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Abstract

Over the last two decades, the advent of high-throughput omics technology has
substantially revolutionized biological and biomedical research. A large volume
of omics data has been produced with the rapid development of sequencing
techniques. Meanwhile, researchers have developed a wide range of
computational tools to manage and analyze the omics data. Although the
implementation of these tools generates significant discoveries, processing and
interpreting the omics data efficiently and accurately is still a big challenge.

In this thesis, we aim to develop novel statistical methodologies and algorithms
for omics data analysis. We implement the methods for both simulated and real
data from different types of cancers. Based on the evaluation and comparison
with existing tools, we find that our methods achieve higher accuracy and better
performance in analyzing different types of omics data.

In Study I, we build an analysis pipeline to integrate multiple levels of omics
data and identify potential driver genes in neuroblastoma. The pipeline employs
gene expression profile, microarray-based comparative genomic hybridization
data, and functional gene interaction network to detect cancer-related driver
genes. We identify a total of 66 patient-specific and four common driver genes.
The genes are summarized into a driver-gene score (DGscore) for each patient.
We find that the patients with a low DGscore have better survival than those with
a high DGscore (p-value=0.006).

In Study II, we develop a novel method named XAEM to quantify isoform-
level expression using RNA sequencing data. There are two major components in
this method. First, we construct a design matrix X as the starting parameter in the
quantification model. Second, we utilize an alternating Expectation Maximization
algorithm to estimate the design matrix X and isoform expression β iteratively.
We compare XAEM with several quantification methods using both simulated
and real data. The result shows that XAEM achieves higher accuracy in multiple-
isoform genes and obtains substantially better rediscovery rates in the differential-
expression analysis.

In Study III, we extend the algorithm from Study II and develop an approach
named MAX to quantify mutant-allele expression at the isoform level. For a
given gene and a list of mutations, we first generate the mutant reference by
incorporating all possible mutant isoforms from the wild-type isoform. The



alternating Expectation Maximization algorithm is then applied to estimate the
isoform abundance. We implement MAX to a real dataset of acute myeloid
leukemia. Using the mutant-allele expression, we discover a subgroup of
NPM1-mutated patients that has better drug response to a kinase inhibitor.

In Study IV, we build a pipeline to detect fusion genes at DNA level using
whole-exome sequencing data. The pipeline is utilized to three comprehensive
datasets of acute myeloid leukemia and prostate cancer patients. Compared with
the detection results from RNA sequencing data, we find that several major fusion
events in these two cancer types are validated in some of the patients. However,
the overall results indicate that it is challenging to identify chimeric genes using
exome sequencing data due to its inherent limitations.

Altogether, we have developed several statistical and bioinformatics tools to
analyze different types of omics data, which demonstrate higher accuracy and
better performance than other competing approaches. The results in this thesis
will provide novel insights into omics data analysis and facilitate significant
discoveries in cancer research.
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1 Background

Cancer is a leading cause of death across the world. In 2019, 18 million new
cases were diagnosed and about 9 million deaths occurred due to cancer [1]. The
increasing morbidity and mortality highlight the urgent need to characterize the
pathophysiologic mechanism of different cancers. Over the last two decades, the
advancement of sequencing technology, especially the next-generation
sequencing approach, has allowed researchers to interrogate cancers using
multiple omics data [2]. It is well accepted that cancer is closely associated with
genetic abnormalities, such as structure variation, copy number alteration, single
nucleotide variation, and fusion gene [3]. The sequencing technologies provide a
fast, comprehensive and cost-effective way to capture these genetic aberrations
simultaneously. In recent years, a wide range of studies employing sequencing
approaches have been conducted. Specifically, two of the largest studies, The
Cancer Genome Atlas (TCGA) and the International Cancer Genome
Consortium (ICGC), have led the way to produce a huge amount of sequencing
data in diverse cancer types [4, 5]. It can be expected that cancer-related research
will continue to benefit from the sequencing approaches and yield more valuable
findings for the prevention, diagnosis, treatment, and prognosis of cancer
patients.

1.1 Sequencing technologies

Sequencing is the biochemical process to measure the order of nucleotides in
deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). A DNA molecule has
four constituent bases: adenine (A), guanine (G), cytosine (C) and thymine (T).
Different orders and combinations of bases are implicated in unique functional
impacts on disease occurrence; thus, it is of great importance to determine the
sequence of nucleotides in research samples.

1.1.1 First-generation sequencing

Great efforts have been made to characterize the sequences of DNA, RNA, and
protein in living organisms [7]. As Figure 1.1 shows, sequencing technologies
have been developed and improved continuously since the 1970s. The Sanger
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Figure 1.1: The history of sequencing technologies since 1977. The figure is edited
based on the work of Yang et al. [6] and reprinted with permission from Frontiers
Media Group.

method, which marks the wide implementation of first-generation sequencing,
was developed by Frederick Sanger in 1977 [8]. The key concept of the Sanger
method is the utilization of di-deoxynucleotide triphosphates (ddNTPs). The
ddNTPs lack the 3’-OH group, which is required for the bonding between
successive nucleotides. Since the absence of the 3’-OH group will terminate the
growth of the DNA chain, the Sanger method is also called the chain-termination
method. In the Sanger sequencing protocol, DNA samples are first divided into
four separate reaction vessels, which contain four normal deoxynucleotides
triphosphates (dNTPs) and DNA polymerase. Next, only one of the four ddNTPs
(ddATP, ddTTP, ddCTP and ddGTP) is added to each vessel, so that the DNA
strand will be terminated in selective positions. After the reaction, DNA
fragments with different lengths are produced; the gel electrophoresis is then
used to sequence the DNA fragments. Since the shorter and lighter fragments
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will migrate further to the bottom of the electrophoresis plate, the DNA
sequences are measured according to the pattern of DNA bands.

The Sanger method is further improved in automated DNA sequencing
instruments, where the four ddNTPs terminators are labeled with fluorescent
dyes. Each of the ddNTPs can be detected by the dye fluorescence using the
capillary electrophoresis and laser detector device. The first commercialized
sequencer using the Sanger method was manufactured by Applied Biosystems in
1986, which allows the generation of an individual read with the length at 1000
bases. Since then, the automated version of Sanger sequencing became the most
widely used method until the middle 2000s. Notably, it was the essential
sequencing method for the Human Genome Project (HGP), which published the
first draft of human genome in 2001 (Figure 1.1).

1.1.2 Next-generation sequencing

First-generation sequencing provides an unprecedented technique to determine
the DNA sequence in a wide variety of organisms. However, its usage is limited
due to the low sequencing volume and high cost for large number of DNA
targets. To address this problem, second-generation sequencing, or
next-generation sequencing (NGS), is developed to sequence millions of
fragments simultaneously.

454 pyrosequencing

The 454 pyrosequencing is designed by 454 Life Sciences, which released the
first next-generation sequencer, 454 GS20, to the sequencing market in 2005. In
the pyrosequencing procedure, DNA sequences are sheared into small fragments
and then amplified inside water droplets with an oil solution [9]. The single
strand of DNA is kept as a template and the complementary strand will be
synthesized using the four types of dNTP and DNA polymerase. When a dNTP
is incorporated onto the template, a pyrophosphate will be released and then
catalyzed into light signal by luciferase. The emitted light is captured by camera
and analyzed as corresponding nucleotide in complementary strand. The
pyrosequencing approach can produce about 500 million base pair (bp) per run
with read length at 450 bp.
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Sequencing by synthesis (Illumina)

Sequencing by synthesis is a major strategy employed in many sequencing
machines manufactured by Illumina. Literally, it means a nucleotide is measured
when incorporated to the template fragment in the synthesis of the
complementary strand. There are three main steps in this method [10, 11]. The
first step is sample preparation, where the DNA is cut into smaller fragments
with the size of 100–500 bp. The fragment is then ligated with adapters on both
ends. Each adapter contains three different parts: (1) sample index, (2) binding
site for sequencing primer and (3) the sequence complementary for
oligonucleotides (oligo) on flow cell. The bottom of the flow cell is coated with
millions of oligos; each DNA fragment is then attached to the flow cell lane.

The second step is DNA cluster generation, also known as bridge
amplification. In this step, a DNA strand will bend over and attach to an oligo to
form a bridge-like shape. The DNA polymerase binds to the strand and generates
a complementary strand. The original strand (forward strand) is then washed
away and only the reverse strand is retained. The reverse strand will attach to the
oligo again and generate a new forward strand. Both strands are then denatured
and the bridge amplification is repeated to produce hundreds of thousands of
DNA copies.

In the third step, the sequencing starts by adding the fluorescently labeled
dNTPs to the flow cell. When a dNTP incorporates to the template DNA strand,
a unique fluorescent light is emitted and captured by camera. The sequencing
machine records the light signal and interprets it as a corresponding nucleotide.
In this process, only one dNTP can be incorporated to the DNA strand because
the fluorophore blocks the binding of next nucleotide. However, this blocking is
reversible; when a dNTP is recorded, the fluorophore will be washed away so
that the next nucleotide can attach to the DNA strand. In this step, millions of
clusters on the flow cell are sequenced simultaneously, which generate huge
amount of sequencing reads and outputs.

As shown in Figure 1.1, in 2007, Illumina released the Genetic Analyzer 2
sequencer, which produces one giga-bases (GB) per run with read length at 100
bp. After that, several sequencing machines with improved performance are
released, e.g. the HiSeq, MiSeq and HiScanSQ sequencing platform series. The
Hiseq 2000 can generate 600 GB reads per run in ∼eight days, which becomes

4



one of the most powerful sequencers in the market.

Sequencing by oligonucleotide ligation and detection

Unlike the pyrosequencing and sequencing by synthesis, the sequencing by
oligonucleotide ligation and detection (SOLiD) leverages oligonucleotide probes
instead of DNA polymerse [12]. The SOLiD sequencing employs 16 eigth-mer
oligonucleotide probes, where the first two bases in the probe use a two-base
encoding scheme. Each pair of bases has corresponding fluorescent dye in 5
prime. In the process of sequencing, each probe is ligated to the target strand and
the color is recorded by the sequencer. The last three bases in the probe are then
cleaved together with the dye to allow next probe to ligate. For each target
fragment, seven different probes will be ligated in separate round and five rounds
are performed using different primers. Due to the implementation of the
two-base encoding strategy, the SOLiD approach achieves a high sequencing
accuracy at 99.94%. However, the major disadvantage is the relatively short read
length at 50 bp. The first commercialized SOLiD sequencer was produced by
Applied Biosystems in 2008, which can generate up to 60 GB reads per run.

Ion Torrent sequencing

When a dNTP is incorporated to the target strand, a hydrogen ion will be released
and change the pH of the solution. The pH change is detected and analyzed by an
ion-sensitive ion sensor, which is a micro semiconductor chip underneath the
reaction wells. In the process of sequencing, the four types of dNTP are added to
the reaction wells together with the DNA polymerase. If the introduced dNTP is
complementary to the template strand, the hydrogen ion is released and detected
by the sensor, and the unattached dNTPs will be washed away. In this way, the
sequencer can measure the template DNA when the process repeats. Ion Torrent
sequencing is also called Ion semiconductor sequencing and pH mediated
sequencing. The first commercial Ion Torrent sequencer was released by Life
Technologies in 2010. It provides a rapid sequencing in two hours and generates
sequencing reads at 200–400 bp with an accuracy at 99%.
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Figure 1.2: The cost of sequencing per genome from 2001 to 2019. Source data are
obtained from National Human Genome Research Institute.

Sequencing price overview

The massively parallel capability and high throughput of next-generation
sequencing have led to a substantial decrease in sequencing price. Figure 1.2
shows the trend of costs per genome over the last two decades. In 2001, the price
to sequence a human genome was about 100 million dollars, while in 2019, the
cost decreased strikingly to about 1000. In particular, the first draft of human
genome was released in 2001 by the Human Genome Project. The HGP was the
first and biggest project at the time to measure the complete base pairs in human
genome [13]. It was started in 1990 and officially completed in April 2003,
involving a huge amount of collaborations and efforts between researchers
worldwide. The cost for the draft genome was about 300 million dollars and the
later refinement cost another 150 million. In Figure 1.2, there is a noteworthy
decrease near 2008 due to the transition from the usage of first-generation
sequencing (Sanger method) to next-generation sequencing. With the continuous
improvement of sequencing technologies, we anticipate that the sequencing will
be conducted with an even lower price and higher throughput in the near future.
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1.1.3 Third-generation sequencing

The next-generation sequencing is high-throughput, efficient, and cost-effective.
However, a major drawback of NGS is the relatively short read length, which
ranges from 50 bp to 700 bp maximum. The short read length often complicates
the downstream bioinformatics analysis, such as isoform quantification, de novo
assembly and structural variation detection. To tackle this problem,
third-generation sequencing, or long-read sequencing was developed, which can
produce reads with tens or hundreds of kilo bases [14, 15].

Single-molecule real-time (SMRT) sequencing

The SMRT method employs a zero-mode waveguide (ZMW), a structure of 70
nm in diameter. A single molecule of DNA fragment and a DNA polymerase are
attached in the bottom of the ZMW hole. Four types of DNA bases labeled with
fluorescent dyes are added to the reaction. When a nucleotide is incorporated onto
the template strand, the fluorescence is observed by the detector and interpreted
as a corresponding base. The SMRT is commercialized by Pacific Biosciences
(PacBio), which released the first SMRT sequencer in 2011. The average read
length using the SMRT method is 10–15 kilo bases, and 500 million bases can be
generated per SMRT run [16, 17].

Nanopore sequencing

Nanopore is a nano-scale pore embedded in electrically resistant polymer
membrane [18]. When a DNA strand passes through the Nanopore, voltage
changes will be triggered and recorded; thus, the DNA bases can be measured
from the current signal. The Nanopore method utilizes helicase to unwind the
target DNA into two strands; one strand is translocated and passing through the
Nanopore for sequencing. Unlike all methods mentioned above, the Nanopore
approach does not need PCR amplification or chemical labeling of nucleotide.
This feature makes Nanopore sequencing independent of expensive equipment
and reagents, which allows it to be used in remote places with limited laboratory
resources. Nanopore sequencing was developed and released by Oxford
Nanopore Technology (ONT), with the first Nanopore sequencer manufactured
in 2014. The average read length of Nanopore sequencer is 20 kilo bases, and the
maximum read length can reach to 2.3 million bases [19].
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Comparison of sequencing technologies

Table 1.1: A brief comparison between Sanger sequencing, Sequencing by synthesis
(Illumina) and Nanopre sequencing. Note that the throughput and times per run in
the table are approximate numbers depending on respective platform and equipment.

Sanger method
Sequencing by synthesis

(Illumina)
Nanopore sequencing

Read length 400-900 bp 75-300 bp up to 2.3 million bp
Accuracy 99.9% 99.9% 95%

Throughput 900 bp 1000 Gb 42 Gb
Times per run 2 hours 2-5 days one or two days
Advantages long read length high throughput longest read length

Disadvantages low throughput short read length low accuracy

The diverse features of each sequencing method provide researchers with a
wide range of choices in their research projects. Table 1.1 shows a brief
comparison of performance between three major types of sequencing
technologies. The Sanger method has been utilized for half a century and still
remains popular. The most important advantage of the Sanger method is the long
read length (up to 900 bp) and fast experiment procedure. Although its low
throughput limits the large scale usage, it is one of the best choices for
sequencing small numbers of gene targets. Next-generation sequencing has
became the dominant approach due to the ultra high sequencing volume. For
example, the Illumina Hiseq 4000 platform generates more then 1000 Gb reads
in five days, which guarantees a high sensitivity and power in many biomedical
studies. However, the read length from the Illumina sequencer is only 75–150 bp,
which makes the data analysis complicated and challenging [20, 21]. The
third-generation sequencing, e.g. Nanopore method, is designed to tackle the
short read length problem. It can produce sequencing reads up to 2.3 million
bases, facilitating the application in de novo assembly and novel transcript
detection. The throughput of the Nanopore method is relatively high, which can
be 42 Gb per run. The next and third generation sequencing are also named as
high-throughput sequencing (HTS). Although the utilization of third-generation
sequencing has become more general in these years, its usage is still limited due
to high error rate and high sequencing cost per base [22].
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1.2 Omics data and applications

Omics data are defined as the comprehensive dataset of the same type of
molecule generated using the high-throughput sequencing methods [23]. For
example, genomics measures entire DNA sequence, transcriptomics quantifies all
transcripts, and proteomics profiles the complete set of proteins. Each type of
omics data provides significant and unique insights into biological mechanisms
underlying human disease. In the last ten years, omics studies have been thriving
tremendously due to the advancement in sequencing technologies [24, 25].

1.2.1 Genomics

Genomics aims to elaborate the structure, component, function, and modification
of the whole genome [26]. In human research, a primary task is to identify
genomic mutations associated with different phenotypes and diseases. The most
common types of mutations include single-nucleotide polymorphism (SNP),
structural variation (SV), copy number variation (CNV), and small
insertion/deletion (indel). Different sequencing strategies such as whole-genome
sequencing (WGS) and whole-exome sequencing (WES) are widely used to
delineate specific mutations [27, 28].

SNP and genome-wide association study (GWAS)

SNP is a genetic variant when a single nucleotide differs between a group of
samples. In human genome, there are about 4–5 million SNPs, in that SNP
occurs in every 1000 bases. Most SNPs have no functional effects, but some are
closely associated with human traits and the increased risk of diseases [29]. In
the last two decades, GWAS has identified a wide range of candidate loci related
to complex diseases [30]. For example, Fachal et al. have summarized a total of
83 susceptibility loci in breast cancer from GWAS. These loci explain ∼14% of
breast cancer heredity and provide significant insights into cancer risk
stratification [31].

Structural variation (SV)

Structural variation occurs in the structure of chromosome that affects >100
bases (referred to as indel if <100 bp). Compared with SNP, which only involves
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the substitution of single nucleotide, SV alters much longer sequences in DNA.
SVs can be categorized into two groups: (1) balanced SVs, i.e. inversion and
translocation, which do not change the total number of genomic bases; (2)
unbalanced SVs such as deletion, insertion and copy number variation (deletion
and duplication), which will add or remove nucleotides from the genome [32].

Figure 1.3: Strategies to detect SVs using sequencing reads. The solid black arrows
are reads with orientations. The figure is re-edited from the work of Docampo et al.
[33] and reprinted with permission from Oxford University Press.

Whole-genome sequencing and whole-exome sequencing data are frequently
used to identify SVs [34]. Detection of SVs often involves three steps: (1) DNA
sequencing using high-throughput sequencing approaches; (2) reads mapping
using a known reference genome; (3) variation calling and functional annotation
of disease-related mutations. Figure 1.3 shows different strategies to detect SVs
from sequencing reads [33]. Copy number variation is a type of SV with the
length ranging from 1000 to three million bases. As shown in Figure 1.3(A), a
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CNV deletion is identified when the read depth is substantially lower than the
average depth of the genome segment, while a CNV duplication is detected if the
read depth is higher than reference regions.

Paired-end (PE) sequencing generates read pairs with a fixed length of insert
size in between. This feature is often used to detect SVs. Figure 1.3(B) shows
that if a pair of reads map to reference genome with correct position, concordant
orientation and exact length of insert size, it means there is no SV event
occurring. However, any violation of these criteria can indicate the presence of
variations. For example, deletion is identified if a read pair has a bigger distance
than insert size when mapped to reference genome, and an insertion is detected if
the alignment distance is smaller than the insert size. Inversion can be found
when two reads are mapping to the reference genome with the same orientation.
Translocation is determined if the read pair is mapped to two different
chromosomes or having a large distance. Besides, a deletion can be identified
when a single read is split at the position of breakpoints (Figure 1.3(C)).

1.2.2 Epigenomics

Epigenomics aims to study the reversible modifications on DNA that affect the
gene expression level without changing the DNA nucleotides. Histone
modification and DNA methylation are two of the most common epigenomic
variants [35]. Studies have shown that these modifications are closely related to
biological mechanisms underlying cancer and other human diseases [35, 36]. For
example, histone mutations significantly contribute to the formation of paediatric
gliomas [37]; methylations of DNA-repair genes are frequently observed in
stomach cancer [38]. Several consortia have been launched to characterize
human epigenome, such as the Roadmap Epigenomics Mapping Consortium and
International Human Epigenome Consortium [39, 40]. To measure the
genome-wide epigenomic mutations, sequencing based approaches such as
chromatin immunoprecipitation (ChIP) sequencing and bisulfite sequencing are
widely used. Recently, due to the great advances in third-generation sequencing
technologies, the epigenetic modifications have been detected directly when the
DNA bases are sequenced. The application of the Nanopore and SMRT
sequencing provides a more accurate and rapid identification of epigenomic
aberrations [41].

11



1.2.3 Transcriptomics

Transcriptomics is the study to characterize entire RNA transcripts. RNA
participates in a wide variety of biological processes, including protein synthesis,
regulation of gene expression and communicating cellular signals [42]. RNAs
can be categorized into coding and non-coding groups. Coding RNA, i.e.
messenger RNA (mRNA), is served as template to synthesize proteins in the
process of translation. In human transcriptome, mRNA only accounts for 3% of
all RNAs and the rest 97% are non-coding RNAs. Transfer RNA (tRNA) and
ribosomal RNA (rRNA) represent two of the most common non-coding RNAs,
both involved in the synthesis of proteins. Non-coding RNAs are mostly constant
regardless of cellular or disease status, while the expression and type of mRNA
are dynamically affected by healthy/cancerous conditions in living organism
[43]. Hence, it is of great interest to quantify mRNA between different
experimental conditions. Previously, the hybridization-based microarrays were
widely used to measure the expression of mRNA. However, the microarray
method has several limitations; for example, prior knowledge of DNA/RNA
sequences are needed to design probes.

RNA sequencing (RNA-seq)

With the tremendous advancement in sequencing technologies, the RNA
quantification has embraced substantial improvement in the last ten years.
RNA-seq can apply various sequencing approaches, e.g. next-generation
sequencing to investigate the presence and abundance of RNA molecules [21].
The overall procedure of RNA-seq is similar with DNA sequencing as introduced
above; a major difference is the step for complementary DNA (cDNA) synthesis.
In the library preparation step, RNA is isolated from genomic DNA using
enzymes such as deoxyribonuclease (DNase). Next, the mRNA is selected or
kept by removing non-coding RNAs. The mRNA is then reverse transcribed to
cDNA for amplification and sequencing. Several sequencing platforms can be
used to perform RNA-seq, such as Illumina and SOLiD. Also, mRNAs can be
sequenced directly using Nanopore sequencing without cDNA synthesis nor
amplification steps [44].
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Quantification of isoform expression using RNA-seq data

Isoforms are different transcripts produced by the same gene with the alternative
splicing mechanism. Isoforms have highly similar sequences; however, their
functional effects can be distinct or even opposite. For example, full-length p53β

isoform from TP53 induces the apoptosis of cancer cell while the ∆133p53
isoform inhibits the cell death process [45, 46]. In this case, it is essential to
quantify expression at the isoform level instead of the traditional gene level. In
the last decade, a large number of tools have been developed to estimate isoform
abundance. These tools can be classified into alignment-based and
alignment-free groups. The alignment-based methods include Cufflinks [47],
RSEM [48] and eXpress [49]. The first step before running these methods is to
align RNA-seq reads to a genome/transcriptome reference. Several aligners can
be used for this purpose, such as BWA [50] and Bowtie2 [51]. Most recently, a
group of alignment-free methods have been introduced to leverage the idea that
precise alignment is not necessary to distribute reads to their original isoforms.
The alignment-free methods include Sailfish [52], Salmon [53] and Kallisto [54].
Sailfish and Salmon employ a quasi-mapping concept that maps the k-mers of a
read rapidly to a predefined reference index [53]. Kallisto utilizes a de bruijn
graph to check the compatibility between reads and transcript segments [54]. All
three methods provide an ultra-fast speed in the processing of RNA-seq data and
an accurate estimation of isoform expression compared with alignment-based
approaches [55].

1.2.4 Proteomics

Proteomics aims to explore the complete set of proteins in terms of structure,
function, abundance and interaction. According to the central dogma of
molecular biology, protein is the last layer of genetic information flow, thus
indicating ultimate consequences from mutations at DNA and RNA level. One of
the major applications of proteomics is to develop potential drugs for the
treatment of cancers. Many efforts have been made to predict the
three-dimensional (3D) structure of disease related proteins using experimental
or computational methods. Based on the 3D profile, a new drug could be
designed to interfere with protein/enzyme and potentially inactivate the function
of protein [56]. Apart from the mutational effects from DNA and RNA level,

13



proteins can undergo a wide range of post-translational modifications such as
phosphorylation and ubiquitination. These chemical modifications are often
implicated in enzyme activity and cell structure maintenance, which can be used
to monitor cancer formation and progression [57]. Several databases are
constructed to store protein sequences and annotated functional information. The
UniProt [58] and PROSITE [59] represent two of the largest proteomic
repositories, which provide rich resources for protein research.

1.2.5 Microbiomics

Microbiomics is the study to investigate the entire micro-organisms or
microbiota such as bacteria, viruses, and fungi. These organisms reside on all
parts of the human body, including skin, gastrointestinal tract, uterus, and lung
[60]. Microbiomic and epidemiological studies have demonstrated that human
microbiome have crucial impacts on inflammatory bowel disease, type II
diabetes, obesity, and neurodevelopmental disorders [61, 62]. A recent study
shows that the gut microbiome play an important role in body metabolism and
contribute to the increasing prevalence of diabetes and obesity [63]. In another
study of autism, researchers found that the composition of gut microbiome is
significantly different between individuals with autism and those without [64].
The high-throughput sequencing technologies have been commonly used to
elucidate the genetic landscape of microbiome. In 2007, the first phase of the
Human Microbiome Project (HMP) was launched to characterize the microbial
types and components from 300 healthy participants [65]. The second phase,
known as integrative Human Microbiome Project (iHMP), was conducted in
2014 to investigate the functional impacts of microbiome on human physiology
and disease development [66].

1.3 Cancer research and overview

Cancer is a disease where cells grow uncontrollably with the potential to spread
to other parts of the body. A malignant cancer is defined when tumor cells invade
other tissues or organisms, while a benign tumor is localized and does not spread.
It is well recognized that cancer is closely related to heritable or somatic
mutations, which result in abnormal cellular growth, exceptional angiogenesis
and suppression of normal cell signaling [67]. In the last two decades, the
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sequencing technologies and omics data have been widely used to elucidate the
genetic and pathological mechanisms in various cancers. The characterization of
genetic mutation provides significant insights into diagnosis, stratification,
treatment, and prognosis for cancer patients. In this thesis, we utilize the
sequencing methods and omics data from several cancer types for isoform
quantification and mutation detection.

1.3.1 Neuroblastoma

Neuroblastoma is the most common extracranial solid tumor in children under
the age of five. It ranks third among the most prevalent pediatric cancers after
leukemia and brain cancer [68]. The tumor emerges from the sympathetic
nervous system, and develops mostly in the adrenal glands, abdomen, chest, or
neck. A neuroblastoma is highly heterogeneous with clinical behaviors such as
spontaneous regression or aggressive progression despite intensive therapy [24].
The patients can be classified into low, intermediate, and high risk groups. The
low- and intermediate-risk patients have a favorable outcome with 90%
event-free survival (EFS) rate in three years. However, the high-risk group shows
a <50% EFS rate [69]. A wide variety of genetic mutations have been observed
in neuroblastoma patients, which are implicated in the tumorigenesis and cancer
progression. One of the major objectives of this thesis is to identify potential
driver genes in neuroblastoma and provide useful guidance for individual
prognosis and treatment.

MYCN amplification

Figure 1.4 shows a comprehensive collection of genetic variations detected to
date, which include gene amplification, chromosomal alteration, and
polymorphism. MYCN is a protein coding gene and a member of the MYC gene
family of transcription factors. The MYCN proteins regulate several cellular
processes such as cell proliferation, differentiation, and apoptosis. MYCN
amplification (MNA), which contains >10 copies of the gene, is observed in 25%
of neuroblastoma patients [24]. MNA is a significant predictor of poor survival
in neuroblastoma patients; the amplification and over-expression of MYCN gene
can be found in 40% of high-risk cases [69]. MYCN status (amplification versus
non-amplification) is frequently used in neuroblastoma risk classification [24].
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Figure 1.4: A collection of genetic mutations identified in neuroblastoma patients
that contribute to the formation of the tumor. The mutations comprise gene
amplifications, mutations, deletions and epigenetic modifications such as DNA
methylation. The figure is edited from Morgenstern et al. [70] and reprinted with
permission from Elsevier Publishing Group.

Chromosomal abnormalities

Neuroblastoma has a great cytogenetic heterogeneity in terms of the wide range
of genomic aberrations. As shown in Figure 1.4, apart from MYCN
amplification, neuroblastoma patients harbor several chromosomal
abnormalities, including 17q gain, 1p loss and 11q loss. Gaining the long arm of
chromosome 17 is identified in 50% of all cases and ∼90% of high-risk tumors,
while the deletion of chromosome 1 short arm is detected in 33% of patients
[70]. Both 17q gain and 1p loss can be co-occuring with MYCN amplification
and consequently associates with adverse outcomes. Loss of 11q is observed in
one-third of high-risk cases, but rarely related to the occurrence of MNA.
Neuroblastoma can also be categorized into three subtypes, i.e. Type 1, Type 2A,
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and Type 2B, based on the three genomic abnormalities. Type 1 are patients
without MYCN amplification or any of the three chromosomal aberrations,
usually having a favorable outcome. Type 2A tumor contains 17q gain or 11q
loss but without MNA. This category has an intermediate risk and survival
compared with Type 1. Type 2B is defined as MNA together with 1p loss or 17q
gain, which has the highest risk and worst outcomes [71].

1.3.2 Acute myeloid leukemia

Acute myeloid leukemia (AML) is a hematological malignancy with excessive
number of abnormal myeloid stem cells. Several risk factors are related to the
formation of AML, such as old age, smoking, chemotherapy treatment, radiation,
and genetic abnormalities. In the last 15 years, the advances of high-throughput
sequencing technologies have greatly facilitated the detection of genetic
mutations in AML [72]. In 2013, the cancer genome atlas (TCGA) research
group conducted a comprehensive study of 200 adult AML patients using WGS,
WES, and RNA-seq approaches [73]. A total of 23 genes with recurrent
mutations were detected, including NPM1 (27% frequency), FLT3 (28%), TP53
(8%), et al. In 2017, the European Leukemia Net (ELN) published the latest
recommendation for diagnosis and classification based on AML mutations [74].
As shown in Table 1.2, the patients can be classified into three risk groups, which
are favorable, intermediate, and adverse. The favorable risk group is
characterized by a patient carrying RUNX1-RUNX1T1 fusion gene,
CBFB-MYH11 fusion, or mutated NPM1 without FLT3 internal tandem
duplication (ITD) (NPM1+/FLT3-ITD-). The intermediate category can be
defined with NPM1+/FLT3-ITD+, NPM1-/FLT3-ITD-, or the chimeric gene of
MLLT3-KMT2A. The BCR-ABL1 fusion or NPM1-/FLT3-ITD+ represent the
adverse category, which mark the subgroup with inferior outcome and poor
survival. Continuous efforts have been made to identify novel mutations to
provide further guidance for AML diagnosis and therapy [75].

1.3.3 Breast cancer

Breast cancer is one of the most diagnosed cancers in women worldwide. In
America, over 280,000 new cases are detected and 44,000 related deaths are
found every year [76]. Many risk factors are involved in the formation of breast
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Table 1.2: 2017 ELN recommendation for AML risk stratification based on genetic
alterations

Risk group Genetic alterations
Favorable t(8;21)(q22;q22.1), RUNX1-RUNX1T1

inv(16)(p13.1q22), CBFB-MYH11
NPM1 mutated and FLT3-ITD non-mutated, NPM1+/FLT3-ITD-

CEBPA biallelic mutated
Intermediate NPM1+/FLT3-ITD+

NPM1-/FLT3-ITD-
t(9;11)(p21.3;q23.3), MLLT3-KMT2A

Adverse t(9;22)(q34.1;q11.2), BCR-ABL1
NPM1-/FLT3-ITD+

Mutated RUNX1, ASXL1, TP53

cancer, including being female, obesity, older age, alcoholism, and genetic
mutations. Breast cancer can be classified into three categories according to the
presence and absence of estrogen receptor (ER), progesterone receptor (PR), and
human epidermal growth factor 2 (HER2): the ER/PR positive and HER2
negative (70%), the HER2 positive (15%), and all three molecular markers
negative (triple-negative, 15%). The three subgroups indicate different clinical
features and respond to distinct treatment strategies. Genetic variations have
triggered ∼10% of all breast cancer cases. BRCA1 and BRCA2, two of the most
well-characterized susceptibility genes, account for 60% of the total genetic
influence on breast cancer [77]. BRCA1 and BRCA2 are tumor suppressor genes
with the cellular function to repair damaged DNA fragments. Genetic mutations
on these two genes often lead to a high risk of breast cancer [78].

1.3.4 Prostate cancer

Prostate cancer is the second most common cancer in men globally, which causes
1.2 million new cases every year. In Sweden, 10,000 men are newly diagnosed
and around 2,500 deaths occur each year, which makes prostate cancer the most
frequent and deadliest tumor in the country [79]. The risk factors of prostate
cancer include age, obesity, race, family history, and genetic alterations. The
prostate-specific antigen (PSA) testing has been widely used for cancer
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screening. However, its accuracy and efficacy are still controversial. In recent
years, artificial intelligence (AI) approaches have been applied to diagnose and
stratify prostate cancer using biopsy images. Results show that AI methods
achieve a high accuracy and provide clinically useful aids to urological clinicians
for the analysis of prostate biopsy samples [80]. Genetic mutations have been
implicated in the formation and progression of prostate cancer. For example,
using whole-exome sequencing data, researchers have identified deletions in
PTEN (10q23) and NKX (8p21) as recurrent genomic alterations associated with
prostate tumorigenesis [81]. The fusion gene represents another major type of
mutation identified in prostate cancer. The chimeric gene between TMPRSS2
and ETS gene family, especially TMPRSS2-ERG and TMPRSS2-ETV1/4, are
frequently detected in cancer patients. The TMPRSS2-ERG fusion originates
from an interstitial deletion in chromosome 21, which is the most frequent fusion
event observed in more than 55% of cases [82].
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2 Aims of this thesis

Although the sequencing platforms have yielded tremendous amount of omics
data, it remains a major challenge to analyze these data with high accuracy and
efficiency. The overall aim of this thesis is to develop novel statistical methods to
analyze the high-throughput omics data and make biologically meaningful
interpretations in cancer studies. The specific aims of the four studies are as
follows:

� To integrate multiple omics data from neuroblastoma patients and identify
potential driver genes contributing to the formation and progression of the
disease. The datasets utilized in this study include microarray comparative
genomic hybridization data, gene expression profile, gene interaction
network, and clinical records.

� To develop a novel statistical method for the quantification of gene
expression at the isoform level using RNA-seq data. The method also aims
to correct all potential biases in the sequencing data.

� To build a new approach to quantify mutant-allele expression at the isoform
level using RNA-seq data and investigate the association between isoform-
level expression and drug response in cancer patients.

� To develop an analysis pipeline for the detection of fusion genes using
whole-exome sequencing data and re-targeted sequencing data from acute
myeloid leukemia and prostate cancer samples.
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3 Materials and methods

In this thesis, we have utilized a wide range of omics data from several cancer
types. Both real and simulated sequencing data have been employed to test the
performance of the methods developed in this doctoral project.

3.1 Integrative analysis of neuroblastoma omics data

From the Critical Assessment of Massive Data Analysis (CAMDA 2017)
challenge (http://camda.info/), we obtain the RNA-seq data for gene expression
quantification, array-based comparative genomic hybridization (aCGH) data for
copy number alteration (CNA) detection and an external functional gene
interaction network dataset for network enrichment analysis (NEA). The
challenge provides a total of 498 neuroblastoma patients, among which 145 cases
have matched RNA-seq and aCGH data. A subset of 48 out of the 145 patients
are clinically classified as high-risk cases.

Figure 3.1 shows the workflow to integrate multiple data types and detect
potential driver genes in neuroblastoma patients. In the first step, the gene
expression profile including 60,776 genes are quantified using the
Magic-AceView (MAV) method [83]. The expression level for each gene is
ranked across all 498 patients. Within each patient, we take the 100 highest
ranked and 100 lowest ranked genes as patient-specific extremely expressed
genes, also denoted as expression altered gene set (AGS). Secondly, we employ
two computational tools, MPSS and cnvpack, to detect recurrent CNAs using
aCGH data. We annotate the genes harboring CNAs and keep those with
consistent functional impact on gene expression. For example, if a gene carries a
duplication, the expression of CNA altered samples is expected to be
significantly higher than the non-altered cases (one-sided Welch’s t-test,
p-value<0.05). The genes with corresponding effects on gene expression are
named functional gene set (FGS) as indicated in 3.1. Thirdly, we apply a network
enrichment analysis to identify potential driver genes using FGS and AGS
results. The key point of NEA analysis is that the functional effects of each FGS
gene can be evaluated by the number of links with AGS genes in the interaction
network. A driver gene is defined as CNA altered gene with consistent
expression pattern and functionally significant in network enrichment analysis.

23



Figure 3.1: Integrative analysis pipeline to identify driver genes in neuroblastoma
patients and subsequent clinical validation. The figure is from Study I and reprinted
with permission from BioMed Central Ltd [24].

Next, we summarize the total number of driver genes in each patient as the driver
gene score (DGscore). We then assess the prognostic significance of DGscore by
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comparing the patients’ survival in high and low DGscore groups.

3.2 Isoform quantification using RNA-seq data

3.2.1 Isoform quantification model

In this project, we use the concept of ‘equivalence class’ (eqclass) introduced in
a recent study [84]. An eqclass defines exon(s) shared by several isoforms and
the reads mapped to the shared exon(s). Note that the eqclass does not have to
be biologically meaningful exons; it refers to any sequence that causes a sequence
sharing problem. We summarize the number of reads aligned to each eqclass using
a mapper named Rapmap from the input RNA-seq data [84]. We define y j as the
number of reads (read count) mapped to eqclass j. For a specific eqclass J with T
isoforms, we denote βt to be the expression level of isoform t. The major task is to
estimate isoform abundances βt from the read count data y = {y j, j = 1, ...,J}. By
adding up the read counts of multiple isoforms, we model the expected number of
reads in eqclass j as

µ j = w∑
t

a jtLt p jtβt ≡∑
t

x jtβt , (3.1)

which can also be written as

µ = Xβ , (3.2)

where x jt ≡ wa jtLt p jt . Here w is the total number of mapped reads normalized by
isoform length and library size, a jt is the isoform-specific bias or non-uniformity
effect, Lt is effective length and p jt is the proportion of reads in eqclass j under
uniform distribution. For each isoform t we have ∑ j x jt ≡ 1. It is conventionally
assumed that y j has Poisson distribution with mean µ j. In general, both X and β

in equation (3.2) are unknown parameters, so we have a bilinear model with two
variables to estimate. Under the uniform read distribution assumption, we have
a jt ≡ 1, so (3.1) becomes

µ j ≡ w∑
t

Lt p jtβt (3.3)

25



Figure 3.2: Construction of the initial matrix X using simulated RNA-seq data. The
figure is from Study II and reprinted with permission from Oxford University Press
[21].

3.2.2 Construction of X matrix

According to model (3.3) and the definition, X matrix should contain three
components: (1) a group of isoforms sharing multiple exons; (2) a list of
eqclasses that define exons shared between isoforms; (3) the proportion of read
counts from each eqclass that contributes to the total expression of each isoform.
Figure 3.2 shows the steps to construct the initial X matrix using a simulation
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scheme. For each transcript, we simulate the corresponding RNA-seq sample
using the R package Polyester [85]. For example, sample1 is simulated for tx1,
where we assign read counts to tx1 only and other transcripts should not be
expressed. We then utilize Rapmap for read alignment and read quantification in
each eqclass. The result is summarized in the transcript response profile (TRP)
matrix as illustrated in Figure 3.2(a). In TRP1, each row represents an eqclass
and the number of reads mapped into this eqclass. The binary pattern indicates if
a transcript has reads originating from the specific eqclass. Each TRP also
defines transcript neighbors (TNs), which are isoforms associated with each
other due to exon sharing. As shown in Figure 3.2(b) and (c), we continue to
generate TRPs for other transcripts and summarize the associations into a
transcription cluster (TC). The unique set of binary patterns and original read
counts from each TRP are recorded in Figure 3.2(d). In Figure 3.2(e), the read
counts in each transcript are standardized with the sum of one to generate the
initial X matrix.

3.2.3 Alternating expectation-maximization algorithm

The starting X matrix is served as an input in equation 3.2. Figure 3.3 shows the
workflow of our quantification method XAEM to estimate the isoform
abundance. In step (a) we generate the Y matrix using RNA-seq data. The matrix
records the number of reads mapped to each eqclass in multiple samples. Step
(b) involves the X matrix constructed as mentioned above. In step (c), we
estimate both X and β using an alternating expectation-maximization (AEM)
algorithm. The estimation is conducted iteratively until X and β have less than
1% difference between successive iterations. In this estimation process, a
potential issue could be caused by paralogs, which are transcripts with extremely
similar sequences. Paralogs in X matrix will make the X matrix singular and the
β non-identifiable. To deal with this issue, we use the k-means clustering to
combine paralogs into one transcript.

3.2.4 Simulated and real RNA-seq data

Simulated data are commonly used for benchmarking the quantification
approaches. We implement Polyester to simulate RNA-seq reads based on the
expression values from a human colon cancer cell line HCT116 [86]. Polyester
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Figure 3.3: The workflow of XAEM to quantify isoform level expression. The figure
is from Study II and reprinted with permission from Oxford University Press [21].

can generate sequencing reads under uniform and non-uniform distribution, so
that we simulate 100 RNA-seq samples under uniform condition and another 100
samples with non-uniform read distribution. Paired-end reads are generated with
read length of 100 bp and fragment length at 250 bp. We obtain two real
RNA-seq datasets in this project. The first comprises 384 cells from a triple
negative breast cancer cell line (MDA-MB-231). The dataset includes two
batches and 50% of cells in each batch are treated with metformin. The second
real dataset is downloaded from the Sequencing Quality Control Consortium
(SEQC) project [87]. The dataset contains two unique RNA samples and
hundreds of replicates sequenced in several laboratory sites. We select four
replicates for each sample and obtain the RNA-seq data from the Sequence Read
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Archive (SRA) repository. A qPCR validated expression profile is also acquired
for the eight replicates.

We compare the quantification performance of XAEM with other existing
approaches such as Cufflinks [47], Sailfish [84], Kallisto [54], and Salmon [53].
An absolute proportional error (APE) is calculated using the equation 3.4, where
E is the estimated expression value and T is the ground truth.

APE = |E−T |/(T +1). (3.4)

3.3 Estimation of mutation-allele expression

It is well recognized that DNA mutations play crucial roles in cancer initiation
and progression [88]. However, traditional quantification methods often ignore
mutant status and alleles. To address this issue, we extend the idea of X matrix
and AEM algorithm to estimate mutation-allele expression at the isoform level.
We use a more flexible strategy by estimating the sum of all mutant isoforms
originating from the same wild-type isoform. For instance, two mutant isoforms,
isoform_mut1 and isoform_mut2, are associated with the wild-type version
isoform_wt. In the process of X matrix construction, we rename both
isoform_mut1 and isoform_mut2 as isoform_mut. We then recode the binary
pattern in respective eqclass and merge those with the same pattern. This
processing will generate only one mutant version for each wild-type isoform, and
the number of total isoforms in the X matrix will be up to M ∗ 2, where M is the
number of wild-type isoforms. The X matrix including both wild-type and
mutant isoforms is then served as input in equation 3.2.

We simulate two RNA-seq datasets to evaluate the accuracy of our method
MAX and another quantification method Salmon [53]. The first dataset comprise
100 non-mutated samples where we only assign read counts to wild-type
isoforms. The second dataset contain 100 mutated samples with equal read
counts to both wild-type and mutant isoforms. For the real RNA-seq data, we
obtain a total of 461 RNA-seq samples from the BeatAML study [89]. The
dataset also includes whole-exome sequencing data, clinical records, and drug
response data. The BeatAML project provides a detailed list of genetic variations
detected using variation callers such as Mutect [90] and Varscan2 [91].
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3.4 Fusion gene detection at DNA level

In this study, we build a pipeline to detect fusion genes using paired-end
whole-exome sequencing and targeted sequencing data. We first align reads to
genome reference using aligners such as BWA [50] or Bowtie2 [51]. The output
is in the Sequence Alignment/Map (SAM) or Binary Alignment/Map (BAM)
format, which records the mapping position, flag, mapping quality, CIGAR
string and other alignment results. Based on these information, we extract (1) the
discordant reads, where the two reads are mapping to different genes and (2) split
reads, where a single read is partially mapping to more than one gene. The fusion
gene identification from split reads can be straightforward since split reads
spanning the fusion break point directly. For discordant reads, the idea of
equivalence class mentioned in section 3.2.1 is utilized to construct a fusion
equivalence class (FEQ). Each FEQ comprises the constituent genes and the
number of reads supporting the fusion event. We then apply multiple filters to
exclude the fusion candidates that are false positives. We test the performance of
our method on three large cancer datasets including BeatAML data,
TCGA-AML data, and the Prostate Biomarkers cohort. The BeatAML cohort
provides a total of 531 samples with WES data and 411 patients with RNA-seq
data. The TCGA-AML project performs whole-exome sequencing on 150
samples and RNA-seq on 179 samples. From the Prostate Biomarkers cohort, we
obtain a total of 65 patients with targeted deep-sequencing data.
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4 Main results

4.1 Study I

We apply the analysis pipeline as shown in Figure 3.1 to a subset of 48 high-
risk neuroblastoma patients. A total of 274 genes with recurrent copy number
alteration and parallel impact on gene expression are identified. We apply the
network enrichment analysis (NEA) to detect patient-specific driver genes, where
the input AGS are the top 200 extremely expressed genes from each patient and the
input FGS are those CNA-altered genes in each patient (subset of the 274 recurrent
genes). The enrichment analysis identifies 66 patient-specific driver genes; the
full list is given in Additional File 4 attached with Study I. Next, we detect the
common driver genes where the input FGS and AGS are genes present in at least
five patients (10% of 48 samples). We detect four common drivers: ERCC6,
HECTD2, KIAA1279, and EMX2.

We summarize the total number of common and patient-specific drivers in
each sample as DGscore and evaluate its clinical relevance in patients’ survival.
The 48 patients are divided into high and low DGscore groups based on the
median value of the score. Figure 4.1(a) shows that the low DGscore group has a
significantly better outcome than the high DGscore group (p-value=0.006). In
Figure 4.1(b), we only use the 274 CNA altered genes without the NEA step; the
result indicates that it cannot distinguish the survival between high and low
DGscore groups (p-value=0.492). In Figure 4.1(c) and (d), the DGscore is
calculated only using patient-specific or common driver genes. The results
indicate that either type of driver genes is insufficient to predict the patients’
survival (p-value>0.2).

4.2 Study II

In study II, we develop a novel method named XAEM for the quantification of
isoform abundance. We first apply XAEM to quantify the isoform expression
using simulated data and compare the accuracy with existing methods such as
Salmon [53], Sailfish [84], Kallisto [54], and Cufflinks [47]. Table 4.1
summarizes the median APE for each method using 100 uniform and
non-uniform samples. The isoforms are divided into three categories: (1)
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Figure 4.1: Survival analysis of 48 high-risk patients under different driver gene
conditions. The figure is from Study I and reprinted with permission from BioMed
Central Ltd [24].

singletons, which originate from genes that produce only single isoform; (2)
non-paralogs, where a gene generates multiple isoforms but not paralogs; (3)
paralogs, which are extremely similar isoforms as described in section 3.2.3. It
can be seen that the estimation of singletons is accurate in most methods. The
median APEs for XAEM, Salmon, Kallisto, and Sailfish are 0, while Cufflinks
has a median APE at 0.28 and 0.45 under uniform and non-uniform setting,
respectively. The quantification of multiple isoforms is more challenging than
singletons. Table 4.1(A) shows that the APEs of XAEM, Salmon, Kallisto, and
Sailfish increase to 0.18, 0.18, 0.20, 0.20 in the uniform samples. Table 4.1(B)
indicates that XAEM achieves higher accuracy under the non-uniform scenario
with the median APE at 0.37, while the APE for Salmon is 0.42, Kallisto 0.44,
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Table 4.1: Comparison of the quantification accuracy of XAEM, Salmon, Kallisto,
Sailfish, and Cufflinks. The isoforms are divided into singletons, non-paralogs, and
paralogs. The median APE is calculated for each method using (A) 100 uniform and
(B) 100 non-uniform simulated samples.

Multiple isoforms

Methods Singletons Non-paralogs Paralogs

(A) Uniform (N=14,446) (N=25,838) (N=6,112)
XAEM 0 0.18 0.12
Salmon 0 0.18 0.45
Kallisto 0 0.20 0.47
Sailfish 0 0.20 0.47
Cufflinks 0.28 0.36 0.54
(B) Non-uniform (N=14,446) (N=18,597) (N=13,353)
XAEM 0 0.37 0.15
Salmon 0 0.42 0.966
Kallisto 0 0.44 0.969
Sailfish 0 0.45 0.968
Cufflinks 0.45 0.69 0.970

and Sailfish 0.45. Cufflinks has the worst performance with the APE at 0.69. The
quantification of paralogs is a major challenge for all methods. For this category,
we calculate the APE using the original output in each method; hence, in XAEM,
the paralogs remain merged but are separated in other methods. We can see that
the APEs of XAEM are 0.12 in uniform samples and 0.15 in non-uniform
samples, which are substantially smaller than other approaches. The APEs for
Salmon, Kallisto, Sailfish, and Cufflinks are close to one in non-uniform
samples, indicating that these methods have inferior estimations for paralog
isoforms.

Differential expression analysis is commonly used to identify differentially
expressed (DE) genes between cancerous and healthy samples. The breast cancer
cell line MDA-MB-231 contains two batches of cells; each batch has 96
metformin treated cells and 96 control cells. To evaluate the performance of
XAEM in real RNA-seq data, we generate a training set and validation set. The
training set comprises 40 randomly selected treated cells and 40 control cells.
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Figure 4.2: Detection and validation of differentially expressed isoforms using
breast cancer cell line RNA-seq data. The comparison is between XAEM, Salmon,
and Cufflinks. The figure is from Study II and reprinted with permission from Oxford
University Press [21].

The validation set contains another set of 40 treated and 40 control cells. We
calculate a rediscovery rate (RDR) that indicates the number of significant DE
isoforms from the training set that are validated in the validation set. Figure 4.2
shows the comparison between XAEM, Salmon and Cufflinks. In Figure 4.2(a),
all three methods are implemented on batch 1 without bias correction. Therefore,
in XAEM, we do not run the AEM step to correct biases from RNA-seq data. It
can be seen that the RDR is similar between the three methods. In Figure 4.2(b),
the bias correction step is added back to each method, in that the AEM step is

34



used in XAEM’s estimation. We can see a notable improvement of XAEM,
where the RDRs of top 100, 500, 1000 DE isoforms are 1.0, 0.56, and 0.50,
respectively, which is substantially higher than those in Salmon and Cufflinks.
Figure 4.2(c) shows the comparison across batches for singleton, indicating that
there is no significant difference in RDR among the three methods. The finding
is in agreement with Table 4.1 since the quantification of singletons is trivial.
Figure 4.2(d) shows that XAEM achieves higher RDR for multiple isoforms
(non-paralogs) across batches. The overall RDRs for XAEM, Salmon, and
Cufflinks are 0.77, 0.26, and 0.22, respectively.

4.3 Study III

Table 4.2: Comparison of estimation accuracy between MAX and Salmon using 100
non-mutated and 100 mutated samples for FLT3, NPM1 and TP53.

FLT3 NPM1 TP53
WT Mut WT Mut WT Mut

Non-Mutated samples
MAX 0.05 0 0.06 0 0.24 0
Salmon 0.22 0 0.29 0 0.99 0
Mutated samples
MAX 0.03 0.04 0.07 0.07 0.22 0.25
Salmon 0.87 0.85 0.65 0.87 0.99 0.99

In this study, we develop a method named MAX to quantify the mutant-allele
expression from both simulated and real RNA-seq data. The simulated data
include 100 mutated samples and 100 non-mutated samples for FTL3, NPM1,
and TP53. Table 4.2 shows the median APE for wild-type (WT) and mutant
(Mut) isoforms from MAX and Salmon. In non-mutated samples, where only
wild-type isoforms should be expressed, MAX achieves a higher accuracy than
Salmon. The median APEs for MAX in FLT3, NPM1 and TP53 are 0.05, 0.06,
and 0.24, while the APEs from Salmon are 0.22, 0.29, and 0.99, respectively.
The median APEs of mutant isoforms from MAX and Salmon are all zero,
indicating that both methods have little false positives in non-mutated scenario.
The estimation in mutated RNA-seq data can be more challenging. As Table 4.2
shows, for TP53 gene, MAX has median APEs at 0.22 and 0.25 for WT and Mut
isoforms. This could be because TP53 has 15 WT isoforms and 49 distinct
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mutations, which results in a total of 522 MT isoforms. The accuracy of Salmon
becomes extremely low, where the median errors across three genes are >0.65.
For example, the median APEs from Salmon for WT and Mut isoforms in TP53
are close to one. Overall, compared with Salmon, MAX achieves a much higher
accuracy for the quantification of wild-type and mutant isoforms under
non-mutated and mutated conditions.
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Figure 4.3: Differential analysis of drug response in NPM1 high/low mutant
expression and ITD positive/negative groups: (a) drug response is measured in IC50;
(b) AUC; (c) boxplots of IC50 in six subgroups based on FLT3-ITD and NPM1
mutant expression; (d) boxplots using AUC values.

We implement MAX to BeatAML RNA-seq data and investigate the clinical
impact of the mutant-allele expression on drug response. The BeatAML
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conducted drug screening experiments on 122 small-molecule inhibitors and the
drug sensitivities are measured in inhibitory concentration (IC50) and area under
the curve (AUC). We focus on 82 samples carrying the NPM1 mutation and
calculate a Mut/WT allele expression ratio for each isoform. Based on the
expression ratio of the dominant NM_002520 isoform, we split the 82 patients
into high and low mutant expression groups. Figures 4.3(a) and (b) show the
volcano plots using IC50 and AUC metrics. It can be seen that drug 83
(panobinostat) and drug 113 (VX-745) have significantly differential responses
between high and low ratio groups. We check the expression of VX-745 further
by dividing the patients into six subgroups based on the presence of FLT3-ITD
alteration and the high/low expression ratio of NPM1. Figures 4.3(c) and (d)
illustrate the drug response in IC50 and AUC, respectively. In each panel, the
three left-most boxplots represent FLT3-ITD negative patients and the three
right-most boxplots are FLT3-ITD positive patients. Among the FLT3-ITD
negative samples, both low and high NPM1 mutated groups have better drug
response than NPM1 non-mutated samples (p-value=0.04 for IC50 and 0.004 for
AUC). However, in the FLT3-positive patients, samples with low NPM1
expression are the only group to have good drug response (p-value=0.001 for
IC50 and 0.03 for AUC). The results indicate that, based on the mutant-allele
expression profile, we identify a subgroup of patients having better drug response
to a kinase inhibitor.

4.4 Study IV

In study IV, we build a method named Fuseq-WES to identify fusion genes from
whole-exome and targeted sequencing data. We apply the method to three large
cancer datasets and focus on the validation of several well-established fusion
genes in AML and prostate cancer. The PML-RARA, CBFB-MYH11, and
RUNX1-RUNX1T1 fusions are among the most common fusion genes in AML
[89]. Table 4.3 shows that in BeatAML dataset, PML-RARA is detected in 16
patients using the RNA-seq data. Eleven out of the 16 patients have matched
WES data, and four are validated by Fuseq-WES with a validation rate of 36%.
Fuseq-WES identifies CBFB-MYH11 in 15 samples using WES data, indicating
a much higher validation rate of 63%. For the RUNX1-RUNX1T1 fusion, none
of the six samples with WES data have been validated. In the TCGA data, three
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cases are detected to carry PML-RARA and two are harboring the
RUNX1-RUNX1T1 fusion. In contrast, no cases are identified with
CBFB-MYH11, which indicates a validation rate at 0.

Table 4.3: The number of patients detected with fusion genes using RNA-seq data;
number of patients with matched WES data and number of patients carrying the
fusion events validated using WES data.

BeatAML RNA-seq data WES data Fuseq-WES
PML-RARA 16 11 4

CBFB-MYH11 25 24 15
RUNX1-RUNX1T1 9 6 0

TCGA RNA-seq data WES data Fuseq-WES
PML-RARA 16 6 3

CBFB-MYH11 11 6 0
RUNX1-RUNX1T1 7 4 2

Table 4.4: Fusion detection results for TMPRSS2-ERG in Prostate Biomarker
dataset

Positive IGV Negative IGV Total
Postive Fuseq-WES 36 5 41

Negative Fuseq-WES 1 23 24
Total 37 28 65

TMPRSS2-ERG (TE) is a predominant fusion in prostate cancer, which can be
observed in >55% of patients. From the Prostate Biomarker project we obtain
65 samples with targeted sequencing data. We first implement four individual
tools for fusion detection, including SvABA [92], GRIDSS [93], LUMPY [94],
and a python-based tool named SVcaller. We then verify the fusion genes using
the Integrative Genomics Viewer (IGV) and keep those successfully verified by
IGV. Table 4.4 shows the comparison between IGV and Fuseq-WES detection.
TMPRSS2-ERG is identified in 41 and absent in 24 patients using Fuseq-WES,
while the IGV method detects the fusion in 37 samples. The comparison shows
that the results are concordant in 36 TE positive and 23 TE negative samples,
indicating an overall concordance at 91%.
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5 Discussion and conclusion

Integrative analysis of multi-omics data has been widely used in the era of high-
throughput sequencing. In Study I, we present an integrative analysis pipeline
combining RNA-seq, copy number alteration and network enrichment profile to
detect driver genes in neuroblastoma patients. A total of 66 patient-specific and
four common driver genes are detected from 48 high-risk cases. We calculate
a DGscore based on the driver genes and evaluate its clinical impact in survival
analysis. Results show that patients with a low DGscore have significantly better
outcomes than those with a high DGscore.

A key feature of the integrative pipeline is that it combines signals from
multiple omic sources. A driver gene is defined when it fulfills three criteria:
altered copy number, having a consistent impact on gene expression and enriched
in gene functional network. The result in Figure 4.1(b) shows that without
functional characterization in the gene interaction network, the DGscore cannot
distinguish the survival of high and low DGscore groups. Besides, the DGscore
takes both patient-specific and common drivers into account. As shown in
Figures 4.1(c) and (d), using patient-specific or common driver genes only is not
sufficient to predict the patients’ survival. In a Cox regression analysis of
high-risk neuroblastoma patients, DGscore emerged as the strongest prognostic
factor with the adjustment of age, tumor stage and MYCN amplification.

Notably, MYCN is a well-established oncogene and a significant predictor for
survival in neuroblastoma patients [69]; however, it is not necessarily effective
for high-risk groups. Unlike DGscore, which integrates several levels of signals,
MYCN amplification alone is insufficient to predict the outcome of high-risk
patients. The result shows the importance to consider multiple attributes ranging
from mutation status to functional impacts in identifying candidate driver genes.

The quantification of isoform level expression is a fundamental task in RNA-
seq data analysis. Compared with gene level quantification, which simply adds up
all reads mapped to a single gene, the estimation of isoform abundance is trickier
due to the alternative splicing mechanism and exon sharing. A major problem is
how to distribute reads mapping to exons shared by different isoforms.

In Study II, we develop a method named XAEM to quantify the isoform
expression from RNA-seq data. Many existing methods utilize a linear model
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Y = Xβ with a possibly known X and estimate only the β . In contrast, XAEM
leverages a more flexible bi-linear model where both X and β are unknown. We
construct the initial X matrix using a simulation scheme and divide the whole
transcriptome into small and feasible units as isoform clusters. The X matrix is
then served as an input variable in the model where β and X are estimated using
an AEM algorithm. In the process of updating the X matrix, the AEM algorithm
automatically corrects all potential biases observed from multiple input RNA-seq
samples.

We utilize simulated and real RNA-seq data to evaluate the performance of
XAEM and compare it with other approaches. The comparison shows that
XAEM achieves higher accuracy in multiple isoforms and better rediscovery rate
in differential expression analysis. Paralogs are isoforms with extremely similar
sequences. The quantification of paralogs using short read-length sequencing
data remains a big challenge in existing approaches. In the XAEM model, we
employ a special strategy to merge paralogs into a combined isoform group,
which leads to a more accurate estimation of paralog abundance.

In Study III, we extend the concept of AEM algorithm and develop a method
named MAX to quantify mutant-allele expression at isoform level. The major
obstacle in this analysis is the highly similar sequences between wild-type isoform
and potentially large number of mutant isoforms. For example, if there are M
wild-type isoforms and N distinct mutations detected in a gene, the total number of
wild-type and mutant isoforms can be M×2N . The large number of isoforms will
make the X matrix sparse and result in an indeterminate solution in the equation
3.2.

To address this issue, we merge the mutant isoforms from the same wild-type
isoform into a single mutant set. In this case, each wild-type isoform only has
one mutant version, thus reducing the dimension of the X and making the
quantification feasible. We assess the accuracy of MAX using mutated and
non-mutated RNA-seq data and compare it with a standard quantification method
Salmon. The results indicate that MAX achieves substantially better
performance than Salmon under both scenarios.

One advantage of MAX over other methods is the utilization of explicit X
matrix, which integrates both wild-type and mutant isoforms, providing an
effective way to deal with the huge amount of sequence similarities. We apply
MAX to a real RNA-seq dataset from BeatAML project; the analysis shows little
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false positive estimates in non-mutated samples, which can be considered as a
validation of MAX’s accuracy in real-world data. To evaluate the clinical
significance of mutant-allele expression, we investigate the expression pattern in
the drug response data comprising 122 drugs. We find that a subgroup of NPM1
mutated patients has a better drug response than other groups. The results
demonstrate that mutant-allele expression can provide significant information for
patient stratification and individualized treatment.

Whole-exome sequencing data have been frequently used to investigate the
genetic landscape in numerous diseases. The large number of WES data provide
rich resources for further exploitation. In Study IV, we build an analysis pipeline
named Fuseq-WES to detect fusion genes from WES and targeted sequencing
data. We apply the method to AML and prostate cancer cohorts, validating
several well-known fusion genes in these two cancers. In the BeatAML data, we
detect 15 patients carrying the CBFB-MYH11 fusion, which indicates a
validation rate of 63%. The PML-RARA fusion is validated in 36% patients. We
check the gene structure of MYH11 and notice that it contains 43 exons with the
gene length at 154,000 nucleotides. Both the PML and RARA gene have nine
exons with a gene length of ∼50,000 bases. Accordingly, we speculate that the
density of exons could be a key factor for validation rate, where a high density
can facilitate the detection of fusion events. However, in the TCGA dataset, the
CBFB-MYH11 is not validated in any samples. From the WES data, we find that
the read depth of TCGA data is 15x while in BeatAML data it is 40x. The result
suggests that read depth could also affect the fusion gene detection using WES
data.

This is confirmed when we use targeted sequencing data to detect
TMPRSS2-ERG fusion in prostate cancer patients. The average read depth of
targeted sequencing data is 1500x, which provides an ultra deep coverage for
fusion detection. The result shows that Fuseq-WES achieves a 97% concordance
in TMPRSS2-ERG positive cases and 88% concordance in negative cases.
Although we validate several fusion genes using exome sequencing data, the
overall detection result indicates that it is difficult to replicate the fusion genes
detected in the RNA-seq dataset. An inherent disadvantage of WES data is that
only exonic regions are sequenced. Thus, if a fusion gene occurs in the intron or
intergenic region, the WES is unable to capture the breakpoint.
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6 Future perspectives

In this thesis, we develop several methods to analyze a wide variety of omics data
from cancer patients. Each method aims to tackle specific questions in omics
data analysis and subsequently facilitates the investigation of pathophysiologic
mechanisms underlying different cancer types. Our studies have several
limitations. For example, in Study I, we detect driver genes on a small number
(48) of high-risk neuroblastoma patients. The same problem exists in Study III
and IV, where the number of NPM1 mutated samples or patients with WES data
is limited. Ideally, if sufficient omics data had been available, we would be able
to identify candidate driver genes with higher confidence. Besides, we could
validate the efficacy and performance of our methods in a separate validation set.

The second limitation comes from the completeness of genome/transcriptome
reference used for read alignment. The reference is served as the basis to detect
genetic mutations and quantify isoform abundance. However, since the release
of the first draft of human genome, many complex regions remain unfinished or
erroneous. These incomplete and incorrect segments can have negative effects
on gene annotation and other downstream analyses. According to a latest pre-
print study [95], a research consortium has almost filled in the unfinished gaps
and added ∼115 protein-coding genes. We anticipate that a complete and refined
human genome would generally improve the performance of related analyses.

Another limitation regarding the XAEM approach is the applicability to
single-cell (sc) RNA-seq data. The current version of XAEM achieves the best
performance using bulk RNA-seq data, while the scRNA-seq data usually have
lowly expressed isoforms and produce a sparse read-count matrix. Therefore,
improving the accuracy of XAEM using scRNA-seq data is worth further
investigation.
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