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ABSTRACT 
Alzheimer's disease (AD) is the most common dementia with high prevalence among an 
increasing aged population. Despite the existence of symptom-reliving drugs for AD, the 
clinical trials performed until now have failed to find drugs that cure or stop the progression 
of AD. New perspectives and strategies for treatments are therefore direly needed. Chronic 
inflammation as indicated by persistent activation of microglia and increased pro-
inflammatory mediators is one of the major characteristics for AD, together with pathological 
accumulation of β-amyloid (Aβ), hyperphosphorylated tau proteins and neuronal loss. In 
normal physiological conditions, inflammation is ended by resolution, an active process 
associated with restoration and regeneration mediated by specialised pro-resolving lipid 
mediators (SPMs). Previous studies have shown that there are alterations in the resolution of 
inflammation in AD that can cause neurodegeneration by impairment in neuroprotective 
signalling, control of inflammation, and in the removal of the pathogenic Aβ peptide. The 
current studies focus on the impairment of pro-resolving mechanisms in the context of AD. 
The prospect of reducing harmful inflammation while at the same time increasing protective 
and pro-homeostatic activities present a promising strategy for treating AD.  

In Paper I and II, we focused on answering the fundamental question, whether and how 
the neuroinflammation (Paper I) and its resolution (Paper II) are altered in AD patients. 
We aimed to identify dissimilar inflammation-related protein mediators (Paper I) and 
SPMs (Paper II) profiles in the cerebrospinal fluid (CSF) of patients diagnosed with 
subjective cognitive impairment (SCI), mild cognitive impairment (MCI) or AD. We found 
an inflammatory pattern in the CSF that could differentiate SCI and AD. Comorbidities 
have an influence on the inflammatory pattern. SPMs were decreased in the CSF of AD 
patients and were associated with AD pathologies and cognition, suggesting that SPMs 
have potential to be novel biomarkers for AD. In Paper III and IV, the aim of the studies 
was to explore the pro-resolving role of maresin 1 (MaR1) in the context of Aβ42-induced 
inflammation in human microglial cell models. In Paper III, AD-like neuroinflammation 
was induced exposure to Ab42 monomers in both human monocyte-derived microglia 
(MdM) and a differentiated human monocyte cell line (THP-1 cells). We showed that one 
of the SPMs MaR1 reduced Aβ42-induced elevation in pro-inflammatory activation and 
stimulated the Aβ42 uptake. In Paper IV, RNA-Sequencing (RNA-Seq) was used to study 
the effects of MaR1 on the transcriptome of Aβ42-treated MdM to obtain a broader view 
regarding the pro-resolving roles of MaR1. We found that Aβ42 up-regulated inflammatory 
pathways and that co-incubation with MaR1 down-regulated some of these pathways. 
Proteomics confirmed the finding.  

In conclusion, the inflammation-related protein mediator profile and SPMs in CSF have a 
potential to contribute to the diagnosis of AD and are correlated to AD pathologies and 
cognition. SPM MaR1 attenuates AD-like neuroinflammation and supports the hypothesis 
that stimulating the resolution of inflammation could be a new therapeutic strategy in AD. 
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1 INTRODUCTION 
 
1.1 An overview of Alzheimer's disease 
Alzheimer's disease (AD) is the major cause of dementia and one of the major global public 

health challenges of the 21st century considering its high prevalence, complicated 

pathogenesis, its cruel disease course characterised by progressive deterioration and 

disability, and the lack of disease-modifying drugs (see (1)). These features will be 

discussed in this section to provide an overview.  

 

1.1.1 AD in a historical view 

The history of AD dates back to one century ago and below are some milestones in the 

progress of understanding AD. AD was first described by a German psychiatrist and 

pathologist Alois Alzheimer in 1906. He reported the case of a female patient who suffered 

pronounced memory loss. At autopsy, Alois Alzheimer witnessed the pathologies of brain 

shrinkage and abnormal deposits outside and inside neurons. Dr. Alzheimer also laid the 

groundwork for understanding neurological diseases by establishing a relationship between 

clinical symptoms and brain pathologies. "Alzheimer's Disease" was first named in 1910 by 

Emil Kraepelin, a colleague of Alois Alzheimer.  

In 1975, researchers developed the mini-mental state examination (MMSE) test, a 

measurement scale for evaluating functional and cognitive impairment in the aged 

population, paving the way for estimating the severity of cognitive impairment 

quantitatively and recording the progression of the cognitive decline (2). In 1976, Katzman 

K identified AD as one of the major causes of death, the most common cause of dementia 

and a public health challenge in an editorial (3). In 1984, β-amyloid (Ab) protein, which is 

the major component of plaques in AD brains, was identified by Glenner and Wong. They 

purified Ab protein from cerebrovascular amyloidosis and completed the amino acid 

sequence analysis (4). In 1986, Grundke-Iqbal I discovered that the microtubule-associated 

protein tau was the key component of neurofibrillary tangles (NFTs) (5) and that tau was 

abnormally hyperphosphorylated in the AD brain (6). In 1993, the first AD drug tacrine, an 

acetylcholinesterase (AChE) inhibitor, was approved by the American Food and Drug 

Administration, targeting cognitive and memory symptoms. Unfortunately, the effects of 

tacrine are small for all outcomes (see (7)). In 2004, the use of an analogue of thioflavin T 

for imaging amyloid in the brain was reported, i.e. the Pittsburgh Compound B (PIB) (8). 

PIB enters the brain from the blood flow and binds to Ab deposits, where it could be 
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visualized using positron emission tomography (PET) (8). With the help of PIB-PET the 

diagnosis of AD can be initiated at an early stage. The high cost and low availability of 

PET limit the use of this method, and it is limited to the plaque pathology the link of which 

to cognitive decline is not completely clear. However, a concept of molecular diagnosis of 

AD was developed. In the past decades, many researchers have focussed on further 

understanding the pathogenesis of AD, searching for new biomarkers to facilitate an early, 

refined diagnosis and monitor the disease progress, and to develop new treatment strategies. 

Many studies of good quality have been launched and the knowledge on AD keeps 

accumulating. Scientists realize that the development of AD is insidious, complicated, and 

heterogeneous. In addition to Ab and tau, there are many other factors and mechanisms that 

are involved in the pathogenesis of AD, including inflammation (9, 10). There are many 

scientific questions remaining to be answered, and more work is warranted to fill in the 

blank(s) in the AD field. 

 

1.1.2 Aspects of AD pathology 

One century has passed since the first AD case was reported, and still the biology of AD 

pathogenesis is not fully understood. The current view of AD pathogenesis hypothesizes 

that Aβ aggregation, tau phosphorylation together with neuroinflammation continuously 

cause neuronal loss, which results in clinically observable cognitive impairment when 

reaching a critical level (see (10) and (11)).  

  

Ab pathology 

In the non-pathological condition, the concentration of Aβ in the brain is in balance by 

homeostatic generation and clearance (proteostasis). The Aβ peptide, the length of which 

varies from 36 to 43 amino acids, is produced from the transmembrane amyloid precursor 

protein (APP) by sequential processing of γ-secretase and β-secretase enzymes (Fig. 1). The 

Ab40 species is the most abundant form in the AD brain, but the Ab42 form is considered to 

be the main pathological species (12). Aβ42 has been shown to be pro-inflammatory and 

neurotoxic (13), and according to the amyloid cascade hypothesis it is believed to be the 

main contributor to the development of AD (14). Mutation or overexpression of APP and γ-

secretase gene lead to the increased expression of Aβ peptide. If the Aβ42 concentration 

rises above a critical threshold resulting from an imbalance between generation and 

clearance, oligomers, fibrils, and senile plaques are formed, contributing to the 

development of AD. Different aggregation states of Aβ42 have distinct properties regarding 

neurotoxicity (15, 16). The oligomeric forms of Aβ42 are considered as the most toxic form, 
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causing synaptic dysfunction (17), tau hyperphosphorylation (18) and microglial activation 

(19). The APP gene was first identified in 1987 (20) and then mapped to choromosome 21 

(21, 22). Many individuals with Down syndrome, who have an extra copy of choromosome 

21, develop AD by the age of 30-40 years (23, 24). More than 32 APP mutations have been 

identified, accounting for 10 to 15% of early-onset familial AD (FAD) (25). In 1995, the 

first transgenic mouse model with AD-like pathology in the brain was developed by 

insertion of a human gene with a disease-causing mutation, V717F APP (26). There are 

also mutations in the genes encoding presenilin (PSEN) 1 and PSEN2, major components 

of γ-secretase, which result in FAD (27). Reduction of Aβ production by inhibiting the 

activity of γ-secretase was considered a promising therapeutic strategy for AD. 

Unfortunately, clinical trials on γ-secretase inhibitors such as semagacestat and avagacestat 

have failed because γ-secretase inhibitors also affect the Notch pathway, leading to severe 

side effects (28, 29).  

 

Fig.1 Processing of APP 

 

 
 

Under physiological conditions, clearance of Aβ42 from the brain is achieved by 

extracellular enzymatic degradation, intracellular degradation, and excretion from the brain 

by transportation (30). Secreted peptidases such as neprilysin (31), insulin-degrading 
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enzyme (32), matrix metalloproteinases (33), angiotensin-converting enzyme (34), etc, play 

critical roles in the catabolism of Ab peptides. They have affinity for specific domains 

within the amino acid sequence of Ab peptide and degrade the peptide to harmless forms 

(31, 32, 35-38). Alternative pathways of degradation are autophagy (39), degradation by the 

ubiquitin-proteasome system (40) and lysomal/endosomal degradation (41, 42). Myeloid 

cells are major executors of uptake and phagocytosis of Ab (43, 44). In addition, Ab can be 

cleared from the brain by being transported to the cerebrospinal fluid (CSF) (45) or to the 

circulation by non-specific interstitial fluid flow (46). However, Aβ can also be reversely 

transported from the circulation to the brain if the permeability of the blood brain barrier 

(BBB) is compromised, or via the receptor for advanced glycation end products (47). 

Keeping the balance between the efflux and influx of Aβ from and to the brain is crucial to 

maintain a homeostatic microenvironment in the brain. Furthermore, promoting the 

removal of Aβ from the brain is one of the major therapeutic strategies for AD. 

 

Tau pathology 

NFTs formed by abnormal phosphorylation of the tau protein is a classical 

histopathological hallmark of AD. Tau is a microtubule-associated protein that is involved 

in stabilizing microtubuli for efficient axonal transport. The tau protein has three domains: 

N-terminal, mid-domain, and C-terminal domain that contains the microtubule-binding 

repeats (48, 49). There are six isoforms of tau in the human brain and depending on the 

number of microtubule-binding repeats, tau isoforms that are implicated in the pathogenesis 

of AD fall into 3-repeat and 4-repeat groups (50, 51). In physiological conditions, the tau 

protein folds over the microtubule-binding repeats and the ends approach each other (52). 

However, in pathological conditions, the tau protein can adopt a conformation with exposed 

residues that are prone to self-aggregation (53). Various post-translational modifications 

can affect tau, such as hyperphosphorylation, truncation, acetylation, etc (54). In AD, 

phosphorylation of the tau protein causes its detachment from the microtubuli and 

subsequently results in their breakdown, axonal transport disturbance and synaptic 

connectivity disruption (55-57). Detached hyperphosphorylated tau protein aggregates into 

paired helical filaments as well as straight filaments which then form NFTs. NFT-

containing neurons may survive for decades (58), and tau species of small size can be 

secreted e.g. via synaptic vesicles (59), exosomes (60) and translocation across the 

membrane (61). On the other hand, tau species can be taken-up from the extracellular space 

by endocytosis (62) and macropinocytosis (63). It is hypothesized that analogous with prion 

disorders, toxic conformations of tau may act as a "seed", causing pathological 
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conformational changes of tau, and propagating through the neuronal network, from 

subcortical areas to other areas (64-66). Myeloid cells are implicated in the spread of tau 

after phagocytosis of extracellular tau (67). In the AD bran, NFTs first appear in the medial 

temporal lobe, specifically in the entorhinal or transentorhinal cortex (Braak stage I and II), 

then slowly progress to the limbic regions, particularly to the hippocampus region (Braak 

stage III and IV), and then finally to the neocortex (Braak stage V and VI) (68). The pattern 

of tau pathology development is closely associated with the clinical progression of AD, 

from memory deficits to various cognitive impairments (69). 

Tau pathology has been shown to interact with Aβ pathology (70, 71). There is evidence 

that tau and Aβ can act in parallel pathways at an early stage, but tau phosphorylation can 

also be a downstream event of Aβ pathology, and when tau and Aβ pathology overlaps, 

their pathological effects can be enhanced (70, 71). 

 

Heterogeneity of AD and other pathologies 

Although senile plaques and NFTs are the most prominent and well-known pathologies in 

the AD brain, it is the opinion of a growing number of researchers that Ab and tau cannot 

fully explain the pathogenesis of AD. Patients with a diagnosis of AD may lack tau 

pathology (72), while subjects with Aβ and tau pathologies may not develop dementia (14). 

This highlights the heterogeneity and complexity of AD and encourages scientists to 

expand their focus beyond Ab and tau. In recent years, various pathological processes in 

addition to the ones related to Ab and tau have been observed in AD, including 1) 

unresolved chronic inflammation as evidenced by persistent activation of microglia, 

increased levels of pro-inflammatory mediators and decreased levels of specialized pro-

resolving lipid mediators (SPMs) (9), 2) mitochondrial dysfunction as evidenced by 

mutations of mitochondrial DNA, impaired endoplasmic reticulum-mitochondria contacts, 

oxidative stress and mitochondrial interactions with Ab (73-75), and 3) vascular alterations 

as evidenced by disturbance of the BBB (76, 77), etc. 

 

1.1.3 Clinical aspects of AD 

Epidemiology 

Epidemiological studies have shown that AD is the most prevalent dementia disorder, 

afflicting an estimated 47 million people worldwide and accounting for 50-70% of all 

dementia cases. The primary risk factor for AD is aging. Approximately 95% of all AD 

cases are sporadic and diagnosed after the age of 65 years, while the other 5% are mainly 

FAD with an early onset. Most of the genes with mutations that contribute to the 



 

 6 

pathogenesis of FAD are involved in Aβ processing, such as APP, PSEN1 and PSEN2 (27), 

while for sporadic AD, genes involved in lipid metabolism and innate immunity such as 

apolipoprotein E (APOE) 4, triggering receptor expressed on myeloid cells 2 (TREM2) and 

CD33, are prominent (27, 78, 79). Gender and lifestyle factors are also pronounced risk 

factors. AD is more prevalent in females. Lifestyle-related risk factors, including diabetes, 

high blood pressure, smoking, insufficient physical activity, have also been shown to 

increase the risk for AD, and are potential primary prevention targets for AD (80). In 

contrast, keeping oneself in good physical and mental condition has a preventive effect for 

developing AD, and physical exercise and social activities are therefore highly 

recommended (81-83). 

 

Disease progression and diagnosis 

As the development of AD is insidious and usually takes decades, the diagnosis includes 

pre-clinical, mild cognitive impairment (MCI) and AD dementia stages. Sperling et al have 

proposed three pre-clinical histopathological stages, during which molecular pathologies 

gradually accumulate and finally result in cognitive impairment (84). In stage 1, 

asymptomatic cerebral amyloidosis occurs, which is undetectable; in stage 2, abnormal tau 

and Aβ levels are detectable in the CSF and brain, and evidence of synaptic dysfunction 

and/or neurodegeneration appears; in stage 3, some patients report an experience of subtle 

cognitive decline, although the objective clinical assessments do not indicate dementia (84). 

The cognitive impairment that "the patient knows, but the doctor does not" is termed 

subjective cognitive impairment (SCI), which means that the decreased cognition of 

patients is still within the normal range on cognitive tests (85). Notably, SCI is not only an 

early indicator for MCI and AD, but is also associated with other conditions, such as 

depression, stroke, etc (85). Garcia et al reported that SCI patients with cardiovascular risk 

factors, medial temporal lobe atrophy and central atrophy had an increased risk of 

developing AD (86). Due to the scarcity of CSF samples from cognitively healthy control 

subjects, patients diagnosed with SCI are commonly used as a reference group, or a 

substitute for healthy controls in studies on AD focused on CSF factors. The collection of 

CSF from healthy controls is a complicated enterprise that is beyond what many research 

groups have access to. When progressing into MCI, patients are characterized by decreased 

cognitive function in clinical assessment, but many remain to be functional members of 

society (87). The diagnosis of MCI due to AD is based on the evaluation of AD biomarkers 

(87). Positive biomarkers for both Aβ and neuronal injury suggest a high likelihood, while 
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negative biomarkers for both Aβ and neuronal injury indicate that the MCI is unlikely to be 

caused by AD (87).  

In the AD stage, the ability for patients to function at work or in regular household tasks 

and social interactions is significantly impaired. The clinical manifestations vary between 

individuals, depending on the involvement of brain functional regions. The most common 

clinical symptom is the declining ability to remember new information, resulting from 

pathological changes in the entorhinal cortex (Braak stage I and II) and hippocampus 

(Braak stage III and IV) (88). Notably, some atypical clinical manifestations may develop 

even earlier than memory loss, such as language, visual and executive problems (89, 90). 

The involvement of other brain regions, such as basal forebrain (91) and locus coeruleus 

(92), is found to begin earlier than in the entorhinal cortex and hippocampus. When 

progressed into Braak stage V and VI, additional behavioural and cognitive symptoms 

develop as more brain regions are affected. For example, the personality of the patient may 

change if the prefrontal neocortex is involved. After the diagnosis of AD, the life span of 

the patient is generally less than 10 years (93, 94). Traditionally, the diagnosis of AD is 

based on a combination of medical history, clinical symptoms, and memory evaluation. The 

most commonly used diagnostic criteria are the International Classification of Disease, 10th 

revision (ICD-10), the Diagnostic and Statistical Manual, 4th edition (DSM-IV), and the 

National Institute of Neurological and Communicative Disorders and Stroke and the 

Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) workgroup in 

1984 criteria (95). However, since these criteria require both impairment in memory and the 

involvement of at least one non-memory brain region, the diagnosis of AD usually comes at 

a stage that is beyond any realistically imaginable intervention. Attributing to the 

development of new techniques to detect biomarkers, a molecule- and histometry-based 

diagnosis has been proposed for AD (72, 96). The A, T, N System was established in 2018 

to characterise AD (72, 96). "A" and "T" refers to Aβ and tau pathology, respectively, as 

measured in CSF, or in the brain by amyloid PET; “N” refers to neurodegeneration, as 

measured e.g. by hippocampal volume. A molecular profile of "A+T-N-, A+T+N-, 

A+T+N+ and A+T-N+" indicates the diagnosis of AD (96). It may, however, be questioned 

if a heterogenous and multifactorial disease such as AD can be defined by these factors 

only. 

 

CSF biomarkers 

Early intervention for AD requires early diagnosis, and early diagnosis requires suitable 

biomarkers. The CSF is a rich source of factors produced in the brain, and alterations in the 
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protein found in CSF conceivably reflect the disease progression in the brain. Therefore, 

CSF is commonly regarded as a source of biomarkers for AD. In the following paragraphs, 

recent data regarding AD biomarkers reflecting Ab pathology, tau pathology, neuroaxonal 

degeneration, synaptic dysfunction and activation of glia will be discussed. Aβ and tau in 

CSF are core biomarkers assisting the diagnosis of AD (97, 98). The CSF of AD patients is 

characterized by decreased by approximately 50% of normal levels of Aβ42 (97). It is 

hypothesized that the aggregation and depositing of Aβ in the AD brain result in decreased 

CSF levels. When utilizing the ratio between Ab42 and Ab40 or between Ab42 and Ab38, the 

diagnostic accuracy could be further increased (99). Total (t)- and phosphorylated (p)-tau 

levels in the CSF are also cornerstone markers for biologically defining AD (96). In the 

CSF, both t- and p-tau concentrations are significantly increased in AD (100, 101). A likely 

explanation is that neurons secret tau protein as a response to Ab exposure (102). In recent 

years, neurofilament light (NfL) has emerged as a general marker for neurodegeneration 

(103), and increased levels of NfL were found in e.g. frontotemporal, HIV-associated and 

vascular dementias (104). In AD, the CSF levels of NfL are elevated, and predict atrophy of 

brain and worsening of cognition (105, 106). Synaptic loss is an early event in AD and is 

correlated with cognitive decline (107). The dendritic protein neurogranin (Ng) is a CSF 

biomarker for synaptic damage, shows elevated levels in AD and is correlated with t- and 

p-tau levels and cognitive decline (108, 109). Since the levels of Ng are not dramatically 

changed in the CSF of other neurodegenerative dementias, Ng has the potential to be an 

AD-specific biomarker (110, 111). Neuroinflammation mediated by activated microglia and 

astrocytes is another key pathological feature of AD (9). Biomarkers related to 

inflammation will be discussed in the next section. 

One of the drawbacks of using CSF biomarkers is the difficulty to evaluate brain region-

specific changes. As the involvement of brain regions is related to the disease progression 

(e.g., Braak stages), the use of CSF biomarkers to monitor disease development may be 

limited. Another disadvantage is that many of the CSF biomarkers are not specific. For 

example, CSF levels of NfL are increased in several neurodegenerative diseases (103, 104). 

Therefore, there is an urgent need to develop biomarker combinations to define the 

pathological pattern in the CSF of AD, which may assist to increase the diagnostic 

accuracy.  

 

Treatment 

Due to the lack of a disease-modifying treatment, AD has brought a large economic 

burden to society, in addition to the suffering of relatives. It is estimated that the societal 
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cost per AD patient needing residential care is 72 500 Euro per year (112). Besides the 

societal cost (41.7%), informal care costs (42.3%) and direct medical costs (16%) are also 

heavy (1). The drugs available for the treatment of AD, i.e., various AChE inhibitors and 

the N-methyl-D-aspartate (NMDA)-receptor antagonist Memantine™, can only slow the 

progression of the disease, and are not very effective in doing so. Considering that no new 

drug for AD has been approved for clinical use in the past 15 years, work on developing 

new disease-modifying drugs for AD is urgently warranted.  

Currently, researchers have put great efforts into developing drugs that reduce the Aβ42 

burden in the AD brain (113). Clinical trials of β-secretase and γ-secretase inhibitors, 

which reduce Aβ42 production, have failed due to severe side effects. Anti-Aβ monoclonal 

antibodies, which increase removal of Aβ from the brain, have been tested extensively 

during almost two decades. Of those, Aducanumab has been shown to improve cognition 

of MCI and mild AD patients at the highest dose (10 mg/kg) in a phase 3 study (clinical 

trial NCT02477800 and NCT02484547). There are other anti-Aβ monoclonal antibodies, 

which have shown promising results in phase 1 or phase 2 studies and are now in phase 3 

studies. For example, the antibody BAN2401, which binds to soluble and toxic Aβ 

aggregates, has been shown to reduce Aβ burden in the brain and improve cognition in a 

phase 2b study (clinical trial NCT01767311), and is now in phase 3 studies (clinical trial 

NCT03887455). Clinical trials based on tau immunotherapy are also ongoing. Tau vaccine 

AADvac1 (clinical trial NCT02579252) targeting truncated tau has shown some protective 

effects in a phase 2 study. Since the pathogenesis of AD is complicated, novel therapeutic 

strategies targeting pathological factors beyond Ab pathology and tau should be 

considered, such as neuroinflammation.   

 

1.2 Neuroinflammation 
1.2.1 Neuroinflammation in AD 

An increasing amount of epidemiological, genetic, pathological, and clinical evidence 

shows that inflammation plays a major part in the pathogenesis of AD. 

 

Epidemiological evidence 

Historically, epidemiological studies have shown that anti-inflammatory therapies reduce 

the risk of developing AD. In 1989, Jenkinson et al observed a low prevalence of AD in 

rheumatoid arthritis patients treated with anti-inflammatory drugs (114). McGeer et al in 

1990 further addressed the association between the use of anti-inflammatory drugs and the 

development of AD in a study on a cohort of rheumatoid arthritis patients, showing that the 
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prevalence of AD among rheumatoid arthritis patients was lower, and that the anti-

inflammatory therapies for the rheumatoid arthritis patients might be the explanation (115). 

Subsequent epidemiological studies on large cohorts have shown that non-steroidal anti-

inflammatory drugs (NSAIDs) decreased the relative risk for developing AD (116-121). In 

an AD animal model, Bachstetter et al found that early treatment with anti-inflammatory 

drugs attenuated AD pathology (122). Although these findings indicate that stopping 

inflammation could be a therapeutic strategy for AD, clinical trials using NSAIDs to 

prevent or cure AD in humans have largely failed. A large, randomized trial investigated if 

the administration of anti-inflammatory drugs could prevent the development of AD 

among individuals over 70 years with a familiar history of AD but was discontinued 

because of an observed increased risk of developing cardiac disease (123). Another large, 

randomized trial including more than 3 000 participants investigating if a low dose of 

aspirin could improve the cognition of AD patients failed, which may due to that 30% of 

the participants dropped at the follow-up cognitive tests (124). There are no current 

treatment guidelines that recommend using NSAIDs to prevent or treat dementia. A 

possible explanation for the failure of the clinical trials could be that inflammation plays a 

dual role in the pathogenesis of AD: anti-inflammatory drugs may not only attenuate the 

harmful processes of inflammation, but also block the protective ones, such as clearance of 

Ab, etc. In this regard, stimulating the switch from harmful to beneficial processes, i.e. 

promoting the resolution of inflammation, could be a more effective therapeutic strategy. 

  

Genetic evidence 

A number of large genome-wide association (GWAS) studies have identified a set of 

inflammation-related susceptibility genes for AD (125-132), such as TREM2 (triggering 

receptor) (78, 133), CD33 (surface receptor) (79, 128, 134), MS4A4AE/MS4A6A 

(membrane-spanning proteins) (128), and CR1 (complement receptor 1) (135). TREM2 is a 

receptor expressed on microglia and is responsible for their activation by forming a 

complex with the transmembrane immune signalling adaptor (136). The R47H mutation of 

TREM2 is a loss-of-function mutation impairing microglial phagocytosis and energy 

metabolism (78, 133), carried by less than 0.5% of the population, and increasing the risk of 

developing AD approximately three-fold (133). CD33 is a surface receptor containing a 

tyrosine-based inhibitory motif, which plays an important role in the modulation of immune 

cell response, such as the production of immune mediators, phagocytosis, etc (137). The 

expression of CD33 on microglia is increased in AD and is associated with decreased 

capability of microglia to take up Ab (134). The rs3865444C allele of CD33 is an AD-
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associated single-nucleotide polymorphism with strong impact and is associated with 

increased Ab pathology and microglial activation (79). Kramarz et al reported that adding 

neuroinflammation-related genes to the Gene Ontology (GO) database can improve the 

interpretation of AD-related transcriptome data (138). To translate the mutations of AD-

related genes to functional outcomes, more experimental studies are needed to increase the 

understanding of AD pathogenesis and provide a basis for identifying novel therapeutic 

targets.  

 

Pathological and clinical evidence 

The first piece of pathological evidence indicating the involvement of neuroinflammation in 

AD is dated back to 1910. Oskar Fischer published a paper of nearly 100 pages describing 

the pathological and clinical features of patients with plaques in the brain. He stated that the 

deposition of plaques provoked inflammation resulting in neurodegeneration. However, he 

did not provide solid histopathological evidence to support his statement. In the 1980’s, 

studies were published describing activated microglia together with inflammatory 

mediators, such as complement factors and immunoglobulins in the vicinity of Ab plaques 

(139, 140). In 1996, a pathological study on post mortem brain tissue from AD patients 

showed the occurrence of inflammation, whereas controls without dementia, but with a 

high burden of AD pathology did not have inflammation in their brains (14). More recently, 

increased activation of microglia in living AD patients was shown by PET studies  (141, 

142), and also in MCI patients (143, 144). Evidence of inflammation in AD has also been 

provided by studies on CSF samples. Chitinase 3-like 1 (also known as YKL-40), a 

glycoprotein enriched in astrocytes, shows promise as a candidate AD biomarker. In the 

CSF of AD patients, YKL-40 was modestly increased and was correlated to tau levels and 

cognition (145, 146). Soluble (s)TREM2, mainly produced by microglia, is another 

candidate biomarker for AD. Increased levels of sTREM2 were observed prior to 

symptomatic disease onset and were correlated to tau pathology (147). Furthermore, 

alterations in various inflammatory mediators, including cytokines, chemokines, adhesion-

related molecules, have been observed in the CSF of AD patients. For example, Taipa et al 

found that the levels of both pro-inflammatory mediators and anti-inflammatory cytokines 

were higher in CSF from AD patients compared to non-demented controls (148). The levels 

of intercellular adhesion molecule (ICAM)-1, vascular adhesion molecule 1 (VCAM-1) 

were found to be higher in the CSF of AD patients (149, 150). Chemokine monocyte 

chemoattractant protein (MCP)-1is another inflammatory factor shown to be increased in 

the CSF of AD patients (151). 
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1.2.2 Microglia and astrocytes in neuroinflammation 

Biology and heterogeneity of microglia  

Studies on the cellular components of the central nervous system (CNS) date back to the 

beginning of the 19th century. In 1856, the German pathologist Rudolf Virchow first 

coined the term "glia", which means "glue" in Greek, to describe the non-neuronal tissues 

in the CNS. In 1919, microglia were first visualized and described by the Spanish scientist 

Pio del Rio Hortega, and were defined as a separate cell type (152). During ontogeny, 

microglia are derived from the embryonic yolk sac precursors, enter the brain via the 

lateral ventricles and leptomeninges by embryonic day 9.5 and then spread throughout the 

cortical wall (153). Postnatally, microglia are more proliferative and active in performing 

their functions than adult microglia (154). Their morphology is amoeboid and they are 

actively involved in the establishment of neuronal networks by controlling the fate as well 

as the number of neurons and their progenitor cells (154-156). Microglia phagocytose 

apoptotic neurons and neuronal progenitor cells, remove dysfunctional or redundant 

synapses, thereby remodelling the synaptic circuits  (157-159). Microglia also support 

other cellular components during CNS development, e.g. by contributing to 

myelinogenesis through interaction with oligodendrocytes and their progenitors (160), and 

to neovascularization by interacting with endothelial cells (161).  

In adulthood, although less active, microglia perform similar roles as during development, 

including synapse maintenance, trophic support, and phagocytic removal of cellular and 

molecular debris (9, 162, 163). In the adult brain, microglia are considered the key effector 

of immune activities. In the resting state, microglia continuously monitor a surrounding 

microenvironment. Upon detecting a pathogenic object or condition, microglia transform 

from ramified to ameboid morphology, and migrate toward the site of insult and contribute 

to the initiation and progression of the inflammatory response (164-166).  

Microglia exist in various phenotypic states when activated, indicative of the type of 

activating insult and associated with different activities. Although today considered 

somewhat controversial, there is a general division into two phenotypes: M1 and M2. The 

M1 state is characterised by pro-inflammatory activities (such as secreting pro-

inflammatory cytokines), and if becoming chronic, by impaired phagocytic capacity (167-

169). In contrast, M2 microglia execute anti-inflammatory reactions, express anti-

inflammatory surface biomarkers and have stronger phagocytic capacity (170). Criticism 

against the M1/M2 nomenclature can be raised due to the fact that there is always a 

phenotype heterogeneity in the tissue, as well as in the cell culture dish, and that the 

presence of a few cellular markers may not be the most appropriate basis for determining 
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the phenotypic state. In recent years, attributing to the development of the RNA-

Sequencing (RNA-Seq) technique, knowledge of the regional and population-based 

heterogeneity of microglia in health and disease has advanced considerably. Using bulk 

RNA-Seq, van der Poel et al discovered more than 400 differentially expressed genes 

(DEGs) in human microglia from white matter and grey matter. Genes that were highly 

expressed in grey matter were enriched in the "cytokine-mediated signalling" pathway, 

while those highly expressed in white matter were related to the "chemotaxis" pathway 

(171). Using snRNA-Seq, Emma et al identified 13 subclusters of microglia in the human 

brain. Three of the clusters were enriched in homeostasis genes, three clusters were found 

to have a high expression of phagocytic genes, another three clusters were enriched in both 

homeostasis and neuron-related genes, two small clusters were related to inflammatory 

responses, one cluster was associated with cellular stress, and one small cluster was 

enriched in proliferation genes (172). When interpreting RNA-Seq data, one should be 

aware that the natural specific signature of isolated microglia may be lost during sample 

processing. Furthermore, the biological terms in the open access databases (e.g. GO) under 

which genes are organized may not be specific or relevant for the disease of interest. For 

example, Ab phagocytosis is distinct in many ways from the phagocytosis of other objects 

(173). When analysing single-cell RNA-Seq data, the identification and annotation of 

microglia clusters are flexible and subjective, which may lead to faulty conclusions if one 

does not critically review how these clusters were identified and how their biological role 

was derived. The results are also affected by the quality of RNA and the processing of the 

RNA-Seq data. Therefore, results obtained from the RNA-Seq data need to be verified on a 

protein and functional level.  

 

Microglia in AD 

In the pathological condition of AD, microglia appear to play a dual role during disease 

progression. In vivo PET studies showed that in prodromal AD patients, microglial 

activation was associated with a better prognosis, whereas increased microglial activity 

later in the disease course was linked to a poor outcome (142), indicating that there is a 

detrimental change in microglial activities during the pathogenesis. In the early stages of 

AD, inflammatory activation of microglia can have beneficial effects. In experimental 

settings, they contribute to the effective removal of Aβ and attempt to keep the brain in 

homeostasis (174, 175). However, due to an increasing Aβ concentration and persistent 

pro-inflammatory microenvironment, microglia appear to attain a more detrimental 

phenotype that aggravates the disease (14, 176-178). In the late stage of AD, pronounced 
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pro-inflammatory activation is associated with inefficient clearance of Aβ, induction of tau 

pathology and neuronal degeneration.  

Clearance of Aβ can be achieved by microglial phagocytosis followed by intracellular 

degradation (179), or by extracellular degradation by enzymes released from microglia or 

other cells (180), as described in the previous sections. Aβ is recognized by microglial 

receptors such as CD36, CD14, SCARA1 and toll-like receptors (TLRs), and is taken up 

by microglia and enter the endolysosomal pathway (181-184). Mutations in the TREM2 

and CD33 genes are correlated with impaired phagocytosis (78, 133, 185). The soluble 

forms of Aβ, predominant in early stages of AD, can be degraded by enzymes, but fibrillar 

Aβ in late stages are less prone to be degraded (179). When Aβ is recognized by microglia, 

they become activated, leading to secretion of pro-inflammatory cytokines and chemokines 

(183, 186), oxidative stress (187), and other neurotoxic activities (188). Since neurons have 

receptors for pro-inflammatory cytokines (189), and the resulting activation of nuclear 

factor (NF)-kB in neurons leads to activation of the APP gene, there is a vicious circle 

maintained by exposure to undegraded and newly generated Aβ, leading to further 

activation of microglia, and also reducing the phagocytic capacity of microglia to clear Aβ 

from the brain. A vicious circle also exists between tau pathology and chronic 

inflammation: the pro-inflammatory microenvironment shaped by microglia induces 

phosphorylation of tau in neurons and p-tau-burdened neurons activate microglia (190-

192). Furthermore, activated microglia induce neurodegeneration by causing synaptic 

dysfunction and by directly phagocytosing live neurons (193, 194). Pro-inflammatory 

mediators released by microglia disrupt membrane conductance and potential, and thereby 

the neuronal electrical signalling in the hippocampus (195-197), thus hypothetically 

contributing to cognitive dysfunction. Taken together, microglia play a dual role in the 

pathogenesis of AD, depending on their phenotype, the stage of disease, and the genetic 

make-up of the affected individual.  

Until very recently, bulk, and single-cell/nucleus RNA-Seq were predominantly used to 

investigate the disease-specific transcriptome signature of microglia derived from 

autopsies of brains from AD patients. Using bulk RNA-Seq, Srinivasan et al showed that 

the damage-associated transcriptome profiles of microglia from human AD post mortem 

brains were largely different form the profile seen in microglia from an AD-related mouse 

model (198). A differential expression gene analysis between AD patients and age-

matched controls first demonstrated only 12 genes being significantly differently 

expressed. Upon re-analysis after filtering out the outlier genes using DESeq2-provided 

Cook's distance, the microglia from AD brains were found to exhibit a gene expression 
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profile indicating accelerated aging and upregulation of the APOE gene (198). Since the 

results after filtering out outliers are quite different from those observed before, one should 

be cautious when drawing conclusions. Also using bulk RNA-Seq, Alsema et al reported 

that the gene expression profiles of microglia are not different in AD patients compared to 

age-matched non-demented elderly (199). The results from these two studies indicate that 

the gene expression profile of microglia in AD is not different, contradicting the plethora 

of results obtained from studies on proteomics in microglia. This may be explained by the 

limitations of the bulk RNA-Seq technique, which is based on transcriptomic information 

obtained from a mixture of microglia with various phenotypes. Therefore, differences in 

gene expression signature in disease-associated microglia may be hidden in the bulk of 

expression. Supporting evidence for this hypothesis comes from single-cell/nucleus RNA-

Seq studies in which different microglial clusters are investigated separately. In 2019, 

Mathys et al observed up-regulation of the APOE gene in microglia from AD patients 

using single-nucleus RNA-Seq (200), in line with the findings from Srinivasan et al using 

bulk RNA-Seq (198). In 2020, Olah et al discovered a cluster of microglia that was altered 

in AD (201). This subset of microglia had a high expression of CD74, both in 

transcriptome and protein level, and comprised 2-5% of the whole microglia population. In 

the AD brain, the proportion of CD74 highly expressing microglia was reduced (201). In 

2021, Gerrits et al identified an association between microglia clusters and the molecular 

pathologies of AD. A population of microglia belonging to the phagocytic/activated cluster 

was correlated with Ab load and located close to Ab plaques. Another population enriched 

with the CX3R1, P2RY12, GRID2, ADGRB3 and DPP10 genes was associated with p-tau 

load (172). When interpreting these results, it is important to note that the microglia were 

obtained from autopsy samples, and the results may therefore reflect transcriptomic 

information of very late-stage AD, while in MCI or prodromal AD, the transcriptome of 

microglia may be different.  

 

Cellular models to study microglia 

The crucial roles that microglia play in both health and disease emphasize the need for valid 

and effective in vitro methods and models to investigate mechanisms and responses in 

microglia, and their regulation. The existing microglia in vitro models include cell lines, 

primary microglia, and stem cell/monocyte-derived microglia. Microglial cell lines are 

available from human (e.g. CHME-3 (202), CHME-5 (203) and HMO6 (204)), mouse (e.g. 

BV2 (205)), rat (e.g. HAPI (206)) and macaque origins (207). These cell lines are 

commonly produced from primary embryonic microglia that are transformed with 
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oncogenes to create an immortalized cell line. The advantages of using cell lines include 

high accessibility, and that they are easily propagated and maintained. The disadvantages 

are susceptibility to dedifferentiation, alteration of phenotype due to transformation and 

genetic mutations during culture, altogether resulting in the genetic and functional 

differences of cell lines compared to primary microglia.  

Methodologies to isolate and culture primary microglia from human (206), non-human 

primates (208) and rodents (209) are available. Most of these methods start with the 

dissociation of the tissue, followed by cell-sorting using antibody-conjugated magnetic 

beads (210), or by flow-cytometry (206). Although human primary microglia obtained from 

neurosurgery is an ideal model, the practical use is limited by the scarcity of this resource 

and that it is an invasive and complicated isolation procedure. Rodent primary microglia 

represent a commonly used model with the advantages of 1) allowing studies on specific 

pathogenic genes (i.e. transgenic and knock-in mice); 2) the post-mortem delay, which 

affects the quality of microglia, can be strictly controlled; 3) the genetic background of the 

obtained microglia is homogenous, therefore the results can be repeated in other research 

groups, although the homogenous genetic background can also be argued to be a 

disadvantage when translating to humans. The disadvantages of using rodent-derived 

primary microglia are that the genetic background of rodents is very different from humans 

and, as already mentioned, homogeneous (211-213), and that they in the majority of cases 

are derived from pre-natal brain tissue. 

Microglia can also be differentiated from monocytes and stem cells including embryonic 

stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs are obtained from the 

blastocyst, whereas iPSCs are mostly generated from fibroblasts of adults (214). The 

advantages of using stem cell-derived microglia are that they are more similar to human 

primary microglia compared to cell lines and mouse primary microglia, that they bring the 

genetic information of the donors, and that they can be differentiated to other CNS cells in 

parallel (211). However, the differentiation procedure is complicated and time-consuming. 

It usually takes 4 to 8 weeks to complete the microglia differentiation protocol (211). 

Compared to stem cell-derived microglia, monocyte-derived microglia (MdM) are easier to 

obtain and differentiate. In addition, MdM are more similar to human primary microglia 

than stem cell-derived microglia (unpublished data in Paper IV). In 2012, Etemad et al 

were the first to produce microglial-like cells from human peripheral blood monocytes by 

culturing the monocytes with a combination of immune-related mediators (granulocyte-

macrophage colony-stimulating factor (GM-CSF), M-CSF, MCP-1) and nerve growth 

factor (NGF) b (215). In 2014, Ohgidani et al showed that the MdM carried genetic 
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information of the donors and could reflect pathological changes of a disease in the brain 

(216). Nasu-Hakola disease is a rare autosomal recessive disorder caused by the mutation 

of the microglia-expressed gene TREM2 or the DNAX-activation protein 12 (216). The 

MdM generated from patients diagnosed with Nasu-Hakola disease exhibited delayed but 

more marked pro-inflammatory responses (216). In 2017, Ryan et al proved the similarity 

of MdM to human primary microglia in a transcriptomic level and utilized MdM to 

investigate the effects of a gene variant related to AD (213).  

 

Astrocytes in AD 

Another important cellular component of the inflammatory response in the brain is the 

astrocyte. It may be argued that astrocytes receive an unfairly low amount of attention than 

microglia when in fact, astrocytes are the most abundant glial cell type in the CNS, and the 

importance of astrocyte in the pathogenesis of AD should not be underestimated. In health, 

astrocytes contribute to the formation and function of synapses (217, 218), modulation of 

neuronal plasticity and excitability (219), extracellular potassium buffering (220), and 

formation of the BBB and neurovascular unit (221), etc. In AD, reactive astrocytes are 

characterised by elevated expression of glia fibrillary acidic protein (GFAP) and are often 

found to accumulate around the Ab plaques, both in human AD and in animal models (222, 

223). As previously mentioned, YKL-40 (a glycoprotein enriched in astrocytes (224)) is 

increased in the CSF of AD patients. Experimental evidence suggests that astrocytes play a 

dual role in the development of AD. On one hand, when exposed to Ab, astrocytes 

exacerbate neuroinflammation by secreting pro-inflammatory mediators, such as cytokines 

and nitric oxide (NO) (225). On the other hand, astrocytes contribute to the clearance of Ab 

by expression of Ab-degrading enzymes (226), mediating ApoE lipidation to assist 

microglia-mediated Ab removal (227) and by transporting soluble Ab out of the CNS via 

the water channel protein aquaporin 4 (228). 

 

1.2.3 Molecular players in AD 

Cytokine and chemokine 

Cytokines and chemokines are the key inflammatory protein mediators in AD (9). MCI 

patients with increased pro-inflammatory cytokines and decreased anti-inflammatory 

cytokines in the CSF have a higher risk to develop AD (229). Similarly, pro-inflammatory 

signalling is found to be up-regulated while the anti-inflammatory signalling is down-

regulated in AD. The major sources for cytokines and chemokines are microglia and 

astrocytes (230, 231). When exposed to Ab, the release of cytokines and chemokines by 
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microglia is increased. In an AD mice model, the cytokine levels in the brain were found to 

be correlated to Ab load (232). Interestingly, the pro-inflammatory microenvironment 

shaped by the inflammatory mediators in turn affects the phenotypes and functions of 

microglia and astrocytes in the CNS (section 1.2.2).  

Interleukin (IL)-1b, one of the most studied cytokines in AD, is highly pro-inflammatory 

and contributes to Aβ pathology. IL-1b is expressed by microglia as an inactive precursor 

(233) and is cleaved to the mature form by caspase-1, one of the major components in the 

inflammasome (234), which is a multi-protein complex that has been shown to bind Ab, 

leading to pyroptotic microglial death, and deposition of the inflammasome-Ab complex in 

the tissue, hypothetically acting as a seed for plaque-formation (235). The receptor for IL-

1b (IL-1R) is distributed on both glia and neurons (236). By binding to its receptor, IL-1b 

contributes to Aβ deposition and neurodegeneration by regulating APP metabolism, 

disrupting the formation of dendritic spines and suppressing synaptic transmission (196, 

237). Blocking of IL-1R in AD mice attenuates inflammatory responses, reduces Ab and 

tau pathologies and improves cognition (238). In AD patients, CSF and brain IL-1b levels 

are significantly elevated and are correlated to the severity of clinical symptoms (239, 

240). In the contrast, the levels of IL-1R antagonist (IL-1ra) are decreased in the CSF of 

AD patients (241). Several other pro-inflammatory cytokines have been shown to be 

implicated in AD. For example, IL-6 is increased in the AD brain (242) and is found to 

induce the phosphorylation of tau in the hippocampal neurons (243). IL-12 is decreased in 

the CSF of AD patients (244). Blocking of p40 subunit of IL-12 improves cognition and 

attenuates AD pathologies in AD animal model (245). IL-18 levels are increased in AD 

brains (246) and the gene polymorphisms of its promoter are related to the risk of 

developing AD (247). Regarding anti-inflammatory cytokines, IL-4 treatment reduced Ab 

pathology and improved cognition in rodent models of AD (248, 249). Insufficient 

signalling of the anti-inflammatory cytokine transforming growth factor (TGF)-b is 

reported in AD and is associated with Ab pathology and neurodegeneration (250).   

Chemokines are chemotactic mediators that attract immune cells migrating to 

inflammatory sites (251). In AD, chemokines guide microglia migration to Ab plaques and 

necrotic neurons (252). Chemokines are divided into four families including CXC, CC, 

CX3C and C (253).  In general, Ab stimulation up-regulates the release of chemokines 

from microglia (254, 255), then results in Ab deposits, tau phosphorylation, neuronal cell 

death and cognitive impairment (256-259). C-C motif chemokine ligand 2 (CCL2), also 

known as MCP-1, is one of most well-studied chemokines in AD. CCL2 is increased in the 
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AD brain, and is localized in Ab plaques, microvessels, neurons, microglia, and astrocytes 

(242, 260-262). CCL2 has also been found to be increased in the CSF and plasma of AD 

patients (151, 263), and is correlated to cognitive impairment (264, 265). Gene 

polymorphisms of CCL2 are associated with the risk of developing AD (266). In response 

to Ab stimulation, microglia and astrocytes increase the secretion of CCL2 (267, 268); in 

response to CCL2, microglia and astrocytes increase the production of cytokines and the 

formation of Ab oligomer (269, 270). These evidences indicate a harmful role of CCL2 in 

AD. Surprisingly, a deficiency of CCR2, the receptor for CCL2, accelerates the disease 

progression in AD mice model (271). This may be due to the failure of immune cell 

recruitment, which is likely to be mediated by CCR2 (271). Other chemokines, such as 

CXCL8, CXCL10, CX3CL1, CCL5, CXCL12, etc, are involved in the pathogenesis of AD 

as well (272). 

 

Lipid mediators 

Lipid mediators (LMs) including prostaglandins (PGs), leukotrienes (LTs), as well as the 

SPMs play important roles in neuroinflammation in the context of AD. SPMs will be 

discussed in detail in the next section. PGs constitute a family of small inflammatory LMs 

generated by a series of enzymatic reactions that start from arachidonic acid (AA) released 

from membrane phospholipids. AA is metabolized by lipoxygenase (LOX) and 

cyclooxygenase (COX), to form PGH2 with subsequent enzymatic processing through 

specific pathways to yield more PGs including PGD2, PGE2, PGF2a, PGI2, as well as the 

thromboxane (TX) TXA2, the receptors for which are prostaglandin D2 receptor (DP), 

prostaglandin E2 receptor (EP), prostaglandin F2a receptor (FP), prostaglandin I2 receptor 

(IP) and thromboxane receptor (TP), respectively. PGD2, the most abundant PG in the 

brain, is synthesized by hematopoietic prostaglandin D synthase (HPGDS) (273). PGD2 has 

two receptors with opposite functions where DP1 is neuroprotective and DP2 neurotoxic 

(274). In AD, HPGDS and PGD2 levels are increased in microglia and astrocytes 

surrounding the Ab plaques, as observed both in human brain and in a mouse AD model 

(275). PGE2 is synthesized by prostaglandin E synthases (PGESs) and binds to four 

receptors (EP1-4). PGES1 and PGES2 were increased in the middle frontal gyrus of AD 

brain (276, 277).  

The PGE2 receptors EP1, 2 and 3 have been demonstrated in microglia and neurons, while 

EP4 is restricted to neurons (274). EP1 signalling is associated with increased Ab 

pathology and Ab-induced neurotoxicity (278, 279). EP1-knockout AD mice were shown 
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to have reduced Ab plaques (278). Neurons from the EP1-knockout mice or neurons 

incubated with an EP1 antagonist were more resistant to Ab-induced neuronal toxicity 

(278, 279). EP2 signalling was shown to be associated with increased pro-inflammatory 

reactions, decreased Ab phagocytosis by microglia and increased Ab-induced 

neurotoxicity. Deletion of EP2 reduced Ab burden and oxidative damage in AD mice 

model (280). A microglia-specific knock-out of EP2 exhibit decreased toxic inflammation, 

increased Ab removal and microglia chemotaxis, elevated cytoprotective signalling, and 

reduced synaptic injury and cognitive impairment (281, 282). In a mouse AD model, 

deletion of EP3 was found to decrease inflammatory reactions and the production of Ab, 

while increasing the levels of presynaptic proteins (283). The levels of EP4 have been 

shown to be reduced in the brains of AD and MCI patients (284). Treatment of microglia in 

vitro with an EP4 agonist decreased inflammation and increased Ab uptake (284). Deletion 

of EP4 in an AD mouse model increased Ab pathology and pro-inflammatory cytokine 

secretion (284). PGF2a and TXA2 have not been extensively studied in the context of AD. 

A study on AD brains demonstrated increased levels of PGF2a and 8-iso-PGF2a in the 

hippocampus (285). Some studies suggest that activation of TP is associated with increased 

APP and Ab production (286, 287). Even though additional studies are needed to clarify 

how LM signalling is implicated in AD, LMs and their receptors have a potential as 

biomarkers as well as treatment targets for AD. 

 

Other players 

Complement factors, mainly derived from microglia, are increased in the AD brain, and 

also play an important role in the development of AD (14). Aβ activates the complement 

system, which in turn contributes to Aβ depositing (288). In animal models of AD, both 

Aβ and tau pathologies were reduced following inhibition of the pro-inflammatory 

complement factor C5a receptor (289). In addition, inducible nitric oxide synthase (iNOS) 

in microglia produces the free radical NO when stimulated with cytokines (290). iNOS 

levels are increased in the AD brain, and NO has been shown to cause mitochondrial 

dysfunction, synaptic and axonal damage, and neuronal cell death (291-293). Furthermore, 

the structure of Aβ can be modified by NO through peroxynitrite formation. Nitrated Aβ 

tends to be more prone to aggregate and causes more severe neuronal injury compared to 

normal Aβ (294). 
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1.3 Resolution of inflammation 
1.3.1 General aspects of resolution of inflammation 

Inflammation is fundamentally a beneficial process that protects our body against external 

or internal harmful stimuli (see Fig. 2). After the elimination of such threats, it is crucial 

that the inflammatory response is self-limited and the homeostasis of the internal 

environment is restored. This process is defined as the resolution of inflammation (Fig. 2). 

If the immune system fails to eliminate the harmful stimuli (e.g. Ab) or is not able to self-

limit the immune response, the acute inflammation will turn to persistent chronic 

inflammation that results in tissue damage and dysfunction (Fig. 2).  

 

Fig 2. The outcomes of acute inflammation. 

 
In a historical view, the concept of treating inflammatory diseases with resolvents was 

proposed in a medical text by Avicenna around 11th century, (from review by Serhan et al 

(295)). The concept was then lost for a long period of time. Most scientists were for a long 

time focused on the initiation and development of inflammation, and the corresponding 

major therapeutic strategy for treating harmful inflammation was based on inhibition, i.e., 

anti-inflammation. However, therapies suppressing the physiological course of the immune 

response using e.g. steroids and NSAIDs can cause severe side effects, including increased 

sensitivity to infection and impaired healing (296, 297). Novel approaches are needed to 

treat inflammation without causing deleterious effects on immune functions. The traditional 

view of resolution of inflammation has been one of a passive process, during which pro-

inflammatory mediators and activities are gradually dissipating. The modern concept of 
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resolution first took off in 1984, when Dr. Charles Serhan, then a student in the laboratory 

of Nobel laureate Professor Bengt Samuelsson characterized the lipoxin (LX) family of 

pro-resolving LMs (298). In the years following, the concept of resolution of inflammation 

has gradually evolved to become recognized as an active process including elimination of 

the threats (166), attenuation of pro-inflammatory signaling pathways (166), efferocytosis 

of apoptotic cells (299), and up-regulation of regenerative signals (300). Much of this is 

thanks to the work of Dr. Serhan, now a long-time professor himself, leading a research 

group focused on resolution at Harvard Medical School. Prof. Serhan has shown that 

resolution is governed by an ever-growing family of endogenous lipid mediators named 

"specialized pro-resolving mediators (SPMs)", to which LXs belong (301-303).  

 

1.3.2 Specialized pro-resolving mediators (SPMs) 

Overview 

SPMs are bioactive lipid mediators including in addition to LX also resolvins (Rv), 

protectins (PD) and maresins (MaR) together with their aspirin-triggered isomers and 

cysteinyl-conjugated forms, derived from the w-3 and w-6 polyunsaturated fatty acids 

eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), docosapentaenoic acid (DPA) 

and AA. (for a review, see (301)). Results from several human trials showed that the 

administration of w-3 fatty acids increased the production of SPMs, resulting in enhanced 

resolution (304, 305). The most important enzymes contributing to the synthesis of SPMs 

are 5-LOX, 12-LOX, 15-LOX and COX (Fig. 3) (301). SPMs execute a wide range of 

functions by binding to mainly G protein-coupled receptors (GPCRs). So far, the aryl 

hydrocarbon receptor (AHR) (306), cannabinoid receptor 1 (CB1) (307), chemerin receptor 

23 (ChemR23) (308), GPR18 (309), GPR32 (310), GPR37 (311), GPR101 (312), leucine-

rich repeat domain-containing G protein-coupled receptor 6 (LGR6) (313, 314), 

leukotriene B4 receptor 1 (BLT1) (308), lipoxin A4 receptor/formyl peptide receptor 2 

(ALX/FPR2) (315), retinoic acid-related orphan receptor α (ROR-α) (313), transient 

receptor potential subtype V1 (TRPV1) (316-318), TRPV3 (318), TRPV4 (318) and 

TRPA1 (318), have been identified to respond to SPMs (Fig. 3). Of note is that these 

receptors have other ligands except for SPMs, many of them transducing a signal opposite 

to that of SPMs, i.e. pro-inflammatory. For example, BLT1 is most known as a receptor for 

pro-inflammatory LM LTB4. Relevant for AD, ALX/FPR2 as well as ChemR23 can be 

activated by Aβ with pro-inflammatory consequences (319). Although SPMs have 

dissimilar receptors, they exhibit overlapping pro-resolving functions, suggesting a 

common pathway activating responses such as down-regulation of the inflammatory 
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response, normalizing chemokine gradients, facilitating the apoptosis of 

polymorphonuclear leukocytes, promoting phagocytosis of molecular and cellular debris 

and initiating the regeneration of local tissue by trophic activities (202, 299, 320, 321). The 

discovery of SPMs sheds new light on the underlying mechanisms of unresolved 

inflammation. However, it remains unclear whether the reduction of SPMs is the etiology 

of the dysfunctional resolution, i.e., the resolution should start but does not due to 

decreased levels of SPMs, or if it is due to a complication due to a failure to eliminate the 

pathogenic threat). 

 

Fig. 3. Biosynthesis and receptors of SPMs 

 

SPMs as potential biomarkers and drugs 

SPMs can be detected in many human tissues and body fluids using liquid chromatography 

with tandem mass spectrometry (LC-MS/MS) (Table 1). There is evidence that levels of 

SPMs in body fluids tend to decrease in inflammation-related pathological conditions. For 

example, the levels of LXA4 in blood from atherosclerosis patients were significantly 

lower compared to the levels in healthy controls (322). A similar finding was observed in 

the blood of patients with localized aggressive periodontitis (323). In several studies, SPM 

levels were negatively correlated to the severity of disease. In patients with cystic fibrosis 

lung disease, detectable levels of RvE1 in the sputum were associated with a less severe 

disease course compared to patients without detectable RvE1 levels (324). Taken together, 
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these findings suggest that decreased levels of SPMs indicate a dysfunctional resolution 

and are associated with pathological conditions and may thus be potential biomarkers for 

presence as well as severity of disease (325-329).  

 

Table 1. SPMs in human tissues and body fluids 

Tissues SPMs Reference 
Brain PD1, MCTR1, MCTR2, MCTR3, PCTR1, PCTR2, 

PCTR3, RCTR3, MaR1 
(202, 304, 
330) 

Lymph node RvD1, RvD2, RvD3, MaR1, PD1, MCTR1, 
MCTR2, MCTR3, PCTR1, PCTR2, PCTR3 

(330, 331) 

Adipose tissue RvD1, RvD2, PD1, LXA4 (332, 333) 
Placenta RvD1, RvD2, PD1 (334) 
Spleen RvD1, RvD2, RvD3, MaR1, PD1, MCTR1, 

MCTR2, MCTR3, PCTR1, RCTR1, RCTR2, 
RCTR3 

(330, 331) 

Aortic valve RvE1, RvD3 (335) 
Vagus RvE1, PD1, MaR1, RvD5, LXA4 (336) 
Bone marrow MCTR1, RCTR1, RCTR2, RCTR3 (330) 
Body fluids   
CSF LXA4, RvD1, PD1, RvT2, RvT4 (325, 328, 

337) 
Plasma and serum RvD1, RvD2, RvD3, MaR1, PD1, RvE1, RvDn-3 DPA (331, 338-

341) 
Synovial fluid MaR1, LXA4, RvD1, RvD2, RvD5, PD1 (342, 343) 
Exhaled breath 
condensates 

PD1 (332) 

Sputum  RvE1, LXA4, RvD1 (324, 344) 
Milk LXA4, RvD1, RvD2, RvD3, RvD4, RvE1, PD1, 

MaR1, RvE1, RvE2, RvE3 
(345, 346) 

Urine RvD1, RvE2 (347) 
Skin blister RvD1, RvD2, RvD3, RvD5, RvD6, PD1, LXA4, 

MaR1, RvE1, RvE2, RvE3,  
(348) 

Tears LXA4, PD1, RvD1, RvD2, RvD5 (349) 
Saliva LXA4, PD1, MaR1, RvE1 (350) 

 

Encouraged by the findings from observational studies, numerous in vitro and in vivo 

studies investigating the therapeutic effects of SPMs have been carried out. Until May of 

2021, more than 1200 publications on "resolvins" were available on PubMed (301). 

Promising results have been obtained in various disease models, mainly including those 

with an inflammatory component (such as colitis, arthritis, dermatitis, etc) (312, 351, 352), 

trauma models (such as skin wounds, traumatic brain injury, etc) (353, 354), cancer models 

(355, 356) and pain models (357, 358). Additionally, the SPMs have also been shown to 
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promote the regeneration and healing on planaria head and zebrafish fin dissection models 

(330, 359).  

The SPM MaR1 and AD are primary focuses in my thesis and will be used to exemplify 

the potential of SPMs as biomarkers and potential treatment candidates.  

 

SPM maresin 1 (MaR1) 

"Maresin" is coined from the words "macrophage mediator in resolving inflammation" by 

Prof. Serhan, who first discovered MaR1 in mouse peritonitis exudates in 2009 (299). 

MaR1 is derived from DHA and is produced by macrophages, platelets and neutrophil-

derived microvesicles (360, 361). Other DHA-derived MaR family members have been 

discovered by Prof. Serhan's group in later years: MaR2, maresin conjugates in tissue 

regeneration (MCTR) 1 and MCTR2 in 2014 (362, 363), and MCTR3 in 2016 (364). 

Another major precursor for MaRs is n-3 DPA, a "reservoir" of DHA and EPA (365). n-3 

DPA-derived MaRs were first discovered by Dalli et al in 2013 (366). The biosynthesis of 

MaRs is shown in Fig. 4, and reviewed in (365) and (367). The synthesis of MaRs begins 

with the lipoxygenation of DHA or n-3 DPA to 14S-HpDHA or 14S-HpDPA, and then to 

13S,14S-eMaR or 13,14S-epoxy-DPA. These reactions are catalyzed by the enzyme 12-

LOX. 13S,14S-eMaR is converted to MaR1 by enzymatic hydrolysis, to MaR2 by epoxide 

hydrolase, and to MCTR1 by glutathione S-transferase MU 4 and leukotriene C4 synthase. 

MCTR1 is the substrate for MCTR2, catalyzed by gamma-glutamyl transferase. MCTR2 is 

then converted to MCTR3 by dipeptidase. Catalyzation of 13,14S-epoxy-DPA is by 

epoxide hydrolase and yields the products MaR1n-3DPA, MaR2n-3DPA and MaR3n-3DPA. 

 

Fig. 4. Biosynthesis of maresins (MaRs) from DHA and n-3 DPA 
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MaR1 is the most well-studied SPM among the MaR family. The chemical features of 

MaR1 are shown in Table 2. More detailed information is available in PubChem (CID 

60201795) and https://www.caymanchem.com/pdfs/10878.pdf. MaR1 has been detected in 

various body fluids and tissues as shown in Table 1, and was found to have a wide range of 

biological functions with potential clinical benefit on diseases, such as lung diseases (368-

372), diabetes and obesity (360, 373, 374), vascular injury (375), bacterial infection (376-

378), liver disease (379, 380), iron-deficient anemia (351), stroke (381, 382), neuronal cell 

death (202, 383, 384), peritonitis (385, 386), pain (358, 387, 388), and renal disease (389). 

The effects of MaR1 include decreasing pro-inflammatory cytokine expression, while 

increasing anti-inflammatory cytokines. For example, Gu et al reported that MaR1 reduced 

lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines such as tumour 

necrosis factor alpha (TNF- α), IL-1β and IL-8 from human primary monocytes, while 

elevating the levels of the anti-inflammatory cytokine IL-10 (377). Similarly, chemokine 

expression was decreased by MaR1, as shown for example by Jung et al, who reported that 

MaR1 decreased LPS-induced MCP-1 secretion from THP-1 cells (320). MaR1 also seems 

to regulate T cell responses in an anti-inflammatory fashion. Valerio et al showed that 

MaR1 attenuated the pro-inflammatory activities of CD8+ T cells, Th1 cells and Th17 

cells, whereas the generation of anti-inflammatory T-reg cells was promoted (390). Serhan 

et al found that MaR1 promoted the phagocytosis of apoptotic polymorphonuclear 

neutrophils (PMN) by macrophages (299). Importantly, MaR1 has been shown to stimulate 

regeneration after injury. Serhan et al discovered that MaR1 accelerates post-surgery tissue 

regeneration in planaria (359). Furthermore, MaR1 has been shown to affect complex 

physiological functions including its ability to reduce neuropathic pain by modulating 

neuronal electrical activity (358, 359, 387). Another example of the wide-ranging 

beneficial effects of MaR1 is enhancement of platelet aggregation and spreading, and 

inhibition of the release of pro-thrombotic mediators (391).  

 

Table 2. Chemical features of maresin 1 

Maresin 1 (MaR1)  
Molecular formula C22H32O4 
Chemical name 7R,14S-dihydroxy-4Z,8E,10E,12Z,16Z,19Z- 

docosahexaenoic acid 
Molecular weight 360.5 
Solubility in ethanol 50 mg/ml 
Solubility in PBS, pH7.2 0.05 mg/ml 
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The corresponding intracellular mechanisms mediating the activities of MaR1 are largely 

unknown. However, some of the mechanisms have been disclosed. MaR1 exerts its 

activities by binding to GPCRs. Until now, three proteins that mediate MaR1 activities 

have been discovered, i.e. BLT1 (376), LGR6 (313), and ROR-a (313). MaR1 has also 

been shown to inhibit TRPV1 (359, 387) to modulate pain, a cardinal symptom of 

inflammation. MaR1 has been shown to regulate several intracellular pathways and this 

knowledge may help to understand and interpret its pro-resolving effects. MaR1 was shown 

to inhibit inflammatory signalling cascades, including p38 mitogen-activated protein kinase 

(MAPK), p44/42 MAPK, c-Jun N-terminal kinase (JNK) and glycogen synthase kinase 3 

beta (GSK3β) (351, 371, 377, 379, 383, 385), and to inhibit the activation of inflammation-

related transcription factors such as signal transducer and activator of transcription (STAT) 

(392), and nuclear factor (NF)-kB (320), while increasing the activity of 

peroxisome proliferator-activated receptor alpha (PPARα) (320), a transcription factor 

associated with downregulation of inflammation (320) and increased phagocytosis (393). 

Additional pro-homeostatic and protective effects of MaR1 include prevention of 

endoplasmic reticulum stress (320, 380), mitochondrial dysfunction (378) and regulation of 

autophagy. Laiglesia et al found that MaR1 prevented TNF-α-induced autophagy in 

adipocytes by increasing the expression of autophagy-related protein p62 and microtubule-

associated protein 1A/1B-light chain 3 (LC3) II/LC3I (374). In AD, autophagy has both 

homeostatic and pathological roles, for example by promoting Aβ degradation, and 

impairing neurovascular regeneration, respectively (394). The effect of MaR1 on autophagy 

in the context of AD remains unknown.  

 

1.3.3 Resolution of inflammation in AD: a potential therapeutic target? 

With the knowledge that chronic inflammation, to which failure of resolution contributes, 

is involved in the pathogenesis of AD, the relationship between resolution of inflammation 

and AD is an important topic for investigation. Although the research field of SPMs and 

resolution in the context of AD is not extensive so far, a growing body of evidence 

suggests that resolution of inflammation is disturbed in AD and may be a potential 

therapeutic target as well as a biomarker. 

 

Alteration of SPMs and their receptors in AD 

Reduced levels of SPMs in AD have been described by studies on post mortem brain tissue 

including the hippocampus, temporal cortex, and entorhinal cortex, and in CSF samples 

(see Table 3). Furthermore, receptors for SPMs were found to be increased in multiple 
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regions of AD brains as compared to age-matched controls (Table 3). Decreased levels of 

SPMs in AD is direct evidence of a disturbance of the resolution of inflammation in AD, 

while the upregulation of SPMs receptors may be a compensatory mechanism driven by 

the reduction of SPMs or by e.g. chronic inflammation. 

 

Table 3. Disturbance of the resolution of inflammation in AD 

SPMs Region Alterations References 
PD1 hippocampus, entorhinal cortex decrease (304, 350) 
LXA4 hippocampus, CSF decrease (395) 
MaR1 entorhinal cortex decrease (350) 
RvD5 entorhinal cortex decrease (350) 
SPM 
receptors 

   

LXA4R hippocampus increase (395) 
ChemR23 hippocampus, dentate gyrus, entorhinal 

cortex, basal forebrain, Brodmann area, 
cingulate gyrus, cerebellum, corpus 
callosum 

increase (395, 396) 

BLT1 hippocampus, dentate gyrus, entorhinal 
cortex, basal forebrain, Brodmann area, 
cingulate gyrus, cerebellum, corpus 
callosum 

increase (396) 

 

An early finding of insufficient resolution of inflammation in AD was provided by Lukiw 

et al in 2005, showing decreased levels of PD1 and its precursor DHA in the hippocampus 

of AD brain (304). Our group showed reduced levels of LXA4 and MaR1 in the 

hippocampus (395) and of MaR1, PD1 and RvD5 in the entorhinal cortex (202) of AD 

patients. A decrease in LXA4 in the brain was also shown in 3xTg-AD mice (397). The 

levels of LXA4 of RvD1 in CSF samples were positively correlated to cognition as 

evaluated by MMSE scores (395). We also described an increase in the SPM receptors 

ChemR23 and LXA4R in the hippocampus (395). In a more extensive study on SPM 

receptors, the expression of BLT1 was demonstrated in multiple regions of the human 

brain, including the CA1-4, dentate gyrus, entorhinal cortex, basal forebrain, Brodmann 

area 46, cingulate gyrus, cerebellum and corpus callosum, and increased levels of BLT1 

and ChemR23 were demonstrated AD brains (396). The levels of BLT1 and ChemR23 

were positively correlated with Braak stages and inflammatory markers (396), indicating 

that an increase in receptors for SPMs is ineffective in inducing resolution, and may in fact 

even be detrimental due to the increase in harmful ligands for these receptors such as Ab in 

the AD brain. To further increase our knowledge on resolution of inflammation in AD, it 
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will be important to analyse a larger set of SPMs and their receptors, and to correlate these 

to the molecular pathology and cognitive decline in AD.  

 

SPMs as potential treatment in AD 

From the studies on human clinical material and animal models of AD, it can be concluded 

that SPMs have the potential as treatments for AD. In vitro and in vivo studies have been 

performed to investigate this potential. Lukiw et al showed that neuronal cells from a 

mouse model of AD treated with DHA showed reduced secretion of Ab and the production 

of PD1 was increased (304). Similarly, a clinical trial showed that a 4 to 17 months 

administration of w-3 fatty acids (Smartfish) in MCI patients increased the capacity of 

monocytes to phagocytose of Ab and to produce RvD1 (305). The findings from these 

studies indicate that supplementation with SPM precursors may play beneficial roles via 

increasing the production of SPMs. However, some studies showed opposite results. In the 

OmegAD study, administration of DHA and EPA did not improve the cognition of AD 

patients, except for in a subgroup with mild AD (398). One of the possible explanations 

could be that w-3 fatty acids may not always metabolise into SPMs.     

Protective effects of SPMs including PD1, LXA4, RvE1, RvD1 and MaR1 have been 

studied in both in vitro and in vivo models of AD. PD1 was shown to inhibit Aβ production 

by shifting the processing of APP from an amyloidogenic to a non-amyloidogenic 

pathway, decreasing Ab-induced pro-inflammatory enzymes, and reducing neuronal-glia 

cells apoptosis and neurotoxicity (399). LXA4 and its aspirin-triggered form have been 

shown to improve cognitive impairment, reduce Ab and tau pathologies, and to attenuate 

the pro-inflammatory activities of microglia and astrocytes in AD mouse models (397, 

400). The combined administration of RvE1 and LXA4 reversed the neuroinflammatory 

process, and decreased Aβ pathology in AD mouse model (401). RvD1 was shown to 

improve the phagocytosis of Ab by macrophages (402) and microglia (202), decrease 

macrophage apoptosis induced by the fibrillar form Aβ (402), and attenuate Aβ-induced 

inflammation in microglia (202). MaR1 has been shown to improve cognitive impairment 

and to decrease the activation of microglia and astrocytes in a mouse model for AD based 

on intracerebral injection of Ab (403). In vitro studies have shown that MaR1 stimulates 

the uptake of Ab in MdM, THP-1 and CHME-3 human microglia models (166, 202). In 

THP-1 and neuron-microglial co-culture models, MaR1 down-regulated Ab-induced pro-

inflammatory responses (166, 268).  
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It can be hypothesized with confidence that SPMs have a potential being drugs for AD in 

humans. The existing experimental evidence supports this hypothesis, and since SPMs are 

endogenously produced in the human body (and brain), treatment with SPMs or analogues 

thereof may be associated with few or mild side effects. Protective effects of SPMs have 

been observed in mouse models of AD (401), brain injury (404) and Down syndrome 

(405). In these studies, intraperitoneal, subcutaneous, or oral administration has been used 

to supply SPMs, indicating their effective transfer across the BBB. Altogether, stimulating 

resolution in the AD brain is a novel promising treatment target for this terrible disease. 

 

 

 
 



 

 31 

2 RESEARCH AIMS 
The aim of this project was to study neuroinflammation and its resolution in Alzheimer’s 

disease (AD) by analysis of cerebrospinal fluid (CSF) (Paper I and II) and investigating 

the potential of the specialized pro-resolving lipid mediator (SPM) maresin 1 (MaR1) to 

resolve Ab-induced AD-like inflammation in microglia (Paper III and IV). An overview of 

the project and sub-studies are shown in Fig. 5 (for Paper I and II) and Fig. 6 (for Paper 

III and IV). 

 

Specific aims for each paper: 

 

Paper I: To identify the profile of inflammatory protein mediators in the CSF of patients 

diagnosed with subjective cognitive impairment (SCI) or AD, taking into account the 

presence of comorbidities. 

 

Paper II: To analyse pro-inflammatory and pro-resolving lipid mediators (LMs) in CSF to 

investigate differences between patients diagnosed with SCI, mild cognitive impairment 

(MCI) and AD, and correlations to cognition and AD biomarkers. 

 

Paper III: To explore the effects of MaR1 on β-amyloid (Aβ)-induced inflammation and 

Aβ uptake in a human macrophage model, as well as a a human microglial cell model - 

monocyte-derived microglia (MdM). 

 

Paper IV: To investigate if MaR1 normalizes Aβ-induced alterations in transcriptome and 

protein levels in MdM. 
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Fig. 5. Study design of Paper I and II 
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Fig. 6. Study design of Paper III and IV 
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3 MATERIALS AND METHODS 
3.1 Human CSF samples and clinical data 
3.1.1 Human CSF samples 

CSF is secreted by the choroid plexus in the lateral and fourth ventricles and serves as a 

"sink" that receives the metabolite generated by brain function. The connections between 

CSF and the fluid compartments inside the brain makes it possible in some cases to view 

pathological changes in brain in the CSF, and it is thus a major source of biomarkers for 

neurodegenerative disorders. Compared to blood, another major source of biomarkers, CSF 

reflects the conditions in brain much better. Although the CSFs are obtained from an 

invasive procedure in clinic, lumbar puncture can be considered as a relatively harmless 

standard procedure. Another advantage of using CSF samples as study material is that since 

it is collected from the living person, longitudinal studies are possible, allowing the 

scientists to investigate dynamic changes of biomarkers. CSF samples can be used for 

biomarker studies for multiple purposes, such as assist diagnosis, predict prognosis, and 

evaluate disease severity. Research focused on discovering new biomarkers in CSF (as well 

as other tissues), is based on hypothesis-based approaches, where a factor or factors are 

targeted, and explorative approaches using -omics technologies to look for new biomarkers 

by measuring a large set of factors. 

In Paper I and II, CSF samples were obtained from the Gedoc biobank (part of Stockholms 

Medicinska Biobank, SMB) at the Memory Clinic at Karolinska University Hospital. 

Patients visiting the Memory clinic at Karolinska University Hospital (as well as many 

other hospitals) are routinely subjected to lumbar puncture and sampling of CSF for 

diagnostic purposes. After informed consent, patients donate a volume of CSF to the 

biobank of the Memory clinic (Gedoc), making it available for researchers together with 

data on age, gender and a limited number of clinical parameters. Factors of inflammation 

(Paper I) and homeostasis (Paper II) were analysed in the CSF samples from the same 

persons.  

 

3.1.2 Clinical data and study cohorts 

In Paper I and II, the clinical data on age, gender, diagnosis, cognition, and AD 

biomarkers were retrieved from the Gedoc database. The diagnosis of i) AD was based on 

the ICD-10 criteria (406), ii) MCI was based on the Winblad criteria, and iii) SCI was 

established when results from the clinical assessments did not indicate cognitive 

impairment despite subjective complaints of memory problems by the patients (85, 407). 

Cognitive impairment was evaluated by mini-mental score examination (MMSE) test (2), 
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as part of the routine diagnostic procedure at the clinic, also including measurement of CSF 

AD biomarkers (Ab42, t-tau and p-tau) by enzyme-linked immunosorbent assays (ELISAs).  

In Paper I, the study subjects were divided into "Training cohort" (a confounder-controlled 

cohort) and "Test cohort" (a random cohort). In the Training cohort, patient groups with a 

diagnosis of SCI or AD were age- and gender-matched. Cases with comorbidities were 

excluded. In contrast, the Test cohort was non-vetted and randomly selected from the 

Gedoc biobank. In statistics, a confounder is defined as a variable (e.g. age, gender, or 

comorbidities in Paper I) that affects both dependent variable (e.g. diagnosis) and 

independent variable (e.g. levels of inflammatory factors), resulting in a spurious 

association. It is important to control for confounders in the cohort studies to create a "pure 

disease condition", and therefore to filter the false associations. However, one should be 

aware that in clinical practice, confounder-free cohorts do not exist. AD patients commonly 

have comorbidities, are older than MCI and SCI patients, and are more often females (11). 

Therefore, the results obtained from the "pure disease condition" may not be able to apply 

to the "real world". In Paper I, we used the Training cohort to produce a statistical model 

and then evaluated the validity of using this model to interpret the Test cohort. The 

differences between the Training cohort and Test cohort were also investigated. 

 

3.1.3 Ethics information 

Both studies were approved by the Regional Swedish Ethical Review Authority of 

Stockholm (2011/680-31, 2014/1921-32 and 2020-02023). All participants signed an 

informed consent. Their personal and medical information was handled by authorized 

personnel at the clinic, and only samples and data approved to be used by me and other 

personnel involved in the project by the Swedish Ethical Review Authority were accessible. 

 

3.2 Cell models 
3.2.1 THP-1 monocytic cell line 

The THP-1 monocytic cell line was originally derived from the peripheral blood of a young 

patient diagnosed with acute monocytic leukaemia (408), and is now commercially 

available. In response to phorbol 12-myristate 13-acetate (PMA), THP-1 monocytes can be 

differentiated into a macrophage phenotype that is similar to peripheral monocyte-derived 

macrophages (409). Microglia and macrophages share many properties, such as 

surveillance of the microenvironment, maintenance, and trophic functions, phagocytosing 

apoptotic cells and pathogens, mediating inflammatory reactions when challenged with 

harmful stimuli, etc. Microglia are often considered as "CNS macrophages", and 
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macrophages in different forms are commonly used as the substitute of primary microglia 

(178, 410-413). As microglia and THP-1 cells respond to Ab42 stimulation in a similar 

pattern, Ab42-treated THP-1 cells have been used as an in vitro model to investigate AD-

relevant inflammation (178, 410-413).  

One of the advantages of cell lines is that genetic manipulations are easy to perform, such 

as gene knock-down and knock-in. In Paper III, THP-1 cells and THP1-LuciaTM NF-kB 

cells were differentiated by 72 h exposure to PMA and used as an in vitro model of 

neuroinflammation in AD by treatment with Ab42 for 24 h. THP1-LuciaTM NF-kB cells 

have been designed for monitoring the activation of NF-kB and contain an NF-kB-

inducible Luc reporter. As a result, the activation of NF-kB can be monitored by measuring 

the activity of secreted luciferase. Advantages and disadvantages of using cell lines as in 

vitro models are discussed in section 1.2.2.  

 

3.2.2 Monocyte-derived microglia (MdM) 

MdM is a novel microglial model, which shares many similarities with human primary 

microglia, and is more similar to primary microglia compared to mouse primary microglia 

and human microglial cell lines (213), thus being the most relevant human microglial 

model available, except for primary microglia from the adult human brain. In Paper III and 

IV, peripheral blood monocytes were either obtained commercially or isolated from fresh 

blood samples from healthy volunteers using CD14-based magnetic sorting. The monocytes 

were differentiated to microglia by incubating with a cocktail of cytokines (GM-CSF, M-

CSF, MCP-1, IL-34) and a trophic factor (NGF-b) for 10 days (213). One disadvantage of 

the MdM model is that sufficient numbers of cells may not be obtained for methods such as 

Western Blot, requiring large amounts of material. However, this problem could be 

lessened by using a substitute cellular model for such methods, for example THP-1 (Paper 

III). More information regarding the usage of MdM are in section 1.2.2. 

 

3.2.3 Ethics information 

All blood handling and experimental procedures were performed in compliance with the 

protocols approved by the Regional Ethical Review Authority in Stockholm (2019-04340, 

2019-0484 and 2020-05146). 
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3.3 Techniques 
3.3.1 Immunoassays  

Immunoassays including traditional sandwich ELISAs and a multiplex electrochemical 

immunoassay developed by Meso Scale Discovery (Stockholm, Sweden) were used to 

determine the concentrations of the inflammatory mediators in CSF samples and 

supernatants from cell cultures.  

The word "sandwich" is an excellent metaphor to describe the principle of ELISA: capture 

antibodies and detection antibodies are the two pieces of bread and the target proteins are 

the fillings in between. Sandwich ELISAs were used to analyse the proteins YKL-40, IL-

6Ra and IL-1ra in CSF samples (Paper I and II), TNF-a, IL-6 and IL-1b (Paper III) and 

IL-1ra (Paper IV) in cell culture supernatants. A major drawback of the technique is that 

only one molecule can be analysed in each well, and therefore the consumption of samples 

is considerable. To decrease consumption, multiplexed assays have been developed, and an 

assay based on electrochemiluminescence developed by Meso Scale Discovery was 

employed in all four papers in this thesis. This technique allows the quantification of 

multiple analytes in one well, requiring only a small amount of sample. The advantages of 

the electrochemiluminescence also include higher sensitivity and a wider dynamic range, 

compared to ELISA. In brief, high-binding carbon electrodes bind different capture 

antibodies to different spots in the wells of the microplate, allowing the attachment of 

multiple standards and analytes in the samples. Detection antibodies conjugated with 

electrochemiluminescent labels are then added. To produce a detectable signal, electricity is 

applied to electrodes underneath the wells, inducing light emission from the 

electrochemiluminescent labels. The light intensity is proportional to the number of 

analyte-antibody complexes in each spot, and thus to the levels of the analytes in the 

sample. The concentrations of 37 inflammatory mediators including chemokines, cytokines 

and vascular injury-related molecules were determined in CSF samples (Paper I and II) 

and MdM supernatants (Paper IV) using a human neuroinflammatory panel. A total of 10 

chemokines were measured in the THP-1 cell supernatants (Paper III). 

 

3.3.2 Expression and purification of Ab42 monomers 

The monomeric form of Ab42 was used to induce AD-like neuroinflammation in microglial 

models in Paper III and IV. The Aβ42 monomers were produced in collaboration with Prof. 

Jan Johansson (Department of Biosciences and Nutrition, Karolinska Institutet). The 

production and purification procedures were performed as previously described (414). In 

brief, a fusion protein, composed of the Aβ42 amino sequence and an N-terminal domain 
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(NT) of Nephila clavipes flagelliform spidroin (FlSp), with a tobacco etch virus (TEV) 

protease recognition site in between, was expressed in BL21*(DE3) pLysS E coli cells. The 

fusion protein is referred to as NT*FlSp-Aβ42 in the following text. After lysis of the 

bacteria, NT*FlSp-Aβ42 was separated from local bacterial proteins using an immobilized 

metal ion affinity chromatography column and was then cleaved by TEV protease. 

Subsequently, the Aβ42 monomers were isolated from a mixture of Aβ42, NT*FlSp and TEV 

using a Superdex30 PG column (26/600). As the Aβ42 monomers were produced in 

bacteria, lipopolysaccharide (LPS) contamination was analysed by ELISA. LPS was not 

detectable in any of the batches used in the studies.  

 

3.3.3 Bulk RNA-Sequencing (Seq) 

RNA-Seq, also known as whole transcriptome shotgun sequencing, is a methodology to 

disclose the presence and amount of RNA in a biological sample and has gained increasing 

technical refinement and popularity in the last two decades. Compared to traditional 

sequencing methods, such as Sanger sequencing and microarray-based sequencing, RNA-

Seq offers a broader coverage and higher resolution of the dynamic nature of the 

transcriptome. In addition to quantifying gene transcription, RNA-Seq technique also 

allows the discovery of novel transcripts, the analysis of different types of RNA including 

non-coding RNA, the investigation on functional pathways, etc. There are two types of 

RNA-Seq technique that have different scopes, i.e. bulk RNA-Seq and single-cell or single-

nucleus RNA-Seq. The data obtained from bulk RNA-Seq reflect the average gene 

expression from one biological sample that is produced from thousands of cells. Therefore, 

bulk RNA-Seq is normally used to investigate the differential expression of genes across 

samples and conditions. Single-cell/-nucleus RNA-Seq provides an opportunity to explore 

the gene expression profile at the single cell level. It can show the heterogeneity of cells in 

one condition, as well as differences in cellular constituents across conditions. The usage of 

the RNA-Seq technique to study microglia from AD patients was reviewed in section 1.2.2, 

with a discussion on advantages and limitations.  

In Paper IV, RNA-Seq was used to screen the effects of MaR1 on Aβ42-induced 

inflammation on MdM. The basic steps for performing bulk RNA-Seq are to 1) extract total 

RNA, 2) check the quality of RNA, 3) isolate a specific set of RNA (mRNA, rRNA, long 

ncRNA, small ncRNA), 4) make DNA constructs through cDNA synthesis, 5) perform 

library preparation that allows DNA to adhere to the flow-wells, 6) PCR amplification, and 

7) next-generation sequencing. Total RNA was extracted from the MdM using QIAGEN 

RNeasy Mini kit following the supplier's instructions. The integrity of the RNA was 
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determined using Agilent RNA 600 Nano kit and the Agilent 2000 Bioanalyzer system. 

With the support from the National Genomics Infrastructure (NGI) at Science for Life 

Laboratory (Stockholm, Sweden), mRNA in the samples was isolated using a poly-A tail-

based selection protocol and was reversely transcribed to cDNA. The libraries were then 

loaded into a S4 flow cell for sequencing.  

 

3.3.4 Liquid chromatography with tandem mass spectrometry (LC-MS/MS) 

The LC-MS/MS method was used in Paper II to determine the levels of LMs in CSF 

samples in collaboration with Professor Nicolas G. Bazan (Neuroscience Center of 

Excellence, School of Medicine, Louisiana State University Health New Orleans). LC 

enables lipid separation from a biological sample, producing a refined material to analyse 

with MS, which is used to identify the mass, chemical composition, and structure of an 

unknown molecule or to determine the concentration of a pre-known molecule, based on 

analysis of the ratio between mass and charge of the particles. LC-MS/MS is the most 

commonly used method to determine the levels of SPMs in biological samples. In Paper II, 

a total of 21 LMs including SPMs, pro-inflammatory LMs, their precursors and the 

intermediate products in the metabolic pathways were analysed.  

An alternative method to analyse LMs is ELISA. Compared to ELISA, the LC-MS/MS 

approach allows considerably more specificity, and is in some cases more sensitive, this 

being highly dependent on the analyte and the instrumentation available. Furthermore, LC-

MS/MS is by its nature multiplexed and produces more data than a regular ELISA allows. 

The range of ELISAs available for measuring SPMs, and pro-inflammatory LMs in general, 

is limited to a few LMs, while LC-MS/MS can measure any molecules with known 

characteristics regarding the parameters measured in the instrument. A radioactively 

labelled standard of the analyte increases the specificity and sensitivity of the measurement. 

However, LC-MS/MS is much more costly and demands a highly trained and experienced 

operator to produce optimal results. ELISA on the other hand is cheaper and technically 

uncomplicated. When there is a large batch of samples, one may consider using ELISA to 

measure the SPMs in all samples, then using LC-MS/MS to verify some of the results. 

 

3.3.5 Other commonly used techniques 

In Paper III and IV, immunocytochemistry was used to detect microglial markers and SPM 

receptors in the cells. Immunocytochemistry is a classical technique to identify the presence 

and location of a molecular target by using a (primary) antibody that binds to a specific 

epitope on the antigenic target that is then visualized in a microscope by a fluorescent or 
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colorimetric system conjugated to a secondary antibody with affinity for the species in 

which the primary antibody was made. In Paper III, Western blot was used to analyse the 

phosphorylation of kinases in THP-1 cells. Western blot is a semi-quantitative method to 

evaluate the levels of denatured proteins that are separated by electrophoresis according to 

molecular weight. In Paper III, flow-cytometry was used to assess phagocytosis of Aβ42 

using HilyteFluor 488-conjugated Aβ42, and to evaluate the expression of cell surface 

markers using antibodies. Flow cytometry is a technique used to detect and measure 

physical and biological characteristics of a population of cells or particles. Commonly, flow 

cytometry is used to detect the presence of specific molecules in cells by 

immunocytochemical staining with an antibody conjugated with a fluorophore. 

Immunocytochemistry, Western blot, and flow cytometry are commonly used techniques, 

which are all based on the principle that an antibody specifically binds to an antigen. 

Therefore, the key issue for these methods is to confirm that the antibody-target protein is 

specific. To achieve this, the reaction surface should always be blocked with inert protein 

such as bovine serum albumin or serum, before adding the primary antibodies to the 

sample. It is also necessary to confirm the specificity of the primary antibody, which can be 

accomplished by using a blocking peptide (or the entire protein, or other molecule, that is 

targeted), especially for antibodies that have not been carefully characterized previously. If 

the primary antibody is specific, pre-incubation of the antibody with sufficient blocking 

peptide (or entire protein) will decrease its binding to the target protein in the biological 

sample. Another commonly used method to assess specificity is to test the antibody on cells 

in which expression of the target protein has been deleted (e.g. by a knock-out procedure). 

For immunocytochemistry, a negative control should be included to evaluate the unspecific 

binding between the secondary antibody and the material analysed, so that a signal coming 

from the binding of the secondary antibody to the primary can be controlled for. To 

evaluate unspecific binding in flow cytometry, an isotype control antibody is used which 

maintains similar biological properties as the primary antibody but does not bind to the 

specific epitope. The signal from the isotype control antibody is considered as background.  

In Paper III, the lactate dehydrogenase (LDH) assay was used to evaluate Aβ42-induced 

cell death. LDH is a cytosolic enzyme catalysing the metabolism of NADH to NAD. When 

the membrane permeability increases due to cell death, LDH leaks out to cell supernatants.  

LDH assay is based on its capacity to oxidize lactate into pyruvate, which reacts with 

tetrazolium salt to form formazan that appears orange color. The advantages of the method 

are that it is quick, simple, and reliable. However, as serum has inherent LDH activity, the 

background of the assay from the normal cell culture condition is high. 
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3.4 Statistics 
3.4.1 Multivariate analysis (MVA) 

The MVA methods principal component analysis (PCA) and orthogonal projections to 

latent structures (OPLS) were used in Paper I and IV. The advantage of MVA is that 

multiple variables could be analysed together and provide a pattern of the data, such as 

class separation and clusters. In Paper I, multiple inflammatory mediators were analysed 

together to identify an inflammatory pattern in the CSF. A pattern is conceivably more 

powerful than individual factors to assist diagnosis. MVA relies on patterns of covariance 

between multiple factors that distinguishes e.g. AD and SCI, rather than the differences 

between AD and SCI analysed by univariate analysis of individual factors one at a time, 

therefore type I and type II errors is largely avoided in MVA when compared to univariate 

analysis. MVA can be used to add credibility to univariate comparisons, as well as in its 

own right to provide predictions and classifications.  

PCA and OPLS are two widely used MVA methods and one of the major differences is that 

PCA is an unsupervised model while OPLS is supervised. PCA examines the interrelations 

among multiple variables and then puts similar samples together and dissimilar samples 

apart, to provide an overview of the data. PCA is a non-parametric analysis that is 

independent of the distribution of variables. OPLS is a prediction and regression model 

investigating the association between descriptor matrix X and response matrix Y. If Y 

matrix is composed of discrete variables (for instance, diagnosis, treatment), the model is 

called OPLS- discriminant analysis (DA). The predictive quality of the model, the variables 

which contribute to the class discrimination and how strong their impact is, are also 

outcomes by OPLS.  

 

3.4.2 Univariate analysis 

Univariate analysis was used through Paper I to IV. The data were normalized to the 

average of that individual experiment. Kruskal–Wallis ANOVA test was used to analyse 

group differences, with the built-in post hoc test, or manually with Mann-Whitney U-test 

with Bonferroni correction for multiple comparisons. Correlations were analysed by the 

Spearman Rank-Order test. A P value of <0.05 was considered statistically significant.  

 

3.4.3 Analysis of RNA-Seq data 

The RNA-Seq data analysis could roughly divided into four phases: 1) quality control and 

alignment; 2) quantification of transcript abundance; 3) data filtering and normalization; 4) 
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differential expression analysis and functional pathway analysis. For each step, numerous 

computational approaches are available to choose from. Different combinations of analysis 

methods could have substantial effects on the conclusions drawn from the data. To increase 

the likelihood to produce reasonable results, the selection of the analytical tools should be 

based on the biological question. The results obtained from the RNA-Seq should be verified 

with analyses at the protein level so that functional inferences can be made. In Paper IV, 

the first two analysis steps were completed by NGI. Genes with an average expression of 

less than 1 fragment per kilobase million (FPKM) were filtered from the subsequent 

analysis. To increases the quality of the differential expression and functional pathway 

analysis, we selected two different databases, which are Kyoto encyclopedia of genes and 

genomes (KEGG) and the molecular signature database (MSigDB). The two databases 

were employed in parallel, and obtained similar results, indicating a high reliability of the 

obtained results. Based on our scientific questions, we also manually selected genes for 

analysis. For example, a set of genes that were related to the clearance of Aβ42 were picked 

out after literature review and their expression upon treatment with Aβ42 or MaR1, or their 

combination was investigated. The key findings from RNA-Seq analysis were verified at 

the protein level
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4 RESULTS AND DISCUSSION 
 
4.1 Imbalance between neuroinflammation and its resolution in AD 

(Paper I and II) 
A disturbance in the resolution of inflammation in AD is evidenced by i) decreased SPMs 

in post mortem brains of AD patients, and ii) attenuated neuroinflammation by SPMs in in 

vitro and in vivo AD models. However, potential alterations in the levels of SPMs in the 

CSF of AD patients have rarely been studied. In fact, the presence of SPMs in CSF has not 

been studied extensively. Previously, our research group have used EIAs to analyse the 

SPMs LXA4 and RvD1 in the CSF of AD patients and reported a significant reduction in 

LXA4 (395). Encouraged by these findings, we have conducted a more extensive study on a 

larger cohort using LC-MS/MS (Fig. 5). A total of 135 patients diagnosed with SCI (n = 

52), MCI (n = 43) or AD (n = 40) were recruited to the study. In Paper I, we characterized 

neuroinflammation in these patients by analysis of the CSF levels of forty-three protein 

inflammatory mediators including cytokines, chemokines and vascular damage-related 

factors using immunoassays. In Paper II, a total of 21 LMs including pro-inflammatory 

LMs, SPMs and their precursors were assessed in the CSF of SCI, MCI, and AD patients 

by LC-MS/MS.  

 

4.1.1 Paper I: Cerebrospinal fluid inflammatory markers in Alzheimer’s disease: 

influence of comorbidities 

Analysis of SCI and AD cases using a 37-plex human neuroinflammatory panel together 

with ELISAs, we found that nineteen out of 43 protein inflammatory factors passed the 

quality criteria and were included in further analysis. The study was based on analysis of 

two cohorts, a so-called Training cohort, a gender- and age-matched cohort where patients 

with comorbidities were excluded, and a Test cohort, based on randomly selected cases. 

Results from univariate analysis of the Training cohort showed that the levels of IL-6Ra 

and IL-10 were lower in AD cases, while YKL-40 and IL-1ra levels were higher. When 

performing the same analysis in the Test cohort we found a profile of differences. In 

contrast to the results from the Training cohort, the concentrations of IL-6Ra were higher 

in the AD cases than in SCI cases. Also, IL-15, placental growth factor (PlGF) and serum 

amyloid A (SAA) were significantly higher in AD cases in the Test cohort, while IL-10, IL-

12 and CXCL10 levels were higher in SCI. When performing a comparison between the 
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Training and Test cohorts, we found that the AD cases in the Test cohort were older and 

had higher p-tau levels in the CSF.  

In the Training cohort, a reasonably good OPLS-DA model based on CSF factors was 

produced and was able to discriminate AD from SCI cases, indicating that the inflammatory 

profile was different in AD and SCI (Fig. 7). Notably, the model did not include data on 

AD CSF biomarkers or data on cognition from the MMSE test. The inflammatory factors 

contributing to discriminate AD from SCI in the OPLS-DA model largely agreed with the 

findings obtained by univariate analysis (Fig. 7). The Training cohort OPLS-DA model was 

then employed to blindly classify the cases in the Test cohort in the categories of SCI or 

AD based on their levels of inflammatory factors in the CSF. Our finding that the 

classification produced by the OPLS-DA model agreed with the clinical diagnosis in only 

40% of the cases in the Test cohort gave further evidence that the cases in the two cohorts 

exhibited distinctly different profiles of inflammatory mediators in CSF. 

  

  

Fig. 7. OPLS-DA model based on the Training cohort  
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Our study highlighted the field of biomarkers in AD from two important perspectives. (1) 

Analysis of a pattern of molecules is more powerful than analysis of individual molecules 

in differentiating AD from other conditions. The majority of studies on the inflammatory 

mediators in AD are focused on individual factors (240, 415). The redundancy, high 

variability, and the low specificity of inflammatory mediators to a specific pathology limit 

their capacity to be used as diagnostic biomarkers. An emerging view is that combining 

several biomarkers, thus providing the basis to define a pattern, is a more efficient strategy 

(416). MVA models identify patterns by analysing multiple single variables in (n)-

dimensional space onto which the variables are projected in such a way that their 

covariances can be explained. Clustering of individual observations in this space indicates a 

similar pattern of variables, and if the observations in this cluster belong to e.g. cases with a 

diagnosis of AD, a pathological pattern is shown. An MVA discriminant model produced 

by cases with a known classification (Training cohort) could be used to predict and classify 

unknown cases (Test cohort).  

(2) The presence of comorbidities may act as a confounder when e.g. deciding on the 

course of treatment and care for a patient, or when enrolling participants for clinical studies. 

Scientists usually prefer to conduct their exploratory studies in a "pure" disease condition 

and want to exclude the effects of confounders on their results. In our study, after to our 

best capacity removing confounders such as gender, age, and comorbidities we obtained a 

cohort with a different inflammatory pattern in their CSF compared to a randomly selected 

cohort. As AD is prevalent in the aged population, AD patients are commonly afflicted by 

other diseases in addition to AD, which may bias the results of studies on inflammatory 

factors. In the future, it is worthy to study whether and how different kinds of comorbidities 

such as other dementias, tumours, stroke, psychiatric disorders, affect the inflammatory 

pattern in the CSF. One should also be aware that the reality of clinic may be better 

represented by the Test cohort, since there are no exclusion criteria applied in the real 

world. In our study, the OPLS-DA model produced using the Training cohort only partly 

agreed with the clinical diagnosis when applied to the Test cohort.  

As AD has a complicated and heterogeneous etiology, biomarkers, in addition to Ab and 

tau would be useful for an early and more refined diagnosis of AD. An example of such a 

refinement could be the identification of patients with comorbidities which can be more, or 

less responsive to different treatment and care strategies. Inflammation, a sensitive indicator 

of harmful conditions in the body, presents numerous markers that are can be investigated 

for this purpose, a prospect that was the focus of the present study. Further studies are 
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needed to identify SCI and MCI patients that will develop AD, and to characterise the 

association of different comorbidities with different profiles of inflammatory mediators.  

 

4.1.2 Paper II: CSF profile of lipid mediators in Alzheimer’s disease 

LMs were analysed in CSF of a subset of cases from the same cohorts as in Paper I, in 

addition to CSF samples from MCI patients. These LMs included SPMs (LXA4, MaR1, 

MaR2, PD1, RvD1, RvD3, RvD4, RvE1 and RvE4), pro-inflammatory LMs (LTB4, PGD2, 

PGE2 and PGF2a), their n-3 and n-6 PUFA precursors (EPA, AA and DHA), and the 

intermediate products in their pathways of synthesis and metabolism (14-HDHA, 17-

HDHA, 20-HDHA, 12- HETE, 14-HETE and 15-HETE).  

 

Altered levels of LMs in the CSF of patients with cognitive impairment 

Studies have shown that SPMs, including PD1, LXA4, MaR1 and RvD5 are reduced in the 

brain of AD patients (304, 350, 395). Since the CSF is in contact with the brain 

parenchyma, changes in brain levels may be reflected by changes in levels in the CSF, and 

it would make sense that SPMs are decreased in the CSF of AD patients. The analysis in 

Paper II showed that SPM levels were lower in the CSF from MCI and/or AD patients, 

while pro-inflammatory LMs exhibited a mixed pattern. The significant differences are 

shown in Fig. 8. Regarding SPMs, the analysis showed that the levels of RvD4 were 

significantly lower in CSF samples from AD and MCI patients compared to SCI. RvE4 

levels were lower in MCI patients compared to SCI patients. Surprisingly, 15-HETE, an 

intermediate product in the RvE4 metabolism pathway, was higher in MCI patients than in 

SCI cases, in contrast to its downstream product RvE4. One explanation may be that the 

conversion to RvE4 is impaired in MCI patients due to alterations in the enzymatic 

pathway, which is an interesting subject for further studies. The levels of MaR1 were lower 

in MCI patients than in SCI cases. Regarding pro-inflammatory LMs, the levels of LTB4 

were higher in the CSF of AD patients in comparison with SCI patients. The levels of 

PGD2 and PGE2 in the CSF of SCI patients were higher than in MCI patients, while PGD2 

also exhibited higher levels compared to AD patients.  
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Fig. 8. Levels of LMs were altered in SCI, MCI and AD patients 

 

To our knowledge, this is the first study to show the presence of the SPMs MaR1, MaR2, 

PD1, RvD3, RvD4, RvE1 and RvE4 in human CSF, and a pioneering study in the research 

on the pro-inflammatory as well as pro-resolving lipidome in the field of dementia. 

Although alterations were seen for several LMs in AD compared to SCI, most differences 

were observed in MCI patients. The findings suggest that the alterations in LMs in the CSF 

may start at an early stage, and therefore may assist in the early diagnosis of AD. The 

decrease in the pro-inflammatory LMs PGD2 and E2 in MCI may seem contra-intuitive, but 

studies have shown that increased levels is a feature of the tuning of the enzymatic pathway 

to SPM production (“class-switching”) (417), and this finding may indicate a failure in this 

process.  

Although studies on LTB4 in CSF were initiated already four decades ago (418), its 

elevation in the CSF of AD patients was first observed in this study. As LTB4 is a pro-

inflammatory LM, the increase compared to SCI could be indicative of the chronic 

inflammation in the AD brain. Higher levels of LTB4 were also observed in the CSF of 

patients with multiple sclerosis, an immune-mediated neurodegenerative disorder in the 

CNS (419, 420). Additionally, as follow-up data for MCI patients was not available, the 

MCI cases in our study cannot be regarded simply as "prodromal AD" patients. Thus, until 

knowledge on how the levels of LMs are associated with progression to AD, care must be 

taken when interpreting alterations in the levels of LMs present in MCI but not in AD. 

 

LMs were correlated to cognition, AD biomarkers and inflammatory mediators  

In the whole cohort, the levels of RvD4 were positively correlated to cognition as evaluated 

by MMSE while negatively correlated to both p-tau and t-tau levels in the CSF. 
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Considering the alterations seen in MCI patients, RvD4, and other LMs have the potential 

to be novel biomarkers to assist in the early diagnosis of AD as well to monitor disease 

progression. The results obtained are in line with previously published findings in animal 

models showing that administration of SPMs could improve cognition and reduce tau 

pathology (397, 400, 403). The levels of LTB4 were negatively correlated to Ab while 

positively correlated to the levels of the astrocyte activation marker YKL-40, strengthening 

the hypothesis that an increase in YKL-40 indicates neuroinflammation. An in vitro study 

showed that LTB4 increased the production of Ab in neurons (421). Since increased levels 

of Ab in the brain are correlated to decreased levels in CSF, this in vitro study suggests a 

direct link from LTB4 to Ab pathology in AD.  

 

4.2 Therapeutic effects of MaR1 in the context of AD (Paper III and IV) 
Treatment with SPMs are potentially beneficial in AD as evidenced by their ability to 

attenuate Ab and tau pathologies (202, 397, 399-402), improve cognition (397, 400, 403), 

reduce neuroinflammation (397, 400, 401, 403) in in vitro and in vivo models of AD. 

However, there are still many blanks to fill regarding the therapeutic effect of the SPM 

MaR1 in the context of AD. In Paper III (Fig. 6), using a THP-1 macrophage model 

complemented with the MdM model, we investigated the effects of MaR1 on Ab42-induced 

secretion of pro-inflammatory cytokines and chemokines, cell death, pro-inflammatory 

surface biomarker expression, NF-kB activation and kinase phosphorylation. In Paper IV 

(Fig. 6), a more thorough investigation was conducted in the MdM model. Using RNA-seq, 

we investigated the similarity between MdM and human primary microglia on a level of 

gene expression, and the capacity of Ab42 to induce AD-like inflammation in MdM. We 

then analysed the pro-resolving effects of MaR1 on Ab42-induced inflammation and 

verified some of the results at the protein level.  

 

4.2.1 Paper III: Maresin 1 attenuates pro-inflammatory activation induced by β-

amyloid and stimulates its uptake 

MaR1 reduced Ab42-induced pro-inflammatory responses 

We found that MaR1 reduced the Ab42-induced secretion of the pro-inflammatory 

cytokines TNF-a, IL-1b and IL-6, and of the chemokines CCL2 and CXCL10. In addition, 

MaR1 was found to decrease the Ab42-induced elevation of the pro-inflammatory surface 

biomarker CD40. Similar effects of MaR1 have been reported in other disease models (320, 

373, 377). Cytokines and chemokines are the major secreted signalling molecules that 
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orchestrate immune responses. Normalizing cytokine and chemokine gradients represent 

one of the key functions of SPMs to facilitate the resolution of inflammation.  

The effects of MaR1 on the activation of intracellular kinases and a transcription factor that 

govern the inflammatory reactions were also investigated. Aβ increased the activity of the 

transcription faction NF-kB and co-incubation with MaR1 reduced this elevation. This 

effect has also reported in other disease models (375, 381, 388, 389). NF-kB is a master 

transcription factor that modulates the transcription of many inflammatory genes and also 

regulates the expression of the APP gene (422). This is one of the intracellular mechanisms 

for the pro-solving effects of MaR1. Unexpectedly, although it was reported that MaR1 

decreased the phosphorylation p38 MAPK (377), MaR1 failed to exhibit this effect in our 

model indicating that MaR1exerts its effects on Aβ-induced inflammation by other 

pathways, or that our experimental set-up simply lacked the parameters to detect effects on 

p38 by MaR1.  

 

MaR1 increased Ab42 uptake 

Improving the capacity of immune cells to eliminate debris and harmful stimuli is one of 

general pro-resolving activities of SPMs (295, 301). Our finding that MaR1 increased the 

uptake of Aβ (Fig. 9) is in line with our pervious study in another model of microglia (166). 

In normal conditions, one of the major homeostatic pathways for Aβ clearance in the CNS 

is microglial phagocytosis and degradation. Aβ removal is a hot therapeutic strategy for AD 

and is a main focus of several clinical trials of anti-Aβ antibodies. Compared to anti-Aβ 

antibodies, increasing the general capacity of microglial phagocytosis while decreasing 

inflammation is a more natural way to achieve Aβ clearance. However, since an increase in 

the uptake of Aβ does not automatically result in an increased degradation of Aβ, further 

studies are warranted to investigate the digestion of Aβ after its uptake to fully evaluate the 

therapeutic value of MaR1 in this regard.  

 

Fig. 9. MaR1 increased Ab42 uptake 
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MaR1 reduced Ab42-induced cell death 

Aβ significantly increased cell death of the differentiated THP1 cells, and co-incubation 

with MaR1 decreased this cytotoxic effect. The ability of MaR1 to improve cell survival 

has been reported in various models (202, 384).   

 

4.2.2 Paper IV: Pro-resolving lipid mediator reduced Ab42-induced gene expression in 

monocyte-derived microglia 

Ab42-stimulated MdM – a good model to study AD-like inflammation 

To better understand the neuroinflammation in AD and to discover new therapeutic targets 

regarding inflammation and its resolution, the knowledge of microglia in the context of AD 

must be increased. To achieve this, a relevant microglial model that exhibits AD-like 

pathology is needed. In Paper IV, we used RNA-seq to show that MdM were largely 

similar to human primary microglia on the level of gene expression and showed that Ab42-

stimulated MdM is a good microglial model to study AD-like inflammation.  

PCA was performed to elucidate similarities and differences regarding the gene expression 

in MdM, iPSC-derived microglia and human primary microglia isolated from surgery. The 

PCA plot showed that these different cells were closely clustered together, suggesting 

similarities in their transcriptomes. Microglial genes and resolution-related genes were 

transcribed in MdM, with confirmation of gene expression data in the protein level for a set 

of microglia-associated proteins including HLA-DR, P2RY12, Iba-1, MCSFR and TREM-

2, and the MaR1 receptor BLT1. These data suggest that MdM are similar to primary 

human microglia.  

A series of disease ontology analyses was performed on Ab42-stimulated MdM. We found 

that 1) AD-risk genes, obtained from GWAS studies by literature review, were transcribed 

in the Ab42-stimulated MdM; 2) 17 of the top 20 DEGs in comparison with control 

conditions were associated with AD to some extent. They included AD risk genes, genes 

with an expression shown to be altered in AD, and genes associated with AD pathology and 

with cognitive impairment in AD patients; 3) the DEGs were enriched in the "Alzheimer 

Disease" term when performing pathway analysis using the KEGG). Furthermore, 16 of the 

17 secreted protein inflammatory mediators analysed in the culture medium that were up-

regulated by Ab42 were reported to be associated with AD, and Ab42 was taken up by the 

MdM (shown in both Paper III and IV). Taken together, the results support that MdM 

incubated with Ab42 exhibit and AD-like inflammation.  
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MaR1 re-balanced the imbalanced immune network in AD 

The ability of MaR1 to affect Ab42-induced gene expression in MdM was investigated by 

pathway analysis of the RNA-Seq data (control vs. Ab42 DEGs and Ab42 vs. Ab42 + MaR1 

DEGs) using KEGG and MSigDB. All of the top 10 KEGG pathways comparing control 

and Ab42 were related to inflammation (immune pathways) and were upregulated by Ab42. 

Eight of these were significantly downregulated by co-treatment with MaR1. These 

pathways which included chemokine signalling, cytokine-cytokine receptor interaction, 

viral protein interaction with cytokine and cytokine receptor, NF-kB signalling, TNF-

signalling, NOD-like receptor signalling, Toll-like receptor signalling, and the C-type lectin 

receptor signalling pathway, formed a closely interacting network. Similar results were 

obtained upon analysis using MSigDB, which is a more extensive database compared to 

KEGG. To analyse effects on transcription factors, a prediction based on MSigDB (C3 

subdatabase) was performed. Gene expression of the transcription factors NF-kB 

(particularly subunit p65) was increased by Ab42 and decreased by co-incubation with 

MaR1.  

These findings advance the investigation on the effects of MaR1 from those based on 

differences in individual molecules to the level of networks of pathways of inflammation 

and other areas of physiology. The advantages of using the RNA-Seq technique in this 

study are that :1) it allows screening of the effects of MaR1 on the transcription of more 

than 60,000 genes, providing a much more encompassing view compared to previous 

studies; 2) the focus of study is switched from individual immune molecules to functional 

pathways, which is more relevant since the inflammatory response is orchestrated by 

numerous pathways of the immune system. From a network perspective, we concluded that 

the balance of the immune network in microglia was disturbed by Ab42, and that MaR1 was 

influential in restoring this balance.  

 

MaR1 restored homeostasis at the protein level 

To verify the RNA-Seq results at a protein level, a total of 38 secreted inflammatory 

mediators were analysed in the culture supernatants. The mRNA levels and the protein 

concentrations were found to be in line with each other. The PCA plot shows a marked 

separation between cells incubated with Ab42 and control cells, while the cells co-incubated 

with Ab42 and MaR1 showed an intermediate position, indicating that MaR1 at least partly 

reduced the Ab42-induced inflammatory secretory pattern. Using univariate analysis, MaR1 

was found to decrease the Ab42-induced secretion of 17 inflammatory factors. Twelve of 
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these factors have not been reported previously affected by MaR1 in the context of AD. 

Seven factors, including CCL11, CCL13, CCL22, CCL26, IL-13, vascular endothelial 

growth factor receptor (VEGFR) 1 and pentraxin 3 (PTX3), were never reported to be 

affected by MaR1 in any disease model. Notably, this is the first study to show that Ab42 

induced both PTX3 mRNA and protein. PTX3 is a pattern recognition factor that belongs to 

the “long” pentraxins, which are not yet well investigated in AD (see (423)), while other 

more well-known PTXs such as C-reactive protein, and amyloid P were increased in human 

post mortem AD brains (424), where their expression is associated with the pathology of 

plaques and tangles, PTX1 was increased in both brain and plasma of AD mice (425), 

PTX2 predicted brain atrophy and cognition impairment in AD (426). To summarize Paper 

IV, MdM represent a relevant and useful in vitro microglial model to study AD-like 

inflammation. Furthermore, MaR1 had an ameliorating effect on Aβ42-induced changes on 

several genes and proteins of importance in AD, highlighting its potential as treatment for 

AD.  
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5 CONCLUSIONS 
The major aim of this thesis was to investigate if pro-inflammatory and pro-resolving 

mediators are altered in the context of AD (Paper I and II), and whether the SPM MaR1 

can be used as a potential drug to attenuate AD-like inflammation (Paper III and IV). We 

used CSF from patients diagnosed with SCI, MCI and AD (Paper I and II), and microglial 

in vitro models (Paper III and IV) to answer the scientific questions. The key findings of 

the constituent papers are summarized as follows: 

• Paper I and II 

o The alterations of inflammatory mediators (including protein mediators and LMs) in 

the CSF indicated a shift of inflammatory profile from pro-resolving to pro-

inflammatory as part of AD pathology. 

o The SPM RvD4 could serve as a novel biomarker for AD, as the levels of RvD4 

were decreased in the CSF from AD patients and were correlated to cognition and 

tau pathology. 

o Confounders including comorbidities affected results and conclusions in biomarker 

studies. It is important to study biomarkers in both a confounder-controlled cohort 

and a random-selected cohort. 

o Pattern-based diagnosis could be achieved by using an MVA model.  

 

• Paper III and IV:  

o MaR1 promoted the resolution of inflammation in the context of AD, as evidenced 

by attenuating Ab42-induced inflammatory reactions, stimulating Ab42 uptake and 

decreasing Ab42-induced cell death, therefore MaR1 has a potential to serve as a 

drug for AD. 

o We reported that PTX3 was upregulated by Ab42, and that MaR1 prevented the 

effect of Ab42. In addition, we discovered that MaR1 promoted resolution by 

reducing the expression of CCL11, CCL13, CCL22, CCL26, IL-13 and VEGFR1.  

o To understand the neuroinflammation in AD, a relevant and practically useful 

microglial model is needed. MdM are largely similar to primary human microglia, 

and Ab42 stimulation could induce AD-like inflammation in MdM. Therefore Ab42-

stimulated MdM could be a novel in vitro model to investigate neuroinflammation 

in the context of AD.  

 

 





 

 57 

6 POINTS OF PERSPECTIVE 
The field of resolution is young and keeps growing rapidly. The basis for understanding the 

resolution of inflammation is characterisation of the SPMs with regard to e.g. structure, 

synthesis, receptors and functions. It is also important to identify the pro-resolving effects 

of SPMs and the underlying mechanisms in disease models. Results from studies in animal 

models are promising. The translation from SPMs to clinical drugs should be considered.  

 

• Basic information for SPMs: SPMs exhibit their effects by binding to receptors. 

However, receptors for SPMs remain largely unknow, indicating the need to 

discover more SPM receptors, which will aid in understanding the pro-resolving 

signalling, thus helping receptors for SPMs to become therapeutic targets.    

 

• Pharmacokinetics for SPMs: When it comes to treatment of CNS diseases, the 

capability of drugs to pass the BBB must be considered. For SPMs, however, there 

is evidence indicating that they can enter the brain from the periphery. The 

underlying mechanisms for the distribution and transportation of SPMs in tissues 

and organs also need further investigation.  

 

• SPMs in AD: New SPMs keep being discovered, and, so far, studies on resolution 

in AD have only concerned some of the SPMs. Ideally, all SPMs should be 

investigated if they could be biomarkers or drugs for AD.   

 

• Clinical translation: I look forward to clinical trials using SPMs being started in 

the near future. 
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