcriptom sequenc-
ing as well as proteomics we seeked to get a more holistic understanding of tumor antigen
presentation in particular the presentation of mutated neoepitopes. [185] In contrary to our
expectations, we were not able to find evidence for mutated HLA ligands. However, we were
able to pinpoint and prioritize tumor somatic mutations in the individual patients and an-
notate them with evidence on different omics layers. When comparing these results with the
results of a previously published melanoma study [46] we concluded that technical effects
as well as the biology of tumor entities have influenced the outcome. In fact, the Melanoma
samples had significantly higher immunopeptidomics yields as well as mutational loads that
were several magnitudes higher in contrast to the hepatocellular carcinoma patients. As HCC
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is ranging in the moderatly to low mutated cancer entities [229] we thus conclude that neoepi-
tope based immunotherapy might not be suitable for this type of solid tumors. Nevertheless,
other for example non-mutated tumor antigens might be found in HCC that prove to be useful
for immunotherapies in the future.

outlook

Most likely, the investigation of the immunopeptidome for vaccination and immunotherapy
will be improved upon in the future with advancing technological developments in the field.
Fractionation in combination with high-throughput immunopurification systems [107] as well
as ion mobility based separation for mass spectrometry [151] are promissing technologies to
increase the peptide yield per sample on the experimental side. On the computational side
prediction of fragment intensities [80, 81] and their integration into search engines, as well as
FDR considerations [22, 149] and improvements on algorithms for the deconvolution of DIA
data [70, 157] are going to have an impact on the sensitivity of discoveries made from experi-
ments. For the translation into clinical practice additional hurdles are still going to have to be
considered such as the selection and prioritization of antigens from genomic alterations [255],
adjuvantation and feasability logistics [256]. With the results of this thesis work, I hope to
have demonstrated the capabilities of computational methodologies in order to facilitate and
improve insights into human immunology and the advancement immunotherapy and I am
looking forward to follow up on future developments in the field.
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A.1 MHCquant

Figure A.1: Commandline execution of the MHCquant Nextflow implementation 1.3.0 using the integrated
small test data set.
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Figure A.2: The runtime of the MHCquant nextflow implementation was tested by a set of three JY standard
replicate measurements on a 28 core HPC node of the de.NBI cloud infrastructure: Memory usage in Gigabytes
for each process step and runtime in minutes for each process step are listed.
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Non-tryptic Tryptic

A

B

Figure A.3: Allele bias and bias to tryptic vs. non-tryptic peptide discoveries: The percentages of identified
peptides matching uniquely to A) one allele, B) tryptic or non-tryptic cleavage specificity compared between
search engines.
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Figure A.4: Absolute numbers of identified peptides by each search engines tested in the benchmark for different
alleles and their predicted affinities.
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A.2 DIAproteomics

Figure A.5: Commandline execution of the DIAproteomics Nextflow implementation v.1.1.0 using the inte-
grated large test data set.
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Figure A.6: Detailed overview on run times and memory usage of all integrated steps of the DIAproteomics
pipeline v. 1.0 when processing the PRIDE dataset PXD003179 on the Amazon webservice cloud infrastructure.
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Figure A.7: Additional analysis on reproducibility was comparatively assessed for the DDA and DIA approach:
A) The peptide identification (ID) increase when measuring 10 replicates of the same JY cell standard iteratively
using the DDA approach. While the initial replicates vary strongly and increase the total number of IDs, the
later replicates only add few new IDs indicating an accumulation of false positive IDs. B) R2 coefficients from
pairwise correlations of peptide quantities resulting from replicate measurements, C) Explicit correlation of the
peptide quantities of two DDA replicate measurements, D) Explicit correlation of the peptide quantities of a
DIA and DDA replicate measurements of the same sample, E) Explicit correlation of the peptide quantities of
two DIA replicate measurements
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B.1 MHCquant
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Figure B.1: Detailed peptide spectrum matches including all fragment annotations of additional potential
neoepitopes - experimentally determined (upper) and synthetic (lower) peptide. The mutated amino-acid is
highlighted in red, b- (green), y- (brown) and a-ions (blue) are annotated for important fragments.
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B.2 Data-independent acquisition

Figure B.2: Examplary XICs of the same peptide identification recovered in lung tissue using the DIA approach
in contrast to the DDA approach visualized through Skyline [235]. Transition quantities are extremely low in
the corresponding DDA run, which might have lead to the missing discovery in these samples. In contrast DIA
recovers the peptide transition in all MS runs.
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Figure B.3: Examplary XICs of the same peptide identification recovered in bone marrow and spleen tissue using
the DIA approach in contrast to the DDA approach visualized through Skyline [235]. Transition quantities are
low in some of the DDA runs, which might have lead to the missing discovery in these samples. In contrast DIA
recovers the peptide transition in all MS runs.
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Figure B.4: A-F) Six exemplary spectral comparisons depict cryptic peptides identified in diverse tissues and
subjects (upper spectrum) related to their synthetic isotope labeled counterpart (lower spectrum). The isotope
labelled amino acid is highlighted in red and its corresponding label and mass are annotated. Matching b- (red),
y-ions (blue) and neutral losses (green) and their corresponding fragment masses are annotated to each peak in
the spectra. The spectral similarity score of the given comparison is annotated in the top right.
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C.2 Data-independent acquisition

Applied Swath Windows

HLA Class I HLA Class II
Window Start m/z End m/z Start m/z End m/z

1 400.4537 415.4537 462.9812 487.9812
2 415.4612 430.4612 487.9937 512.9937
3 430.4688 445.4688 513.0062 538.0062
4 445.4763 460.4763 538.0187 563.0187
5 460.4838 475.4838 563.0313 588.0313
6 475.4912 490.4912 588.0438 613.0438
7 490.4987 505.4987 613.0563 638.0563
8 505.5062 520.5062 638.0687 663.0687
9 520.5137 535.5137 663.0812 688.0812
10 535.5212 550.5212 688.0938 713.0938
11 550.5335 584.5335 718.609 754.609
12 584.5505 618.5505 754.627 790.627
13 618.5675 652.5675 790.645 826.645
14 826.663 862.663
15 862.681 898.681
16 898.699 934.699
17 934.717 970.717

Table C.2: SWATH Windows for DIA MS acquisition of HLA Class I and Class II preparations
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C.3 HLA-Ligand-Atlas

n coverage average_hit pc90

HLA-A 16 95.15% 1.47 1.12
HLA-B 21 73.66% 0.96 0.38
HLA-C 14 93.02% 1.42 1.07
HLA-DRB1 19 92.29% 1.4 1.05
HLA-DPA1 3 94.78% 1.29 1.08
HLA-DPB1 9 78.96% 1.02 0.48
HLA-DQA1 11 99.36% 1.73 1.37
HLA-DQB1 12 98.20% 1.65 1.26

Table C.3: Worldwide population coverage of HLA allele frequencies comprised in
the HLA Ligand Atlas computed through the population coverage functionality of
the IEDB Analysis Resources (http://tools.iedb.org/population/) [201]. The
analysis was carried out by Lena Freudenmann as part of the publication. [208]

THY
Tissue DN1 DN3 DN4 DN5 DN6

Thymus 1 1 1.1 1 DN2

Table C.4: Thymus sample amounts of individual donors used for the immunopurifi-
cation procedure of HLA ligands prior to MS measurement for the HLA Ligand Atlas
database

TimeSeries
Tissue 0h 8h 16h 24h 48h 72h

Liver 1.04 1.01 1.05 1.06 1.01 AUT-DN06
Ovary 0.582 0.742 0.918 OVA-DN278
Ovary 0.737 0.675 0.579 OVA-DN281

Table C.5: Tissue sample amounts of all time points of the timeseries analysis used
for the immunopurification procedure of HLA ligands prior to MS measurement for
the HLA Ligand Atlas database
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Stevanović, S., Rammensee, H.-G. & Neidert, M. C. The HLA Ligand Atlas - A Resource
of Natural HLA Ligands Presented on Benign Tissues. bioRxiv, 778944 (2020).

2. Kubiniok, P., Marcu, A., Bichmann, L., Kuchenbecker, L., Schuster, H., Hamelin, D.,
Despault, J., Kovalchik, K., Weissling, L., Kohlbacher, O., Stevanovic, S., Rammensee,
H.-G., Neidert, M. C., Sirois, I. & Caron, E. The Global Architecture Shaping the Heterogene-
ity and Tissue-Dependency of the MHC Class I Immunopeptidome is Evolutionary Conserved
submitted. 2020.

3. Ghosh, M., Hartmann, H., Jakobi, M., März, L., Bichmann, L., Freudenmann, L. K.,
Mühlenbruch, L., Segan, S., Rammensee, H.-G., Schneiderhan-Marra, N., Shipp, C., Ste-
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Stevanović, S. & Walz, J. S. Mass Spectrometry-Based Immunopeptidome Analysis of Acute
Myeloid Leukemia Cells Under Decitabine Treatment Delineates Induced Presentation of Can-
cer/Testis Antigens on HLA Class I Molecules in American Society of Hematology (Blood,
2019), 5223.

4. Kapolou, K., Freudenmann, L. K., Friebel, E., Bichmann, L., Becher, B., Stevanović, S.,
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Hamzeiy, H., Salinas, F. & Cox, J. MaxQuant Goes Linux. Nature Methods 15, 401 (2018).

19. Mohr, C., Friedrich, A., Wojnar, D., Kenar, E., Polatkan, A. C., Codrea, M. C., Czem-
mel, S., Kohlbacher, O. & Nahnsen, S. qPortal: A Platform for Data-Driven Biomedical
Research. PLOS ONE 13, e0191603 (2018).

20. Murphy, J. P., Konda, P., Kowalewski, D. J., Schuster, H., Clements, D., Kim, Y., Cohen,
A. M., Sharif, T., Nielsen, M., Stevanovic, S., Lee, P. W. & Gujar, S. MHC-I Ligand Dis-
covery Using Targeted Database Searches of Mass Spectrometry Data: Implications for
T-Cell Immunotherapies. eng. Journal of Proteome Research 16, 1806 (2017).

21. Andreatta, M., Nicastri, A., Peng, X., Hancock, G., Dorrell, L., Ternette, N. & Nielsen, M.
MS-Rescue: A Computational Pipeline to Increase the Quality and Yield of Immunopep-
tidomics Experiments. PROTEOMICS 19, e1800357.

22. Wen, B., Li, K., Zhang, Y. & Zhang, B. Cancer Neoantigen Prioritization through Sensi-
tive and Reliable Proteogenomics Analysis. Nature Communications 11, 1759 (2020).

23. Erhard, F., Dölken, L., Schilling, B. & Schlosser, A. Identification of the Cryptic HLA-I
Immunopeptidome. Cancer Immunology Research (2020).

24. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J. & Jemal, A. Global Cancer
Statistics, 2012. eng. CA: a cancer journal for clinicians 65, 87 (2015).

25. Of the Liver, E. A. f. t. S. & of Cancer, E. O. f. R. a. T. EASL–EORTC Clinical Prac-
tice Guidelines: Management of Hepatocellular Carcinoma. Journal of Hepatology 56, 908
(2012).

26. Jr, C. A. J., Travers, P., Walport, M., Shlomchik, M. J., Jr, C. A. J., Travers, P., Walport, M.
& Shlomchik, M. J. Immunobiology Fifth (Garland Science, 2001).

27. Nicholson, L. B. The Immune System. Essays in Biochemistry 60, 275 (2016).

28. Chaplin, D. D. Overview of the Immune Response. The Journal of allergy and clinical
immunology 125, S3 (2010).

29. Curtis, J. L. Cell-Mediated Adaptive Immune Defense of the Lungs. Proceedings of the
American Thoracic Society 2, 412 (2005).

30. Gonzalez-Galarza, F. F., Christmas, S., Middleton, D. & Jones, A. R. Allele Frequency
Net: A Database and Online Repository for Immune Gene Frequencies in Worldwide
Populations. Nucleic Acids Research 39, D913 (2011).

31. Rammensee, H.-G., Friede, T. & Stevanović, S. MHC Ligands and Peptide Motifs: First
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