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Abstract. In this paper, the notion of degree of inconsistency is intro-
duced as a tool to evaluate the sensitivity of the Full Bayesian Signifi-
cance Test (FBST) value of evidence with respect to changes in the prior
or reference density. For that, both the definition of the FBST, a pos-
sibilistic approach to hypothesis testing based on Bayesian probability
procedures, and the use of bilattice structures, as introduced by Ginsberg
and Fitting, in paraconsistent logics, are reviewed. The computational
and theoretical advantages of using the proposed degree of inconsistency
based sensitivity evaluation as an alternative to traditional statistical
power analysis is also discussed.

Keywords: Hybrid probability / possibility analysis; Hypothesis test;
Paraconsistent logic; Uncertainty representation.

1 Introduction and Summary

The Full Bayesian Significance Test (FBST), first presented in [25] is a coherent
Bayesian significance test for sharp hypotheses. As explained in [25], [23], [24]
and [29], the FBST is based on a possibilistic value of evidence, defined by co-
herent Bayesian probability procedures. To evaluate the sensitivity of the FBST
value of evidence with respect to changes in the prior density, a notion of degree
of inconsistency is introduced and used. Despite the possibilistic nature of the
uncertainty given by the degree of inconsistency defined herein, its interpreta-
tion is similar to standard probabilistic error bars used in statistics. Formally,
however, this is given in the framework of the bilattice structure, used to rep-
resent inconsistency in paraconsistent logics. Furthermore, it is also proposed
that, in some situations, the degree of inconsistency based sensitivity evaluation
of the FBST value of evidence, with respect to changes in the prior density, be
used as an alternative to traditional statistical power analysis, with significant
computational and theoretical advantages. The definition of the FBST and its
use are reviewed in Section 2. In Section 3, the notion of degree of inconsistency
is defined, interpreted and used to evaluate the sensitivity of the FBST value of
evidence, with respect to changes in the prior density. In Section 4, two illus-
trative numerical examples are given. Final comments and directions for further
research are presented in Section 5. The bilattice structure, used to represent
inconsistency in paraconsistent logics is reviewed in the appendix.
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2 The FBST Value of Evidence

Let θ ∈ Θ ⊆ Rp be a vector parameter of interest, and Lx = L(θ |x) the likeli-
hood associated to the observed data x, a standard statistical model. Under the
Bayesian paradigm the posterior density, px(θ), is proportional to the product
of the likelihood and a prior density p(θ). That is,

px(θ) ∝ p(θ)L(θ |x).

The (null) hypothesis H states that the parameter lies in the null set ΘH ,
defined by

ΘH = {θ ∈ Θ | g(θ) ≤ 0 ∧ h(θ) = 0},
where g and h are functions defined in the parameter space. Herein, however,
interest will rest particularly upon sharp (precise) hypotheses, i.e., those for
which dim(ΘH) < dim(Θ).

The posterior surprise, s(θ), relative to a given reference density r(θ), is given
by

s(θ) = px(θ)/r(θ).

The relative surprise function, s(θ), was used by several others statisticians, see
[19], [20] and [13]. The supremum of the relative surprise function over a given
subset ΘH of the parameter space, will be denoted by s∗(ΘH , p, Lx, r), that is,

s∗(ΘH , p, Lx, r) = sup
θ ∈ ΘH

s(θ)

Despite the importance of making a conceptual distinction between the state-
ment of a statistical hypothesis, H , and the corresponding null set, ΘH , one often
relax the formalism and refers to the hypothesis ΘH , instead of H : θ ∈ ΘH . In
the same manner, when some or all of the argument functions, p, Lx and r, are
clear from the context, they may be omitted in a simplified notation and s∗(ΘH)
or even s∗(H) would be acceptable alternatives for s∗(ΘH , p, Lx, r).

The contour or level sets, C(ϕ, p, Lx, r), of the relative surprise function, and
the Highest Relative Surprise Set (HRSS), D(ϕ, p, Lx, r),at a given level ϕ, are
given by

C(ϕ, p, Lx, r) = {θ ∈ Θ | s(θ) = ϕ} , D(ϕ, p, Lx, r) = {θ ∈ Θ | s(θ) > ϕ}
The FBST value of evidence against a hypothesis H , Ev(H) or Ev(ΘH), is

defined by

Ev(ΘH , p, Lx, r) =
∫

T (ΘH ,p,Lx,r)

px(θ) dθ , where

T (ΘH , p, Lx, r) = D(s∗(ΘH), p, Lx, r)

The tangential HRSS T (ΘH), or T (H), contains the points in the parameter
space whose surprise, relative to the reference density, is higher than that of
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any other point in the null set ΘH . When the uniform reference density, r(θ) ∝
1, is used, T (ΘH) is the Posterior’s Highest Density Probability Set (HDPS)
tangential to the null set ΘH .

The role of the reference density in the FBST is to make Ev(H) implicitly
invariant under suitable transformations of the coordinate system. Invariance,
as used in statistics, is a metric concept. The reference density is just a compact
and interpretable representation for the reference metric in the original param-
eter space. This metric is given by the geodesic distance on the density surface,
see [7] and [24]. The natural choice of reference density is an uninformative prior,
interpreted as a representation of no information in the parameter space, or the
limit prior for no observations, or the neutral ground state for the Bayesian op-
eration. Standard (possibly improper) uninformative priors include the uniform
and maximum entropy densities, see [11], [18] and [21] for a detailed discussion.

The value of evidence against a hypothesis H has the following interpretation:
“Small” values of Ev(H) indicate that the posterior density puts low probability
mass on values of θ with high relative surprise as compared to values of θ ∈ ΘH

thus providing weak evidence against hypothesis H . On the other hand, if the
posterior probability of T (ΘH) is “large”, that is for “large” values of Ev(H),
values of θ with high relative surprise as compared to values of θ ∈ ΘH , have high
posterior density. The data provides thus strong evidence against the hypothesis
H . Furthermore, the FBST is “Fully” coherent with the Bayesian likelihood
principle, that is, that the information gathered from observations is represented
by (and only by) the likelihood function.

3 Prior Sensitivity and Inconsistency

For a given likelihood and reference density, let, η = Ev(ΘH , p, Lx, r) denote the
value of evidence against a hypothesis H , with respect to prior p. Let η′, η′′ . . .
denote the evidence against H with respect to priors p′, p′′ . . .. The degree of
inconsistency of the value of evidence against a hypothesis H , induced by a set
of priors, {p, p′, p′′ . . .} can be defined by the index

I {η, η′, η′′ . . .} = max {η, η′, η′′ . . .} − min {η, η′, η′′ . . .}

This intuitive measure of inconsistency can be made rigorous in the context
of paraconsistent logic and bilattice structures, see the appendix. If η = Ev(H)
is the value of evidence against H , the value of evidence in favor of H is defined
by η = Ev(H) = 1 − Ev(H). The point x = 〈η, η〉 in the unit square bilattice,
represents herein a single evidence, see the appendix. Since BI(x) = 0, such
a point is consistent. It is also easy to verify that for the multiple evidence
values, the definition of degree of inconsistency given above, is the degree of
inconsistency of the knowledge join of all the single evidence points in the unit
square bilattice,

I(η, η′, η′′ . . .) = BI (〈η, η〉 �k 〈η′, η′〉 �k 〈η′′, η′′〉 . . .) .
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As shown in [29], the value of evidence in favor of a composite hypothesis
H = A∨B, is the most favorable value of evidence in favor of each of its terms,
i.e., Ev(H) = max{Ev(A), Ev(B)}. This makes Ev a possibilistic (partial) sup-
port structure coexisting with the probabilistic support structure given by the
posterior probability measure in the parameter space, see [10] and [29]. The de-
gree of inconsistency for the evidence against H induced by multiple changes of
the prior can be used as an index of imprecision or fuzziness of the value of evi-
dence Ev(H). Moreover, it can also be interpreted within the possibilistic context
of the partial support structure given by the evidence. Some of the alternative
ways of measuring the uncertainty of the value of evidence Ev(H), such as the
empirical power analysis have a dual possibilistic / probabilistic interpretation,
see [28] and [22]. The degree of inconsistency has also the practical advantage
of being “inexpensive”, i.e., given a few changes of prior, the calculation of the
resulting inconsistency requires about the same work as computing Ev(H). In
contrast, an empirical power analysis requires much more computational work
than it is required to compute a single evidence.

4 Numerical Examples

In this paper we will concentrate on two simple model examples: the Hardy-
Weinberg (HW) Equilibrium Law model and Coefficient of Variation model.
The HW Equilibrium is a genetic model with a sample of n individuals, where
x1 and x3 are the two homozygote sample counts and x2 = n − x1 − x3 is the
hetherozygote sample count. The parameter vector for this trinomial model is
θ = [θ1, θ2, θ3] and the parameter space, the null hypothesis set, the prior density,
likelihood function and the reference density are given by:

Θ = {θ ≥ 0 | θ1 + θ2 + θ3 = 1} , ΘH = {θ ∈ Θ | θ3 = (1 −
√

θ1)2}
p(θ) ∝ 1 , L(θ | x) ∝ θx1

1 θx2
2 θx3

3 , r(θ) ∝ 1

For the Coefficient of Variation model, a test for the coefficient of variation
C = µ

√
ρ , of a normal variable with mean µ and precision ρ = 1/σ2, the pa-

rameter space, the null hypothesis set, the maximum entropy prior, the reference
density, and the likelihood density are given by:

Θ = {θ = [µ, ρ] ∈ R×R+} , ΘH = {θ ∈ Θ |µ√
ρ = c}

p(θ) ∝ 1/ρ , r(θ) ∝ 1

Lx(θ | x) ∝ √
ρ exp

(
−n

2
ρ (µ − m)2

)
exp

(
−n

2
v ρ

)
ρa

x = [x1 . . . xn] , m =
1
n

n∑
i=1

xi , v =
1
n

n∑
i=1

(xi − m)2 , a =
n − 1

2

Figure 1 displays the elements of a value of evidence against the hypothesis,
computed for the HW (Left) and Coefficient of Variation (Right) models. The
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null set, ΘH , is represented by a dashed line. The contour line of the posterior,
delimiting the tangencial set, T (ΘH), is represented by a solid line. The poste-
rior unconstrained maximum is represented by “o” and the posterior maximum
constrained to the null set is represented by “*”.
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Fig. 1. FBST for Hardy-Weinberg (L) and Coefficient of Variation (R)

In order to perform the sensitivity analysis several priors have to be used.
Uninformative priors are used to represent no previous observations, see [16],
[21] and [31] for a detailed discussion.

For the HW model we use as uniformative priors the uniform density, that
can be represented as [0, 0, 0] observation counts, and also the standard maxi-
mum entropy density, that can be represented as [−1,−1,−1] observation counts.
Between these two uninformative priors, we also consider perturbation priors
corresponding to [−1, 0, 0], [0,−1, 0] and [0, 0,−1] observation counts. Each of
these priors can be interpreted as the exclusion of a single observation of the
corresponding type from the data set, x1, . . . xn.

Finally, we consider the dual perturbation priors corresponding to [1, 0, 0],
[0, 1, 0] and [0, 0, 1] observation counts. The term dual is used meaning that
instead of exclusion, these priors can be interpreted as the inclusion of a single
artificial observation of the corresponding type, xn+1, in the data set.

The examples in the top part of Table 1 are given by size and proportions,
[x1, x2, x3] = n ∗ [0.25, 0.5, 0.25], where the HW hypothesis is true.

For the Coefficient of Variation model we use as uninformative priors the
uniform density, for the mean, and either the standard maximum entropy density,
p(θ) ∝ 1/ρ, or the uniform, p(θ) ∝ 1, for the precision. We also consider (with
uniform prior) perturbations by the inclusion in the data set of an artificial
observation, xn+1, at fixed quantiles of the predictive posterior, in this case, at
three standard deviations below or above the mean, xn+1 = m ± 3 σ.

The examples in the bottom part of Table 2 are given by cv = 0.1, size n,
and the sufficient statistics m = 10 and std = 1.2, where the hypothesis is false.
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Table 1. HW and CV models, Ev(H) for several priors and sample sizes

HW model; sample = n[1/4, 1/2, 1/4]; H: equilibrium, true
p(θ) \ n = 8 16 32 64 128 p(θ) \ n = 8 16 32 64 128

[0, 0, 0] 0.00 0.00 0.00 0.00 0.00 [−1,−1,−1] 0.13 0.04 0.02 0.01 0.00

[1, 0, 0] 0.05 0.03 0.02 0.01 0.00 [−1, 0, 0] 0.12 0.04 0.02 0.01 0.00

[0, 1, 0] 0.07 0.03 0.02 0.01 0.00 [0,−1, 0] 0.09 0.04 0.02 0.01 0.00

[0, 0, 1] 0.05 0.03 0.02 0.01 0.00 [0, 0,−1] 0.12 0.04 0.02 0.01 0.00

CV model; suff.stat: m = 10, std = 1.2; H: cv = 0.1, false
p(ρ) \ n = 16 32 64 128 256 xn+1 \ n = 16 32 64 128 256

∝ 1 0.45 0.69 0.91 0.99 1.00 m + 3σ 0.38 0.66 0.89 0.99 1.00

∝ 1/ρ 0.64 0.79 0.94 0.99 1.00 m − 3σ 0.55 0.75 0.92 0.99 1.00

In order to get a feeling of the asymptotic behavior of the evidence and the
inconsistency, the calculations are repeated for the same sufficient statistics but
for sample sizes, n, taking values in a convenient range. In Figure 2, the maximum
and minimum values of evidence against the hypothesis H , among all choices of
priors used in the sensitivity analysis, are given by the interpolated dashed lines.
For the HW model, Table 1 and Figure 2 top, the sample size ranged from n = 8
to n = 128. For the Coefficient of Variation model, Table 1 and Figure 2 bottom,
the sample size ranged from n = 16 to n = 256. In Figure 2, the induced degree
of inconsistency is given by the vertical distance between the dashed lines. The
interpretation of the vertical interval between the lines in Figure 2 (solid bars) is
similar to that of the usual statistical error bars. However, in contrast with the
empirical power analysis developed in [28] and [22], the uncertainty represented
by these bars does not have a probabilistic nature, being rather a possibilistic
measure of inconsistency, defined in the partial support structure given by the
FBST evidence, see [29].
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5 Directions for Further Research and Acknowledgements

For complex models, the sensitivity analysis in the last section can be generalized
using perturbations generated by the inclusion of single artificial observations
created at (or the exclusion of single observations near) fixed quantiles of some
convenient statistics, t(x), of the predictive posterior. Perturbations generated
by the exclusion of the most extreme observations, according to some convenient
criteria, could also be considered. For the sensitivity analysis consistency when
the model allows the data set to be summarized by some sufficient statistics in
the form of L-estimators, see [4], section 8.6. The asymptotic behavior of the
sensitivity analysis for several classes of models and perturbations is the subject
of forthcoming articles.

Finally, perturbations to the reference density, instead of to the prior, could
be considered. One advantage of this approach is that, when computing the
evidence, only the integration limit, i.e. the threshold s∗, is changed, while the
integrand, i.e. the posterior density, remains the same. Hence, when computing
Ev(H), only little additional work is required for the inconsistency analysis.

The author has benefited from the support of FAPESP, CNPq, BIOINFO, the
Computer Science Department of São Paulo University, Brazil, and the Mathe-
matical Sciences Department at SUNY-Binghamton, USA. The author is grate-
ful to many of his colleges, most specially, Jair Minoro Abe, Wagner Borges,
Joseph Kadane, Marcelo Lauretto, Fabio Nakano, Carlos Alberto de Bragança
Pereira, Sergio Wechsler, and Shelemyahu Zacks. The author can be reached at
jstern@ime.usp.br .
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Appendix: Bilattices

Several formalisms for reasoning under uncertainty rely on ordered and lattice
structures, see [5], [6], [8], [9], [14], [15], [17], [30] and others. In this section we
recall the basic bilattice structure, and give an important example. Herein, the
presentations in [2] and [3], is followed.
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Given two complete lattices, 〈C,≤c〉, and 〈D,≤d〉, the bilattice B(C, D) has
two orders, the knowledge order, ≤k, and the truth order, ≤t, given by:

B(C, D) = 〈C × D,≤k,≤t〉
〈c1, d1〉 ≤k 〈c2, d2〉 ⇔ c1 ≤c c2 and d1 ≤d d2

〈c1, d1〉 ≤t 〈c2, d2〉 ⇔ c1 ≤c c2 and d2 ≤d d1

The standard interpretation is that C provides the “credibility” or “evidence
in favor” of a hypothesis (or statement) H , and D provides the “doubt” or
“evidence against” H . If 〈c1, d1〉 ≤k 〈c2, d2〉, then we have more information
(even if inconsistent) about situation 2 than 1. Analogously, if 〈c1, d1〉 ≤t 〈c2, d2〉,
then we have more reason to trust (or believe) situation 2 than 1 (even if with
less information).

For each of the bilattice orders we define a join and a meet operator, based
on the join and the meet operators of the single lattices orders. More precisely,
�t and �t, for the truth order, and �k and �k, for the knowledge order, are
defined by the folowing equations:

〈c1, d1〉 �t 〈c2, d2〉 = 〈c1 �c c2, d1 �d d2〉 ,

〈c1, d1〉 �t 〈c2, d2〉 = 〈c1 �c c2, d1 �d d2〉
〈c1, d1〉 �k 〈c2, d2〉 = 〈c1 �c c2, d1 �d d2〉 ,

〈c1, d1〉 �k 〈c2, d2〉 = 〈c1 �c c2, d1 �d d2〉
Negation type operators are not an integral part of the basic bilattice struc-

ture. Ginsberg (1988) and Fitting (1989) require of possible “negation”, ¬ and
“conflation”, −, operators to be compatible with the bilattice orders, and to
satisfy the double negation property:
Ng1: x ≤k y ⇒ ¬x ≤k ¬y, Ng2: x ≤t y ⇒ ¬y ≤t ¬x, Ng3: ¬¬x = x.
Cf1: x ≤k y ⇒ −y ≤k −x, Cf2: x ≤t y ⇒ −x ≤t −y, Cf3: −−x = x.
Hence, negation should reverse trust, but preserve knowledge, and conflation
should reverse knowledge, but preserve trust. If the double negation property is
not satisfied (Ng3 or Cf3) the operators are called weak (negation or conflation).

The “unit square” bilattice, 〈[0, 1] × [0, 1],≤,≤〉 has been routinely used to
represent fuzzy or rough pertinence relations, logical probabilistic annotations,
etc. Examples can be found in [1], [9], [12], [27], [30] and others. The lattice
〈[0, 1],≤〉 is the standard unit interval, where the join and meet, � and � coincide
with the max and min operators. The standard negation and conflation operators
are defined by ¬ 〈c, d〉 = 〈d, c〉 , −〈c, d〉 = 〈1 − c, 1 − d〉.

In the unit square bilattice the “truth”, “false”, “inconsistency” and “inde-
termination” extremes are t, f , �, ⊥, whose coordinates are given in Table 3.
As a simple example, let region R be the convex hull of the four vertices n, s, e
and w, given in Table 3. Points kj, km, tj and tm are the knowledge and truth
join and meet, over r ∈ R.

In the unit square bilattice, the degree of trust and degree of inconsistency
for a point x = 〈c, d〉 are given by a convenient linear reparameterization of
[0, 1]2, to [−1, +1]2 defined by
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Table 2. Coordinates 〈c, d〉 and 〈BT, BI〉 for example A1

f ⊥ � t w n s e tm km kj tj

c 0 0 1 1 1/4 1/2 1/2 3/4 1/4 1/4 3/4 3/4

d 1 0 1 0 1/2 3/4 1/4 1/2 3/4 1/4 3/4 1/4

BT −1 0 0 1 −1/4 −1/4 1/4 1/4 −1/2 0 0 1/2

BI 0 −1 1 0 −1/4 1/4 −1/4 1/4 0 −1/2 1/2 0
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Fig. 3. Points in Table 3, using (c, d) and (BT, BI) coordinates

BT (〈c, d〉) = c − d , BI (〈c, d〉) = c + d − 1 .

Figure 3 shows the points in Table 3 in the unit square bilattice, also using the
trust-inconsistency reparameterization.
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