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Can a Significance Test Be Genuinely Bayesian?

Carlos A de B Pereira∗ , Julio Michael Stern† and Sergio Wechsler‡

Abstract. The Full Bayesian Significance Test, FBST, is extensively reviewed.
Its test statistic, a genuine Bayesian measure of evidence, is discussed in detail.
Its behavior in some problems of statistical inference like testing for independence
in contingency tables is discussed.
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1 Introduction

The present article deals with an old and controversial problem which has been cen-
tral in statistical inference: significance testing of precise (or sharp) hypotheses. Both
frequentist and Bayesian schools of inference have presented solutions to this problem,
not always prioritizing the consideration of fundamental issues such as the meaning of
precise hypotheses or the inferential rationale for testing them. We present and discuss
another solution to the problem, the Full Bayesian Significance Test (FBST), which
attempts to ease some of the questions met by frequentist and standard Bayes tests.

According to Cox (1977) and Kempthorne (1976) a significance test is a procedure
for measuring the consistency of data with a null hypothesis. The basis of this old
understanding of significance is an ordering of the sample space according to increasing
inconsistency with the hypothesis. This goal of measuring consistency seems prima facie
amenable to a Bayesian reading. In both, frequentist and Bayesian settings, consistency
of data and parameter values is to be measured.

For the moment, let us restrict the discussion, as in Cox (1977), to univariate pa-
rameter and (sufficient statistic) sample spaces,

Θ ⊂ R and X ⊂ R.

A sharp hypothesis H is a statement of the form H : θ = θ0 where θ0 ∈ Θ. The
posterior probability (density) for θ is obtained after the observation of x ∈ X . While
a frequentist looks for the set, C, of sample points at least as inconsistent with θ0 as x
is, a Bayesian may look for the “Tangential set”, T , of parameter points that are more
consistent with x than θ0 is. This understanding can be interpreted as a partial duality
between sampling and Bayesian theories.

The evidence value in favor of H is for frequentists the usual p-value, pv = Pr{x ∈
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C | θ0}, while for Bayesians it should be ev = 1 − ev, where ev = Pr{θ ∈ T |x}. The
smaller pv and ev, the stronger the evidence against H .

We point out that, in the general case, the posterior distribution is sufficient for
ev to be calculated, without any complication due to the dimensionality of neither the
parameter nor of the sample space. This feature avoids the need for eliminating nuisance
parameters, a problem that disturbs some statisticians, see Basu (1977). If one feels
that the goal of measuring consistency between data and a null hypothesis should not
involve prior opinion about the parameter, the normalized likelihood, if available, may
replace the posterior distribution. The computation of ev needs no asymptotic methods,
other than numerical optimization and integration.

While the measure of evidence ev may be derived from this duality program, it has
been realized, on the other hand, that it is not just a mere Bayesian counterpart of
the ubiquitous pv. Instead, the inferential use of ev is a genuine Bayesian procedure.
It is in fact a well-defined posterior probability of a subset of the parameter space.
Hence, its use does not violate the paramount Likelihood Principle, see Basu (1975) and
Birnbaum (1962). Furthermore, as the full parameter space is used in the computation
of ev, the alternative hypothesis is always intrinsically considered. As pointed out
by Pereira and Wechsler (1993), ordinary significance testing sometimes disregards the
alternative hypothesis, troubling in this way the inference.

The above paragraph brings the fundamental Neyman-Pearson (NP) lemma into
discussion. The fact that the frequentist and Bayesian measures of evidence, pv and
ev, are probability values - therefore defined in a zero to one scale - does not help to
answer the question “How small is significant?”. For p-values, the NP lemma settles
the question by means of subjective arbitration of bounds on the probability of first-
kind errors, which is formally equivalent to introducing loss functions. For Bayesian
assessment of significance through evaluation of ev, decision theory again clears the
picture. Madruga et al. (2001) show that there exist loss functions the minimization of
which render a test of significance based on ev into a formal Bayes’s test.

The FBST possesses not only this Bayesian decision-theoretic quality but also com-
plies with the time-honored Onus Probandi juridical principle (or In Dubio Pro Reo
rule). In addition, the FBST satisfies logical requirements met by neither p-values nor
Bayes Factors based tests (Stern (2003)).

The Bayes’s significance test based on ev - the FBST - does not demand the adoption
of a prior distribution which assigns positive probability for the subset that defines the
sharp null hypothesis. This is a most relevant coherence feature of the FBST over Bayes
Factor tests for sharp null hypotheses. Let us recall that Bayesian inference has long
replaced p-values by Bayes Factors, see Jeffreys (1939). However, whenever the poste-
rior is absolutely continuous and the null hypothesis sharp, the use of Bayes Factors for
significance testing is controversial, as discussed by many authors, standing out Good
(1983), Lindley (1957), Lindley (1997), and Shafer (1982). In addition, there are recom-
mendations for Bayes Factor bounds in order to define decision rules (Kass and Raftery
(1995)). However, as in the case of p-values, this seems to be rather arbitrary.



Pereira, Stern, & Wechsler 81

The FBST has been successfully applied to several relevant problems of statisti-
cal inference, such as: testing for homogeneity and independence in contingency ta-
bles; comparison of coefficients of variation; the multivariate Behrens-Fisher problem;
Hardy-Weinberg equilibrium testing; variable selection; testing for independence in the
Holgate (bivariate Poisson) distribution; mixture models; Weibull wear-out testing,
see Irony et al. (2002), Lauretto et al. (2003), Madruga et al. (2003), Pereira and Stern
(1999), Pereira and Stern (2001a), Rodrigues (2006) and Stern and Zacks (2002).

The FBST is presented formally in Section 2. Section 3 discusses the Neyman-
Pearson lemma and its influence on the building of the Bayes Factor environment.
Section 4 presents the Decision-Theoretic description as well as the invariant version
of the FBST. In Section 5 FBST asymptotic properties are presented. Section 6 has
many illustrations to motivate the reader. Section 7 lists the important properties of
the FBST as a summary of the discussion presented in the previous sections.

2 FBST Definition

The original version of the FBST was introduced by Pereira and Stern (1999). It was
created under the assumption that a significance test of a sharp hypothesis had to
be performed. Testing sharp hypotheses is of course a rich matter of discussion and
controversies. The different viewpoints go from the blunt refusal to test a hypothesis
having (posterior as well) probability zero to the assignment of mass probability to it.
We will return to this discussion at the final section. At this point we present a formal
definition of a sharp hypothesis.

Let us now consider general statistical spaces, where Θ ⊂ Rm is the parameter space
and X ⊂ Rk is the sample space.

Definition 2.1. A sharp hypothesis H states that θ belongs to a sub-manifold ΘH of
smaller dimension than Θ.

The subset ΘH then has null Lebesgue measure whenever H is sharp. A probability
density on the parameter space also is an ordering system, notwithstanding giving every
point probability zero. In the FBST construction, all sets of the same nature are treated
accordingly in the same way. As a consequence, the sets that define sharp hypotheses
keep having nil probabilities. Instead of changing the nature of H by assigning positive
probability to it, we will look for the tangential set, T , of points having posterior density
values higher than any in ΘH . We then do not reject H if the posterior probability of
T is small. We will formalize these ideas in the sequel.

Let us consider a standard parametric statistical model, i.e., for an integer m, θ ∈
Θ ⊂ Rm is the parameter, g(θ) a prior probability density over Θ, x is the observation
(a scalar or a vector), and Lx(θ) is the likelihood generated by data x. After data x
have been observed, the sole relevant entity for the evaluation of the Bayesian evidence
value, ev, is the posterior probability (density) for θ given x, denoted by

gx(θ) = g(θ|x) ∝ g(θ)Lx(θ).
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We are of course restricted to the case where the posterior probability distribution
over Θ is absolutely continuous, that is, gx(θ) is a density over Θ. For simplicity we use
H for ΘH in sequel.

Definition 2.2 (Evidence). Consider a sharp hypothesis H : θ ∈ ΘH and let

g∗ = sup
H

gx(θ) and T = {θ ∈ Θ : gx(θ) > g∗}.

The Bayesian evidence value against H is defined as the posterior probability of
the tangential set, i.e.,

ev = Pr(θ ∈ T |x) =

∫

T

gx(θ)dθ.

One must note that the evidence value supporting H , ev = 1−ev, is not an evidence
against A, the alternative hypothesis (which is not sharp anyway). Equivalently, ev is
not evidence in favor of A, although it is against H .

Definition 2.3 (Test). FBST (Full Bayesian Significance Test) is the procedure that
rejects H whenever ev is small.

The first example illustrates the use of the FBST and two standard tests, McNemar
and Jeffreys’ Bayes Factor. Irony et al. (2000) discuss this inference problem introduced
by Mcnemar (1947).

Example 2.1 (McNemar). Two professors, Ed and Joe, from the Department of
Dentistry evaluated the skills of 224 students in dental fillings preparation. Each student
was evaluated by both professors. The evaluation result could be approval (A) or
disapproval (F). The Department wants to check whether the professors are equally
exigent. Table 1 presents the data.

Joe
Ed A F Total
A 62 41 103
F 25 96 121

Total 87 137 224

Table 1: Evaluation Results for McNemar

We have a four-fold classification with probabilities p1,1, p1,2, p2,1 and p2,2. Using
standard notation, the hypothesis to be tested is H : p1,• = p•,1, which is equivalent to
H : p1,2 = p2,1 (against A : p1,2 6= p2,1). In order to have the likelihood function readily
available, we will consider a uniform prior, i.e., a Dirichlet with parameter [1, 1, 1, 1].

The first step to compute the value of ev is to obtain the point p∗, satisfying H ,
which maximizes the posterior density. That is,

p∗ = (1/224)[62, 33, 33, 96] and p̂ = (1/224)[62, 41, 25, 96],
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where p̂ is the posterior overall mode. Evaluating the (likelihood) posterior density at
these maxima we find

g∗ = gx(p∗) = 622 and ĝ = gx(p̂) = 4409.

A likelihood-oriented statistician would not be reluctant to reject H , since the ratio
Lx(p∗)/Lx(p̂) = 0.14. The set T is of course defined as

T = {p : gx(p) > 622}.

Note that T is a subset of

Θ = {p = (p1,1, p1,2, p2,1, p2,2) : p1,1 + p1,2 + p2,1 + p2,2 = 1 and pi,j > 0},

the standard simplex in four dimensions.

Finally, numerical integration yields ev = 0.11. The McNemar p-value for this data
set is equal to 0.064. The value of the Bayes Factor under the same uniform prior is
BF = 0.95. If one assigns probability 1/2 to the sharp hypothesis H , its posterior
probability attains PP = 0.49. Hence, the posterior probability, PP , barely differs
from 1/2, the probability previously assigned to H , while pv and ev seem to be more
conclusive against H . While ev = 0.11 may seem to be a low value, the test can not
be performed without a criterion. In other words, a decision is not made until ev is
compared to a “critical value”.

A strong disagreement among ev, pv and BF seldom occurs in situations where Θ
is a subset of the real line. We suspect that this is related to the absence of nuisance
parameters. In higher dimensions, elimination of nuisance parameters may become
problematic as pointed by Basu (1977).

3 Brief Outline of Sharp Hypothesis Testing

We believe that Fisher (Fisher (1922), Fisher (1934)) was the introducer of modern
tests of significance. However the imprecise form of judgment of an observed p− value
in favor or against a null hypothesis, H , led Neyman and Pearson (1936) and Wald
(1939), Wald (1950), to create the Theory of Testing Statistical Hypotheses. In fact
this was conceived with the goal of having an objective and precise decision-theoretical
approach in lieu of the imprecise way the conclusions based on p−values are taken still
today. Their achievement - the celebrated Neyman-Pearson (NP) Lemma - is better
appreciated in a more general version, which is also much closer to the optimization
ideas of Abraham Wald. In the sequel, we state this version DeGroot (1975) naming it
the NPW Lemma. The usual NP Lemma is in fact a corollary of this result.

Suppose that the probability density for the experiment being performed (x being
the observation) is one of only two options, fH or fA. The null hypothesis, H : fH ,
states that fH is the true density while the alternative, A : fA, states that fA is the
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true density. The Likelihood Ratio statistic LR is defined as:

LR = fH(x)/fA(x)

For any positive real number c, define the test τc as the binary function satisfying:

• τc(x) = 1, i.e. accept H , if LR ≥ c (or > c) and

• τc(x) = 0, i.e. accept A, if LR < c (or ≤ c).

We note that equality must hold in only one of the cases.

Lemma 3.1. (NPW lemma) For any other test δ, if α and β represent the first and
second kind errors, we have that

α(δ) + cβ(δ) ≥ α(τc) + cβ(τc).

The proof of this lemma is straightforward, as shown in DeGroot (1975). The
following result, named after Wald, characterizes the optimal procedures τc.

Lemma 3.2. (W lemma) τc defined above is a Bayes rule.

By Bayes rule we understand a statistical rule that minimizes the risk function
associated to a properly defined loss function. The proof of this Lemma is also straight-
forward. Let us consider a prior probability π = Pr(H) = 1 − Pr(A) and λH and λA

the losses associated to H and A. Taking c as the product of prior odds and loss ratio,

c =
1 − π

π

λA

λH

,

we easily obtain the result by minimizing the risk or the expected overall loss, see
DeGroot (1975). In the other direction, for a given c, there exist positive constants λH ,
λA and π(< 1), satisfying the above equation.

Statisticians expected to obtain similar results for composite hypotheses. However,
frequentist and Bayesian statisticians had to follow different paths to generalize the
NPW lemma to composite hypotheses. Bayesians, in the case of non-sharp hypotheses,
could define fH and fA by averaging the likelihood over the two hypotheses sets to
obtain the Bayes Factor, BF . Frequentists, on the other hand, were able to define
fH and fA by taking maxima of the likelihood over the two hypothesis sets, obtaining
LR, the profile likelihood ratio. In both cases a projection operator, integration for
BF and maximization for profile LR, are used to bring the problem back to a scenario
similar to two simple hypotheses. Both projection operators accomplish a dimensionality
reduction, closely related to the idea of nuisance parameters elimination. This is crucial
for the merits or drawbacks of both approaches, in contrast to the FBST, which always
maintains the full original parameter space. For additional discussion of alternative
p-values see Dempster (1997) and Kempthorne and Folks (1971).
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Let us recall the usual notation used in statistical inference. Let two non sharp
hypotheses, H and its alternative A, be defined by the partition of the parameter space,
Θ, into the two sets H : θ ∈ ΘH and A : θ ∈ ΘA. Whenever either element of the
partition is not a unitary set, the respective hypothesis is called composite. Let g be an
absolutely continuous prior density defined over Θ with

0 < π(H) =

∫

H

g(θ)dθ = 1 −

∫

A

g(θ)dθ = 1 − π(A) < 1.

BF is then readily obtained as before:

BF (X) =
fH(X)

fA(X)
=

π(A)

π(H)
×

∫
H

g(θ)f(x|θ)dθ∫
A

g(θ)f(x|θ)dθ
.

Let us note that the above expressions for fH and fA are coherent under the calculus
of probability and are the weighted mean likelihood functions. Furthermore, the errors
α and β of a NPW test based on the statistic BF above are now weighted mean errors.
The most important aspect of these extensions is the validity of the resulting extension
of the NPW Lemma. One needs only to use the weighted means to minimize the linear
combination of weighted mean errors. In order to compute BF , the prior density g is
used unless both hypotheses are simple.

The BF is called the Bayes Factor for its multiplication by the prior odds, O0, pro-
vides the posterior odds, Ox. Hence it is the factor that realizes the Bayesian operation:

Ox(H) = O0(H)BF (X) =
π(H)

π(A)
×

fH(X)

fA(X)

Frequentists, on the other hand, could define fH and fA as the likelihood’s maxima
over the two hypotheses sets, to obtain a Likelihood Ratio, LR, and the likelihood ratio
test. Nevertheless, an optimal test, in the sense of NPW, is not obtained. This is the
procedure used also when H is sharp.

The trouble, for Bayesians, begins when sharp hypotheses are considered. If H is
sharp and composite, the BF cannot be obtained as before. If H is sharp, g places
probability zero on ΘH . To overcome this difficulty, a density over the set ΘH is placed
in addition to a positive probability γ for H to be true. Such making of a modified
probability measure may become polemical yielding for example Lindley’s paradox, see
Lindley (1957) and Shafer (1982). On the other hand, this procedure has become almost
standard in Bayesian testing with a quite extensive literature on the choice of densities
over ΘH , see Dawid and Lauritzen (2001) and Pereira and Wechsler (1993). The aim
of these papers is to obtain the Bayes Factor, the main object of the original NPW
Lemma.

A solution placed under the calculus of probability by the use of weighed mean
likelihood functions is given by Pereira and Wechsler (1993). The prior density g is
used to obtain the weighed mean likelihood functions fH(x) and fA(x), even if H is
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sharp - surface integrals are used in this case. Using fH(x) and fA(x), a Bayes Factor,
BF , is obtained for every sample point. By ordering the sample space according to the
values of BF (x), a P -value, which explicitly regards A, is obtained from fH(x), the new
statistical model, see Montoya-Delgado et al. (2001). Note that this P -value can be
obtained regardless of the dimension of the sample and parameter spaces. Furthermore,
this P -value - based on the (Neyman-Pearson) test statistic BF (x) - needs no use of
asymptotic distributions.

The objective of this section was to present the main test procedures for sharp
hypotheses which are to be compared to the FBST.

4 FBST Theory

A major practical issue for the implementation of the FBST is the determination of
how large the Bayesian evidence against H must be in order for one to decide for its
rejection. As discussed in Section 1, the mere fact of ev being a statistic defined on a
zero to one scale does not ease the matter (the same occurs with ordinary p-values).
The formal identification of the FBST as a Bayes test of hypothesis yields critical values
derived from the loss functions allowing such identification.

From a theoretical perspective, on the other hand, it may be propounded that if the
computation of ev is to have any inferential meaning, then it should lead to a declaration
of significance (or not). Another viewpoint is to identify ev as an estimator of the
indicator function I(θ ∈ ΘH). Madruga et al. (2001) show that there are loss functions
the minimization of which makes ev a Bayes estimator of the indicator function, see
Hwang et al. (1992). A much more philosophical rebuff to that position, based on a
complete denial of Decision Theory can be found in Stern (2007).

A third point of view could demand the identification of the FBST as a Bayes test,
since, for instance, its submission to the Likelihood Principle is clearly not sufficient
to confer Bayesianity to the procedure. As is the case with p-values, Decision Theory
again clears the picture: Madruga et al. (2001) prove that the FBST procedure is the
posterior minimization of an expected loss function λ defined by

λ(Rejection of H, θ) = a{1− I [θ ∈ T ]} and

λ(Acceptance of H, θ) = b + dI [θ ∈ T ],

where a, b and d are positive real numbers.

It should be remarked that there are other loss functions the minimization of which is
equivalent to performance of FBST, but they are just slight variations of the function λ
defined above (Madruga et al. (2001)). Let us now discuss and analyze the loss function
λ. Its interpretation may be given as the measure of embarrassment experienced by a
statistician who - having accepted H - would be told that the parameter θ is in the
tangential set T , the set of high posterior density. This is called a stylized form of

statistical inference in Bernardo and Smith (1994). Under such an interpretation, the
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loss function λ is also the measure of pride of the statistician who - having now rejected
H - would be told that θ ∈ T . The balance between embarrassment and pride is of
course represented by the constants a, b, and d.

The careful examination of λ reveals that it is a loss function which depends on the
action, on the parameter θ, and on the tangential set T . This last argument of λ makes
it a loss function dependent on the observed sample point x and on the prior density
for θ. Dependence on the former is not unusual in Statistical Decision Theory: Bettors
in pari-mutuel horse races make their decisions after reading the board of totalized
bets.(This example was kindly advanced by Prof. J.M. Bernardo during a discussion at
the Chilean Bayesian Seminar held at Antofagasta in 1999.)

The dependence of λ on the prior π reveals that the performance of the FBST may
not separate probability from utility. The FBST is therefore submitted to the weak
system of rationality axioms of Rubin (1987), although it may violate more artificial
systems.

Let us return to the matter of the first paragraph of this section. The operational
FBST procedure is given by the criterion according to which H is to be rejected if, and
only if, the Bayesian evidence value ev is smaller than c = (b + d)/(a + d). One should
notice that the Bayesian evidence value ev is the formal test statistic and that a positive
probability for H is never required.

The strongest critique against the FBST was the lack of invariance with respect
to smooth parameterizations. By using a reference density in the definition of the
tangential set T, Madruga et al. (2003) obtained the invariant version of the FBST.
Two kinds of invariance are usually required in statistical procedures:

1. Invariance with respect to the null hypothesis parameterization;

2. Invariance with respect to the parameter space parameterization.

The intuitive definition of the FBST is already invariant with respect to parameteriza-
tions of the null hypothesis. This is not a trivial issue because some statistical proce-
dures do not satisfy this property. For instance, Pereira and Lindley (1987) discusses
the problem of testing homogeneity of proportions showing how different parameteriza-
tions of the hypothesis may produce different answers. Pereira and Stern (2001a) show
that, using just the resulting posterior density of the mean and the variance of a normal
analysis, tests for the mean, the variance and the coefficient of variation can be easily
performed.

An explicitly invariant definition of the FBST with respect to alternative parame-
terizations of the parameter space is given in the sequel. To state this generalization of
the FBST we consider a reference density, r(θ) on Θ. This density is established taking
into account the original parameter space where the prior was defined. For example,
r(θ) could be a non-informative (possibly improper) density on Θ. Consider now the fol-
lowing notation, where sx(θ) is known as the surprise function relative to the reference
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density r(θ), see Good (1983):

θ∗ = arg max θ∈ΘH
sx(θ) and s∗ = max

θ∈ΘH

sx(θ) =
gx(θ∗)

r(θ∗)

Definition 4.1. (Invariant Evidence) Let the set tangential to ΘH be defined as:
T = {θ ∈ Θ|sx(θ) > s∗}. The evidence against H provided by the sample x is

1 − ev = ev =

∫

T

gx(θ)dθ .

Definition 4.2. (Invariant Version) The invariant version of the FBST is the procedure
that rejects H whenever ev = 1 − ev is small.

Interpretations of the reference density may be found in Madruga et al. (2003) and
Stern (2004). Note that the invariant definition agrees with the intuitive definition when
the reference density is the (possibly improper) uniform density.

Under the decision-theoretic approach to inference, the Bayesianity of the FBST
still holds after the introduction of the reference density for its invariant version. The
loss functions, λ, remain valid with the invariant definition. It should be emphasized
that with the invariant definition the loss functions depend on the observation, the prior
density, and the reference density, (x, g, r). This points out the nonseparability between
prior, reference, and utility.

It should be also understood that the elimination of nuisance parameters is not
recommended for a Bayesian, Pereira and Lindley (1987). We end this section with
a simple example that should convince the reader to work in the complete parameter
space.

Example 4.1 (Bow Tie). Consider a bivariate parameter of interest (x, y) defined on
(x, y) : −1 < x < 1&− 2|x| − 1 < y < 2|x| + 1. The joint and marginal posterior densi-
ties are as follows:

f(x, y) = (|x| + 4)/(36|x|+ 18) f(x) = (|x| + 4)/9.

Figures 1 and 2 illustrates that the credible set obtained using the joint (marginal)
density is the center (the tails) of the parameter space. The conclusion is that the use
of marginal densities to built credible sets may produce incoherence.

5 Asymptotic Considerations

Although we have shown all practical and positive aspects of the statistic ev, one could
(and will) question about the convergence of it. That is, the sampling distribution of
ev could be of interest to a frequentist statistician. To a genuine Bayesian, we believe
that properties of sampling distributions of ev are irrelevant. However, there exist nice
mathematical aspects which may be explored. Since the posterior distribution depends
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Figure 1: Overall and top views of the Bow Tie joint posterior density

Figure 2: The Bow Tie marginal posterior density

on the sample point being observed, ev is of course a statistic, a function of the sample
observation. For a frequentist, it is a natural need to obtain the sampling distribution
of ev. The task is then to obtain, for all 0 < c < 1, the (asymptotic) probabilities
Pr{ev < c|θ}.

We restrict ourselves to situations of well behaved likelihood and posterior densi-
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ties, satisfying all contour properties listed in Schervish (1995), page 436. Relative to
convergence of large samples, the normalized likelihood and the posterior density may
be replaced one by each other. Letting L, M and m be respectively the normalized
likelihood, the posterior mode and the maximum restricted to ΘH , the tangential set T
can be written as:

T = {t ∈ Θ|L(m) < L(t) < L(M)}

Recalling the good behavior of L, one may make use of the normal approximation in
order to evaluate the posterior probability of any subset of interest, T for instance.
Hence, using the standard norm notation ‖(t − M)‖, for vector (t − M) we have

‖(t − M)‖2 = (t − M)Σ−1(t − M)′

where Σ−1 is the (generalized) inverse of the posterior covariance matrix, Σ, of Θ, we
can write the tangential set as

T = {t ∈ Θ : ‖m − M‖2 > ‖t − M‖2}

If k (> 1) is the dimension of Θ then, using the normal approximation, a posteriori,
‖θ − M‖2 is asymptotically distributed as a χ2 distribution with k degrees of freedom.
Consequently, denoting the χ2 distribution function with k degrees of freedom by Fk,
the evidence value is evaluated as

ev = 1 − Pr{T |x} ≈ Fk(‖m − M‖2).

Recalling now that Θ and X are the parametric and sample spaces, we could look
at this last probability as a conditional probability defined in the product space Θ×X
with product σ-algebra B × F and having R × F as the conditioning argument. That
is, the event T is a set in the sub-σ-algebra B ∩R and x is an event in the conditioning
sub-σ-algebra. In the sequel an alternative representation of T is introduced.

Let the relative likelihood and its natural logarithm be denoted, respectively, by
l(t) = L(t)/L(M) and λ(t) = ln l(t). The tangential set has also the following represen-
tation:

T = {t ∈ Θ : λ(m) < λ(t) < 0} = {t ∈ Θ : −2λ(m) > −2λ(t) > 0}.

If k and h are the dimensions of Θ and ΘH and recalling that the sampling asymptotic
distribution of −2λ(m) is χ2 with k − h degrees of freedom then, the sampling distri-
bution of T may be also obtained. Using the subscript 0 to indicate the observed value
of the statistic, the event {ev < ev0}, is equivalent to the event {−2λ(m) > −2λ(m0)}.
Using now the sampling distribution of T , the p-value associated with the ev statistic,
when ev0 is its effective observation, is the superior tail of the χ2 density with k − h
degrees of freedom, starting from −2λ(m0). Using the symbols one can write
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pv0 = Pr{ev < ev0|θ} = 1 − Fk−h(−2λ(m0)).

We end this section by observing that, after the sample have been observed, the
two sample values d0 = ‖m0 − M0‖

2 and −2λ(m0) of the χ2 statistics allow one to
evaluate both Bayesian and frequentist significance values: ev0 = Fk(d0) and pv0 =
1 − Fk−h(−2λ(m0)). For a Bayesian (frequentist) the decision is based on ev0 (pv0).
Since ev and pv are two well defined statistics, it should be of some interest to obtain
the one-to-one relationship between them. We leave this as a challenge to the reader.
We also call attention to the fact that the pv used here (Wilks (1935) and Wilks (1938))
never violates the Likelihood Principle.

6 Illustrative Examples

The use of the FBST in complex structures has shown to be very successful. A wear-out
reliability test for Weibull distributions is presented by Irony et al. (2002). A bioequiv-
alence test comparing two bivariate normal distributions is discussed in Lauretto et al.
(2003) and the comparison of normal coefficient of variations in Pereira and Stern
(2001a). Recently, Rodrigues (2006) presented an elegant discussion on the problem
of the zero-inflated Poisson distribution. Loschi et al. (2007) used FBST for testing
genetical hypotheses in a very complex structure. The performance of the FBST in the
variable selection for regression models, presented by Pereira and Stern (2001b), is also
important. Here, we consider very simple and classical problems of statistics to better
illustrate the FBST good performance.

Example 6.1 (Bernoulli sample). Consider a sample of exchangeable Bernoulli trials
with observations (x, y) = (12, 24). That is, 12 successes and 24 failures were observed.
To test that the data was generated by a fair coin, H : π = 0.5 we evaluate the
evidence and have obtained ev = 0.041. For a classical statistician considering the
data as generated by a binomial model, its exact pv would be 0.065. Another classical
statistician considering negative binomial sampling with parameter k = 12, would obtain
a p-value of 0.139. With the FBST there is no violation of the Likelihood Principle.
Figure 3 illustrates how the computation of ev is done.

Example 6.2 (Two Bernoulli samples). Consider two samples of exchangeable
Bernoulli trials with observations (x, y)1 = (4, 16) and (x, y)2 = (10, 10). The tan-
gential set for this problem is illustrated in Figure 4. Here the posterior densities are
independent Betas with parameters (5, 17) and (11, 11). The value of the evidence in
favor of H : π1 = π2 is ev = 0.012. For a classical statistician who believes that
the data are from two binomial distributions, the homogeneity chi-squared p-value is
pv = 0.047. Assuming now that the second sample is from a negative binomial and
keeping the binomial for the first, the chi-squared p-value for H is pv = 0.142. It is
interesting to note that in both cases we have exactly the same sample figures and the
same unknown parameters. The difference is due only to model restrictions. This is a
violation of the Likelihood Principle. For comparisons of p-values and Bayes Factors,
see Irony and Pereira (1986).
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Figure 3: The evaluation of ev for the proportion example of a beta
posterior density with parameters (13, 25).

Figure 4: The evaluation of ev for the homogeneity test:
The samples are (4, 16) and (10, 10).

A case of great importance in the statistical history is discussed next. We decided to
present only the results of the FBST to illustrate how it is adequate in complex spaces
and for complex hypotheses. The test for independence in a 2 × 2 contingency table
is based in a collection of multivariate Bernoulli independent variables defined in the
following set:

(0, 0, 0, 1); (0, 0, 1, 0); (0, 1, 0, 0); (1, 0, 0, 0)

The parameter is defined in the unity cube and taking values in the simplex represented
by the set Π = {(π1, π2, π3, π4) : π1 + π2 + π3 + π4 = 1} The null sharp hypothesis is
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defined by the following non linear sub-manifold:

{(αβ, α(1 − β), (1 − α)β, (1 − α)(1 − β)) : α = π1 + π2; β = π1 + π3} ⊂ Π

To measure the degree of dependence many indices were defined, see
Goodman and Kruskal (1979) for instance. Many of such measures are functions of the
cross product difference, δ: The difference between the product of the elements of the
main diagonal and the product of the elements of secondary diagonal. Figure 5 is the
diagram between this index and ev. We consider the case of a 2 × 2 contingency table
with sample size n = 20. Note that the two indexes are in good agreement with the |δ|
and ev being negative correlated.

Figure 5: Diagram relating δ to ev in a 2 × 2 contingency table with n = 20.

We end this section with the most celebrated model in statistics, the normal distri-
bution with unknown parameters, mean and variance. Here we calculate the evidence
for a particular case.

Example 6.3 (Normal). Consider a sample from a normal distribution with unknown
mean and variance, µ and σ2 = 1/τ with τ being the precision parameter. After
assigning a prior for (µ, τ) ∈ R×R the posterior density is given by

f(µ, τ) ∝ τ6,5 exp



−

τ
[
4 + 11 (µ − 0, 9)

2
]

2





The hypotheses and respective evidences are listed below:

The natural question is about the existence of alternative procedures to test hy-
potheses 2, 3 and 4, the hypotheses that are related to the coefficient of variation cv.
In order to convince the reader about the strong power of the significance index ev, the



94 Significance Test

Table 2: Evidences against null hypotheses
H0: µ = 1.1 ev0 = 0.51
H1: τ = 2.5 ev1 = 0.81

H2: cv =
√

µ2τ = 0.5 ev2 = 0.79
H3: µ = 1.1 ∧ τ = 2.5 ev3 = 0.47
H4: µ = 1.1 ∧ cv = 0.5 ev4 = 0.49
H5: τ = 2.5 ∧ cv = 0.5 ev5 = 0.13

following set of pictures from 6 to 10 is worth more than 1000 words. For a theoretical
discussion on hypotheses composition see Borges and Stern (2007).

Figure 6: Posterior density with the curves defined by hypotheses 0, 1 and 2.

Figure 7: Cutting hyper-plane to define tangential set T0
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Figure 8: Cutting hyper-planes: T0 & T2.

Figure 9: Cutting hyper-planes: T0; T1 & T2.

Figure 10: Level curves defining the tangential sets: T0, T1, T2, T3, T4 & T5.
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7 Final Remarks

A list of several desirable properties of a test statistic that are satisfied by ev and its
resulting FBST, is presented:

1. ev is a probability value derived from the posterior distribution on the full pa-
rameter space. p-values are also probabilities but defined on the sample space.
Bayes Factors may be derived from marginal or conditional models due to the
need for nuisance parameters elimination. For questions about the use of partial
likelihoods see Pereira and Lindley (1987).

2. Both ev and FBST possess a version which is invariant against alternative param-
eterizations

3. The need of approximations in the computation of ev is restricted to numerical
maximization and integration.

4. The Likelihood Principle is not violated by the FBST procedure.

5. The FBST requires neither the assignment of positive prior probabilities to sets
of zero Lebesgue measure nor the elimination of nuisance parameters.

6. The FBST is a formal Bayes test and therefore has critical values easily obtained
from elicited loss functions. This intrinsically makes critical sets and sample size
dependent. Consequently, critical limits may change with sample size.

7. ev is a possibilistic (Darwiche and Ginsberg (1992)) support for sharp hypotheses,
complying with the Onus Probandi juridical principle (In Dubio Pro Reo rule),
see Stern (2003).

8. Being derived from the full posterior distribution, ev may be straightforwardly
calculated for testing any precise hypothesis in the same parameter space. It
is a homogeneous computation calculus with the same two steps: constrained
optimization and integration with the posterior density.

9. The FBST, as a general inferential procedure, has performed successfully in sev-
eral applications ranging from univariate parametric testing to multivariate model
selection, without the need for any adaptations in the computation of ev.

10. Ceteris paribus, procedures that are computationally light, or even require only
common statistical tables, are preferable to procedures requiring heavy or timely
consuming computations. This does not favor the FBST, a computationally in-
tensive procedure. Computing time was not a great burden in the many problems
that the FBST was used. However, the sophisticated numerical algorithms used
could be considered a more serious obstacle to the popularization of the FBST.

We can only end this article by addressing the question on its title. In a genuinely
Bayesian way, the three authors have different answers to the question - their respective
names are left for the reader to (probabilistically) guess.
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Author A feels that Bayesians ought to be listened and that ev must replace pv in
scientific literature. Author B thinks that any statistical procedure has to be explained
in a formal logic way and really believes in the existence of sharp hypotheses. Finally
author C still sees the FBST with some reluctance as he feels that sharp hypotheses
should seldom be tested. Such reluctance is weakened by the removal of positive prior
probabilities on sharp null hypotheses and also by the identification of significance test-
ing as a decision problem. Author A agrees with the other two authors and helped the
development of the theoretical properties presented and the three of them see the FBST
as the Genuine Bayesian Significance Test for Sharp Hypotheses. Pereira et al. (2006),
Stern (2007), and Wechsler (1993) may help the reader guessing.

In 1998, at Florida State University, while discussing Basu (1975) the late Profes-
sor Oscar Kempthorne challenged the first author to present a coherent and general
Bayesian significance test procedure for sharp hypotheses. The idea was to have a
Bayesian alternative to replace p-values while maintaining its most desirable (known or
perceived) properties in practical use. From the list presented above, the authors be-
lieve they have responded successfully to Professor Kempthorne’s challenge: the FBST
is conceptually simple and elegant, theoretically coherent, and easily implemented for
any statistical model, as long as the necessary computational procedures for numerical
optimization and integration are available.
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