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POPULAR SCIENCE SUMMARY OF THE THESIS 

Cluster headache is considered one of the most painful conditions in humans and is 

notoriously known as “suicide headache”. The pain has been described as a sharp, stabbing, 

or throbbing sensation on one side of the head, and is often accompanied by, for example, 

tearing, a runny nose, or restlessness. The headache attacks come in periods with up to eight 

attacks per day, and these active periods can be interrupted by symptom-free intervals of 

several years. One out of ten cluster headache patients have a close relative also suffering 

from cluster headache. Thereby there seems to be a heritable component, even though most 

likely many factors contribute to this very complex disorder. A striking feature of cluster 

headache is that for a majority of patients the headache attacks can recur at specific times of 

the day. This periodicity of the attacks has led to the hypothesis that the biological clock may 

be involved in cluster headache. Our inner biological clock is steered at a molecular level by 

several key genes which coordinate the activity of the cell, depending on the time of day. The 

production of certain hormones, such as melatonin which regulates the sleep-wake cycle, is 

for example higher at night. The interval of this inner clock lasts normally slightly more than 

24 hours, which is why it is also referred to as ‘circadian rhythm’ (circa diem = 

approximately one day). On a systemic level, the clocks of different cells and organs are 

synchronized by a small brain region which receives, among others, information about light 

via the eyes.  

For this thesis, I have studied the genetic material of cluster headache patients in comparison 

to healthy individuals for possible risk factors, so-called gene variants. If a certain variant 

occurs significantly more often in patients than in individuals without cluster headache, this 

gene variant is likely to be linked to the disease. I have focused on genes involved in 

circadian rhythm but have even investigated genes in connection to trigger factors (e.g. 

alcohol) or treatment for cluster headache. In a large screening of gene variants over the 

entire genome of patients and healthy study participants, I could detect several new genes that 

may play a role in cluster headache. In addition to genetic studies, I have analyzed 

questionnaire data from cluster headache patients in order to learn more about their 

symptoms, the location and severity of the pain, the frequency and length of their headache 

attacks, lifestyle, triggers, and use of treatment. Cluster headache is more common in men 

than in women, and therefore I was also interested in differences between genders. My main 

findings revealed that most patients have recurrent cluster headache attacks at night between 

2:00 and 4:00 am, and patients who have been smoking had a later disease onset compared to 

non-smokers. When comparing male with female patients, more women than men had a close 

relative also diagnosed with cluster headache, suffered from longer active headache periods, 

and more often reported a diurnal pattern of their attacks. 

These findings contribute to increasing the understanding of the disease which may help to 

improve treatment for patients or even to find the causes for cluster headache. 

  



POPULÄRVETENSKAPLIG SAMMANFATTNING AV 

AVHANDLINGEN 

Hortons huvudvärk beskrivs som en av de mest smärtsamma tillstånd hos människan och 

kallas även för ”självmordshuvudvärk”. Smärtan beskrivs som en pulserande, stickande eller 

dunkande känsla på ena sidan av huvudet och det förekommer oftast andra symtom, t.ex. 

tårflöde, rinnsnuva, eller rastlöshet i kroppen. Huvudvärksattackerna kommer i perioder med 

upp till åtta attacker per dag, och dessa aktiva perioder avbryts av symtomfria intervaller som 

kan vara i flera år. En av tio patienter med Hortons huvudvärk har en nära släkting som också 

lider av Hortons huvudvärk. Det verkar därmed finnas en ärftlig komponent vid sidan om 

flera andra okända faktorer som bidrar till denna komplexa sjukdom. En anmärkningsvärd 

egenskap vid Hortons huvudvärk är att många patienter uppger att huvudvärksattackerna 

återkommer vid specifika tidpunkter på dygnet. Denna regelbundenhet har lett till hypotesen 

att den biologiska klockan har betydelse för sjukdomen. Vår inre biologiska klocka styrs på 

molekylär nivå av flera nyckelgener som koordinerar cellens aktivitet beroende på tiden på 

dygnet. Produktionen av vissa hormoner, bl.a. melatonin som reglerar sömncykeln, är till 

exempel högre på natten. Intervallet av denna inre klocka brukar vara lite längre än 24 

timmar, därför kallas det också för dygnsrytm eller ”circadisk rytm” (circa diem = ungefär en 

dag). På kroppsnivå synkroniseras olika cellers och organs klockor av en liten hjärnregion 

som mottar information om t.ex. ljus från ögonen.  

För denna avhandling har jag studerat genetiskt material från patienter med Hortons 

huvudvärk samt friska individer för att hitta möjliga riskfaktorer, så kallade genvarianter. Om 

en viss variant är mycket vanligare hos patienter jämfört med individer utan Hortons 

huvudvärk, så finns det stor risk att genvarianten är kopplad till sjukdomen. Jag har lagt fokus 

på gener kopplade till dygnsrytm men har även undersökt gener knutna till triggerfaktorer 

(t.ex. alkohol) och behandling av Hortons huvudvärk. Dessutom gjorde jag en storskalig 

screening av genvarianter över hela arvsmassan från patienter och friska studiedeltagare där 

vi upptäckte flera nya gener med tänkbar roll vid Hortons huvudvärk. Utöver dessa genetiska 

studier har jag också analyserat enkätdata från Hortonpatienter för att utöka kunskapen om 

deras symtom, lokalisering och intensiteten av smärtan, förekomst och längd av huvudvärks-

attacker, livsstil, triggerfaktorer och behandling. Eftersom Hortons huvudvärk är vanligare 

hos män än kvinnor har jag vidare tittat på könsskillnader. Mina huvudsakliga fynd visar att 

de flesta patienter får återkommande attacker på natten mellan kl. 2:00 och 4:00, och 

patienter som har rökt eller snusat har senare sjukdomsdebut jämfört med dem som inte röker 

eller snusar. När man jämför manliga och kvinnliga patienter har fler kvinnor än män en nära 

släkting som också har fått diagnosen Hortons huvudvärk, de lider av längre aktiva perioder 

och rapporterar oftare ett rytmiskt mönster av sina attacker. 

Dessa fynd bidrar till ökad kunskap om sjukdomen som kan hjälpa att förbättra behandling 

för patienter och även att hitta orsakarna till Hortons huvudvärk. 

  



 

 

POPULÄRWISSENSCHAFTLICHE ZUSAMMENFASSUNG 

DER DOKTORARBEIT 

Cluster-Kopfschmerz ist eine der schmerzhaftesten Zustände im Menschen und hat den 

Beinamen „Selbstmord-Kopfschmerzen“. Der Schmerz wird als ein stechendes, bohrendes 

oder reißendes Gefühl auf der einen Seite des Kopfes beschrieben und ist oftmals von z.B. 

einem tränenden Auge, einer laufenden Nase oder Rastlosigkeit im Körper begleitet. Die 

Kopfschmerzattacken kommen in Phasen mit bis zu acht Attacken pro Tag, und diese aktiven 

Phasen sind von symptomfreien Intervallen von bis zu mehreren Jahren unterbrochen. Einer 

von zehn Patienten mit Cluster-Kopfschmerz hat einen nahen Verwandten, der auch an 

Cluster-Kopfschmerz leidet. Daher scheint es eine erbliche Komponente zu geben, obwohl 

vermutliche viele Faktoren zu dieser sehr komplexen Krankheit beitragen. Ein auffälliges 

Merkmal dieser Krankheit ist, dass die Mehrheit der Patienten ihre Attacken zu bestimmten 

Tageszeiten erleiden. Diese ausgeprägte Rhythmik hat zu der Theorie geführt, dass die 

biologische Uhr bei diesen Patienten möglicherweise fehlreguliert ist. Unsere innere 

biologische Uhr wird auf molekularer Ebene von mehreren wichtigen Genen gesteuert, die 

die Aktivität der Zelle abhängig von der Tageszeit koordinieren. Die Produktion von 

bestimmten Hormonen wie Melatonin, das den Schlaf-Wach-Rhythmus reguliert, ist z.B. in 

der Nacht höher. Das Intervall dieser inneren Uhr dauert normalerweise etwas mehr als 24 

Stunden, daher wird es auch als „circadianer Rhythmus“ (circa diem = ungefähr ein Tag) 

bezeichnet. Auf Körperebene werden die Uhren der verschiedenen Zellen und Organe von 

einer kleinen Gehirnregion synchronisiert, die unter anderem Informationen zu Tageslicht 

über die Augen erhält. 

Für diese Doktorarbeit habe ich das Erbmaterial von Cluster-Kopfschmerzpatienten und 

gesunden Probanden auf mögliche Risikofaktoren, sogenannte Genvarianten, untersucht. Tritt 

eine bestimmte Variante häufiger in Patienten auf als in Personen ohne Cluster-Kopfschmerz, 

so ist diese Genvariante vermutlich mit der Krankheit assoziiert. Ich habe Fokus auf solche 

Gene gelegt, die den Tag-Nacht-Rhythmus steuern, aber auch Gene untersucht, die eine 

Verbindung zu Auslösern (z.B. Alkohol) oder Behandlung von Cluster-Kopfschmerz haben. 

In einem umfassenden Screening von verschiedenen Genvarianten im gesamten Erbmaterial 

von Patienten und gesunden Probanden konnte ich mehrere neue Gene finden, die 

möglicherweise eine Rolle bei Cluster-Kopfschmerz spielen. Zusätzlich zu den genetischen 

Studien haben wir Daten einer Fragebogenstudie ausgewertet, um mehr über die Symptome, 

die Lokalisation und den Schweregrad der Schmerzen, die Häufigkeit und Länge der 

Kopfschmerzattacken, den Lebensstil, Auslöser sowie die Anwendung von Medikamenten 

bei Cluster-Kopfschmerzpatienten zu erfahren. Cluster-Kopfschmerzen treten häufiger bei 

Männern als bei Frauen auf, daher habe ich auch Unterschiede zwischen den Geschlechtern 

analysiert. Meine Untersuchungen zeigen, dass die meisten Patienten wiederkehrende 

Attacken in der Nacht zwischen 2:00 und 4:00 Uhr haben und dass Patienten, die rauchen 

oder früher geraucht haben, ein späteres Krankheitsdebüt haben als jene, die nicht rauchen. 

Bei dem Vergleich zwischen männlichen und weiblichen Patienten mit Cluster-Kopfschmerz 

zeigt sich, dass mehr Frauen als Männer einen nahen Verwandten mit der Diagnose Cluster-



Kopfschmerz haben, sie an längeren aktiven Phasen leiden und häufiger ein regelmäßiges 

Muster wiederkehrender Kopfschmerzattacken aufweisen. 

Diese Funde tragen zum besseren Verständnis dieser Krankheit bei und könnten dabei helfen, 

die Behandlung von Patienten zu verbessern oder sogar die Ursachen von Cluster-

Kopfschmerzen zu finden. 

 

 

  



 

 

ABSTRACT 

Cluster headache (CH) is a complex neurovascular disorder with a distinct circadian attack 

pattern. Although many aspects of the disease’s pathophysiology remain to be elucidated, it is 

likely caused by a combination of different genetic and environmental risk factors. Making 

use of an extensive CH biobank established by our lab, genetic material from patients and 

controls were screened for several single nucleotide polymorphisms (SNPs) in different 

candidate genes. In addition, gene expression was analyzed in fibroblast cell lines from 

patients and healthy controls. Using a hypothesis-free approach, a genome-wide association 

study (GWAS) was performed on the Swedish material as well as in a combined analysis 

with a CH cohort from the UK. To characterize the Swedish CH population in terms of 

clinical patterns and sex differences, two observational studies were conducted based on 

questionnaire data from CH patients. 

In study I, we could demonstrate a clear diurnal attack pattern for a majority of patients and 

that tobacco consumption delays the onset of CH. Pronounced gender differences were 

detected in study II, where we showed that a significantly higher proportion of female 

patients suffered from the chronic form of CH, had a positive family history for the disorder, 

and reported diurnal rhythmicity of their attacks to a larger extent than male patients. Because 

of evident circadian attack patterns in CH, study III-V focused on circadian rhythm genes. 

We found a link between one SNP in the hypocretin receptor 2 (HCRTR2) gene and the 

disorder, but could not confirm previously reported associations of other HCRTR2 SNPs with 

CH. However, a SNP in the core clock gene circadian locomotor output cycles kaput 

(CLOCK) was associated with CH and led to increased CLOCK gene expression. Another 

core clock gene, cryptochrome circadian regulator 1 (CRY1), included a variant that was less 

common in patients, and was more highly expressed in patients compared to controls.  

Alcohol, nitric oxide (NO), and calcitonin gene-related peptide (CGRP) are all vasodilators 

which may induce CH attacks, therefore genes connected to these molecules have been of 

interest in genetic studies of CH. The alcohol dehydrogenase 4 (ADH4) gene was previously 

linked to CH in smaller case-control studies, however in our much larger study VI, we could 

not confirm this association with ADH4. In study VII, we investigated SNPs in the different 

NO synthase (NOS) genes but could not identify a clear role for these variants in the disorder. 

In study VIII, we demonstrated a link between CH and a SNP in the receptor activity 

modifying protein 1 (RAMP1) gene, encoding a CGRP receptor component, as well as 

increased RAMP1 gene expression in CH patients compared to controls. The first-line 

prophylactic treatment for CH is verapamil, a calcium-channel blocker and vasodilator. The 

anoctamin 3 (ANO3) gene encodes for a calcium-activated ion channel, and in study IX we 

found an association between an ANO3 gene variant and CH. 

Previous GWAS on migraine have yielded two interesting SNPs in the Swedish migraine 

population. In study X, we reported that the variant in the metadherin (MTDH) gene was also 

associated with CH, while the variant in the PR/SET domain 16 (PRDM16) gene was 

migraine-specific. The first GWAS on CH was performed on a very small Italian cohort, and 



in study XI, we could not confirm the findings for PACAP receptor 1 (ADCYAP1R1), 

membrane metalloendopeptidase (MME), and a 14q21 variant. When performing a GWAS 

on our Swedish CH material in study XII, we detected two significant loci near the genes 

MER proto-oncogene, tyrosine kinase (MERTK) and special AT-rich sequence-binding 

protein 2 (SATB2), which could be consolidated in a UK CH cohort. 

These studies demonstrate an involvement of the circadian rhythm in the pathophysiology of 

CH, and revealed some possibly dysregulated pathways in relation to treatment of CH. The 

GWAS findings underline that there is a genetic component to CH which needs to be 

investigated further. 
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1 INTRODUCTION 

1.1 CLUSTER HEADACHE 

Cluster headache (CH) is classified as a neurovascular disease, characterized by strictly 

unilateral, severe pain attacks commonly located around one eye. The intensity of the pain is 

excruciating and the affected is usually unable to lie down or sit still. In fact, CH is 

notoriously called ‘suicide headache’ because the pain can be so severe that the suffering 

individual may attempt to end his or her life [1]. The head pain is often accompanied by a 

sense of restlessness and/or ipsilateral, autonomic symptoms, such as conjunctival injection, 

lacrimation, nasal congestion, or ptosis. The headache attacks last between 15−180 minutes 

and usually come in clusters, which last several weeks to months with a frequency of one 

attack every other day up to eight attacks per day. These active clusters are separated by 

remission periods lasting months to years where the affected is completely symptom-free. 

Depending on the length of the remission period, CH is divided into the two subtypes 

episodic CH (ECH) and chronic CH (CCH). In CCH patients, who make up 10−15% of all 

CH patients, the attacks occur for one year or longer without remission, or with remission 

periods lasting less than three months [2]. However, up to 33% of the patients shift from one 

subtype to the other during their lifetime [3, 4]. CH is diagnosed according to the guidelines 

of the International Classification of Headache Disorders (ICHD) (Box 1) [2]. The global 

prevalence for CH is between 0.05−0.1%, and it has been estimated that between 7−20% of 

the patients have a first- or second-degree relative also diagnosed with CH [5–7]. The age at 

onset is typically between 20−40 years and, interestingly, men are afflicted three times more 

often than women, although this ratio has shifted over the years [8]. This shift may be due to 

lifestyle changes in both men and women but could also be attributed to an increased 

recognition of the disease, especially in women [9]. Several studies have compared the 

clinical presentation of CH in male and female patients, and differences in age at onset, attack 

duration, pain location, associated symptoms, chronobiology, and comorbid conditions, such 

as depression, have been observed between the sexes [10–14]. 

 

Box 1: ICHD-3 diagnostic criteria for cluster headache 

A. At least five attacks fulfilling criteria B−D 

B. Severe or very severe unilateral orbital, supraorbital and/or temporal pain lasting 

15−180 minutes (when untreated) 

C. Either or both of the following:  

1. At least one of the following symptoms or signs, ipsilateral to the headache: 

− Conjunctival injection and/or lacrimation 

− Nasal congestion and/or rhinorrhoea 

− Eyelid oedema 

− Forehead and facial sweating 

− Miosis and/or ptosis 

2. A sense of restlessness or agitation 

D. Occurring with a frequency between one every other day and 8 per day 

E. Not better accounted for by another ICHD-3 diagnosis 
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A remarkable feature observed in CH is the clocklike rhythmicity by which the headache 

attacks often occur. In the vast majority of patients, 67−82%, the attacks recur at specific 

times of the day, predominantly at night between midnight and 4:00 am [15, 16]. Between 

41−56% of the patients additionally report circannual rhythmicity of their cluster periods 

[15–17]. Although many studies suggest a connection of the occurrence of headache bouts to 

photoperiods (length of daylight) and a number of patients have recurring cluster bouts during 

specific seasons or months on an individual level, there is not a distinct time of year that 

stands out [18, 19]. While several studies found most bouts to occur in two peaks at the time 

of the solstices during spring and autumn, others report one peak during months with the least 

daylight [15, 18–21]. All these studies concur that the fewest bouts arise during the summer. 

The pathophysiology of CH is largely unknown. Although the trigeminovascular system 

plays a central role during the headache attacks, there is no evidence that mere vascular 

changes lead to pain [22]. Neurotrophins, such as the brain-derived neurotrophic factor 

(BDNF), may be involved, as they are known pain mediators and modulators, and BDNF 

peripheral levels have been shown to be altered in CH patients [23]. Previously, it was 

believed that CH was a purely vascular disease. However, current research suggests that CH 

is rather a complex brain network disorder involving multiple cortical, subcortical, and 

brainstem regions. A number of studies were able to demonstrate widespread dynamic 

functional and structural changes in the brain of CH patients during different phases of the 

disorder [24]. At least three systems are hypothesized to be involved in the pathophysiology: 

the trigeminovascular system which is responsible for the pain perception, the cranial 

autonomic system which generates the observed autonomic symptoms, and the hypothalamus 

[25]. The anterior hypothalamus, including the suprachiasmatic nucleus (SCN), may be 

conductor for the striking circadian rhythmicity of the attacks, while the posterior 

hypothalamus possibly contributes to the restlessness that many CH patients experience 

during their attacks [26, 27].  

Several trigger factors have been reported for CH, of which alcohol is the most prominent. 

More than 50% of CH patients state that alcohol can elicit a headache attack during an active 

phase [15, 28–30]. Other less common triggers include stress (or relaxation after stress), 

weather changes (heat/cold), certain odors, bright lights, histamine, and the nitric oxide (NO) 

donor nitroglycerin [2, 15, 30–33]. 

 

1.2 LIFESTYLE AND COMORBIDITIES IN CLUSTER HEADACHE 

Regarding lifestyle habits, there is a large consensus that there are significantly more 

smokers/tobacco users among CH patients [15, 29, 34–36]. However, it is not clear whether 

smoking is a risk factor for CH or rather a form of self-medication. In one of our studies, we 

found that tobacco users had a significantly later disease onset than patients without any 

history of tobacco use which was confirmed by Rozen et al. [30, 37]. This suggests that these 

patients may possibly delay their CH onset by smoking. In older studies, it has also been 
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observed that CH patients have a higher tendency for alcohol abuse [29, 34]. These studies 

only included male patients, and recent studies could not confirm this observation. On the 

contrary, many patients report reducing their alcohol consumption drastically during an active 

bout [15, 30, 35]. There have been indications for an unhealthy lifestyle in CH patients with 

respect to weight, for example studies report a higher body mass index (BMI) compared to 

controls and obesity as an accompanying symptom in 12.1% of CH patients [36, 38]. 

Very few comorbidities have been found for CH suggesting this patient group to be rather 

healthy apart from their dire headache attacks. On the other hand, two recent studies report 

significantly increased sickness absence and disability pension days for CH patients 

compared to matched references [39, 40]. About 16% of CH patients also suffer from 

migraine, another primary headache disorder, and this is similar to the migraine prevalence in 

the general population [30, 41]. An increased risk of cardiovascular disease has been 

suggested for CH, but the results are conflicting [36, 42, 43]. Several studies have reported 

that CH patients are more likely to be diagnosed with depression, deviated septum, or 

dental/temporomandibular joint problems [14, 15, 36, 44, 45]. However, these reports need to 

be considered with caution since these may reflect previous misdiagnoses, or secondary 

diseases, rather than true comorbidities [43, 46, 47]. Interestingly, the prevalence of diabetes 

is reported to be lower in CH patients as compared to the general population [15, 43, 44]. It 

has also been proposed that CH patients may have a comorbidity with sleep disorders because 

of generally poor sleep quality and nocturnal headache attacks [48]. However, studies on, for 

example, sleep apnea have been opposing, and a temporal relationship between nocturnal 

attacks and rapid-eye movement (REM) sleep could not be confirmed [21, 49]. 

 

1.3 TREATMENT OF CLUSTER HEADACHE 

Since there are no treatments specifically developed for CH, patients either use common pain 

killers, such as paracetamol, ibuprofen, and aspirin, which rarely give sufficient pain relief, or 

they are prescribed migraine medication, for example triptans. CH and migraine share some 

pathological features, including activation of the trigeminovascular system, neurogenic 

inflammation, recurrence of headache attacks, lateralized pain, and associated autonomic 

symptoms [2, 50, 51]. However, in migraine these symptoms typically include nausea and 

vomiting rather than the previously mentioned autonomic symptoms for CH. In addition, 

migraine attacks last much longer than CH attacks, between 4−72 hours, and are generally 

less painful than CH [2, 52]. This fundamental difference in headache burden makes it 

challenging to treat CH in a similar way as migraine because CH requires fast-acting 

medication for immediate attack abortion. Yet, the majority of CH patients uses triptans as 

acute treatment and up to 70% report them to be effective [28, 30]. However, per 

recommendation the use of triptans is limited to a certain number of doses per month, 

depending on the route of administration. In addition, they can have considerable side effects, 

such as headache, chest or neck pain, fatigue, paresthesia, and coronary vasoconstriction [53]. 

Triptans act as serotonin receptor agonists on nociceptive trigeminal nerve endings and are 
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also potent vasoconstrictors [54]. Another commonly used, but not widely available, acute 

treatment is oxygen, with an efficacy in around 76% of all CH patients [28, 55]. The 

advantage with oxygen is that no or only minimal side effects are reported compared to 

triptans [56]. The mechanism of action and why oxygen is so effective specifically in CH is 

not yet fully understood, but one study suggests that it acts via cranial autonomic pathways 

rather than on trigeminal afferents [57]. For prophylactic treatment during cluster periods the 

most frequently used is verapamil, a calcium-channel blocker generally used to treat high 

blood pressure by dilating the blood vessels. Therefore, it cannot be used in patients with 

hypotension. Curiously, CH patients receive double the dose that is used in cardiovascular 

disease, possibly because access for verapamil to the brain is limited where it most likely acts 

in the hypothalamus [25, 58]. Other preventive treatments used by CH patients during a bout 

are corticosteroids, such as prednisolone, and lithium. The mechanisms of action are not clear 

for either of them, but they have been proven to be effective in a smaller portion of patients 

[28, 59, 60]. 

A recently developed treatment makes use of antibodies against calcitonin gene-related 

peptide (CGRP) or its receptor. CGRP is a neuropeptide and potent vasodilator with a variety 

of functions, including transmission of nociception in cerebral blood vessels and activation of 

the trigeminal system, [61, 62]. It is released by central as well as peripheral neurons and 

binds to a receptor complex consisting of calcitonin receptor-like receptor (CRLR), receptor 

activity-modifying protein 1 (RAMP1), and CGRP receptor component protein (CRCP) [63]. 

Several studies could link CGRP and its receptors to both migraine and CH, and 

demonstrated that anti-CGRP antibodies may prove to be a new effective preventive 

treatment for both disorders [64–67]. In addition, CGRP levels are increased in CH patients 

during an attack, and an infusion of CGRP could induce a CH attack in patients during the 

active phase [51, 68]. 

 

1.4 CIRCADIAN RHYTHM 

In a wide range of organisms, including cyanobacteria, plants, fungi, flies and mammals, 

biological activities are organized into daily cycles which are driven by an endogenous 

molecular clock [69]. This clock runs in cycles of roughly 24 hours, therefore it is also 

referred to as the circadian clock (circa diem = approximately one day). It operates 

independently of external cues, such as light, social behavior (including feeding), or 

temperature variations throughout the day [70]. However, the clock needs to be synchronized 

regularly by environmental stimuli to maintain this circadian rhythm in accordance with the 

natural light/dark cycle. 

In mammals, these environmental stimuli are processed centrally in the brain by the 

suprachiasmatic nucleus (SCN), located in the hypothalamus (Figure 1). The SCN is 

subdivided into a core and a shell region. The former is essential for coupling within the SCN 

which is needed for a coherent output signal from the SCN. This coupling becomes evident 
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during jet lag where the core can shift more quickly to the new light/dark cycle while the 

shell shifts only after receiving coupling signals from the shifted core. Hence, there is a lag in 

adjusting to a new time zone [71]. 

Figure 1. Brain regions important for the body’s internal clock 

Picture from © OpenStax 

Psychology 2e, 

https://openstax.org/details/bo

oks/psychology-2e, CC BY 4.0  

Figure 2. The circadian core clock transcriptional-translational feedback loop 

BMAL1, brain and muscle ARNT-like protein 1; CCGs, clock-controlled genes; CLOCK, 

circadian locomotor output cycles kaput; CRY, cryptochrome circadian regulator; E-box/D-

box, promoter elements; NPAS2, neuronal PAS domain protein 2; PER, period circadian 

protein homolog; REV-ERBs, nuclear receptor subfamily 1 group D members; ROR, retinoic 

acid receptor-related orphan receptor, RORE, ROR response element 

https://openstax.org/details/books/psychology-2e
https://openstax.org/details/books/psychology-2e
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The core region of the SCN receives afferent input from photosensitive retinal ganglion cells 

in the eyes via the retinohypothalamic tract. When the eyes are exposed to a light stimulus, 

the axons of these cells release glutamate and pituitary adenylate cyclase-activating 

polypeptide (PACAP), which enhances the effect of glutamate, at synaptic contacts with SCN 

neurons. Glutamate triggers membrane depolarization and calcium influx in the SCN core 

cells which triggers a signaling cascade leading to vasoactive intestinal peptide (VIP) release 

in the synaptic cleft between SCN core neurons and shell neurons, and ultimately to the 

transcription of genes, such as PER1 and PER2 (period circadian protein homolog 1 and 2) 

which are directly involved in the core clock feedback loop [72]. By this mechanism, phase 

delays and phase advances can be induced in order to calibrate the endogenous clock to the 

external environment [71].  

After receiving input, the SCN sends efferent projections to local primary targets, such as the 

lateral hypothalamus (site of orexinergic neurons), the pineal gland (site of melatonin 

release), the periventricular nucleus and the nucleus of the vagus nerve (connections to the 

autonomic system), and the pituitary gland (master gland of hormone secretion) [73, 74]. 

What is more, the SCN regulates the hypothalamic-pituitary-adrenal (HPA) axis, a major 

neuroendocrine system which modulates, for example, stress response and releases 

glucocorticoids like cortisol in a circadian fashion [75]. In turn, the HPA axis communicates 

with the circadian system [76]. Interestingly, it has been shown that not only endogenous but 

also external glucocorticoids, such as prednisolone, suppress circadian oscillations in the 

SCN as well as in peripheral tissues [77, 78]. In addition to photic input, there is a non-photic 

regulation of circadian rhythms via projections from the serotonin-containing raphe nuclei in 

the midbrain to the SCN. When the organism is exposed to light, serotonin released inside the 

SCN can, for instance, block or modulate the resetting of circadian oscillations at subjective 

night, i.e. while the organism is kept in darkness [79].  

Most cell types and tissues have their own circadian rhythm. The SCN plays a crucial role in 

coordinating circadian rhythmicity by synchronizing the independent cellular clocks in the 

brain and peripheral tissues. It has been shown that in the absence of the SCN, the rhythmic 

oscillations dampen out in most tissues [80]. This strongly underlines the pacemaker function 

of the SCN and its importance in maintaining the circadian rhythm within the organism. On a 

cellular level this rhythm is controlled and maintained by five core clock protein families 

which are encoded by CLOCK (circadian locomotor output cycles kaput), NPAS1-4 

(neuronal PAS domain protein 1-4), BMAL1/2 (brain and muscle ARNT-like protein 1/2), 

CRY1/2 (cryptochrome circadian regulator 1/2), and PER1-3 in humans. In a negative 

feedback loop, CLOCK, or its paralog NPAS, and BMAL1 form heterodimers and activate 

transcription of other genes, including PER and CRY, by binding to specific promotor 

elements called E-boxes. The protein products, PER and CRY, dimerize and inhibit their own 

transcription by binding to the CLOCK/BMAL1 complex (Figure 2) [74, 81]. Additional 

regulators of the molecular clock are two nuclear receptor families encoded by REV-ERB-

alpha/beta, also called NR1D1/2 (nuclear receptor subfamily 1 group D member 1/2), and 

RORA/B/C (retinoic acid receptor-related orphan receptor A/B/C). In a second feedback 
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loop, REV-ERBs are activated by CLOCK/BMAL1 and in turn repress BMAL1 expression, 

competing with RORs, which activate BMAL1, for binding at the BMAL1 promoter [82]. 

There are several studies showing relevance of circadian timing in disease. For example, 

transgenic mice with a mutant Clock gene develop metabolic syndromes. Acute sleep 

deprivation, as seen in shift workers, can alter circadian clock gene expression in peripheral 

tissue [83]. What is more, this circadian disruption is associated with increased risk for 

metabolic dysfunction, cardiovascular disease, and cancer [84]. It is suggested that SCN 

function is impaired in patients with disorders of the nervous system, such as Alzheimer’s 

disease, schizophrenia, Huntington’s disease, and bipolar disorder [85–88]. In addition, 

several clock genes, including CRY2, NR1D1, PER2, BMAL1 and NPAS2, have been 

implicated in psychiatric disorders, for example depression, bipolar disorder, psychosis, and 

seasonal affective disorder [89–92]. 

 

1.5 CIRCADIAN RHYTHM INVOLVEMENT IN CLUSTER HEADACHE 

It has long been proposed that circadian rhythm has a role in CH. Not only do CH patients 

generally have headache attacks at the same time every day during a cluster period, studies 

have also shown that the hypothalamic region, which is crucial for the central regulation of 

the circadian rhythm, is activated during these attacks [93]. Interestingly, a circadian 

rhythmicity in pain thresholds of the nociceptive flexion reflex could be demonstrated in 

ECH patients [94]. Furthermore, a lacking habituation of the trigeminal reflex was observed 

in CH patients which could be driven by hypothalamic dysfunction during a bout [95]. 

Another study demonstrated that the modulation of nociceptive input is affected by the 

activation of hypocretin (orexin) receptors 1 and 2 (HCRTR1 and HCRTR2) in the posterior 

hypothalamus [96]. These receptors are activated by neurotransmitters called orexins which 

are selectively synthesized in the hypothalamus and regulate different neuroendocrine and 

autonomic functions, such as the circadian sleep/wake cycle process or feeding behavior. In 

addition, the circadian secretion of melatonin and cortisol was altered, and abnormal levels of 

the SCN neuropeptide VIP were found in CH patients [62, 97]. 

Several treatments that are used as prophylactic treatment in CH with variable efficacy have 

been shown to affect the circadian system. For example, corticosteroids and melatonin are 

believed to reset the body clock [98, 99]. Lithium lengthens the circadian period and 

enhances PER2 expression, while valproic acid shortens the circadian period [100]. In mice, 

verapamil appears to lead to a dose-dependent period-shortening and to altered expression of 

several clock genes, including Clock, Bmal1, Per3, and Cry2, in the trigeminal ganglion and 

hypothalamus, but not the SCN [101]. 
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1.6 GENETICS OF CLUSTER HEADACHE 

It is hypothesized that CH is a complex genetic disorder and, similar to migraine, genetic 

factors likely influence the risk of developing CH [102]. There are few studies on the 

heritability of CH, but it has been established that having a first- or second-degree relative 

diagnosed with CH increases the risk of also developing the disease [103]. One study 

estimates CH heritability to be h2 = 0.26, but because only 2.3% of the patients in the cohort 

reported familial occurrence, this heritability is probably an underestimation [104]. It is not 

entirely clear how familial CH is inherited, but a majority of studied pedigrees are consistent 

with an autosomal dominant pattern [105]. Interestingly, two systematic reviews on the 

family history in CH detected a significantly higher preponderance of familial CH in females 

[105, 106]. 

Although CH research has just recently expanded tremendously, there have been large efforts 

to increase insights into the genetics of CH [107]. Several candidate genes have been 

proposed, including the previously mentioned HCRTR2, PER3, CLOCK as well as ADH4 

(alcohol dehydrogenase 4), NOS (nitric oxide synthase), CACNA1A (calcium voltage-gated 

channel subunit alpha1 A), and MTHFR (methylenetetrahydrofolate reductase gene). Many 

studies have focused on HCRTR2, and while several studies reported an association of the 

exonic variant rs2653349 with CH, others could not confirm these results [108–111]. 

Regarding other circadian clock genes, no association for PER3 was found, and for CLOCK 

the results are opposing [112–115]. Because alcohol is such a pronounced trigger for CH 

attacks, the ADH4 gene has been investigated, and results vary between different study 

cohorts [116–118]. Nitric oxide is a potent vasodilator, therefore it has been hypothesized that 

dysfunctional NOS could play a role in CH. However, a strong genetic link could not be 

confirmed so far [119]. Studies reported associations between migraine and the genes 

CACNA1A and MTHFR, but these associations were not found for CH [120, 121].  

Another approach is to look at genetic variants which might affect treatment efficacy. A 

common variant in GNB3 (G protein subunit beta 3) is suggested to modulate responder rate 

to triptans in CH patients [122, 123]. A study on differential gene expression in CH patients 

responding to lithium showed the genes NR1D1 and RBM3 (RNA binding motif protein 3) to 

be significantly altered in CH patients [124]. RBM3 is essential for the temperature-entrained 

circadian gene expression. 

Large genetic screenings and hypothesis-free approaches for CH have been scarce. However, 

for migraine, which is much more common than CH, several genome-wide association 

studies (GWAS) and meta-analyses have been published [125–129]. A GWAS on Swedish 

migraine patients could replicate associations with MTDH (metadherin) and PRDM16 

(PR/SET domain 16) [130]. MTDH is involved in angiogenesis but even has a role in the 

glutamate pathway [131]. The potential function of PRDM16 in migraine is still unclear, but 

it has been reported that PRDM16 may be associated with triptan response [132]. Another 

interesting gene discovered via genome-wide studies in migraine is FHL5 (four and a half 

LIM domains 5) which encodes a transcription factor activating cAMP-responsive elements 
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CREM and CREB with a role in synaptic plasticity and memory formation [129]. Because of 

some shared features in migraine and CH, it is possible that some of these genes may also be 

involved in the pathophysiology of CH. In 2016, the first GWAS on CH has been published 

for a small sample of 99 patients and 360 controls [133]. This Italian study suggests a role for 

the PACAP receptor 1 gene ADCYAP1R1 and the neprilysin gene MME in CH, both of which 

have a pivotal role in pain processing. However, larger studies must confirm these results. 

The challenge in genetics research is the discrepancy between different cohorts because the 

frequency of genetic variants and the impact of genetic risk and protective factors can vary 

immensely between populations in different geographic locations. Another concern 

introduced by the low incidence of CH has been to assemble enough patients to perform 

genetic screening with sufficient statistical power.  

In conclusion, many genetic studies point towards the involvement of genetic components in 

the etiology of CH, although more and larger studies are needed in order to conclude on the 

importance of specific variants in relation to CH. 
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2 RESEARCH AIMS 

Multiple genetic factors can combine in different ways to increase or decrease the risk for 

disease. The larger objective of this research project was to identify some of these factors for 

CH in order to increase the understanding of its pathophysiology. The three main aims of this 

thesis were to: 

1. Identify genetic markers and candidate genes associated with CH 

2. Characterize cellular mechanisms and expression of candidate genes as well as how 

genetic markers affect the normal function of these genes 

3. Characterize clinical manifestations and circadian rhythm in relation to CH and 

treatment. 

These objectives were achieved by using and further extending a unique Swedish CH 

biobank with biological tissue and clinical data from patients with CH as well as from 

neurologically healthy controls. It is hypothesized that CH is a complex genetic disorder and 

that multiple genetic factors, in combination with environmental factors, will modify the risk 

for the disease. To test this hypothesis, genetic risk factors were identified and validated by 

characterizing cellular mechanisms and expression of relevant genes. Additionally, it was 

studied to which degree identified genetic markers affect the normal function of these 

candidate genes in biological samples from CH patients, in active as well as in remission 

periods, and in controls. For example, differences in mRNA folding, transcription factor 

binding prediction, or mRNA expression levels were investigated. Today, little is known 

about trigger factors for CH attacks, and a systematic characterization of active and remission 

periods is lacking. One aspect of the general objective of this thesis is the involvement of 

circadian rhythm regulation in relation to CH as well as treatment. To address this, 

specifically genes regulating circadian rhythm were characterized. Results from all of these 

studies may aid the development of more efficient drugs with fewer side effects as well as 

more individualized treatments. 
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3 MATERIALS AND METHODS 

3.1 MATERIALS 

The materials used for the different projects of this thesis are part of a Swedish CH biobank 

which was established by the lab in 2014. The biobank includes DNA samples, primary 

fibroblast cell lines, and extensive questionnaire data from validated CH patients as well as 

neurologically healthy control individuals. The study material was obtained after approval of 

the local ethics committee in Stockholm and informed consent given from both patients and 

controls. CH patients were recruited at the neurology clinics of the Karolinska University 

Hospital, Stockholm, Sweden, as well as in collaboration with neurologists at clinics in other 

parts of Sweden. A minority of patients and controls contacted us via advertisements for the 

study. Each diagnosis was validated by an experienced neurologist according to the 

International Classification of Headache Disorders 3rd version beta (ICHD-3b) [134]. A 

majority of the controls for the genotyping studies were anonymous, healthy blood donors 

between the age of 18 to 60 years from the Stockholm area. Only sex was known for these 

individuals. 

Patients were asked to give a blood sample either at the outpatient clinic or at a health center. 

In connection to the visit at the clinic, the patient was also asked to fill in an extensive 

questionnaire regarding clinical features, treatment, triggers, and lifestyle. Patients giving a 

blood sample at the health center were able to send their completed questionnaire by mail. A 

subset of patients and controls also had a skin biopsy taken at the clinic which was used for 

culturing fibroblast cell lines. 

For the GWAS, additional genotype data from neurologically healthy controls was obtained 

from the Immunomodulation and Multiple Sclerosis Epidemiology (IMSE) study at 

Karolinska Institutet. 

 

3.2 METHODOLOGY 

3.2.1 Observational Studies 

The extensive questionnaire data from the CH biobank were used to perform cohort studies 

on the Swedish CH population in order to clinically characterize patients and subgroups of 

patients, such as those with CCH versus ECH, or male versus female patients. In addition, the 

effects of different lifestyle factors, treatments, and triggers on clinical features were 

investigated by statistically comparing the different subgroups. 
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3.2.2 DNA Extraction 

Blood samples were stored at –20°C prior to DNA extraction. For DNA purification from 

human whole blood, the Gentra Puregene Blood Kit (QIAGEN, Hilden, Germany) was used 

according to the manufacturer’s instructions with slight modifications: Instead of centrifuging 

the DNA threads to form a pellet, the threads were collected using an inoculation loop, 

washed in ice-cold 70% ethanol, air-dried and then added to a cryotube with DNA Hydration 

solution (10 mM Tris, 1 mM EDTA, pH 7–8). In order to achieve RNA-free DNA, the 

samples were incubated with RNase A enzyme (QIAGEN, Hilden, Germany) after cell lysis. 

The DNA samples were incubated with gentle shaking at room temperature overnight up to 

two days to completely dissolve the DNA threads. DNA concentration was measured with 

the NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies LLC, Wilmington, DE, 

USA). As part of the CH biobank, the DNA samples were stored at –20°C. 

3.2.3 Genotyping 

The SNPs analyzed in the present studies were chosen because they were located in genes of 

interest and had either been previously investigated in CH or were associated with treatment 

used in CH, other brain disorders, or relevant conditions. For genotyping of single variants in 

candidate genes, two different methods were applied. For the majority of SNPs, quantitative 

real-time polymerase chain reaction (qPCR) was performed using predesigned TaqMan® 

SNP genotyping assays and TaqMan® genotyping master mix (Thermo Fisher Scientific, 

Waltham, MA, USA) on an ABI 7500 FAST Real-Time PCR instrument (Applied 

Biosystems, Foster City, CA, USA). This genotyping method is based on the use of two 

fluorescently labeled probes specifically designed for each allele of the SNP of interest in 

addition to the forward and reverse primers. For most assays, it was sufficient to use only half 

of the assay volume for each reaction, the missing volume was replaced by water (total 

volume of 10 μL per well on a 96-well plate). 2–5 ng dried DNA was used for each reaction, 

water served as negative control on each plate. The cycler was generally programmed as 

follows: pre-PCR read at 60°C and enzyme activation at 95°C for 10 minutes, 40–55 cycles 

of 95°C for 15 seconds and 60°C for 1 minute, and post-PCR read at 60°C for 1 minute. 

Allelic discrimination was determined using the 7500 software v2.3 supplied with the 

instrument. 

Where the TaqMan® assays did not yield reliable results, a second method called 

pyrosequencing was used for validation. Pyrosequencing is a technique where a short DNA 

fragment of approximately 10 bp is sequenced by detecting the energy that is released when a 

nucleotide is incorporated into a predefined DNA strand [135]. Primers were designed using 

the software Primer3 or ApE v2.0.49, with melting temperatures between 58–60°C [136]. 

Primer folding energy, optimally higher than –2 kcal/mol, was assessed by the web-based 

RNA/DNA folding software Mfold [137]. To confirm specificity, the online NCBI Blast tool 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used. DNA fragments were amplified by PCR 

using one regular and one biotinylated primer. The biotinylated PCR products were fixed 

onto streptavidin-coated Sepharose® beads (GE Healthcare, Uppsala, Sweden) using a 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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PyroMark® vacuum prep tool (Biotage AB, Uppsala, Sweden), then denatured and purified 

in 70% ethanol, 0.2 M NaOH, and washing buffer according to manufacturer’s instructions. 

Finally, the single-stranded PCR fragments were annealed to the pyrosequencing primer for 2 

minutes at 80°C and then sequenced using PyroMark® Gold reagents (QIAGEN, Hilden, 

Germany) on a PSQ 96 system (Biotage AB, Uppsala, Sweden). The results were manually 

reviewed and analyzed with the software provided with the instrument.  

3.2.4 Fibroblast Cell Culture 

Skin biopsies were taken from the inner side of the upper arm from each study participant 

after a topical anesthetic was applied. A 2x4-mm skin piece was removed and placed in a 

tube with chilled PBS until further processing. To establish fibroblast cultures from skin, a 

slightly modified protocol by Takashima was adopted [138]. The skin biopsy was cut into 

several smaller pieces without removing the subcutaneous tissue and placed in the center of a 

small petri dish with a sterile coverslip on top. 5 mL growth medium (85% DMEM, 13% 

FBS, 1% 1 M HEPES buffer solution, and 1% 100x penicillin/streptomycin solution) was 

added before the petri dish was placed in a humidified incubator (37ºC, 5% CO2). When 

confluency was reached, the fibroblasts were detached with trypsin/EDTA and passaged to 

larger culture flasks. After the P2 generation reached confluency, the fibroblast cells were 

frozen in 10% DMSO/FBS with 500,000 cells per cryotube, and as part of the CH biobank 

stored at –150°C until further use. 

3.2.5 mRNA Expression Studies 

The frozen fibroblast cell lines were quickly thawed and transferred to a large culture flask 

with growth medium. When P3 reached about 80% confluency, the cells were given a serum 

shock to reset the circadian clock. By using this method, it can be assured that the cells are 

synchronized when looking at the gene expression, especially of molecular clock genes. 

Normal growth medium was exchanged with a starvation medium only containing 0.5% FBS. 

After 24 hours, the shock medium containing 30% FBS was given and this time point is 

marked as zeitgeber (ZT) 0. The high FBS medium was exchanged for normal growth 

medium after 2 hours (ZT+2). Cells were then harvested at the time point of interest. For that, 

the fibroblasts were detached via trypsinization and centrifuged at 500 × g for 5 minutes in a 

15-mL tube. The supernatant was removed, and the cell pellet was immediately frozen on dry 

ice and then kept at –150°C until further processing. RNA extraction was performed using the 

RNeasy Mini Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s instructions. 

RNA concentration was measured using the NanoDrop ND-1000 and the RNA was 

immediately frozen at –80°C. Using the QuantiTect Reverse Transcription Kit (QIAGEN, 

Hilden, Germany), the RNA was converted to cDNA according to the manufacturer’s 

instructions. The cDNA was then used to perform gene expression studies using qPCR and 

SYBR Green technology. Depending on the study, different instruments were used for 

carrying out the qPCR; either the ABI 7500 FAST Real-Time PCR instrument (Applied 

Biosystems, Foster City, CA, USA) or the Bio-Rad CFX384 Touch Real-Time PCR 

Detection System (Bio-Rad Laboratories Inc., Hercules, CA, USA). 
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3.2.6 Genome-Wide Association Study 

CH patients were genotyped at the SNP&SEQ Technology Platform, Uppsala, Sweden, and 

controls from the IMSE study were genotyped at deCODE genetics, Reykjavik, Iceland. For 

both materials the Illumina Infinium 24v1.0 Global Screening Array (Illumina Inc., San 

Diego, CA, USA) was used. Before the two datasets were merged, the control data was lifted 

over from the GRCh38/hg38 reference genome to the GRCh37/hg19 build, so that the 

positions of all markers matched between the control and the patient dataset. Quality control 

(QC) was performed according to standard guidelines using the open-source whole genome 

association analysis toolset PLINK v1.9 [139, 140]. QC included filtering for low genotyping 

call rate per variant/individual, monomorphic variants, deviation from the Hardy-Weinberg 

equilibrium (HWE), heterozygosity, and duplicates, as well as a principal component analysis 

(PCA) to control for population stratification. Prior to imputation the HRC/1000G Imputation 

Preparation and Checking Tool v4.2.9 (https://www.well.ox.ac.uk/~wrayner/tools) was 

applied to check for errors related to strand, reference allele assignment, and allele frequency 

differences against the Haplotype Reference Consortium panel v1.1. Subsequently, the 

merged dataset was phased using Eagle v2.3 and imputed on the Michigan imputation server 

[141]. Single variant association testing was performed using the R package “SAIGE” 

implementing the Scalable and Accurate Implementation of Generalized mixed model which 

accounts for case-control imbalance and sample relatedness [142]. Monomorphic SNPs and 

markers with an imputation quality score R2 < 0.3 or minor allele frequency (MAF) < 0.05 

were excluded from further analysis. Plots were generated using the R package “qqman” and 

the web-based plotting tool LocusZoom [143, 144]. A quantile-quantile (Q-Q) plot, mapping 

expected against observed p-values obtained from the association analysis, shows that the 

values follow a straight line and then form a tail at the end with high p-values, illustrating true 

disease associations (Figure 3). In addition, the genomic inflation factor of λ = 0.99 indicates 

that our data is of high quality and not influenced by, for example, population structure, 

relatedness, or genotyping errors. 

In addition, for a mega-analysis the Swedish dataset was combined with a CH dataset from 

the UK after separate imputation. SAIGE association analysis was run on the merged material 

and variants with R2 < 0.3 and MAF < 0.01 were excluded. A lower MAF threshold was 

chosen here because of the considerably larger sample size of the merged material. Several 

downstream analyses, including functional variant annotation and prediction, gene-based 

association testing, gene expression and expression quantitative trait loci (eQTL) analysis, as 

well as a pathway analysis, were performed on the combined material. Reported metrics 

include the combined annotation dependent depletion (CADD) score, where scores >10 are 

predicted to be the 10% and >20 the 1% most deleterious possible substitutions in the human 

genome, as well as the genomic evolutionary rate profiling (GERP) score, with scores >2 

indicating high evolutionary constraint [145, 146].  

  

https://www.well.ox.ac.uk/~wrayner/tools
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Figure 3. Q-Q plot for the Swedish cluster headache association analysis 

Quantile-quantile (Q-Q) plot showing the observed p-values of 5,427,757 markers versus 

expected p-values. The continuous line indicates the distribution of variants under the null 

hypothesis, i.e. when there are no genetic associations. Genomic inflation factor is λ = 0.99. 

3.2.7 Statistical and In Silico Analyses 

Power calculations were performed with the power and sample size calculation software PS 

v3.0, and deviation from HWE was tested for using the previously available Online 

Encyclopedia for Genetic Epidemiology Studies software [147, 148]. Data from the 

observational studies, genotyping, and mRNA expression studies were analyzed with 

GraphPad Prism v5.04 or v8.0.1 for Windows (GraphPad Software, San Diego, CA, USA, 

www.graphpad.com), depending on the study. Details on which tests were used can be found 

in the individual publications. For some studies, a logistic regression analysis with sex as 

covariate was performed using PLINK v1.07 [140]. For haplotype analysis of genotyping 

results, either PLINK v1.07 or HaploView v4.2 was used, depending on the study [149]. In 

HaploView, permutation testing with 10,000 permutations to correct for multiple testing was 

run in addition to the multimarker analysis. 

Secondary mRNA structure and folding energy were predicted using Mfold to evaluate 

possible effects of disease-associated variants on, for example, RNA stability [137]. A partial 

RNA sequence of the gene of interest, consisting of the minor allele of the SNP and a 

flanking sequence of 70 nucleotides on each side of the SNP, was analyzed and compared to 

the RNA sequence containing the major allele. To evaluate the effect of associated variants 

on predicted transcription factor binding site affinity, we used the web-based computational 

tool SNP2TFBS [150].  

http://www.graphpad.com/
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3.3 ETHICAL CONSIDERATIONS 

Because this project had a focus on human genetics, and human material was collected for the 

presented studies, the use of animals for experimental research could be averted. In addition, 

there are currently no satisfying animal models for headache.  

Most of the experiments involved human DNA or skin cell samples, which were obtained 

from the individual causing only minimal discomfort. There are some ethical questions that 

need to be addressed when working with human material and questionnaire data. The ethical 

permit allows us to contact specialists across Sweden in order to receive information on CH 

patients. Each individual recruited to the study is informed about the objective of the project 

and the possibility to terminate participation at any time, and they give consent to 

participating in the study before we proceed with the sample collection. The individual fills 

out a questionnaire and we take blood and/or skin samples by minimally invasive standard 

procedures which do not harm the individual. 

Confidentiality of personal information is a major concern when collecting this type of data, 

therefore the data must be stored securely with only few authorized persons having access, in 

accordance with GDPR (General Data Protection Regulation). Each study participant is 

assigned a sample identifier, and during handling and analysis of the data, researchers will 

only work with this sample identifier. This way, the individual data, such as name, personal 

number, and contact information, cannot be tracked by unauthorized people. In addition, only 

relevant information that is needed for the study was collected. 

An often-raised ethical dilemma is the possibility of finding a pathogenic high-penetrance 

mutation in the material. Because researchers are not genetic counselors and should adhere to 

their obligation of handling all data anonymously, the individual should not be informed 

about the increased risk of disease which would lead to a breach of anonymity. Additionally, 

by informing the individual their choice of whether or not they want to know about the risk is 

taken away. In this research project, the investigated genetic variants are more or less 

common in the general population and represent risk factors rather than disease-causing 

mutations. CH is most likely a complex genetic disorder with low penetrance, and the 

combination of different genetic factors, which increase the risk for this disorder, needs yet to 

be elucidated. Hence, there is no need to pass on such information to study participants. 

In summary, all ethical concerns for this project have been evaluated carefully by the research 

group and the regional ethical review board. Because CH is such an understudied disorder, it 

is important to do research in this field. Considering that participation in the study bears no 

health risks and data integrity is well maintained, we see this study as fully justified and as a 

step closer to improving the health of CH patients. 
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4 RESULTS 

4.1 OBSERVATIONAL STUDIES (STUDY I AND II) 

In order to get a better understanding of the clinical burden of CH, we have performed two 

observational studies on questionnaire data from CH patients.  

In study I, we have analyzed data from 500 patients, of which 68% were male and 11% 

suffered from the chronic subtype. Patients with CCH had later disease onset of about 4.5 

years on average than patients with ECH. Similar to previous studies on lifestyle of CH 

patients, we could confirm that there was a larger proportion of smokers among patients 

compared to the general Swedish population; the same was found for the use of snus (snuff) 

which is a popular tobacco product in Sweden. Interestingly, CH patients currently using or 

with a history of using tobacco (cigarettes or snus) had a delayed disease onset by almost 

three years on average compared to those who did not smoke or consumed snus. Tobacco use 

did not differ between ECH and CCH patients, however we could show that CCH patients 

consumed much less alcohol than ECH patients. When asked about possible trigger factors 

for their attacks, alcohol was the most prominent for all patients, followed by stress, 

weather/temperature, triggers related to food/drink, and relaxation/sleep. Significantly more 

CCH patients slept less than five hours per night than patients with ECH, and regarding 

chronotype, we found that more CCH than ECH patients were larks (morning persons). Two 

thirds of the patients reported that their attacks may occur at specific times of the day, and the 

most stated time interval for attack arrival was 02:00–04:00 at night (Figure 4).  

 

Figure 4. Distribution of recurring attacks in cluster headache patients  

 

Attack distribution over 24 hours divided in two-hour intervals for 317 cluster headache patients who reported 

diurnal rhythmicity (more than one interval could be chosen). The remaining 183 patients did not exhibit a 

diurnal attack pattern (no rhythmicity). 

Figure adapted and slightly modified from Steinberg et al. (Cephalalgia, 2018) [30] 
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Regarding treatment, there was a trend for a more frequent use of acute treatment, namely 

sumatriptan injections, in episodic compared to chronic patients. Not surprisingly, 

significantly more CCH patients used prophylactic treatment than patients with ECH. 

Verapamil was used most by these two patient groups, whereas lithium and glucocorticoids 

were slightly more common among chronic patients, and the serotonin antagonist pizotifen 

was more commonly used by episodic patients. 

For this study, we developed a cluster headache severity scale (CHSS) taking into account the 

attack duration and number of attacks per day during a bout as well as the bout duration; the 

more frequent or longer the attacks and bout, the higher the CHSS score. Not unexpectedly, 

CCH patients had a much higher mean score than ECH patients. In addition, there was a 

significant difference between male and female patients with women having a higher CHSS 

mean score than men. Patients who exhibit a diurnal attack pattern had a lower CHSS mean 

score than those who did not experience diurnal rhythmicity for their attacks. From the CHSS 

score, we defined a subgroup of CH patients with maximum severity (CHMS). When 

comparing the CHMS to the non-CHMS group, we could detect similar differences as 

between chronic and episodic patients, namely a later disease onset, greater use of 

prophylactic medication, higher number of alcohol abstainers, and more patients sleeping less 

than five hours at night. 

Study II included 874 patients and focused on gender differences in CH. Similar to the first 

study, the male to female ratio was 2:1. Men and women did not differ in age at disease onset, 

although a higher proportion of women than men seemed to have an early onset below the 

age of 20 years. The female CH population was generally younger than the male patient 

group at the start of study participation, and when looking at the age distribution of CH 

patients, the male to female ratio increased with age (Figure 5). As has been reported before, 

significantly more female than male CH patients had a close relative who also suffered from 

CH, so although more men are diagnosed with CH, women appear to have a higher heredity 

for the disease. In addition, the proportion of female patients with CCH is higher than for 

male patients, which is reflected by significantly longer cluster bouts in women. Female CH 

patients more often used prophylactic treatment than men, and this difference was only 

significant for episodic patients, whereas male and female CCH patients used preventive 

treatment with similar frequency. There was no difference in the perception of pain; for both 

sexes CH attacks were rated close to unbearable. However, associated symptoms like 

drooping eyelid and restlessness were more common in females than in males. 

Because of our interest in circadian rhythm in relation to CH, we investigated differences in 

chronobiology between male and female patients. A higher number of women with CH 

experienced a diurnal attack pattern compared to men. Although half of all CH patients 

reported to have active bouts at certain times of the year, the sexes did not differ in annual 

rhythmicity. Regarding chronotype, there was an indication of eveningness in men and 

morningness in women. Studies on the general population have shown that this preference 

may change over time, therefore we also looked at the age distribution for the different 
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chronotypes. For middle-aged and older groups, the CH cohort resemble the general 

population, however for the age group below 35 years, both male and female patients tended 

towards eveningness which contradicts findings indicating that younger women rather are 

morning persons. Analysis of nocturnal sleep shows that male and female patients differ in 

the amount of sleep they get. Specifically, we found that more women than men slept for less 

than five hours per night. 

Similar to the general population, more female than male CH patients were also diagnosed 

with migraine. In an attempt to compare the prevalence of migraine in our CH cohort to the 

general Swedish population, we found in this study that CH patients may have an increased 

risk for suffering from migraine in addition to CH. 

 

Figure 5. Age distribution in male and female cluster headache patients 

 

 

Male and female patients subdivided by cluster headache subtype for (A) age at disease onset, 

and (B) age at study recruitment. Male to female (M:F) ratio is stated for each age group in B. 
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We asked patients to list trigger factors for their CH attacks in a free-text answer, which have 

been mentioned in study I. For several of these triggers, there was a difference in frequency 

between male and female patients, for example alcohol and food or non-alcoholic beverages 

were more common trigger factors in men, while stress/worry, weather/temperature, and lack 

of sleep were more likely to elicit an attack in women. 

When studying different lifestyle factors in our CH cohort, we found that the BMI for male 

patients was significantly higher than for the general male population, while no such 

difference could be seen for females. As indicated in the first study, CH patients have a 

higher tobacco use than the general population, and this is true for both sexes. Especially 

smoking in female patients is exceptionally high, which is highlighted by the fact that women 

in the general population smoke significantly less than men, while female and male patients 

smoke equally much. For alcohol consumption, we were unable to do a direct comparison to 

the general population, but generally we could observe that both male and female CH patients 

were to a larger extent abstaining from alcohol compared to the general population. 

 

4.2 GENES RELATED TO CIRCADIAN RHYTHM (STUDY III−V) 

Due to the striking rhythmicity of CH attacks, candidate genes related to circadian rhythm 

have been of specific interest for this thesis. A list of genetic variants in clock genes that were 

studied here and were associated with CH in Sweden is presented in Table 1.  

 

Table 1. Significant variants in circadian rhythm-related genes 

Gene SNP MAF Ctrl % MAF CH % OR (95% CI) p-value 

HCRTR2 rs3122156 29.9 25.9 0.82 (0.68−0.99) 0.042 

CLOCK rs12649507 30.1 35.6 1.29 (1.08−1.54) 0.007 

CRY1 rs8192440 42.0 36.7 0.80 (0.68−0.94) 0.006 

SNP: single nucleotide polymorphism; MAF: minor allele frequency; Ctrl: controls; CH: cluster headache; 

OR: odds ratio; CI: confidence interval; p-value < 0.05 was considered significant. 

 

One of the most studied candidate genes in CH is HCRTR2 with conflicting results. We 

investigated three SNPs, rs3122156, rs2653342, and rs2653349, in this gene and could not 

consolidate association of these variants with CH (study III). There was a trend for 

significance for rs3122156, where the minor allele was more common in controls than in 

patients, suggesting a protective effect of this variant. However, this trend did not hold after 
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correction for multiple testing using Bonferroni correction. A haplotype analysis of the three 

SNPs revealed a significant haplotype for CH which is most likely driven by the rs3122156 

variant, as it was again more common in control individuals than patients. After performing 

permutation testing, another way to correct for multiple testing by resampling, this haplotype 

lost significance. An in silico analysis on the effect of the exonic HCRTR2 variant rs2653349 

on the RNA structure pointed to slight changes in predicted folding energy of HCRTR2 

mRNA and may therefore affect HCRTR2 mRNA stability. 

Three SNPs in the CLOCK gene that were either implicated in diurnal preference 

(rs1801260) or sleep duration (rs11932595, rs12649507) were screened for in the Swedish 

CH material and compared to controls (study IV) [151, 152]. The minor allele of the 

rs12649507 variant was significantly more common in patients than in controls, and the MAF 

was even higher in a subset of patients reporting diurnal rhythmicity of their attacks. A 

haplotype containing the major allele of each of the three SNPs was much more common in 

controls than patients, and this difference was even more significant than the association with 

rs12649507 alone, indicating a synergistic effect of these three variants. When comparing 

CLOCK gene expression between eleven patients and eleven controls, we did not detect a 

difference which may be due to the small number of samples. However, when analyzing 

CLOCK expression with regard to rs12649507 genotype, we could detect a significantly 

higher expression in individuals who were homozygous for the minor allele (Figure 6). 

 

Figure 6. CLOCK mRNA expression in correlation to disease status or genotype 
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(A) Quantification of CLOCK mRNA levels in human fibroblasts from controls (n = 11) and cluster headache 

(CH) patients (n = 11). (B) CLOCK mRNA expression levels in the same individuals grouped by the three 

different rs12649507 genotypes GG (n = 7), GA (n = 13), and AA (n = 2). *p-value < 0.05 was considered 

significant. 

Figure adapted from Fourier et al. (Cephalalgia, 2018) [86] 
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The CRY genes have been implicated in several neurological and psychiatric disorders, and in 

study V, we analyzed two variants each in CRY1 (rs2287161, rs8192440) and CRY2 

(rs10838524, rs1554338). The genotyping yielded an association between the exonic CRY1 

variant rs8192440 and CH, where the minor allele was more common in controls than in 

patients, pointing to a protective role of this variant for CH. This difference was even more 

pronounced when comparing controls to only a subset of patients with a circadian attack 

pattern. The predicted secondary CRY1 mRNA structure containing the rs8192440 major 

allele differed slightly from the structure containing the minor allele when performing an in 

silico analysis. In addition, we could show a trend for increased CRY1 gene expression in CH 

patients compared to controls, however we did not find an effect of the associated SNP 

rs8192440 on CRY1 expression. 

 

4.3 GENES WITH A LINK TO THE VASCULAR SYSTEM (STUDY VI−IX) 

Alcohol, NO, and CGRP are all vasodilators and inducers of CH attacks. Different genes 

involved in pathways of these molecules have been considered intriguing candidate genes for 

CH. The ADH4 gene has been studied in several different cohorts with conflicting results. We 

investigated two previously associated ADH4 variants (rs1126671, rs1800759) in our 

Swedish case-control material (study VI) and could not replicate the results published for a 

smaller Italian CH cohort for neither SNP nor haplotype analysis of the two SNPs.  

The neurotransmitter NO has been discussed to play a role in CH pathophysiology, therefore 

we investigated eight genetic variants in members of the NOS enzyme family which were 

previously studied in relation to migraine (study VII). Neuronal NOS (NOS1) and 

endothelial NOS (NOS3) are dependent on calcium, while cytokine-inducible NOS (NOS2) 

is calcium-insensitive. We detected a trend for association of NOS2 variant rs2779249 with 

CH, which did not hold after correction for multiple testing. Because multimarker analyses in 

migraine yielded interesting associations, we performed a haplotype analysis for each of the 

three NOS genes. We could not identify disease-associated haplotypes for NOS1 and NOS3, 

but for the two NOS2 gene variants, a haplotype containing the minor allele of each SNP was 

slightly more common in patients than controls. In a stratified analysis, we investigated these 

SNPs in relation to vasoactive substances, such as coffee, tobacco, alcohol, triptans and 

verapamil, by comparing the MAF of the different NOS markers between patients reporting 

to consume or use these substances versus those that do not. This analysis revealed an 

overrepresentation of the minor allele of NOS1 variant rs2682826 in CH patients not using 

triptans whereas the MAF of this SNP for patients using triptans was similar to the MAF of 

controls (Figure 7). 
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Figure 7. Allele frequencies for rs2682826 in patients using and not using triptans 

Allele frequency of NOS1 rs2682826 in triptan users (n = 388) vs. triptan non-users (n = 140). 

*p = 0.039, where p-value < 0.05 was considered significant.

Figure adapted from Ran et al. (Brain Sciences, 2021) [117] 

CGRP is a promising neuropeptide with clear involvement in headache. New treatment 

strategies for migraine and CH making use of monoclonal antibodies target either CGRP or 

its receptor. The objective of study VIII was to investigate a possible genetic association 

between the CGRP receptor component RAMP1 and CH. Two SNPs (rs3754701, rs7590387) 

in the RAMP1 gene were previously implicated in headache [153, 154]. Genotype analysis 

showed significantly higher MAF for rs3754701 in CH patients compared to controls, and 

interestingly, this association was only true for ECH patients in our material. In addition, 

patients displayed significantly higher RAMP1 gene expression than control individuals, 

independent of CH subtype. We could not identify an effect of the CH-associated SNP 

rs3754701 on RAMP1 expression, but demonstrated that the homozygous genotype of the 

minor allele (CC) for the other SNP rs7590387 led to increased RAMP1 gene expression 

compared to the other two genotypes GC and GG.  

Verapamil is the first-line prophylactic treatment in CH. Curiously, it is not only a calcium-

channel antagonist inhibiting calcium influx but also a vasodilator. A previously conducted 

study on migraine aiming to correlate genetics to verapamil response found eight markers in 

seven different genes which were associated with good treatment response [155]. Of these, 

we selected four SNPs with a direct or indirect connection to calcium signaling in order to 

screen our CH material (study IX): rs17844444 in PCDHB6 (protocadherin beta 6), 

rs10882386 in PLCE1 (phospholipase C epsilon 1), rs1531394 in ANO3 (anoctamin 3), and 

rs2230433 in ITGAL (integrin subunit alpha L). For rs2230433 in ITGAL, the MAF was 

higher in controls than in patients, but this difference did not reach significance. There was a 

clear overrepresentation of individuals with the AA genotype for the ANO3 marker 

rs1531394 in CH patients., however not a distinct difference in MAF for the A allele between 
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patients and controls. We then performed a stratified analysis under a recessive model with 

subsets of patients either using or not using verapamil. Both patient groups had a higher 

frequency for the risk genotype AA compared to controls but did not differ significantly from 

each other. An in silico analysis studying the effect of rs1531394 on ANO3 mRNA structure 

predicted a 5.5% increase in initial folding energy for the minor allele-containing RNA 

fragment (Figure 8). Since this SNP is located in the 5’UTR of ANO3, we further investigated 

possible overlap with transcription factor binding sites in this region. The computational tool 

SNP2TFBS predicted the transcription factor RFX2 (Regulatory Factor X2) to bind to the 

ANO3 promoter and the minor allele A of rs1531394 to lower the affinity of RFX2 to this 

region compared to the major allele T. Gene expression analysis of ITGAL and ANO3 did not 

yield reliable results due to low expression in fibroblasts.  

Figure 8. In silico analysis of mRNA fragments with the T or A allele at SNP rs1531394 

Effect of rs1531394 on the predicted ANO3 mRNA folding of a 141 bp partial 

sequence: rs1531394 is indicated by an arrowhead with the T allele in (A) 

with the initial folding energy ΔG = −63.9 kcal/mol, and the A allele in (B) 

with ΔG = −60.4 kcal/mol. 

Figure adapted from Ran et al. (Brain Sciences, 2019) [118] 



31 

The results on significant SNPs located in genes with a connection to the vascular system that 

were presented here have been summarized in Table 2. 

Table 2. Significant variants in genes related to the vascular system 

Gene SNP Allele/Genotype Ctrl % CH % p-value 

NOS2 rs2779249 C 

A 

71.4 

28.6 

67.6 

32.4 0.049 

RAMP1 rs3754701 A 

T 

63.4 

36.6 

57.5 

42.5 0.009 

ANO3 rs1531394* TT + TA 

AA 

86.3 

13.7 

80.5 

19.5 0.009 

MTDH rs1835740 C 

T 

81.5 

18.5 

77.9 

22.1 0.043 

SNP: single nucleotide polymorphism; Ctrl: controls; CH: cluster headache; p-value < 0.05 was considered 

significant. *rs1531394 was analyzed under a recessive model. 

4.4 GENES DETECTED BY GWAS (STUDY X−XII) 

Migraine is a primary headache disorder that shares certain features with CH, such as the 

activation of the trigeminovascular system. Large GWAS and meta-analyses could 

consolidate MTDH to increase the risk for migraine, and even PRDM16 has been established 

as a candidate gene. One variant close to the MTDH gene (rs1835740) and one variant in 

PRDM16 (rs2651899) could be confirmed in a Swedish GWAS replication study and were 

therefore interesting candidates to be studied in Swedish CH patients (study X). The minor 

allele of the MTDH SNP was significantly enriched in CH patients compared to controls 

(Table 2). Interestingly, this difference was even more pronounced when comparing controls 

to a subgroup of CH patients who also suffered from migraine. The first GWAS on migraine 

reported that rs1835740 may affect MTDH gene expression. When we studied MTDH mRNA 

levels in a subset of CH patients and control individuals, we did not find a difference in gene 

expression between cases and controls but could confirm that rs1835740 altered MTDH 

expression.  
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The first GWAS for CH was performed on an Italian cohort of 99 patients and 360 controls. 

The authors found two suggestive hits, rs1006417 in the gene-poor chromosomal region 

14q21 and rs12668955 in the ADCYAP1R1 gene, as well as the rare variant rs147564881 in 

the MME gene detected by a gene-based analysis. To see whether we could reproduce these 

results in our Swedish CH cohort, we genotyped our much larger case-control material for 

these three variants (study XI). We could not find a significant difference in genotype nor 

allele frequency between CH patients and controls for the two suggestive hits, rs1006417 and 

rs12668955. For the rare MME variant rs147564881, only wild-type carriers were detected 

among Swedish CH patients, therefore genotyping of controls for this SNP was discontinued. 

These findings suggest that the three SNPs found in the Italian study do not contribute to the 

risk of developing CH in the Swedish population. 

Because there has been a lack of larger genetic studies on CH with sufficient material in the 

literature, we performed a GWAS on our Swedish case-control material. After QC, the 

material consisted of 591 CH patients and 1,134 controls. Results from the association 

analysis visualized in a Manhattan plot (Figure 9) identified two loci on chromosome 2. 

Regional plots of chromosome 2 (Figure 10) show how numerous variants cluster in the 

proximity of MERTK (MER proto-oncogene, tyrosine kinase), or SATB2 (special AT-rich 

sequence-binding protein 2) and LINC01877 (long intergenic non-protein coding RNA 1877).  

Figure 9. Manhattan plot for the Swedish cluster headache association analysis 

Manhattan plot showing the -log10 of the p-value for individual SNPs on chromosomes 1-22. Association 

analysis was performed on 591 cases and 1,134 controls. The dotted line indicates genome-wide significance 

level p < 5×10-8.  
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Figure 10. Regional plots for the Swedish cluster headache association analysis 

LocusZoom plots for two loci on chromosome 2 reaching genome-wide significance. Variant position, 

recombination rates, and gene boundaries are based on GRCh37/hg19. (A) Lead variant rs72825689 

(p=1.07×10-8) is located near the MERTK gene. (B) Lead variant rs4675692 (p=1.22×10-8) is located 

near the SATB2 gene and the long non-coding RNA LINC01877 (= LOC101927641). 

A 
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In study XII, we combined our Swedish GWAS data with those from a UK CH cohort, 

resulting in a dataset of 1,443 cases and 6,748 controls of European ancestry. The UK-only 

GWAS independently replicated our findings on chromosome 2, and the combined analysis 

gave rise to two additional loci on chromosome 1 and 6. The locus in region 1q41 on 

chromosome 1 does not comprise any known genes; the nearest gene is the long non-coding 

RNA LINC01705, and the closest coding gene is DUSP10 (dual specificity phosphatase 10). 

The locus on chromosome 6 contains the FHL5 gene which, as previously mentioned, has 

been identified as a susceptibility locus for migraine in a large GWAS meta-analysis. 

Furthermore, we performed a number of downstream analyses on the results from the 

combined material. All lead SNPs, meaning variants with the highest p-value in each locus, 

were located in non-coding regions, and functional variant annotation detected two MERTK 

and two FHL5 missense variants with moderate impact to be in high linkage disequilibrium 

(r2 > 0.9) with the lead SNP in the respective locus. One of these MERTK variants and both 

FHL5 variants had high CADD scores >15, and all four missense variants showed a high 

level of mammalian conservation with GERP scores above 2. Gene-based association testing 

identified five genes significantly associated with CH: TMEM87B (transmembrane protein 

87B), ANAPC1 (anaphase promoting complex subunit 1), and FBLN7 (fibulin 7) in addition 

to MERTK and FHL5. All five candidate genes are expressed in the human brain, with 

ANAPC1 and FBLN7 most highly expressed in neurons, MERTK and TMEM87B highly 

expressed in brain support cells, such as microglia and astrocytes, and FHL5 highly expressed 

in brain endothelial cells. Via eQTL mapping, variation in mRNA expression for eleven 

genes, including DUSP10, MERTK, TMEM78B, FBLN7, and SATB2, could be linked to 

genome-wide significant SNPs in our material, with expression in brain, vascular, and 

immunological tissues. For the pathway analysis, genes within a specific window around 

each lead SNP were included. In total, 74 pathways were significantly (p < 0.05) enriched for 

46 genes in the candidate regions. Pathways of particular interest included positive regulation 

of glial cells and regulation of gliogenesis in the central nervous system. In addition, many 

pathways related to the differentiation and activation of immune cells, or cell adhesion 

involved MERTK. 
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5 DISCUSSION 

Because CH is still under underrecognized, underdiagnosed, and undertreated, it is of utmost 

importance to increase the understanding of the clinical features and the pathophysiology of 

this dreadful disease in order to improve the treatment and life of CH patients. To be able to 

do meaningful research, a well-characterized CH cohort is needed which poses a challenge 

because to date CH is diagnosed merely by specific symptoms and classification criteria that 

exclude other diseases. We feel confident that our Swedish CH biobank consists of material 

of high quality from CH patients with expert-validated diagnosis. The number of patients 

included in this biobank, with extensive questionnaire data, genetic material, and fibroblast 

cell lines, makes it an invaluable resource for our research on this rarely heard of and yet so 

common disease, and one of the largest CH biobanks in the world. 

We thoroughly characterized the Swedish CH population in two cohort studies, showing clear 

differences between CH subgroups, namely ECH and CCH patients, or men and women. As 

expected, chronic patients generally have a higher disease burden than episodic patients, 

which affects several aspects of their health and daily life, for example constant lack of 

sufficient hours of sleep, more frequent use of prophylactic medication which may have 

considerable side effects, and high tobacco consumption. Curiously, CH patients with a 

history of smoking or taking snus had a delayed disease onset, which could point to nicotine 

as some sort of self-medication. We could see similar differences for male and female CH 

patients, where women generally appear to be more debilitated by the disease than men. On 

top of a higher disease burden from CH, female patients have a higher comorbidity for 

migraine and a higher heredity for CH. Interestingly, more women report a diurnal pattern of 

attacks with a tendency to more nighttime attacks than men, although recall bias between the 

two groups cannot be excluded. We also developed a scale to assess the severity of CH, 

CHSS, which as we demonstrated in our study could be a useful tool for clinicians to classify 

CH patients into other subgroups then the conventional ECH and CCH, or do intra-individual 

comparisons of patients between different periods. Also, treatment could be adjusted for 

better efficiency according to the CHSS score. 

Deciphering genetic relationships in complex disorders, such as CH, is challenging because 

the combination of genetic variants with low effect, involvement of multiple genes, and 

additional environmental risk factors complicates the interpretation of results. Nevertheless, 

looking at the genetic component of CH gives a valuable insight into its pathophysiology and 

may bring us one step closer to solving the puzzle of what causes this disorder. We have used 

different approaches on tackling the genetics of CH; hypothesis-driven candidate gene studies 

and hypothesis-free genome-wide association studies. Both methods have their advantages 

and disadvantages, and either one tries to answer a specific scientific question, or to find 

previously unknown associations and generate new hypotheses. Although a hypothesis-free 

approach appears to lead to more robust associations, especially when conducted on a large 

dataset, some small but relevant connections may stay undetected because of polygenic 

inheritance. Therefore, I think both approaches are of great value in genetic research. 
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We have performed several case-control studies on candidate genes with involvement in 

circadian rhythm, and were able to find genetic variants in HCRTR2, CLOCK and CRY1 that 

were linked to CH. Interestingly, the link was usually even stronger when looking at the 

subset of patients with diurnal attack patterns. These findings support the hypothesis that 

circadian rhythm plays indeed a role and is possibly somehow dysregulated in CH. In 

addition, we have shown associations of variants in candidate genes that may play a direct or 

indirect role in treatment mechanisms. As mentioned previously, most current medications 

used for CH were originally developed for migraine, and the mechanism of action for many is 

not entirely clear. Our data could show that certain genetic variants may pose a susceptibility 

for CH and could influence treatment response. For example, we could link a NOS1 variant to 

the use of triptans. Because monoclonal anti-CGRP antibodies are a relatively new treatment 

for headache, we did not have sufficient data on the use of this medication among our CH 

patients to perform an analysis. However, the RAMP1 variant that we could link specifically 

to ECH may be relevant for this new treatment, also due to the interesting fact that anti-

CGRP antibodies have proven to be ineffective in CCH patients [156]. A variant in ANO3 

points to calcium involvement in CH pathophysiology but does not appear to be linked to 

verapamil response in CH which was previously reported for migraine.  

The first GWAS in migraine has been published in 2010, and the forming of large headache 

consortia has increased the number of individuals for analysis and strengthened the results. 

GWAS in different populations and meta-analyses in combined European data concluded 

independently that MTDH may be involved in migraine. An association study on our CH 

case-control material could link a well-established migraine-associated variant in MTDH to 

CH, which makes it a possible general marker for neurovascular headaches. GWAS in CH 

with a sufficient number of cases have been more challenging due to the much lower 

prevalence compared to migraine. The first GWAS in CH was published in 2016 by an 

Italian group and was quite underpowered. The suggestive hits that were reported in this 

study could not be replicated in our Swedish CH material, indicating that these may have 

been population-specific SNPs. Although even our material is quite small for a proper 

GWAS, we have performed genome-wide screening for genetic variants, and in collaboration 

with a group in the UK, we could combine and increase our GWAS dataset. The confidence 

in our data increased immensely, when the newly discovered CH-associated loci near 

MERTK and SATB2 could be replicated independently in the UK and Swedish cohorts, and 

remained significant in the combined analysis. Particularly, MERTK is an intriguing new 

candidate gene for CH because it is involved in neuroinflammation and is an activator of 

CREB (cAMP-responsive element binding protein). CREB encodes a transcription factor 

which regulates the expression of molecular clock genes and is critical for light entrainment 

of the circadian clock [157]. What is more, CREB activation contributes to the sensitization 

of nociceptive cells and meningeal pain hypersensitivity [158]. Finally, triptans used for 

treatment of CH reduce the activity of CREB in the trigeminal system [159]. Taken together, 

these exciting findings urge CH researchers to investigate the CREB pathway as well as the 

involvement of MERTK and neuroinflammation in CH pathophysiology further. 
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6 CONCLUSIONS AND PERSPECTIVES 

Although CH is known to be one of the most painful conditions in humans, still relatively 

little research is done on the disorder. However, compared to two decades ago, the number of 

newly published research articles on CH has tripled from 76 in the year 2000 to 236 new 

publications in 2020, which indicates that awareness for CH has increased, and gradually 

more research is conducted (Figure 11). Compared to publications on migraine, this number 

is still incredibly low. 

 

Figure 11. Number of new publications per year on headache disorders  

  

Source: NCBI PubMed (May 2021) 

 

The work of this thesis could contribute to increasing the understanding of clinical as well as 

genetic aspects of CH. We highlighted in which ways chronic CH patients may have a higher 

disease burden compared to episodic patients but demonstrated with the CHSS that even 

certain ECH patients can have a high severity score, for example due to a frequent number of 

bouts per year. We could also show that female patients are generally struck harder by their 

CH, although the disorder is more common in men. However, our research also shows that 

the male to female ratio has decreased across the age groups, implying that CH may be more 

recognized in women nowadays, although an increased number of female patients may in 

part also be due to changes in lifestyle among both sexes over the decades. Because we have 

seen clear differences in the chronobiology of CH subgroups, namely circadian rhythm, 

chronotype, and sleep, future studies will include a thorough investigation of, for example, 

sleep and diary-led recordings of attack occurrence throughout the day in CH patients, both in 

active and remission phase, to minimize recall bias. 
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With our genetic studies on CH, we could advance the field either by determining the 

reproducibility, or lack thereof, of candidate gene studies in other CH cohorts, or by 

introducing new potential candidate genes that could help decipher the CH pathophysiology 

or lead to improved treatment. For example, studies on genetic variants that are linked to 

treatment response may in the future be used to quickly identify which drug(s) would be the 

most effective in a specific CH patient. This emerging field within personalized medicine is 

referred to as pharmacogenomics. 

As a recent article on the genetics of CH concludes, candidate gene studies have dominated 

the field [160]. This is most likely due to the small size of the different cohorts as a result of 

the relatively low prevalence of CH, as well as the cost for doing larger GWAS, and exome 

or whole genome sequencing. In order to increase the sample size for broader genetic 

screening of sufficient statistical power, it is essential for researchers to join forces. We have 

been part of a collaboration with several groups in Europe and USA, who formed the 

International Consortium for Cluster Headache Genetics (www.clusterheadachegenetics.org). 

Given our promising results from our Swedish GWAS which were consistent with findings in 

a CH cohort from the UK, the consortium is planning on performing a large meta-analysis 

with roughly 5,000 cases and 500,000 controls in the near future to consolidate these findings 

and possibly detect new associations. With this immense project, the field of CH genetics will 

move a considerable step closer to elucidating possible disease mechanisms that contribute to 

CH manifestation. 

 

 

https://www.clusterheadachegenetics.org/
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