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Abstract. Non-epistemic values pervade climate modelling, as is now well doc-
umented and widely discussed in the philosophy of climate science. Recently,
Parker and Winsberg have drawn attention to what can be termed “epistemic
inequality”: this is the risk that climate models might more accurately represent
the future climates of the geographical regions prioritised by the values of the
modellers. In this paper, we promote value management as a way of overcoming
epistemic inequality. We argue that value management can be seriously con-
sidered as soon as the value-free ideal and inductive risk arguments commonly
used to frame the discussions of value influence in climate science are replaced by
alternative social accounts of objectivity. We consider objectivity in Longino’s
sense as well as strong objectivity in Harding’s sense to be relevant options
here, because they offer concrete proposals that can guide scientific practice in
evaluating and designing so-called multi-model ensembles and, in fine, improve
their capacity to quantify and express uncertainty in climate projections.
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1 Introduction

Non-epistemic values — e.g. social, political, economic or ethical values — per-
vade climate modelling, as is now well documented and widely discussed in the
philosophy of climate science (see Biddle and Winsberg 2009; Winsberg)[2012;
[Intemann|[2015; Winsberg|[2018a); [Winsberg][2018D, chap. 9, on value influence
in General Circulation Models; see on Integrated Assessment Mod-
els; see [Parker and Lusk|[2019} [Lusk|[2020] on climate services; but see also
[2013} [Johnl 2015} [Jebeile] 2020] on value influence within the IPCC Assessment
Reports). Non-epistemic values can influence the purposes and priorities of
model development and ultimately the selection of entities and processes to be
represented within the models, as well as the choice of explicit dynamics equa-
tions or parameterisations used to represent those entities and processes
land Winsberg||2018| 128). It is widely assumed that such value influence can
endanger objectivity in model-based climate projections; and yet objective pro-
jections are precisely what is required for policy-makers to decide what actions
to take.

[Parker and Winsberg (2018) have recently demonstrated how, by shaping
climate models, the influence of values in model development also affects the
quantification of uncertainty which, among other policy-relevant inputs, is used
to calculate the probabilities of future climate projections. For them, this is
not a case of “wishful thinking” — i.e., that values influence models such that




projections based upon them reveal how modellers would like things to be in the
future, rather than how likely those things are (see Brown/2013; Intemann|2015,
221) — rather, this is an expression of what can be termed “epistemic inequality.”
Epistemic inequality is the risk that models might more accurately represent the
future climates of the geographical regions and sources of concern prioritised by
the values of the modellers, thus making some people better informed than
others. This problem is not only epistemic but also ethical, in that “the value
influence ... could in some cases be complicit in perpetuating certain kinds of
power imbalances and injustices” (Parker and Winsberg2018| 135).

We agree that epistemic inequality can be caused by uncontrolled value influ-
ence in climate modelling. We also think that this issue contravenes the missions
of the expert panels commissioned by international agencies, namely that they
must instruct everyone equally about the future of the earth. Moreover, the
wide dissemination of scientific findings as well as the promotion of the inde-
pendence of science are among the ethical principles adopted by the UNESCO
Declaration of Ethical Principles in relation to Climate Change (UNESCO|2017,
Articles 7 and 8). Taking this problem seriously, therefore, in this paper we pro-
mote value management as a way of overcoming epistemic inequality. Such a
solution, though, can hardly be countenanced within the common framework
employed in the literature on values in climate modelling, i.e. a framework char-
acterised by insistence on the value-free ideal and the employment of inductive
risk arguments. An alternative account of objectivity is therefore required if we
are to countenance the strategy of value management. In this paper, we argue
that alternative social accounts of objectivity, borrowed from feminist episte-
mologies, can open up the space for value management and so help to mitigate
the problem of epistemic inequality.

The paper is organised as follows. First, we show how epistemic inequality
arises in individual models, be they General Circulation Models or Regional Cli-
mate Models, in Multi-Model Ensembles, and in the historical coverage of the
climate data used to validate models (Section . Multi-Model Ensembles con-
stitute one of the ensemble-based approaches typically used in climate science,
making model pluralism central to this scientific domain. Multi-Model Ensem-
bles produce projections that in turn, by virtue of being multiple, are used
to quantify climate uncertainties in terms of probabilities, and also to explore
future climate possibilities.

Second, we argue that model pluralism offers the basis for value management
provided that Multi-Model Ensembles are understood (rightly so, in our view)
as being collections of aggregated expert judgements. In light of this interpre-
tation, we contend that the value-free ideal and the inductive risk arguments,
commonly used to frame the discussions of the appropriate place of values in
climate science, should be replaced by alternative social accounts of objectivity
(Section [3)).

Third, we assume that the alleviation of epistemic inequality is supported
by higher cognitive diversity within the sampling of models in ensembles, and,
following [Rolin| (2019)), that cognitive diversity can result from certain kinds of
social diversity. Based on this assumption, we explore the ways social accounts



of objectivity can promote social diversity in a relevant way. As we argue,
objectivity in the sense of [Longinol| (1990, 2002)), and strong objectivity in the
sense of Harding| (1991} (1992, |1995)), are particularly suitable for our purposes
here, for reasons extending beyond purely theoretical or feminist considerations.
Both accounts indicate how objectivity can be strengthened specifically by the
synergistic influence of multiple values in a way that is compatible with model
pluralism in climate science (Section .

2 Value influence in climate models: the prob-
lem of epistemic inequality

Values can orientate the choice of purposes and priorities in climate models.
Such influence takes place in climate modelling because the domain of climate
knowledge is both complex and uncertain, and therefore the relevant compo-
nents and processes of the climate system cannot all be represented with equal
accuracy. Limited computer power and incomplete process understanding re-
quire the use of simplifying assumptions. The major problem, then, is that this
influence of values creates epistemic inequality. In this section we examine the
form that this problem takes in individual models and in ensembles of models
used to quantify uncertainty and calculate probabilities, at the scale of both
global and regional climate modelling.

2.1 Climate models

First let us describe in more detail how values influence climate models taken
individually. Within models, simplifying assumptions are necessary. These
include omissions and idealisations of climate components, as well as parame-
terisations and choices of parametric values in model tuning. Parameterisations
significantly contribute to modellers’ uncertainty in climate projections. A pa-
rameterisation can be defined as a “mini-model” (Lloyd, 2015 61) within the
larger model, providing an approximate mathematical description of sub-grid
physical, biological, or chemical processes that does not immediately derive
from the equations of motion and radiation. These processes include, among
others, cloud processes, turbulent diffusion, and biological phenomena such as
photosynthesis and evapotranspiration.

Because no set of simplifying assumptions seems unequivocally most ade-
quate for representing the climate system, those assumptions are underdeter-
mined (or epistemically unforced), and therefore the decision to make any given
simplification can be influenced by non-epistemic values. As|[Parker and Wins-
berg (2018]) argue, values partly determine the purposes and priorities in climate
modelling, and ultimately the decisions concerning which processes to represent
in the models and how they should be described via explicit dynamics equations,
parameterisations, and other more or less well justified idealisations (Parker and
Winsberg|2018| 128).



Likewise, the choice of parameter values is not entirely dictated by first
principles and need to be tuned to optimise the performance of the model. Given
the simplifying assumptions, a model cannot be calibrated to perfectly capture
all observations. For this reason, within a model, the decision to accurately
represent one part of the climate system often comes with some sacrifice of
representational accuracy in some other part of the system. In other words, the
way values influence individual models often takes the form of a modelling trade-
off (Winsberg||2012; [Intemann![2015)). Thus, modellers may give priority to the
accuracy of geographical regions and corresponding variables that are relevant
given their own values and interests. [Parker and Winsberg] (2018, 128) exemplify
this phenomenon by considering the case of global weather forecasting models.
Producing forecasts more accurately for the country in which the modellers
work and live may be deemed a higher priority than, for example, predicting the
weather in Antarctica; depending on where the modellers are, producing rainfall
and surface temperature forecasts may be more important than specifying high
altitude wind speeds.

Parker and Winsberg| (2018)) argue that the way values exert an influence
in climate modelling does not necessarily constitute wishful thinking, as it does
not drive the analysis toward specific conclusions about the probability of a
hypothesis. Prioritising the predictive accuracy of the rainfall module in a
model would not make increase the probability estimated for the hypothesis
that it will rain in the region of interest. But value influence does have a
genuinely important consequence, i.e. the phenomenon we have referred to
as epistemic inequality. Reducing idealisations that more particularly affect
high-priority variables (and thereby particular climatic phenomena) leads to
inaccuracies elsewhere in variables of lower priority. Hence, the problem arises
that the people whose interests and values shape the purposes and priorities of
climate models may be better informed about their own climate fate than that
of others, and consequently better prepared to respond to future risks.

To give a simple but stark example, if some African countries only
have access to model-based global weather forecasts produced in
North American and Western European countries, none of which
considers accurate simulation of rainfall in those African countries
to be a high priority, and if people in those African countries con-
sequently receive forecasts of the probability of rainfall that are less
skillful due to this inattention, then this may disadvantage them,
compared to people living in North American and Western Europe,
when it comes to identifying and responding to e.g. flood risks,
droughts, etc. In this way, the value influence that we identified
could in some cases be complicit in perpetuating certain kinds of
power imbalances and injustices. In the extreme, high-priority vari-
ables might be selected with this very aim in mind. (Parker and
Winsberg|2018| 135)

The values that influence climate models might be the private values of the
modellers, but they could also be common values shared by the research group,



the institution, or even the scientific community to which the modellers belong.
They might even be values shared by people with the same culture or living in
the same country as the modellers. In any case, it is reasonable to think that
values differ between research groups of different countries. Individual models
bear the mark of the regional interests prioritised by the values of the modellers
(be they shared by the research group, institution, scientific community, or the
country to which the modellers belong). For the sake of illustration, we might
reasonably suppose that UK models are particularly good at predicting the
future climate of the UK. Thatcher’s government justified the creation of the
Hadley Centre as a contribution to the global effort to study climate change
(Thatcher|[1990)), but at the same time the Hadley Centre is partly funded in
order to advise the government about politics centered on British concerns. We
can, of course, infer that the same is true for all those countries that provide
extensive funding for climate modelling.

The problem arises because climate change is a global phenomenon, yet the
focus on a specific part of the system that is of higher priority to the modellers
may lead them to unintentionally neglect other parts. One way to overcome
the problem would be for each country to develop its own national modelling
programme; yet, as we know, this is hardly possible since countries do not
have equal economic resources and scientific infrastructures. The problem here
is epistemic and ethical, since it may reinforce existing power imbalances and
injustices (Parker and Winsberg|2018| 135). And yet, as has been documented
(see [Field et al.2014), communities and populations are unequally affected by
climate change, and the most vulnerable to climate impacts are often the least
responsible for them, as well as the least informed and prepared.

2.2 Ensembles of General Circulation Models

We want to highlight the way epistemic equality manifests in the ensembles of
models which are used to quantify uncertainty and calculate probabilities. Cli-
mate scientists communicate probabilities about climate projections to policy-
makers, and these probabilities are supposed to reflect a collective judgement
regarding the scientists’ uncertainty about certain aspects of climate change. As
it happens, in climate science, ensembles of experiments with different models
play a central role in determining these probabilities.

In particular, Multi-Model Ensembles (MMESs), on which we focus, are used
to quantify the structural uncertainty which is due to the choice of modelling
assumptions — and simplifying assumptions more particularly — used to repre-
sent the processes at work in the climate system. MMEs are intended as a
means to explore structural uncertainty in that, within MMEs, models vary
from each other in their simplifying assumptions, e.g. the number of processes
they represent, their idealisations and parameterisations, and the way they have
been calibrated or “tuned”. Thus, model pluralism is an essential character of
climate science.

Today the reference framework for MMEs is the Coupled Model Intercom-
parison Project (CMIP). In this framework, MMEs are composed of General



Circulation Models (GCMs) (e.g. CCSM, HadGEM, IPSL-CM) built by mod-
elling centres all over the world (e.g. National Center for Atmospheric Research,
Met Office Hadley Centre, Institut Pierre Simon Laplace). They are used to in-
form the Assessment Reports of the Intergovernmental Panel on Climate Change
(IPCC): specifically, they serve the IPCC’s Working Group 1, which focuses on
the physical climate system.

Within an MME, no model can stand out as the indisputably best with re-
spect to all the relevant performance metrics. The plurality of models nonethe-
less provides an opportunity to deliver probabilities to policy-makers. The at-
tempt to take advantage of multiple models is justified in the IPCC reports by
the assumption that all models within an MME are “equally plausible”. Climate
models are considered “alternative and equally plausible numerical representa-
tions, solutions and approximations for modelling the climate system, given the
limitations in computing and observations” (Collins et al. |2013] 1036). Con-
sequently, for a given scenario, similarly forced models in an MME produce a
range of plausible climate change projections, called the “model spread”, that
in turn is used to quantify structural uncertainty. Probability distribution func-
tions for key variables (e.g. mean surface temperature or precipitation) can be
calculated from the average projection and the model spread (see Parker{|2010)).

A well-known criticism of this method in the climate science community is
that the MMEs of CMIP are “ensembles of opportunity” (Meehl et al.[[2007,
754; [Tebaldi and R.|[2007; Knutti et al.|2010). MMEs are indeed not primarily
designed to explore structural uncertainty: they are not random — nor system-
atic and comprehensive — samples of independent models. Rather, they are
assembled from the available models developed by research groups around the
world that conform to the standards imposed by CMIP.

In order to see how the problem of epistemic inequality can be expressed
here, we need to examine the geographical origin of the models that usually
compose MMEs. In CMIP5, among twenty-three selected models, seven are
from the United States, three from Japan, two from Canada, two from France,
two from the UK, two from China, one from Germany, one from a collaboration
between Germany and South Korea, one from Norway, one from Australia, and
one from Russia. More models have been developed in CMIP6, for which con-
tributions have been made from additional research groups in Brazil, Cyprus,
Denmark, Finland, India, Ireland, Italy, Netherlands, Portugal, Saudi Arabia,
South Africa, Spain, Sweden, Switzerland, Taiwan, and Thailand (see (CMIP6
2021)). Still, very large regions of the world are represented by these few can-
didates, for instance, South America, Russia, and Africa. The distribution of
models here is not representative of the entire human population.

Participation in CMIP depends of course on the economic resources and the
scientific infrastructure available in a given country. The interests and values of
the countries that are not represented by the research groups involved in CMIP
therefore might not be addressed or taken into account in the models. Given
the locations of research infrastructures — but also given the heritage of data
collection infrastructures — less attention is paid to African regions (James et al.
2018). The problem is not only a problem of lack of attention: it is also a risk of



bias in favour of the interests of the richest countries over less well represented
interests. Values influence the choices of representation in models in a way that
can affect the sampling or the weighting of models in an MME, and thereby bias
the quantification of structural uncertainty and the calculation of probabilities.
And yet it is crucial, in a context of support for political decisions, to reflect
varied local needs in the purposes and priorities of the models that are supposed
to justify such political decisions.

2.3 Ensembles of Regional Climate Models

Both policy-makers and climate modellers are interested in geographically re-
fined information, in contrast to the global climate information provided by
GCMs. This geographical refinement is called “downscaling”. One approach to
this goal consists in nesting a so-called “Regional Climate Model” (RCM) within
the GCM grid. Similar to the GCM, the RCM encodes dynamical equations for
the motion of the atmosphere and the ocean but with a higher-resolution mesh
that is restricted to a region (e.g., Europe, North Africa). The RCM may include
more emphasis on local processes (e.g., snow texture). GCMs are then used to
provide initial and lateral boundary conditions to the RCM. Some RCMs are
directly derived from a GCM and share large portions of code with it; others
have been developed more independently.

Ensemble-based approaches are also used at the regional scale in order to pro-
vide uncertainty quantification and probabilities concerning future local climates
— and more particularly variables, indices, and extremes in terms of frequency,
intensity, or duration period in days. The regional counterpart of the CMIP,
i.e., the Coordinated Regional Climate Downscaling Experiment (CORDEX),
aims to provide comprehensive regional climate projections for all continental-
scale land areas of the globe. For example, EURO-CORDEX coordinates the
downscaling of the CMIP models to the European region (for given emission sce-
narios). One might think that, in the context of regional modelling, the problem
of epistemic inequality is aggravated because not all countries can develop RCMs
and predict the climate future at the local scale of interest (if they cannot at the
very least develop their own GCMs). However, fourteen regions are respectively
covered by its dedicated CORDEX programme, i.e., South America, Central
America, North America, Europe, Africa, South Asia, East Asia, Central Asia,
Australasia, Antarctica, Arctic, Mediterranean, Middle East North Africa, and
South-East Asia (CORDEX]2021)).

Nonetheless, it appears that the problem of epistemic inequality occurring at
the scale of GCMs and MMEs of GCMs can still partly be transposed to RCMs
(see also [Shepherd and Sobel [2020| about epistemic inequality in the regional
context). Because RCMs are often “nested” within a GCMS, biases, regional
gaps, or shortcomings within GCMs may indeed be transferred to ensembles of
RCMs. “For instance, if an RCM is downscaling a GCM with large errors in the
circulation over the region of interest, the downscaled results will be influenced
by this bias in the large-scale field” (CH2018/2018, 49). Therefore, the problem
of epistemic inequality seems simply to be transposed to the regional scale. That



said, RCMs are usually supposed to correct some of the bias conveyed by the
GCMs that are taken as a starting point.

Nation-scale modelling projects aim to further correct the biases remaining
in RCMs for the region of interest. For the sake of illustration, in the Swiss
climate scenarios (CH2018/2018)), refinement to a 2 km x 2 km grid is the aim,
whereas the resolution of the CORDEX programme is around 12 or 50 km (while
GCMs have a resolution of around 100 km). Importantly, the starting pool of
RCMs used in the Swiss scenarios is a selection of RCMs from EURO-CORDEX:
RCMs having “problematic or unrealistic” results in regions or variables relevant
for Switzerland are excluded (CH2018 2018, 49-53). To give just one example,
as the analysis of snowfall and snow cover is highly relevant in Switzerland,
“Simulations showing substantial and unrealistic snow accumulation over the
Alps were removed from the model set used in CH2018” (CH2018|2018|, 49). The
needed selection makes the starting pool of RCMs more limited and therefore
may affect the statistical quality of the sampling; a technique called pattern
scaling thus aims to provide a more trustful representation of model uncertainty.
For the Swiss scenarios, a bias-correction method — called quantile mapping — is
therefore applied in parallel to the downscaling process (see [Jebeile et al.||2020
for a discussion of the impacts of downscaling techniques on understanding).
But those corrections depend heavily on the availability of empirical data, and
historical coverage of climate data is also not equally distributed.

2.4 Historical coverage of climate data

Lastly, then, we point out that epistemic inequality is not only due to the choice
of purposes and priorities in climate modelling, but also due to the historical
coverage of the empirical data that are used in turn to understand past and
present climate, but also to calibrate and validate climate models.

Epistemic inequality in climate science can occur in the way climate models
are designed, but also in the way climate data are produced. |Bronnimann and
Wintzer| (2018]) show that climate data themselves are context-dependent: they
“carry imprints of social, political, economic and technological factors” (2018|
4). For instance, data coverage of meteorological measurements is “neither a
random sample of the Earth’s surface nor a planned product” (2018, 4). History
has influenced the quantity and the locations of data measurements. Data
coverage thus mirrors population density, national economic development, world
trade, colonial history, wars, etc. And this is also true for satellite data that
are partly measured by (public and private) enterprises, which have their own
interests and agenda. The authors emphasise that “Unequal spatial coverage is
not just a data problem, but also one that affects climate justice” (2018, 4). As
they point out, among other problems,

unequal climate data coverage has political implications such as the
procedure injustice in climate policy due to imbalance of observa-
tions ... For instance, developing countries with only short climate
records suffer from a disadvantage when trying to prove adverse



climate effects. When sophisticated methods are used to generate
globally complete, technical, “objective” long-term data products
such as reanalyses, this imbalance is partly alleviated, but the im-
balance in the underlying data remains or at least transforms into
larger uncertainties ... (Bronnimann and Wintzer|2018| 4)

In a nutshell, the degree of epistemic inequality depends on the geograph-
ical sampling of models in MMEs. If all the models in MMEs are developed
by research groups that share similar interests and values, then the privileged
access to climate information will remain unequal. On the contrary, if global
coordination can encourage research groups to explore geographical diversity,
then the problem may be solved; this is an option we explore in the remainder
of the paper.

3 Beyond inductive risk arguments and com-
mon interpretation of model pluralism

A possible practical solution to overcome epistemic inequality is to coordinate
the development of models and data collection campaigns around the world.
We posit that the model pluralism that characterises climate science can be
a real opportunity to coordinate the regions covered by the models and more
broadly the multiple interests and values of communities and populations. For
Lenhard and Winsberg| (2010)), model pluralism in climate science is inevitable,
because confirmation holism — with its sources in fuzzy modularity, kludging and
generative entrenchment — makes it impossible to make climate models within an
ensemble converge, and therefore climate policy should “accept model pluralism
as a useful information for the decision process” (2010, 261). For us, model
pluralism in climate science is also an opportunity to correct for shortcomings
that any individual model simply cannot avoid. In what follows, we focus on the
development of models; it seems to us that data collection campaigns are already
tending to cover more geographical regions, although the gaps in historical data
can hardly be filled.

Coordination of the development of models requires epistemological reflec-
tion on the ways to handle values in climate modelling. However, the predomi-
nant conceptual framework in philosophical discussions about values in climate
science relies essentially on the inductive risk arguments that are taken as the
standard objection to the idea that we should strive towards the value-free ideal,
and on a certain interpretation of model pluralism in climate science that needs
to be revised. Yet, as we are about to argue, this predominant conceptual
framework falls short for the reasons we now provide.

3.1 Inductive risk arguments

First of all, let us focus on the inductive risk arguments often considered as the
major challenge to the value-free ideal. The ideal of value-free science states

10



that non-epistemic values must not interfere with the production of scientific
knowledge. Such values are often said to be contextual. Being social, political,
economic or ethical in nature, they are thus supposed to be non-truth-conducive,
and, according to the ideal of value-free science, they should not contribute to
assessing the extent to which a representation matches its target. This ideal is
supposed, in turn, to dissociate the scientists’ knowledge production from the at-
tribution of values, where the latter is to be delegated to policy-makers or other
representatives of the stakeholders’ best interests. However, as is now widely
acknowledged, non-epistemic values inevitably play some role in the practice
of science; the distinction between epistemic and non-epistemic values is even
debatable (see |Longino [1996). In the initial inductive risk argument formu-
lated by |Rudner| (1953)), scientists can legitimately refer to values to assess the
strength of available evidence with respect to accepting or rejecting something
as knowledge. Douglag| (2000)) further argues that scientists can legitimately
refer to values in justifying their methodological choices. For example, let us
consider two instruments that can be used to measure the percentage of rats
that contract a disease once inoculated by a given substance; one is prone to
false positives, while the other is prone to false negatives. The choice between
the two depends on the kind and the level of risk one is ready to take, which
are in turn determined by non-epistemic values.

In the philosophy of climate science, inductive risk arguments are commonly
taken as the starting point for discussions on values in climate modelling. Im-
portantly, Winsberg (2012} [2018b, chap. 9, 2018a)), and |Parker and Winsberg
(2018)) extend Douglas’s inductive risk argument (2000) to the case of climate
science. The authors focus on ensemble-based probabilities concerning future
climates as the relevant and supposedly objective input that climate science
can deliver to policy-makers. In particular, it is argued that “ensemble sam-
pling approaches fail for just the reasons that Douglas has made perspicuous:
because they ossify past methodological choices (which themselves can reflect
balances of inductive risk and other social and ethical values) into ‘objective’
probabilistic facts” (Winsberg|2012, 125).

The inductive risk arguments focus on managing the risk of errors that may
have detrimental social or moral consequences (see [de Melo-Martin and Inte-
mann| 2016 pointing out a shortcoming in inductive risk arguments). However,
while values can indeed help in discriminating between modelling methodologies
with acceptable errors and those with undesirable errors, they may well play an-
other important positive role by integrating a diversity of points of view within
the production of knowledge, and in particular climate knowledge. They can
thus constitute valuable cognitive resources with which to proceed when doing
science. This is a cornerstone of feminist epistemologies. Furthermore, feminist
epistemologies insist on knowledge being situated. Specifically, promoting equal
attention to all regions of the world in climate models is a value that promotes
epistemic equality and, hopefully, climate justice. |Intemann| (2015]) persuasively
argues that social and ethical values can legitimately influence climate model
construction, and proposes they can do so when they promote democratically-
endorsed social and epistemic aims of research. Hence, the inductive risk argu-
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ments can and should be replaced by alternative accounts that we will discuss
below. First, though, let us discuss an additional revision needed within the
predominant conceptual framework.

3.2 Model pluralism

Within the common framework, the models in an MME are considered to be
approximate and distorted (mathematical) versions of some background infor-
mation. Each is understood as a plausible candidate for the adequate model:
therefore, an MME constitutes a “collection of best guesses” (Parker|2013).
This view is closely related to the definition of structural uncertainty itself, i.e.,
uncertainty about what an adequate model structure would be. By quanti-
fying structural uncertainty, the MME can be used to assign probabilities to
hypotheses concerning future climates — even if, as is recognised, this is only
done imperfectly in that the MME is an “ensemble of opportunity”.

While adopting a Bayesian account in which ensemble-based probabilities re-
sult from expert judgements about confidence in the evidence and the ensemble-
based methodology, and are updated in light of new evidence, |Parker and Wins-
berg (2018) crucially highlight that the ensemble-based probabilities are condi-
tional on the experts’ background information. While scientific models are ex-
pected to be used as surrogates for background knowledge, they cannot strictly
speaking constitute background knowledge themselves, because in many ways
they approximate and distort the scientists’ best theoretical knowledge of all
the processes at work in the climate system. The idealisations and parameter-
isations that scientists apply in their models are shaped by the purposes and
priorities they have previously set, given their non-epistemic values. Crucially,
the authors claim,

Because these scientific models often deviate from background knowl-
edge in ways that are in part dependent on non-epistemic values, the
probabilities estimated via these studies also turn out to be depen-
dent on non-epistemic values in the sense that, if the non-epistemic
values had been different, so would have the estimated probabilities,
even with the same background knowledge. (Parker and Winsberg
2018, 127)

In that account, value influence is understood to operate on each individ-
ual model as a form of “noise” in the Bayesian framework: values create a
stochastic deviation from background knowledge since they orientate purposes
and priorities through the choices of representation. Even if the values are
morality-conducive, democracy-conducive, etc., their influence seems to be still
considered as mere deviation. Furthermore, the deviation seems to be considered
“arbitrary” since the values have influence over the choices of representation in
a non-concerted and non-coordinated manner.

However, while model plurality in climate science is commonly interpreted
as a collection of mathematical structures, we argue it can be better understood

12



as a collection of representative sets of expert judgements. This interpretation
derives from the understanding that climate science is a collective and multi-
disciplinary epistemic enterprise in which actors depend upon each other, and
that, incidentally, there is a natural development of the philosophy of climate
science toward the perspective of social epistemology (see also |Winsberg2018b),
chap. 13).

Models are built on expert judgements while themselves delivering a special
kind of expertise about future climate to policy-makers; in turn, expert knowl-
edge includes observations, data-driven models, process-based models and their
outputs, as well as subjective judgements. Expert judgments are also used to
decide whether models perform well. Given a specific set of observations, the
likelihood of a given model is not straightforwardly defined. No climate model
generates output which is so realistic that an expert could not, after inspec-
tion of all its output, recognise that it is a simulation and not the real world
(Rougier| 2007)). In other words, at face value, the likelihood of any model,
given all the knowledge a climate scientist may have about the climate, is zero.
However, certain outputs, if properly aggregated (global or regional averages) or
pre-processed (e.g., considering deviations from a reference value) may appear
to match observations well enough to generate a usable likelihood function. Im-
plicitly, such aggregations or post-processing reflect judgements about what the
model is adequate for, which again may be value-loaded, and so are probabilities
delivered as the outcome of the Bayesian process.

This said, we argue that the conditions which inject non-epistemic values into
information delivered to the public remain relevant irrespective of the adoption
of a Bayesian framework. They are therefore more general than those which per-
tain to the definition of a likelihood function. The key elements are as follows.
First, that individual models are developed according to priorities set by insti-
tutional policies: they are calibrated and evaluated based on datasets which are
the result of a socio-historical process. Second, that the way ensembles of mod-
els are processed reflects judgements on model adequacy and depends, again, on
available observation datasets. For example, the choice of benchmarking criteria
for accepting or rejecting models or perhaps weighting them in an ensemble is
value-loaded. Injection of non-epistemic values is thus unavoidable, yet without
prejudice to the scientists’ integrity and disinterestedness (Rougier and Crucifix
2014).

MMEs inform our judgements on climate change, and they are therefore
implicitly viewed as collective judgements. However, judgements and non-
epistemic values naturally permeate ensembles of model outputs following a
non-straightforward process that may involve the “social dynamics underlying
scientific practices in climate modelling” (Jebeile and Crucifix| 2020, 47), and
thereby incorporate sociological effects such as conformism and historical lega-
cies.

Models are influenced by values that reflect the history and scientific cul-
ture of the research centres — including past and present scientists, specialties,
main projects, etc. Because expert judgements are situated, sampling models
also means sampling the non-epistemic values and other research contingencies
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that may influence scientists. An MME is therefore a collection of aggregated
judgements that are representative of the research centres’ history and scien-
tific culture. In such a framework, value influence is not a stochastic deviation
from background knowledge: it is a source of diversity of points of view rep-
resentative of the research centres’ history and scientific culture. Hence, social
accounts of objectivity seem more appropriate as a means to grapple with the
values implicit in climate modelling.

In brief, we believe that the value-free ideal is not only unreachable — sources
of non-epistemic values are abundant in representations of such a complex ob-
ject as the climate — but perhaps even not desirable given the goal of inform-
ing policies which are not value-free and for which decision-makers must be
accountable. By the same token, however, uncontrolled value influence is likely
to cause epistemic inequality and misinform efforts for climate justice. Yet the
inductive risk arguments and the common interpretation of model pluralism fall
short in accounting for value management. As we will now argue, such value
management becomes feasible once we adopt an alternative social account of
objectivity. In the next section, we consider alternative accounts of objectivity
borrowed from feminist epistemologies that can help us to design proper systems
for value management in climate modelling.

4 Social accounts of objectivity for value man-
agement

Once we adopt the view that the ensemble of models can be interpreted as the
diverse set of representative viewpoints informed by expert judgments, we can
design a system for the sampling of models within an ensemble which resembles
the elicitation of expert judgements. The overall idea is then to select the
relevant diversity of points of view. In this section, we explore the ways social
accounts of objectivity can promote a diversity of relevant viewpoints.

4.1 Cognitive diversity and social diversity

We start with the conceptual distinction highlighted by [Rolin/ (2017, [2019) be-
tween cognitive diversity and social diversity. This distinction is useful to in-
vestigate ways to manage values in climate modelling, since climate modelling
is undertaken internationally by multiple research groups that share scientific
cultures and aims but also differ in their specialties and in some of their interests
and values.

A community or a group is cognitively diverse when its members
have, for example, different research styles and skills, different per-
spectives on the subject matter of inquiry, or access to different
bodies of empirical evidence. A community or a group is socially
diverse when its members have different non-epistemic values, such
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as moral and political values, or different social locations, such as
gender, ethnic identity, nationality, and race. (Rolin/2019, 158)

Thus, cognitive diversity can be thought of as diversity in research pro-
grammes, scientific theories, scientific perspectives, or scientific methodologies.
In the case that interests us, what we want in MMEs is to reach a certain cog-
nitive diversity that is a diversity of relevant purposes and priorities addressed
in the models. Some forms of cognitive diversity can be verified or even im-
proved without much reference to non-epistemic values. For example, one may
verify that different types of convection schemes, judged to be equally plausible
or relevant, are represented in an MME. While cognitive diversity can also be
aimed at as a means to address the problem of epistemic injustice, this latter
objective is quite likely to benefit also from social diversity defined as diversity
of non-epistemic values.

In this matter, Rolin| (2019) suggests an interesting avenue that we want
to investigate in the case of MMEs. Rolin considers three approaches in what
she refers to as “the social epistemology of diversity”: Kitcher’s distribution of
research efforts, Longino’s critical contextual empiricism, and Harding’s feminist
standpoint theory. Because Kitcher is interested in competing theories, and
because we are interested in MMESs, we focus on the two other accounts.

4.2 Longino’s objectivity

As made clear in Longino’s account of “critical (contextual) empiricism” (1990;
2002), the evidential support for hypotheses is insufficient to guarantee objec-
tivity because “the relation between hypotheses and evidence is mediated by
background assumptions that themselves may not be subject to empirical con-
firmation or disconfirmation, and that may be infused with metaphysical or
normative considerations” (1990, 75). As she argues, the more “transformative
criticism” there is, the more objectivity there is in science. The extent to which
“transformative criticism” is permitted depends upon the compliance with four
criteria: (i) Venues for criticism: “There must be publicly recognized forums
for the criticism of evidence, of methods, and of assumptions and reasoning”
(2002, 129); these forums can be, for instance, journals or conferences; (ii) Up-
take of criticism: “The community must not merely tolerate dissent, but its
beliefs and theories must change over time in response to the critical discourse
taking place within it” (2002, 129-130); (iii) Public standards: “There must be
publicly recognized standards by reference to which theories, hypotheses, and
observational practices are evaluated and by appeal to which criticism is made
relevant to the goals of the inquiring community” (2002, 130); (iv) Tempered
equality of intellectual authority: “Where consensus exists, it must be the result
not just of the exercise of political or economic power, or of the exclusion of
dissenting perspectives, but a result of critical dialogue in which all relevant
perspectives are represented” (2002, 131).

The latter criterion, tempered equality of intellectual authority, explicitly
calls for inclusivity within the scientific community — i.e., the inclusivity of var-
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ious relevant domains of specific expertise — but also external participation in
scientific debates as soon as the three other criteria are met. The scientists must
be open to and respond to criticisms from inside and outside their community.
Given the preconditions of being (i) expressed, heard and discussed in open fo-
rums, and (ii) taken into account with (iii) equal consideration, criticism from
alternative points of views is likely to help identify, make visible and correct
for dominant biases within background assumptions, as well as to provide ar-
guments for a diversity of alternative perspectives. Hence, social diversity to
some extent supports cognitive diversity in the sense that “the greater the num-
ber of different points of view included in a given community, the more likely
it is that its scientific practice will be objective, that is, that it will result in
descriptions and explanations of natural processes that are more reliable in the
sense of less characterized by idiosyncratic subjective preferences of community
members than would otherwise be the case” (Longino|[1990, 80).

In Longino’s account, social diversity is ensured by securing the engage-
ment of diverse people with different social locations: the consultation and the
participation of scientists belonging to underrepresented communities but also
stakeholders including autochthonous people. The approach therefore aims at
enlarging valuation to a broader group of people.

4.3 Harding’s objectivity

A diversity of people may nevertheless not be enough for attaining valuable
cognitive diversity (in addition to being too permissive, as it can include morally
and politically problematic perspectives — see Rolin|[2017, [2019). As Harding
puts it in a note, regarding the detection of shared biases,

Some might think this problem can be resolved by adding members
of excluded groups into the community or by seeking more criticism
within scientific processes. Efforts in these directions certainly can
be helpful, but reflection on the Gould discussion suggests their lim-
itations. Won’t those “included” be only the well-socialized, least
critical of the excluded? Are privileged groups likely to listen care-
fully to, and seriously value the distinctive perspectives of, groups
that dominant institutions have devoted considerable effort to justi-
fying as inferior? What kind of vigorous criticism should one expect
to arise from a few junior (or even senior) colleagues who know well
how their continued “inclusion”, and the inclusion of those who fol-
low them, depends on their “not making trouble”? (1995, note 6,
349)

Hence, we will now contend that strong objectivity in Harding’s sense is a
suitable framework for thinking about objectivity when dealing with epistemic
inequality, because it starts with the “recognition of social inequality” (1995,
341) and the understanding of the way relations of power affect the production
of scientific knowledge, while also being compatible with the model pluralism
and ensemble-based inferences that characterise climate science.
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In Harding’s standpoint theory (Harding 1991} {1992| |1995| 2015)), social di-
versity implies that one must think from the perspective of underrepresented or
marginalised lives, where the latter are relevant cognitive sources from which
to draw in order to have a better grasp of and critical look at the relations of
power that shape the production of scientific knowledge.

In order to gain a causal critical view of the interests and values
that constitute the dominant conceptual projects, one must start
one’s thought, one’s research project, from outside those conceptual
schemes and the activities that generate them; one must start from
the lives excluded as origins of their design — from “marginal lives.”
(1995, 342)

This approach is particularly relevant when addressing the problem of epis-
temic inequality, as it contains the idea that knowledge is situated and, in that
sense, “knowledge is for and by a particular set of socially situated knowers”
(Crasnow et al.|2018)). The scientific questions, research agendas, and aspects
of world referred to as a means to answer these questions therefore depend on
the location of situated knowers.

In Longino’s view, social diversity is diversity of social locations. In Hard-
ing’s view, social diversity is diversity of standpoints. In Harding’s account,
however, the diversity of social (and, relevant to climate change, geopolitical)
locations is neither a sufficient nor an exclusive approach for reaching diversity
of standpoint. As made clear by Rolin, standpoints differ from social loca-
tions in that (i) situated knowers are able to point out the dominant social
viewpoints that shape science, and (ii) standpoints are collective achievements
that are (iii) produced by a sub-community of situated knowers sharing some
common values. In other words, Harding’s account demands an understanding
of the mechanisms which create dominant viewpoints, as well as a process for
producing standpoints within sub-communities. The sub-communities should
therefore have possession of the elements of knowledge necessary to produce
relevant standpoints.

4.4 Strong objectivity in climate science

One might object that an explicit enforcement of value diversity in the design of
models and MMEs requires an administrative structure which would unavoid-
ably interfere with the autonomy of research centers and potentially impair sci-
entific creativity. We therefore promote a survey and study of the mechanisms
which indirectly encourage strong objectivity and scientific equality. In this re-
spect, model evaluation, more than model design, is a good place to start. A
“Google scholar” search with keywords “CMIP5” and “evaluation” shows that
in most cases the authors of evaluation studies are not the authors of the mod-
els. The production of the model is indeed partly decoupled from the analyses
and evaluations of models and ensembles of models. One might assume that the
result of these studies effectively feeds back into the model development, since
once deficiencies are pointed out, they should attract the attention of modellers.
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The production of the IPCC thematic and Assessment Reports provides an-
other opportunity to promote strong objectivity (Jebeile 2020)). Models are
generally not prepared for a specific report (reports, in principle, survey the
literature), but in the long run promoting epistemic diversity in the choice of
IPCC thematic reports is likely to encourage modellers to produce models which
appear to adequately address the questions raised by the thematic reports. In
both thematic and regular Assessment Reports, the choice of graphical represen-
tations for comparing model performance on different criteria provides another
powerful mechanism for appreciating and encouraging standpoint diversity.

The creation of standpoint diversity can also go along with the objective of
achieving a diversity of social locations. Such diversity is promoted to some ex-
tent through international collaborations between diverse research teams, having
the full range of scientific, technical and socio-economic views and perspectives,
coming from different regions and from developed and developing countries and
countries with economies in transition, but also reflecting diversity in gender
representation and degrees of professional advancement.

The creation of various standpoints may be concretely achieved through the
constitution of sub-communities of situated knowers (see also|Rolin| (2016]) about
the possible role of scientific/intellectual movements). In the case that concerns
us, this could be achieved through the constitution of sub-communities within
climate modelling programmes, which might comprise scientists belonging to un-
derrepresented communities, who can be consulted to provide critical reflections
on worldwide climate modelling developments and to point out shortcomings in
addressing the needs and interests of certain regions and populations.

Scientists may ask other parties, such as policy-makers or citizen panels, to
contribute to the development of model evaluation criteria. This process will
help make scientists aware of possible common biases or dominant views that
underlie their work, and is relevant even when the values that scientists choose
are compatible with stakeholders’ best interests. Forums may be constituted to
reflect on worldwide climate modelling developments, and to point out short-
comings in addressing the needs and interests of certain regions and populations
in the world.

That said, as|Schroeder| (2017) points out, asking scientists to communicate
their outputs in accordance with the values of citizens, even though they may
not share these values, is a form of moral burden. The possibility of consulting
citizens and other stakeholders in the context of climate services has been inves-
tigated by [Parker and Lusk! (2019)); Lusk| (2020)). In Lusk| (2020), participatory
democracy is even seen as a means to overcome the legitimacy problem that is
posed by letting the values of modellers pervade scientific methods. Similarly,
one might think that a public dialogue may help in addressing the needs of the
different stakeholders within the models in an ensemble. This feedback may in
turn help to overcome epistemic inequality.

Finally, technical progress may also help with the promotion of epistemic
equality. The widespread use of satellite imagery or satellite-based products for
model evaluation tends to promote equal attention to all regions of the globe.
Model evaluation studies feature global maps which outline model deficiencies
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wherever they are located on the globe.

5 Conclusion

In this paper we have sought to address the problem of “epistemic inequality”,
recently highlighted by Parker and Winsberg| (2018). We have promoted value
management as a way to overcome this problem, an approach which becomes
practicable provided one abandons the inductive risk arguments usually used as
the reference framework in the discussions of value influence in climate science,
and replaces them by social accounts of objectivity such as the notion of ob-
jectivity as defined by Longino or strong objectivity as defined by Harding. As
we have shown, both accounts are relevant here because they are well adapted
to the model pluralism and the ensemble-based inferences that characterise cli-
mate science. Strong objectivity appears to be better adapted to conceptually
framing philosophical discussions of objectivity in climate modelling, and, in-
cidentally, of the risk of epistemic inequality. Strong objectivity encourages a
diversity of standpoints and values in knowledge production, and at the very
least supports a form of value management that aims to avoid common biases,
such as the predominance of some regional interests.

Value management is doubly beneficial: it is a promising means to remedy
the disadvantage of certain communities regarding access to knowledge (the
ethical benefit), as well as to reinforce objectivity (the epistemic benefit). It
might turn out that value management will increase the spread of projections
and thereby the quantified estimation of structural uncertainty, but we believe
that including diverse views can make estimates of uncertainty more reliable
by taking into account sources of uncertainty related to geographical and other
representational shortcomings overlooked in previous models. We also think
that other paradigmatic reasoning (e.g. possibilistic reasoning or storylines) are
complementary and may well create more room for exploring extreme weather
and climate conditions and phenomena.

The focus of this paper has thus lain between traditional philosophy of sci-
ence and social epistemology, and to some extent on feminist epistemologies.
We have recognised the role of the social dynamics of research in the epistemic
properties of the mathematical representations that scientists develop. This role
seems to be an important aspect of climate science, since models are intended
to inform policy-makers with due regard to epistemic equality.
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