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Abstract. The data analyzed in this paper are part of the results described in
Bueno et al. (2000). Three cytogenetics endpoints were analyzed in three
populations of a species of wild rodent - Akodon montensis - living in an
industrial, an agricultural, and a preservation area at the Itajai Valley, State of
Santa Catarina, Brazil. The polychromatic/normochromatic ratio, the mitotic
index, and the frequency of micronucleated polychromatic erythrocites were used
in an attempt to establish a genotoxic profile of each area. It was assumed that the
three populations were in the same conditions with respect to the influence of
confounding factors such as animal age, health, nutrition status, presence of
pathogens, and intra- and inter-populational genetic variability. Therefore, any
differences found in the endpoints analyzed could be attributed to the external
agents present in each area. The statistical models used in this paper are mixtures
of negative-binomials and Poisson variables. The Poisson variables are used as
approximations of binomials for rare events. The mixing distributions are beta
densities. The statistical analyzes are under the bayesian perspective, as opposed
to the frequentist ones often considered in the literature, as for instance in Bueno
et al. (2000).

Keywords: Cell proliferative indices, Micronucleated cells, Prior and posterior
probabilities, Beta-(negative) Binomial distribution, Beta-Poisson distribution,
Mixture of Beta distributions

1

Introduction

To evaluate the environmental genotoxicity in a certain area the investigator
collects a certain number of living specimens to detect damage in their cells. The
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data collected from each individual consists of a sample of cells where the
frequency of cells with damage (failure) are recorded. Hence, there are two levels
in our sample: the sample of individuals and the sample of cells from each
individual. The investigator faces a dilemma: should a great number, n, of indi-
viduals be used to collect a small number, m, of cells or a smaller number of
individuals with a larger number of cells? The ideal situation occurs when both
samples are large. The first situation is easily obtained in the laboratory, whereas,
when collecting data from exposed individuals in the field, the second situation
prevails. The latter is the case analyzed in a real situation of environmental
exposure reported in Bueno et al. (2000). In the present paper the data receive an
alternative statistical treatment using mixtures of distributions and a Bayesian
approach. In Bueno et al. (2000), the chance of a cell being damaged (probability
of failure) is considered the same for each individual within a certain experi-
mental group. Hence, independent Binomial (positive or negative) models with
the same probability of failure were considered. It is not realistic, however, to
consider that different individuals react in an identical way to the same external
stimulus. Therefore, in this paper we assume that the failure rates (probabilities),
7, are different for each individual within a group and are generated indepen-
dently by the same beta distribution. Consequently, the number of damaged cells
in each individual is a beta-(negative)binomial random variable. The beta-(neg-
ative) binomial is a mixture of (negative) binomials with the beta being the
mixing distribution (Aitchison and Dunsmore 1975). For the case of rare events,
we consider the approximation from binomial to Poisson distributions with
parameter mmn, where m is the number of individual sample of cells. Again, 7 is
generated by a beta distribution. This mixture here is called beta-Poisson
distribution.

The first challenge in modeling the problem is the choice of the prior distri-
butions for the parameters of the mixing likelihood. We describe these choices in
Sect. 4.

The final objective of our statistical analysis is to build the posterior
“predictive” probability density of the failure rate for a new individual in each
group. With these distributions, we will be able to evaluate the probability of a
new individual from an specific group having a higher frequency of damaged cells
than an individual from another group. These probabilities will allow us to
analyze the genotoxicity differences among areas. In the following sections we
describe the various aspects of the problem, both biological and statistical.

2

Background

The impact of toxic products introduced by humans in the environment results
from complex interactions that can seldom be reproduced in laboratory. Such
interactions, however, may be assessed when they occur, using plants and animals
as sentinel surveillance systems. This in situ approach is a widely accepted
method for identifying risks to ecosystems and human health (Sandhu and Serres
1989). The methodology was used by Bueno et al. (2000) to evaluate the impact of
environmental compounds occurring in the Itajai Valley, State of Santa Catarina,
Southern Brazil. Lumber, textile, paper, cigarette, and pesticide industries, besides
intense rice cultivation, are the region’s main economic activities. Three areas
were chosen for the study: a preservation area (PA) - to monitor animals not
directly exposed to environmental pollution and for comparison with the other
two areas; a rice field (RF) - to evaluate the genotoxic effects of pesticides used in



the rice culture; and an industrial area (IA) - to assess the effect of industrial,
domestic and agricultural waste.

Two species of wild rodents naturally occurring in the three areas served as
sentinels and genotoxic damage - and damage to DNA - was the kind of adverse
biological effect looked for. To evaluate the genotoxic impact of the environ-
mental agents prevailing in each exposed area, genotoxicity indices were assessed
in animals from the exposed areas and compared to those from the preservation
area.

In this paper we chose one of the species from Bueno et al. (2000) - Akodon
montensis (Am) - and three cytogenetics endpoints analyzed to illustrate an
alternative statistical approach to the same data. The endpoints analyzed here are:

o the PCE/NCE ratio: the frequency of PCE (polychromatic erythrocytes)
among the first 100 NCE (normochromatic erythrocytes) observed in a slide;

o the mitotic index (MI): the frequency of metaphases among 2000 cells;

o the MNPCE frequency: the frequency of micronucleated polychromatic
erythrocytes within 2000 polychromatic erythrocytes counted.

Both the PCE/NCE ratio and the MI reflect the proliferative capacity of the bone-
marrow cells. The first being the relation between young, immature, red cells and
adult, mature, red cells, indicates if this process is normal. The latter shows the
proportion of dividing cells in the white series. In other words, these indices show
if hemopoiesis is being affected or not by some factor. Besides revealing possible
cytotoxic effects of environmental contaminants, they may also reflect the
influence of confounding factors such as, age, health, nutritional status, presence
of pathogens, and intra- and inter-populational genetic variability. It was
assumed that these factors may have been present in all areas of study but did not
prevail in any of them (Bueno et al. 2000). Therefore, differences in the endpoints
would be caused by the external agents present in each area.

Micronucleated cells present in their cytoplasm DNA structures called
micronuclei, originated from acentric chromosome fragments or from whole
chromosomes lagging behind in their movement towards the cell poles during cell
division. These two types of damage to the cell DNA - chromosome breaks and
malsegregation, that is, errors in the chromosome distribution when the cell
divides - are associated with the etiology of cancer, abortion, perinatal death,
malformation, and mental retardation in humans. Micronuclei and chromosome
breaks can only be visualized after the cell suffers one division.

The analysis of control endpoints, such as PCE/NCE and MI, shows whether or
not cell division is altered. Once we are certain that the sample of individuals is
within an acceptable range, with respect to the proliferative capacity of the cell
lineages where the effect is looked for, our attention will be focused on the sample
of cells that are exposed to the environmental agent.

Every individual in a certain locality, from the most sensitive to the most
resistant, will be subjected to the exposure. The same can be said about its cells.
There are two ways of considering the sample of exposed cells.

The first is to assume that each cell among the totality of cells from all indi-
viduals in the sample have the same chance of being damaged by the environ-
mental agent. Consequently, the sample of cells is the total of cells obtained from
all individuals, as if all of them were from one individual.

The second is to assume that, since each individual reacts differently to the
same agent, the chance of a cell being damaged is different among individuals.
Hence, the group of cells from each individual has to be treated as a separate
entity.
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3

Statistical models

In order to identify appropriate statistical models to analyze our data we have
taken into account the following facts:

1) The counts for the endpoint PCE/NCE are observations of negative — binomial
variables. PCE and NCE cells are observed up to obtain the 100th NCE cell. The
frequency of PCE is then recorded;

2) The counts for metaphases among m = 2000 cells, the MI, were considered as
an observation of a Poisson variable. Note that they are counts of rare events;
and

3) The frequency of micronucleated polychromatic erythrocytes within 2000
polychromatic erythrocytes counted, the MNPCE, were also considered as
observation of a Poisson variable.

The statistical questions posed in this paper are comparisons of three groups (one
species in three areas), where the observations in each individual, within an area,
are either a negative binomial variable or counts of rare events, a Poisson variable.
It should be clear that each individual, despite being in the same area, reacts
differently to an environmental aggression and different individuals will have, with
high probability, different failure rates. The model used here considers that, for
each area i, the failure rates (unobservable) of the individuals are generated
independently by the same beta distribution with mean ¢; and standard deviation
0, i = 1,2, 3. The frequency (observable) of damaged cells within a sample of cells
is the observation for each individual in the i-th area. The mean and the standard
deviation of the beta distribution are the only common quantities among the
individuals of a specific area. These quantities may differ from area to area.

The model just described is a mixture model, that is, the likelihood function for
the PCE/NCE in the i-th area, i = 1, 2, 3, is a product of beta-(negative)binomial
densities evaluated at the observed frequencies depending on the unknowns ¢;
and o;. For the MI and MNPCE we will have beta-Poisson densities instead of the
beta—(negative)binomial ones.

Below we define the probabilistic properties of our models. We consider the
following notation:

n; = number of individuals studied in area i,i = 1, 2, 3. The order for the areas
is PA, RF, and IA.

mj; = sample size (observable) of cells collected from the j-th individual in the
i-th area, j=1,2,...,n;.

x;; = number of damaged cells (observable) and

Xi = (Xi1, Xi2y - -+ Xini)-

n; = failure rate (unobservable) for the j-th individual in the i-th area, and

IT; = (i, T2, - - - s Tii).

¢; = mean (unobservable) of the beta distribution that generates the 7;’s in the

i-th area.

o; = standard deviation (unobservable) of the beta distribution that generates
the ;s in the i-th area.

The following restrictions about conditional probabilities are considered:

¢ Conditional on the knowledge of the 7;;’s, the observations x;’s are mutually
independent and the distribution of each one depends only on the respective ;.

e For each area i, i = 1, 2, 3, the (unobservable) random variables, 7;;, form a
sample of n; independent and identically distributed beta random variables



with mean ¢; and standard deviation o;. A set of random quantities is mutually
independent if its joint probability density is the product of the marginal
probability densities.

e The random vectors I1;, I, and I1; are also mutually independent.

4

Prior to posterior

The main interest in this article is to compare the three areas PA, RF, and IA.
Under the Bayesian perspective, we can perform these comparisons focusing on
two kinds of predictive distributions: the posterior distribution of the failure rate
of a new individual or the predictive posterior distribution of the number of
damaged cells within a sample of cells from this new individual. Let (7, 7,, 73)
and (x;, x, x3) be the vectors of failure rates and frequencies of damaged cells,
respectively, for the three areas. Recall that we shall compare the three areas with
respect to the three endpoints, PCE/NCE, MI, and MNPCE. Hence, we will
calculate, for the failure rates, Pr{n, < m,|data}, Pr{n; < ms|data}, and

Pr{rn, < ms|data} and for the damage cell frequencies, Pr{x, < x,|data},

Pr{x; < xs|data}, and Pr{x, < xs|data}. To compute these probabilities, the prior
probabilities for the parameter vectors (¢, 1), (&3, 03), and (&3, 03), must be
accessed. The statistical model described considers that, among the three areas,
the conditional distributions of the observations given these parameters are
mutually independent. Consequently, assessing mutually independent priors for
the parameters, the posterior distribution will preserve this independence prop-
erty. That is, the vectors (¢&;, 0;), (&2, 0,) and (&3, 03) are mutually independent
a priori and a posteriori. Besides being convenient, this restriction on the choice
of the priors is realistic. In addition, it allows the computation of the probabilities
of interest listed above. As shown in Appendix A, even with this restriction, the
computation of posteriors is intensive.

Usually the assessment of a prior distribution when the likelihoods are beta
densities is controversial. If the choice is for the usual parameterization, beta
(o, B), one should consider bounded domains to define proper prior probability
functions for (o, f). Here, instead of (o, f§) we believe that it is much more
intuitive to have opinions about the mean, ¢, and the standard deviation, o, of the
beta distribution. They are naturally bounded and the domain is given by

D={(¢,0):0<e<land 0 <o < /el —¢)}

Recall that

E = ——m —_— —_—
o+ f o+ f+1

Here, in order to permit fair comparisons with frequentist methods we use a
uniform distribution over D. Other non-informative priors could be considered.
For example, one could consider a uniform density for ¢ and, conditional on ¢, a
uniform density on [0, &(1—¢)] for o. Since the sample of cells is large enough, the
influence of the choice of such prior is minimum.

5

Results

Table 1 presents the observed values for the endpoints in all individuals from the
three areas. The probability values comparing the three areas using m and x are
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Table 1. Individual frequencies for each cytogenetic endpoint

Unit Sex PCE/NCE MI MNPCE Unit Sex PCE/NCE MI MNPCE

PA1 m 19 31 7 RF8 m 124 44 24
PA2 m 52 19 9 RF9 m 64 39 5
PA3 m 50 26 1 RF10 m 105 98 7
PA4 f 31 54 8 RF11 f 120 71 12
PA5 f 68 22 6 RF12 f 39 84 14
PA6 f 53 35 6 RF13 f 27 80 9
PA7 m 45 30 12 IA1 f 37 75 6
PAS m 28 46 3 IA2 m 131 44 10
272 PA9 m 99 21 6 IA3 f 100 82 11
PA1I0 m 27 27 5 1A4 m 90 40 10
PA1l m 31 45 8 IAS f 56 74 9
PA12 m 57 32 14 1A6 f 45 63 13
RF1 m 86 45 23 1A7 m 63 42 9
RF2 m 31 112 8 IA8 m 46 56 6
RF3 m 83 80 13 IA9 m 27 57 1
RF4 m 58 53 17 IA1I0 m 45 51 2
RF5 m 31 58 6 IAIl m 37 54 24
RF6 f 90 69 14 IA12 f 98 68 17
RF7 m 175 17 12 IA13 m 65 52 33
Table 2. Posterior probabilities used to compare areas
Events PCE/NCE MI MNPCE
T < T, 0.729 0.900 0.836
3 < Ty 0.587 0.615 0.580
my < T3 0.685 0.980 0.678
x1 < X, 0.741 0.859 0.749
x3 < X 0.604 0.580 0.549
x; < X3 0.666 0.915 0.628

presented on Table 2. These figures indicate that, with relatively high probability,
the preservation area presents lower failure rates and frequencies of damaged
cells than the exposed areas. This conclusion is valid for all three endpoints.

We have chosen the PCE/NCE ratio to illustrate all posterior densities: the
posterior densities of (&;, g;), (&, 0,), and (&3, 03), the posterior predictive
densities of 7, 7, and 73 and the posterior predictive probability functions of x,
X5, and xs.

For the PCE/NCE ratio, Fig. 1 presents the posterior densities of (¢, 0;) and
(&, 0,). Figure 2 shows the posterior predictive densities of 7, 7, and 73 and
Fig. 3 the posterior predictive probability functions of x;, x, and x;. In an
increasing order, all figures show that PA presents smaller values than IA, that
presents smaller values than RF. This trend is valid for the three endpoints.

6

Discussion and conclusion

As observed by Bueno et al. (2000), the PCE/NCE ratio for the majority of the
individuals of the samples from the three areas were within or very close to values
reported in the literature that is, between 50 (Adler 1984) and 100 (Gollapudi and
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Fig. 2. Failure rate posterior densities for the mixture model for PCE/NCE

McFadden 1995). The values of the posterior probabilities for the PCE/NCE ratio,
presented on Table 2, indicate that the hemopoiesis is slightly accelerated in the
exposed areas RF and IA in relation to the preservation area PA. For the MI, the
posterior probability values on Table 2 show a stronger trend in the same

direction. The tendency of having smaller values in the preservation area suggests
that the individuals in the exposed areas are reacting to environmental agents by

increasing the proliferative capacity of their blood cells.

The frequency of damaged cells in the bone marrow is expressed by the
MNPCE frequency. The posterior probabilities for this endpoint (Table 1) show
that the frequency of damaged cells in the preservation area is smaller than in the
exposed areas. Note that, for the three endpoints, the posterior probabilities

suggest the existence of a risk order: PA < IA < RF.
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Fig. 3. Predictive probabilities for the mixture model for PCE/NCE

The results obtained with the evaluation of the posterior probabilities agree
with the general conclusions reported by Bueno et al. (2000). The values for the
differences among the areas, however, are much higher in Bueno et al. (2000) than
the ones obtained in the present paper. The statistical models used in each case
may be responsible for such disagreement. This disagreement does not result,
however, as one might think, from the Bayesian approach used here. The use of a
Bayesian statistical model without mixture would lead to the same results
obtained by Bueno et al. (2000).

The statistical model considered here is the mixture model described in Sect. 3.
The model without mixture considers the sufficient statistics — the sample total -
as the observation in a specific area. This model ignores the variation among
individuals and considers the cells of all individuals to be permutable, within and
among individuals. That is, it considers the total of cells as if was sampled from a
single animal.

By using the statistical model without mixture for the PCE/NCE ratio and
considering a uniform prior for the failure rate, we obtain the posterior
densities of the failure rates as illustrated on Fig. 4. Figure 5 contrasts the
posterior densities of 7m; for the model without mixture with the observed
failure rates.

It should be clear that for the model without mixture, most of the observed
values of the failure rate, x/(100+x), would have almost null density. This fact
suggests that the model without mixture is not appropriate, resulting in an
incoherence, since the observations are real and cannot have almost null
densities. As seen on Fig. 6, all sample observation values have positive posterior
densities under the model with mixture.

The main aspect of this paper is that one must consider the intrinsic
natural differences among sample (individuals) units. The aggregate
observations of several individuals may not be sufficient to define an adequate
statistical model. Usually, one defines an unknown parameter of interest and
considers observations varying randomly around the parameter, but often a
more complex hierarchical model is needed as in the case presented here.
For example, one wants to compare two or more surgical techniques used in



0.04

—PA S
0.035F |- RF E ]
1A :
0.03 : b
0.025
0.02} : . 4
0.015 -
0.01- q
0.005 “
0 . . : .
0.25 03 0.35 T 04 0.45 05

Fig. 4. Failure rate posterior densities for PCE/NCE model without mixture

0.04 T T T T

0.035 4
— PA
—%— obs
0.03 4
0.025
0.02[ b
0.015 hl
0.01 l
0.005 b
0 —* ek F—t Lk Feo A * >
0.15 0.2 0.25 03 0.35 04 0.45 05

n
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hospitals. For the hospitals using the same surgical techniques, to consider
the frequency of failure surgeries as the only source of variation may not be
appropriate. The conditions of the hospitals and their infrastructure are, in
most cases, a large additional source of variability. Hierarchical meta-
analysis procedures seem to be the correct techniques to be used (Berry 1990,
1993).

The choice of an adequate hierarchical statistical model may be a difficult task.
In the case presented here, the beta-(negative)binomial and the beta-Poisson
models are very appropriate, as indicated on Fig. 6, whereas the simple non-
hierarchical model is inadequate, as indicated on Fig. 5.
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The general conclusion that individuals suffer from environmental modifica-
tions is the same as in Bueno et al. (2000). We believe, however, that in this paper
we present a sounder statistical model to support it.

Appendix A: Computational Aspects
The following expressions are the functions used in the text:

e Gamma function:

I'a) = / x*'e*dx for o >0

0
e Beta function:

o g T@T(R)
B(a,ﬁ)—o/p (1—p)f dp—m for o, >0

e Negative binomial probability function:
Bi(x|7, 100) = <99; x)n"(l —n)'® o<m<1

e Poisson probability function:
e (mm)*

Po(x|mmn) = o

, >0

where m = cell’s sample size.
e Beta probability density function:

(1 — n)ﬂ_l

Be(rl f) = "5

fora,f >0



e Beta-(negative)binominal probability function:
1

BeBi(x|a, 5,100) = /Be(n|o¢,ﬁ)Bi(x|n, 100)dn
0
B (99+x> B(o + x, B + 100)
B B(a, B)

x
e Beta-Poisson probability function:

BePo(x/t,a, ff)
1

= /Be(n/oc,ﬁ)Po(x/tn)dn
m* M (o + x,00+ f + x, —t)['(a + f)I (e + x)
[(o)(x+ (o + f+ x)

00 (a)jzj

M@ ) = J;) (C)j(l)j

is the Kummer function, also known as the confluent hypergeometric function
Fi(a, ¢, z).

- (a);j is the Pochammer polynomial of argument a and degree j. That is, (a)o = 1
and (a); =a(a+1)---(a+j—1)
— The interval [0, ] is the domain of the Poisson observations.

The prior probability function used here is a uniform distribution on the
parameter space D of the new parameterization (¢, o) as defined in Sect. 4.

The computation of the posterior densities for the beta-binomial and the beta-
Poisson are greatly simplified by integrals BeBi and BePo having analytic
expressions. Those expressions are written in terms of common transcendental
functions like I" and not so common ones like the Kummer or confluent hyper-
geometric functions, M. Efficient computer codes for all those transcendental
functions are available (Spanier and Oldham 1987; Zhang and Jin 1996).

In order to compute the posterior for the mixing distribution we built a grid on
the parameter space D. At every point on the grid the corresponding integral is
evaluated.

From the mixing distribution we can compute the density for the failure rate
and from that we generate the predictive distribution of x, a future observation.
All the grid sizes are made small enough so that the discretization effect in the
final distributions can be neglected.
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