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POPULAR SCIENCE SUMMARY OF THE THESIS   

The sense of smell starts when you inhale odorants that travel up into the nose where they bind 

to receptors that in turn send the information about the odors to a structure in the brain known 

as the olfactory bulb (OB). This area is the first brain area that processes odor information and 

it is critical to the sense of smell. Specifically, the OB responds to odors by generating brain 

oscillations (i.e., rhythmic electrical activity in the central nervous system) and sends this in-

formation to many different parts of the brain for further processing (including areas important 

for memory, emotion, and motor activity). Understanding how the OB works is of interest not 

only because it helps the scientific community to better understand fundamental aspects of 

human olfaction, but also because the OB is involved in many diseases and may have important 

clinical relevance. For example, the OB is the earliest area in the brain that is negatively af-

fected by Parkinson's disease (PD), the second most common neurodegenerative disease. The 

OB is well studied in many animals, such as rodents, but it is at the same time among a few 

regions in the human brain from where it has been very difficult to measure functional signals 

and thus little is known about its function in humans. Common neuroimaging methods have 

problems when recording from the OB in humans because of its location. In this thesis, I have 

solved this problem and present a non-invasive method for measuring the OB’s function using 

a common active electroencephalography system, a method that measures the electrical activity 

of the brain, but with a new arrangement of electrodes. 

Next, I used this method to answer fundamental questions about how the OB works and what 

its role is in human olfaction. The most salient finding in this thesis is that the OB in humans 

and animals partially share similar processes, but that some fundamental features are different. 

Accordingly, I show that odor valence processing in humans, similar to animals, occurs in two 

separate stages during the first sniff; one fast and one at a later time point. I further show that 

the early process seems to facilitate a physical whole-body avoidance response when the odor 

is perceived as unpleasant. However, besides the similarities of human and animal olfaction, 

there are also some differences, such as the pace of oscillations appearing in the communication 

between the OB and the brain area that receives information from the OB, the primary olfactory 

cortex (piriform cortex). 

Furthermore, I show that it is possible to dissociate PD patients from healthy age-matched con-

trols by assessing their OB function. These results indicate that this method may potentially be 

used as an early biomarker for PD diagnosis. However, olfactory dysfunction is not limited to 

PD and neurodegenerative diseases and it may also potentially be used to study other diseases. 

Finally, as a reaction to the current pandemic, where the loss of smell has been identified as 

one of the most salient symptoms of the novel coronavirus that causes COVID-19, I also stud-

ied how odor testing might help its diagnosis. In a large-sampled data, I found that a home-

made smelling test, using common household items, can predict the estimated prevalence of 

COVID-19 in a Swedish population. Taken together, my work shows that improving common 

brain imaging techniques may have a significant impact on basic research as well as clinical 

practice.





 

 

ABSTRACT 

Present neuroimaging techniques are capable of recording the neural activity from all over the 

brain but the olfactory bulb (OB). The OB is the first olfactory processing stage of the central 

nervous system and the site of insult in several neurological disorders, particularly Parkinson’s 

disease (PD). It has been suggested that the OB has a pivotal role in the olfactory system anal-

ogous to primary visual cortex (V1) and thalamus in the visual system. However, due to the 

existing technical limitations, there has not been any non-invasive technique that can reliably 

measure the OB function in humans, consequently limiting its functional recording to one in-

tracranial study dating back to the 60s.  

Initially in Study I, a non-invasive method of measuring the function of human OB is devel-

oped, so-called electrobulbogram (EBG). In line with previous animal literature as well as 

the only intracranial study in human OB, it was demonstrated that gamma oscillations on the 

EBG electrodes occurred shortly after the odor onset. Subsequently, applying source recon-

struction analysis provided evidence that observed oscillations were localized to the OB. Ad-

ditionally, the OB recording with the EBG method showed a test-retest reliability comparable 

with visual event related potentials. Notably, the detected gamma oscillations were demon-

strated to be insensitive to habituation, the OB’s marked characteristic which has previously 

been demonstrated in rodents. Last, but not least, assessing the EBG response in an individual 

who did not have the bilateral OB indicated that the lack of OB results in disappearance of 

gamma oscillations in the EBG electrodes.   

Given that Study I determined the possibility of reliably measuring the function of the OB 

using the EBG, in Study II, I assessed the functional role of OB’s oscillations in the pro-

cessing of the odor valence. Odor valence has been suggested to be linked to approach–

avoidance responses and therefore, processing of odor valence is thought to be one of the 

core aspects of odor processing in the olfactory system. Consequently, using combined EBG 

and EEG recording, OB activity was reconstructed on the source level during processing of 

odors with different valences. Gamma and beta oscillations were found to be related to va-

lence perception in the human OB. Moreover, the early beta oscillations were associated with 

negative but not positive odors, where these beta oscillations can be linked to preparatory 

neural responses in the motor cortex. Subsequently, in a separate experiment, negative odors 

were demonstrated to trigger a whole-body motor avoidance response in the time window 

overlapping with the valence processes in the OB. These negative odor-elicited motor re-

sponses were measured by a force plate as a leaning backward motion. Altogether, the results 

from Study II indicated that the human OB processes odor valence sequentially in the gamma 

and beta frequency bands, where the early processing of negative odors in the OB might be 

facilitating rapid approach-avoidance behaviors. 

To further evaluate the functional role of the OB in odor processing, in Study III, OB’s 

communication with its immediate recipient, namely piriform cortex (PC), was assessed. 

These two areas are critical nodes of the olfactory system which communicate with each 



 

 

other through neural oscillations. The activity of the OB and the PC were reconstructed using 

a combination of EBG, EEG, and source reconstruction techniques. Subsequently, the cross 

spectrogram of the OB and the PC was assessed as a measure of functional connectivity 

where temporal evolution from fast to slow oscillations in the OB–PC connectivity was found 

during the one second odor processing. Furthermore, the spectrally resolved Granger causal-

ity analysis suggested that the afferent connection form the OB to the PC occurred in the 

gamma and beta bands whereas the efferent connection from the PC to the OB was concen-

trated in the theta and delta bands. Notably, odor identity could be deciphered from the low 

gamma oscillatory pattern in the OB–PC connectivity as early as 100ms after the odor onset. 

Hence, findings from this study elucidate on our understanding of the bidirectional infor-

mation flow in the human olfactory system. 

Olfactory dysfunction, due to neurodegeneration in the OB, commonly appears several years 

earlier than the occurrence of the PD-related characteristic motor symptoms. Consequently, 

a functional measure of the OB may serve as a potential early biomarker of PD. In Study IV, 

OB function was assessed in PD to answer whether the EBG method can be used to dissociate 

individuals with a PD diagnosis from healthy age-matched controls. The spectrogram of the 

EBG signals indicated that there were different values in gamma, beta, and theta for PDs 

compared with healthy controls. Specifically, six components were found in the EBG re-

sponse during early and late time points which together dissociate PDs from controls with a 

90% sensitivity and a 100% specificity. Furthermore, these components were linked to med-

ication, disease duration and severity, as well as clinical odor identification performance. 

Overall, these findings support the notion that EBG has a diagnostic value and can be further 

developed to serve as an early biomarker for PD.  

In the last study, Study V, the prevalence of COVID-19 was determined using odor intensity 

ratings as an indication of olfactory dysfunction. Using a large sample data (n = 2440) from 

a Swedish population, odor intensity ratings of common household items over time were 

found to be closely associated with prevalence prediction of COVID-19 in the Stockholm 

region over the same time-period (r = -.83). Impairment in odor intensity rating was further 

correlated with the number of reported COVID-19 symptoms. Relatedly, individuals who 

progressed from having no symptoms to having at least one symptom had a marked decline 

in their odor intensity ratings. The results from this study, given the relatively large sample 

size, provided a concrete basis for the future studies to further assess the potential association 

between the deficits in the OB function and olfactory dysfunction in COVID-19. 

In conclusion, our proposed method for non-invasive measurement of the OB function was 

shown to provide a reliable recording with a potential as a diagnostic tool for PD. Combining 

EBG and EEG allowed for reconstruction of the OB signal at the source level, where specific 

oscillations were found to be critical for odor valence processing and rapid avoidance re-

sponse. Moreover, oscillations in different frequency bands were found to be critical for the 

OB reciprocal communications and transfer of odor identity information to higher order ol-

factory subsystems. Finally, COVID-19 was found to be associated with a decline in 



 

 

olfactory acuity which might originate from damage to the patient’s OB. In conclusion, the 

results from the studies within this thesis provide a new perspective on the functional role of 

oscillations in the human OB.    
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1 INTRODUCTION 

It is ironic that one of most well-studied mammalian brain areas to a large degree shapes the 

sense which we know least about in humans. The olfactory bulb  (OB)—a well-defined brain 

area that is the first central processing stage of the olfactory system has interested anatomist 

for more than 145 years (1,2). The prominent anatomist Pierre Paul Broca thought little of this 

area, believing that its small size was a prerequisite for free-will in humans  (2,3). Today we 

know that the OB fulfills a role comparable to both V1 and the thalamus in the visual system, 

to name a few of its functions (4,5). This information is based on more than 79 years (6) of 

extensive electrophysiological research on mammalian animal models that have been used as 

human proxies. Yet, and mainly due to lack of non-invasive brain imaging techniques for the 

human OB, we still know next to nothing about its neuronal and behavior functions in humans.  

A large portion of this PhD project has been dedicated to solving this problem by developing 

a non-invasive method for OB-measurement. I have subsequently used this method to answer 

fundamental questions about the human OB in health and disease. In the first part of the thesis, 

I give a brief review of human olfactory function in health and disease. Next, I will state the 

specific research aims, the methods, my results, discuss the findings, and finally the conclu-

sions I have reached.   

2 LITERATURE REVIEW     

2.1 HUMAN OLFACTION  

To process odors, vertebrates, including humans, bring the odorant molecules into their body 

via their nostrils or mouth and transmit this information to the brain. This direct link enables 

humans, as well as other vertebrates, to rapidly identify the smell and respond appropriately 

(7). 

Humans live in the world of smell as much as they live in a world of sight and sound. How-

ever, during the 19th century, humans were considered mostly a visual creature and human 

olfaction was deemed as an extremely rudimentary sense with a negligible role in our survival 

(8). Compelling evidences now exist that olfaction is critical to our well-being and survival 

(2). In fact, humans have a relatively high sensitivity towards odors compared to other ani-

mals (9), often more sensitive to certain monomolecular compounds than rats or other pri-

mates (10). The human olfactory system is adequately sensitive to distinguish the small dif-

ferences between odor molecules at the level of a single atom of carbon. For example, hep-

tanol is described as violet, sweet, and woody whereas hexanol, with only one extra carbon 

atom, is described as sweet, orange, and rose-like (7). Finally, humans can distinguish large 

numbers of smells (8), although there is no consensus on the exact number, ranging from ten 

thousand to a trillion odorants (11). The discrepancy in the estimation is mainly due to the 

differences in the starting assumptions—which can be many—that are needed to determine 

the number of discriminable odors for humans (12).  
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2.2 ODOR MOLECULE  

Typically, odor molecules are volatiles, or semi-volatiles, with low molecular weight found in 

nature whose source can be either environmental or biological (13). Contrary to visual and 

auditory stimuli that can be defined by the wavelength and intensity, the basic odor dimension 

is yet to be determined. The best scientific candidate for categorizing odors is their structure 

(7,14,15). Odorants include a wide range of substance classes including esters, carbonyls, and 

alcohols with diverse structures. Indeed, the structure of an odorant molecule is critical for how 

the odor will smell. For example, the smell of rot or decay can be connected to the presence of 

sulfurs in the odor. In contrast a sweet and fruity smell can often be attributed to esters. Even 

the slightest change in the molecular structure can induce a totally different smell, as can be 

seen between certain enantiomers of the same molecule (9). A recent study indicated that with 

as few as 21 physicochemical features of odorants, the perceptual similarity of odors can be 

predicted with high certainty and used to create olfactory metamers, pairs of non-overlapping 

molecular composition that evoke similar olfactory percept (15).      

Odor molecule structure is not the only factor that changes our percept of odor; concentration 

of the odor is also important (7). For example, in odor mixtures, the intensity of each compo-

nent plays a key role for the final holistic perception of the odor object. Accordingly, factoring 

in the influence of molecular weights for the intensity of each component significantly im-

proves the prediction of odor perception based only on the odors’ physiochemical features (15). 

Also, similar to visual objects and sounds that can be identified independent of lighting/angle 

of view and volume/pitch, humans can identify odorant identities mostly independent of the 

general concentration (16,17).  

2.3 THE OLFACTORY SYSTEM: FROM RECEPTORS TO THE CORTEX 

Olfaction is the oldest sense in the animal kingdom, evolved through billions of years, ini-

tially in the form of chemotaxis, to enable organisms to discriminate and recognize a large 

number of low mass molecules in their environment. Detection of these molecules, mostly 

related to the organic chemical signals were crucial for survival (18,19). Olfaction is prelim-

inary used by animals to localize food, for example in the form of prey tracking, or to avoid 

danger, such as predators or toxic food. In humans, perhaps due to modernized lifestyle, the 

role of olfaction is most evident when it is in combination with taste, where it forms the 

holistic experience called flavor (20).  

Nevertheless, the olfactory system has striking homogeneous morphology across mammal 

species (21). More than a million olfactory sensory neurons (OSN) are placed in the nasal 

cavity and form what is called the olfactory mucosa. To encode a repertoire of OSNs in the 

epithelium, more than a thousand genes are involved which enable humans to perceive po-

tentially seemingly unlimited number of odors (9). The OSNs are bipolar neurons whose, at 

one end, appending olfactory receptors on the cilia, a short hairlike outgrowth from the OSN 

cell body, are sensitive to chemicals. At the other end, there are unmyelinated axons that 

bundle together and cross the cribriform plate, forming the olfactory nerve (cranial nerve I). 
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The odor receptors transmit signals to higher brain regions (9,18,22). OSN can regenerate 

and proliferate unlike the neurons in other sensory systems (23). They act as primary neurons 

in the olfactory system and each responds to a variety of odorants (24). Conversely, each 

odorant can bind to multiple receptors creating an individual and specific activation pattern 

for a large body of odors (18,22).  

In mammals, inspired odorous air is guided through nostrils towards the nasal cavity where 

the airborne odorants molecules are bond to olfactory receptors and, by extension, regulate 

our behavior (9,25). For example, olfaction constantly helps us make decisions in our daily 

life and modifies our interactions with objects in our surroundings (13,26). While, at the first 

glance it appears that vision and audition are the dominating senses for humans, losing our 

sense of smell will have detrimental impact on our everyday life. Patients with anosmia en-

counter life threatening obstacles in their everyday life due to their sensory loss (e.g., not 

noticing the smell of a fire in the kitchen). Moreover, several occupations, like chefs and 

bakers, are largely dependent on their sense of smell (27). Furthermore, individuals with an-

osmia are also in a higher risk of food poisoning as they are unable to detect the warning 

smell of spoiled food (27). The inability of perceiving smell is also a possible safety hazard 

because, for example, smoke and natural gas in the environment remain undetected (28). 

Anosmia can also result in appetite and weight loss; possibly due to the lack of enjoyment of 

the eating and drinking (29). Thus, olfaction has an important role to play in everyday life.   

Compared to other sensory modalities, the olfactory system is spread over a relatively large 

section of the head, starting from olfactory sensory neurons in the nasal cavity to deep laying 

regions in the brain (30). Moreover, olfaction is different from other sensory modalities in 

several fundamental aspects. First, the primary olfactory cortex, in contrast to the topological 

organization of sensory cortices (e.g., retinotopic maps in the visual cortex), does not have 

any known spatial or frequency topographic organization outside the OB (31). Second, the 

olfactory system, in contrast to all other sensory modalities, lacks a mandatory thalamic rely, 

with odor information traveling to the neocortex independent of trans-thalamic projections 

(30–32). Finally, and contrary to other sensory modalities, the information received by the 

olfactory sense projects mostly ipsilateral in the brain throughout the first processing stages, 

although the trigeminal system, which interacts with olfactory perception, spreads to the con-

tralateral side. Hence, asymmetry in hemispherical activation depends heavily on the equity 

between the odor and trigeminal properties of the odorant perceived in the nostril (19). 

2.3.1 Olfactory bulb: From neurons to electrophysiology  

Beyond the OSNs sits the very first central olfactory structure, known as the olfactory bulb 

(OB). The relative size of the human OB to total brain volume is small compared to other 

animals. For example, the size OB in  mouse is 2% of its brain volume (33) whereas for human, 

this is smaller by factor of hundreds to 0.01% of the brain volume (21), Figure 2-1. Accord-

ingly, due to this large difference of relative size, it has for a long time been believed, although 

wrongly, that humans have a poor sense of smell compared to other animals. In spite of the 
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large variation in relative size of the OB across spices, the absolute number of the neurons in 

OB is always in a range of 10 million neurons with small variation (2).  

 

Figure 2-1. Anatomy of olfactory bulb for human and mouse. The relative size of olfactory bulb in humans is much smaller 

than in mouse as well as other animals.  

The OB is situated just above the nasal cavity and has both afferent as well as efferent con-

nections with cortex, making it a pivotal hub for the olfactory system (26). Axons of OSN 

project directly to the secondary neurons of olfactory system laying in OB with fairly specific 

response to odor classes where OSN axons of same subtypes gather in neuropil encapsulate 

structures–mirrored in both olfactory bulbs–called glomeruli (34), Figure 2-2. The glomeru-

lar layer is surrounded by juxtaglomerular cells that include three distinct morphologically 

cell types: periglomerular cells, external tufted cells, and superficial short-axon cells. Criti-

cally, two types of projection neurons–the mitral cells (MC) and the tufted cells (TC) that are 

interconnected to one another by other neurons in OB (24)–send their axons via olfactory 

tract to the olfactory cortex (32,35–37), Figure 2-2. The OB projections bypass the thalamus 

and are directly or indirectly received by nuclei in limbic forebrain region (26).   

 

Figure 2-2. Olfactory bulb is an elongated and cylindrical neural structure, located in the inferior part of the brain. The re-

ceptors of olfactory sensor neurons, situated in the epithelium, bond with odor molecules and produce action potentials. The 
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same type of olfactory sensor neurons synapse with tufted and mitral cells via glomeruli in the glomerular layer within the 

olfactory bulb. Further upstream, the mitral and tufted cells, enervate with primary olfactory cortex.   

The odor information converts to pattern of spikes from the M/TCs which later is interpreted 

by higher olfactory regions. Numerous studies have shown that specific combinations of glo-

meruli are activated in response to a specific odor. This combination of activated glomeruli 

generates a spatial map of the specific odor reflected in OB that is believed to incorporate 

odor features. Moreover, animal studies suggested that this spatial map varies as function of 

time, hence the temporal aspects of these maps contain important olfactory information 

(32,38,39). 

A growing body of evidence in research using non-human animal models suggests close in-

volvement of the OB in the processing of a large list of olfactory tasks. In fact, OB has been 

suggested to have a functional role within olfactory system akin to both primary visual cortex 

(V1) (5) and the thalamus in the visual system (4). For example, odor discrimination has been 

shown to correlate with the extent of activation pattern separation of M/TCs (40). In addition, 

local field potential recorded from the OB (i.e. changes in power in gamma and beta) in free 

moving mice has been used as a measurement of odor recognition (41). However, the func-

tional role of OB extends further, including odor segmentation, odor pattern recognition, and 

many other odor tasks (42). 

2.3.1.1 Functional role of the olfactory bulbs in odor perception  

The mammalian OB is a layered structure that in a spatially meaningful manner aggregates the 

action potentials elicited in OSNs (43). Different layers of diverse neurons in the OB serve to 

adapt signals for further processing in higher order olfactory cortex. Among these layers, the 

glomerular layer has been known as the fundamental unit of the OB and it is among the brain 

structures with the highest synaptic density (44). The input from the homogeneous population 

of OSNs is bundled within glomerular and transmitted to the columnar output neurons of the 

OB (i.e., MCs/TCs). Moreover, each glomerulus responds uniquely to the odorant inputs (43). 

The OB in rodents is internally symmetrical; hence, the OSNs project into two mirror segments 

per bulb (45). Therefore, the total number of the glomeruli in OB is around twice the number 

of OSN types in the epithelium. However, the spatial organization of human OB has a muddled 

and less symmetrical arrangement compared with that of in rodents (43,46). For example, glo-

meruli in the human OB can sometimes be found in deeper spots and layers beyond the habitual 

glomerular layer. Moreover, the human glomeruli are more heterogeneous and can have dif-

ferent shapes and sizes. The total number of glomeruli in humans does not seem to follow the 

two-fold rule observed in rodents but it rather corresponds to a ratio of 2-3 glomeruli per OSN 

type. Odor processing across species at the molecular and synaptic levels resembles one an-

other but it is still not clear how glomeruli in human OB spatiotemporally encode the OSNs’ 

inputs (43,46).  

Each OSN excites and inhibits MC through the glomerulus at the same time (47). Theoretical 

models, such as non-topographical contrast enhancement, suggest that these parallel excitatory 

and inhibitory routes provide an advantage by modulating the receptive field of the MCs and 
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maximizing segregation of similar olfactory inputs through contrast enhancement (48). Hence, 

MCs are only activated when the OSNs with the highest reactivity to a specific odorant are 

stimulated, whereas the activity of the MCs connected to OSNs with a lesser affinity to the 

odor appears to decay by the net inhibition (47). Of note, the aforementioned contrast enhance-

ment model, contrary to other proposed models of olfaction, is not dependent on a built-in 

knowledge of the reactivity level of the glomeruli in response to odors or the physical location 

of glomeruli within the olfactory bulb (47).   

Moreover, the global feed-forward inhibition in the glomerular layer within the OB contributes 

to the intensity normalization of odors which is imperative to dissociate odor qualities, inde-

pendent of the changes in the concentration of the input. The network of interconnected glo-

meruli is believed to follow a “small-world” connectivity pattern. Small-world networks are 

placed somewhere between regular and random networks. Hence, they tend to cluster as the 

regular networks but also have shorth path lengths, as found in the random networks (49). The 

small-word connectivity pattern of the glomerular layer allows for a global estimate of excita-

tion across the OB, given a particular input, which in turn inhibits the MCs and normalizes the 

activity. Therefore, the OB output reflects relative rather than absolute activity (47). In addition 

to the spatial distribution of the OB response to the odors, the temporal dynamics of the re-

sponse also inform the odor coding. These temporal dynamics at the population level emerge 

as oscillations that are often measured using either invasive (e.g., local field potentials) or non-

invasive (e.g., EEG) electrophysiological methods. 

However, OB’s processing is not limited to the odors alone and its functional role extends to 

respiration as well. Importantly, even when there is no odor, the mammalian olfactory sensory 

neurons detect mechanical pressure caused by airflow in the nostrils (50) and send this infor-

mation to the OB, which in turn generates oscillations that prepare the olfactory system for 

incoming odors (51,52). Ablation of the OB blocks respiratory-induced oscillations in the ro-

dent brain (53). Moreover, nasal versus oral respiration in humans, where in the later respira-

tory method OB is bypassed, has implication in odor memory consolidation (54), and shapes 

oscillations within the limbic network and as well as episodic visual and fear memory (55). 

That said, the OB’s functional role in processing of respiratory input is beyond the scope of 

this thesis.       

2.3.1.2 OB electrophysiological response to odors 

In rodents, the incoming signal from odorants to the OB induces gamma oscillations that 

mostly reflect intra-bulb processes (56). Nonetheless, other frequencies have been observed 

in OB, including beta and theta, each with a specific function (56). Beta oscillations are be-

lieved to be involved in the context of odor associations (57). Relatedly, only gamma, but not 

beta, oscillations are maintained when the centrifugal input to the OB is blocked (58,59). 

Oscillations in the gamma and beta bands jointly assist the exchange of odor information 

between different structures of the olfactory system, such as OB and piriform cortex (PC), 

the immediate structure after the OB, upstream of olfactory processing. Accordingly, different 

gamma and beta band can drive connection in a certain direction, but not exclusively, and are 
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dependent on the odor task. For example, beta oscillations are involved in the bottom-up con-

nection but the directionality of the beta band shifts during odor sampling (60). Finally, theta 

rhythms in OB, which adopt their name due to their overlap in frequency with hippocampal 

theta oscillations, are stimulus driven and mostly relate to respiration (51,61). For example, 

intracranial recordings from humans suggest that the theta oscillations in the PC are synchro-

nized with respiration (55). However, the theta-band activity is not exclusive to respiration but 

also involved in odor processing (62). Contrary to the PC, little is known about oscillations in 

the human OB due to the difficulties of non-invasive recording from this brain structure. With 

that said, in late 1960s, an electrophysiological study of OB function in humans - limited to 

just one intracranial electrode implanted in 11 individuals - showed that different combina-

tion of frequency components is needed to code odor quality. Hughes and colleagues (1970) 

found gamma oscillations in the OB in response to different categories of odors. This oscil-

lation can be seen as one of the most striking sensory induced rhythms in the brain that had 

been originally defined by Adrian (6,63) and studied in non-human species. Later, among the 

earliest electrophysiological studies of the human olfactory system, Sem-Jacobsen and col-

leagues (1953) implanted an electrode at the vicinity of the OB in a patient and observed 

burst of high frequency waves when the patient smelled odors (64). Given that there has pre-

viously not been a non-invasive method to measure the function of human OB, for a long time, 

the seminal works of Sem-Jacobsen et al (1953) and Hughes et al (1969) remained the only 

known publications that directly, as well as indirectly, obtained functional measures from the 

human OB. 

2.3.1.3 Human OB volume 

While little is known about the human OB electrophysiology. More is known about how its 

volume relates to behavior. For example, It has been demonstrated that the volume of the OB 

is correlated with olfactory functions (65). Accordingly, it has been indicated in several past 

researches that the depression score/symptom correlates with the olfactory function (66,67). 

Specifically, decrease in the OB volume was reported in major depression disorder (MDD) 

and the volume of the OB negatively correlates with depression score (68). Critically, it has 

also been demonstrated that OB anatomy–both volumetric and cellular– undergoes dramatic 

changes following Parkinson’s Disease (PD) (see more on the effect of PD on OB function 

and anatomy below).   

2.3.2 Piriform cortex  

PC, the largest and arguably critical structure of mammalian olfactory system, is involved in 

a range of fundamental perceptual and cognitive odor processes, including odor quality dis-

crimination, memory, learning as well as motivation (69,70). Most of OB projections are 

received by the PC. However, OB also projects to other regions, including the anterior olfac-

tory nucleus, the olfactory tubercle, the enthorhinal cortex, the periamygdaloid cortex, and 

several areas within the amygdala (30). 
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The PC encompasses the anatomical junction between the frontal and temporal lobe where the 

choroidal fissure splits it into two segments, one in frontal lobe, known as anterior part, and 

the other in temporal lobe, so-called posterior segment (71). It has been demonstrated that 

the anatomical heterogeneity of PC also mirrors in its function. The functional diversity of 

anterior and posterior PC has been the subject of several past studies (72–74). A brief over-

view of PC function is given in the following section.  

2.3.2.1 Functional role of the piriform cortex in odor perception  

PC is the main source in the olfactory cortex that provides top-down modulation to the OB 

(75), and possibly rectifies odor maps across the OB. The fine-tuning of sensory input has also 

been observed in other systems. However, the feedback in the olfactory system is different 

compared to the other sensory systems where neocortical feedback is received by thalamic 

nuclei. Accordingly, in the olfactory system, the primary sensory input is directly projected 

from the OB output neurons to the PC, without being relayed by thalamus (43).   

In the bottom-up pathway, PC acts as a divergent-convergent layer which allows the OB’s 

output neurons to enervate to a large number of neurons within PC. Interestingly, propagation 

of information to the PC does not seem to follow any topographic principle (76). Hence, there 

is no specific spatial pattern induced by odors in PC. To give an instance, the probability of 

activation of two adjacent neurons within PC for two similar odors is similar to two different 

ones. Consequently, for a given odor, scatter neurons across the PC process the odor features 

that are outlined by the OB and subsequently initialize the formation of odor objects.   

Following the notion that PC is anatomically and functionally heterogeneous, it is worth 

mentioning that the OB projects to both anterior and posterior parts of the PC (46). The an-

terior portion is thought to code the molecular structure of an odorant as well as the odor 

valence (74), an odor dimension closely related to molecular structure (14), while the poste-

rior PC is thought to code the quality of the odorant (77). Moreover, it has been demonstrated 

that the attentional modulation appears in the anterior but not the posterior PC (72), and this 

modulation may be due to the centrifugal connections between PC to the OB. A predictive 

odor-specific pattern forms in the posterior PC that might relate to behavioral performance 

(73).     

A large number of functional magnetic resonance imaging studies using blood-oxygen-level-

dependency (BOLD) to non-invasively assess the function of PC, particularly anterior and 

posteriors segments, as well as PC’s functional connectivity, have showed that PC is con-

nected to multiple areas in the brain (78). However, acquiring PC’s BOLD activity is not 

always a trivial task considering the signal loss due to susceptibility artifacts at ventro-tem-

poral areas adjacent to PC (79). Moreover, another confound, specifically in olfactory re-

search and regardless of the modality of recording, is the early occurrence of habituation to 

the odor stimuli (80). In light of this, it has been shown that short odor presentation favors 

signal amplitude in PC compared to longer one (71). Despite these confounds, PC has been 

cited as the most consistently active region in response to odors in neuroimaging studies (30).      
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In addition to functional magnetic resonance imaging (fMRI), studies of the PC have also 

used intracranial recordings; however, they are far fewer in numbers due to the inherent dif-

ficulties and the ethical concerns of such recordings (55,62,81). Contrary to fMRI, intracra-

nial recordings, and their closely related methods, such as electroencephalography (EEG) 

and magnetoencephalography (MEG), have excellent temporal resolution in the order of mil-

liseconds, which makes them good candidates for studying brain oscillations. For example, 

it has been shown that odor-related oscillations in the PC are particularly evident in slower 

frequencies, namely the theta-band (62). Specifically, the theta amplitude can be used to de-

cipher the odor information content within a few hundred of milliseconds after the odor onset 

(62).    

It should be noted that while this thesis has been focused mostly on the OB and to a minor 

extent on another prominent structure of the olfactory system, that is the PC, the central olfac-

tory system is not limited to these two structures but as mentioned earlier, it stretches out to 

other areas including the anterior olfactory nucleus, the olfactory tubercle, and as well as to 

the secondary olfactory cortex.    

2.4 PROBLEMS ACQUIRING FUNCTIONAL ACTIVITY FROM THE OLFAC-
TORY BULBS 

In humans, the olfactory bulbs are located in the inferior rostral part of the brain where they are 

placed close to hollow air-filled structures known as paranasal sinuses. The sinuses support the 

respiratory system with humidify, warming the inhaled air, and produce mucus (82). However, 

when it comes to neuroimaging techniques, the sinuses play a disruptive part. The juxtaposition 

of tissue and air creates discrete magnetic permeability of the medium. This inhomogeneity 

causes problem, especially in fMRI where the gradient-echo echo-planar imaging (GEEPI) is 

used. GEEPI is based on micro magnetic field changes due the susceptibility effect of the ox-

ygen level of blood. However, it is also sensitive to other type of inhomogeneity and, as men-

tioned before, there is a large non-uniformity of magnetic permeability of the medium close to 

sinuses and that causes dropout in readout signal (83). Therefore, obtaining fMRI from OB is 

inherently difficult with today’s methods. Positron emission tomography (PET), contrary to 

fMRI, is immune towards presence of air in sinuses close to olfactory regions (84); however, 

the method needs a radioactive isotope paired with a biological molecule to make a radiotracer 

and it is delivered to blood stream by means of injection. Compared to 1-2% change in fMRI 

signal, the signal change receives with PET scan is approximately 10% and it is more evident. 

However, there are some significant drawbacks associated with PET imaging. First, costs are 

high because the radio tracer needs to be produced on site due to its short half-life. Second, and 

more relevant to OB imaging, it has a very low temporal resolution compared with other neu-

roimaging methods (85). Therefore, it is not the optimal choice for rapid, short living phenom-

enon, like the ones seen for early stages of odor perception. Third,  PET also requires that a 

radioactive substance is injected into the human body (85). 

The use of neuroimaging tools, such as MEG and EEG, have played a pivotal part of brain 

research during the last decades. These techniques allow researchers to study a wide range of 
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perceptual and cognitive functions in health and disease (i.e., pathophysiologic states) in vivo. 

Whereas fMRI measures the relative slow BOLD response, both MEG and EEG measure direct 

neural activation with high temporal resolution (86,87). Specifically, MEG and EEG each 

measures different aspects of the same ionic current source, with MEG recording the neural 

magnetic activation, while EEG records the neural electrical activation (88–90). The post syn-

aptic potentials of a synchronous activation of population of neurons form electrical and mag-

netic fields that are sensible to EEG and MEG at the scalp level (91). However, these fields get 

attenuated and distorted as they travel through different tissues on their way to the scalp, a 

distortion that is graver for electrical fields (EEG) as compared to magnetic fields (MEG) (90).  

Electrophysiological cortical responses can be divided into evoked and induced responses 

based on the phase of the response in respect to the stimulus. Evoked responses are phase 

locked to a stimulus whereas the induce responses are not (92,93). To date, neither MEG nor 

EEG have not been used to assess OB’s function in humans. Studying olfaction using methods 

with high temporal sensitivity is naturally difficult given that chemicals reach OSN with dif-

ferent speeds based on their molecular weight and volatility as well as the arrival of odorants 

is also dependent on the respiration pattern. For example, small variations in respiration seem 

to change the latency of the signal in the OB or, in other word, the phase of responses from trial 

to trial and confound evoked responses in OB. However, an induced response in OB is less 

affected by potential variations in respiration. Another possible approach to presenting odors 

is to use passive odor presentation where the odorants are blown into the nostrils regardless of 

the respiration cycle. However, this approach has a lower ecological validity. Hence, to capture 

the OB response and to maintain the ecological validity of the experiments throughout this PhD 

project, we focused only on the induced response of the OB.    

As mentioned above, MEG and EEG are two methods with the highest temporal resolution. 

However, MEG is only sensitive to tangential sources whereas EEG can detect both tangential 

and radial sources (94). There is no knowledge of how dipole orients in OB. However, if we 

consider the anatomical orientation of OB and the olfactory tracts there is a high possibility 

that the majority of dipoles form along the radial direction, a direction which MEG cannot 

detect. The other problem with MEG is a poor sensor coverage on frontal regions close to OB 

(95). However, recent cutting-edge research has proposed magnetic field sensors that can op-

erate at room temperature, and thus remove the urgency of having a MEG helmet (96). Without 

a helmet, it would be possible to have sensors close to the OB on the forehead. However, at the 

moment this technique is only at the experimental stage and very expense to conduct.  

This leaves EEG as the potential best technique to image and record signals from the OB. 

Electrical activity on the scalp level can be measured with small size electrodes. Contrary to 

fMRI, this electrical field is not distorted by air cavities and EEG electrodes can easily be 

placed above any desired area. Furthermore, the high temporal resolution in milliseconds 

makes it sensitive to rapid and short-lived signals.  However, to date, there are no known at-

tempts to use EEG/MEG to record from human OB.  
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2.5 APPROACH AVOIDANCE IS A CORE OLFACTORY BEHAVIOR RE-
SPONSE 

Aversion and attraction are behavioral responses critical for the survival of any organism. In 

the olfactory context, what greatly shapes these behavioral responses is odor valence. Accord-

ingly, odors with positive valence, such as food odor, are attractive whereas odors with negative 

valence are aversive and warn of a potential danger. Hence, it is believed that the first principal 

dimension of perceptual space is valence (26). Humans spontaneously use odors valence to 

either discriminate odorants (97) or combine them into groups (98). Interestingly, both studies 

on non-human animals (99) as well as human infants (100) suggest that part of odor valence 

processing is innate. Particularly, newborns express disgust face encountering butyric acid – 

an odor rated unpleasant by adults – compared with pleasant vanillin odor (100). Nevertheless, 

change in hedonic response can occur after mere exposure, more familiar odors are for example 

more likable; however, this association is odor dependent meaning that not all familiar odors 

are rated pleasant (13). More precisely, experimental studies suggest that mere exposure to 

odors shifts the hedonic value of odor to neutral level rather than towards the positive end of 

the valence scale (13,101).  

Beyond mere exposure that can change the hedonic value of an odor, pairing with another 

chemical sense, namely taste, can also change the valence level (13). Odors, together with 

tastes, form a special bond that is known as flavor, a holistic experience that occurs in our 

mouth during food consumption. According to the associative learning theory, repeated expo-

sure of odor-taste is believed to change the hedonic value of an odor. In light of this, several 

past studies found that pairing odors with sucrose shifts the odors towards the positive end of 

the valence scale (102,103). However, in a recent study with a larger sample size, no evidence 

was found for associative learning between odor and tastes, thereby suggesting more research 

in this area is needed to draw conclusive evidence (104).    

Moreover, stimulus evaluation is modulated by the interplay between intensity and valence of 

the sensory input (105). For example negative stimuli (picture of a snake or spider) are typically 

rated as more intense and arousing compared to positive ones (picture of a puppy) (106,107). 

Also, stimulus with a specific negative valence (e.g. high pitch noise) becomes more negative 

as the volume intensifies (louder noise is more unpleasant than the one with lower volume) 

(107). However, the intensity and valence of olfactory stimuli are more independent from one 

another compared to that of vision or audition (107,108). For example, odors can have low and 

high concentration but virtually maintain their valence level. Accordingly, there may be weak 

negative or positive odors as well as strong negative or positive odors. However, it is worth 

noting that the relative independence of intensity and valence might only be valid for a certain 

range in the perceptual space that is not falling into the extreme ends of the scales. In light of 

this, it can be assumed that the intensity and valence of odor stimuli are relatively independent 

which makes odor the best candidate to disentangle arousal, if approximated as the intensity of 

odor, and valence (108).       
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2.5.1 Olfactory nervous system response to odor valence 

There is psychophysiological evidence that odors with different hedonic values are processed 

differently (109). Valence-based change in the processing of odors can be observed at both the 

peripheral and central level. 

On the peripheral level, odor valence ratings have been found to be associated with autonomic 

nervous responses. For example, electrodermal activity, or as it is better known as, skin con-

ductance response, is associated with arousal index of odors (110). Arousal and valence of 

odors have an overall U-shape relationship (111). Consequently, the odor arousal can be inter-

preted as magnitude of odor valence, regardless odor being positive or negative (110), empha-

sizing that odors at both ends of the valence scale have higher processing value.  

On the central level, it has been demonstrated that odors with more negative valence are pro-

cessed with higher speed (112). Specifically, hedonic value of odors is found to modulate the 

amplitude of startle reflex such that unpleasant odors increase, and pleasant odors decrease, the 

amplitude response of the startle reflex (113). There are compelling evidences that pleasant and 

unpleasant odors elicit activity in dissociable neural substrates; a finding that is reported both 

in functional neuroimaging studies (74,114,115) and electrophysiological recordings (116–

118). For example, a past meta-analysis, including fMRI and PET studies, demonstrated that 

the core olfactory valence processing network includes bilateral parahippocampal gyrus/amyg-

dala, the left middle frontal gyrus, the right middle frontal gyrus/lateral orbitofrontal cortex 

(OFC), and other regions (115).  

It is yet unclear if the process of odor valence begins earlier in the chain of process, for example 

in the human OB. However, in rodents, negative odors have been indicated to modulate the 

activity of MCs in OB (119). Moreover, OB has been demonstrated to have a special function 

in processing of stimuli that are innately associated with threats (99). Thus, it could be specu-

lated that the human OB also processes odor valence to some degree.   

2.6 PARKINSON’S DISEASE AND OLFACTORY IMPAIRMENT 

Five percent of the population suffers from total olfactory impairment (anosmia). Total olfac-

tory impairments can be divided into congenital or acquired anosmia. The most common rea-

son for acquired anosmia/hyposmia is age related changes and it affects both sexes; however, 

more men than women are affected in all age groups, even before puberty (120,121). Twenty-

five percent of individuals above 50 years suffer from olfactory dysfunction and it appears to 

have inverse correlation with life expectancy, where people with more severe olfactory impair-

ment have lower life expectancy (120,121). 

Trauma, viral infection, and other nasal causes can be the reasons of acquired anosmia in ad-

dition to smell dysfunction associated with neurological disorders, such as Parkinson Disease 

(PD) or Alzheimer Disease (120).  

More than 90% of PD patients during the early stage of the disease show significant olfactory 

impairment (122,123). A growing body of evidences shows that olfactory dysfunction in PD 
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exists from the earliest stages of the disease regardless of olfactory task (i.e., odor detection, 

identification, discrimination, or odor memory) (123). However, it has been shown that olfac-

tory dysfunction does not correlate with the duration or severity of PD (124). Additionally, 

there is no evidence that the common medication that is used to alleviate motor symptoms of 

PD, namely Levodopa, has any positive effect on olfactory disturbance (125).   

2.6.1 Parkinson’s disease and the olfactory bulb   

The presence of an early olfactory dysfunction in PD patients has prompted researchers to study 

the olfactory system, and specially the OB, in relation to PD. However, the lack of existing 

non-invasive recording methods has hindered researchers to contemplate an inexpensive olfac-

tory test with a direct measurement of the underlying impaired neural function to differentiate 

PD patients from healthy individuals early on in their disease. Especially, a test that is not 

affected by the patient’s general cognitive ability. This is problematic as the OB, and related 

impairment of olfactory functions, might be one of the earliest areas and functions to be nega-

tively affected across a variety of brain disorders, such as multiple sclerosis, Huntington’s dis-

ease, Alzheimer’s disease, and importantly, PD (126). Besides the characteristic motor symp-

toms, PD is associated with non-motor symptoms that occur years earlier. Loss of the sense of 

smell, either partially or completely (hyposmia or anosmia), is one of PD’s non-motor symp-

toms that occurs in 95% of the patients and, critically, precedes the motor symptoms by many 

years (127,128). It has been hypothesized that the cause of such olfactory loss in PD is related 

to the early pathology that occurs in the OB (123). 

Most of past behavioral studies substantiate a lack of association between the duration or clin-

ical severity (quantified by Unified PD rating scale; UPDRS) of the disease and olfactory dis-

turbance (123,129,130). However, studies have found that specific electrophysiological 

measures correlate with PD severity, namely the latency of the late evoked related potential 

(P3), yet nothing has been directly linked to OB. (131). The fact that electrophysiological 

measures from the scalp correlate with severity of PD is a promising finding. Nevertheless, 

these measures do not target the OB and might not be sensitive to the small deterioration in 

olfaction that might be indicative of an early detection of PD. This is important as there is a 

large body of evidence suggesting that the olfactory system is negatively affected in PD. First, 

the accumulation of Lewy bodies and Lewy neurites in dopaminergic pathways, while these 

pathways are associated with the olfactory processing (e.g., amygdala, cingulate gyrus, and 

other regions). Second, the post-mortem studies of PD patients demonstrated an increase of 

dopaminergic neurons in the OB. Moreover, the glomerular volume decreases to the half in 

PD compared to that of a normal brain. Third, the distribution of the cells along the dorsal-

ventral dimension of the OB alters in PD (132). Relatedly, there are higher metal deposits in 

the OB of PD patients’ brain compared to healthy individuals (133). Taken all together, these 

findings support the involvement of the central olfactory system in pathophysiology of PD 

(134,135). 

PD is most often associated with neuron loss, therefore increase in the neural population within 

the OB seems to be counterintuitive because usually impairment is linked to decrease in 
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number of neurons. However, these neurons are inhibitory and overpopulation of them is be-

lieved to be the reason for hyposmia in PD patients. Nevertheless, no association has been 

found between the boost in number of dopaminergic neurons and PD’s medication (e.g. levo-

dopa) which shows that the increment is part of the disease pathology (135).   

PD is connected tightly with α-Synuclein (i.e., a protein in the brain) pathology in the basal 

ganglia structure known as substantia nigra. Same type of pathology has been reported in the 

OB and can differentiate PD patients from healthy individuals with high degree of confidence 

(123,136,137). The microtubule-associated protein, so-called tau, is the other pathology linked 

mostly to Alzheimer Disease but also has been found to colonize in the anterior olfactory nu-

cleus in PD (138). In addition, there is evidence from research in transgenic mice that overex-

pressed human tau in the OB may also lead to olfactory dysfunction (139).  

Several attempts have been made to use odor related electrophysiological measures as an 

objective test of olfactory performance in post-traumatic dysfunctions (140), neurodegener-

ative disorders (123,131,141,142), or to assess recovery of olfactory functions (143,144). In 

all of these studies, latency of odor evoked related potentials is found to correlate with olfac-

tory performance. Moreover, a MEG study showed that odor related change of a connectivity 

measure (i.e., synchronization likelihood) can differentiate PD patients from control. How-

ever, it failed to show any change in power across frequency bands (145). Moreover, in all 

these studies, the source of the underlying signal has probably been secondary cortex regions 

and not the OB. In summary, it is predicted that more than 9 million individuals will be affected 

by PD all over the globe in 2030, yet the cause of this neurodegenerative disease remains un-

clear and there is no direct way to screen for early PD. Thus, enabling a way to measure the 

OB would be a major breakthrough in the neuroimaging and early diagnosis of PD. 

2.7 COVID-19, EMERGING CAUSE OF OLFACTORY IMPAIRMENT 

Upper respiratory infection has been known to be the most common reason for persistence 

olfactory impairment (hyposmia or anosmia) (146). It is well-known that a reduced OB volume 

is common in post-viral olfactory loss (147). Different strains of pathogens can cause upper 

respiratory infection that leads to post-viral anosmia, including the novel coronavirus (SARS-

CoV-2) that appeared in 2019 and created a worldwide pandemic (148). A meta-analysis on 

ten recent studies indicated that 52.73% of COVID-19 patients develop anosmia. Importantly, 

the prevalence of anosmia is significantly more in the mild cases compared with moderate‐to‐

critical forms (149). Hence, anosmia is considered as an early and common symptom of 

COVID-19 (149). Although, 95% of patients regain their olfactory function after 6 months 

(149), given the magnitude of infected individuals around the globe, a considerable increase in 

the number of individuals with anosmia is expected in the coming years. It is too early to con-

clude the cause of the anosmia in COVID-19; however, some evidences are pointing to impair-

ments in the micro-structures of the central nervous system (150,151) as well as peripheral 

causes (151). A recent postmortem study indicated the highest concentration of SARS-CoV-2 

genetic materials in olfactory mucosa in epithelium, that is in the vicinity of neurons in the OB, 

as well as in some cases directly in the OB (152). Given the reported neurological symptoms 
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of COVID-19, especially anosmia, it is probable that SARS-CoV-2 uses the mucosa-neuronal 

interface to enter the brain (152) and causes a potential damage to OB. This is in line with the 

previous finding where it has been demonstrated that SARS-CoV, a closely related virus to the 

novel corona, can invade OB from the nasal cavity in mouse model (153). In view of this find-

ing, OB edema in COVID-19 patients has also been reported in several recent researches (154–

156). The infection per se is capable of damaging neurons in the OB but also the impairment 

can occur due to immune response or combination of both (155). Moreover, there are some 

tentative indications that the OB undergoes atrophy and its volume decreases during a COVID-

19 infection (157,158). As a first step to study the relationship between COVID -19 and the 

sense of smell it is important to establish a relationship between early symptoms of smell loss 

and COVID -19 in the population.  
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3 RESEARCH AIMS 

In this PhD thesis, we aimed to increase our understanding of the function of the human OB, 

the first and one of the most prominent structures of the central olfactory system. The OB has 

been well studied in the rodents. In sharp contrast, studies on the functional processing of the 

human OB are rare which, at the time of writing this thesis, have been limited to one intracranial 

study with small sample size back in the late 60s (159). The main reason that hinders research-

ers to study OB in humans is that there is no non-invasive method to measure functional signals 

from the OB. Moreover, due to ethical concerns, intracranial studies on OB are extremely rare. 

Therefore, in Study I, a non-invasive EEG-based recording method was developed to study 

the function of the human OB. The proposed method was subsequently used in Study II-IV to 

answer the research questions asked in these studies. Moreover, in response to an ongoing pan-

demic where olfactory dysfunction served as a prominent symptom, Study V was conducted 

where the potential link between olfactory dysfunction and COVID-19 was assessed to provide 

a basis for further research on the possible pathology of SARS-CoV-2 on OB.       

3.1 NON-INVASIVE RECORDING FROM THE HUMAN OB 

3.1.1 Study I 

The primary aim of Study I was to develop a valid and reliable method, allowing for recording 

of functional signals from the OB in response to odors at the sensor level. To achieve this aim, 

we only focused on the induced response in the OB rather than the evoked response. Next, we 

used a localizing framework to confirm that the observed activity on the sensor level was in-

deed produced by the OB. We subsequently assessed the test-retest reliability of the measure 

in a separate dataset over three sessions. Moreover, we replicated the most robust finding of 

the OBs function in the animal literature and eventually evaluated a human lesion model.    

3.2 BASIC KNOWLEDGE OF OB FUNCTION IN ODOR PROCESSING  

After we developed a reliable method to measure OB responses to odors, in two separate stud-

ies, we next used this measure to study fundamental functions of OB in the processing of odors: 

3.2.1 Study II 

First, in Study II, we aimed to assess how odor valence is processed in the OB. To this end, 

we used the developed method to extract the OB time-series and assessed the relationship of 

the OB function and odor valence ratings using state-of-the-art methods of second order iso-

morphisms. The subsequent aim was to evaluate whether avoidance response to odors was 

related to OB functional processing. This aim was answered in two steps. First, we established 

the temporal and functional relationship between valence-driven OB activity and motor cortex 

activity. Second, based on the neural data, we assessed the temporal structure of full-body ap-

proach-avoidance movement and how it matched the neural results. We did this using a force 

plate while odors with different valences were presented to participants. Critically, the temporal 
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aspect of negative valence coding in the motor cortex matched the timing of full-body avoid-

ance movement to unpleasant odors.  

3.2.2 Study III 

The aim of Study III was to characterize the functional and effective connectivity between the 

OB and PC, the main recipient of OB projections, across time and frequencies with the help of 

our developed method. This assessment allowed to establish the role of this connectivity in 

odor coding. Accordingly, we showed a bottom and top-down information exchange between 

OB and PC. Importantly, the critical time and frequency intervals for odor information ex-

change between OB and PC were identified using a machine learning method demonstrating 

that there was enough information to decipher odor identity from the OB-PC oscillatory circuit. 

3.3 OLFACTORY MEASURES AS A CLINICAL DIAGNOSTIC TOOL 

Olfactory dysfunction has been cited as a common symptom in several diseases, including neu-

rodegenerative diseases (e.g., PD). One of the possible applications of our developed method 

for the functional assessment of the OB is diagnostic purposes. Olfactory impairment is one of 

the early symptoms of PD which stems from the fact that OB is one of the first sites of insult 

in PD (123,160). 

3.3.1 Study IV 

The aim Study IV was to assess whether the EBG method can be used to differentiate PD 

patients from heathy age-matched control participants. The sensitivity and specificity of the 

EBG-based method were compared against a clinical odor identification test. We demonstrated 

that the measure could differentiate PD patients and moreover that we could establish a rela-

tionship between the EBG measure and individual clinical PD parameters, such as disease du-

ration, severity, and medication.  

3.3.2 Study V 

As mentioned above, odor dysfunction is not exclusively a symptom of neurodegenerative dis-

ease. Notably, soon after the outbreak of a novel respiratory viral infection (SARS-CoV-2) in 

2019, anecdotal evidence emerged suggesting that olfactory dysfunction was a major symptom 

of COVID-19. In the course of time, olfactory dysfunction was established as a salient and 

possibly early symptom of COVID-19 (161,162). Study V of this thesis was dedicated to this 

novel virus and its impact on olfactory performance. At the time of writing this thesis, it was 

not yet conclusively determined how SARS-CoV-2 affects the olfactory system and whether 

the damage to the olfactory system is peripheral or central. The main aim of Study V was to 

assess whether odor intensity estimates could be used as an estimate of COVID-19 prevalence 

in the population. Moreover, this study establishes a model for future work to assess the pa-

thology of olfactory impairment in COVID-19 using at home testing in large populations. 

 



 

 19 

4 MATERIAL AND METHODS 

4.1 PARTICIPANTS 

Three cohorts of participants were studied in this PhD project, including two groups of healthy 

individuals with normal olfactory function, namely normosmics, from two different age distri-

butions, explicitly young and older healthy adults. Moreover, a group of PD patients was the 

third cohort of interest in this PhD project. In addition to the above-mentioned cohorts, one 

individual with isolated congenital anosmia (ICA) was also tested as a control experiment in 

Study I. 

Young healthy individuals were recruited through Karolinska Institutet’s recruitment system 

(kibehavioraltesting.sona-systems.com) and formed the largest cohort in this project. We col-

lected EEG recordings from 69 young healthy individuals through three data collection phases. 

The first phase of young healthy data collection included recordings from 29 individuals 

(age = 27.07 ± 5.30, 18 women) included in the first experiment of Study I and Study III. In 

the second phase, 19 healthy young individuals (age = 28.88 ± 4.52, 7 women) were recorded 

through 3 seemingly identical sessions, of whom data from 18 individuals were used in the 

second experiment of Study I (one individual was removed due to poor scalp electrode signal) 

and the data from all 19 individuals were used in Study II. Multisession recording from all 

individuals enabled us to acquire enough clean and a set of large recursive data points per 

individual, thereby making it suitable for test-retest reliability analysis in Study I and repre-

sentational similarity analysis (RSA) in Study II. In the third phase of the young healthy co-

hort’s data collection, 21 individuals (age = 29.55 ± 5.59, 11 women) were tested and used in 

the third experiment of Study I. 

In the fourth experiment of Study I, a 27-year-old male who was diagnosed with ICA, but 

otherwise healthy, by an ENT physician within the Swedish healthcare system was recruited 

and studied. His inability to identify, discriminate, and detect different odors was confirmed by 

us using clinical olfactory testing. Additionally, T1-weighted and T2-weighted MR images of 

the individuals were used to find morphological indicators that characterize congenital anos-

mia, including lack of bilateral OB and having an average olfactory sulcus depth below 

1.12 mm.  

For the second experiment in Study III, a pilot experiment was initially carried out to pinpoint 

the time interval relevant for the full body approach-avoidance response. The pilot experiment 

entailed recording of full body posture of 21 healthy young individuals (age = 28.71 ± 5.84, 11 

women) in response to odors with positive and negative valence using a force plate to explore 

the different time points post stimulus. Subsequently, in the main experiment, 47 healthy young 

individuals (age = 25.94 ± 4.2, 29 women) were assessed to test the specific and preregistered 

hypothesis generated by the pilot experiment.  

In Study IV, a total of 40 individuals from two cohorts, namely PD patients and healthy older 

adults, were enrolled in the experiment. Two individuals from the healthy control group were 
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unfortunately forced to be excluded due to poor EEG signal quality. Hence, the final sample 

included 20 PD patients (age = 46-75, 4 women) and 18 age matched healthy normosmics (age 

= 41-74, 4 women); so-called Control group. 

Finally, in Study V, data from 2930 unique individuals were collected through a web-based 

platform https://smelltracker.org/. In the analysis, we removed 33 individuals who were below 

18 years old, 374 individuals who did not rate any odors, and 83 individuals who rated all 

odors’ intensities above 95 on a 0-100 scale. Hence, the final sample included 2440 individuals 

(age = 47.4 ±14.11, 1680 women).  

All designated healthy participants included in Studies I-IV declared themselves as generally 

healthy, non-smokers, with no history of head trauma leading to unconsciousness or neural 

disorder, except PD patients. However, not all participants included in Study V were healthy. 

A total of 1668 individuals indicated that they had at least one of the common COVID-19 

symptoms including Fever, Cough, Shortness of breath or difficulty breathing, Tiredness, 

Aches, Runny nose, Sore throat, Loss of the sense of smell, and/or Loss of taste at the time of 

testing. A total of 772 individuals indicated they had no symptoms and identified themselves 

as healthy subjects during the recording sessions. Moreover, all participants in Studies I-IV 

signed informed consent prior to their participation in the experiments and participants in 

Study V agreed to Terms of Use prior to creating their accounts on the website and entering 

their responses. 

4.2 COVID-19 POPULATION PREVELANCE   

The data on the prevalence of COVID-19 from March to April 2020 was obtained from the 

Public Health Agency of Sweden (Folkhälsomyndigheten). The prevalence model of COVID-

19 in the Stockholm population over time that they provided, was estimated based on randomly 

sampled individuals (n = 738) in combination with available data from the health care system 

as well as the estimated contagion factor of the SARS-CoV-2 virus. 

The assumption of the model included 98.7% unreported cases with infectivity rate of 55% 

compared to the reported cases. Model details, raw data, scripts, and figures for Folkhälsomyn-

digheten’s model (version 2) used as a predictor in Study V can be found on an open data 

repository: https://github.com/FohmAnalys/SEIR-model-Stockholm. 

4.3 OLFACTORY TESTING 

Self-assessment of olfactory ability does not accurately correspond with objective olfactory 

measures. Consequently, it is imperative to quantitatively test the functional ability of partici-

pants to rule out the accidental assignment of individuals with anosmia or hyposmia as indi-

viduals with a normal sense of smell. Given the prevalence of olfactory dysfunction in older 

adults (121), an objective olfactory assessment matters even more in cohorts of older adults.  

The most common method for olfactory evaluation is the olfactory identification test using 

alternative force choices. The functional olfactory ability of all the individuals participating in 

http://smelltracker.org/
https://github.com/FohmAnalys/SEIR-model-Stockholm.
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the studies of this thesis was assessed prior to the main experiments using a subset of well-

known olfactory performance tests, the Sniffin’ Sticks (163). Sniffin’ Sticks consist of flat tip 

pens containing odor instead of ink. In the odor identification test, participants are presented 

with a Sniffin’ Stick at the time along with corresponding cue cards with names of four objects 

with familiar odor. Participants were asked to determine which one of the four objects on the 

cue card corresponds with the odor of presented Sniffin’ Stick. A subset of only five odors 

from the 16-item odor identification test were used in Studies I-III. Given the young age-range 

of the tested cohort, and the scarcity of anosmia in this age range, the probability of erroneously 

assigning individuals with anosmia as healthy controls is less than 0.05%. To reduce testing 

time and avoid fatigue during the main EEG recording session, a shorter version of the olfac-

tory test was carried out in Studies I-III. However, in Study IV, to increase the accuracy of 

the olfactory test in the older adult cohort, among whom the olfactory dysfunction is more 

common, a 16-item test was used. 

In Study V, self-odor assessment with household items was conducted during which each par-

ticipant picked a total of five odors from 5 different categories and total of 70 various odors to 

rate. In each category, there was a fixed list of common household odors. The first 2 categories 

contained odors with minimum trigeminal component, whereas the remaining 3 categories had 

items with a mixture of odor and trigeminal perception. Participants were instructed to priori-

tize odors from the top of the list but they could choose the first item that was available to them 

going down the list in order. With no time pressure, participants could smell the odors as many 

times as needed before rating the intensity and pleasantness of each odors on a visual analogue 

scale ranging from very weak/very unpleasant to very strong/very pleasant. Subsequently, rat-

ings were mapped to a numerical scale with the minimum of 0 and the maximum of 100. 

4.4 ODOR STIMULI AND DELIVERY  

Depending on study, different odors were chosen as stimuli. Despite different molecular struc-

tures and naturally miscellaneous valence, stimuli were selected to have three common fea-

tures: 1) iso-intense perception; 2) limited trigeminal sensation; 3) ecological relevance. These 

features are necessary to acquire a clean and impartial recording.       

In Studies I- IV, odors were delivered using a computer-controlled olfactometer with a known 

raise time – the time needed to reach 90% of maximum concentration after the trigger – of 

200ms (164). To minimize the potential undesirable tactile stimulation caused by blowing odor 

stimuli into the nostrils, the odor stimuli with a flow rate of 3 l/min were inserted into an on-

going constant 0.3 l/min air flow. Hence, the total flow rate was 3.3 l/min meaning that flow 

rate for each nostril was 1.65 l/min; this value is much lower than the threshold commonly 

found to cause nasal irritation (164). In Study V, the odors were freshly prepared and manually 

delivered by the participants themselves. 

4.5 DEMOGRAPHIC AND COVID-19 SYMPTOM DATA COLLECTION  

Participants in Study V created an account and logged into the Swedish version of the multi-

lingual website smelltracker.org and provided demographic and COVID-19 related 

https://smelltracker.org/
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information. The recorded data included age, sex (Woman/Man/Other), and whether they had 

been tested for COVID-19 (No, Yes-Pending, Yes-Positive, and Yes-Negative). Next, partici-

pants were asked to report any COVID-19 related symptoms they were experiencing at the 

time of testing. Available symptoms were: “Fever, Cough, Shortness of breath or difficulty 

breathing, Tiredness, Aches, Runny nose, Sore throat, Loss of the sense of smell, Loss of taste, 

and No symptoms”. As mentioned above, each participant had a unique account by which they 

could log in again and repeat the testing on different days. 

4.6  EEG 

The first non-invasive electrical recording, later known as EEG, goes back to 1920s and 1930s, 

when a German psychiatrist, Hans Berger, demonstrated the presence of 10 Hz oscillations, in 

his recordings between frontal and occipital electrodes. This was the first discovered brain 

rhythm, namely the alpha rhythm, which initially encountered skepticism. For example, this 

finding was criticized for being confounded by muscle/cardiac artifacts. Also, some critics 

challenged the rationale of attenuation of rhythmic brain activity when eyes were open. Most 

importantly, it was often believed that the discovered alpha rhythms were too slow to have any 

neural origins (165). The skepticism towards Berger’s finding continued until 1941 when the 

British physiologists, Edgar Adrian and Bryan Matthews, replicated Berger’s observations and 

EEG was broadly accepted as a non-invasive method for measuring neural electrical fields 

(165). 

Neurons at rest maintain a stable membrane potential ranging from -40 to -80mV. This poten-

tial difference between the inside and outside of a neuron is achieved by consuming energy and 

transporting ions. Once the stimulus with a sufficiently large magnitude is applied to the neu-

rons and the axon hillock depolarizes to the firing level, an action potential (AP) occurs. APs 

are pulses with an amplitude of about 100mV that propagate along the axon of a neuron with a 

constant speed and strength. However, the AP duration is very short (about 1-2 ms) compared 

to the duration of post synaptic potential (PSP) that lasts for a 10-50 times longer duration. 

Consequently, the major contributors of EEG potential are the PSPs rather than APs (166). 

PSPs occur as the neurotransmitters bind to the receptors in the synaptic cleft, the permeability 

of the ion channels changes, and consequently, the postsynaptic membrane potential diverges 

from its resting state level. Dependent on the excitatory or inhibitory nature of the neurotrans-

mitter, depolarization/hyperpolarization of membrane develops and this result in PSPs that last 

from 10-100ms with amplitude of 10mV (166).  

To have PSPs form a macro-current or dipole that is detectable on the surface of the scalp, 

neurons need to have a special geometry and alignment in their population. Fortunately, the 

pyramidal neurons are elongated with apical dendrites, which is the desirable geometry to form 

the dipole (Figure 4-1 A). Moreover, in a large part of the brain, these neurons are aligned 

which results in an open field and formation of a macro-current. However, there are regions in 

the brain, such as the hippocampus, that has a curved structure and therefore mostly generates 

a closed field which is hard to measure at distance (Figure 4-1 B) (166).   
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Figure 4-1. A) Pyramidal neurons are consisted of elongated apical dendrite, soma, and axon. B) Neuron alignment results in 

producing open fields and macro-currents that are detectable remotely on the scalp whereas radial arrangement results in a 

close field and hard to measure remotely. C) Piece of cortical fold and the pyramidal neurons are illustrated. Pyramidal neu-

rons produce perpendicular macro-currents that in the converxial areas create a radial whereas in the fissural areas create 

tangential dipoles, respectively.   

The pyramidal neurons in the convexial cortex produce a radial current dipole, while neurons 

in the fissural cortex create a tangential current dipole  (Figure 4-1 C). EEG measurements are 

sensitive to both radial and tangential dipoles, whereas MEG is only sensitive to the tangential 

ones, meaning that MEG mostly measures the activity in the wall of fissures. For example, 

measuring the auditory-evoked responses from the brainstem using EEG is much easier than 

that with MEG (166). Although, this is not generally a principal confounding factor for the 

MEG given that two-thirds of the cerebral cortex is located within the fissures. However, MEG 

has some more drawbacks compared with the EEG, including its high price, not being portable, 

and impossibility of simultaneous recording (or combining it) with fMRI, and incompatibility 

with transcranial magnetic stimulation. More specifically, to this date, MEG scanners have 

poor coverage on the forehead, where the OB is located. This problem seems difficult to solve 

in the common commercial MEG scanners because the sensors are fixed on the MEG helmet. 

However, a new generation of MEG sensors are being developed that work at room tempera-

ture and are moveable (96). This new generation of MEG sensors may solve the poor coverage 

on the forehead, yet this does not mean that the OB can be easily measured, even using the new 

generation MEG. Indeed, it is very probable that the dipoles orient themselves along the olfac-

tory nerve and create a radial macro-current to which MEG is fundamentally insensitive to it; 

although, note that there is still no definitive insight on the orientation of dipoles in the OB. 

However, as mentioned earlier EEG is sensitive to both radial and tangential dipoles and it 

seems to be more proper for measuring the function of OB.          

4.6.1 EEG instrumentation 

4.6.1.1 Electrodes 

EEG electrodes convert the ionic physiological voltage to the electrical signals (167). They 

come with different varieties, including various shapes or materials. Metallic disks, also known 

as passive electrodes, are the most commonly used electrodes which provide a low resistance 
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path between the scalp and the EEG amplifier, once coupled with the conductive gel medium. 

It is worth mentioning that there exist another type of passive electrodes which can work with-

out any gel medium, namely dry electrodes, as opposed to the wet electrodes, at the expense of 

higher electrode-tissue impedance. The impedance of dry electrodes is much larger than that 

of wet electrodes, in the range of several hundreds of kΩ up to a few tens of MΩ. The high 

impedance of dry electrodes increases the vulnerability to the artifacts. Dry electrodes, them-

selves, can be categorized into resistive (contacting) and capacitive (non-contacting) (167).   

The EEG electrodes are usually made from silver (Ag) or silver chloride (AgCl). Although 

other materials like gold and platinum are also sometimes used in the electrodes to acquire high 

quality signals above 0.1 Hz. However, gold/platinum electrodes, in addition to being costly, 

are polarizable and not suitable for recording DC (< 0.1 Hz) signals.         

Each EEG signal is the voltage difference between two given electrodes. Commonly, EEG 

systems record from a large number of electrodes, yet recording from a few or even a pair of 

electrodes forming one single EEG signal (168), is also practically performed (169,170). EEG 

systems with a large number of electrodes are produced in the form of washable caps or meshes 

which makes it possible to put the electrodes placement on the scalp in less than 20 minutes.   

4.6.1.2 EEG amplifiers   

The amplitude of the potentials measured on the human scalp is extremely small, in the range 

of 10 µV to 100 µV (171). This amplitude is too low for the electronic equipment to digitize 

(analogue-to-digital converter (ADC)), filter and store the signals. Consequently, prior to any 

manipulation of the signal an amplification step is required by which the minuscule brain ac-

tivity is intensified to the level that is suitable for the rest of the electronic equipment. The EEG 

signal is normally amplified at two stages, namely preamplification and power amplification 

(166).  

The measured EEG signal is subjected to different nuisance sources including the power line 

interference (which occurs at 50/60 Hz), poor interface at the junction of the electrode and the 

skin, and other undesired sources. Considering these disturbances, the preamplification stage 

is of high importance because it is the first stage handling the signal and to some extent deals 

with the noise. Often, amplification is performed beyond the electrodes, that is, after the signal 

is picked up by the electrodes. However, this preamplification can sometimes be integrated 

with the electrodes which consequently forms the so-called active electrodes (AEs). The am-

plifier integrated in the AEs can either be a simple buffer, an amplifier with a gain, or it may 

even include an ADC (172). 

AEs have some advantages compared with the passive electrodes. Firstly, the proximity of the 

amplification stage to the recording site decreases interferences picked up by the electrodes 

(167,173). Secondly, the AEs are free from the impedance variation of skin-electrode interface 

that is produced by subject movements (174); consequently, AEs are less prone to motion arti-

facts (174). Thirdly, AEs are not dependent on heavy shielding of cables to maintain signal 
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quality. However, AEs require more wiring compared to the conventional passive electrodes, 

which makes them more ponderous to work with (167).  

In all studies assessing neural signals, Studies I-IV, we used an EEG system with AE (Ac-

tiveTwo, BioSemi, Amsterdam, The Netherland) and acquired signals from either 32 or 64 

scalp recordings depending on the experiments. In addition to the scalp electrodes, we placed 

four extra electrodes on the forehead, so-called electrobulbogram (EBG). The EEG/EBG data 

were sampled at 512 Hz. 

4.6.1.3 Electrode placement  

EEG electrodes are usually arranged according to the 10-20 system in which electrodes are 

positioned relative to the designated anatomical landmarks on the head (175). The electrodes 

are labeled with an uppercase letter together with a number, where the letter indicates the scalp 

segment, and the number marks the position of electrode within the segment. Electrodes with 

odd numbers are placed on the left hemisphere and those with even numbers are placed on the 

right hemisphere. Moreover, electrodes which should be placed on the midline (sagittal line) 

between left and right hemispheres are labeled with an uppercase letter followed by a lowercase 

‘z’ (instead of a number). For example, an electrode labeled as ‘F1’ is placed on the left frontal 

segment, an electrode label as ‘F2’ is placed on the right frontal segment, and the one labeled 

as ‘Fz’ refers to the electrode on the sagittal line of frontal lobe.  

However, these conventional placements will not capture electrical potentials form the OB. 

Thus, as a first step, we simulated the lead-field of two hypothetical radial dipoles, operating 

in the gamma band, placed in left and right OB (x: ±6, y: 30, z: -32) in Montreal neurological 

institute (MNI) space. The simulation of the lead-field refers to solving the forward problem, 

thereby estimating the electrical field for the hypothetical OB dipoles. Accordingly, the simu-

lation suggested that most of the OB potentials were concentrated on the forehead  (Figure 4-2 

A). Hence, we extended the standard 10-20 system with four additional active EBG electrodes 

on the forehead. The EBG electrodes were placed bilaterally and slightly above the eyes, fol-

lowing the outline of the individual’s eyebrow (Figure 4-2 B). 

 

Figure 4-2. A) Simulated lead-field of hypothetical radial dipole place in OB, operating in gamma band. B) Four EBG elec-

trodes were placed on the forehead following the outline of eyebrows.  
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4.6.1.4 Electrode offset  

Having a low electrode offset is important for acquiring high-quality EEG data. High offset 

either saturates or significantly reduces the dynamic range of AEs (167). Based on international 

electrotechnical commission standards (176), EEG recording systems should be able to handle 

±300mv electrode offset. In all experiments of this thesis, the offset was kept below ±40mv. 

Accordingly, prior to the recording, all electrode offsets were manually checked and those 

above the threshold were adjusted until all offsets reached below ±40mv.      

4.6.2 Brain rhythms  

The brain produces different rhythms that are associated with perception, memory, and cogni-

tion (177). These rhythms are generally critical to efficiently control timing of the neural firing 

by which the information transformation can be temporally coordinated and consequently link-

ing the single neuronal activity to behavior (177). During the early years of EEG recording 

(1929-1938), all major brain rhythms were discovered and to date, they have been numerously 

assessed in vitro/in vivo, in both EEG and MEG studies (166,178). However, the classical cat-

egorization of brain rhythms was too simplistic. Today, it is understood that a specific brain 

rhythm can have multiple functions depending on the brain region which produces that rhythm 

(179). Correspondingly, each brain region can also produce different rhythms (180,181).     

4.6.2.1 Alpha and mu rhythms  

With the invention of EEG, Berger also discovered that the electrical activity of the brain shows 

a rhythmic behavior, mostly around 10 Hz, the so-called alpha band (8-13 Hz). Later, Lord 

Adrian and his colleague Matthews observed that the brain rhythm that had been described by 

Berger is strongest when the cortex has minimal working load, thereby they proposed the idling 

hypothesis for the first time (182). The rationale behind the idling hypothesis is that during low 

demand periods the brain stays in a ready state that provides a quick path for attainment of full 

capacity when it is needed. Contrary to Berger, who believed the whole cortex produces alpha 

rhythm, Adrian and Matthews showed that mostly the occipital part of the cortex is responsible 

for the alpha-like oscillations while eyes are closed (166). In addition to eye opening, the alpha 

rhythm has been shown to be modulated by painful stimuli, loud noises, and mental effort 

(166,183). However, the alpha rhythm does not seem to be directly involved in the olfactory 

system.  

Mu brain rhythm, sometimes also called Rolandic rhythm due to its proximity to the Rolandic 

fissure, can be considered as an alpha-like variant that appears over the sensory-motor cortex 

(183). The occipital alpha and the mu rhythm together are the two well-known brain rhythms. 

The mu rhythm was first described by Henri Gastaut back in 1952, when he noticed an arced 

shaped wave that its reactivity was related to the executed motor action; hence called it mu for 

‘motor’ (166,184). The main component of the mu rhythm varies from 9 to13 Hz and it is often 

found symmetrically on the left and right sides of the scalp, but independent of each other, 

indicating that they have separate underlying sources (183). Moreover, the arced shape of mu 

rhythm insinuates that this wave, in addition to the main 10 Hz component, should also include 
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higher components around 20 Hz. However, it has been shown that the higher frequency com-

ponents are not the exact harmonics and have different time-courses (185). Moreover, source 

localization of mu sources in MEG data confirms that the source of the 20 Hz component is 

located more anterior than that of 10 Hz; hence, receiving more input from the precentral cortex 

(186). Accordingly, the 20 Hz rebound of mu source has a somatotopic arrangement, while the 

10 Hz source cluster is concentrated to the hand region (187).    

4.6.2.2 Beta rhythm  

In addition to the alpha rhythm, Berger also observed faster oscillations in the range of 14 to 

30 H that are now known as beta rhythm and which can be roughly divided into rhythmic and 

less rhythmic oscillations (166). Although the physiological mechanisms underlying the beta 

rhythm are not fully understood, beta rhythm is found to be critical for multiple diverse func-

tions, including, inhibition of movement, preservation of the status quo, indicating the suffi-

cient level of evidence for decision making and coordinating between different neocortex re-

gions, depending on the peak frequency and their generation site (178).    

Moreover, the beta oscillations are prominently present in the olfactory system, yet had been 

initially glossed over until after performing experiments in awake animals (56). Accordingly, 

olfactory beta oscillations have been linked to the repeated presentation of highly volatile 

odors, learning to associate odor discrimination with rewards, modulation of the OB signals by 

higher order regions, and motor behavior in an olfactory reaching task. Critically, olfactory 

areas have coherent activity in the beta band, although their activity is not limited to only beta 

(56). 

The emergence of beta rhythm is dependent on the integrity of the feedforward/feedback loops 

between the OB and its direct recipients, and any disturbance in the information exchange in 

these loops result in the reduction of beta rhythms. Hence, this implies that the beta activity in 

the OB mirrors events in the deep layers. However, the function of beta oscillation in the ol-

factory system is not clearly understood (56).    

4.6.2.3 Gamma rhythm 

The gamma rhythm covers a large range of frequencies from 30 Hz to 600 Hz. However ultra-

fast oscillations (200-600 Hz) do not reach the scalp and they are not visible on the surface 

recording; either due to the distortion caused by skull or the lack of forming a macro-current in 

the sources (188). Therefore, in MEG/EEG studies, gamma oscillations are commonly assessed 

in the range of 30 Hz to 100/200 Hz, and there is a body of evidences suggesting an increased 

gamma synchronization in various perceptual and cognitive tasks (166).   

Odor-evoked gamma oscillations have earned the title of the most studied oscillatory events in 

the mammalian brain (56). These odor-related oscillations had been defined as early as the 

1940s (6); nevertheless, these oscillations are still the topic of ongoing researches. In contrast 

to most other oscillations, gamma synchronizations exist even during anaesthesia; however, in 
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a cruder form compared to the awakened state during which the gamma synchronizations are 

modulated by the animal’s past experience and behavioral states (189).  

Mammalian and non-mammalian vertebrates’ micro-circuits in the OB resemble one and other, 

suggesting that the underlying mechanism of producing the odor-evoked fast oscillations is 

common among different species (56). Correspondingly, invertebrates with similar micro-cir-

cuit architectures to that of the mammalian OB, produce similar odor-evoked fast oscillations 

(190). The OB in humans, as well as in non-human mammals, produces gamma rhythms in 

response to the odors (56,159). However, as mentioned in Section 2.3.1, due to the dearth of 

non-invasive recordings, the human OB synchronization is understudied and the only related 

research is an intracranial study with a low sample size, from the late 1960s (159).  

The origin of gamma–like oscillation in the OB is the reciprocal dendrodendritic synapses of 

MC/TC and granule cells (56). Relatedly, subthreshold gamma oscillations have been indicated 

to disappear in the intercellular data if the inhibitory input to the MCs is blocked (191). More-

over, theoretical modelling studies provided further evidence regarding the key role of the den-

dritic synapses in the generation of the gamma rhythms (192,193).      

Both studies in honeybees and rodents suggest that gamma oscillation in the OB facilitates fine 

odor discrimination. For example, ablation of honeybee’s antenna lobe, a neuropil in the insects 

nervous system that corresponds to the OB in mammals, removed fast oscillations and conse-

quently rendered the insect unable to discriminate related odors (194). Moreover, both geneti-

cal manipulation and behavioral studies in rodents confirmed the role of gamma oscillations in 

fine odor discrimination.     

4.6.2.4 Theta rhythm  

Theta rhythm was described for the first time in 1936 (195). In the animal literature, theta 

rhythm has been largely linked to the hippocampus with functions in encoding and retrieval of 

spatial information from episodic memory as well as maintenance of working memory 

(196,197). Gamma power is often synchronized with the theta cycle, meaning that for certain 

part of the theta cycle, gamma activity is the strongest. This cross-frequency synchrony, also 

called phase-amplitude coupling (PAC) (please see section 4.6.8) has been suggested to effec-

tively facilitates information transfer in a “packaging” manner (198).    

Theta rhythm in the olfactory system was described in the1950s (199). During the early years 

of its discovery, there were several attempts to determine whether theta rhythm has neuronal 

origin and is not merely driven by the respiratory movements (56). In the light of neural origin 

of theta rhythm, it has been found that 50% of MCs/TCs in the rats, as well as some other 

animals, are phase locked to respiration (56). Odor stimuli is delivered to the OB in a wave like 

fashion in the sense that it appears during inspiration and fades during expiration. Hence, it is 

sensible to imagine synchronization between the olfactory processing and respiration (56).  

At a different level of studies, including computational modelling, both glomerular circuits and 

the olfactory nerve have been suggested as the underlying circuitry for producing the theta 
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rhythm (56). Nevertheless, theta rhythm does not seem to be confined to the sensory input, but 

other centrifugal connections including brainstem and mid-brain respiratory circuits (56,200).  

Although theta rhythms in the OB and hippocampus are closely related in terms of their fre-

quency, the two rhythms seem to be independent as they are not phase–coherent and are inde-

pendent. However, there are circumstances where the OB and hippocampal theta are linked. 

For example, when the contingency of odors is reversed, the phase of OB and hippocampus 

theta rhythms are coherent during the early phase of learning, but the coherence gradually drops 

(201). Additionally, during learning of difficult odor identification tasks, the two theta rhythms 

become coherent. Critically, level of coherence between the two regions linearly correlates 

with learning level (202).        

4.6.3 Origin of signal 

It is not clear how modular systems of the brain integrate their processed information into co-

herent representations in perception, memory, and action (203). Indeed, dynamic neural activ-

ities distributed over the brain give rise to a unified percept in the central nervous system (204); 

however, the underlying mechanism is not yet understood (c.f., the binding problem). For ex-

ample, it is not clear how thousands of neurons, each responding to certain features of a visual 

stimulus, converge to reach a whole representation of the visual object.  

Accumulating evidence suggests that complex information processing in the brain is achieved 

by synchronization of neural populations, and, indeed, accurate timing of neuronal discharges 

is critical for information integration. Multi-electrode recordings in animals show decisive 

proofs of synchronized discharges in the visual cortex with a millisecond precision in response 

to visual stimuli. This synchronization is stimulus-induced and context dependent in the gamma 

band (205).  

EEG provides the opportunity to non-invasively investigate this cortico-cortical synchrony in 

the human brain. However, the signal recorded on the scalp cannot directly be attributed to the 

underlying cortical region. The relationship of the cortical source and the detected signal at the 

sensor-level is known as the forward problem (206). However, in practice, the sensor data is 

known, and the cortical activity is unknown. Therefore, activity of the cortical sources needs 

to be calculated from a set of observations (i.e., recorded EEG scalp channels), through a pro-

cess known as inverse problem. Solving the inverse problem is not as easy as the forward 

problem, as it does not have a unique solution. 

Sensor level potentials do not provide conclusive information about the location of the under-

lying sources. To localize these sources, we have to solve the inverse problem. There are dif-

ferent approaches with different assumptions proposed in the literature to estimate source lo-

cation with a greater precision. The source localization methods can be categorized into two 

major groups, namely overdetermined model and underdetermined models (207)  

Overdetermined models assume that the underlying sources are small number dipoles that can 

be estimated from scalp potentials. On the other hand, an underdetermined model assumes that 
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the exact number of sources cannot be determined a priori, therefore, there are many distributed 

sources in the brain. Often, this is known as a distributed model. In distributed models, every 

point in the brain can potentially be the source of scalp potential. Solution of the inverse prob-

lem is here the unique configuration of the source activity that can explain by the scalp poten-

tials. However, an infinite number of such configurations exist. This high uncertainty urges the 

application of constraints to identify the most likely solution (207). 

One of the approaches to solve the inverse problem for the distributed model is Beamformer 

that originated from radar and sonar signal processing (208). Beamformer has been used in 

analysis of electrophysiological brain imaging (mainly MEG) signals (206). In the Beamformer 

framework, the objective is to minimize the interference of other regions’ activity and can be 

divided into two steps: 1) linear estimation of the sources and 2) normalization of the estimation 

by the noise power (209). 

4.6.4 Pre-processing  

4.6.4.1 Filtering 

Filtering of electrophysiological data is usually performed twice; one time during the recording, 

known as anti-aliasing filter, and second time during the preprocessing to increase signal-to-

noise ratio (SNR). The preprocessing filtering is not mandatory and can be avoided. However 

the anti-aliasing filtering must always be applied to avoid serious distortion in the signal after 

the digitization of the analogue data (166).        

Filters are very useful to remove some of the interferences. For example, it is possible to use a 

notch filter to remove the power line noise (50/60 Hz). However, it should be noted that the 

notch filter introduces discontinuity in the power spectrum of EEG/EBG data and should be 

used only if there is no other alternative. Within this thesis, we often used discrete Fourier 

transform filters (DFT filtering or spectrum interpolation) instead of notch filters. DFT filtering 

has the advantage of removing the occurrence of filter ringing artifacts as well as minimizing 

the potential corruption of frequency bins away from 50/60 Hz. However, this method might 

not be optimal for long trials or continuous data as it neglects the possible variation in the 

amplitude of power line noise (210).        

Another interference that can be easily removed by filters is the slow drift that occurs due to 

sweating or change in the conductivity of gel medium. A high pass filter with cut off frequency 

of ~0.1-0.2 Hz is often appropriate to remove this slow drift. Particularly in the studies within 

this thesis, considering that the ultra-slow oscillation was not of interest, a high cut off fre-

quency of 1 Hz was used to remove the slow drifts.   

4.6.4.2 Artifact detection and rejection 

Different biological and nonbiological nuisance sources can contaminate the EEG/EBG or 

MEG data. The best approach to resolve the artifacts’ interference is to avoid them in the first 

place. Preventing artifacts is always preferred to removing epochs or correcting them in post 
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processing. However, artifacts occur and cannot be totally circumvented, therefore, in practice, 

trials with artifacts are detected and often removed. However, some of the remaining artifacts 

can be corrected/compensated with various methods of which, independent component analy-

sis (ICA) is one of the most popular methods when correcting for artifacts. 

The main strategy in the thesis was to avoid artifacts in the first place. In all EEG/EBG record-

ing sessions, to minimize the number of trials containing artifacts, participants were asked to 

sit as still as possible as well as avoid blinking and swallowing during the stimulus presentation. 

The experiments were designed in a way to have enough long inter trial intervals to provide 

time for participants to relax for several seconds before each trial, helping them control blinking 

and swallowing, but also to avoid habituation to odor stimuli (increased the desired signal). A 

head rest was used to minimize muscle artifacts and an EEG system with AE was used to 

increase SNR and to diminish power line noise through using a driven right leg circuit/closed 

loop system to increase common mode rejection. Moreover, all the cables for mouse and screen 

which presented the experiment’s instruction and scales for rating, were shielded with copper 

foil to minimize potential electrical interference. Finally, participants sat far enough (~80-

100cm) from the screen to further decrease the electrical noise.   

The remaining trials were identified in the preprocessing step and trials with artifacts were 

removed for further analysis. Particularly, two types of artifact including muscle and blink were 

identified using an automatic algorithm. The general pipeline of artifact detection algorithms 

started with band-pass filtering, Hilbert transformation to extract instantons amplitude followed 

by z-transformation, and thresholding. The parameter for filtering and the threshold value is 

dependent on the type of the artifact that is desired to detect. A Butterworths filter was used 

with the 8th order and cut off frequency was set to 110~140 Hz for muscle artifact. For blink 

artifact, a similar type of filter was used but with 4th order and cut off frequency 1~15 Hz. The 

threshold value for detecting muscle artifacts was set to 6 and for the blink artifacts was set to 

a lower value of 4.                 

4.6.5 Time frequency analysis  

Time frequency analysis enables us to calculate the spectral amplitude of EEG signal as a func-

tion of time, so-called time frequency map, aka. spectrogram. However, in this type of analysis 

there is a conundrum; when time resolution increases, the uncertainty in the frequencies also 

increases, thereby the frequency resolution decreases and vice versa. Therefore, there is an 

inherent trade-off between the time and frequency resolution.  

There are different methods to compute the time frequency map/spectrogram of EEG signal, 

including Fourier transform, Hilbert transform, wavelet-based method, as well as a time-do-

main analytic approach, namely empirical mode decomposition (211). Most of these methods 

are mathematically equivalent, but the wavelet approach is currently the most popular method 

for computing spectrograms (166). Wavelets, contrary to the sine and cosine waves in Fourier 

analysis, are relatively localized both in time and frequency (212). There are some conditions 

that a signal has to fulfil to be recognized as a wavelet: (1) the mean amplitude of wavelet is 



 

 32 

zero, (2) the energy of the wavelet has to be finite over its time course, (3) the energy of wavelet 

must decay at least as fast as its frequency. Accordingly, any function which has the above 

mentioned conditions, or in other words fulfils the admissibility condition, can be used as the 

mother wavelet (213). The admissibility condition can be defined mathematically as follows: 

∫
|Ψ(𝜔)|2

|𝜔|
𝑑𝜔 <  +∞ Equation (1) 

Where Ψ(𝜔) is the Fourier transform of 𝜓(𝑡). Hence, to satisfy the inequality in Equation (1), 

the Fourier transform of 𝜓(𝑡) for small 𝜔 must decline to zero, indicating the wavelet must 

have a band-pass-like spectrum. There are several choices for mother wavelet function but in 

EEG analysis, the mother wavelet function with basis of sine and cosine is preferred. However, 

often different tapering methods are used including single [e.g., gaussian (Morlet wavelet), 

Hanning] or multi tapering [e.g., discrete prolate spheroidal sequence (DPSS)] to construct the 

wavelet. The multi tapering method provides better control over the frequency smoothing and 

it is preferred for assessing oscillatory gamma activity (214). 

In Studies I-IV, a multi taper method has been used to increase the sensitivity and control over 

the frequency smoothing. Depending on the time and frequency resolution of the analysis, be-

tween 2 to 7 windows from the DPSS were selected to generate wavelets and subsequently 

estimate auto or cross spectrograms.    

4.6.6 Source reconstruction methods 

An EEG source in the brain can be modeled as a local dipole which can be defined using 6 

parameters, three describe the dipole location in the brain and three others outline the strength 

of the dipole in each coordinate axis. In case of modeling the EEG with a single dipole, param-

eter can be determined by means of nonlinear least-square search where the pattern of EEG is 

compared to the pattern that is produced by an ideal dipole for every point in the brain (166). 

However, often the single dipole model is not adequate to explain the data, therefore, multi-

dipole models or distributed models are used where several dipoles with fixed positions, but 

slow and varying strengths, are considered as the underlying source of EEG data. A general 

solution for such a setup requires solving the inverse problem that is known as ill-posed prob-

lem. Currently, different methods have been introduced in the field to solve the neurophysio-

logical inverse problem. Here, minimum norm estimate (MNE), Beamformer, and exact low-

resolution electromagnetic tomography (eLORETA) are the most used methods for finding a 

solution to the inverse problem. In this thesis, due to the location of the OB, we used volumetric 

methods, namely dynamic imaging of coherent sources (DICS), a type of Beamformer, in 

Study I and eLORETA in Studies II-III for source space analyses.      

Beamformer and its variants (e.g. DICS) are advantageous in modeling of oscillatory behavior 

and assessing evoked related synchronization/desynchronization (215). Hence, in Study I, 

DICS method was used to localize the source of gamma evoked related synchronization. DICS 

is a linear transformation and coherence based method to solve the inverse problem (206). 

Therefore, to apply the DICS on EEG signals, one needs to measure the coherence among EEG 
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electrodes. Coherence is the measure of synchrony of two signals in the different frequencies; 

hence, spectral density for each EEG electrode is estimated. To do so, the signal has to move 

from time domain to frequency domain by a transformation known as Fourier transformation.  

In the late 1960s, Peter Welch pointed out the capability of Fourier transform in power spectral 

estimation and offered an algorithm to approximate power spectral of a signal or in case of two 

signals cross spectral density. His method is known as Welch method and involves fewer com-

putations compared with other methods (216). 

The electrical activity of the cortical sources travels through tissues and reaches the scalp and 

is observed as a time series of vibrations in the electrical field (217). These changes in electrical 

fields can be sensed with enough electrodes on the scalp. To unravel the relationship between 

the channels, different approaches can be used. As mentioned earlier, one possible good can-

didate for finding the association between EEG channels is to examine coherence (i.e. the 

paired-wise cross spectral density of these time series using Welch method) that is defined as 

follows (218): 

𝐶𝑥𝑦 (𝑓) =  
|𝐺𝑥𝑦 (𝑓)|

2

𝐺𝑥𝑥(𝑓)𝐺𝑦𝑦(𝑓)
  Equation. (2) 

Where 𝐶𝑥𝑦 is the coherence between channel 𝑥 and channel 𝑦 as function of frequency bounded 

to [0 1], 1 represents a perfect linear relationship between the pair given the frequency of (f), 

𝐺𝑥𝑦 is the cross spectral density of channel 𝑥 and channel 𝑦, 𝐺𝑥𝑥 is the auto-spectral density of 

channel x and 𝐺𝑦𝑦 is the auto-spectral density of channel y. 𝐺𝑥𝑥 , 𝐺𝑦𝑦 and 𝐺𝑥𝑦 can be estimated 

using the Welch method and they are usually stored in a square matrix with the number of rows 

and columns equal to the number of recorded electrodes (in this case two).  

[
𝐺𝑥𝑥 𝐺𝑥𝑦

𝐺𝑥𝑦 𝐺𝑦𝑦
]  Equation. (3) 

Thus, Diagonal elements of the matrix represent the power spectrum of each electrode whereas 

cross spectral density of all possible combinations can be found in non-diagonal elements.   

Having the coherence values among electrodes enables us to construct the linear transformation 

that maps the scalp potential to cortical activities. This transformation is implemented as the 

weighted sum of recorded signals from different scalp electrodes while it is linearly constrained 

to pass activity from the specified areas of the brain and block it from other regions. This 

method does not require any prior assumption. This linear transformation turns into a con-

strained optimization problem and it can be solved with Lagrange function. By solving the 

associated Lagrange function, solution (A) can be written for every point (r) in the brain given 

a frequency f as follows: 

𝐴(𝑟, 𝑓) = (𝐿𝑇(𝑟)𝐶𝑟(𝑓)−1𝐿(𝑟))
−1

𝐿𝑇(𝑟)𝐶𝑟(𝑓)−1            Equation. (4) 
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L is the matrix contains solution for forward problem at point of r, the superscript (T) shows 

transposed matrix, which is basically the flipped version of the original matrix over its diag-

onal. 𝐶𝑟 is equal to cross spectra density plus a regularization parameter. The regularization 

parameter balances the sensitivity of the algorithm to the noise level and the accuracy of 

localization. This value has to be determined based on the SNR of the recorded signal. 

In order to calculate matrix L in Equation 3 one needs to model the head volume conductor and 

the brain activity. One of the common head volume conductor models that has been used in 

EEG source localization is multi-shell spherical model. Each sphere is assigned to different 

tissues with various conductivity properties. The spherical models are computational efficient; 

however, they lack the anatomical detail of the human head. On the other hand, this shortage 

seems to only affect temporal and occipital regional sources when compared with more realistic 

models such as boundary element model or finite element model. The other dissimilarity be-

tween spherical models and more realistic ones is that the latter relies on numerical solutions 

whereas earlier uses analytical solutions (219).  

The behavior of the electrical field of each source in the brain can be considered as a quasi-

static approximation equal to the volume current density at a columnar level. A volume con-

ductor is needed to link the source's behavior to the potentials measured at sensor level on the 

scalp. The head volume conductor model explains how the current propagates through different 

tissues and reaches the scalp.  

Source power of each point (r) at each frequency in the brain can be derived with a solution 

matrix A (r, f) as follows: 

𝑃(𝑟, 𝑓) = 𝐴(𝑟, 𝑓)𝐶(𝑓) 𝐴∗𝑇(𝑟, 𝑓)                   Equation. (5) 

Where superscript * denotes the conjugate form of the original matrix. Therefore, real parts of 

A and A* are equal while the imaginary parts have different signs but same magnitudes. P (r, f) 

is the matrix, however, one scalar (number) is normally desired which can reflect the quantity 

of power in the certain frequency in that particular point in the brain. This number is usually 

noted in the literature with p and it can be estimated as first singular value of P (r, f) under the 

condition when the first singular value is much bigger than second singular value of the matrix, 

otherwise one can use the summation of diagonal elements of matrix P (i.e. trace of P) and use 

it as estimation of p. Similarly, noise power estimated for each point where cross spectral den-

sity is changed with noise cross spectral density (206). The evoked activation of point r is de-

rived as noise normalized power. Therefore, for every given point in the brain at a certain fre-

quency the cortical activity can be assigned.   

As mentioned earlier, eLORETA is another method to solve the inverse problem and localize 

the EEG sources. eLORETA is currently the most robust method for EEG source localization 

(220). However, when eLORETA was compared to DISC and other methods, in terms of lo-

calization accuracy, there was no clear winner. eLORETA seems to have slightly more focal 

width source compared to DICS, but on the other hand, DICS has more accuracy for single- or 
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two-point dipoles even in low SNR (220). eLORETA can be used both in time and frequency 

domain. In time domain, the covariance across the EEG/EBG electrodes, instead of coherence, 

can be used to estimate the power of sources. 

In Study I, coherence in the gamma band during the time window of 100-250 ms was used in 

the DICS with 10% regularization parameter to reconstruct and localize the underlying source. 

Moreover, the same parameters were used in eLORETA to validate the results found with 

DICS. In Studies II-III the time domain of eLORETA with covariance during the whole stim-

ulus time (1s) was used to reconstruct the time course activity of sources.   

4.6.7 Representational similarity analysis  

In RSA, instead of assessing the conventional first-order isomorphism between the stimulus 

and brain representation, the RSA method assesses how dissimilarity matrices are matched to 

one another, so-called second order isomorphism, within the individual (221). This comparison 

is based on the principle that each stimulus induces an activity pattern and by comparing each 

of these patterns with one another, we obtain a representation dissimilarity matrix that can 

characterize the representation of the stimulus using standardized and normalized values (i.e., 

correlation coefficients). In their seminal work, Kriegeskorte and colleagues (2008) demon-

strate that RSA is not only useful to bridge different level of experimentation, but also a very 

powerful tool for connecting external stimuli to brain representation. For example, linking rat-

ings of valence perception with brain-activity values (221). The RSA method has now been 

used in more than 1,000 publications.  

In Study II, RSA allowed us to directly compare the link between valence perception and 

neural responses in the OB on the individual level by comparing how the 6 odors were repre-

sented in both neural and perceptual spaces: first on the individual level and then assessing 

potential consistencies between individuals using permutation testing. It is here important to 

note, however, that contrary to conventional correlation or linear association (first order mor-

phisms) the absolute values (e.g., absolute gamma/beta power or absolute valence rating) are 

not directly compared to each other but rather the relation between stimuli on both levels are 

compared. This way, the relationship within brain-activity data is compared with the relation-

ship within the behavioral data, regardless of the absolute values of both. This enables assess-

ment of links between parameters beyond mere linear associations.  

4.6.8 Phase-amplitude coupling  

Neural oscillation can be defined by three properties: amplitude, frequency, and phase. Theo-

retically two rhythms derived from neuronal population can be coupled by each pair of oscil-

lation’s characteristic features. However, it is more likely that the coupling occurs between 

parameters that have a similar time scale such as phase-amplitude coupling (PAC) (222). PAC 

is a subclass of cross frequency-coupling phenomena, in which neural oscillations with differ-

ent frequencies are coupled to one another. When the amplitude of fast oscillation is modulated 

by the phase of slower oscillation PAC emerges. PAC has been determined as a neural mech-

anism detectable in most mammals and critical for information processing in a multitude of 
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brain regions (223–228). The physiological assumption that fosters PAC is that the slow oscil-

lations represent the cycle of net excitability of neural ensembles during which the probability 

of neural firing increases and give rise to intermittent fast oscillations (229,230).  

PAC is the most well studied type of cross frequency-coupling (229). Particularly, theta-

gamma PAC, which can occur both intra-/inter- regional (231), has been extensively assessed 

in the literature (222). Several studies have been indicated that PAC has a function role in 

attentional selection (232), signal detection (233), and executive functions (234). Recently, the 

functional relevance of PAC in olfaction has also been demonstrated, whereby PAC shapes the 

early sensory processing in OB. Moreover, it has been shown that the level of PAC fluctuates 

as a function of olfactory learning (235). 

PAC has been quantified using different models of which many were originally applied to in-

vasive recordings (166). A few of the more common methods of quantifying PAC include 

phase locking value (PLV), modulation index (MI), and mean vector length. However, these 

conventional methods have poor time resolution (236). Therefore, in this thesis, and particu-

larly in Study II, we used time-resolved phase-amplitude coupling (t-PAC; (236)), a method 

that also incorporates the temporal dynamic of the signal. Therefore, the higher time resolution 

of t-PAC mitigates the necessity of long epochs for reliable estimation of PAC which is a con-

straining factor given the non-stationary characteristic of electrophysiological recording during 

behavioral task (236).   

It is worth mentioning that most cross frequency-coupling in the literature, including PAC, 

have been observed in invasive recordings obtained in both animals and humans. Hence, it is 

reasonable to perform this type of analysis in the source space rather than sensor space when 

conducted on MEG and EEG data (166). 

4.7 FUNCTIONAL AND EFFECTIVE CONNECTIVITY  

The term connectivity refers to the assessment of the relationship between two brain regions 

without taking into account any assumptions about the underlying biology (237). Different 

metrics can be recruited for quantifying the functional connectivity between a pair of re-

gions/networks, including linear (e.g., temporal correlation, spectral coherence) (238), and non-

linear measures (e.g., phase synchronizations) (239,240). Connectivity measures are often bi-

variate meaning that only two regions/electrodes at a time are considered to estimate the level 

of connection. Although this assumption is not close to how the brain functions, it is currently 

the most prevalent method for assessing the functional organization of the brain’s neural net-

work. Yet, there exist some efforts to advance functional connectivity analysis by considering 

the importance of intermediate regions for information exchange (c.f., 241). 

Connectivity analysis for EEG data is mainly divided into two categories. In the first category, 

known as functional connectivity which dates back to the 80s (238), the mere statistical de-

pendency of two populations is measured either based on the association of their phase or am-

plitude/power. In the second type of connectivity, that is often known as effective connectivity, 

the predictive relationship between two variables is quantified. For example, Granger causality 
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estimates how much of one variable’s variance can be predicted based on the past samples of 

another variable (242).    

In Study III, in a bivariate setup, both functional and effective connectivity between the two 

olfactory regions, namely the OB and PC, were assessed. The level of OB-PC functional con-

nectivity was estimated based on their cross-spectrogram, where each bin reflects the level of 

linear information transformation between OB and PC. Moreover, using the extension of 

Granger causality, namely the spectrally resolved Granger causality (243), the causal associa-

tion between those two regions was estimated in both directions.        

4.8 SUPPORT VECTOR MACHINE  

Support vector machine (SVM) is a prevalent type of supervised machine learning algorithm 

that can either be used to classify, known as SVM classifier, or to predict a value, recognized 

as SVM regression. In this section, we concentrate only on one of the specific types of SVM 

classifier, namely linear SVM classifier that will hereafter be referred to as SVM. SVM, by 

design, finds the decision boundary with the largest margin; hence, often it is also known as 

large margin classifiers.     

The basis of every supervised classifier is to minimize the expected discrepancy between the 

predicted and true labels quantified as a so-called loss function. The loss function 𝐽(𝜃) for 

SVM can be defined as follows: 

𝐽(𝜃) =  
1

𝑁
∑ max(1 − 𝑦(𝑛)(𝜃𝑇𝑥(𝑛) + 𝜃0), 0) + 𝜆|𝜃|2𝑁

𝑛=1   Equation. (6) 

Where the 𝑦(𝑛), represents the label of every input 𝑥(𝑛). 𝜃 denotes the vector parameter and 𝜃0 

is a scalar which together, defines the decision boundary. The 𝜆|𝜃|2 is so-called the penalized 

term and 𝜆 weights between the margin size and whether or not the data lies on the correct side 

of the margin (244).  

In the case of higher dimensional data, the decision boundary forms a hyperplane in the feature 

space. For example, in EEG the features are often defined in time, frequency, and location 

which constitutes a multidimensional feature space for a given condition. To attribute classifi-

cation accuracy to a particular time, frequency, or location to gain an insight into the underlying 

mechanism, a technique known as searchlight is often used in which the classifier is trained 

and tested on the small volume of future space defined by a hypersphere with known radius. 

The radius is selected by the examiner depending on prior assumptions. Next, the whole feature 

space is explored, and the accuracy map is constructed. Occurrences in the accuracy map that 

significantly surpass the chance level indicate existence of a link between the neural mecha-

nism within that specific location, latency, and frequency with behavioral outcome.  

In Study III, a SVM classifier paired with the searchlight method was trained and tested on 

the cross spectrogram, as the quantifying measure of functional connectivity, of the connection 

between the olfactory bulb and the piriform cortex (OB-PC). A circle with a radius of 5 samples 

were considered to define the neighbors for each bin in the cross spectrogram, given the two 
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axes in the cross-spectrogram map (i.e., frequency and time), 121 samples are considered to 

construct the feature space for each bin. Subsequently, the whole cross spectrogram is explored. 

Features were unity normalized and SVM was trained and tested using a one-leave-out scheme. 

Finally, the accuracy map is created as the average of accuracy maps across the folds.      

4.9 STATISTICAL TESTS  

EEG/MEG data has spatiotemporal structure consisting of channels and time points. When 

assessing the effect of interest, several thousand of (channel × time) pairs usually have to be 

compared which, by itself, brings an inherent statistical conundrum, the so-called multiple 

comparison problem (MCP). In EEG/MEG data, due to the large number of statistical tests 

needed, it is not feasible to control for family-wise error rate (245). One solution for this prob-

lem is to use a non-parametric statistic. 

Initially, non-parametric statistics was suggested for assessing the EEG/MEG waveforms for a 

specific channel (246). Later, it has been also used to test the topographical maps of EEG/MEG 

data for a specific time point and finally for the whole spatiotemporal data (247). Particularly, 

non-parametric tests have been successfully used to assess EEG/MEG data in frequency do-

main (248,249). 

Non-parametric test, contrary to parametric test, is very general since the validity of the test is 

not dependent of the probability distribution of the underlying data, nor on the type of statistical 

test. Hence, whether the probability distribution of data is non-normal, or the statistical infer-

ence is t-/F-statistics, has no effect on the validity of the non-parametric test. Accordingly, 

solving the MCP in the non-parametric statistic is straightforward because it allows for any test 

that one considers appropriate. Moreover, non-parametric statistics enables us to incorporate 

our prior knowledge into the test. For example, clustering electrode pairs that are adjacent to 

one another to adjust for potential signal bleeding (245).    

A combination of parametric and non-parametric statistical tests was used to pursue the re-

search questions sought to answer in Studies I-V within this thesis. Particularly for the EBG 

power change in Studies I-IV and t-PAC level in Study II, non-parametric permutation tests 

were used to assess statistical significance. Moreover, to assess the correlation between behav-

ioral and neural data in RSA space, a Monte Carlo permutation test with all possible combina-

tions (720 randomizations) was performed to estimate exact p-values.  

In Study V, data on odor intensity estimates were first averaged across every three days to 

increase the reliability and match the data with the COVID-19 prevalence prediction model. 

Potential missing values of odor intensities were replaced with median of the specific odor 

category and then averaged across odors. The global, unimodal, and bimodal odors intensities 

were assessed by averaging all categories, Categories 1-2 and Categories 3-5, respectively. 

Specifically, for individuals reporting more than one session only the first session was included 

in this analysis. Next, Spearman correlations were used to assess the relationship between odor 

intensity and COVID-19 prediction model as well as odor intensity and number of COVID-19 

symptoms. Eventually, individuals who reported more than one session were identified and the 
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intensity ratings of those who progressed from no symptom to symptom in the following ses-

sion were analyzed using a paired two-tailed Student’s t-test.       

4.10 ETHICAL CONSIDERATION 

First and foremost, the experiments in this thesis were designed in such a way to avoid possible 

harm to the participants. The details of the experiments and the procedure were informed to 

participants on the recruitment day, separated by a couple of days from the day of testing to 

give participants enough time to think whether they are willing to participate or not. On the day 

of testing, participants were also instructed to ask about any unclear issues about the experiment 

and its procedures. 

On the testing day, participants sign an informed consent which had been provided to them in 

advance when recruited. They were again reminded that participation is strictly voluntary and 

that they could choose to abort the experiment at any time, without any adverse consequences. 

All recording techniques and stimuli methods were free of known causes of harm.  

4.10.1 Privacy and confidentiality  

To assure a high level of privacy and confidentiality for the research participants included in 

this thesis, several steps were taken. In terms of participants' privacy, it was ensured that our 

recruitment methods did not violate participants' privacy by not searching for qualified partic-

ipants through existing databases and contacting them without their consent. Recruitment of 

participants for Studies I-III and V was carried out by passive advertisement, including posting 

flyers, announcements on the Karolinska Institute testing recruiting system (https://ki-behav-

ioraltesting.sona-systems.com/) and local newspapers. This method of recruitment assures that 

only those individuals who, by their own free will, sought out to participate in research were 

recruited. Moreover, collecting non-essential sensitive information was avoided. For Study IV, 

patients were invited to experiment upon their regular clinical visit by their attending physician. 

The healthy control participants of this study were recruited by similar means that were men-

tioned above. Data collected include personal demographic information, medical history of 

Parkinson patients and the individual with ICA, as well as electrophysiological recording.  

To assure confidentiality of the collected data, the data was first anonymized and then saved 

on the Karolinska institutet data server to which only authorized researchers have access. The 

code sheets that link each data to the actual individuals exist only in physical form and were 

archived in a locked cabinet which only limited authorized staffs have access to. Moreover, 

individual data which could potentially be linked to an individual were never presented in pub-

lications to ensure the anonymity of participants. Finally, in the informed consent, participants 

were explicitly notified that their data would be kept safe and remain confidential within the 

research group.    

4.10.2 Olfactory testing  

Olfactory testing (either 16-item identification or a shorter version with only five items, de-

pending on the studies) was performed as a screening test in Studies I-IV. Although incidental 

https://ki-behavioraltesting.sona-systems.com/)
https://ki-behavioraltesting.sona-systems.com/)
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finding of anosmia is rare, especially in the younger cohort used in most studies, it is still pos-

sible. If indication of olfactory dysfunction would appear, the researcher explains reasons for 

fluctuation in olfactory ability, such as nasal congestion due to allergies or common cold. Next, 

the researcher would inform the participant that if the problems persist, the individual should 

seek medical attention via their primary care physician. Similarly, in Study V, no explicit in-

formation or medical advice was given to the individuals regarding the COVID-19 diagnosis 

based on their olfactory performance.    

4.10.3 Testing Parkinson patients  

In Study IV, the function of the OB in PD patients was tested using the EBG method. The 

current version of the test is not validated to function either as a clinical indication of PD or 

olfactory dysfunction. Participants were informed prior to entry about the research goals and 

the fact that their participation would not provide any advantages to their own personal well-

being or provide a potential prognosis of their disease progression. Moreover, to avoid the fact 

that potential financial incentives could potentially force participation, no compensation for 

participation was awarded. All patients, knowing this information, volunteered to participate 

in this study.  
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5 RESULTS 

5.1 STUDY I: ODOR INDUCED OB RESPONSE  

In the present study, the objective was to assess whether it is possible to measure OB’s gamma 

synchronizations from electrodes placed on the forehead. As mentioned in the method section 

(section 4.6.1.3), prior to experimentally assessing this possibility, a simulation was carried out 

to assess the possible distribution of surface potentials, given hypothetical radial dipoles oper-

ating in the gamma frequency which are placed in the left and right OB. This simulation sug-

gested that the detectable potential concentrates on the forehead (Figure 4-2 A). Hence, 4 ac-

tive electrodes (EBG) were placed on the forehead (Figure 4-2 B) and the average time-fre-

quency response was assessed for three different odors (Odor), contrasting against clean air 

(Air). A gamma synchronization was found early after odor onset, at around 100ms (Figure 

5-1 A), that did not appear in corresponding Air trials (Figure 5-1 B). 

 

Figure 5-1. EBG time-frequency response. A) Heatmap shows the group level average and areas where Odor produced syn-

chronization compared with Air. An increase in the gamma power was observed shortly (~100ms) after the odor onset. B) 

Similarly, heatmap shows the time-frequency average response for Air on the group level. No synchronization in the gamma 

band around 100ms was observed. The warmer colors show synchronizations, and the cooler colors show desynchronization.  

A non-parametric Monte Carlo permutation test with 1000 randomizations demonstrated that 

significant differences emerged between Odor and Air. Next, the power for significant time/fre-

quency bins was averaged and a post-hoc t-test was carried out on the averaged values across 

Odor and Air to directly determine the direction of effect. A significant effect, t(28) = 3.62, 

p < .01, CI = [0.23, 0.91], was detected and provided further support that Odor, but not Air, 

mediated the demonstrated effect. 

5.1.1 Determining and localizing early odor response 

Subsequently, source localization of the EBG gamma synchronization was performed using 

DICS method where OB was found to be the underlying source. The power in the OB source 

for the time-frequency window corresponding to gamma synchronization, found on the EBG 

sensor, was 8% stronger than the background noise. No other potential source elsewhere in the 

brain showed this clear level of activation (Figure 5-2).  
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Figure 5-2. Source localization. The source of the gamma synchronization around 100ms was localized to the OB. Power in 

the OB was 8% stronger for the Odor compared to Air.     

The source localization was repeated with the eLORETA method to rule out that this finding 

was an artifact due to the choice of source localization method. The localization map of 

eLORETA corresponded with DICS method, albeit with a slightly more dispersed source. 

However, one might expect blurrier localization map of eLORETA compared to DICS for sin-

gle source with low SNR (220). 

5.1.2 Test-retest reliability of OB measure  

The EBG method could detect gamma synchronization that was localized to the OB. However, 

to be a successful measurement method, a high precision and reliability are needed. Hence, the 

test-retest reliability of the OB measure was assessed by comparing the EBG in the same indi-

viduals across repeated testing sessions separated by several days. The reliability of the EBG 

measure was evaluated using both intra-class correlation [ICC(2, k)] and pairwise Pearson cor-

relation. There was high agreement (ri = 0.47) between EBG measurement of sessions deter-

mined by ICC(2, k) and a subsequent F-statistic indicated that this agreement was statistically 

significant, F(2, 26.65) = 3.99, p < .03. Furthermore, the pairwise correlations provided further 

support for high test-retest reliability, as indicated by large values of similarity ranging between 

r = .76 to r = .81. 

Beyond reliability, precision is of importance for any measurement. Although test-retest cor-

relation is widely used to assess reliability, the magnitude of similarity is to some extent de-

pendent on within participants variability. Hence, to assess the precision of the EBG method, 

effect size was assessed across the 3 sessions, rendering a medium effect size (Cohen’s d = 

0.44). Moreover, the standard error of mean was estimated to be as low as (±0.067) relative to 

mean EBG power of 0.75 across three sessions, thereby indicating that the EBG method has a 

high precision. Finally, the dispersion rate, determined by meta-regression across the 3 ses-

sions, was found to be 0.04; a value that is smaller than the experimental degrees of freedom 

(i.e., 2) and demonstrates that the EBG measure has a low dispersion rate.    

5.1.3 Validity of the EBG measure  

The OB was determined to be the origin of the EBG signal. Moreover, the measurement was 

found to be reliable and precise. However, the source localization is merely an approximation 
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of the underlying source given the acquired data per se is unable to validate the EBG measure-

ment. Moreover, direct validation of EBG requires accessing invasive recording directly from 

the human OB, a procedure that due to ethical concerns is not possible to achieve unless there 

is a clear medical need to obtain these signals. Hence, the validation needs to be indirect. Two 

different experiments were performed to indirectly validate the EBG method. In the first ex-

periment, direct replication of one of the most robust findings in the animal literature in relation 

to the OB, namely insensitivity to habituation, was carried out. As the second validation 

method, assessment of EBG signal in a human OB lesion model was performed. 

5.1.3.1 Habituation insensitivity  

In sharp contrast to other areas in the olfactory cortex, such as the PC, the signal from the OB 

demonstrates insensitivity to habituation (250,251). In rodent models, exposure to repeated or 

prolonged odor stimuli rapidly reduces signal from the PC (71,251) whereas no, or only a mi-

nor, habituation effect is seen in the OB. The rapid odor habituation at the cortical sources is 

clearly visible in scalp ERPs when rapid odor presentation is performed. In contrast, the OB 

does not demonstrate a decrease in signal magnitude even after repeated odor exposures. There-

fore, insensitivity of EBG signal to repeated exposure of odors would support the notion that 

the signal originates from the OB.  

In Study I, rapid odor stimuli with long duration were presented to participants to assess po-

tential effects of habituation on the EBG over time. This result was compared to that of scalp 

electrode over parietal cortex (Pz) where the difference (delta) in amplitudes between the N1 

and P2/3 ERP components has been shown to correlate with perceived odor intensity (118). 

After each trial, participants rated the perceived intensity of the odor on an analogue scale. As 

expected, a rapid decline in perceived odor intensity was detected after only a few trials, thereby 

demonstrating that the paradigm successfully induced odor habituation.  

The gamma power of the four EBG electrodes was assessed during the time/frequency window 

that was attributed to the OB. As predicted, no reduction in power as function of trials 

(slope = 0.008, t(437) = 1.58, p > .11, CI = [−0.002, 0.02]) was observed (Figure 5-3 A). More-

over, to increase statistical power and biasing our testing towards finding effects of habituation 

on the OB signal, trials were segmented into two halves, early and late trials (Figure 5-3 A). 

Using a 1000-permutation test, the two halves were contrasted against one another. No change 

in the power was observed. In contrast, the Pz scalp electrode showed significant decline over 

time in peak-to-peak amplitude of N1-P2/P3 component as a function of trials in response to 

repeated odor presentations (t(971) = −3.15, p < .002, CI = [−0.010, −0.002]) (Figure 5-3 B), 

determined by linear mixed effect model. 
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Figure 5-3. The OB is insensitive to habituation. A) The gamma power of the EBG electrode did not change as a function of 

trials. The blue circles and rust-colored squares denote the first and second segments of the data where the closed and open 

makers show the mean and individual data points respectively. The error bar shows the 95% confidence interval and the dashed 

red line shows the slope for the mean power. B) The heatmap shows the magnitude of ERP over the parietal cortex (Pz). The x 

and y axes show time and trial number where the warmer colors show larger and cooler colors show smaller magnitude (left 

panel). The ERPs for selected trials 1, 15, 30, 45 and 60 are shown and the N1 and P2/3 are marked with blue and red filled 

circles. The peak-to-peak magnitude of N1-P2/3 is shown with the vertical black line on the right side (right panel).  

5.1.3.2 Human lesion model 

At this point, we had determined that the EBG method can reliably detect a gamma synchroni-

zation that was localized to OB and possessed characteristics similar to that of non-human an-

imals. To test this even further, a human OB lesion model, an individual born without OB, was 

used to assess whether absence of OBs will render the gamma synchronization found in the 

EBG channel to disappear. The omission of gamma synchronization in the lesion model would 

rule out any residual mediator of gamma synchronization, such as a systematic imbalance in 

attentional load, task-demands, sniff-related motor activity, microsaccades, or other unknown 

sources.  

A 27-year-old individual with isolated congenital anosmia (ICA), born without a sense of smell 

and bilateral absence of OBs but otherwise healthy, was tested. Neither he nor his parents had 

any recollection of him ever being able to smell odors. Moreover, a magnetic resonance imag-

ing with an image sequence sensitive to OB was acquired from him and indicated a complete 

bilateral absence of OB. Moreover, the depth of his olfactory sulcus was a mere 1.22 mm, a 

value more than 3SD smaller than average normosmics. A recent study demonstrated that 
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olfactory sulcus with the depth of less than 8mm is more prevalent in individuals with isolated 

congenital anosmia compared to healthy controls (252).  

No gamma synchronization beyond background noise was detected in this individual's EBG 

measure. Comparing the normalized power with distribution from normosics indicated that the 

gamma power in the time/frequency window attributed to the OB is 2.5SD less than the average 

gamma power of normosimics. All in all, this further indicates that the EBG electrode is sensi-

tive to OB response.   

5.2 STUDY II: ODOR VALENCE RELATES TO EARLY GAMMA AND LATE 
BETA IN THE OB 

In Study I, a non-invasive reliable method for assessing OB was developed. Consequently, in 

Studies II-IV, the EBG method, in combination with scalp EEG, were used to assess basic and 

clinical aspects of OB in health and disease. Specifically, in Experiment 1 of Study II, 4 EBG 

and 64 scalp EEG electrodes, in combination with eLORTEA source reconstruction method, 

were used to reconstruct OB time-series in response to 1s presentation of 6 different odor stim-

uli with different level of valence ranging from very pleasant to very unpleasant. After remov-

ing trials with muscle and blink artifacts, on average 167.52 ± 25.81 trials per individual were 

included in the analysis. There was no significant difference in the number of clean trials across 

odors, F(5,108) = .39, p > .86, demonstrating that after removing trials with artifact, the exper-

imental design still remained balanced.  

Initially, the cross-frequency coupling between OB activity in gamma and beta was assessed 

using t-PAC. The time-frequency window around 250ms after odor onset (∼53-65 Hz) was 

identified where there was significantly higher coupling between gamma and beta compared 

to background noise. All significant testing were performed using Monte Carlo permutation 

test. Subsequently, assessing co-modulogram between beta and detected range of gamma indi-

cated that the coupling occurred in the beta band within 16 to 18 Hz, t = 2.57, p < .009, CI = 

[0.002, 0.012]. 

After identifying the coupled frequency ranges in gamma and beta band within the OB, the 

association between each of these frequency ranges and valence rating was assessed. However, 

the odor perception is to a large extent dependent on the individuals’ judgment, meaning that a 

large inter-subject variation is expected whenever the odors aspects are rated. To resolve this 

large inter-subject variation, representational similarity analysis (RSA) was used to assess the 

relationship between the neural data and behavioral responses. RSA is a multivariate approach 

in which the representational geometry of data is assessed on the individual level (221). More-

over, RSA allows direct comparison despite of difference in scaling and other confounding 

characteristics of measuring methods. Particularly within this experiment, the association be-

tween OB neural activity and valence rating for each time point during 1s of odor presentation 

was assessed. Thereby, the representational dissimilarity matrices (RDMs) for OB neural ac-

tivity and odor valence rating were quantified as Euclidean distances on the individual level. 

Next, RDMs were created for the both neural and behavioral data (253) and the similarity 



 

 46 

between them was measured using Pearson correlation, resulting in time resolved correlation 

values between OB neural activity and odor valence. Subsequently, significance of each time 

point (n = 13) was tested by non-parametric Monte Carlo permutation test. Around 250-350ms, 

a significant association (r = .60, p < .010, CI = [.56, 1]) between OB neural activity and odor 

valence was found in the gamma band (Figure 5-4 A).  

 

Figure 5-4. Odor valence, OB and motor cortex. A) The graph shows the t-value for the correlation time course between the 

gamma power and the odor valence in the RSA space. A significant peak (t > 1.96, that is equal to p < .05) was found around 

200ms. B) Similarly, for the beta band there was a significant peak around 700-800ms. C) The topographical map shows the 

distribution of the mu power over all the scalp electrodes where a larger mu power was found for the unpleasant odors com-

pared with the pleasant odors over the right motor cortex (left panel). This mu synchronization was localized to the right motor 

cortex, where 12% increase in the mu power was found for the unpleasant compared to the pleasant odors (right panel). D) 

The t-map derived from the beta values of the generalized linear model indicated a significant inverse relationship between the 

odor valence and the mu power over the motor cortex for unpleasant odors.  

Similarly, for the frequency range identified by the t-PAC analyses for beta band, the correla-

tion between OB neural activity and valence rating was assessed in RSA space and significance 

was tested using Monte Carlo permutation test. There was a significant, r = .65, p < .014, CI = 

[.59, 1], association between beta activity and valence in a time-interval around ∼800ms after 

odor onset (Figure 5-4 B). 

To this end, two significant peaks were identified in gamma and beta band that had significant 

correlation with valence. Next, the representation of odor valence was assessed within these 

two peaks. Particularly, RDMs were scaled down and each odor was placed in 2D space with 

respect to one another according to the corresponding RDM in that frequency band. Graph 

theory was used to statistically test which frequency band has embedded more odor valence 

information. Initially, the RDMs were transformed to similarity matrices and the modularity 

was estimated based on the Newman algorithm (254). The projected odors in the 2D plane 

were hierarchically clustered from 1 to 6 and the ideal number of clusters was estimated to 3 
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as the elbow of the modularity index (Q) graph. Next, given 3 clusters suggested as the best 

solution, we estimated the modularity index for each of gamma and beta peaks. Values were 

normalized to a corresponding null model from 5000 random re-wirings (255). A larger Q-

value was found for beta compared to gamma peak indicating that odors form more coherent 

pleasant unpleasant clusters for the beta band. A subsequent Monte Carlo permutation test in-

dicated that modularity index for beta was significantly larger than for gamma, Z = 2.95, p < 

.003, CI = [0.009, 0.018]. 

In the modularity analysis, odor valence was assessed as a single continuous dimensional meas-

ure and therefore restricting assessment of whether either one of the contrasting valence di-

mensions (pleasant or unpleasant) contributes more to the OB processing. Previously, it has 

been argued that the odor valence is not a single continuum scale but rather two separate axes, 

one for pleasant and one for unpleasant odors (97). To directly test whether the OB processes 

pleasant and unpleasant odors differently, only the two most pleasant and two most unpleasant 

odors were further assessed with the two neutral odors excluded, all based on the individual’s 

ratings. A higher beta activity was found for unpleasant odors during the early segment of odor 

presentation (around 50 to 200ms, t = 3.01, p < .004, probability CI-range = .004) whereas 

pleasant odors induced a greater beta synchronization during the late segment of odor stimulus 

(around 690 to 780ms, t = 3.49, p < .002, probability CI-range = .003), all determined by 5000 

Monte Carlo permutation tests. 

Subsequently, it was hypothesized that the larger beta synchronization during early time points 

facilitate early avoidance response. Indeed, mu synchronization over the motor cortex during 

the early time points (300-400ms) was larger for unpleasant compared to pleasant odor. Eval-

uating the whole-scalp mu rhythm indicated that power over electrodes C2 (t = 2.17, p < 

.014, probability CI-range = .003), C4 (t = 3.00, p < .003, probability CI-range = .001), CP2 

(t = 2.01, p < .022, probability CI-range = .004), CP4 (t = 3.27, p < .001, probability CI-

range = .001), and CP6 (t = 2.23, p < .012, probability CI-range = .003) was larger for un-

pleasant odor compared to pleasant odor (Figure 5-4 C). Using eLORETA source localization 

algorithm, we determined that this synchronization was localized in cluster around the right 

motor cortex (x: 27, y: -35, z: 60) where the power was 12% stronger for unpleasant compared 

to pleasant odors (Figure 5-4 C). 

Furthermore, a generalized linear model was fitted on the trial level for negative valence odors 

to assess the linear relationship between odor valence and the power of mu synchronization on 

scalp. Subsequent t-test on the group level indicated a linear association between the mu power 

of electrode CP2 (t(17) = -2.20, p < .042, CI = [-1.46, -0.03]), FC4 (t(17) = -2.25, p < .037, CI 

= [-.96 -.03]) and valence for negative odors. Accordingly, the more negative the perceived 

odor valence was, the more mu power was detected over the motor cortex (Figure 5-4 D).  

5.2.1 Unpleasant odor elicits a fast avoidance response  

Larger mu power for unpleasant compared to pleasant odor over the right motor cortex, paired 

with the linear modulation of the mu power magnitude with odor valence for unpleasant odors, 
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suggested that there was a link between the valence processing of unpleasant odor in OB and 

an early avoidance response. Hence, to directly test if odor valence cues approach-avoidance 

responses, the stance of individuals was measured continuously using force-plate and either 

pleasant or unpleasant odors were delivered in random times, unbeknown to the participants. 

The approach-avoidance response was quantified as posterior-anterior momentum (PAM). A 

force plate measures participants whole-body micro-sway in the form of posterior-anterior an-

gular motion which later was normalized to individual’s height and band-pass filtered to pro-

duce PAM. 

In an initial pilot experiment, PAM values in response to pleasant or unpleasant odor presenta-

tion were assessed for t = [250ms, 500ms, 750ms and 1000ms] corresponding to the aforemen-

tioned OB-valence results as gamma oscillations, gamma oscillations plus motor response, beta 

oscillations and beta oscillations plus motor response. Using a linear mixed effect models with 

participants as random intercept and random slope for conditions, the association between 

PAM and odors was assessed where a significant main effect for condition was found only at t 

= 500ms after odor onset, t(61) = 2.13, p < .037, CI = [.01, 0.04], with no other significant 

effects at other time-points. Post-hoc t-test determined that leaning backward in response to 

unpleasant odors was significant, t(61) = 2.06, p < .04, CI = [-0.28, -0.04], whereas no potential 

effect found for forward motion in response to pleasant odors, t(61) = 0.64, p > .74, CI = [-

0.19, 0.39]. 

Consequently, the main experiment with identical design as the pilot experiment, but testing a 

larger sample, was carried out to assess PAM for the time point t = 500ms, as identified in the 

pilot experiment. The sample size was estimated based on the effect size of 0.3 (derived from 

the pilot experiment), required power 0.95, alpha error probability .05, and a correlation among 

measures of 0.4. The result of the pilot experiment was replicated and there was a significant 

difference, t(174) = 3.24, p < .001, CI = [0.06, 0.23], for PAM values between unpleasant and 

pleasant odor at 500ms post odor onset. Furthermore, given that the pilot experiment provides 

prior from an independent dataset, the effect was also assessed within a Bayesian framework 

where, in line with the frequentist analysis, substantial support for the effect of odor valence 

on PAM was found (BF10 = 3.31). Again similar to the pilot experiment, a subsequent t-test 

indicated that the effect was mediated by unpleasant and backward motion, t(174) = 2.47, p < 

.007, CI = [-∞, -0.016], rather than pleasant odors and forward motion t(174) = 1.22, p > .11, 

CI = [-0.04, +∞]. 

It has been demonstrated that respiratory flow is linked to perceived odor valence (256). How-

ever, no relationship was found between the respiration flow and PAM at the time point of 

interest (500ms), rho = - 0.02, p >.75. The lack of association between respiration and PAM 

was also further supported by Bayesian analysis. 



 

 49 

5.3 STUDY III: RECIPROCIAL CONNECTIVITY BETWEEN OB AND PC OPER-
ATES IN DIFFERENT BANDS 

In Study I, the validity of the method for extracting OB signals was examined through multiple 

experiments. Similarly, in Study III, prior to assessing the functional association between OB 

and PC, the quality of the extracted PC activity was probed. The method’s sensitivity for dif-

ferent sources, including the PC, was quantified as the odor SNR and operationalized as the 

mean amplitude of odor trials versus clean air trials. Odor SNR for different sources was com-

puted and sources were sorted by their depth from the cortical surface. The odor SNR was 

found to be clearly above the upper bound of 95% confidence interval at the depth correspond-

ing to the PC (80-100mm) for both the left PC, t(28) = 8.53, p < 3e-9, CI = [0.21 0.34], and the 

right PC, t(28) = 7.44, p < 4e-8, CI = [0.18 0.30].   

To fully characterize the functional connectivity between OB and PC, two separate, yet related 

analyses were performed. The functional and effective connectivity between OB and PC were 

assessed using cross-spectral density and spectrally resolved Granger causality. With help of 

cross-spectral density, information that is linearly exchanged between OB and PC during odor 

presentation can be quantified. Initially, the source time-series of OB and PC were recon-

structed using eLORETA and digitized stereotactic positions of each electrode. The time-series 

were then transformed to the time-frequency domain, implemented by a tapering convolution 

method. Next, auto- and cross-spectral densities were estimated and compared between the 

odor and clean air conditions. As predicted, initial gamma synchronization was found in OB 

which later evolved to beta synchronization. However, assessment of the PC’s auto spectral 

density indicated that synchronization occurred in the lower bands (delta/theta) within the PC. 

The cross-spectral density demonstrated that OB-PC functional connectivity begins around 

100ms after onset in the gamma band, t(28) = 2.131, p < .042, CI = [0.003 0.151], and transfers 

to the beta band around 740-840ms, t(28) = 2.466, p < .020, CI = [0.018 0.194], and later to 

theta/delta band around 670-1000ms, t(28) = 2.620, p < .014, CI = [0.031 0.257] (Figure 5-5 

A). 
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Figure 5-5. The functional and effective connection between the OB and the PC. A) The cross-spectrogram shows the fre-

quency/time points where there is more function relationship between the OB and the PC for the odor compared to the air 

trials. B) There is an effective connection in the gamma and beta bands from the OB to the PC compared to the reverse direc-

tion, from the PC to the OB, during 1s odor processing. C) The effective connection in the delta and theta band was significantly 

larger for the PC to the OB compared with the OB to the PC during odor processing. Significant peaks are denoted with red 

asterisks.   

In addition to functional connectivity, effective connectivity from OB to PC, and vice versa, 

was assessed using spectrally resolved Granger causality (257), a method that allows for char-

acterizing the connectivity between the olfactory nodes in a directed manner and in frequency 

domain. The reconstructed OB and PC time-series were transformed to the frequency domain 

using a multi-tapered fast Fourier algorithm. Effective connectivity between OB and PC was 

subsequently assessed as a function of frequency in both bottom-up and top-down directions, 

using multivariate spectrally resolved Granger causality. Significant peaks in the gamma band 

(~58 Hz), t(28)=2.865, p < .008, CI = [0.148 0.888], and the beta band (~30 Hz), t(28) = 2.953, 

p < .006, CI = [0.208 1.150], were detected during odor processing for the bottom-up connec-

tion from OB to PC (Figure 5-5 B). Conversely, for the top-down connection (i.e., from PC to 

OB), significant peaks were found in lower the delta band, t(28) = 5.074, p < .0001, CI = [1.076 

2.533], and theta band (~6 Hz), t(28)=2.078, p < .047, CI = [0.011 1.605], during odor pro-

cessing (Figure 5-5 C).  
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5.3.1 Odor identity is reflected in OB and PC connection  

The time-frequency representation of OB-PC connection, estimated as the cross-spectral den-

sity, was assessed using SVM to identify clusters in time and frequency where the three odors 

could be classified above chance level (0.33). Detecting a significant cluster would provide 

further support to the notion that the OB-PC connection includes odor-specific information 

whereas lack of significant cluster would indicate that the occurred synchronizations in OB-

PC connection are due to non-specific odor processing. Moreover, classification using SVM 

also indicates when, and in what frequency, the odor information is exchanged between OB 

and PC. To train the SVM, a neighbouring cluster was defined as 5 and 5 samples for time and 

frequency axes. For each bin in the time-frequency map, from the defined neighbouring cluster, 

121 features were extracted, and unity normalized. Next, within a searchlight framework, the 

whole 1s was assessed. A cluster was found around 100ms at 35-45 Hz where odors could be 

classified above chance level with a mean peak accuracy of .42. Subsequently, this peak was 

determined to be statistically significant, t(27) = 3.29, p < .002, using 5000 Monte Carlo per-

mutations test (Figure 5-6 A). However, the above chance performance was not only limited 

to this early cluster but extended to an area 300ms post-odor onset in the 50-70 Hz frequency 

range, another cluster around 30Hz, and oscillating clusters in the theta band over the whole 

1s. 

Finally, to control for the specificity of the significant clusters to OB-PC connection, the same 

analysis was performed between OB and a control region, namely postcentral gyrus (PCG). 

The PCG was picked as a negative control area because PCG is part of the greater olfactory 

system and has been demonstrated to process intranasal trigeminal stimulus, yet has a low 

functional connectivity with PC based on a large online Neurosynth database (www.neuro-

synth.org). No above chance classification accuracy was found around 100ms and in the 35-45 

Hz frequency for OB-PCG connection, suggesting that the odor classification within this time 

window is specific to OB-PC connectivity (Figure 5-6 B). 

 

Figure 5-6. SVM accuracy map. A) The time-frequency accuracy map for OB-PC connectivity. A cluster around 100ms was 

detected with classification accuracy above chance level and mean peak accuracy of .42. B) The time-frequency map for the 

connection between OB and postcentral gyrus (PCG) acted as a negative control area. No above chance accuracy was found 

for this control connection within the time/frequency window of interest shown by the black box. 

file:///C:/Users/jlunds/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/4CFJEL29/www.neurosynth.org
file:///C:/Users/jlunds/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/4CFJEL29/www.neurosynth.org
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5.4 STUDY IV: THE EBG MEASURE DISSOCIATES PD PATEINTS AND RE-
LATES TO PD PARAMETERS AND OLFACTORY ID 

Given the fact that the OB is the first site of insult in PD, an OB measure would be a method 

that could potentially be used as an early biomarker for PD. However, measuring the OB func-

tion in humans is a non-trivial task. In Study I, a non-invasive method (EBG) for measuring 

the function of OB was developed where the test-retest reliability indicated that EBG is a reli-

able measurement. Hence, in Study IV, the EBG method was used to explore the possibility 

of finding a biomarker that dissociates PD patients from age-matched controls. The EBG time-

frequency response to different odors was estimated using a multi-taper convolution method 

and compared between PD patients and Controls (Figure 5-7 A). Subsequently, a non-para-

metric statistical test, namely 1000-permutation Monte Carlo test, was used to isolate the clus-

ters that are significantly different between the two cohorts. Clusters in the gamma band, 

around 460ms after odor onset, t(37) = 3.28, p < .001, the beta band around 620ms, t(37) = 2.7, 

p < .006, and finally in the theta band around 680ms, t(37) = 3.87, p < .001, were found with 

increase in power in Control compare to PD (Figure 5-7 A). Conversely, clusters with decrease 

in power were found in the gamma band around 660ms, t(37) = 3.13, p < .002, as well as 

980ms, t(37) = 2.23, p < .012, and alpha/beta bands around odor onset, t(37) = 3.50, p < .02, 

when Control was compared with PD (Figure 5-7 A). 

 

Figure 5-7. EBG spectrogram dissociates PD from Control. A) the heatmap shows the contrast between Control and PD of 

the EBG spectrogram. Warmer colors show the clusters where Control had larger power whereas the cooler colors show areas 

where PD had larger power (upper panel). T-map shows the significant clusters (p < .05) where spectrogram power was more 

for Control compared with PD (lower left panel). Similarly, t-map shows the significant clusters (p < .05) where spectrogram 

power was more for PD compared with Control (lower right panel). The warmer colors in t-maps show higher t-value. B) Total 

of 6 clusters are identified and named with respect to their time of appearance. Each component is shown with a specific color 

and the corresponding labels for the colors can be found in the color-bar on the right side of the panel. C) The accuracy for 

each step as the Components were adding to the model in a stepwise manner. The peak accuracy is marked with a closed yellow 

circle. D) The cross-table illustrates the number of true/false positives/negatives for each model as well as the level of sensitivity 

and specificity. E) The bar graphs show the beta values of each component in a linear mixed effect model to predict LEDD, 

disease duration, Hoehn and Yahr disease severity and odor ID performance. The significant components are marked with 

asterisks and the error bars denote the standard error of means. LEDD: Levodopa equivalent daily dose.        
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Clusters (p < .05, cluster size >100) were subsequently labeled in order of occurrence as Com-

ponent 1, Component 2, etc. A total of 6 components were found and labeled during 1s post 

odor onset (Figure 5-7 B) of which Component 2, 3, and 4 had higher power but Component 

1, 5, and 6 demonstrated lower power in Control when compared to PD. Next, the generaliza-

bility of the components was assessed using intraclass correlation – ICC(2,k) – where a medium 

agreement ranging [.46 - .78] was found for the EBG components; hence, demonstrating that 

these results are likely reproducible in independent sample with similar individual characteris-

tics.  

Next, through logistic regression, EBG components were used to assign individuals to their 

groups belonging (i.e., PD or Control) and in-sample error, sensitivity, and specificity of each 

component were compared to that of a 16-item odor ID model. None of the EBG components 

outperformed the 16-item odor ID, neither in in-sample error, determined by Akaki information 

criteria (AIC), nor in sensitivity or specificity. We then introduced the components to the lo-

gistic regression in a step-wise manner and the accuracy was computed for each of these steps. 

Maximum accuracy (94%) was found for the model including Component 5, 2, 4, and 6, the 

so-called EBG model (Figure 5-7 C). Moreover, when sensitivity and specificity of the EBG 

model and 16-item odor ID were compared, higher specificity (100%) was found in the EBG 

model as opposed to 94% in the 16-item odor ID, but equal sensitivity (90%) was found (Fig-

ure 5-7 D). Despite the higher specificity in the EBG models, the in-sample error (AIC = 

279.11) was nominally higher than that of the 16-item odor ID model (AIC = 276.27).    

The errors occurring in the 16-item odor ID model were either a Control participant who was 

on the border line of hyposmia (false positive) or PD patients who did not display hyposmia 

(false negatives). On the other hand, the EBG model correctly assigned all of these individuals 

to their corresponding groups. However, two other individuals within the PD group were 

wrongly classified as a Control participant (false negative). Assessing the demographic and PD 

parameters of these two patients did not indicate any commonalities that led to the misclassifi-

cation.  

Finally, the association between the EBG components and PD parameters were assessed by 

linear mixed effects. The relationship between the power level of each component and LEDD, 

disease duration, H&Y disease severity, and odor 16-item ID performance was determined. 

For LEDD, Component 4, t(31) = -3.07, p < .004, CI = [-0.83, -0.17], and Component 6, t(31) 

= 2.43, p < .021, CI = [0.055, 0.63], were found to have significant positive associations. Ad-

ditionally, Component 4, t(31) = -2.52, p < .017, CI = [-1.85, -0.19], Component 5, t(31) = 

2.10, p < .018, CI = [0.018, 1.35], and Component 6, t(31) = 2.34, p < .026, CI = [0.10, 1.54], 

were significantly associated with disease duration. Component 2, t(31) = -2.35, p < .027, CI 

= [-0.60 , -0.039], and Component 6, t(31) = 2.56, p < .015, CI =[ 0.073, 0.64], could signifi-

cantly predict H&Y disease severity. Finally, there was a significant association between the 

power levels of Component 2, t(31) = 2.07, p < .046, CI = [0.005, 0.56], Component 5, t(31) = 

-2.33, p < .027, CI = [-0.56, -0.037], as well as Component 6, t(31) = -2.48, p < .018, CI = [-

0.63, -0.062], and Odor ID performance (Figure 5-7 E). It is worth mentioning that there was 
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no relationship between age and any of the components (all p-values above .18); however, there 

was a significant negative association between Montreal Cognitive Assessment (MoCA) score 

and Component 3, r (16) = -0.60, p < .009, as well as Component 4, r(16) = -0.49, p < .04, in 

PDs.   

5.5 STUDY V: ODOR INTENSITY RELATES TO COVID-19 PREVELANCE PRE-
DICTION IN SWEDEN 

Data from a web-based and self-assessed olfactory test was used for the first time to determine 

the relationship between rated perceived odor intensity and the prediction prevalence of 

COVID-19 in a population, in our case the population in Stockholm, Sweden. The development 

of olfactory ability in the test group, manifested as mean intensity perception per day, was 

assessed and compared to the prediction of COVID-19 prevalence. As the predicted prevalence 

increases over time, the mean odor intensity ratings decrease, as evident in Figure 5-8 A. Fur-

ther analysis indicated that both unimodal (odors with low trigeminal components, Figure 5-8 

B) and bimodal (odors with high trigeminal components, Figure 5-8 C) had similar psycho-

metric functions. Assessing the association between the mean odor intensity and the prediction 

prevalence using ranked Spearman correlation indicates a high correlation ρ = −0.83, p < .001 

for all odors, ρ = −0.79, p < .003 for the unimodal odor category, and ρ = −0.83, p < .001 for the 

bimodal odor category. 

 

Figure 5-8. Odor intensity and COVID-19 prevalence. A) The blue graph together with blue axis show the development of the 

mean odor intensity ratings per day across 5 categories with respect to the prevalence prediction of COVID-19 in Stockholm 

region that was denoted by the black graph and axis. B) Similarly, the mean odor intensity for unimodal odors (category 1-2) 

and the prevalence prediction of COVID-19 are shown. C) The graph shows the mean odor intensity for bimodal odors (cate-

gory 3-5) and the prevalence prediction of COVID-19. D) The mean odor intensity across five odors was divided -depicted for 

individuals without (green squares and blue axis) and with (purple squares and blue axis) COVID-19 symptoms- and plotted 

with respect to the prevalence prediction of COVID-19 in Stockholm region (black graph and black axis). The error bars show 

the standard error of the mean (s.e.m). 

The data sample in this study also included healthy individuals who did not have any COVID-

19 symptoms. Therefore, to assess the potential influence of COVID-19 symptom on odor in-

tensity, the individuals were separated between groups with either no symptom or symptom 
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and rated mean odor intensity was compared with respect to prediction of COVID-19 preva-

lence. A clear difference between no symptom and symptom group was observed (Figure 5-8 

D). The more symptoms an individual reported, the weaker the odors were perceived. Accord-

ingly, Spearman correlation indicated a negative relationship, ρ = −0.29, p < .001, between the 

number of reported COVID-19 symptoms and rated odor intensity (Figure 5-9 A). However, 

the decrease in perceived odor intensity could have other possible reasons, such as seasonal 

allergy or gastroenteritis viruses. Therefore, the association of the mean odor intensity with 

pollen levels in the Stockholm region and the incidence of reported confirmed cases of the 

common gastroenteritis-causing virus, Caliciviridae, was also assessed. No correlations were 

found for either of those measures and rated odor intensity.    

 

Figure 5-9. Mean odor intensity and COVID-19 symptoms. A) The mean odor intensity negatively correlated with the number 

of symptoms. Each filled circle denotes an individual data point. The dashed line shows the man slope of decline. B) The bars 

show the percentage of individuals within each group who were identified as olfactory dysfunction C) The transgression from 

declaring no symptom to symptom indicated a significant drop in odor intensity rating. The bars show the mean odor intensity 

in the session individuals reported no symptoms and subsequent sessions where they declared having at least a symptom. 

Scatter plot shows the individual rating and lines connecting the value of the same individual. Error bars show the standard 

error of mean (s.e.m).          

Mean odor intensity was found to be lower in individuals with COVID-19 symptoms compared 

to those who did not have any symptoms. Subsequently, the prevalence of olfactory dysfunc-

tion was assessed in the subsamples. Olfactory dysfunction was, similar to previous research 

(258), defined as intensity ratings below the 10th percentile of the no symptom group’s odor 
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intensity rating. Notably, this threshold is a conservative assessment since the no symptom 

group might include asymptotic COVID-19 patients or individuals with olfactory dysfunction 

prior to COVID-19 pandemic. Given this threshold and intensity ratings, 66% of individuals in 

the symptom group (n = 2469) were categorized with olfactory dysfunction (Figure 5-9 B). 

The proportion of the individuals falling under the olfactory dysfunction grew to 81% when 

only assessing those who were clinically diagnosed with COVID-19 (n = 16, COVID-19+) and 

decreased to 32% for individuals with negative result for COVID-19 test (n = 25, COVID-19-

)(Figure 5-9 B).  

Furthermore, the repeated testing regime provided us with the opportunity to assess odor in-

tensity rating in transition from “No symptoms” to “Symptom”. A total 107 individuals were 

identified who made this transition, meaning that these individuals' responses shifted from hav-

ing no COVID-19 symptom to have at least one COVID-19 symptom in the next session at 

some point during testing. The odor intensity rating on the group level significantly decreased, 

t(103) = 6.15, p < 0.001, equals to 29% reduction, from “No symptoms” session to “Symptom” 

session. The average time elapsed between two sessions was 1.82 ± 2.64 days.  

Finally, the test-retest reliability of the test regime was assessed within individuals who per-

formed two sessions and reported “No Symptoms” in both sessions (n = 130). The relationship 

between two sessions of the odor intensity was assessed using a Spearman correlation test 

where we found a high test-retest value of 0.66, ρ(128) = .66, p < .0001. 
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6 DISCUSSION  

The overarching aim of this thesis is to expand the knowledge on the role of oscillations in odor 

processing within the OB as well as in its communication to the primary olfactory cortex. How-

ever, given the lack of a non-invasive method allowing recordings from the human OB, the 

initial objective was to develop a reliable non-invasive, yet easily accessible measuring tech-

nique. In Study I, through multiple experiments, a non-invasive method of measuring OB 

function, the EBG measure, was developed and its validity and reliability determined. Meas-

uring the function of the OB is of importance for our understanding of how the olfactory system 

works in humans as well as enables the development of novel biomarkers, particularly for var-

ious neurodegenerative diseases, many of which where the OB is of interest. In Studies II-III, 

the EBG method was then used to evaluate OB function, especially processing of odor valence, 

as well as assessing the OB’s connection to higher order olfactory regions, namely the PC, to 

extend our understanding on human OB function and its communication with PC. In Study 

IV, the EBG was used to assess the feasibility of whether measures of how the OB responds to 

odors could correctly classify PD patients and healthy age-matched controls. Finally, in Study 

V, the association between odor intensity perception and prevalence of COVID-19 in a Swe-

dish population was assessed to provide a foundation for future work using EBG method to 

assess what impact, viral infection, particularly the SARS-CoV-2 virus, might have on the 

function of the OB. 

6.1 WHY EEG-BASED METHOD 

Functional measures of OB processing are indispensable data if the assessments of human ol-

faction should be used as future diagnostic tools. Olfactory dysfunction is common in seem-

ingly non-related diseases, including depression (259), neurodegenerative disorders (123,160), 

and more recently, respiratory viral infections (e.g., SARS-CoV-2)(123,260). However, the 

non-invasive functional assessment of OB is not a trivial task. Non-invasive methods including 

functional near infrared spectroscopy or PET lacks temporal resolution for reliable measuring 

OB. Conversely, MEG has high temporal resolution but the helmet in which the MEG sensors 

are embedded does not cover the forehead well enough. Moreover, MEG is only sensitive to 

tangential sources, although there is no clear information of how dipoles form in OB, there is 

a high chance that dipoles are created radially along the olfactory nerve, hence, hidden to the 

MEG method. Among non-invasive methods for functionally assessing brain responses, fMRI 

is the most common method, and it can acquire functional data from almost everywhere in the 

human brain, except a few regions; among these the OB. The human OB is situated close to 

paranasal sinuses, cavities filled with air within the skull, creating inhomogeneity in magnetic 

permeability and consequently creating large susceptibility artifacts that prevent acquisition of 

BOLD-fMRI signals. However, contrary to fMRI, EEG is not affected by the presence of air 

cavities and in contrast to MEG, the montage of EEG sensors is flexible meaning that the place-

ment of electrodes can be easily changed. Also, EEG is sensitive to both tangential and radial 

sources. Finally, EEG does not have a low temporal resolution such as functional near infrared 

spectroscopy, PET or fMRI. Therefore, EEG was selected as the technology for developing a 
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non-invasive method for functional assessment of OB. Moreover, from a clinical and accessi-

bility perspective, EEG is by far the cheapest and among the most available brain imaging tools 

in clinical settings.  

6.2 THE OB UTILIZES GAMMA SYNCHRONIZATION FOR ODOR PRO-
CESSING  

Intracranial data obtained directly from the human OB demonstrated the presence of a gamma 

synchronization in response to odors (159). Moreover, past findings in the non-human literature 

indicated that the gamma synchronization mostly originates from intra-bulb processing with 

only minimal influence from centrifugal projections. Accordingly, when the centrifugal pro-

jections to OB are blocked, only gamma synchronization remains intact in the OB in response 

to odors (59,261). Moreover, gamma oscillations in the anterior piriform cortex, one of the 

main recipients of signal from the OB, are disturbed when gamma oscillations are reduced in 

the OB (57). However, beta oscillations in anterior piriform cortex are not affected by manip-

ulating gamma in the OB, therefore, providing further evidence that gamma oscillations reflect 

intra-bulbar processing. However, it is likely that the OB also functions in other bands, includ-

ing beta and theta. Especially beta oscillations are more apparent when processing odor context 

or associations (57). Given that the odor induced gamma oscillations in the OB is one of the 

most robust electrophysiological phenomena and have been found across every mammalian 

species studied so far (56), it is likely these oscillations are the best candidate to target with the 

EBG method to acquire high fidelity OB signal; therefore, oscillations in the gamma band were 

the focus in Study I. 

Using four active electrodes on the forehead and two reference electrodes, through multiple 

experiments, the EBG method was demonstrated to reliably detect OB processing via a clear 

gamma synchronization around 100ms post odor onset. There is strong evidence to believe that 

the OB is the source of the detected signal. The timing of the gamma synchronization suggests 

that the OB is the underlying source given that it is too fast for the PC, or other more cortical 

structures, to process the odor. Furthermore, the source reconstruction indicates the OB as the 

most probable underlying source for the acquired gamma oscillations around 100ms post odor 

onset. Specially, the marked gamma oscillation was replicated in OB’s source reconstructed 

time-series in Studies II-III, suggesting that the signal picked up by the EBG electrodes can 

be directly linked to the OB. 

Like any method, the EBG method is only useful if the measurement is robust and reliable. In 

Study I, the ICC result indicated high agreement of the EBG measurement across individuals 

and sessions which was further supported by the high test-retest correlations across sessions. 

Specifically, the test-retest correlations were between .76 and .86, a range that is comparable 

to event related olfactory and non-olfactory EEG measures. For example, the test-retest of ol-

factory-derived scalp ERPs typically produce values as low as .05 (262) to as high as .81(263), 

dependent on the experiment. Likewise, past ERP studies in visual and auditory produced sim-

ilar values in the range of .48 – .80 (264). Moreover, in Study IV, the gamma synchronization 

was found again in EBG sensor space; this time in an independent sample of older healthy 
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adults, suggesting that the EBG method is not restricted by age. Although past non-invasive 

and invasive electrophysiological recordings from humans provided strong evidence that 1/f 

noise increases by age (265), the replication of gamma synchronization using EBG method in 

older adults indicated that the method is robust enough to detect OB signal also in the presence 

of elevated 1/f noise in older adults.  

Insensitivity to habituation is another unique feature of the OB (250,251). Oppositely, PC has 

demonstrated rapid decrease in signal amplitude in response to repeated and prolonged odor 

exposure (71,251). The results presented in Study I demonstrated no change in the EBG 

gamma power as a function of trials for the time-frequency window attributed to the OB. How-

ever, the peak-to-peak potential over the parietal lobe, the hallmark ERP signal for odor re-

sponses, decreased across trials, thereby demonstrating occurrence of habituation in higher or-

der olfactory regions. Moreover, when participants rated the perceived intensity of odors for 

each trial, their ratings rapidly decreased across trials. Hence, in clear contrast to the decrease 

in the odor ERP response and odor intensity rating, the lack of habituation for the EBG gamma 

power further supports the notion that the underlying source is the OB rather than other cerebral 

areas, such as the OFC. Notwithstanding, OB’s insensitivity to the habituation is mainly based 

on data obtained in anesthetized mice and later studies suggest that odor-induced neural activity 

in anesthetized animal might not always generalize to awake state (266). 

Furthermore, the lack of EBG results from an individual with ICA suggests that removing the 

OB will eliminate the gamma synchronization in question. Although non-significant result 

should not be interpreted as accepting the null hypothesis, the gamma synchronization during 

the time-window of interest in the individual with ICA was more than 2.5 standard deviations 

smaller than the average obtained from individuals with a normal sense of smell. Thus, in ad-

dition to the source localization result and the reliability of the EBG signal with characteristic 

OB responses, the lack of EBG results in an otherwise healthy individual that lacks OBs 

demonstrates that non-specific odor parameters, such as systematic saccade eye movement, 

attention shift, frowning, or other muscle movement due to potential irritation from odor stim-

uli, is unlikely to be the source of the demonstrated gamma synchronization in the EBG elec-

trodes.  

6.3 THE OB PROCESSES ODOR VALENCE 

Odor valence is one of the core dimensions of odor perception. Valence shapes our approach-

avoidance responses, the critical behavior that survival of any organism is dependent on. Ap-

proach-avoidance responses are the driving force for finding foods and avoiding dangers such 

as predators and poisons. The OB is located at the very frontline of the central olfactory system, 

directly connected to the olfactory receptor neurons, and as such, an ideal stage for facilitating 

fast processing of odor valence (119). However, the role of the human OB in valence pro-

cessing is not clear. EBG provided the opportunity to non-invasively assess the processing of 

valence in the OB. Specifically, results from Study II demonstrated that the human OB is 

linked to valence at two specific time intervals. Perceived odor valence was related to an early 

gamma synchronization followed by a late beta oscillation in the OB. This sequential 
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processing of valence in OB agrees with the two-stage model of odor processing in the OB 

suggested by Frederic and colleagues (57). Their proposed model specifically postulates that 

initial processing in gamma allows for fast discrimination of odors and the second slower pro-

cess in beta allows incorporating information from centrifugal inputs for more accurate deci-

sion. In line with this model, results in Study II indicated that early gamma processing of 

valence likely cued and facilitated fast avoidance responses to unpleasant odors. Odor induced 

gamma synchronization has in past studies been attributed to local processing within OB 

(58,267) that is, to some extent, dependent on the individual’s past experience (189). This pro-

vides further reason to believe that the gamma synchronization aids avoidance response. More-

over, anatomically, OB is privileged for processing of olfactory stimuli associated with threat 

given its early location in the olfactory processing stream, receiving direct inputs from the 

OSN, as well as displaying monosynaptic connection to the amygdala, a cerebral area respon-

sible for the processing of saliency and threat (268).   

Assessing the relationship of the OB’s neural data in gamma and beta bands with valence rat-

ings in RSA space demonstrated that the late beta peak, around 700-800ms after odor onset, is 

more associated with the final valence percept than what the gamma peak demonstrated. This 

finding further aligns with Frederic and colleagues’ two-stage model (57) of odor processing 

in which separate afferent and efferent processes are considered in the OB. Beta oscillations 

are often known to correspond with top-down processes in contrast to gamma oscillations that 

are more frequently connected to bottom-up connection (56,269,270). This view of strict sep-

aration between gamma and beta is, however, not straightforward given that a past study sug-

gests that beta can be detected in the OB during initial odor sampling (271). Moreover, when 

effective connectivity between OB and PC was assessed in Study III, efferent connection from 

OB to PC was determined to operate in the gamma/beta band whereas the afferent connection 

from PC to OB was demonstrated to operate in the theta/delta band. It is possible that the beta 

oscillation found at late time points in the OB is nested within slow delta/theta oscillations of 

the efferent connection from PC to OB. I argue, however, that the most parsimonious explana-

tion for the late beta oscillations is that these represent valence-dependent efferent projections 

to the OB from higher order olfactory cortices, including the OFC, amygdala, and the PC. 

These projections are needed to update and integrate information where the odor object identity 

(42) and past experiences (272), two aspects among several that strongly influence the final 

odor valence precept, shape the interpretation of the odor (26,273) and prepare the OB to pro-

cess the second sniff of the same odor. 

Mu desynchronization has previously been demonstrated to correspond with preparatory motor 

responses to salient stimuli (274,275). Accordingly, in Study II, we found that mu desynchro-

nization increases for unpleasant compared to pleasant odors over the motor cortex. Moreover, 

this valence-dependent motor response occurs around 150ms after the increase in gamma and 

early beta activity within the OB and consequently allows for the time needed for transmission 

of valence-related signals between the OB and motor cortex. Importantly, in preregistered ex-

periments, including a pilot and main experiment, odors with a negative valence were further 

demonstrated to trigger a full body avoidance response expressed as a backward motion; i.e., 
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leaning away from the odor. However, no effect was found for positive odors. It is possible that 

a similar effect occurs for neutral and pleasant odors but that the response to these odors occurs 

at later time points than the analyses window determined by our pilot experiment. In light of 

this, previous studies on rodent detected an increase of power in the gamma and beta bands 

within the PC, primary motor cortex, and the magnocellular red nucleus just before executing 

a motor response for the Go trials in a Go/No-Go paradigm. Of note, the power increase only 

occurred during the final sniff – either second or third sniff (276). Hence, the lack of effect for 

pleasant odors in Study II during the first sniff could be simply explained by the fact that latter 

sniffs are more relevant for the pleasant odors. 

Although result from Study II indicates that human OB processes subjective odor valence, it 

does not demonstrate that OB is the first stage of valence processing. Several studies, both in 

human and non-human animals, suggest that odor valence is linked to the physicochemical 

properties of the odorants in question (14,277–279). Moreover, the odors’ physicochemical 

properties can to some extent predict the olfactory receptor neuron activation. Hence, coding 

of the odor valence seems to begin within the olfactory epithelium rather than OB (278). How-

ever, whether the physicochemical-dependent valence coding on the receptor level reaches OB 

or not, is still an open question. Accordingly, it is worth noting that the results in Study II were 

based on the subjective valence rating and the included odors were not a priori valence ranked. 

Hence, the detected synchronizations during certain frequency bands and time periods in the 

OB demonstrated a uniform representation of subjective perceived valence across participants 

and not a pre-defined odor classification. This suggests that odor identity per se has only partial 

contribution in the OB process during the early gamma and late beta oscillations.    

6.4 ODOR IDENTITY AND RECIPROCAL CONNECTION BETWEEN OB AND 
PC 

In Study III, assessment of the temporal and frequency information in functional connectivity 

between the human OB and PC during odor perception demonstrated that the frequency range 

of the connection is dependent on its direction and latency from the odor onset. Furthermore, 

what odor the participant smelled could be decoded from the OB-PC connection within 100ms 

after odor onset. Accordingly, the odor identity, defined here as the odor per se rather than the 

object associated with that specific odor, is embedded in the OB-PC connection and can be 

partly retrieved by assessing the pattern of the OB-PC connection in frequency and time. 

Using the EBG method developed in Study I, besides the scalp EEG and source reconstruction 

method, the activation time-series for OB and PC were reconstructed. It is worth noting that 

the spatial specificity of the EEG reconstructed sources is less than, for example, surgically 

implanted intracranial electrodes. Nevertheless, the EEG source reconstruction method was 

recently shown to be effectively sensitive to radially deep dipoles (280). Moreover, as men-

tioned in section 6.2, the EBG method was demonstrated to be capable of extracting a reliable 

OB signal in multiple experiments. However, validating the PC dipole is more difficult. To 

address this issue, the sensitivity analysis was performed by which a high odor SNR was de-

termined for bilateral PC compared to surrounding regions. Furthermore, the spectrogram of 
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PC contained some of the key features of past intracranial recording (62). Hence, it was con-

cluded that the source reconstruction method, with help of the EBG, was successful in extract-

ing a valid PC signal.   

Subsequent assessment of the OB and PC connectivity using spectrally resolved Granger cau-

sality indicated a causal communication in multiple bands during odor perception. For the clean 

air trials, no connection was found, except a weak gamma afferent connection. Consequently, 

the lack of extensive communication during the clean trials emphasizes the importance of odors 

for eliciting the causal link between the OB and PC. More importantly, the afferent connection 

was found to operate mainly in the gamma and beta bands, whereas the efferent connection 

was operated in the theta/delta bands. This is in line with previous researches in which different 

frequencies were attributed to afferent and efferent connections in both the olfactory (281) and 

the visual systems (282). 

Past rodent and intracranial studies in human have demonstrated that odor identity can be de-

coded from PC activity (62,283). Notably, Jiang and colleagues recently demonstrated that 

oscillatory signal in PC transmits odor information within a few hundred milliseconds (62). In 

Study III, we demonstrated that the odor can be deciphered from the OB-PC connection within 

100ms after odor onset using a machine learning method. A significant cluster with the peak 

mean accuracy of 42% was identified in the 35-45Hz frequency. Although this analysis lacks 

directionality, it is likely that this cluster in gamma band is related to the transmission of odor 

information from the OB to the PC given that our earlier analysis of Granger causality connec-

tivity indicated that the afferent connection is dependent on the gamma/beta frequency. More-

over, the failure of decoding odor identity from the connection between the OB and the control 

region, the postcentral gyrus, within the same time points and frequencies as the significant 

cluster found for OB-PC connection, further supports the specificity of this finding. However, 

assessing each odor separately demonstrated that performance of the classifier varies across 

odors. This can possibly be attributed to differences in the frequency and latency of odor rep-

resentations in the OB-PC connectivity. Given the difference in perceived valence between the 

included odors, valence might have been the underlying parameter that mediated the ability to 

dissociate odors in the machine learning decoding paradigm. That said, the confusion matrix 

demonstrated that odors with opposite valence were often confused by the decoding machine; 

hence, there was no support for valence being the determining parameter in machine learning 

classification results. 

6.5 EBG CAN DISSOCIATE PD FROM CONTROL 

In Studies I-III, it was demonstrated that the EBG method can reliably assess functional pro-

cessing within the human OB. Given that olfactory dysfunction in PD precedes the character-

izing motor symptoms by several years, EBG has considerable diagnostic potential for PD. 

Hence, in Study IV, the possibility of dissociating PDs from age-matched healthy controls 

using EBG was assessed. Using EBG, clusters were found in the time-frequency map that had 

significantly different levels of power in multi-bands and intervals post odor onset between PD 
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and healthy controls. Subsequently, these components allowed us to dissociate PD from con-

trols with high accuracy in a logistic regression model. 

Our results indicated that the power of each cluster in the gamma, beta, and theta bands were 

different during odor processing between PD and Control. Impairment in the gamma band, 

given that gamma is linked to intra-bulb processes (58,59), might be caused by the well sup-

ported PD-dependent neuronal loss in the OB (284). Moreover, the impairment in the top-down 

projection is likely responsible for the difference observed in the beta and theta band (57), 

which is further supported by considering their late latency of these clusters. Hence, this result 

suggests that the reciprocal connections (i.e., afferent and efferent) between the OB and higher 

olfactory cortices involved in the processing of various odor aspects, including valence, are 

impaired in PDs. In line with this, odor valence perception is abnormal in PD patients compared 

to controls (285). Moreover, this is also in line with the notion that most of the identified EBG 

components occurred relatively late in the temporal chain of neural processes. Relatedly, the 

late components of the event related potentials have been demonstrated to have a lower ampli-

tude in PDs compared with Controls (286).     

The logistic model including EBG components achieved higher specificity, but similar sensi-

tivity, compared with the 16-item odor ID model. However, the 2 falsely classified individuals 

in the EBG and 16-item odor ID models were different patients. The misclassification that 

occurred in the odor ID model is easy to understand. These were PD patients who did not 

develop hyposmia, therefore occurring as false negatives, and one Control participant who was 

on the borderline of hyposmia, therefore occurring as a false positive. Notably, the PD patients 

who were erroneously classified as a Control by the odor ID model were correctly classified as 

a PD patient in the EBG model. This suggests that the EBG model is not as dependent on 

olfactory dysfunction as the odor ID model and reflects information beyond mere olfactory 

impairment. 

One of the EBG early components (Component 2) that was associated with PD disease severity 

(but not cognitive measures) occurred in the gamma band, a frequency range that is known to 

be related to intra-bulb processes. Hence, this association suggests that within-OB processing 

is potentially most associated with behavioral measures in PD but also that it is independent 

from cognitive deficits. Moreover, the independence of this component from cognitive measure 

further indicates that sensory processing might be more involved with the gamma band within 

early time intervals. Moreover, in line with the view of olfactory loss as a common symptom 

of PD (123,160), the temporally late Components 5 and 6 were associated with olfactory odor 

ID; a test that is partially dependent on cognitive function (287), such as the processing of 

labels and cues. Additionally, Component 6 had an inverse association with H&Y disease se-

verity and therefore, the olfactory performance of the PD patients with high EBG response was 

closer to Controls and they had lower H&Y disease severity. However, these results should be 

interpreted with caution because when a conservative 1000-randomization bootstrap test was 

used to assess the results for statistical significance, the association between H&Y disease se-

verity and odor ID with EBG components only marginally survived.      
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Olfactory related electroencephalography measure has previously been used to dissociate PD 

patients from Controls (141,286,288). However, in Study IV, the function of the human OB 

in PD was here assessed for the first time. This is of importance for PD diagnosis because the 

OB is the most vulnerable and earlies site of insult in PD. Accordingly, EBG has several ben-

efits as a potential diagnostic tool. Firstly, it is independent of cognitive ability, thereby might 

be a more suitable test than odor ID tests which are affected by dementia and other cognitive 

impairment associated with PD (289,290). Secondly, it is non-invasive and accessible clinical 

test that potentially dissociates PD from healthy controls by targeting part of the cortex that is 

directly involved in PD. However, it is worth mentioning that EBG is currently not a turn-key 

ready clinical method. The method needs to be tested in an at-risk population and in various 

PD subgroups before it can be implemented as a clinical test.   

6.6 ODOR INTENSITY RELATES TO COVID-19 PREVELANCE PREDICTION 

Results from Study V demonstrated that simple perceptual rating of odor intensities can have 

a great potential for effectively and inexpensively track COVID-19 prevalence. Odor intensity 

ratings were demonstrated to closely follow COVID-19 prevalence prediction over time. More-

over, the magnitude of the decrease in mean odor intensity was associated with the number of 

reported COVID-19 symptoms. This association was further highlighted by the decrease in 

odor intensity ratings for individuals who progressed from having no COVID-19 symptom to 

reporting having a COVID-19 symptom in the next session.  

During a pandemic as widespread as the ongoing one, an accessible, inexpensive, and easy to 

use test for quick diagnosis is vital. The results of this study suggest that olfactory self-testing 

using common house-hold items can provide a simple and inexpensive solution for individuals 

to achieve a quick assessment of olfactory dysfunction that might indicate the onset of COVID-

19 infections, but also for the governments and health organizations to track the spread of the 

disease in a society. In this study, odors were categorized to high and low trigeminal groups to 

assess whether the level of trigeminal stimulation was a factor of interest. However, all the 

categories demonstrated a similar pattern and followed the predicted COVID-19 prevalence 

prediction. Hence, this indicated that the odor intensity test can be conveniently carried out 

without the confines of the trigeminal aspects of the odors. This is of importance given that 

most household items activate the trigeminal system at some levels. Currently, it is undecided 

whether, in addition to the olfactory system, the SARS-CoV-2 virus impairs the trigeminal 

system. However, it is possible that the function of the trigeminal system is affected by the 

reduced olfactory ability per se (291). 

The underlying mechanism of COVID-19 anosmia is not yet fully understood. However, it is 

very likely that SARS-CoV-2, similar to other strains of coronavirus, infiltrates the brain with 

resulting damages to the OB as well as other brain areas (292). The exact effect of COVID-19 

on the function of OB is unknown and future research is needed to answer this aspect.   
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6.7 LIMITATIONS 

To definitely validate the EBG method, intracranial recording from OB with simultaneous 

EBG recording on the surface during odor presentation is needed. However, accessing such 

data is extremely difficult, given that intracranial recording is restricted only to patients with 

intractable epilepsy. Moreover, the electrode placement is also strictly limited to the clinical 

need in those patients; placing an electrode on the OB without a clinical need would be a vio-

lation of the current ethical code. Another confounding factor is that some of the assumptions 

in the study are based animal research. Particularly the insensitivity of OB to repeated exposure 

of odors is based on recordings done in anesthetized animals. 

The association between valence rating and OB function was assessed in Study II. However, 

odor valence perception is to a large degree dependent on the individual experience. When the 

individuals’ odor valence RDMs were compared to that of group RDM, a mean similarity of 

62% was found. Therefore, within the sample used in Study II, 38.2% of the total variance is 

explained by individual differences with the remaining variance linked to various aspects 

where the physicochemical properties of the odor can be hypothesized to be the most important 

one. Although the choice of method to some extent removed the potential impact of the phys-

icochemical properties, it did not completely eliminate it. Furthermore, the demonstrated con-

nection between the OB and motor response in this study was indirect. The results from the 

valence processing in OB and the whole-body approach avoidance were from independent ex-

periments and therefore, connecting their results should be done with caution. To directly link 

OB functional and whole-body approach avoidance responses, one needs to assess the EEG 

source signal in individuals that are freely moving around. This would result in large motion 

artifacts and currently, there is no method available that is capable of assessing OB while par-

ticipants are allowed to move in response to the odor. 

In the Study III, the machine learning analysis found a significant cluster that could predict 

the odors in the gamma band during early time points. It is worth mentioning that the mean 

accuracy for this cluster is significantly above chance level  (0.33); yet this is not a strong result. 

It is likely that the accuracy within this analysis is restricted by the low number of odors and 

their proximity in perceptual space. Moreover, Given the low number of odors and high di-

mensionality of the underlying data, it is difficult to indicate which specific odor dimension 

contributes to the machine learning odor classification.     

The EBG method showed a promising ability to dissociate PDs from Controls in Study IV. 

However, the dataset is relatively small; therefore, before concluding that EBG can be imple-

mented as a PD diagnostic tool, this finding must be replicated in a larger sample as well as in 

an at-risk population. Moreover, given the current montage of electrodes and the volume con-

duction, the method is currently unable to separate left and right OB and therefore unable to 

benefit from the clear laterality of early disease stages. Another confounding factor in this study 

is that the patients with late stages of PD might have a reduced sniff function (293). However, 

to alleviate this confounding parameter, several steps were taken. First, sniff-triggered design 

allowed odors to be delivered at the same speed for all participants to a point high up in the 
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nasal cavity and consequently the magnitude of sniff was similar for all participants. Second, 

the sniff-triggered event related response was removed from the EBG response. Finally, no 

early differences were found in the theta band, the frequency and time interval related to sniff.       

The limiting factor of Study V was the low number of the individuals with confirmed COVID-

19 diagnosis. Hence, the individuals in the symptom group were not confirmed to be infected 

with SARS-CoV-2. Nevertheless, the number of the symptoms negatively correlated with the 

odor intensity rating. Moreover, individuals who progressed from “No symptoms” to “Symp-

tom” had a significant drop in the odor intensity perception on average. All that being said, it 

is worth mentioning that self-assessment of odors and subsequent potential decrease in the odor 

intensity perception per se should neither be interpreted as COVID-19 diagnosis nor clinical 

olfactory dysfunction measure on the individual level. Yet, the odor intensity ratings can track 

COVID-19 prevalence and potential other strains of coronavirus on the population level and 

therefore can be used as an alternative method in the countries without the sufficient infrastruc-

ture for screening in the similar outbreaks in future. 

6.8 METHODOLOGICAL CONSIDERATION 

Acquiring OB signals via the EBG method requires some methodological considerations. First, 

participants in all studies of this project were tested in a nutrition deprived state. They were 

asked to not eat or drink anything other than water at least for 6 hours prior to testing. Accord-

ingly, past non-human studies have demonstrated that the OB is more sensitive to odors when 

the individual is in the hungry rather than satiated state (294,295). Relatedly, more MCs/TCs 

have been demonstrated to respond to odors when the individual is hungry, whereas during 

satiation, a large portion of MCs/TCs are inhibited. Second, in all studies of this thesis, except 

Experiment 3 within Study I and the full Study V, trials onset were time-locked to inhalation 

onset without a detectable onset cue given that past studies indicated that 50% of all MCs/TCs 

cells in the OB are locked to respiration cycle (56,296). However, it should be note that respir-

atory-locked oscillations occur in theta band; hence, respiration has minimal effect on the re-

sults found in the gamma and beta bands in this thesis. Moreover, the sniff signal was removed 

from OB responses to control for the nuisance effect of respiration wherever it was possible. 

Third, all odors used in this study were selected and diluted insofar that they did not produce a 

noticeable trigeminal percept. Frowning as an automatic motor and part of pain response is 

evoked by the trigeminal nerve. Therefore, if odors with larger trigeminal components are used, 

EBG response could be masked (297). Finally, all studies, except Study V, are dependent on a 

temporally accurate olfactometer (164). A small jitter in the trial onset can significantly reduce 

the signal and consequently reduce the EBG response to the point that is not detectable from 

the background noise.             

6.9 CONCLUSION  

The overarching aim of this thesis was to extend our understanding of human OB’s function. 

The results presented in this thesis indicated two main points. First, using multiple experiments, 

it was demonstrated that the human OB function can reliably be measured using active 
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electrodes on the forehead and with the help of temporally precise olfactometer. Second, the 

function of human OB has been outlined in more detail. Specially, the similarities and differ-

ences of the human OB function compared to that of animals were further illuminated. The 

results in the thesis provided a new evidence for the two-stage model of olfaction (57) in hu-

mans, that has been originally introduced based on animal data. However, contrary to these 

similarities some other findings reported in this thesis indicated that some aspects of the human 

olfaction are unique. Notably, these similarities and differences emphasize the importance of 

shifting to translational research that involves cross-species experiments. Animal research is 

certainly a giant stride for understanding human olfaction, but it is not adequate. The non-

invasive EBG method developed and described in this thesis can pave the way for such trans-

lational work.   

Moreover, another critical finding of this thesis was the potential relevance of the EBG method 

for early PD diagnosis. Although assessment in the at-risk group is required before the EBG 

can be introduced as a reliable clinical test, but the results presented here are sufficient for proof 

of concept that EBG can serve as an early diagnostic tool for PD. Finally, in the last study, it 

was demonstrated that olfactory dysfunction is a salient symptom of COVID-19 insofar that 

odor intensity rating closely tracked COVID-19 prevalence prediction. The results in this study, 

increased the confidence in self olfactory test and demonstrated that even outside the strictly 

controlled lab environment, olfactory test can serve as an inexpensive and fairly accurate meas-

ure, albite on the population level. Therefore, such a simple olfactory test can be designed and 

used in future with greater trust on the group level.  

6.10 POINTS OF PERSPECTIVES 

The studies presented here used EBG to answer some critical questions about the role of the 

human OB in odor perception as well as potential diagnostic benefits that EBG can offer by 

measuring OB functions in disease. With EBG, odors were demonstrated to induce gamma 

activity, similar to what has been previously shown in non-human studies. However, when 

clean air was assessed, similar gamma-like activity was observed, albite in lower gamma band 

and at the onset of each trial. This observation brings up an indication that respiration alone 

entrails gamma activity. Future studies should assess what the function of respiration-induced 

gamma synchronization plays for perception or other aspects of human life. 

All participants in this PhD project were nutrition deprived. Therefore, another possible future 

study is to assess effects of nutritional state within a feeding-controlled environment. Moreo-

ver, it has been demonstrated that negative odors are prioritized in the OB. This finding can be 

further assessed in future work where odors are either tailored for each individual based on 

their reward properties or, alternatively, odors are conditioned with positive outcomes to con-

clusively determine whether the human OB favors processing negative odor valence. 

EBG has also been demonstrated to be capable of dissociating PDs from age-matched healthy 

controls. However, given that all the PD patients in Study IV had already been diagnosed with 

PD and most of them already developed olfactory dysfunction, future work should assess the 
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EBG response in at-risk groups employing a longitudinal study design; a method that is beyond 

the reach for a PhD that is limited to 4 years of full-time work. Moreover, the EBG data needs 

some preprocessing and artifact rejection before the main analysis. Converting these prepro-

cessing and artifact rejection steps to an automatic pipeline should be implemented and as-

sessed in future works. Consequently, the automation of the preprocessing and artifact rejection 

steps will render an implication of the EBG as a potential PD diagnostic tool more straightfor-

ward. Moreover, the automatic artifact detection may be implemented in an online manner to 

allow for the triggering of the olfactometer whenever there is no muscle activity detected. This 

way, the number of trials needed to obtain enough clean data would be minimized and conse-

quently recording time would also be shortened and allow for better accuracy. 

Olfactory dysfunction has been related to several diseases, including neurodegenerative dis-

eases, psychiatric disorders (e.g., MDD) and recently COVID-19. Viral infection was among 

the most common causes of olfactory dysfunction (146), even before the COVID-19. Given 

the prevalence of the current pandemic, it is foreseen that anosmia will become a more serious 

challenge for the healthcare system in the near future. Therefore, the urgency for assessing 

human olfaction in an objective manner and at mechanistic level is developing to the greater 

level. This highlights the effectiveness of a non-invasive and easily accessible method for 

measuring the function of OB, a critical node of olfactory system. In future works, the EBG 

might be tested to better understand the pathophysiology appeared in post-viral anosmia in-

cluding COVID-19.   
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