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ABSTRACT 

Safety evidence for use of pharmaceutical drugs in children, including treatments for 

serious conditions such as chronic inflammatory diseases, is generally scarce. Off-label 

use is common and clinicians need to rely on evidence from adults when prescribing to 

children. This is concerning because safety profiles might differ; the metabolism, 

distribution and absorption of drugs vary between children and adults.  

The overall aim of this thesis was to develop new, relevant, and pediatric-specific drug 

safety evidence for treatments of chronic inflammatory disease; both addressing 

specific safety concerns and screening for signals of previously unknown adverse 

events. Sub-aims were to evaluate the feasibility of these types of safety studies in the 

Scandinavian setting and to examine the differences between alternative 

pharmacoepidemiologic study designs. We conducted analyses based on data from 

Swedish and Danish national registers covering a source population of 5.3 million 

children; including 21,000 patients with confirmed chronic inflammatory disease.  

In the first study, the aim was to investigate if there is an association between the use of 

azathioprine and the risk of acute pancreatitis in Swedish and Danish patients with 

pediatric inflammatory bowel disease (IBD). We found that azathioprine was associated 

with a 6-fold increased risk of acute pancreatitis during the first 90 days following 

treatment initiation, compared to no use, based on a sample of 8725 patients (n=3574 

azathioprine users).  

In the second study, we investigated if there is an association between use of tumor 

necrosis factor-alpha (TNF-α) inhibitors and the risk of serious infection in patients 

with pediatric IBD in Denmark. We found no significant association between current 

use of TNF-α inhibitors and the risk of serious infection, based on 2817 patients (n=618 

TNF-α inhibitor users), in comparison with no use. 

The aim of the third study was to perform data mining to detect previously unknown 

adverse events of TNF-α inhibitors in children with IBD or juvenile idiopathic arthritis 

(JIA) in Denmark. We used tree-based scan statistics on 1284 incident diagnoses 

identified during follow-up and found two significant signals, dermatologic 

complications and psychiatric adjustment disorders. Neither of these signals were 

considered relevant for further investigation. 
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In the fourth study, we systematically described and compared various 

pharmacoepidemiologic designs, in particular alternatives to the active comparator new 

user design. We used target trial emulation as a common framework and drew two 

conclusions. That eligibility is the key design element that differentiates the designs and 

that many factors influence the choice of an ideal comparator, including indication, 

available comparator drugs, treatment patterns, potential effect modification, and 

sample size. 

In the fifth and final study, we investigated if there is an association between use of 

TNF-α inhibitors and the risk of serious infection in Danish patients with JIA. Based on 

4493 JIA patients (n=578 TNF-α inhibitor users), we found that current use of TNF-α 

inhibitors was associated with a two-fold increased risk of serious infection, compared 

to methotrexate. 

In summary, we provided data on three current drug safety concerns in children with 

chronic inflammatory disease; we showed that Scandinavian health registers are 

suitable for both targeted and adverse-event signal detection studies; and finally, we 

provided guidance on the factors that need to be considered when selecting 

comparators in pharmacoepidemiologic studies. 
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1 INTRODUCTION 

 

“The committee believes that it is unethical to adhere to a system which forces physicians to use 

therapeutic agents in an uncontrolled experimental situation virtually every time they 

prescribe for children. Furthermore, it is not only ethical but also imperative that new drugs to 

be used in children be studied in children under controlled circumstances so the benefits of 

therapeutic advances will become available to all who may need them” 

–American Academy of Pediatrics1 

 

The formal testing of pharmaceutical drugs before they are used in clinical practice was 

established during the previous century. Historic disasters have prompted the 

development of new legislation, in particular the death of more than 100 people in 1937 

after using a sulfanilamide elixir and the widespread use of thalidomide in the late 

1950s that caused deformities in more than 5000 babies.2 The modern approval of 

novel drugs is a highly regulated process where efficacy and safety are assessed based 

on clinical trials in increasingly larger cohorts. Despite this progress, some patient 

groups are still underrepresented in or even excluded from the testing of new therapies. 

One such group is children.3,4  

There is generally less drug safety information in children than in adults; the proportion 

of drugs used in children without proper labeling has been estimated at 54%.5 The 

participation of children in clinical trials is very low due to ethical, practical and 

financial reasons.6,7 As a consequence, clinicians treating children need to make 

decisions based on data extrapolated from adults and clinical judgement rather than 

specific safety evidence for children. This can lead to suboptimal treatment because 

children are different from adults with respects to their physiology, organ development, 

and their drug absorption, distribution and metabolization.8 Hence the safety profile of 

a drug can be different in pediatric patients in comparison with adults. 

Off-label pharmacotherapy in children is high.9,10 Since market forces alone have not 

stimulated the development of pediatric safety evidence several legal and regulatory 

efforts have been made to increase the inclusion of children in randomized controlled 

trials (RCT), both in the United States and Europe.11 The first efforts to stimulate 

inclusion of children were made in the United States in the late 1990s. Although they 
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had positive long-term effects and more children have been included in trials, there is 

still a general lack of safety evidence for pediatric patients. The legal incentives have 

also been criticized for incurring high societal cost and not prioritizing pediatric-specific 

studies based on clinical needs.4,12 Furthermore, results from many clinical trials of 

children are not published. The proportion of pediatric phase III RCTs that are not 

published is estimated at 30% and one factor influencing nonpublication is failure to 

enroll enough patients.13 

Given the obstacles in conducting RCTs on children and the limited output, 

observational studies play a critical role in the development of safety evidence for 

pediatric patients.14-16 There are several general advantages of observational safety 

studies, among them the possibility to analyze larger samples with longer follow-up, 

which allows for higher precision and the study of rare adverse events. This is 

particularly important when studying children as they have lower prevalence of disease 

and drug use; resulting commonly in sample size issues in RCTs.13,17 Studying drug 

safety from routine clinical care also increases relevance and generalizability of the 

results. Despite the advantages of observational studies, and that they in many cases 

represent the only source of pediatric-specific evidence, there is still a shortage of this 

type of research.16 

In this thesis project we addressed current drug safety concerns in children with focus 

on chronic inflammatory diseases. The overall aim was to develop new, relevant, and 

pediatric-specific drug safety evidence for treatments in pediatric inflammatory bowel 

disease (IBD) and juvenile idiopathic arthritis (JIA); both addressing specific safety 

concerns and screening for new signals of adverse events. Sub-aims were to evaluate 

the feasibility of these types of safety studies in the Scandinavian health care register 

setting and to investigate the pros and cons of common pharmacoepidemiologic study 

designs. The specific aims of the papers were: 

- Study I: To investigate if there is an association between use of azathioprine and 

the risk of acute pancreatitis in Swedish and Danish children with IBD. 

- Study II: To investigate if there is an association between use of tumor necrosis 

factor-alpha (TNF-α) inhibitors and the risk of serious infection in Danish 

children with IBD. 
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- Study III: To screen for signals of previously unknown adverse events of TNF-α 

inhibitors in Danish pediatric patients with IBD or JIA by applying data mining 

methods to nationwide health care registers. 

- Study IV: To systematically describe and compare alternative 

pharmacoepidemiologic designs, and to present a case example where the 

designs are applied in a real-world drug safety assessment to illustrate the 

differences. 

- Study V: To investigate if there is an association between the use of TNF-α 

inhibitors and the risk of serious infection in patients with JIA. 

We conducted analyses based on linked data from nationwide health care and 

administrative registers in Sweden and Denmark. We used a complete binational cohort 

of 21,000 pediatric IBD and JIA patients with an average follow-up of 4.4 years and 

individual data on demographics, diagnoses and procedures in specialist care, 

pharmaceutical drug use, and socioeconomic status of patients’ parents. 

In the next section of this thesis summary (section 2), we review the safety concerns in 

pediatric IBD and JIA that were investigated. In section 3, data sources, study designs, 

and statistical methods are described. Section 4 contains summaries of the background 

and key results of papers I-V. We discuss the clinical implications, methodological and 

ethical considerations, and a few points on the future of pediatric 

pharmacoepidemiology in section 5. Section 6 contains conclusions. In sections 7 and 8, 

popular science summaries are provided in English and Swedish, respectively. Finally, 

acknowledgments can be found in section 9 and references in section 10. At the end, 

papers I-V, including supplementary appendices, are attached. 
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2 BACKGROUND 

In this section we describe the treatment patterns in pediatric IBD and JIA, and review 

the current literature on the safety concerns that were investigated in this thesis. 

 

2.1 TREATMENT IN PEDIATRIC IBD AND JIA 

IBD and JIA represent some of the most common serious health conditions in pediatric 

patients. IBD is characterized by chronic inflammation of the gastrointestinal tract and 

typically includes ulcerative colitis (UC), Crohn’s disease (CD), and unclassified IBD. The 

incidence rate of pediatric IBD in Sweden has been estimated at 18.5 per 100,000 

person-years,18 but there is large geographic variation and incidence rates have 

increased in western countries in recent years.19,20  

In UC, 5-aminosalicylic acid (5-ASA) is the recommended induction therapy for mild and 

moderate cases.21 This treatment is also used as first-line maintenance therapy, 

although it is often replaced by azathioprine, which is more efficacious.22 Azathioprine 

is also one of the recommended maintenance treatments in CD, with pediatric-specific 

efficacy evidence.23-25 5-ASA is also used in CD, but is controversial due to lack of 

evidence and is only recommended for use in very mild disease.25 

JIA is a heterogeneous group of autoimmune diseases characterized by arthritis of 

unknown etiology with onset before the age of 16 years that persists for at least six 

weeks.26 There are seven distinct types of JIA: systemic arthritis, oligoarthritis, 

polyarthritis (rheumatoid factor negative or positive), psoriatic arthritis, enthesitis-

related arthritis, and undifferentiated arthritis.26 Criteria for each diagnosis include the 

number of joints affected, symptoms and laboratory tests. A meta-analysis estimated 

the incidence of JIA at 8.2 per 100,000 person-years, standardized to the European 

population.27  

In JIA, the treatment strategies vary depending on disease type, but general initial 

therapy includes nonsteroidal anti-inflammatory drugs (NSAID), which are used to 

manage symptoms and pain. In active disease, local glucocorticoid injections have been 

recommended regardless of concurrent therapy and across JIA types.28 The most widely 

used disease-modifying drug in JIA is methotrexate (MTX),29,30 which can be 

administered both orally and subcutaneously. It has proven efficacy since the early 
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1990s and is recommended in all subtypes of JIA, although its role in enthesitis-related 

arthritis is unclear.31 It is generally recommended to continue MTX, at least initially, 

following start of treatment with TNF-α inhibitors.28  

Biologic treatment, in particular TNF-α inhibitors, has revolutionized the treatment of 

inflammatory diseases and has become increasingly common in the treatment of both 

children and adults. TNF-α inhibitors have proven efficacy as induction and 

maintenance therapies in pediatric IBD. In patients with CD and UC, 88% and 73% 

respond to TNF-α inhibitor treatment while 59% and 29% are in remission after one 

year, respectively.32-34 In JIA, efficacy has been established in multiple clinical trials.35,36  

The recommendations are reflected by the treatment patterns observed in clinical 

practice. In Danish pediatric patients with disease onset 2007-2016, 5-ASA was more 

prevalent in UC than in CD patients (Figure 1). The proportions of patients who used 5-

ASA in the first five years were 78% and 22% in UC and CD, respectively. Most UC 

patients, 72%, started 5-ASA treatment in the first year following disease onset. In 

contrast, thiopurines were more common in CD; where 69% in comparison with 48% in 

UC used the drug in the first five years. In the first year, 58% of CD patients started 

thiopurines. Among JIA patients, NSAIDs were used by 83% in the first five years, with 

71% using them in the first year. MTX was used by 21% in the first five years. Use of 

TNF-α inhibitors gradually increased in prevalence over the 5 years following disease 

onset in all diseases. Their use was most prevalent in CD patients, where 47% used 

TNF-α inhibitors in the first 5 years, while the proportions in UC and JIA were 27% and 

20%, respectively. 

There is a general lack of pediatric-specific safety evidence for the most common 

treatments in pediatric IBD and JIA. Below we summarize the current literature on the 

safety concerns that were investigated in this project: the potential association between 

use of thiopurines and the risk of acute pancreatitis in pediatric IBD; and between use of 

TNF-α inhibitors in pediatric IBD, JIA and the risk of serious infections. 
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Figure 1. Cumulative drug use in Danish UC, CD and JIA patients during the first five years 

of disease among patients with disease onset 2007-2016  
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2.2 THIOPURINES AND THE RISK OF ACUTE PANCREATITIS IN PEDIATRIC 
IBD  

Several RCTs have indicated that acute pancreatitis is an adverse effect of thiopurines In 

adult IBD, including azathioprine and 6-mercaptopurine, and that the risk is higher 

among CD patients compared to UC patients. A Cochrane review of RCTs (11 trials; total 

N=881) on use of azathioprine or 6-mercaptopurine in adult CD concluded that 

pancreatitis was among the most common adverse events that led to withdrawal of 

treatment,24 although the relative risk of pancreatitis was not estimated. Some of the 

included RCTs showed large risk differences between azathioprine and comparators. In 

one RCT of 142 adult CD patients randomized to either early azathioprine treatment or 

conventional therapy, n=7/71 (10%) in the azathioprine group had pancreatitis events 

versus n=2/71 (3%) in the comparator group (no p-value presented).37 In another trial, 

adult CD patients were randomized to either azathioprine or placebo and n=7/68 

(10%) and n=0/63 (0%) (p-value 0.01) developed pancreatitis, respectively.38 

A Cochrane review on adult UC and use of azathioprine and 6-mercaptopurine (6 trials; 

total n=279) showed a lower absolute risk of pancreatitis (2%) in patients treated with 

azathioprine compared with the studies in CD.39 There was no statistically significant 

difference between treated and controls in the meta-analysis, although the analysis was 

based on very small numbers (n=3/141 [2%] versus n=0/138 [0%], risk ratio [RR] 4.13, 

95% confidence interval [CI] 0.48 to 35.48).  

Among observational studies in adult IBD, a recent German study prospectively 

followed 510 patients with IBD who initiated treatment with azathioprine.40 There was 

a larger proportion of CD patients (8.6%) compared to UC patients (3.2%) who 

developed pancreatitis after azathioprine initiation. Azathioprine-associated 

pancreatitis occurred after a median of 21 days and less than half of the cases resulted 

in hospitalization (43%). 

In pediatric IBD, only one RCT has been conducted on the use of thiopurines (CD; 

N=55).23 In the trial, the combination of 6-mercaptopurine and prednisone was 

compared with placebo and prednisone and no patients developed symptoms of acute 

pancreatitis. A few observational studies on thiopurine use in pediatric IBD have been 

conducted but none of them have included comparator groups. A prospective register 

study from the United States on pediatric UC (N=197) showed that 2% (n=4) of the 

patients initiating treatment with either azathioprine or 6-mercaptopurine developed 
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pancreatitis during follow-up.41 Other small case series have reported absolute risks of 

pancreatitis in the range of 1.1-6.4% among pediatric IBD patients initiating thiopurine 

treatment: n=1/88 (1.1%) (CD)42, n=2/79 (2.5%) (UC/CD)43, and n=6/93 (6.4%) (CD)44. 

In summary, safety evidence on the use of thiopurines that is specific to pediatric IBD 

patients is scarce and inconclusive. None of the studies in pediatric IBD described above 

have been specifically designed or powered to investigate if thiopurine use is associated 

with the risk of acute pancreatitis. Despite the general lack of safety evidence, 

thiopurine is commonly prescribed in pediatric IBD. In study I, we investigated the 

potential association between use of azathioprine, the most widely used thiopurine in 

Scandinavia, and the risk of acute pancreatitis in a nationwide Swedish and Danish 

pediatric IBD cohort.  

 

2.3 TNF-ALPHA INHIBITORS AND THE RISK OF SERIOUS INFECTIONS IN 
PEDIATRIC IBD AND JIA 

TNF-α inhibitors are generally considered safe but whether they increase the risk of 

infection in pediatric patients is controversial. In adults, a large Cochrane review from 

2011 (160 RCTs) showed an increased risk of serious infections (defined in most 

studies as infections requiring hospitalization) in patients initiating biologics treatment 

as compared with controls (odds ratio [OR] 1.39, 95% CI 1.18 to 1.64).45 The increased 

risk was similar when restricting the analysis to TNF-α inhibitors (116 RCTs; OR 1.41, 

95% CI 1.13 to 1.75). RCTs on rheumatoid arthritis (RA) patients dominated the 

included studies (62 RCTs; OR 1.55, 95% CI 1.23 to 1.95). When the analysis was 

restricted to IBD patients (12 RCTs) there was no significant association, though the CI 

was wide (OR 1.28, 95% CI 0.67 to 2.44). In another study, a network meta-analysis of 

RCTs in RA, the results showed a dose-dependent increased risk of serious infections 

associated with the use of biologics: significantly higher risk in patients with high dose 

(OR 1.90, 95% credible interval 1.50 to 2.39) and standard dose (OR 1.31, 95% credible 

interval 1.09 to 1.58), but not in low-dose patients (OR 0.93, 95% credible interval 0.65 

to 1.33).46 A more recent meta-analysis of RCTs on TNF-α inhibitor use in adult IBD 

from 2016 (33 RCTs; total n=10,015) found no association between TNF-α inhibitors 

and increased risk of serious infection or death (OR 0.90, 95% CI 0.69 to 1.17). 

However, there was an increased risk of any infection, which also included infections in 

outpatient care (OR 1.21, 95% CI 1.10 to 1.33).47  
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The observational evidence in adult IBD and RA indicates an increased risk of serious 

infection. A large American study in RA based on claims data (N=31,801) found a 

significantly increased risk of serious infection associated with initiation of etanercept 

(hazard ratio [HR] 1.24, 95% CI 1.07 to 1.45) and infliximab (HR 1.39, 95% CI 1.21 to 

1.60), as compared with abatacept.48 Multiple observational studies in IBD have shown 

similar associations. A prospective study from 2012 (n=3420 exposed), a large 

retrospective study from 2018 (n=26,255 exposed), and a study of young adults (age 

18-29; n=3574 exposed) showed significant associations between TNF-α inhibitor use 

and risk of serious infection in adult IBD (HRs: 1.43, 95% CI 1.11 to 1.8449; 1.71, 95% CI 

1.56–1.8850; 1.49, 95% CI 1.12 to 1.9851, respectively). A Swedish observational study in 

RA (n=4167 exposed) found a statistically significant association between use of TNF-α 

inhibitors and risk of serious infection during the first year of follow-up (HR 1.43, 95% 

CI 1.18 to 1.73) but not in year two (HR 1.15, 95% CI 0.88 to 1.51) or year three (HR 

0.82, 95% CI 0.62 to 1.08).52 Similarly, a Danish study in IBD patients (n=1543 exposed) 

found an increased risk of serious infection in TNF-α inhibitor users shortly following 

initiation (first 3 months: HR 1.63; 95% CI 1.01 to 2.63) and no significant association 

during the entire follow-up of 1 year (HR 1.27, 95% CI 0.92 to 1.75).53 Finally, another 

large American study based on claims data found no significant associations between 

TNF-α inhibitor use and risk of serious infection in RA patients (N=10,484; HR 1.05, 

95% CI 0.91 to 1.21) or IBD patients (N=2323; HR 1.10, 95% CI 0.83 to 1.46), as 

compared with non-biologic treatment.54  

In pediatric patients, two prospective studies in JIA have investigated the association 

between use of TNF-α inhibitors and risk of serious infection. The first study found a 

significant association with use of etanercept (n=1414; RR 2.12, 95% CI 1.08 to 4.17) 

and not with adalimumab (n=320; RR 0.88, 95% CI 0.18 to 4.28).55 The second study 

had lower power and found no significant association with etanercept (n=852), HR 1.36 

(95% CI 0.60 to 3.07).56 However, both studies reported higher ratios when 

investigating the risk of infection based on wider outcome definitions. A recent meta-

analysis in JIA (n=1434 exposed) found no statistically significant association between 

TNF-α inhibitor use and risk of infections overall (OR 1.13, 95% CI 0.76 to 1.69).57 The 

review did not investigate the risk of serious infections.  

In pediatric IBD, a cohort study on TNF-α inhibitor use in young adults is the only study 

that presented pediatric-specific (age <18 years) results in a subgroup analysis.51 The 
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analysis showed no significant association between TNF-α inhibitor use and risk of 

serious infections in children, HR 1.12 (95% CI 0.75 to 1.68). A meta-analysis from 2014 

in pediatric IBD also showed no increased incidence rate of serious infections in TNF-α 

inhibitor users (standardized incidence ratio 1.06, 95% CI 0.83 to 1.36).58 However, the 

results carry limited relevance due to inclusion of small case series, use of an unsuitable 

comparator group and lack of confounding control. 

The safety evidence of TNF-α inhibitor in pediatric IBD and JIA is limited and concerns 

have been raised regarding the risk of serious infections. More information is needed to 

support clinical practice and decisions on optimal treatment strategy. We investigated if 

there is an association between use of TNF-α inhibitors and the risk of serious infection 

in Danish pediatric IBD patients in study II, and in JIA patients in study V.  
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3 MATERIALS AND METHODS 

In this section, we summarize the data sources and methods used in studies I-V. The 

section includes definition of source populations, study populations, study designs and 

statistical methods. For additional information, see the individual papers and the 

supplementary material. The methods are discussed in more detail in section 5.2. 

 

3.1 DATA SOURCES 

All analyses in this project were based on data from Swedish and Danish health care and 

administrative registers with nationwide coverage. The general source population for 

the pediatric analyses (all studies except IV, discussed below) was children (age <18 

years) who resided in Sweden (2005 to 2016) or Denmark (2000 to 2016). The 

population amounted to approximately 5.3 million individuals and was identified 

through national population registers (The Total Population Register in Sweden and 

The Danish Civil Registration System).59-61 From the source population we extracted 

data on all patients with any diagnosis of chronic inflammatory disease during the 

general study periods or three years before. We identified 8700 unique patients with 

IBD diagnosis and 12,600 patients with JIA diagnosis. Patient-level, longitudinal data 

from multiple registers was linked via personal identification numbers and all data was 

anonymized before analysis.62 An overview of the data sources can be found in Figure 2. 

In study I, we utilized both Swedish and Danish data that were analyzed separately. 

Aggregated results were pooled for the main analysis. In studies II, III and V, the 

analysis was performed in Denmark where the coverage of hospital administered TNF-

α inhibitors in the national patient register is close to complete.63,64 Treatment with 

biologics in Denmark is administered in specialist care and does not incur any cost for 

the patient.  

From the population registers and multi-generation registers we extracted data on 

demographics (date of birth, sex, migration, date of death) and linked individuals to 

their parents.59-61,65 As the study population was pediatric education level and income of 

patients’ parents or guardians (extracted from Longitudinal Integration Database for 

Health Insurance and Labour Market Studies [LISA] in Sweden and socioeconomic 

databases in Denmark) were used as proxies for socioeconomic status.
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Figure 2. Overview of the data sources and linkages in Denmark and Sweden
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The national patient registers in Denmark and Sweden, which include all physician-

assigned diagnoses and performed procedures in secondary care (outpatient visits and 

inpatient admissions), were used to identify the cohort of patients with chronic 

inflammatory disease and for identifying comorbidities, disease history and 

outcomes.35,66,67 The national drug registers, which cover all dispensings of prescription 

drugs including prescriptions originating from primary care, were used to identify 

exposure, co-medication and treatment history.68-70  

A strength of the Danish and Swedish data sources is the nationwide coverage of 

diagnoses, procedures and drug use from routine clinical care. The general access to 

health care and subsidized use of prescription drugs in both countries enable 

population-wide coverage. The sample size and length of follow-up are comparably 

large for a pediatric cohort. The data sources also have limitations. The Swedish patient 

register does not have complete coverage of hospital administered drugs, while 

administration of biologics is captured in the Danish patient register, as described 

above. There is no structured data on dosing, which can hamper estimation of duration 

of prescription fills and complicate exposure definitions that are based on prescribed 

dose. Finally, there is no data on diagnoses from the primary care setting with national 

coverage.  

In study IV, we performed an illustrative case example that was based on a cohort of 

adult type 2 diabetes patients, derived from the data sources described above (only 

Sweden). The source population for the analysis was all patients who had filled a 

prescription of a type 2 diabetes drug (Anatomical Therapeutic Chemical [ATC] A10) 

during the study period (July 2013 to December 2018). We identified 574,999 unique 

patients who were eligible at some time point during the study period. The case 

example was based on a previously published study71 and was chosen based on the 

large sample and well-established safety concern (sodium glucose cotransporter 2 

[SGLT2] inhibitors and the risk of ketoacidosis) to enable clear illustration of the 

differences between pharmacoepidemiologic designs.  
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3.2 STUDY DESIGN 

3.2.1 Study populations 

All studies used cohort designs; eligible individuals were identified at certain time 

points (index dates) and followed until event or censoring, whichever occurred first. 

Patients with confirmed disease were included in the study cohorts.  

The pediatric IBD cohorts for studies I, II and III were identified based on data from the 

national patient registers. Patients with at least two contacts (inpatient or outpatient) 

with specialist care with a physician assigned IBD diagnosis during or before the study 

periods were included. In study I, the study period was July 2006-2016 in Sweden and 

2000-2016 in Denmark, due to the earlier launch of the drug register in Denmark. The 

study period in study II, which was only based on Danish data, 2007-2016, started a few 

years after drug approval to avoid inclusion of early users. In study III, where we 

screened for signals of new adverse events, the study period started from the approval 

of TNF-α inhibitors in Denmark (2004-2016). 

The Danish JIA cohort, analyzed in studies III and V, was also identified based on the 

national patient register. In study III, at least two JIA diagnoses from specialist care 

were required. In study V, the study period was the same as in study II, 2007-2016, and 

at least two JIA diagnoses in specialist care were required, where the first diagnosis was 

recorded at age 16 or younger. 

In the case example of study IV, we identified type 2 diabetes patients based on drug use 

rather than diagnosis. At least two filled prescriptions of any diabetes drug (ATC A10) 

during the study period (July 2013 to December 2018) were required. Using indication-

specific drugs for cohort definition had the advantage of also capturing patients who 

were diagnosed and treated in the primary care setting. 

 

3.2.2 Exposures and comparators 

Drug use was identified based on filled prescriptions in the Danish National 

Prescription Registry and the Swedish Prescribed Drug Register. Records of Hospital 

administered treatments in Denmark were obtained from the Danish National Patient 

Register.  



22 

 

In studies I-III, we used no-use episode designs where we identified episodes of new 

use (no previous use during a fixed look-back period) of the study drug and episodes of 

no use of that drug for each individual in the study population.72,73 The study drugs 

were azathioprine in study I and TNF-α inhibitors in studies II and III. All eligible 

follow-up, post confirmed disease, contributed to the episodes. Hence, all time with 

neither current nor recent use of the study drug was divided into mutually exclusive 

no-use episodes, which made up the comparator. Maximum episode length was one 

year in study I, and three years in studies II and III (Figure 3). In this design, one patient 

could contribute to both exposed and no-use episodes. However, because there was no 

overlap between the episodes and patients with a history of the outcome were 

excluded, no individual patient could contribute with multiple events.  

In study V, we used a modified (or generalized) prevalent new user design74 where 

initiators of TNF-α inhibitors were compared with incident and prevalent users of an 

active comparator, MTX. With this design we were able to use an active comparator, 

while not excluding initiators of the study drug, TNF-α inhibitors, who were prevalent 

in the comparator. Further, in relation to the standard prevalent new user design, we 

did not use time-dependent propensity score (PS) matching, which meant that all 

exposed observations were retained in the analysis. To form this analytical cohort, we 

pooled a large set of sequential cohorts identified during the study period.75,76 The study 

period was divided into short intervals and one sequential cohort was identified for 

each interval. Individuals from the source population (described above) who met the 

eligibility criteria during a given interval were included in that sequential cohort.  

In study IV, we sought to demonstrate how different pharmacoepidemiologic designs, 

including no-use episodes and generalized prevalent new user, can be defined based on 

the target trial emulation framework and sequential cohorts. In target trial emulation, 

an observational study is designed by emulating a hypothetical clinical trial, element by 

element. By being explicit about the emulation, the design of the observational study is 

transparent and potential biases can be addressed (more information in section 5.2.2).76 

In the case example of study IV, we reanalyzed a previously published drug safety 

assessment in adults with type 2 diabetes: the association between use of SGLT2 

inhibitors and the risk of diabetic ketoacidosis.71 
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Figure 3. Examples of 

episodes of new study 

drug use and no-use 
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treated design and a 
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three years and wash-out 

of two years 
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3.2.3 Eligibility and censoring 

The general exclusion criteria that were applied to all analyses at baseline (based on 

fixed look-back periods) were: previous use of the study drug, history of the outcome 

event (to only study incident events), and residing outside of the country (to make sure 

that covariate status and data related to exclusion were updated and had been collected 

equally between patients). In all studies (except the case example of study IV) patients 

of age ≥18 years at baseline were excluded and patients with no recent hospital contact 

with a diagnosis for the underlying disease (IBD or JIA) were excluded to avoid 

including patients without regular contact with health care or with very mild disease. 

Additionally, in studies II and V, we also excluded patients with history of 

immunodeficiency, previous use of biologics, or diseases that might require 

immunosuppressing treatments (e.g. HIV and cancer) to limit the risk of confounding. 

Due to the non-targeted nature of study III, where we performed data mining for new 

signals of adverse events, the exclusion criteria were less restrictive.  

We used as-treated designs in the main analyses of all studies, i.e. patients were 

followed as long as they adhered to their baseline treatment strategy. In study I, the 

maximum length of follow-up in the main analysis was short (90 days) and azathioprine 

episodes were not censored due to treatment changes, while no-use episodes were 

censored at initiation of azathioprine, if any. In the as-treated analyses of TNF-α 

inhibitor use in studies II, III and V, patients were censored at treatment cessation in the 

TNF-α inhibitor group and initiation of a TNF-α inhibitor in the comparator group, if 

any. The duration of TNF-α inhibitor use was based on the dosing schedule of treatment 

guidelines and a grace period of 60 days in studies II and V, and 90 days in study III. 

Additionally, in study V the duration of subcutaneous TNF-α inhibitors was set to 60 

days to account for potential dispensing of biologics for self-administration. In the case 

example of study IV, we assumed the same durations per prescription fill as in the 

original study.71 Other reasons for censoring were end of study period, maximum 

follow-up (e.g. maximum episode length), migration from Sweden or Denmark, or 

death.  

 

3.2.4 Outcomes 

All analyses were targeted at specific outcome events except study III, where we 

screened for any event with elevated risk. Outcomes were identified based on 
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physician-assigned diagnoses in specialist care, derived from the national patient 

registers. The primary outcome in study I was acute pancreatitis, defined as a contact 

with specialist care (inpatient or emergency outpatient) with a diagnosis of acute 

pancreatitis. The primary outcome in studies II and V was serious infection, defined as 

an inpatient hospital admission with a physician-assigned diagnosis for any infection. In 

study IV, the outcome of the case example was diabetic ketoacidosis, defined as any 

contact with specialist care (inpatient or outpatient) with a diagnosis of diabetic 

ketoacidosis. The date of health care contact or admission was the date of event. 

 
 

3.3 STATISTICAL ANALYSES 

3.3.1 Confounding adjustment 

We used propensity score (PS) methods to adjust for confounding in all studies. The PS, 

which is the conditional probability of treatment, was estimated with logistic 

regression. In the PS models we included general socio-demographic factors, such as 

age, sex, socioeconomic status (from parents in the pediatric studies), and measures of 

health care use. Additionally, we adjusted for disease history, treatment history, and 

factors related to the severity of the underlying disease, that were potential 

confounders. Covariate balance at baseline following adjustment was assessed using 

standardized mean differences, where a difference below 0.1 was considered consistent 

with well-balanced groups. 

In studies I and III, we used 1:1 PS matching with a greedy nearest neighbor algorithm. 

The caliper (maximum difference in PS between exposed and comparator) was 20% of 

the pooled standard deviation of the logit PS in study I,77 and 200% of the same in study 

III to ensure that all exposed episodes were included in the matched cohort. 

Additionally, in study III, we required an exact match on the underlying disease of JIA, 

CD or UC. 

In studies II, IV and V, we used different types of PS weighting to adjust for confounding. 

In studies II and IV, we used standardized mortality ratio (SMR) weights and fine-

stratification weights, respectively, to estimate the average treatment effect in the 

treated (ATT) (Table 1). Only comparator observations were weighted to achieve a 

similar distribution of covariates as in the exposed. In study V, we used stabilized 

inverse probability of treatment (IPT) weighting, to estimate the average treatment 
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effect (ATE) or the marginal effect, in the TNF-α inhibitor initiators and MTX users. In all 

weighted analyses, observations with PS outside the common range were excluded 

from the analysis.  

In all studies, except the case example of study IV, we performed a priori defined 

sensitivity analyses to investigate the robustness of the main results, and subgroup 

analyses to examine effect modification between patient groups. 

 
Table 1. Propensity score weighting methods 

Weighting method Formula Estimand Application 

Standardized mortality 

ratio (SMR) 𝑤𝑖 = {

1,                   𝑖𝑓 𝐴𝑖 = 1
𝑒𝑖

1 − 𝑒𝑖
, 𝑖𝑓 𝐴𝑖 = 0

 

ATT Study II 

Fine-stratification 

𝑤𝑖 = {

1,                       𝑖𝑓 𝐴𝑖 = 1

𝑁𝐴=1;𝑗 𝑁𝐴=1⁄

𝑁𝐴=0;𝑗 𝑁𝐴=0⁄
, 𝑖𝑓 𝐴𝑖 = 0

 

ATT Study IV 

Stabilized inverse-

probability of treatment 

(IPT) 
𝑤𝑖 =

{
 

 
𝑒

     𝑒𝑖    
,        𝑖𝑓 𝐴𝑖 = 1

1 − 𝑒

1 − 𝑒𝑖
, 𝑖𝑓 𝐴𝑖 = 0

 

ATE Study V 

Note: 𝑒𝑖 PS in observation 𝑖; 𝑒 marginal PS; 𝑤𝑖 PS weight in observation 𝑖; 𝐴𝑖 treatment in observation 

𝑖 (1 exposed; 0 comparator); 𝑁𝐴 total number of observations with treatment A; 𝑁𝐴;𝑗 number of 

observations with treatment A in PS stratum 𝑗. 

 

3.3.2 Informative censoring adjustment 

We performed as-treated analyses in all studies and patients were censored at deviation 

from the baseline treatment. To adjust for potential informative censoring, i.e. 

differential censoring in relation to the prevalence of risk factors for the outcome, we 

used stabilized inverse probability of censoring (IPC) weighting in studies IV and V 

(Formula 1).78 Weights were calculated for a certain patient and time interval of follow-

up as the inverse of the conditional (on baseline treatment and confounders) 

probability of not being censored in the previous interval.  



 

27 

  

General Information 

𝑤𝑖,𝑡 = ∏
𝑃(𝐶𝑖,𝑡 = 0|𝐶𝑖,1 = 0,… , 𝐶𝑖,𝑡−1 = 0, 𝐴𝑖)

𝑃(𝐶𝑖,𝑡 = 0|𝐶𝑖,1 = 0,… , 𝐶𝑖,𝑡−1 = 0, 𝐴𝑖 , 𝑋𝑖,𝑡)

𝑖,𝑡

𝑖,𝑡=1

 

 

[Formula 1] IPC weights. 𝑤𝑖,𝑡 stabilized censoring weight for observation 𝑖 at time 𝑡; 𝐶𝑖,𝑡 

censoring status for observation 𝑖 at time 𝑡 (1 censored; 0 not censored); 𝐴𝑖  baseline 

treatment for observation 𝑖; 𝑋𝑖,𝑡 vector of baseline and time updated confounders for 

observation 𝑖 at time 𝑡. 

 

Weights were stabilized by inserting the probability of not being censored conditioned 

on baseline treatment in the numerator. The conditional probability of censoring was 

estimated with logistic regression. Final weights used in the analysis were calculated as 

the product of baseline IPT weights and IPC weights until the time interval analyzed. 

The weights were truncated at the 1st and 99th percentiles to avoid adjusting for 

extreme weights. In studies I-III, we performed naïve analyses with no adjustment for 

potential informative censoring.  

 

3.3.3 Effect estimation 

In study I, we used Poisson regression with offset for patient-time to be able to pool 

aggregate results in subgroups with zero events from the country analyses. With 

Poisson regression we estimated the incidence rate ratios (IRR) of the outcome 

associated with exposure. In study II, we used Cox proportional hazards regression to 

estimate HRs. Robust sandwich estimators were used to account for repeated 

observations in the weighted pseudo population. We assessed the proportional hazards 

assumption by testing if an interaction term between exposure and time was significant. 

In studies IV and V, we estimated the rate ratio of the outcome associated with exposure 

in weighted or matched pooled logistic regression models, where all sequential cohorts 

and follow-up intervals were included.79 The only covariates in the outcome models 

were baseline exposure and time interval (including polynomials) and we accounted for 

repeated and dependent outcome events within individuals. IRRs and HRs with 95% CIs 

not including 1.0 were regarded as statistically significant. In study I, we additionally 

estimated the absolute rate differences with the formula (IRR-1)*comparator incidence 

rate,73 while we used Poisson regression with an identity link in study II. Crude and 



28 

 

adjusted (matched or weighted) cumulative incidence curves were estimated with the 

complement of the Kaplan-Meier function. 

 

3.3.4 Data mining with scan statistics 

In study III, we screened for new signals of adverse events of TNF-α inhibitors in 

children with IBD or JIA in Denmark. We used physician-assigned diagnosis codes from 

specialist care (primary and secondary diagnoses; outpatient and inpatient contacts). 

All diagnoses observed during follow-up, at five levels of the ICD-10 code tree (cuts), 

were considered as potential adverse events, i.e. from disease chapters (e.g. I00-99 

diseases of the circulatory system) to four-position codes (e.g. I47.1 supraventricular 

tachycardia) (Figure 4). Events were collected from the register at the three- and four-

position levels across the entire ICD-10 code system. A limited set of diagnoses were not 

assessed since they were considered not relevant as potential adverse events (e.g. 

congenital malformations). 

Two analyses were performed. In the first, we used PS matched tree-based scan 

statistics to compare episodes of TNF-α inhibitor use with episodes of no use. In the 

second, we performed a self-controlled analysis using tree-temporal scan statistics to 

compare temporal risk windows within the TNF-α inhibitor episodes. We only analyzed 

incident events, defined as a code not preceded by the same code on the three-position 

level. The look-back window in the PS matched analysis was infinite and in the self-

controlled analysis the look-back window was three years in relation to the time of the 

event. 

In the PS matched analysis, we used unconditional Bernoulli tree-based scan 

statistics.80,81 The exposure of each observed event was assumed to follow a Bernoulli 

distribution. The null hypothesis was that events in all cuts were equally probable (due 

to the 1:1 matching) to occur in the TNF-α inhibitor as the no-use episodes, while the 

alternative hypothesis was that the risk of events to occur in the TNF-α inhibitor 

episodes was higher, for at least one cut. Find a summary of formulas in Table 2. 
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Figure 4. Example of tree-based structure of ICD-10 codes (I00-I99) from Chapter to four-position level. Number of events in cut 𝐺, 𝑐𝐺, is calculated 

as the sum of incident diagnoses at the three and four-position levels below the cut, 𝑐𝑖 (one patient cannot contribute with more than one event to 

each cut)
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In the self-controlled analysis, we used a tree-temporal scan statistic, conditioned on 

the number of events in each cut and assumed that the events were uniformly 

distributed over follow-up under the null hypothesis. The alternative hypothesis was 

that the risk was higher in at least one combination of cut and investigated risk 

window; the log likelihood ratio (LLR) was estimated for each combination. The 

durations of risk windows were 2 days to 1.5 years (half of the maximum follow-up) 

and no window was shorter than 20% of the follow-up day it ended on (e.g. windows 

that ended on day 50 were 10 days or longer). 

For each cut in the PS matched analysis and for each cut-risk window in the self-

controlled analysis the LLR was calculated. Inference was based on Monte Carlo 

simulation because there is no simple expression for the sample distribution of the 

LLRs. See details on the procedure in the box below. Cuts with p-values below 0.05 were 

considered statistically significant.  

 

3.3.5 Statistical software 

The following software packages and applications were used to perform the statistical 

analyses for studies I-V SAS v9.4 (SAS Institute Inc.), TreeScan v1.4 (www.treescan.org), 

and D3.js (v5.14.0). 

 

3.3.6 Ethical approval 

Studies I, II and IV, conducted based on Swedish register data, were approved by the 

regional ethics committee in Stockholm (Ref 2016/2029-31/1; 2017/715-31). Ethical 

approval was not required for studies performed based on Danish register data; those 

studies were approved by the Danish Data Protection Agency. 
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Table 2. Definitions and formulas for scan statistics analyses 

 

 

 

Item 

 

Tree-Based Unconditional Bernoulli 

Scan Statistic 

Tree-Temporal Conditional  

Scan Statistic 

Expected 

exposed 

events 

under the 

null 

hypothesis 

𝑝(𝑐𝑖 + 𝑛𝑖) 

 

p, proportion of exposed in matching cluster   

(0.5 if 1:1 matching); ci, exposed events in 

node i; ni, unexposed events in node i. 

 

𝑘𝑖
𝑤𝑗

𝑇
 

ki, total exposed events over follow-up in 

node i; wj, length of risk window j; T, total 

length of follow-up. 

 

Events in  

cut G 
𝑐𝐺 =∑(𝑐𝑖)

𝑖∈𝐺

        𝑛𝐺 =∑(𝑛𝑖)

𝑖∈𝐺

    

G, cut; cG, exposed events in cut G; nG, 

unexposed events in cut G. 

 

𝑐𝐺,𝑗 =∑(𝑐𝑖,𝑗)

𝑖∈𝐺

   𝑘𝐺 =∑(𝑘𝑖)

𝑖∈𝐺

    

G, cut; cG,j, exposed events in cut G and risk 

window j; ci,j, exposed events in node i and 

risk window j; kG, total exposed events over 

follow-up in cut G; ki, total exposed events 

over follow-up in node i. 

 

Hypotheses 

𝐻0:   
𝑐𝐺

𝑐𝐺 + 𝑛𝐺
= 𝑝 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑢𝑡𝑠 (𝐺) 

 

𝐻1:   
𝑐𝐺

𝑐𝐺 + 𝑛𝐺
> 𝑝 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡  

𝑜𝑛𝑒 𝑐𝑢𝑡 (𝐺) 

 

𝐻0:  
𝑐𝐺,𝑗

𝑘𝐺
=
𝑤𝑗

𝑇
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑢𝑡 𝑎𝑛𝑑 𝑟𝑖𝑠𝑘  

𝑤𝑖𝑛𝑑𝑜𝑤𝑠 (𝐺, 𝑗) 

𝐻1:  
𝑐𝐺,𝑗

𝑘𝐺
>
𝑤𝑗

𝑇
𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐𝑢𝑡  

𝑎𝑛𝑑 𝑟𝑖𝑠𝑘 𝑤𝑖𝑛𝑑𝑜𝑤 (𝐺, 𝑗) 

Log 

likelihood 

ratio 

𝐿𝐿𝑅(𝐺) = 

𝑙𝑛 (
(

𝑐𝐺
𝑐𝐺 + 𝑛𝐺

)
𝑐𝐺
(

𝑛𝐺
𝑐𝐺 + 𝑛𝐺

)
𝑛𝐺

(𝑝)𝑐𝐺(1 − 𝑝)𝑛𝐺
)𝐼 (

𝑐𝐺
𝑐𝐺 + 𝑛𝐺

> 𝑝) 

𝐿𝐿𝑅(𝐺, 𝑗) = 

𝑙𝑛

(

 
 (
𝑐𝐺,𝑗
𝑘𝐺
)
𝑐𝐺,𝑗

(
𝑘𝐺 − 𝑐𝐺,𝑗
𝑘𝐺

)
𝑘𝐺−𝑐𝐺,𝑗

(
𝑤
𝑇
)
𝑐𝐺,𝑗

(
𝑇 − 𝑤
𝑇

)
𝑘𝐺−𝑐𝐺,𝑗

)

 
 
𝐼 (
𝑐𝐺,𝑗

𝑘𝐺
>
𝑤

𝑇
) 

 
I, indicator function which takes value 1 if true, otherwise 0. 

Test statistic 
𝑇 = 𝑚𝑎𝑥

𝐺
𝐿𝐿𝑅(𝐺) 𝑇 = 𝑚𝑎𝑥

𝐺,𝑗
𝐿𝐿𝑅(𝐺, 𝑗) 
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Monte Carlo hypothesis testing 

Monte Carlo simulations were performed for the PS matched analysis and the self-controlled 

analysis, through the following steps (additional definitions in Table 2): 

1) A series of random replicas of the real datasets (9999 iterations) were generated under 

the null hypothesis: 

a. In the PS matched analysis, the exposed events (ci) and unexposed events (ni) 

in each leaf were replaced by random values drawn from a Bernoulli 

distribution with p=0.5, where the total events (ci+ni) was fixed. If multiple 

events occurred in an episode, the events were randomized together to either 

the TNF-α inhibitor or no-use group.  The number of events in each cut (cG and 

nG) was calculated in the real and simulated datasets. One episode could not 

contribute with more than one event to each cut. 

b. In the self-controlled analysis, the day of event for each exposed event was 

replaced by a random value drawn from a uniform distribution over the 

patient’s total follow-up (events had equal probability of occurring at all days 

during follow-up). The number of events in each cut-risk window (cG,j) was 

calculated in the real and simulated datasets. 

2) The test statistics, T (max LLR), were calculated for each random and real dataset. 

3) The test statistics from the real data (LLR for the most likely cut from each analysis) 

were ranked in relation to their corresponding series of simulated test statistics (1 vs 

9999 values per analysis). The p-value was estimated based on the rank of the 

observed test statistic and the number of iterations: 

𝑝𝑣𝑎𝑙𝑢𝑒 =
𝑟

𝑆 + 1
 

Where r, rank of observed, real test statistic; S, number of iterations. In addition to the most 

likely cut and cut-risk window, we also estimated p-values for second most likely and so on, 

including all with p-values < 1.  

 

 

  



 

33 

4 SUMMARY OF PAPERS 

In this section, we summarize the background and key results of studies I-V. More 

detailed descriptions can be found in attached papers and supplementary appendices.  

 

4.1 STUDY I: AZATHIOPRINE AND THE RISK OF ACUTE PANCREATITIS IN 
PEDIATRIC IBD 

4.1.1 Background 

Previous studies in adult IBD have indicated that use of thiopurines increase the risk of 

acute pancreatitis. According to studies, between 3 and 7% of patients experience the 

event in the first few months and risk increases up to 8 times have been observed.40,82-84 

In children the evidence is limited to a few case series and no controlled studies have 

been reported.41-44,85 The aim of study I was to investigate if there is an association 

between use of azathioprine, the most commonly used thiopurine in Scandinavia, and 

the risk of acute pancreatitis in Swedish and Danish children with IBD. 

 

 

Figure 5. Study I: Cumulative incidence of acute pancreatitis in the first 90 days in 

unmatched and PS matched cohorts of azathioprine and no use episodes  
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4.1.2 Key results  

Based on Swedish and Danish nationwide data, we identified 3374 episodes of new 

azathioprine use among children with IBD, which were PS matched with episodes of no 

use. In these pairs, the mean (standard deviation [SD]) age was 14.3 (3.2) years, 55% 

were male, 57% had CD and 43% had UC or unclassified IBD. During the first 90 days of 

follow-up, 40 events of acute pancreatitis occurred among the azathioprine treated 

(incidence rate [IR] 49.1 events per 1000 patient-years) and 6 events occurred in the 

no-use group (IR 8.4 events per 1000 patient-years) (Figure 5). Use of azathioprine was 

significantly associated with an increased risk of acute pancreatitis; the IRR was 5.82 

(95% CI 2.47 to 13.72). The absolute rate difference was 1.0 (95% CI 0.3 to 2.6) events 

per 100 patients during the 90-day risk period. In the secondary risk period, days 91-

365 following azathioprine initiation, there was no significantly increased risk (IRR 

0.99, 95% CI 0.31 to 3.11). The risk of acute pancreatitis appeared to be similar between 

subgroups, although the results were uncertain due to few no-use events. 

 

4.2 STUDY II: TNF-ALPHA INHIBITORS AND THE RISK OF SERIOUS 
INFECTION IN PEDIATRIC IBD 

4.2.1 Background 

Previous observational studies have shown an association between use of TNF-α 

inhibitors and increased risk of serious infection in adult IBD; commonly defining 

serious infections as infections requiring hospitalization. Larger studies from various 

settings, including one prospective study and two retrospective studies, showed 

significant associations, HRs ranging between 1.43 and 1.71.4-6 The only controlled 

study that has presented results for pediatric patients (age <18 years) to our 

knowledge, found a non-significant association between TNF-α inhibitor use and the 

risk of serious infection (HR 1.12, 95% CI 0.75 to 1.68) based on insurance claims data 

from the United States.4 Hence, more data is needed to support the understanding of 

this drug safety concern in children. The aim of study II was to investigate if there is an 

association between use of TNF-α inhibitors and the risk of serious infection in Danish 

children with IBD. 
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4.2.2 Key results  

Based on Danish nationwide data, we identified 618 episodes of new TNF-α inhibitor 

use and 2925 no-use episodes, among children with IBD. In the PS weighted cohort, 

53% were male, mean (SD) age was 15.1 (1.7) years, 70% had CD and 30% had UC or 

unclassified IBD. The most commonly initiated TNF-α inhibitor was infliximab (95% of 

episodes) and the median follow-up time was 1.0 years among TNF-α inhibitor episodes 

and 2.1 years among no-use episodes. During follow-up, in the unweighted episodes of 

current TNF-α inhibitor use and no use there were 41 and 262 serious infection events, 

respectively (Figure 6). This translated to incidence rates of 54.6 and 61.9 events per 

1000 patient-years among TNF-α inhibitor and no-use episodes, respectively, in the PS 

weighted cohort. There was no significant association between use of TNF-α inhibitors 

and the risk of serious infection, HR 0.81 (95% CI 0.54 to 1.21), and the absolute rate 

difference was -12.0 (95% CI -28.6 to 13.0) events per 1000 patient-years. Only 

considering the first 90 days of follow-up the weighted HR was similar, 0.76 (95% CI 

0.35 to 1.66). Additionally, a similar result was observed in a replication of the analysis 

in a small Swedish cohort, weighted HR 0.72 (95% CI 0.28 to 1.83).  

 

 
 
Figure 6. Study II: Cumulative incidence of serious infection in weighted cohort of TNF-α 

inhibitor and no-use episodes 
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4.3 STUDY III: DATA MINING FOR ADVERSE EVENTS OF TUMOR NECROSIS 
FACTOR-ALPHA INHIBITORS IN PEDIATRIC PATIENTS 

4.3.1 Background 

Although TNF-α inhibitors are efficacious and considered safe in adults,32-34 the 

pediatric-specific safety data is generally scarce. Previously unknown adverse events 

can be detected post-market approval when drugs are used by a more heterogenous 

and larger set of patients in clinical practice. Traditionally, spontaneous reporting 

systems have been the main source for signal detection. The use of routinely-collected 

data from health registers is another opportunity, which enables data mining at a large 

scale with potentially lower risk of reporting bias and confounding. The aim of study III 

was to screen for signals of previously unknown adverse events of TNF-α inhibitors in 

Danish pediatric patients with IBD or JIA, applying data mining methods to nationwide 

health care registers. 

4.3.2 Key results  

Based on Danish nationwide data, we identified 1310 episodes of new TNF-α inhibitor 

use in pediatric IBD and JIA patients. In a PS matched tree-based scan statistics analysis 

with episodes of no use as comparator, we detected two signals of adverse events of 

TNF-α inhibitors: dermatologic complications (ICD-10: L00-L99, 87 Vs 44 events, risk 

difference [RD] 3.3%) and psychiatric diagnosis adjustment disorders (ICD-10: F432, 33 

Vs 7 events, RD 2.0%) (Table 3). The former events have been described previously in 

adults and children, while the latter was likely associated with the underlying diseases 

and their severity, rather than with the treatment. We also performed a self-controlled 

scan statistics analysis that generated no signals. Hence, no signals of previously 

unknown adverse events of TNF-α inhibitors in pediatric patients were detected. The 

analysis showed how Scandinavian health care registers and novel data mining 

methods can be used to screen for previously unknown adverse events. This type of 

evidence can play a particularly important role in pediatrics where output of both 

clinical and observational studies is low. 
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Cut (ICD-10 code) TNF-α 
inhibitor 
events 

No use 
events 

Relative  
risk 

Risk 
difference  

(%) 

P-value 

F432 Adjustment disorders 33 7 4.71 2.0 0.002 

L20-L30 Dermatitis and eczema 34 8 4.25 2.0 0.004 

F40-F48 Anxiety, dissociative,  
Stress-related, somatoform, etc. 

39 11 3.55 2.1 0.007 

F43 Reaction to severe stress,  
and adjustment disorders 

35 9 3.89 2.0 0.008 

L00-L99 Diseases of the skin  
and subcutaneous tissue 

87 44 1.98 3.3 0.017 

 

Table 3. Study III, PS matched analysis: Plot; dendrogram on all cuts of the ICD-10 tree with 

at least one event in the TNF-α inhibitor episodes or the no-use episodes (down to the 

three-position level). Table; cuts of the ICD-10 tree with significantly high risk in TNF-α 

inhibitor episodes. 
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4.4 STUDY IV: SELECTION OF COMPARATOR GROUP IN OBSERVATIONAL 
DRUG SAFETY STUDIES 

4.4.1 Background 

The comparator group is a key element of the design in pharmacoepidemiologic 

studies.86 The active comparator new user (ACNU) design is a commonly used design 

where the comparator consists of patients initiating another drug at baseline.87,88 This 

design has high potential to reduce various types of bias, but it also has limitations, 

including the requirement of a suitable comparator drug and strict eligibility criteria. In 

this study we explored and evaluated the following alternative designs that can be used 

when ACNU is not optimal: traditional no use, no use episodes, prevalent new user, 

generalized prevalent new user, and hierarchical prevalent new user. We used target 

trial emulation as a mutual framework to facilitate comparison of the designs. The 

specific aims of study IV were to systematically describe and compare alternative 

pharmacoepidemiologic designs, and to present a case example where the designs are 

applied in a real-world drug safety assessment to illustrate the differences. 

4.4.2 Key results  

In this study, we showed how the target trial emulation framework and sequential 

cohorts can be used to transparently communicate and compare various study designs 

in pharmacoepidemiology: the key difference between the designs is the eligibility 

criteria at baseline (Figure 7). From scrutinizing the differences and applying the 

designs in a case example, we concluded that many study-specific factors influence the 

selection of optimal comparator, including indication, available comparator drugs, 

treatment patterns, potential effect modification, and sample size. The ACNU is superior 

in its potential to reduce confounding and information bias, but if the strict eligibility 

criteria impair generalizability or statistical precision, a prevalent new user design 

might be preferable. If there is no suitable active comparator drug available a no use 

design can be considered. Irrespectively of the chosen design, the risk of bias needs to 

be critically assessed in each study.  

 



 

39 

 

Figure 7. Study IV: Flow chart for identification of eligible patients (left) and eligibility for patient with sequential use of comparator and study drug 

(right), by alternative study designs. *Exclusion is typically preceded by applying a maximum follow-up, i.e. the episode length. 

Start of 

study 

period

End of 

study 

period

Initiation of 

comparator drug

Traditional no use

End of current 

study drug use

No use episodes

Generalized prevalent new user

Prevalent new user

Hierarchical prevalent new user

Active comparator new user

... every sequential cohort … 

One of these 

will be included, 

if matched

Included if 

matched

Initiation of 

study drug

Comparator drug dispensing

Study drug dispensing

Any other drug dispensing

Included in study drug group

Included in comparator group

Included study drug follow-up time

Active-

comparator 

designs

No-use 

designs

No use episodes

Generalized prevalent new user

Hierarchical prevalent new user

Active comparator new user

Exclude chronologically if patient has ongoing follow-up from 

previous cohort*

If comparator drug on baseline, exclude if previous use in comparator drug

Exclude if previous use in comparator drug (independently of drug use on baseline)

Prospective, time-dependent propensity score matching, based on 

extent of previous use of the comparator drug

Prevalent new user 

Exclude if no dispensing of study or comparator drug on baseline

Increasingly 

restrictive 

cohort 

definition

Additional exclusion 

criterion

Study design

Inclusion criteria Basic inclusion criteria at baseline

• Patient is alive and currently registered in data source

• Emulated indication for the study drug

• Available medical history

• No previous dispensing of the study drug

• No previous diagnosis of the outcome event

Base cohort 

Traditional no use

Included comparator follow-up time



 

40 

4.5 STUDY V: TNF-ALPHA INHIBITORS AND THE RISK OF SERIOUS 
INFECTIONS IN JIA 

 

4.5.1 Background 

Previous studies have shown that serious infection is an adverse event of TNF-α 

inhibitors in adults with rheumatic disease. A meta-analysis of RCTs on biologics found 

significantly increased risks, separately restricted to TNF-α inhibitors (116 RCTs) and 

RA patients (62 RCTs).45 In JIA, there are primarily two previous studies that 

investigated this safety concern. Both were prospective, observational and analyzed use 

of etanercept: one found a significant association (n=1414; RR 2.12, 95% CI 1.08 to 

4.17)55 and the other reported an HR of 1.36 with a rather wide CI (n=852; 95% CI 0.60 

to 3.07).56 Hence, the pediatric-specific safety evidence is limited. The aim of study V 

was to investigate if there is an association between the use of TNF-α inhibitors and the 

risk of serious infection in patients with JIA. 

 

 
 

Figure 8. Study V: Cumulative incidence of serious infection in weighted cohort of TNF-α 

inhibitor and MTX users  

 

4.5.2 Key results  

Based on Danish nationwide data, among patients with confirmed JIA we identified 578 

initiators of TNF-α inhibitors who met the eligibility criteria. The comparator consisted 

of 1915 observations of initiators and users of MTX. In the unadjusted cohort, the mean 

age (SD) was similar between the TNF-α inhibitor and MTX groups, 11.7 (4.2) and 11.8 

(4.3) years, respectively. The distribution of females was the same, 71% in both groups. 

Number at risk

TNF-α inhibitor 578 234 125 64

MTX 1915 1492 1215 1029

0

2

4

6

8

10

12

14

0 1 2 3

C
u
m

u
la

tiv
e
 i
n
c
id

e
n
c
e
 (
%

)

Years of follow-up

TNF-α inhibitor

MTX

Hazard ratio 1.99 (95% CI, 1.09 to 3.65) 



 

41 

However, comorbidities and JIA complications were generally more prevalent in the 

TNF-α inhibitor group. The proportion that was incident to MTX at baseline was 36% 

and 24% in the TNF-α inhibitor and MTX group, respectively. The mean (SD) follow-up 

was longer in the MTX group, 2.2 (1.1) compared with 1.2 (1.0) years. During follow-up 

in the unweighted cohort, we observed 26 events of serious infection among the TNF-α 

inhibitor users and 75 events in the MTX group. This translated to incidence rates in the 

TNF-α inhibitor and MTX groups of 4.0 and 1.9 events per 100 patient-years, 

respectively, in the PS weighted cohort (Figure 8).  We observed a significant 

association between the use of TNF-α inhibitors and the risk of serious infection, HR 

1.99 (95% CI 1.09 to 3.65). The site-specific infections with increased risk were 

respiratory tract infections and infections of the skin and subcutaneous tissue.  
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5 DISCUSSION 

 

5.1 CLINICAL IMPLICATIONS 

In study I, we found that the use of azathioprine in pediatric IBD significantly increased 

the risk of acute pancreatitis by almost six times during the first 90 days following 

azathioprine initiation, as compared with no use. The relative risk was similar to the 

results from two previous studies in adults,39,82 while the absolute risk was lower than 

findings from several observational studies and clinical trials in adults.37-40,83,84,89 This 

discrepancy could be due to differential risk factors of acute pancreatitis, where 

gallstone, smoking and alcohol misuse are some of the most important risk factors in 

adults. Acute pancreatitis is a very rare condition in the general pediatric population 

and a meta-analysis in adults showed that IBD is a risk factor; a two- to four-fold 

increased risk depending on IBD subtype was observed, in comparison with the general 

population.90 Another similarity with the findings in adults was the short time to onset 

of acute pancreatitis among azathioprine patients (median 23 days in our study), which 

supports the notion of an association and a similar mechanism between the patient 

groups. However, the pathogenesis of thiopurine-induced acute pancreatitis is 

unknown. A few potential mechanisms have been suggested, including accumulation of 

toxic metabolites, immunological reactions, and genetic predisposition.91  

Thiopurine-induced cases of acute pancreatitis in adults have been described as 

comparably mild.40 Withdrawal of thiopurine treatment is indicated following onset of 

acute pancreatitis, which in most cases leads to alleviated symptoms. This was 

supported by the results of our study where the duration of hospital stay of inpatient 

acute pancreatitis cases was shorter in the azathioprine episodes in comparison with 

the no-use episodes (median length of stay was 5.1 and 18.4 days, respectively). The 

increased risk of acute pancreatitis shortly following treatment initiation supports the 

current practice of frequent monitoring of pediatric IBD patients during this period. 

Regular tests of thiopurine-related metabolites and enzymes, including thiopurine 

methyltransferase (TPMT), supports optimal dosing and reduces the risk of adverse 

events, such as acute pancreatitis, in these patients.92  

In studies II and V, we investigated if there is an association between use of TNF-α 

inhibitors and the risk of serious infections in patients with pediatric IBD and JIA, 
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respectively. The analysis in pediatric IBD showed no significant association between 

the use of TNF-α inhibitors and the risk of serious infection, as compared with no use. 

Whereas the study in JIA found a significant two-fold increased risk associated with 

TNF-α inhibitors, as compared with MTX. 

There are more available pediatric-specific data on this safety concern in JIA than in 

IBD. Our results in JIA were similar to what has been shown previously in two 

prospective studies.55,56 All studies had comparably small sample sizes, but taken 

together they give a coherent picture of an increased risk of serious infection among JIA 

patients who initiate TNF-α inhibitors, in particular infections of the respiratory tract 

and skin. Further, the increase in relative risk is also similar to what has been reported 

in meta-analyses of RCTs in adults.45 

In pediatric IBD, there is only one previous controlled study, which was conducted 

based on insurance claims data in the United States, that offers relevant comparison.51 

Similar to our analysis, this study found no significant association between the use of 

TNF-α inhibitors and the risk of serious infection in children. The absolute rates of 

serious infection among users of TNF-α inhibitors were also similar between the 

studies. Considering the results together, they indicate that use of TNF-α inhibitors 

might be associated with a smaller increased risk of serious infection in pediatric in 

comparison with adult IBD, if any at all.  

The factors that influence the variable risk of serious infection following use of TNF-α 

inhibitors need further investigation. Potential aspects are the baseline infection risk, 

timing of initiation during the disease course, specific biologics used, and use of 

combination treatments.93 Intravenously administered infliximab was the predominant 

TNF-α inhibitor agent in pediatric IBD, whereas subcutaneous adalimumab and 

etanercept were the most common in JIA. The baseline risk of infection varies greatly 

between age groups of children and in relation to adults. The characteristics of 

underlying disease, including its severity and extent, are also important risk factors. The 

severity of IBD is generally higher in patients with childhood onset IBD in comparison 

with adult onset.94 The disease manifestation and prognosis also affect treatment 

strategies and the timing of initiation of TNF-α inhibitors. As described above (section 

2.1), TNF-α inhibitors are used earlier in the disease course and to a larger extent in 

pediatric IBD than in JIA. Comparisons with adult IBD patients have shown more 

widespread use of TNF-α inhibitors in children.18 From a global perspective, it is also 
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evident that the use of TNF-α inhibitors is more prevalent in the United States in 

comparison with Europe.95 

Traditionally bottom-up treatment strategies have been used in both pediatric IBD and 

JIA, where available pharmacologic therapies form a pyramid with less efficacious but 

safer treatments at the bottom and more potent but potentially more toxic treatments 

at the top.30,96 Treatment starts at the bottom of the pyramid in newly diagnosed 

patients and is stepped up if tolerability is low or the treatment response is not 

sufficient. Critical steps in this strategy are the initiations of thiopurines in pediatric 

IBD, which are more potent than 5-ASA, and MTX in JIA. Followed by the option to add 

or switch to a TNF-α inhibitor or other biologic at a later point, which represent the top 

of the pyramid.  

This approach has, however, been contested by alternative treatment strategies where 

either treatment is stepped up faster and initiation of biologics occurs earlier in the 

disease course or a top-down approach, where biologics are initiated before or 

concomitantly with thiopurines or MTX.30,96 The rationale for a top-down strategy is 

based partly on the, at least short-term, favorable safety profiles of TNF-α inhibitors, 

and partly on the notion that the efficacy of these treatments and the chance to 

positively alter the disease course are higher at an early stage. 

For particular patient groups, such as severe CD with anal fistula, polyarthritis with high 

disease activity, and systemic JIA, early initiation of biologics is generally considered 

favorable.30,94 In other patient groups, the optimal treatment strategies are less distinct. 

A challenge in the top-down approach is to distinguish the pediatric IBD and JIA 

patients with worse prognosis and elevated risk of an aggressive disease course, who 

could benefit most from early use of biologics.30,97 

Considering the risks of adverse events is key when determining a suitable treatment 

strategy. The safety profiles of thiopurines, TNF-α inhibitors, and potential concomitant 

use in children critically impact the choice and timing of therapies. The results from 

studies I, II and V can support clinical decision-making and need to be considered when 

weighing potential benefits against risks when prescribing to children with pediatric 

IBD or JIA. Important avenues for future research include safety assessments from other 

health settings, based on larger pediatric cohorts, and with focus on subgroups that 
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might be at higher risk of acute pancreatitis and serious infections, in particular disease 

subtypes, age groups, and patients at different steps of the traditional treatment ladder. 

 

5.2 METHODOLOGICAL CONSIDERATIONS 
 

5.2.1 New-user design 

Pharmacoepidemiologic studies on the safety and effects of drugs are typically cohort 

studies based on longitudinal data. A seemingly minor design feature that has 

significantly improved the quality and relevance of these studies during the last two 

decades is the new-user design.98 To make a valid assessment of the effect, new 

(incident) users of a drug must be studied rather than prevalent users. It is critical to 

identify the time point of treatment initiation and define time at risk from this point.  

There are primarily two advantages of this design. First, the effect of the drug can vary 

over time and excluding a time interval following initiation can bias the effect estimate, 

e.g. excluding the time shortly following treatment initiation when studying an acute 

allergic adverse reaction. There are many examples of effect assessments that have 

been biased due to not studying new users.99 We used a new-user design in all studies, 

I-V.  In study I, we found a significant association between the drug and the outcome 

within the first three months following treatment initiation and no association in the 

secondary time window, months 4-12. Hence following patients from the initiation of 

the drug was critical to correctly capture the adverse effect of the drug. Second, patients’ 

covariate status needs to be assessed only based on information available before drug 

initiation for appropriate confounding control. For example, if we adjust for disease 

severity status (X) that is evaluated after drug initiation, it could be affected by drug use. 

If disease severity in turn affects the risk of the outcome (Figure 9; graph a) it is a 

mediator and we will not estimate the total effect of the drug (A on Y). In another 

scenario, disease severity post baseline shares cause (U) with the outcome and 

adjusting for it induces selection bias (Figure 9; graph b). Characterization at treatment 

start, when patients in most cases have been in recent contact with a physician, also 

ensures that covariate status is evaluated similarly for all patients.  
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Figure 9. Directed acyclic graphs (DAG) on scenarios of conditioning on post baseline 

disease status (X), where X is a mediator (graph a) or a collider (graph b). A, drug 

exposure; Y, outcome; U, unobserved factors causing X and Y. 

 

Identifying the time point of drug initiation can be non-trivial because data on drug use 

is rarely complete retrospectively, i.e. from birth to observed drug use. In practice a 

look-back period is used and drug initiation is defined as a filled drug prescription or a 

drug administration that was not preceded by another prescription fill or 

administration during a fixed time window before (e.g. two years). The possibility to use 

a longer look-back window depends on the data source and the duration patients are 

enrolled. Shorter look-back periods are typically used in analyses based on insurance 

claims data where disenrollment is more frequent than in national registers (where 

patients generally are disenrolled only due to emigration). Pediatric patients commonly 

have shorter disease and treatment history and fewer comorbidities that require a long 

look-back period to capture. In our data, a large share of patients’ history is covered 

and, in many cases, we have complete look-back to birth. Thus, timing of drug initiation 

and covariate status can be assessed with higher accuracy in pediatric patients and 

particularly when using data from national registers. 

 

5.2.2 Target trial emulation  

Target trial emulation is a framework for conducting observational studies by relying 

on concepts and methods from RCTs.75,76 In this framework, an observational study is 

designed by mimicking a hypothetical target trial; the experiment that we would have 

conducted if it was practically possible. The target trial is emulated element by element 

(e.g. research question, eligibility criteria, treatment assignment, censoring criteria, 
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X
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outcome definition) to clearly and transparently communicate what is actually done 

and to avoid unnecessary bias caused by inappropriate design.75,76 In study IV, we used 

target trial emulation as a common framework when defining and analyzing differences 

between alternative pharmacoepidemiologic designs. In study V, we used the concept of 

a pragmatic trial as a blueprint for the design and used sequential cohorts and a 

generalized prevalent new user design (described in study IV).  

The target trial emulation framework is particularly useful in pharmacoepidemiology, 

where analyses often share purpose, exposure and terminology with clinical trials – 

even when the framework is not explicitly used. Evidence from pharmacoepidemiologic 

studies can be extensions of and complement real clinical trials. Emulating a target trial 

is sensible because longitudinal and routinely-collected observational data from 

multiple sources are often complex. Identifying a suitable start and end of follow-up for 

each patient is not trivial and the lack of prospectively collected data makes patient 

status at different time points often indistinct. Relying on the structure of clinical trials 

makes critical design decisions more rigorous and ensures that we analyze 

retrospective data with a prospective point of view.  

Certain aspects of the target trial emulation framework are particularly valuable. 

Eligibility criteria that are clear, applied consistently and only based on information 

known at baseline are key. A useful tool to synchronize eligibility, treatment 

identification and start of follow-up at baseline is sequential cohorts that are defined 

repeatedly over the follow-up period and resemble a series of repeatedly conducted 

trials. With this approach, the baseline (time zero; index date) for each sequential 

cohort is clearly defined and various time-related biases are avoided (Figure 10).76 

 
 

Figure 10. Sequential cohorts defined in discrete intervals over the study period 
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Further, allowing repeated eligibility and entry over follow-up is an efficient way of 

using observational data,100 which is particularly relevant in analyses of small samples 

such as in pediatric drug safety studies. To be able to follow each patient from multiple 

start dates that differ in terms of current and previous treatments, history of 

complications, disease progression, and obviously age, as opposed to selecting only one 

baseline per patient, adds relevant data to the analysis. The mean length of follow-up in 

the cohort of patients with confirmed IBD or JIA disease was 4.4 years. However, 

repeated inclusion of individual patients is not a requirement when using sequential 

cohorts; patients who once were eligible can be excluded from subsequent cohorts. 

 

5.2.3 Comparator 

Exposed patients are compared with a set of patient observations: the comparator 

(unexposed; control group). Simply put, the ideal comparator contains patients who do 

not use the study drug but are as similar as possible to those who do, in particular with 

respect to factors that influence the risk of the outcome. With an ideal comparator the 

difference in risk between the groups can be attributed to the drug under study. In 

interventional studies the assignment to study drug and comparator group is 

randomized, creating balance between the groups on both observed and unobserved 

factors. In observational studies the comparator definition is a critical element of the 

design, which is rarely straight-forward and can have a large impact on the results.86  

In study IV, we investigated the pros and cons of different study designs commonly used 

in pharmacoepidemiology and the conditions that affect the selection of comparator in a 

particular study. Specifically, we looked at viable alternatives to the ACNU design, 

including traditional no use, no use episodes, prevalent new user, generalized prevalent 

new user, and hierarchical prevalent new user. The ACNU is often described as a robust 

standard for evaluating safety concerns.87,88 The ideal active comparator is a drug with 

the same indication as the study drug, that targets patients with similar disease severity 

and frailty, and with no known association with the outcome. Only patients who are 

naïve to both the study drug and the comparator drug are included in the analysis. 

An advantage of the ACNU design is that it can reduce confounding, both observed and 

unobserved, by using patients with the same indication. Another advantage is that 

patients followed from initiation of the study drug or the comparator drug will be 
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temporally aligned; they had recent contacts with health care, are in similar phase of 

disease development and have had similar information collected. The ACNU design can 

also be used to assess the comparative safety between two drugs where the comparator 

drug is not necessarily without known association with the outcome. 

There are also disadvantages to the ACNU design. First, it can be difficult to find a 

suitable active comparator drug: comparator drug candidates within the same 

indication might target different patients or have an effect on the drug studied. Second, 

only study drug initiators who have not previously used the comparator drug are 

eligible, which can lead to extensive exclusion, leaving a too small and possibly not 

representative sample of patients for analysis. This typically occurs when treatments 

are given in sequence, e.g. when a new drug is introduced and there is channeling to it 

from the previous standard of care, or when patients switch between treatments due to 

lack of response or adverse events. In the end, the ACNU design was not used in any of 

the studies of this project because of the eligibility requirements. For instance, in study 

I, a potential active comparator drug was 5-ASA. If we had compared azathioprine 

initiators with 5-ASA initiators using ACNU in study I, we would have excluded 68% of 

the azathioprine group due to previous 5-ASA use. Given the few events that occurred in 

these patients, this analysis would have been practically impossible to perform. 

This limitation of the ACNU design was addressed by Suissa et al in 2017.74 In the 

prevalent-new user design, initiators of the study drug are compared with new and 

prevalent users of the comparator drug. The study drug initiators (both incident and 

prevalent to the comparator drug) are matched with comparator initiators and 

prevalent users in strata based on the extent of previous treatment with the comparator 

(defined based on treatment duration or number of prescriptions) on time-dependent 

PS, i.e. stratified PS models. The matching is performed prospectively, starting with the 

first strata (patients who are incident to the comparator). Individuals with comparator 

observations can only be matched once, ensuring that outcome events are not 

accounted for repeatedly in the analysis. Hence, with this design the ACNU cohort (no 

previous use of the comparator) is analyzed and strata with varying extent of use in the 

comparator are added, which can be analyzed separately or pooled. In the patients who 

are prevalent in the comparator, the contrast between switching to or adding the study 

drug and staying on treatment with the comparator drug is assessed. 
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In study IV, we also looked at two other prevalent new user designs. The generalized 

prevalent new-user design is less restrictive than the design proposed by Suissa et al, 

applying the same eligibility criteria but not requiring time-dependent PS matching. 

Instead, patients can contribute with repeated observations to the comparator group 

(more than one stratum), which means that follow-up time and potential events are also 

included repeatedly. This approach is less restrictive in the sense that no exclusion of 

observations due to lack of match or because another observation from the same 

individual had already been matched. This can increase efficiency, generalizability and 

make it possible to use different methods for confounding control, including PS 

weighting, and estimate different types of effects, e.g. ATT and ATE. In study V, we 

applied the generalized prevalent new user design, in order to use MTX as active 

comparator while not excluding TNF-α inhibitor initiators who had previously used this 

drug (65% of all initiators). 

We also described the hierarchical prevalent new-user design, which is sometimes 

simply referred to as a ‘new user’ design.54,101-105 In this design, eligibility criteria are 

applied differentially depending on baseline exposure: patients who are prevalent in the 

comparator are excluded from the comparator group, but not the study drug group. 

Analogously, if this design was applied in a clinical trial, both patients who were 

incident and prevalent to the comparator drug would be enrolled, but only the incident 

would be randomized (to either the study drug or the comparator drug). The prevalent 

patients would be automatically assigned to the study drug. If previous treatment with 

the comparator or characteristics of that treatment history (time since initiation, 

cumulative dose, etc.) are confounders they cannot be adjusted for due to the 

deterministic violation of positivity; among prevalent patients the true PS is one.106 

The potential bias in the hierarchical prevalent new-user design depends on what 

previous use of the comparator represents and many different scenarios are plausible. 

In one scenario, use of the comparator increases the risk of the outcome (contrary to the 

standard criteria for a suitable active comparator), which means that patients with 

previous use and no previous outcome event represent survivors and potentially have 

lower risk of the outcome. In a second scenario, there is no effect of the comparator 

drug, but previous use is a positive proxy for disease severity, which increases the risk 

of the outcome. In an opposite third scenario, continuous previous use is a negative 

proxy representing healthy users who have lower risk of the outcome. Irrespective of 
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what previous use in the comparator represents, previous use of a comparator drug 

commonly contains information about risk factors for which adjustment is necessary. 

Despite the risk of bias, the hierarchical prevalent new user design is surprisingly 

common in pharmacoepidemiology; possibly because it solves the fundamental 

challenge of using an active comparator while not excluding those who are prevalent in 

the comparator drug.  

Finally, we also investigated the less restrictive no-use designs, where the comparator 

group consists of patients with the same underlying disease as the study drug initiators 

and with neither current nor recent use of the study drug.86 No use designs are 

commonly misunderstood; possibly due to inappropriate application in the past. When 

implemented correctly, ‘no use’ simply means no use of the study drug at a certain time 

point and during a set look-back period before. It does not mean no use of any 

pharmaceutical drug or no use of the study drug during the entire study period, which 

could introduce selection bias. The use of multiple sequential cohorts with repeated 

baselines during the study period, as described in section 5.2.2, facilitates transparent 

and unbiased assignment of index dates. 

In study IV, we included a traditional no use design that served as a template for the 

other designs since the eligibility criteria were basic (indication, no previous study drug, 

no previous event) and all other designs were nested within it. Similarly, to the 

generalized prevalent new user design, overlapping follow-up time and events are 

included to use the data in the most efficient way. In contrast, in the no use-episode 

design that was used in studies I-III, all study drug users and non-users were analyzed 

in mutually exclusive episodes of follow-up. This was achieved by defining a maximum 

length of the episodes and adding to the eligibility criteria that a patient observation 

was excluded if the same patient had contributed a previous episode that was still 

ongoing. The length of episodes was set to one year in study I and three years in studies 

II and III. When applying this design, multiple episodes of both study drug use and no-

use could be contributed by the same patient, but not more than one outcome event. In 

practice the no-use episodes design can be very similar to the prevalent new-user 

design in terms of patient selection for the comparator group, especially if we condition 

on previous use of a comparator drug. However, important potential limitation of no-

use designs in relation to active comparator designs is the risk of information bias and 

confounding by indication. In study IV, we conclude that no-use designs are in particular 
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useful when no suitable comparator drug is available, which is not a rare scenario. 

Active comparator designs are generally preferred and a prevalent new user design can 

be used when ACNU requires extensive exclusion. 

 

5.2.4 Confounding by indication 

Confounding can be a major issue in observational safety studies. If factors that affect 

both exposure and outcome are not adjusted for, the association between exposure and 

outcome is confounded (Figure 11; graph a). In pharmacoepidemiologic studies, good 

clinical practice and tailored prescribing of drugs may lead to confounding by indication 

– that study drug users are systematically different from comparators with respects to 

risk factors for the outcome. Despite targeted prescribing, there are many reasons why 

similar patients do not receive the same treatment. Prescribing patterns can vary 

between geographical regions, hospitals, individual physicians, time periods and due to 

patient preference. These variations are key for being able to perform drug safety 

analyses based on observational data.  

Confounding by indication can be a stubborn bias for which adjustment is challenging. 

The difficulty in identifying comparator patients with the same indication and disease 

severity as the study drug users is one of the key reasons that active comparators, 

where confounding is mitigated by design rather than statistical analysis, are useful (as 

in study V). In studies with no-use comparators (studies I-III), robust confounding 

control needs to be achieved through the statistical analysis. Typical potential 

confounders in a drug safety study are age, sex, comorbidities, treatment history, 

disease stage, and disease severity. If data has not been collected on the identified 

potential confounders an alternative is to use proxies, i.e. factors that are highly 

correlated with the potential confounders. For example, a proxy for general health 

status is health care use, which could be measured as the number of unique drugs used 

pre-baseline (Figure 11; graph b).  
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Figure 11. DAGs of confounding adjustment based on adjusting directly for a confounder 

(graph a), adjusting for a proxy for a confounder (graph b), M bias where the factor that 

we adjust for is a collider (graph c), and both collider and confounder (graph d). A, 

treatment; Y, outcome; X, the factor that we adjust for; U, unobserved factor. 

 

5.2.5 Propensity score methods 

There are many methods to adjust for confounding, such as stratification, 

standardization, and regression analysis. PS methods, introduced by Rosenbaum and 

Rubin in 1983, are common in pharmacoepidemiology.77,107 The PS measures the 

propensity of an individual patient to be assigned treatment; the probability of being 

exposed (0 ≤ 𝑒𝑖 ≤ 1). In an RCT where all patients have equal probability of being 

assigned treatment the PS is 0.5. In observational studies the true PS is unknown, but 

we can estimate it conditioned on potential confounders in our cohort (Formula 2).  

𝑒𝑖 = 𝑃(𝐴𝑖 = 1|𝑋𝑖) 

[Formula 2] PS (𝑒𝑖) is the conditional probability of being exposed. 𝐴𝑖  baseline treatment 

(1 exposed; 0 comparator); 𝑋𝑖 vector of baseline confounders. 

 

The PS is useful in confounding control because it is a balancing score. For each value of 

the PS, the distribution of potential confounders that the PS was conditioned on is the 
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same in the exposed and comparator. Hence, information from multiple confounders is 

collapsed in the PS and balance between exposed and comparator can be achieved by 

conditioning on it, e.g. through matching or weighting. 

The key advantage of PS methods is that we can perform robust confounding 

adjustment by modelling the probability of the treatment rather the outcome. Due to 

the balancing property of the PS we can control for many confounders independently of 

the prevalence of the outcome. If we include too many covariates in relation to the 

number of events in a multivariable outcome model, we may obtain biased estimates or 

have convergence problems.108 In drug safety studies the combination of few outcome 

events and extensive confounding is common, particularly in pediatric studies. We used 

PS matching or weighting in all the studies of this project.  

 

5.2.5.1 Propensity score model estimation  

A valid PS analysis relies on a correctly specified model of the relationship between 

treatment assignment and potential confounders. The PS is commonly estimated with 

logistic regression, which was used in studies I-V, where treatment is the dependent 

variable and potential confounders are independent variables (Formula 3).  

 

𝑒𝑖 =
𝑒𝑥𝑝(𝑋𝑖𝛽)

1 + 𝑒𝑥𝑝(𝑋𝑖𝛽)
 

[Formula 3] PS (𝑒𝑖) estimated with logistic regression. 𝑋𝑖 vector of baseline confounders; 

𝛽 vector of coefficients estimated from the data. 

 

Key diagnostics in PS analysis is the crude PS distribution, the overlap between exposed 

and comparator, and balance of individual covariates in the adjusted cohort. Differences 

and large separation of the PS distributions between the groups can indicate a 

misspecified PS model or lack of positivity, i.e. there are levels in the potential 

confounders where all are exposed or comparator observations. This can in turn be due 

to the selection of an unsuitable comparator with large differences in covariate status at 

baseline, which might also indicate imbalance in unobserved factors.  
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Covariate balance is an intuitive diagnostic of PS model performance. It can be assessed 

by calculating absolute standardized mean differences for each covariate, both 

continuous and dichotomous. This measure expresses the difference in means in units 

of the pooled standard deviation (Formula 4). A difference smaller than 10% is 

commonly regarded as well-balanced.77 Standardized differences are preferred over 

hypothesis tests and p-values because they are not affected by sample size.  

 

𝑑 = |
𝑥̅𝐴=1 − 𝑥̅𝐴=0

√(𝑠𝐴=1
2 + 𝑠𝐴=0

2 ) 2⁄
∗ 100| 

[Formula 4] Absolute standardized mean difference (𝑑). 𝑥̅𝐴 sample mean in covariate 𝑥 

among observations with treatment 𝐴 (1 exposed; 0 comparator); 𝑠𝐴
2 sample variance in 

covariate 𝑥 among observations with treatment 𝐴. 

 

We performed this assessment in studies I-V. In the case example of studies IV, we 

plotted the standardized mean differences (not absolute) of 58 risk factors to show 

differences between comparators (only adjusted for age and sex). A positively skewed 

distribution indicated a higher observed risk in the study drug group and a negatively 

skewed distribution meant a lower risk. 

Additionally, a more granular assessment of balance can be performed for continuous 

variables by comparing empirical cumulative density functions (eCDF) in the exposed 

and comparator for visual inspection.109 In Figure 12, this is shown for the covariates 

disease duration and measures of general health care use for the crude and weighted 

cohorts in study V. The difference in eCDF can also be quantified with the Kolmogorov–

Smirnov statistic, which is the maximum vertical distance between the eCDF in the 

exposed and the comparator.  
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Figure 12. Diagnostics of baseline covariate balance in study V: empirical cumulative 

density functions of covariates in the TNF-α inhibitor and MTX groups of the crude and 

weighted cohorts. 
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An advantage with PS methods is that alternative PS models can be assessed and 

compared against each other without involving the outcome. In the study cohort, 

alternative methods for PS estimation, selection of confounders and model specification 

can be tested in order to optimize balance at baseline, before estimating the association 

between drug and outcome event. Beyond logistic regression there are numerous more 

flexible, data-adaptive methods that have been proposed to improve PS estimation and 

reduce bias, including machine and ensemble learning methods that can be applied with 

cross validation.110,111 However, logistic regression is still the most common method for 

PS estimation in applied pharmacoepidemiologic analyses. 

 

5.2.5.2 Covariate selection 

Preferably covariates for a PS model are chosen based on subject-matter knowledge 

and the assumed causal structure surrounding the drug-outcome relationship.112 Data is 

collected and adjustment is made for the identified potential confounders. However, in 

pharmacoepidemiology, where large and complex secondary data sources commonly 

are used, prospective data collection is rarely feasible. To improve confounding 

adjustment, methods for empirical covariate selection have been developed and are 

commonly used. With these methods covariates are selected, partially or solely, based 

on observed associations in the data. The rationale for using these methods is that the 

underlying causal structure is largely unknown and that confounding control can be 

improved by adjusting for large sets of proxy variables that are associated with both the 

treatment and outcome. The causal relationships and the role of the proxy variables are 

not necessarily known. 

One of the most common methods for empirical covariate selection is the high 

dimensional propensity scores113, which is an algorithm where potential baseline 

covariates are ranked univariately based on association with treatment and outcome. 

Those with the highest rank are included in the PS model; based on a predetermined 

threshold. The potential covariates or proxy variables are derived as dichotomous 

indicators of history of disease, medical procedures and treatment. Some of the 

limitations of this method are that covariates are selected independently of each other 

and the potential for overfitting.114 However, these issues can be overcome by adapting 

the covariate selection procedure and using flexible, data-adaptive methods, such as 

ensemble learning algorithms and penalized regression, rather than an univariate 
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screener.115,116 Yet, one limitation that applies to all approaches of empirically selecting 

covariates is the risk of adjusting for pre-baseline colliders, i.e. opening a backdoor path 

between treatment and outcome, and introducing selection bias. This bias is commonly 

known as M bias (Figure 11; graph c) and simulation studies have shown that the 

potential for this bias is small in relation to the bias caused by lack of adjustment for 

confounders.117 Note that a pre-baseline collider can simultaneously be a confounder 

(Figure 11; graph d), in which case adjustment is generally recommended.   

In addition to methods based on only PS estimation there are doubly robust methods, 

such as targeted maximum likelihood estimation,118 where both the treatment and 

outcome are modeled. It has been shown that this two-step procedure can optimize the 

bias-variance tradeoff in estimation of causal effects. 

 

5.2.5.3 Propensity score matching  

In studies I and III, we adjusted for confounding through PS matching. In PS matching, 

each exposed patient is matched with one or many comparator patients who have 

similar PS (within a certain absolute caliper) according to a predefined ratio, e.g. 1:1. 

Various matching algorithms are available and in the most common, greedy nearest-

neighbor matching, exposed patients are selected randomly and matched with the 

comparator patient (among those who have not already been matched) where the 

difference in PS is minimized.77 PS matching is a simple and intuitive procedure that 

allows a transparent presentation of results and balance assessment. 

In PS matching we estimate the ATT if all exposed patients in the crude cohort are 

matched. Due to lack of overlap in PS distribution or too few comparator patients, a 

completely matched cohort is rare. In practice, the estimand in a PS matched cohort is 

ATT in the exposed who were matched, which is not necessarily a distinct subset of 

patients with certain characteristics. The matched patients are indirectly defined by 

properties of the matching procedure, such as selected confounders, caliper, and 

comparator group. Exclusion due to lack of match can lead to decreased generalizability 

and precision.  

The selection of caliper in PS matching represents a tradeoff where a small caliper gives 

less bias at the expense of reduced generalizability and precision. Typically, the caliper 

is set relative to the dispersion of the estimated PS in the crude cohort, e.g. 20% of the 



 

59 

pooled standard deviation of the logit PS,77 which was used in study I where 94% of the 

exposed were matched. In study III, where we performed a data mining analysis we 

prioritized efficiency over bias reduction. We used a very large caliper and the entire 

cohort was matched, while maintaining acceptable balance on all covariates.  

Under some conditions, in particular if the sample is small a reduced caliper can 

increase bias, which has been described as the PS matching paradox.119 However, it has 

been shown that this is rare if standard caliper sizes (relative to dispersion) are used 

and it is possible to test if the analysis is susceptible to this issue by varying the 

caliper.120   

 

5.2.5.4 Propensity score weighting 

In studies II, IV and V, we adjusted for confounding with PS weighting: SMR, fine 

stratification weighting, and stabilized IPT weighting, respectively. In weighting, each 

observation is assigned a weight that is calculated based on the PS (see formulas in 

previous section 3.3.1) in order to create a weighted pseudo population. Key advantages 

of PS weighting in relation to matching are less exclusion of exposed observations, 

flexibility in terms of the estimated effect, and low computational intensity. If there are 

fewer comparator patients than exposed, weighting is the obvious choice to avoid 

exclusion.  

While lack of overlap in PS distribution between exposed and comparator leads to 

exclusion in PS matching, in PS weighting it leads to large weights. Extreme weights 

decrease precision and indicate lack of positivity or that the PS model is misspecified.109 

In contrast to PS matching, positivity violation is avoided by excluding patients with PS 

outside of the common range in PS weighted analyses. Additionally, patients with 

weights in the bottom and top percentiles, e.g. in the 1st and 99th, can be truncated to 

avoid extreme weights. However, this truncation can lead to increased bias. 

With SMR and fine stratification weighting we estimate the ATT, while we estimate the 

ATE with stabilized IPT weighting (see weighting formulas in section 3.3.1). In study II, 

we used SMR weighting to estimate the ATT because we used a no-use comparator and 

wanted to estimate the effect in those who actually received TNF-α inhibitors. In the 

case example of study IV, we used fine stratification weighting to estimate the ATT to 
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preserve the comparator sample size and estimate an effect that was as similar as 

possible between the alternative comparator analyses.  

Fine stratification has the advantage that the comparator sample size is kept and 

extreme weights can be avoided by using a lower number of strata (note that there is 

also an ATE version of fine stratification weighting that was not used in this project). In 

study V, where we used an active comparator and the treatment groups were fairly 

similar at baseline we estimated the ATE. IPT weighting is the most commonly used PS 

weighting method and is a part of g methods (generalized methods which are also 

applicable in analyses of time-varying exposure) and targeted maximum likelihood 

estimation.118 

 

5.2.6 As-initiated and as-treated analyses 

As in clinical trials, patients can be analyzed based on the treatment assignment at 

baseline (intention-to-treat) or based on the treatment actually received during follow-

up, i.e. following the patients who adhere to the assigned treatment strategy and as long 

as they adhere to it (per-protocol). In the observational setting, the analyses 

corresponding to intention-to-treat and per-protocol may be referred to as-initiated and 

as-treated, respectively. In the as-initiated analysis patients are followed from baseline 

where a certain drug is initiated or not (there is no information on intended treatment) 

to the end of follow-up with no censoring due to treatment changes. In the as-treated 

analysis patients are censored if they deviate from the treatment strategy at baseline, 

typically at treatment stop or change to the other drug. In the unrealistic scenario of 

perfect adherence, the analyses yield the same result.  

In practice, both analyses are susceptible to bias. Non-adherence leads to exposure 

misclassification and dilution of a possible effect in the as-initiated analysis. In the as-

treated analysis, censoring of non-adherent patients can be informative and cause 

selection bias. For example, if frail patients have a higher risk of stopping treatment the 

proportion of frail patients will decrease over follow-up. Frailty might be a risk factor 

and differential between exposed and comparator. As in RCTs, the as-initiated analysis 

is commonly used to avoid selection bias. In studies with long maximum follow-up, an 

as-treated analysis can be preferable to avoid extensive misclassification of exposure. 
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Further, if the studied adverse event is suspected to occur while patients are on active 

treatment this approach is also preferred.  

In studies II and III, TNF-α inhibitor episodes were censored as treatment stop and no 

use-episodes were censored if any TNF-α inhibitor was initiated. An as-initiated 

analysis was performed as a sensitivity analysis in study II. In study V and the case 

example of study IV, we performed as-treated analyses and attempted to mitigate 

potential selection bias from informative censoring of patients who changed treatment 

by reweighting observations repeatedly over follow-up. We used IPC weighting where 

the weight of a certain patient and time interval during follow-up is calculated as the 

inverse of the conditional probability of not being censored in the previous interval.78 

Consequently, patients at risk were assigned weights at each time interval so that they 

also represented the censored patients; including their distribution of risk factors for 

the outcome.  

IPC weighting is a fairly intuitive method that is conceptually similar to weighting used 

to adjust for confounding. While baseline confounding adjustment is taken for granted 

in observational studies, IPC weighting and other similar methods used to adjust for 

selection bias in an as-treated analyses are underutilized.121 Adjustment post baseline 

requires the splitting of follow-up discrete time intervals with time-updated covariate 

status that make the analysis more computationally intensive. However, given the 

issues with both as-initiated and as-treated analyses it makes sense to estimate both 

effects, adjust for potential informative censoring in the latter, and to apply variable 

time windows to give a comprehensive picture of the true potentially adverse effect of a 

drug.  

 

5.2.7 Data mining with scan statistics  

In study III, we performed a data mining analysis to detect signals of adverse events of 

TNF-α inhibitors. We used newly developed PS matched tree-based scan statistics and 

tree-temporal scan statistics in a self-controlled analysis. A key feature of these methods 

is the a priori unrestrictive designs. The investigated potential adverse events were not 

specified: all diagnoses in the ICD-10 tree were considered (except diagnoses that could 

not be caused by a drug, e.g. congenital malformations) and there was no restriction in 

terms of diagnosis granularity. The self-controlled analysis was additionally 
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unrestricted in terms of the risk windows that were analyzed. We tested a global 

hypothesis: is there any potential adverse event with an elevated risk in the exposed, as 

opposed to no elevated risk in any of the potential events. Hence, a large number of 

potential adverse events were screened, while adjusting for multiple testing to correctly 

estimate p-values.  

We adjusted for basic confounders in the PS matched analysis. Confounding adjustment 

is commonly left out of signal detection studies due to lack of data on covariate status. 

The confounding adjustment in the PS matched analysis was static, i.e. we adjusted for 

the same covariates in the same matched cohort in relation to all events. In the self-

controlled analysis, we adjusted for time-fixed factors through the study design. The 

selection of potential confounders in a data mining study of more than 1000 potential 

events is not straight-forward. We adjusted for general confounders that could 

influence the risk of many types of events to increase the relevance of the results and 

avoid generating spurious signals. However, the aim of the analysis was not to infer 

causality between exposure and events. New signals generated by the analysis needed 

to be evaluated by researchers with subject-matter knowledge and possibly 

investigated further with traditional pharmacoepidemiologic drug safety designs based 

on other data sources. In a recent study,86 three confounder selection strategies were 

evaluated in data mining of adverse events of four drugs using an active comparator 

design: general covariates, confounders selected with a data-adaptive approach, and 

covariates tailored to the drug pair studied that were selected by the investigator. It was 

concluded that confounder selection had little impact on the identified signals and there 

was a tradeoff between power and extensive confounding adjustment.  

A key challenge in adverse event screening is the handling of dependent events. There is 

deterministic dependence between cuts at different levels in the diagnosis tree, i.e. an 

event automatically generates events in ancestor nodes. This dependence is accounted 

for in the estimation of p-values by using the same structure in the data simulated 

under the null hypothesis. Handling repeated and potentially dependent events within 

patients is less straight-forward. One approach is to not include more than one event 

per patient in the analysis by, for example, choosing either the event that occurs first, 

the rarest, or that which is the most serious event.81 However, this omission of data 

leads to decreased power and might result in true signals going undetected. There are 

also difficulties in prioritizing between events, which contradicts the generally 
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unrestrictive nature of this type of analysis. In study III, all events were included in the 

analysis and we accounted for dependence between events within ICD-10 chapters by 

regarding these events as clusters that were randomized together either to the exposed 

or the comparator in the simulation under the null hypothesis. Potential clusters of 

adverse events signals need to be evaluated based on medical and clinical experience.  

 

5.3 ETHICAL CONSIDERATIONS 

Drug safety research in children poses many ethical considerations. RCTs represent the 

gold standard for evidence generation on safety and efficacy. However, the enrollment 

of children in RCTs of drugs that have yet not been thoroughly tested involves risks. It 

poses an ethical dilemma: evidence from clinical trials is needed to improve treatment 

of sick children, but generating that evidence would put sick children at risk. Children 

are a vulnerable patient group and consent is commonly given on a child’s behalf by 

their parents. Not surprisingly, clinical trials in severe diseases where there are few or 

no treatment alternatives can more easily enroll pediatric patients.  

Not enrolling pediatric patients in RCTs is also an ethical position. This effectively 

passes the decision of using a drug on to clinicians who potentially will use it off-label 

based on extrapolated evidence from adults, which certainly also involves risks. It also 

means that some efficacious and safe drugs are withheld from the use in children. The 

perception of potential harm of RCTs versus off-label use can be deceiving. Use in a 

large number of patients in clinical practice based on many individual treatment 

decisions dispersed over time can seem less harmful than conducting a single RCT that 

includes a small number of patients, although the former involves more potential harm 

overall. Regardless of whether RCTs are conducted, a positive consequence of use in 

clinical practice is that it generates observational data, which can contribute to 

pharmacoepidemiologic analyses and safer use in the future.  

Conducting observational drug safety studies, such as the analyses of this project, are 

not void of ethical concerns. The primary potential harm to patients comes from the 

mishandling of their personal medical data; such as violation of privacy and unethical 

use of data against their interest. Scandinavian health registers are population based 

and include all persons who receive general-access healthcare, unless they actively opt 
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out of the registration of their personal data. Patients whose data is used in 

observational studies are often unaware of this aspect of the health care system; 

consent is not required and not actively sought. Register data is anonymized by register 

holders before being distributed for research purposes. However, there is still a risk 

that individuals are identified based on the detailed information that the register 

contain. The risk of reidentification increases with more sophisticated and detailed data. 

For example, if date of birth, sex, municipality, income of both parents and disease 

history of a person are known, that information can narrow down a gross cohort of 5.3 

million unique children in Denmark and Sweden to very few, especially for individuals 

residing in less populated areas. Furthermore, algorithms for reidentification are 

becoming increasingly advanced, which increases the threat.122  

Besides the violation of patients’ privacy, reidentification can enable unethical use of 

personal data. Both government and private organizations could have incentives to use 

the data against patient interest, e.g. insurance companies could discriminate against 

clients with preexisting conditions, employers could discriminate against current or 

potential employees, and legal authorities could use the data within investigations. The 

potential harm of unethical use of patient-level medical data today and in the future is 

complex and difficult to review. Nevertheless, the level of detail on each individual and 

the lack of aggregation, which enables potential reidentification, are key to performing 

high-quality drug safety analyses; in particular, to achieve robust confounding control. 

To be able to track individuals in terms of drug use, medical procedures, diagnoses, and 

timing of health care contacts is crucial to establish causal relationships between drug 

use and adverse events.  

These legitimate interests at stake need to be weighed against one another. On the one 

hand, there is the potential benefit of this project: new safety evidence for treatments in 

common and serious diseases in children that can support clinical decision making and 

potentially lead to better patient outcomes in the future. On the other hand, there is the 

need to protect patients against potential unethical use of their data and violation of 

patient privacy. Preventive measures have been taken to mitigate the potential harm, 

such as data storing on secure servers, granting access only to researchers who perform 

data analysis, and not publishing results for individual patients, irrespectively of detail 

level. Given the potential benefit of these studies, the actions to protect the data, and the 
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relatively low risk of a data breach and reidentification, we think the potential good 

clearly outweighs the potential harm of this thesis project. 

 

5.4 POINTS OF PERSPECTIVE  

In this section we elaborate on how the generation of high-quality pediatric-specific 

drug safety evidence can be improved in the future. 

 

5.4.1 Data sourcing 

Scarce data puts a fundamental restriction on drug safety analyses. It can be a barrier in 

studying rare events, having necessary precision in our estimates, being able to study 

effect modification between subgroups of patients, and performing robust confounding 

control, both through the design and the statistical analysis. However, small sample size 

is common and expected when studying a subgroup of patients, such as children, where 

disease and drug use prevalence is lower than in the adult population.  

When sourcing data there is typically a tradeoff between population size and data 

granularity: a large cohort that is needed to study a rare event has less detailed data on 

individual patients. The relevance of drug safety analyses in pediatrics would be vastly 

improved if this hurdle could be overcome with improved data recording procedures, 

centralized collection and international collaborations. In the future, multi-national 

pooled, harmonized cohorts with clinical data, including electronic medical chart data, 

laboratory test results, and patient-reported outcomes could be generated. Based on 

such data sources it would be possible to study rare events, even in subgroups of 

children, such as relevant age strata, while maintaining robust design and confounding 

control. 

 

5.4.2 Adverse event data mining 

Data mining for adverse events based on health registers, as shown in study III, is a 

promising source of pediatric-specific drug safety information. If data sources are 

extended and direct reporting to authorities is enabled this could replace the 

spontaneous reporting systems in the future. With regular, time-updated screening of 
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health registers where diagnoses, and separately recorded suspected adverse events, 

are routinely reported, the identification of new signals can be instantaneous and 

relevant comparator groups can be generated for robust confounding control based on 

the same data source. This type of real-time post-approval surveillance analyses based 

on health registers can identify signals of adverse events of drugs used both on and off-

label in children earlier and with higher accuracy than previously.  

In such a setting, novel methods will be needed to improve statistical efficiency. The PS 

matched tree-based scan statistics approach applied in study III is fairly restrictive, 

which can reduce the usefulness in pediatrics. As noted above (section 5.2.5), PS 

matching can reduce power through exclusion of study drug users without a match. 

Further restriction comes from censoring to harmonize follow-up within matching 

clusters and in combination with an ACNU design where study drug initiators who have 

previously used the comparator are excluded.80,123 

The scope for performing signal detection against a comparator with scan statistics 

outside of the PS matching framework might be more suitable in pediatrics and requires 

further investigation. Ideally, a more general framework based on repeated inclusion of 

comparator patients and PS weighting for confounding control would be useful to 

increase efficiency. Naturally, such an approach would increase the level of dependency 

between events (repeated eligibility of individual patients and weighting in the pseudo 

cohort) which needs to be considered in the simulation of data under the null 

hypothesis. Furthermore, to allow variable follow-up between observations the timing 

of events (including clusters of events) in relation to baseline needs to be considered. 

With methods that address these obstacles the opportunity of adverse event data 

mining in pediatrics would be even more promising in the future.   

  

5.4.3 Best practices in pediatric pharmacoepidemiology 

To ensure usefulness of drug safety data from the observational setting and to facilitate 

comparison and aggregation of results from different studies robust design and 

statistical methods are key. In terms of design, sensible definitions of eligibility and 

exposure that are strictly applied throughout the cohort and study period (e.g. with 

sequential cohorts) are crucial. As described above (section 5.2.2), many types of 

common biases can be avoided and study results can be clearly interpreted by relying 

on these principles. Another vital design feature is active comparators, which can 
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mitigate information bias and confounding by indication. As discussed in section 5.2.3, 

the less restrictive prevalent new user designs are useful in pediatrics to maximize 

generalizability and efficiency and yet gain the benefits of confounding control from an 

active comparator design.  

Confounding control in pediatrics offers some particular opportunities. Low age and 

short disease and treatment history means that complete data on patients since disease 

onset or even since birth is available for a large proportion of patients in national 

registers. The possibility to characterize patients at the initiation of a drug based on 

their entire history, based on large sets of proxy factors, can potentially improve 

confounding adjustments and needs to be explored in the future.  

As described in section 5.2.5, confounding control can also be improved with flexible, 

data-adaptive PS modeling and with empirically identified potential confounders. Given 

the challenge of confounding by indication and the complexities of secondary data 

sources, applying data adaptive methods is as viable as traditional methods for 

covariate selection. In many cases, these approaches can be applied in parallel and 

evaluated based on their strengths and limitations. Further, doubly robust methods, 

such as targeted maximum likelihood estimation, where both the treatment and 

outcome are modeled to reduce bias and increase efficiency, are promising in pediatric 

pharmacoepidemiology where statistical precision can be low. However, the small 

sample properties of these methods need to be explored further.  

Finally, the as-treated analysis is often the most relevant analysis from a drug safety 

perspective, since a potential adverse effect can be diluted and not detected in an as-

initiated analysis. Nonetheless, as pointed out in section 5.2.6, this analysis can be 

susceptible to informative censoring. Methods for time-updated adjustment in an as-

treated analysis, e.g. IPC weighting, are generally underutilized and would add 

robustness to drug safety analyses in pediatrics.   
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6 CONCLUSIONS 

The overall aim of this thesis was to develop new, relevant, and pediatric-specific safety 

evidence for treatments in chronic inflammatory diseases. Based on data from 

Scandinavian national health care registers, we found that use of azathioprine was 

associated with a 6-fold increased risk of acute pancreatitis in pediatric IBD. When 

investigating the use of TNF-α inhibitors and the risk of serious infection, we found a 

two-fold increased risk in JIA patients, but no increased risk in patients with pediatric 

IBD. Through data mining we screened the registers for new signals of adverse events of 

TNF-α inhibitors in both pediatric IBD and JIA patients. We identified two signals; none 

of which were deemed relevant for further investigation. Finally, we investigated the 

differences between common designs in pharmacoepidemiology and provided guidance 

on key factors that need to be considered when choosing a comparator in an 

observational drug safety study.  

This thesis was driven by the need for relevant safety data when drugs are prescribed to 

children. Pediatric patients are vastly understudied when it comes to drug safety, both 

historically and today. The shortage of data applies to most pediatric indications and is 

by no means limited to chronic inflammatory diseases. Hopefully this work will inspire 

more research in the future to narrow the evidence gap.  
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7 POPULAR SCIENCE SUMMARY 

There is a key question that physicians need to ask before prescribing drugs to children: 

Is this drug safe? Physicians rely on information from large trials where drugs are 

tested in controlled settings. Although the testing of drugs has progressed tremendously 

during the previous century and is highly regulated to protect patients, the information 

that comes from trials rarely applies to children. Consequently, when prescribing to 

children, physicians need to rely on what they know about risks to adults, which may 

not be relevant because children and adults often react differently to treatments. The 

overall aim of this thesis was to bridge this gap using data from Scandinavian clinical 

practice to investigate the safety of some drugs that are commonly used in children with 

chronic inflammatory diseases. Our data covered 5.3 million children in Denmark and 

Sweden; including 21,000 patients with these diseases. 

We did studies on specific safety concerns where we need more information, i.e. drugs 

that may potentially cause certain adverse events. First, we looked at azathioprine, 

which is a common drug that suppresses the body’s immune system, and if it increased 

the risk of acute pancreatitis in children with inflammatory bowel disease. Acute 

pancreatitis is the sudden and often painful inflammation of the pancreas. When looking 

at children in Denmark and Sweden who used azathioprine, we found that the drug 

increased the risk of acute pancreatitis by six times. Among the children who used 

azathioprine, 1.2% experienced this event in the first 90 days of starting the drug. 

Second, we studied modern and highly efficacious biologic treatments to see if they 

increased the risk of serious infections, defined as infections where the patient needs to 

be hospitalized. In two separate studies based on Danish patients, we found that the use 

of biologic treatments increased the risk of serious infection by two times in children 

with rheumatic disease; whereas it did not increase the risk in children with 

inflammatory bowel disease. 

We also did a study of biologic treatments in children, where we searched the data for 

any new signals of adverse events that were previously unknown, rather than looking at 

a particular adverse event. We searched among more than 1000 diagnoses and found 

increased risks in two of them, skin complications and adjustment disorders; neither of 

which were considered relevant for further investigation. 
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Finally, we addressed a critical methodological issue when studying safety of drugs 

based on data from clinical practice: the choice of comparator group, i.e. the patients 

that we compare to the treated patients. We relied on concepts from the world of 

clinical trials and concluded that multiple factors influence the selection of comparator 

group, e.g. if there are patients who use similar drugs that can be used as comparator, if 

the potential risk of the drug is expected to vary between patient groups, and the size of 

our patient sample. 

In summary, we investigated concerns related to the risks of certain drugs in children 

with chronic inflammatory diseases. We showed that information that can support 

physicians when prescribing to children can be derived from data from clinical practice 

in Scandinavia. Given the dearth of this type of data in children hopefully this work will 

inspire more studies in the future.  
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8 POPULÄRVETENSKAPLIG SAMMANFATTNING 

När läkare förskriver mediciner till barn behöver de ställa frågan: Är läkemedlet säkert? 

Läkare använder information från kliniska prövningar där mediciner testas på ett 

kontrollerat sätt och även om dessa är strikt reglerade för att skydda patienter gäller 

informationen från prövningar sällan barn. Det innebär att läkare som behandlar barn 

behöver förlita sig på riskinformation som är känd från vuxna, vilken inte nödvändigtvis 

är relevant då barn och vuxna reagerar olika på många mediciner. Syftet med den här 

avhandlingen var att utifrån data från klinisk praxis i Skandinavien undersöka risker 

med läkemedel som är vanliga hos barn med kroniska inflammatoriska sjukdomar. Våra 

data täckte 5.3 miljoner barn i Danmark och Sverige; varav 21,000 var patienter med 

dessa sjukdomar. 

Vi genomförde studier på specifika läkemedelsrisker; mediciner som eventuellt orsakar 

vissa biverkningar där vi behöver mer information. I en studie undersökte vi om 

användning av azatioprin, en vanlig medicin som hämmar immunförsvaret, ökar risken 

för akut pankreatit hos barn med inflammatorisk tarm. Akut pankreatit är en plötslig 

och ofta smärtsam inflammation av bukspottkörteln. När vi tittade på patienter i 

Danmark och Sverige fann vi att användning av azatioprin ökade risken för akut 

pankreatit med sex gånger. Bland barn som använde azatioprin fick 1,2% denna 

biverkning under de första 90 dagarna efter behandlingsstart. I de andra studierna 

undersökte vi om användningen av biologiska läkemedel, som tillhör senaste 

generationen av behandlingar och är mycket effektiva, ökade risken för allvarlig 

infektion (som kräver att patienten blir inlagd på sjukhus). I två separata studier tittade 

vi på danska patienter och fann att biologiska läkemedel ökade risken för allvarlig 

infektion med två gånger hos barn med reumatisk sjukdom; medan risken inte ökade 

hos barn med inflammatorisk tarm.  

Vi gjorde också en studie på biologiska läkemedel hos barn där vi sökte efter signaler på 

nya biverkningar som tidigare inte var kända. Vi sökte bland fler än 1000 diagnoser och 

hittade signaler på ökad risk i två av dem: hudsjukdomar och anpassningssvårigheter. 

Ingen av dessa ansågs relevant för en fördjupad undersökning. 

Slutligen så undersökte vi en kritisk fråga om metodval i studier av biverkningar utifrån 

data från kliniska praxis: valet av jämförelsegrupp. Vi använde koncept från 

utformningen av kliniska prövningar och drog slutsatsen att valet av jämförelsegrupp 
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beror på en rad faktorer, t ex om det finns patienter som använder liknande läkemedel 

som kan användas som jämförelsegrupp, om risken för biverkning tros variera mellan 

olika patientgrupper, och hur stort antal patienter som kan analyseras. 

Sammanfattningsvis undersökte vi risker för biverkningar av mediciner hos barn med 

kroniska inflammatoriska sjukdomar. Vi visade att information om risker som kan 

användas vid förskrivning av läkemedel till barn kan tas fram utifrån data från klinisk 

praxis i Skandinavien. På grund av den fortsatt stora bristen på denna typ av 

information hoppas vi att detta arbete ska inspirera till fler studier i framtiden. 
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