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Abstract. We present SASC, Self-Adaptive Semantic Crossover, a new class
of crossover operators for genetic programming. SASC operators are designed
to induce the emergence and then preserve good building-blocks, using meta-
control techniques based on semantic compatibility measures. SASC perfor-
mance is tested in a case study concerning the replication of investment funds.

1 Introduction

Genetic Programming (GP) are evolutionary algorithms that work on pop-
ulations, whose individuals represent possible (viable) solutions to the opti-
mization problem, see [2] and [8, 9]. The solution functions, code or programs
defining an individual are its genotype, while the image, graph or output of
these functions are the individual’s phenotype. An adaptation, cost or fitness
function, computed from an individual’s phenotype, represents the objective
function of the optimization problem.

GP are meta-heuristics based on some key functions and operators inspired
on evolution theories for biological species. Reproduction operators generate
new individuals, the children, from existing ones, their parent(s), hence ex-
panding the population. Mutation operators act on single individuals, for
asexual reproduction, while crossover operators act on pairs of individuals,
for sexual reproduction. A mutation operation generates a random change
in the parent’s code. This change is usually small, but may have important
consequences for the individual fitness, often bad, but sometimes good. A
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crossover operation generates new children by swapping portions of their
parents’ codes at randomly selected recombination points.

Reproduction operators are random operators. However, they only intro-
duce a limited amount of entropy (noise or disorder) in the process, making it
possible for children to inherited many characteristics coded by their parents’
genotype. GP starts from an initial population, that may be randomly gen-
erated. The population then evolves according to the random reproduction
and selection stochastic processes. The entropy introduced at reproduction
allows for creative innovation, while the selection processes induce learning
constraints. Under appropriate conditions, after many generations (near) op-
timal individuals are likely to emerge in the population.

The schemata theorem, arguably the most characteristic result of GP the-
ory, shows that, under appropriate conditions, the emerging optimal solu-
tions naturally exhibit a hierarchical modular organization. Such modules
are known as genes, schemata or building blocks, see [6, 11, 17, 19, 23]. In
light of the Schemata theorem, it is easy to understand that efficient crossover
operators must be compatible with, preserve, favor, or even induce the emerg-
ing modular structure. More efficient operators are less likely to break down
existing building blocks during reproduction, an unfortunate event known in
the literature as destructive crossover.

This paper presents a new crossover operator, named SASC or Self-
Adaptive Semantic Crossover. SASC is based on meta-control techniques de-
signed to guide the random selection of recombination points by a measure
of semantic compatibility between the portions of code being swapped. It
is important to realize that SASC’s meta-control system is not hard-wired
or pre-defined. On the contrary, it is an emerging feature, co-evolving with
the population. The meta-control system is based on the history of each
individual in the population. However, the required historical information,
accumulated during the individual’s evolutionary line, is very limited. Hence,
its implementation only generates a minor computational overhead.

Section 2 gives a short review of genetic programming. Section 3 explains
some meta-control concepts and defines SASC – the self-adaptive semantic
crossover operator. Section 4 presents some ideas of semiotics and cognitive
constructivism that inspired this line of research. Section 5 gives some im-
plementation details and section 6 compares the performance of SASC and
standard crossover operators at a case study concerning the replication of
financial investment portfolios. Section 7 presents our conclusions and final
remarks.

2 Genetic Programming in Functional Trees

In this and the following sections, we deal with GP in the context of functional
trees. In this setting, the objective is to find the correct specification, the best
functional form, or just a good emulation of a complex target function. The
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Fig. 1 Example of destructive crossover.

only information available about the target function is an input-output data-
bank. An individual in the population is represented as a tree, with atoms at
the leaves representing constants or input variables, and primitive operators
at internal nodes. The root node output, at the top of the tree, expresses the
individual’s phenotype. Atoms and primitive operators are taken from finite
sets, A = {a1, a2, . . .} and OP = {op1, op2, . . . opp}. Each operator, opk, takes
a specific number of arguments, r(k), known as the arity of opk.

Figure 1 shows four individuals in the population of a GP trying to em-
ulate the target function, f(w, y, z) = y2 + wz/y , from the primitive set of
expanded arithmetic operators, OP = {+,−,×, /,∧}. Inputs at the leaves
are represented in a square, and operators at internal nodes or at the root
are represented in a circle. Figure 1 also shows a crossover, having the first
two individuals as parents and the last two as children. The recombination
points in the parent trees are highlighted. Notice that the first parent con-
tains the component, partial solution or building block for the first term in
the target function, y2, while the second parent contains the building block
for the second term, wz/y. Since none of these interesting building blocks are
preserved in the children, we call this a destructive crossover. A child inherits
its root node, and hence usually most of its code, from the parent we call its
mother, while from its father the child receives a, usually smaller, sub-tree.
Hence, in this example, parent 1 and 2 are, respectively, mother and father
of child 1, and father and mother of child 2.

Angeline, [1], proposed the SSAC – Selective Self-Adaptive Crossover – in
order to make destructive crossovers less likely. Standard crossover selects
recombination points in a parent tree with uniform distribution.

In SSAC like crossovers, each node, n(i), stores a meta-control variable,
ρi, a real number bounded to the normalization constraint: 0 ≤ ρmin ≤ ρi ≤
ρmax. The probability of selecting node n(i) for recombination is proportional
to ρi. That is, the probability of choosing node n(i) as the recombination
point in that tree is pi = ρi/

∑
j ρj .

After a crossover, nodes at the children, carry along the meta-control vari-
ables they had at the parents, and afterwards suffer the effect of random
noise. For example, the meta-control variable in node n(i) can be updated as
ρ′i = (1 + μi + σiε)ρi, where ε is the standard Normal random variable, μi is
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a zero or positive drift, and σi is a positive scale factor. All ρi are initialized
at the minimum value, ρmin, and allowed to move inside the normalization
bounds. For details on Angeline’s original implementation, see [1]. Several
interesting variations can be found in the proceedings in the reference list.

The intuition behind SSAC is that survivors in the GP competition pro-
cess are well adapted individuals, containing good building blocks. Moreover,
successful breeders must be able to give these building blocks intact to their
children. At these breeders, large meta-control variables should mark plausi-
ble building blocks, indicating good recombination points to be used (again)
in the future. Genotype codes and meta-control variables should both co-
evolve, facilitating the emergence, marking, and preservation of good building
blocks.

Angeline [1] also presents an alternative method, SAMC – Self-Adaptive
Multi-Crossover, where the meta-control variables can be interpreted as ab-
solute probabilities, that is, ρmax = 1. SAMC selects a recombination point
in a two step process: First, all nodes in the tree receive a Boolean mark, 1
with probability ρi, and 0 otherwise. At the second step, the recombination
point is selected from the nodes marked 1 with uniform distribution.

Before ending this section we make some additional comments about the
schemata theorem. As already mentioned in the introduction, it is in the
light of the schemata theorem that we can understand why efficient crossover
operators must be compatible with, preserve, favor, or even induce the emerg-
ing modular structure. However, Holland’s original theorem was stated for a
very particular case, namely, genetic algorithms using string coded programs.
Schemata theories extend this fundamental result to genetic programming us-
ing functional trees, see [15, 16, 18]. Hence, we must rely on Rosca, Poli and
Langdon’s results to keep our work on well founded theoretical ground.

3 The Self-Adaptive Semantic Crossover

SASC descends from Angeline’s SSAC and SAMC operators, but it also incor-
porates information concerning the sub-trees rooted at the nodes in possible
recombination points. The first information used for this purpose is captured
through the notion of similarity. (Sub)Trees A and B are phenotypically sim-
ilar if their output, computed at the records available on the data bank, agree
within a specified tolerance.

We assume that two parents, father A and mother B, have been selected for
crossover according to the mating distributions used at the GP. SASC starts
by using a first heuristic procedure to define new meta-control variables, δi,
at the nodes, n(i), of the father, A. Let A(i) be the sub-tree of A rooted
at n(i). For each sub-tree, A(i), the procedure searches the mother, B, for
sub-trees, B(j), that are similar to and also either the same size or shorter
than A(i). If such a short similar sub-tree is found, δi = ρmin. Otherwise,
δi = ρi. Finally, the recombination point at the father is randomly selected
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with probabilities pi = δi/
∑

j δj . The intuition behind the first heuristic
procedure is to stimulate innovation, that is, to only chose recombination
points at the father that, by the crossover operation, are able to contribute
with an innovative component, A(i), that is not already present in the mother
or, at least, to contribute with a similar component that is more efficiently
coded.

After the recombination point at the father, n(i) – root of sub-tree A(i),
has been chosen, a second heuristic procedure selects the recombination point
at the mother, m(j) - root of sub-tree B(j). Again, new meta-control vari-
ables, λj are defined for the nodes m(j), followed by a random selection with
probabilities pj = λi/

∑
j λj . The idea behind this second heuristic proce-

dure is to stimulate the crossover to exchange sub-trees, A(i) and B(j), with
analogous meanings, compatible semantics, similar interpretations, etc. This
heuristic procedure draws inspiration from biology, where analogy is defined
as compatibility in function but not necessarily in structure or evolutionary
origin.

The formal expression used to evaluate the meta-control variables at the
second heuristic procedure is:

λj = w0 +
[ D∑

d=1

wdCk

(
A(i), B(j)

)]

The index d spans D semantic dimensions or factors. The positive weights,
wd, add to one, and the semantic compatibility measures, Ck, are normalized
in the interval [0, 1].

The functional form of the compatibility measures, Ck( ), are completely
dependent on insights and interpretations for the actual problem being solved.
In the case of the arithmetic functional tree presented at this section, the
analogy between two sub-trees could be established, for example, simply by
the fraction of input variables they share in common. In this case, blocks
coding y2 e 2y would have compatibility measure equal to 1, while the blocks
coding y2 and wz/y would have compatibility measure equal to 1/3.

After a SASC crossover, the children’s nodes carry along the meta-control
variables, ρi, they had at the parents, and are afterwards updated by a ran-
dom perturbation. We used a standard Normal multiplicative noise with drift
μi and scale factor σi, that is, ρ′i = (1 + μi + σiε)ρi. At practical implemen-
tations we always used a positive drift at the recombination points, and a
null drifts elsewhere. Sometimes we also used scale factors, σi, that decrease
with the height of node n(i). For instance, take σi inversely proportional to
the depth of sub-tree A(i). Using larger scale factors at lower nodes can help
to induce the emergence of smaller building-blocks, that are more efficiently
coded, and less prone to destructive crossover.



386 R. Inhasz and J.M. Stern

4 Emerging Building Blocks and Semiotics

In the following sections we explain our implementation of SASC methods,
present an application case, and gauge its performance. However, before pro-
ceeding to finer details, this section tries to provide a larger picture, present-
ing the general framework that lead us to this line of research and some of the
intuitions that inspired the name and definition of the SASC operator. Those
readers interested mainly in the algorithmic aspects of the SASC operator can
skip this section without prejudice. Nevertheless, the ideas presented in this
section may provide a conceptual framework to examine similar algorithms
and, in so doing, encourage or influence future research.

As stated in the introduction, under appropriate conditions, evolutionary
systems naturally exhibit a hierarchical modular organization. The sponta-
neous emergence of hierarchical modular structures in natural or artificial
evolving organisms is further studied in [19] and [23–25].

At the same time, the need or willingness to understand such systems
leads to the attribution of meanings or interpretations corresponding to the
systems’ constituent parts. Specially in the case of inferential systems, this
attribution of meaning leads, in turn, to consider the semiotic character of
such parts. In this condition, we consider the system’s modules as symbols
representing concrete referents, that is, signs pointing to real things existing
in the world or truthful relations occurring in the systems’ environment. In
this setting, rules of composition or coherent organization for the system’s
modular structures can be considered as articulation rules for terms in a
systemic language. Hence, in this perspective, the emergence of a hierarchical
modular organization in an evolutive inferencial system corresponds to a
process of linguistic ontogenesis.

In the epistemological framework of cognitive constructivism, the semiotic
character and the consequent semantic interpretation of the system’s modular
components arises from the inherent complementarity of a dual perspective:

(1) In the autopoietc system perspective, these components are seen as build-
ing blocks of an autopoietic unit, structured in a hierarchical and modular
organization.

(2) In the reasoning model perspective, the same components are seen as
constituent parts of a reasoning system, like sub-routines of a complex
code, functions of a large program, etc.

The semiotic character and semantic interpretations of building blocks cor-
respond to coherent and consistent (although possibly multimodal) forms in
which these modules are used as operational tools, instrumental agents, par-
tial production units, etc. used to implement solutions for the problems faced
by the autopoietic system interacting with its environment.

The motivating and validating argument for the superposition of these two
distinct and complementary views of the emerging structures, namely, that of
an autopoietic system and that of a reasoning model, is given by Humberto
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Maturana and Francisco Varela celebrated principle stating that - every au-
topoietic system is an inferential system, and its domain of interactions a
cognitive domain. This principle is stated in [13, p. 10], and it is further ex-
plored, within the epistemological framework of cognitive constructivism, in
[4] and [20–23].

The ideas briefly discussed in this section are far to general and abstract
to directly generate specific algorithms or formulate explicit modeling solu-
tions. Nevertheless, we hope that these ideas can be useful to investigate new
techniques bearing some similarity to the specific methods presented in this
article. If so, these ideas could be helpful in the“downward” direction leading
to the development of new heuristic techniques used to accelerate the conver-
gence or to induce the emergence of meaningful components in the underlying
evolutive process.

At the same time, it is also true that the precise meaning of concepts used
in a given epistemological framework can only be fully accessed analyzing
specific theories, well defined hypothesis, concrete models or existing embod-
ied system. Hence, we hope that the ideas discussed in this section can also
be useful in the “upward” direction, fostering further research in the fields
of applied semiotics, cognitive constructivism, and epistemological aspects of
inferential systems.

5 Implementation

Our implementation of SASC methods is based on ECJ, an open-source evolu-
tionary computing system written in Java. ECJ is developed at George Mason
University’s ECLab Evolutionary Computation Laboratory. ECJ maintains
a well organized object-oriented design. Its powerful classes and methods
proved to be very flexible, and could be easily extended to our purposes. The
SASC package, developed by the first author, extends some ECJ classes in
order to easily implement the methods under discussion. Most of the new
code is concentrated at the class SASCNode, used to represent functional
trees evolving by SASC GP. This class also includes abstract methods that
facilitate the implementation of semantic compatibility measures, specified
at sub-classes implemented for each specific problem.

Finally we should mention that ECJ supports distributed computing, spec-
ifying the desired number of parallel threads as a parameter to be set accord-
ing to the available resources offered by the hardware and operating system.
This feature was especially useful for multi-population scenarios, to be de-
scribed in the next section, where SASC GP had an excellent performance.

6 Case Study

SASC operator was compared to standard crossover operators at a test
case problem concerning the replication of an hypothetical investment fund.
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Although hypothetical, this problem has strong similarities with real
problems regarding the construction of synthetic portfolios faced by the first
author in his professional activities. Portfolios of this kind are typical of cor-
relation trade, since its return statistics are sensitive to the correlation matrix
for the returns of various components in a basket. Such portfolios can be eas-
ily synthesized using readily available exotic derivatives like rainbow options,
that is, calls or puts on the best or worst of several underlying assets.

Lemon, the hypothetic fund, is based on stocks negotiated at BM&F-
Bovespa - São Paulo Securities, Commodities and Futures Exchange. Lemon’s
daily log-return, rt, is given by the log-return average of four components,
rk
t , corresponding to key economic sectors. These are, using standard BM&F-

Bovespa equity codes:

r1 = min(BBDC4, PETR4, BBAS3),
r2 = min(LAME4, LREN3, NETC4),
r3 = max(TNLP4, TCLS4, V IV O4) and
r4 = max(CY RE3, ALLL11, GFSA4).

These components represent four key economic sectors: Telecommunications,
construction and transports, finance and cyclic consumption.

An asset manager wants to synthesize a second fund, Lime, with the ob-
jective of tracking fund Lemon. However, only the daily share values of fund
Lemon are available, not its operational rules. Of course, GP was the method
chosen to find the best specification of the synthetic portfolio Lime. The
atoms for this problem are the log-returns of 63 of the most liquid stocks ne-
gotiated at BM&F-Bovespa, that include all the stocks used to specify fund
Lemon. The primitive operators are {max, min, mean}, the maximum, mini-
mum and mean value of two real numbers. The training data bank consists
of the daily log-returns of fund Lemon and all 63 stocks, computed from
04-Nov-2008 to 01-Apr-2009.

The fitness function for this problem is the mean squared error between
the synthetic and the target log-returns, plus a regularization term adding,
for each node, n(i), a penalty π(i). For the application at hand, we used
π(i) = ch(i)2h(i)−1, where h(i) is the height of node n(i). For the example at
hand, we used ch(i) = 1 at the root node and zero otherwise. The purpose
of regularization term is to avoid needless complexity and over-fitting in the
final model, see [5].

In the GP experiments, we used two distinct population scenarios. Scenario
1: One population of 300 individuals evolving over 700 generations, Scenario
2: 8 populations of 300 individuals each, that first evolve in isolation over 400
generations and are then allowed to merge and evolve for 100 generations
more. In both scenarios the GP is allowed to warm-up using the standard
crossover, 200 generations for scenario 1 and 100 for scenario 2, and then
switch to (or not) to SASC crossover. SASC’s semantic compatibility function
is the Boolean indicator of having at least one atom in common.
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The actual GP implementation uses a dual tree representation for each
individual in the population, as suggested in Angeline original paper, [1]. The
first tree only stores the genotype used to code the function expressed by the
individual’s phenotype. Meanwhile, the second tree only stores meta-control
variables.

GP meta-parameters were set as follows: mutation rate was set at 5%,
using a 3-round tournament selection process. Crossover rate was set at 95%,
using a 7-round high pressure / 3-round low pressure combination of father /
mother selection, see [23]. ρmin = 0.001, ρmax = 0.999, w0 = 0.01, w1 = 0.99,
σi = 0.4 for h(i) = 2 and approximately inversely proportional to the node
height for h(i) > 2. Further details about the algorithm fine tuning can be
seen at the source code documentation, available from the first author.

Figure 2 compares the GP results using standard and SASC crossover op-
erators. The use of Angeline’s original SSAC instead of the standard crossover
operator had only a minor impact in GP performance, and is not shown in
the figure. This figure displays 95% confidence intervals for the mean square
error of the best solution found over 50 independent GP runs.

Figure 3 shows the best empirical solution found by SASC GP. The figure
also highlights the building blocks encapsulated by meta-control variables
larger than a critical threshold. This solution replicates very well the target
fund. Notice that each of the highlighted building blocks corresponds to one
of the key economic sectors used to define the operation rules of fund Lemon.

Each best solution found at a batch of 50 SASC GP experiments under
scenarios 1 and 2 was categorized according to the number of key economic
sectors represented by a constituent building block. Table 1 displays the aver-
age mean square error of each category. This table shows that better adjusted

Fig. 2 Confidence interval for best solution MSE by generation. Crossovers’ com-
parative performance: Standard (· · · ) and SASC (−−).
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Fig. 3 Emerging building-blocks in near-optimal solution.

Table 1 Number of key economic sectors represented by building blocks

Category Scenario 1 MSE Scenario 2 MSE

One key sector 14% 12.3 10% 8.9
Two key sectors 16% 8.1 30% 1.9
Three key sectors 8% 9.3 38% 1.4
Four key sectors 0% - 4% 0.1
Other (spurious) blocks 62% 21.7 18% 10.2

functional trees have more of the four key economic sectors present as a build-
ing block. This conclusion may be obvious to someone knowing the operating
rules of Lemon, the original target fund. However, it is remarkable that the
best solutions offered by SASC GP for the replication fund Lime, synthe-
sized only from input-output data, are able to capture so well the logic and
semantics of fund Lemon.

7 Conclusions and Final Remarks

From Figure 2, we can conclude that, at least for the test case at hand, GP has
a much better performance when using SASC than the standard crossover
operator. At scenario 2 the best empirical solution, shown at Figure 3, is
found repeatedly. At scenario 1, SASC not only achieves better results, but
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also seems to greatly accelerate the finding of good solutions. These effects
are even stronger at scenario 2, where a second acceleration effect is clear
just after the populations merge. At this final stage, one can observe that
the best solution are formed purging spurious building blocks and combining
good building blocks that had emerged at the previously isolated populations.
It is as if SASC were able to isolate, identify, and collect good building blocks.

The explanatory power of the emergent building blocks, that is, on one
hand, how well they capture the semantics of the system under study and,
on the other hand, how much they contribute to its prediction accuracy, is
made even clearer by Table 1. Accordingly, Figure 3 suggests that SASC GP
can also provide an implicit method of semantic analysis. That is, at least in
our case study, the internal operational logic and the semantics of the target
system is adequately represented by the building blocks of the best solutions
synthesized by SASC GP. Nevetheless, it is important to keep in mind that
these logical and semantic relations were not externally imposed or driven,
but are truly emergent properties co-evolving with the GP solutions.

Future Research

In future research we plan to investigate techniques of self-adaptive meta-
control using abstract type node labels as auxiliary control variables. Trans-
formation rules for label mutation and label compatibility rules for permissi-
ble recombination points should be able to induce building block formation
and encapsulation, and also be able to foster emergent semantic interpreta-
tions, even in problems lacking natural heuristics for explicit semantic com-
patibility measures.
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