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Abstract
I explore, from a proof-theoretic perspective, the hierarchy of classical and paracon-
sistent logics introduced by Barrio, Pailos and Szmuc in (Journal o f Philosophical
Logic, 49, 93-120, 2021). First, I provide sequent rules and axioms for all the logics
in the hierarchy, for all inferential levels, and establish soundness and completeness
results. Second, I show how to extend those systems with a corresponding hierarchy
of validity predicates, each one of which is meant to capture “validity” at a different
inferential level. Then, I point out two potential philosophical implications of these
results. (i) Since the logics in the hierarchy differ from one another on the rules, I
argue that each such logic maintains its own distinct identity (contrary to arguments
like the one given by Dicher and Paoli in 2019). (ii) Each validity predicate need not
capture “validity” at more than one metainferential level. Hence, there are reasons
to deny the thesis (put forward in Barrio, E., Rosenblatt, L. & Tajer, D. (Synthese,
2016)) that the validity predicate introduced in by Beall and Murzi in (Journal o f
Philosophy, 110(3), 143–165, 2013) has to express facts not only about what follows
from what, but also about the metarules, etc.
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1 Introduction

The question of what identifies a logic as such has recently attracted some atten-
tion in the discussion of substructural logics, in particular, in the discussion of the
non-transitive strict-tolerant logic ST and its relation with classical logic (CL). Some
proponents of ST (as notably stated by Ripley, e.g., in [16]) claim that it is identical
with CL, because the two logics have the same consequence relation. Yet, unlike CL,
ST can be conservatively extended with a transparent truth predicate, as well as with
a validity predicate. Thus, other authors, such as Dicher and Paoli in [9], identify ST
with the paraconsistent logic LP, and still others maintain it is different both from CL
and from LP.

An impressive recent work by Barrio, Pailos, and Szmuc (BPS) [4] generalizes
the ST phenomenon. BPS construct a hierarchy of infinitely many logics where
each of those logics “agrees” with CL at more inferential levels than its prede-
cessors, but deviates from CL from some level onwards. The first logic in the
hierarchy is LP, which agrees with CL on theorems but doesn’t approve some of
the classical inferences like “explosion”; the second is ST, which agrees with CL on
theorems and inferences, but differs on metainferences such as Cut; the third logic
agrees on theorems, inferences, and metainferences, but differs on metametainfer-
ences, and so on. Based on this construction, BPS draw the philosophical conclusion
that

“the hierarchy allows to convey a sort of philosophical impossibility result:
that it is impossible to identify a logic with its given set of valid inferences
of any inferential level—for it is possible to find logics which will coincide in
that respect, despite of being intuitively different from it. . . Indeed, the logics
in our hierarchy show that it is equally dissatisfying to identify a logic with
a set of valid metainferences. . . [O]r to identify a logic with its set of valid
metametainferences, or with its set of valid metainferences of level 3, or 4, ..., or
any arbitrarily large level. Whence, the need of an appropriate identity criterion
for logical systems that can cope with cases of this sort”. ([4, p. 20])

Thus, it seems that all inferential levels have to be taken into account in identifying
a logic. In particular, ST cannot be identified with CL, for there are infinitely many
inferential levels where they differ. In what follows, I wish to elaborate this line of
thought. To that end, I shall present a proof-theoretic account of the BPS hierarchy,
which they construct model-theoretically. This account may put us in a better position
to address the question of whether some of these logics are identical with others, as
well as related issues.

Here is how I proceed. In Section 2, I provide a brief introduction of LP, ST,
and the debate on ST’s identity. Then, I introduce the concept of ,
which is central to this discussion, and review the BPS hierarchy. In Section 3, I
provide proof-theoretic accounts for CL, LP, ST, and the rest of the logics in the
BPS hierarchy, at all inferential levels, and establish soundness and completeness
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results. In Section 4, I define a sequence of validity predicates, each one of which
is meant to capture “validity” at a different inferential level. In Section 5, I point
out two philosophical implications of these results. (i) Since the logics in the hier-
archy differ from one another with respect to the rules they approve, each such
logic maintains its own distinct identity. (ii) Each validity predicate need not capture
“validity” at more than one metainferential level. Thus, I deny the thesis (put for-
ward in [3]) that the validity predicate introduced in by Beall and Murzi in [6] has to
express facts not only about what follows from what, but also about the metarules,
etc.

N.B. Most of the proofs in the paper contain tedious details that can easily be
worked out. For the sake of brevity I leave some of those details as an exercise.
Also, to make the paper easier for reading, I put most of the proofs in the Appendix.
Nonetheless, the proofs of the central results (and the non-trivial ones) are left in the
body of the paper.

2 LP, ST, and the ST Hierarchy

Except for CL (with which I assume the reader is familiar) the logics to be considered
here are all based on , defined as follows. Let L be
a formal language with the connectives . A valuation function L
0 1

2 1 is if it is given by the truth tables:

1 0
1
2

1
2

0 1

1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

The connectives will be defined derivatively, in the usual way:
.

LP is the logic that results from taking 1
2 and 1 to be [14].

That is, if for all , if 1
2 1 for all , then there is some

such that 1
2 1 . By contrast, ST has no designated values. Rather, ST

sets different standards for premises and conclusions: premises have to be “strictly
satisfied” (assigned the value 1) whereas conclusions just have to be “tolerantly sat-
isfied” (assigned either 1

2 or 1). That is, if, for all , if 1 for all
, then there is some such that 1

2 1 .
As for proof systems, I shall work with the following sequent calculi for LP and

ST, given in [5] and [17], respectively. The premises and the conclusions are read as
sets, as multi-sets; hence, Contraction and Exchange are built-in properties. LP
is given by:
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Axioms:

Structural Rules:

Operational Rules:

and ST is given by:

Axioms:

Structural Rules:

Operational Rules:

LP and ST are sound and complete with respect to the above calculi: for all
L , iff the sequent is derivable in LP, and iff the
sequent is derivable in ST. Note that ST is formulated with double-line
operational rules, where rules with multiple premises ( and ) are “read” in



Metainferences from a Proof-Theoretic Perspective

reverse as licensing the derivation of each premise from the conclusion.1 On the other
hand, LP has Cut, and so invertibility can be proven for its operational rules. Thus,
there is no need to formulate these rules with double lines.

As is well known, ST is actually CL without Cut, but Cut is admissible as guaran-
teed by Gentzen’s . Therefore, CL and ST have the same the consequence
relation; i.e., they are in full agreement on the status of inferences. Yet, CL and ST
differ at a higher level, that of .

Since the concept of is going to be at the center of my discussion, a
few words about it are in order. Briefly put, metainferences are inferences between
inferences (like metarules such as Cut), but also inferences between previously
defined metainferences, e.g., an inference between previously defined metainfer-

ences 1 1

2 2

3 3

4 4
and a previously defined metainference 5 5

6 6
:

1 1

2 2

3 3

4 4

5 5

6 6

and so on. To be precise, metainferences are defined recursively as follows:

Definition 2.1 Let 0 L be the set of all inferences in the languageL , namely,
sequents of the form where L . For all , let L
be the set of metainferences of level , namely, sequents of the form
where 1 L 1 L . The members of are called the

and is the .

For the sake of clarity, I shall sometimes denote a metainference of level ,
(where 1 ... 1 L 1 L ) also by

1 ...
, where the level of that metainference may be optionally mentioned

inside brackets to the left of the horizontal proof line.2 Following [9] and [4], I shall
consider metainferences to be syntactic objects that form a genuine part of the system
under consideration, or, as these authors put it, syntactic objects [9, p.
8];[4, p. 7].

From a model-theoretic point of view, valuation functions satisfy not only for-
mulas and inferences, but also metainferences of all levels. The definition is
straightforward, by way of generalization: we say that a valuation function satis-
fies a metainference of level ( ) if either dissatisfies some

, or satisfies . This notion of satisfaction is sometimes called the “local”

1Importantly, the invertible rules make many metarules derivable rather than merely admissible. As Dicher
and Paoli show in [9], this version of ST is sound and complete not only at the first inferential level, but
also with respect to metainferences of level 1. See Section 3.3 below.
2I shall use this notation mainly in proof trees where metainferences of different levels are involved. In
particular, I shall use the notation to indicate the degree and role of each horizontal line in those proof
trees, i.e., whether it is a part of a “sequent,” or whether it indicates a transition between “sequents”. See
Sections 3 and 4 below.
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notion of metainferential validity, and I shall adhere to it. Thus, we may say that
is “locally valid,” or simply “valid” ( ) if for all : .3

At this point, there arises the question of whether ST and CL are actually identical,
given that they differ somewhat abstractly, only at the level of metainferences. Need-
less to say, if the “identity” of a logic is determined solely in terms of its consequence
relation, we must answer this question positively. Yet against such identification
speaks the fact that unlike CL, ST can be conservatively extended with a transparent
truth predicate and with a validity predicate [8, 16, 17].

Suppose then, that we refrain from identifying ST with CL. It would still be
interesting to ask whether ST can be identified with some other well known logic.
The following definition of may be the key to answering this latter
question in the affirmative.

Definition 2.2 Let be some logic. The external logic of is the logic that governs
its theorems. Namely, is derivable from in the external logic of iff the sequent

is derivable from the sequents 1 ... in (where 1 ... ).

Interestingly, CL and LP each coincide with their own external logic, but ST
doesn’t [2]. For example, the consequence relation of ST is classical, so it has explo-
sion: you can derive the sequent in ST. On the other hand, it is impossible
to derive from in ST, the valuation 0 1

2 being a coun-
terexample. In [2] Barrio, Rosenblatt, and Tajer observe that the external logic of ST
is actually LP. To understand this better, consider the following translation function

L L L , defined recursively by

1 .

What Barrio, Rosenblatt, and Tajer prove is that is derivable from 1 ...
(where 1 ... ) in ST iff the sequent is derivable in LP. In fact,

they prove a stronger result (see Theorem 2.7 below), namely, that for all 0 :
iff . Based on these results, one could argue

that ST is just LP in disguise, namely, LP in a different mode of presentation. Indeed,
such an approach is advocated by Dicher and Paoli in [9].4

The last option I shall mention here is that ST is neither CL nor LP. Rather, ST
is a member in an infinite hierarchy of logics that are all partly paraconsistent, yet
progressively classical: the higher you climb up the hierarchy, the more “classical”

3It is worth mentioning that there is an alternative, “global” notion of validity for metainferences. Accord-
ing to this latter notion, is valid if, whenever the premise metainferences are satisfied by any
valuation, so is the conclusion metainference. Yet, the global notion will not be considered here any further.
See [4, 9] for discussions of why the local notion is preferable to the global one.
4Their argument is actually more complex, and relies both on the completeness of ST with respects to its
metainferences (regarding the above formulation, with double-line rules) and on the claim that two logics
are identical if they have the same “abstract consequence relation” as defined by Block and Jónnson, e.g.,
in [7]. Unfortunately, an elaborate discussion of this approach would exceed the scope of the present paper.
See my discussion in Section 5.1 below.
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the logics you come across. In brief, the idea is this: we saw that ST sets differ-
ent standards for premises and conclusions: is ST-valid if, given that its
premises are 3-valid—namely, they get the designated value of Kleene’s 3 (i.e.,
1)—it cannot be the case that all of its conclusions are LP-invalid—namely, don’t get
one of LP’s designated values: either 12 or 1. Let us designate this fact by the nota-
tion ST 3 . In general, given two logics 1 2, let us define the logic 1 2
as the logic whose premise-standard is given by 1 and conclusion-standard by 2.
Thus, BPS construct their hierarchy in the following way [4, p. 15]:

Definition 2.3 The collection of logical systems is recursively
defined so that 0 , 1 , and for 2, 1 1 (where

if ).

Definition 2.4 For 2 and and a metainference 1 where
2 L , 2 L , a valuation satisfies 1 in

( 1 ) if
1

for some or 1 . [4, p. 15]

Definition 2.4 tells us how metainferences of various levels are evaluated by each
logic in the hierarchy. For each , the logic sets different standards for premises
and conclusions of metainferences of level 1: 1 if

1
for some or 1 . For , however, metainferences are evaluated
by uniformly, i.e., if either for some , or

. Likewise, for 1, a metainference is evaluated uniformly
by , namely, by the standards of 1. Thus, the logics in the hierarchy basically
differ on the level at which the standard for premise satisfatction and the standard for
conclusion satisfaction diverge: the higher you climb up the hierarchy, the higher this
level is.

To understand the hierarchy better, consider the following three theorems of BPS:

Lemma 2.5 For all 1, for all 1 L 1 L , for
every :

1 iff .

Theorem 2.6 For all 1, for all 1 L 1 L :

1 iff . [4, p.17]

Theorem 2.7 For all , for all 1, for all 1 L 1 L :

1 iff
In other words,

1 iff ... ... ... . [4, p.19]

Lemma 2.5 states that, given a metainference of level , all logics subscripted with
index 1 will agree on its status. On the other hand, Theorem 2.6 states that
each agrees with CL up to the 1 inferential level; i.e., and CL agree on
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metainferences of level 1. Theorem 2.7 states in general terms what we already
observed about ST and LP: that serves as a translation function between each
logic in the hierarchy and its predecessor.

An immediate result of these theorems, which will prove useful later on, is the
following lemma:

Lemma 2.8 For all 1, and for all 1 L 1 L :
iff .

Note that CL and differ at level ; i.e., they disagree on at least some metain-
ferences of level . I wish to conclude this section by pointing to a specific form
of metainferences that will later have a role to play: , which is the
metarule governing metainferences of level (namely, a metainference of level 1)
defined as follows. First, I shall use the following notation, which will be of use
throughout this paper. Let be an inference of level . Let us denote by

where L the metainference that is identical to
for its root—the bottom sequent—which is replaced by . Like-

wise, we denote by the metainference that is identical to
for its the bottom sequent, which is replaced by . For example, if con-

sists of the metainference 1 1

2 2
and is the metainference 1 1

2 2
then

2 is the metainference:

2
1

1 1

2 2

1
1 1

and is simply 1 1. (Trivially, if 2 and 2, then 2

is just 2 .) Using this notation, can be defined as the
following metainference (where 1 L , 1 L , L ,
and L ):

1

Observe that 0 is the well known Cut rule. The following proposition
(proven by Pailos in [13]) shows that the logics in the BPS hierarchy progressively
validate these rules.

Proposition 2.9 For all 1, and for all 0 1: ,

1 , but for all 1: .

3 Sequent Rules and Axioms for Metainferences

To wrap things up, we saw that two logics in the hierarchy may agree at many infer-
ential levels, and yet differ from one another from some level onwards. Therefore, to
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identify a logic, all inferential levels need to be taken into account. This moral applies
not only to the model-theoretic account of metainferences provided by BPS. Indeed,
recall that metainferences are for us first and foremost objects, and so it is
nothing but natural to provide a account of them, one that would
hopefully align with the model-theoretic account of local validity.5 This section is
dedicated to that task.

It should be clear by now that a proof-theoretic account of some logic in the hier-
archy—undoubtedly, an account of some for 2, but also accounts of CL, LP,
and ST—cannot consist only of sequent rules and axioms governing the logic’s infer-
ences. Rather, we should provide sequent rules and axioms for metainferences of all
levels. This will be done by way of generalization. In a “regular” sequent calculus,
let us recall, the axioms take the form of schemata of inferences (“sequents”) and the
rules take the form of schemata of metainferences of level 1. Likewise, to determine
the behavior of some logic at the -th metainferential level, we need both axioms in
the form of schemata of metainferences of level , and rules in the form of schemata
of metainferences of level 1. These axioms and rules will allow us to produce,
for each , proof trees with “sequents” in the form of metainferences of level and
“rules” in the form of metainferences of level 1. Moreover, each instance of a
“rule” of level will become an instance of an “axiom” that can serve as a “leaf” in
proof trees of metainferences of level 1.

At this point, it is worthwhile to mention the distinction often made in proof theory
between and rules. Roughly speaking, the former govern
the inferential behavior of certain bits of the language—most notably, the logical con-
stants—whereas the latter have a more general character. Obviously, a metarule that
governs inferential behavior at a higher level may take one of these forms: it may be
either a generalization of some operational rule, or a generalization of some structural
rule. A question then arises as to whether a proof-theoretic account of metainferences
requires both kinds of rules. One of the results I’m about to show is that at least for
the propositional fragment, the metainferential behavior of each logic in the hierar-
chy is completely determined by higher level structural rules. In other words, there
is no need to provide operational rules over and above the regular ones, i.e., those of
level 1 that govern the sequents.

To start off, let us consider the translation function , which is the converse
of .

Definition 3.1 L L L is defined recur-

sively, for L by , and for each inferential level 0
by

1 2 ...
1 2...

5It is worth mentioning that the account below doesn’t aim to encompass the phenomenon known as “anti-
validities”. See [18] for a model-theoretic account of anti-validities in the BPS hierarchy. There is also
much to be said about anti-validities in the BPS hierarchy from a proof-theoretic perspective, but such a
project will have to wait for another occasion.
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and for 1 by

1

Note that the output of , when applied to a metainference of level , is
a metainference of level 1. As opposed to , though, keeps all
formulas unchanged. Note further that for all 0 :

. That is, L . Unfortunately, the con-

verse doesn’t always hold: , but
. Yet, an analogous requirement will be true of the fol-

lowing rules for metainferences of all levels (given in Definition 3.2), as
stated in Proposition 3.3 (part (ii)) below:

Definition 3.2 The following is a list of structural rules for all metainferential levels6

( 1), all of which are generalizations of the well-known structural rules.

1. Transitivity rules - , governing the transitivity of
premise metainferences and conclusion metainferences, respectively:

1

1 1 1 ... 1 1 1 1 ... 1

1

1

1

1 1 1 ... 1 1 1 1 ... 1

1

1

1

1 1 1 ... 1

1 1 1
...

1 1 1 ... 1

1

1 1 1 ... 1

1

1 1 1 ... 1

1

2. Monotonicity rules - , for weakening with premise
metainferences and with the bottom sequent of a metainference, respectively:

1

1 1 1 ... 1

1

1 1 1 ... 1 1 1 1

1

1

1 1 1 ... 1

1

1 1 1 ... 1

1

3. Reflexivity axioms: 1 1 1 ... 1 ... 1

1
(1 ).

6Observe that the degree of each proof line is mentioned inside brackets to the left of the proof line.
As I said in footnote 2, I shall use this notation mainly in proof trees, to indicate the degree and role of
each horizontal line, i.e., whether it is a part of a “sequent,” or whether it indicates a transition between
“sequents”.
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4. A set of auxiliary axioms of the form
1

1
for all

2 L 2 L such that 1 is derivable via a proof
tree of metainferences of level 1 (and where 1 is the empty metainfer-
ence of level 1, namely, the metainference of level 1 whose premises and

conclusions are all empty: 0 1 2 etc.).

Proposition 3.3 Here are some useful facts about these axioms:

(i) for 1 is redundant: given the well-known Weakening rule (for
inferences), it follows by induction for all , via .

(ii) For each instance of such axioms/rules of level (except for which
is redundant, given (i)), , instantiate that same axiom/rule
at levels 1 1, respectively.

(iii) Given Cut, -Cut (for 1) is derivable via .

3.1 Soundness and Completeness for CL

Definition 3.4 Let 0 be the proof system of classical logic (which is the same as
that of ST given in Section 2, with the addition of Cut). We recursively define the
sequent rules and axioms for metainferences of level 1 to be

1
1 1 1 1

and
1

. We say that iff there is some such that

; i.e., is derivable in . Observe that

0

1

.

In other words, each consists of 0 along with all the structural rules up to
level .

Now, to prove completeness, we need the following proposition:

Proposition 3.5 For all 0 , and for every metainference :
iff .

Theorem 3.6 is sound and complete with respect to : for all 0
and for every metainference , iff .

Proof By induction on . The 0 case is just the soundness and completeness of
0. Assume that the claim holds for some , and consider a metainference 1
of level 1. By Lemma 2.8, 1 iff 1 .

By the inductive hypothesis, this is the case iff 1 , and by
Proposition 3.5 this is the case iff 1 .
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3.2 Soundness and Completeness for LP

Definition 3.7 Let 0 be the proof system of LP given in Section 2. We recursively
define the sequent rules and axioms for metainferences of level to be

1
1 1 1 1

and
1

. We say that iff there is some such that

; i.e., is derivable in . Observe that

0

1

.

Unfortunately, unlike in the CL case, it is the case that iff
. In fact, even the deduction theorem fails to hold in LP.7 As a

result, there are no shortcuts in the completeness proof, and we need to work out the
details with our own hands.

Theorem 3.8 is sound and complete with respect to : for all 0 ,
and for every metainference , iff .

Proof By induction. The 0 case is the soundness and completeness of , as
proven in [5], following [15, p. 157, Theorem 8.7.9]. Soundness is easy to prove for
all levels, and so I shall focus on completeness. Specifically, I shall discuss in detail
the 1 case, which is relatively non-abstract and easy to follow. Then I shall point
out why the proof for all 1 is analogous, after due adjustments are made.

So, let 1 1 ... be some sequents such that

for all :
1 1 ...

. We want to show that

1 1 ...
. As usual in this kind of proofs, let us show instead that

1 1 ...
entails

1 1 ...
. To this end,

assume that
1 1 ...

. Let be an enumeration of all

the formulas in the language, and let be defined as follows: 0 , and

1

1 1 ...

.

We then define
0

.

7Moreover, LP has Cut, so , but .
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Now, our sequent rules are usually defined only where the contexts are finite
sets, and may be infinite, but it is rather obvious that for all finite :

1 1 ...
. Moreover, is clearly a maximal such set: for all

there is some such that
1 1 ...

. Additionally, I

claim that has the following properties:

(i) iff
(ii) iff either or
(iii) For all L , either or (This is an exclusive

disjunction).

(i) and (ii) follow immediately from the invertibility of the rules,8 along with
one application of 1. For instance, the right-to-left direction of (i) can be proven
based on the fact that is invertible. That is, for all :

2

1 1 1 ... 1

1 1 1 ... 1

and so entails . As for (iii), suppose that there is some
such that . By maximality, there is some such that for all :

1 1 ...
and

1 1 ...
. But on the

other hand,
1 1 ...

since the bottom sequent is an axiom.9

Two application of 1 (which is available by Proposition 3.3) will then
give us

1 1 ...

1 1 ... 1 1 ...

1 1 ...
1

1 1 ...
1

contradicting our assumption that the bottom metainference is unprovable. To sum
up, has the properties (i)-(iii).

8As I said in Section 2, invertibility can be proven in the usual way, since LP has Cut.

9 To be precise, the bottom sequent is an axiom, and so is an instance of 1. There-

fore, we can weaken times (applying 1 ) with 1 1 ... , to get the required
result.
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Now, let be the valuation function defined over the atoms by:

0
1
2

1

can clearly be extended in a well defined way to all L . Moreover, as in the
completeness proof for sequents, it can be shown that for all L : 1

2 1
iff . As a result, for all : 0, because . (Otherwise,
there would be some such that holds).

It remains to show that forms a counterexample model to our metainference.
Let us assume, towards reaching a contradiction, that this is not the case. Clearly,
doesn’t satisfy the bottom sequent: we saw that 1 1

2 for all and
that 0 for all . So if doesn’t form a counterexample model to the
metainference, it has to dissatisfy at least one of the premise sequents, say,

for some . Without loss of generality, we can assume that consists of only
one formula (otherwise, just replace it with a large disjunction, as usual). Namely,
our rebellious sequent is of the form , and . Therefore,

1
2 1 for all , but 0. By the definition of , we get ,

and so, by maximality, we get that there is some such that for all :
1 1 ... ...

. Therefore, we can reason as follows:

2

2

1 1 1 ... ...

1 1 1 ... ... 1
2

1 1 1 ... ...
1

1 1 1 ... ... 1

1 1 1 ... ...
1

Hence,
1 1 ... ...

. However, ,

because for all : 1
2 1 , and so, by the construction of :

1 1 ... ...
, and we get a contradiction.

Consequently, has to either satisfy or dissatisfy some . That is, has to

satisfy all the premise sequents of
1 1 ...

, although it dissatisfies

its conclusion sequent. Thus, forms the counterexample model we were looking
for. This completes the completeness proof for metainferences of level 1.

As I said, the completeness proof for metainferences of level 1 on the basis
of the completeness of metainferences of level is analogous to the above proof.
Let me briefly sketch the general idea. Given a metainference of level 1 that is

not derivable: 1 1 1 ...
, we note that

.10 is of the form for some , and so,

10See the previous footnote for an explanation.
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as before, we construct a maximal such that for all finite :
1 1 1 ...

and, in particular,

. Now, can be shown to have all the required properties (i)–(iii), so as in the
1 case, we define a valuation function , based on . Since for all finite

: is an unprovable metainference of level , it follows
by the inductive hypothesis that satisfies all of its components-sequents
its bottom sequent. It remains to show that satisfies all 1 1 ... .
The latter claim can be proven in a way similar to the 1 case, which requires
the applications of 1, 1, and 1 . This completes the
proof.

3.3 Soundness and Completeness for ST

Definition 3.9 Let 0 be the proof system of ST, given in Section 2. We recursively
define

1
1 1 1 1

and
1

. Observe that

0

1

.

Theorem 3.10 is sound and complete with respect to : for all 0
and for every metainference , iff .

Proof The 0 case is just the soundness and completeness of ST, proven, e.g., in
[17]. For 1, namely, soundness and completeness for metainferences of level 1,
see [9]. For all 2, and for a metainference , let us prove by induction
that iff . If so, then for all 2:

iff , and by Theorem 3.8 this is the case iff
, which is equivalent, by Theorem 2.7 to . So we

would get iff , as required.
The base case is 2. By Proposition 3.3, for each axiom/rule of level

2, instantiates that same axiom/rule, and since and share
the structural axioms/rules at levels 1, it follows that entails

. On the other hand, we need to prove that for each axiom/rule
of of level 1, , is derivable in . That proof is carried out along
the lines of the proof of Proposition 3.5. In fact, it is rather easy to show that for each
such axiom/rule, , is derivable in , using 1 and 1 . For
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example, here is a proof that is derivable in : observe that

in , as in CL: . Hence, we can reason as follows:

2

1 1 ... 1

1 1 ... 1

The cases of the other axioms/rules are analogous, so they are left to the reader.
It remains to make the inductive step. However, note that from level 2 onwards,

and have the same axioms/rules, namely, only the structural ones. By
Proposition 3.3, for each such axiom/rule , and instantiate that
same axiom/rule, at levels 1 1, respectively. Hence, for 3, and for a
metainference , it is clear that iff

.

3.4 Soundness and Completeness for the Rest of the Logics

To provide sequent rules and axioms for the rest of the logics in the hierarchy, we
first need to introduce additional structural rules for all inferential levels. These are
the substitution rules :

1

1 1 1 ... 1 1 1 1 ... 1

1

1

1

1 1 1 ... 1 1 1 1 ... 1

1

1

1

1 1 1 ... 1

1

1

1

1 1 1 ... 1

1

These rules allow us to substitute premise/conclusion metainferences for
metainferences: that is why each rule has as a premise a double-line

metainference, whose role is to guarantee that the substitute and the substitutee are
indeed equivalent. These substitution rules are clearly derivable from ,
but they are weaker than the transitivity rules. Indeed, it is exactly this double line
requirement which makes the difference between the rules and the rules.
Thus, there is no way to derive only with the substitution rules (recall
Proposition 3.3). Yet, observe that like the other structural rules, for each substitu-
tion rule of level , and instantiate that same rule at levels

1 1, respectively.
Now, these rules are required for proof-theoretic accounts of the rest of the logics

in the hierarchy. To understand this point, recall that each such logic becomes non-
transitive at the level where its standard for premise satisfaction and its standard for
conclusion satisfaction diverge. For ST ( 1) these standards diverge at level 0 (for
premises and conclusions of inferences), and in general, each ( 1) becomes
non-transitive at level 1. Consequently, each doesn’t admit 1. On
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the other hand, for 1, sets the same standards for satisfying premises
and conclusions, and so it does admit .11 Now, the rules substitute for
the absent in order to guarantee that metainferences remain intersubstitutable
with equivalent metainferences, even if transitivity no longer holds.

It follows from the above that each logic in the BPS hierarchy (when 2)
is governed at the metainferential level ( 0 ) by the following sequent rules
and axioms:

0 2
1 1
1 1.

Let us define
1

. Observe that for each , we have

2
1 1 1 1 .

Now we can prove the following results:

Theorem 3.11 For all 2, for all 0 , and for every metainference
: iff

1
.

Theorem 3.12 For all 0 , for all 0 , and for every metainference
: iff .

Proof By induction. The base cases are those of , which have already
been proven. Assume that the claim holds for some 1, and let be a
metainference of level (for some ). Assume that

1
. By Theorem

3.11, this is the case iff , and by the inductive hypothesis
this is the case iff . By Theorem 2.7, that is equivalent to

1 . To sum up, iff .

4 A Hierarchy of Validity Predicates

From the point of view of the hierarchy, “validity” should no longer be considered
a unified phenomenon. Rather, we have to distinguish between different concepts of
“validity,” pertaining to different metainferential levels. Therefore, the thought goes,
a definition of one such concept, say “validity” as pertaining to inferences (metain-
ferences of level 0) need not, and may not capture “validity” as pertaining to other
metainferential levels.

11However, the damage is already done, so to speak, at all other levels. Recall Proposition 3.3: we need
to prove for . Thus, the absence of transitivity rules at some level makes it

impossible to derive from that level onwards.
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Therefore, the hierarchy pushes us to consider the possibility of a sequence
of “validity” concepts—ultimately, validity predicates—each one of which is sup-
posed to capture “validity” at a different inferential level. This section deals with
that thought, and the next section deals with some of its (potential) philosophical
implications.

Assume that in our language we have names not only for propositions, but also
for sets of propositions, as well as for sequents, metainferences, metametainferences,
etc.12 To put the goal in more concrete terms, what I wish to do is to define a sequence
of validity predicates 0 such that, 0 holds iff
the sequent is valid,13 1 1 1 ... holds iff

1 1 ...

is valid, 2
1 1
2 2

3 3
4 4

holds iff

2

1 1 1

2 2

1 3 3

4 4

is valid, and so on. In other words, it seems like a condition of adequacy on the
definitions of these predicates that what Beall and Murzi call the [6, p.
153] holds. For inferences, the schema goes as follows:

and in general, the requirement is that a statement holds the
corresponding metainference is valid.

How should we go about defining all these predicates? Fortunately, Beall and
Murzi in [6] have already shown us how to inferentially define the first predicate;14

I shall simply follow their footsteps in defining the other predicates by way of gen-
eralization. The first predicate, 0, is to be defined (according to Beall and Murzi)
by the following rules:

0
0

0
0

0 is an introduction rule. It allows us to introduce 0 on the right if the relevant
sequent holds. The idea is that if an inference is valid, then “saying as much—using
the validity predicate—is true in a validity-strength fashion” [6, p. 152]. In other

12See [19] for examples of formal languages with such expressive resources. Their discussion of what
they call “external Curries,” has some affinity to my discussion below, although it doesn’t directly relate
to metainferential phenomena.
13By “valid,” I really mean here “derivable”. For, as Hlobil argues in [10], a validity predicate cannot
capture the admissible rules on pain of going non-classical in the metalanguage.
14This definition serves as an alternative to the explicit definition of validity in terms of truth preservation.
To be more concrete, by “inferential definition” I mean an implicit definition of a specific kind: a concept
is defined in such a way if it is given by rules that specify the concept’s contribution to the premises and
conclusions of inferences, i.e., its contribution to inferenes on both sides of the sequent arrow.
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words, 0 grants each validity statement the force of a theorem, equal in modal
strength to the corresponding inference whose validity it’s supposed to capture. On
the other hand, 0 is a detachment rule, whose rationale is analogous to that of

: it’s nothing but plausible to infer a conclusion on the basis of certain
premises together with the information that these premises entail that conclusion [6,
pp. 152-153].

Although they have been contested (see, e.g., [3, pp. 10-15];[11, pp. 4765-4769]),
0 and 0 seem to maintain their appeal, due to the intuitive and straightforward

definition they provide for the the concept of the validity of inferences. For that rea-
son, I shall follow suit in defining the rest of the predicates, that are meant to capture
“validity” at higher metainferential levels. I shall do so in two steps. First, I shall
discuss in particular 1. Then it will become clear how to define the rest of the
predicates by way of generalization.

1 is supposed to capture the validity of metainferences of level 1. As such, its
introduction rule—let us call it 1 —should allow us to express a 1 statement
such as 1 1 1 ... , and it should allow us to
do so in cases (and only in cases) where the relevant metainference is derivable. In
other words, the sequent 1 1 1 ... should be

inferable from the metainference
1 1 ...

. In our setting, the way to

do that is by:

2

1 1 1 ...

1

1 1 1 ...

1

In this way, 1 turns out to be a mere generalization of 0 . In particular,
observe that 0 is , i.e., it allows us to introduce validity-statements
only without contexts, as the sole formula occurring in the sequent (with no addi-
tional premises or conclusions).15 Analogously, in the case of metainferences, the
“context” that has to be free is not only the sequent where 1 is introduced, but also
the premise inference that precedes this sequent. The rationale is the same: each 1
statement has to be equal in modal strength with the metainference whose validity
it’s supposed to express.

As for 1 , the following detachment rule naturally suggests itself:

1 1 1 ...

1 1 1 ...
1

That is to say, assuming that the premise sequents of a metainference hold, and
that the premise of the conclusion sequent holds as well, together with the informa-
tion that the metainference is valid, one is allowed to derive the conclusion of the
conclusion sequent.

In general, we can follow the same line of thought and introduce sequent rules
for for all 1. Let be some metainference of level where

15For a justification of the context-freeness of 0 , see [3, p. 10].
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1 ... , and let L be some sets of formulas. Then, the follow-
ing rule, , is a straightforward generalization of 1 (where is the empty
metainference of level , namely, the metainference of level whose premises and

conclusions are all empty: 0 1 2 etc.):

1

As for , the following detachment rule naturally suggests itself:

1 ...

That is to say, we can derive any metainference of level of the form
, if we add the information that this metainference is valid (i.e.,

) as a premise to the bottom sequent.
So much for definitions.16 The question that arises, given those defini-

tions, is whether one’s logic is able to entertain them all, i.e., whether the
17 of one’s logic allows one to define these validity predicates

in that logic, capturing its own notions of “validity,” regarding various metainfer-
ential levels. As is well known, regarding 0, the answer is not always positive.
For, given self-reference,18 there will be a sentence, 0, that is intersubstitutable with

0 0 . Thus, one could reason as follows—let us call it derivation 0 —to
derive the paradoxical sequent (which, as is well known, leads to disaster):

0 0 0
0

0
0

0 0

0
0

0
0 0 0

0

0
0

16Those definitions should be regarded as materially adequate, as they guarantee for all levels.
Here is a sketch of the proof: by we get , and then

17By the “expressive power” of a logic, I mean here the set of operators that are “available” (using the
terminology of [1, p. 119]) in that logic, where such “availability” is measured by the requirement that
adding these operators to the language (along with their rules) doesn’t trivialize the consequence relation
at hand.
18By “self-reference,” I mean expressive power rich enough to enable one to prove the diagonal lemma.
That is to say, I assume that for any definable predicate in our language, , there is a sentence which
“says of itself” that it has the property , namely, is a theorem. Moreover, I shall assume
that and are intersubstitutable on both sides of the turnstile. These assumptions are made for the
sake of the argument, and for our purposes need not be justified here. See [8, pp. 853-855] for a discussion
on how to achieve such results.



Metainferences from a Proof-Theoretic Perspective

As a result, CL, as well as LP,19 cannot be conservatively extended with 0,
and are unable to capture their own notion of the validity of inferences. By contrast,
the above derivation is blocked by ST, which is free of Cut. Indeed, ST can be con-
servatively extended with 0 just as it can be conservatively extended with a truth
predicate [17, pp. 157-159].

But that’s just the beginning of the story. For, given self-reference, there will be
a sentence 1 that is intersubstitutable with 1 1 ,20 so that one can
make derivation 1 , which goes as follows:

2

1

1 1 1
1

1

1

1

2

1

1 1

1
1

1

1

2

1

1 1 1
1

1

1

1

1
1

This is a disaster. For one thing, if the metalanguage is transitive, one can derive

from by reasoning in the metalanguage. Worse, the conclusion metain-

ference is not derivable in 1 and so, in a setting that is classical up to the first
metainferential level—i.e., a setting where 1 is available—we reach a
contradiction. We thus get a version of the Curry paradox for metainferences of the
first level.

Note that the above derivation is blocked in ST, because it depends on an appli-
cation of 1 , which isn’t available unless Cut is present (Proposition 3.3).
The same is true of the third logic in the hierarchy 2—also known as TS/ST—where

1 fails to hold as well. Consequently, in the same way that ST blocks the
well known Curry paradox, both ST and TS/ST block the aforesaid version of that
paradox. For 3, however, 1 is available, and so one may raise the
conjecture that for 3, cannot be conservatively extended with 1.

This result is naturally generalized in the following way. For all 2 we shall be
able to make a corresponding derivation , for (given self-reference) there will be

19For a discussion of the LP case, see [6, p. 148], particularly footnote 13 there.
20The property that guarantees the existence of 1 is, of course, 1 . There-
fore, to guarantee the existence of 1 we also have to assume that complex names in our language (say,
names of sequents) are realized as concatenations of less complex names. In fact, the latter assumption
guarantees the existence of all ’s discussed in the following passages. As I said in footnote 18, though,
my assumptions are made only for the sake of the argument, and for our purposes need not be justified
here.
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a sentence that is intersubstitutable with 1 1 . This
will give rise to the -th version of the paradox:

1

1

1 1 1

1 1

1

1 1 1

Consequently, it seems like each logic in the hierarchy can be conservatively
extended with iff it doesn’t admit the rule. Truth be told, I was
initially inclined to claim that:

Conjecture For each 1, the logic in the hierarchy can be conservatively
extended with the validity predicate iff 1 .

Yet, however tempting and elegant, at the end of the day this conjecture proves
to be wrong. The fact of the matter is that each (for 1) can conservatively
extended with for all 0 . Let me explain why, taking TS/ST to be
my case in point here. On the face of it, TS/ST has Cut and the rest of the rules
that take part in derivation 0 , so how can it block the paradox? The problem is
that the proof tree of derivation 0 makes implicit use of transitivity rules. Each
sequent in the tree, except for the leaves and the root, has a dual role to play: first,
it is , namely, it plays the role of a conclusion that results from applying
some valid inference rules (given some premises). Then, it serves as a in
yet another valid inference rule. However, TS/ST is non-transitive exactly in that it
doesn’t have the 1 rules, and so it doesn’t allow us to make previously inferred
sequents into premises of a new metainference. Suppose, for example, that we grant
the derivations of 0 0 . With those sequents as premises, and with the

following instance of Cut:
0 0

, we want to derive . However, even

though Cut holds in TS/ST, namely, , we are not

allowed to apply it in the case of those premises because

2

1 1 1

1

As a result, TS/ST blocks derivation 0 , not by disapproving some of the rules it
involves, but by making it impossible to concatenate these rules into one proof tree.
Likewise, although 3 does approve the above principle, it doesn’t allow us to apply it
to guarantee that derivation 0 goes through. In general, as Scambler stresses in [18],
each (for 2) accepts Cut, but denies metaprinciples that allow us to go from
the acceptance of Cut and the acceptance of some Cut premises to the acceptance
of the relevant Cut conclusion. For this (very interesting) reason, derivation 0 is
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blocked by each such (for 2): these logics explicitly seem to recognize that
the curry sentence leads to disaster, while also allowing it to lead to disaster.
Likewise, every other derivation is blocked by all the logics (for all 0 ):
up to level 1 by not having , and from there onwards, by denying
structural principles that will allow us to use in the derivation. Thus,
it turns out that each logic in the hierarchy (except for LP) can handle all the above
validity predicates.21

5 Philosophical Implications

In this section, I wish to point out two philosophical implications of the above
results. I don’t pretend to be arguing these implications conclusively. Rather, my
goal is merely to demonstrate the philosophical potential there is in the proof-
theoretic account of the BPS hierarchy. A more comprehensive discussion of these
implications will have to wait for another occasion.

5.1 Identifying Logics

I take it that the proof-theoretic account makes it really hard to identify ST with CL,
LP, or any other logic in the hierarchy. My reasons are as follows.

, there are two ways (as well as combinations thereof) in which the
identity of a logic may be determined: either , in terms of some rel-
evant extension, e.g., the extension of the logic’s consequence relation (which sets

L stand in the relation), or , in terms of the logic’s rules
that determine such an extension. Those who identify ST with CL clearly reside in
the second camp. For them, although ST and CL differ on the rules—and thereby
differ also in expressive power—they have the same consequence relation, and that
is all that matters. A difference of opinion regarding the rules—particularly, as to
whether Cut should be derivable—doesn’t really count on this view unless it affects
the consequence relation at hand.

Now, although the nature of the metainferential phenomena doesn’t speak against
the extensional criterion as such, it does speak against the claim that the relevant
extension—that which determines a logic’s identity by this criterion—is just that of
the consequence relation. For, if the hierarchy has taught us anything, it is that a
comprehensive account of logic has to include sequent rules and axioms governing
not only inferences, but metainferences of all levels, so as to determine not only the
consequence relation of the logic at hand, but also the extension of the logic’s valid
metainferences, metametainferences, etc. Namely, all metainferential levels should

21The informed reader may be reminded at this point of a proof given by Pailos in [13], that the same goes
for a transparent truth predicate. Namely, each such logic can be conservatively extended with a predicate
such that for all valuations, in all models. See also the discussion in [18], particularly

Section 5 there.
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be taken into account in specifying the extension that determines a logic’s identity.22

Therefore, ST is no longer identifiable with CL because these logics differ extension-
ally at infinitely many metainferential levels, nor are any two logics in the hierarchy
identifiable for the same reason.

Therefore, it no longer seems viable to identify ST with CL, either extensionally
or intensionally, nor does it seem viable to identify any two logics in the hierarchy
with one another, either extensionally, or intensionally, because all these logics have
at least some different rules. Thus, it seems that each logic maintains its own distinct
identity.

How about identifying some of these logics through translation functions? The
idea behind such an identification is that two logics are identifiable if they have the
same “abstract consequence relation,” as defined, e.g., by Blok and Jónsson in [7].
However, from a philosophical point of view, it is quite clear that the identification of
two logics (or any other pair of objects, for that matter) through translation functions
already inclines us toward the intensional criterion: it makes no sense to identify
two objects as the same through a translation function if the identity of these objects
is determined extensionally and the two relevant extensions are (set-theoretically)
different. That is to say, the very appeal to translation functions in order to determine
the identity of a given object concedes that such an identity is determined in terms
of , rather than in terms of extensions. It follows that the relevant translation
function to which we appeal must not only preserve some extension; the rules that
determine this extension must also be somehow preserved. Yet it is unclear in what
sense a translation function can “preserve” inference rules.23 Thus, despite being of

interest, the translation function by itself falls short of establishing
a claim of identity. Since LP and ST (in fact, all the logics in the
hierarchy) differ on the rules, it seems that translation functions are of little help in
establishing claims about their identity.24

22Note that the rules that determine the extension at level (which are schemata of metainferences of
level 1) are themselves regarded at level 1 as axioms, namely, as part of the “extension”. Thus, we
face here the phenomenon already observed by Lewis in [12], that “intensional” is a relative concept, and
cannot be simply defined as “that which is not extensional”.
23See [20, pp 63-64] for a discussion of relevant problems. Indeed, according to Woods’ criterion of
intertranslatability, ST and LP aren’t identical.
24The situation is even worse in the case of ST and LP, which clearly differ in expressive power, since
only the former can handle a validity predicate. Moreover, the claim that a logic is to be identified with
its external logic faces yet another challenge here. For, the external logic of each logic in the hierarchy
is its predecessor. Hence, if a system is to be identified with its external logic, we would have to identify
not only ST with LP, but also with 1 for all . Then, provided that “identity” is a transitive
relation, we end up in the position where all of these logics are identical to LP, which may strike one as
odd. Furthermore, it becomes really hard to argue that LP is different from CL, since for each level of
“closeness” to CL there is a logic in the hierarchy that is identical to LP. To put the matter topologically
(which seems appropriate here), LP has a representative in any “neighborhood” of CL and so it is as
“close” to CL as possible. This conclusion is at least odd, if not unacceptable.
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5.2 Each Validity Predicate is Required

In [2], Barrio, Rosenblatt, and Tajer put forward a criticism of ST, targeting its
alleged ability to handle a validity predicate. First, they point out that the presence
of a validity predicate in the object language makes it possible to express not only
validity statements such as 0 , but also the metarules, e.g., :

0 0 . That is, ST enriched with a validity
predicate seems to “have an opinion” on whether such metarules are valid.

However, the criticism goes, it is impossible to derive sequents like
0 0 in ST. This is because ST is Cut-

free, and so the only way to introduce such a 0 statement must come by 0 and
0 . Yet, 0 is context-free, which makes it impossible to derive such a sequent

with it (see the details in [3, p. 10 (Proposition 1)]). Alternatives to 0 prove even
more problematic, as they allow us to derive an internalized version of Cut [3, pp.
15-16]. Thus, it seems that ST cannot properly handle a validity predicate because
any such predicate fails to “have the right opinion” on ST’s metarules.

With the hierarchy, the situation is even worse. For, if it is impossible to derive
statements like 0 0 , which states that

is valid, it is definitely impossible—for the same reason, the context-freeness of
0 —to derive statements like:

0 0

which says that the de-Morgan rule is valid. For, the derivation of
in ST involves . As a result, it is also impossible to derive the following sequent:

0 0 1 ... 0 0 0

0 0 1 ... 0 0

0 (where 1 ... ), which is supposed to state that
is derivable in . But is derivable in

(Theorem 3.10). Thus, 0 fails to capture not only the metarules, but derivable
metainferences of levels 1 as well.25

By contrast, 1 is perfectly suitable for capturing the validity of metarules (of
level 1) such as ; it simply does so by 1 and
1 :

2

1

1

1

1

In fact, 1 captures in such a way all valid metainferences of level 1. Likewise,
2 is suitable for capturing the validity of and, in general,
is capable of expressing the validity of all of its higher-order metainferences,

in each case with the appropriate validity predicate. In sum, the criticism of ST rests
on an unjustified assumption: it’s not that ST fails to have the right opinion on its

25This difficulty applies also to alternative ways to deal with Barrio, Rosenblatt, and Tajer’s criticism. See,
e.g., Hlobil’s suggestion in [11], in particular Section 5 there.
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own metarules; it’s just that expressing such an opinion requires yet another validity
predicate, not the one used to express what follows from what.

6 Conclusion

The purpose of this paper was to explore the BPS hierarchy from a proof-theoretic
perspective. This perspective is important for at least three reasons. First, the proof-
theoretic account is complementary to the model-theoretic account. Hence, this
account puts us in a position to gain a better understanding of the hierarchy, both
technically and conceptually. Second, the proof-theoretic account allows us to define
the sequence of validity predicates, and to use it to study the expressive power of the
logics in the hierarchy. Third, the proof-theoretic account allows us to draw some
philosophical conclusions about the hierarchy. In particular, I am inclined to think
that each logic in the hierarchy maintains its own distinct identity, and that a validity
predicate need not capture “validity” at more than one metainferential level.

Appendix

Lemma 2.8. For all 1, and for all 1 L 1 L :
iff .

Proof By Theorem 2.6 iff 1 . By Theorem 2.7
the latter is the case iff , and once again by Theorem 2.6
(since is a metainference of level 1), that’s the case iff

.

Proposition 3.3. Here are some useful facts about these axioms:

(i) for 1 is redundant: given the well-known Weakening rule (for
inferences), it follows by induction for all , via .

(ii) For each instance of such axioms/rules of level (except for which
is redundant, given (i)), , instantiate that same axiom/rule
at levels 1 1, respectively.

(iii) Given Cut, -Cut (for 1) is derivable via .

Proof (i) By induction. Assuming is derivable, we can derive 1 from
and 1 in the following way:
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Part (ii) is easy to prove, and so it is left for the reader as an exercise.
Part (iii) is proven by induction on . The base case, Cut, is given. Assume that

the claim holds for , and let 1 ... L L .
Then 1 is derivable from (guaranteed by the inductive
hypothesis) and 1:

Proposition 3.5. For all 0 , and for every metainference :
iff .

Proof By induction. I shall prove the claim for 0 1 2, and then turn to the
inductive step.

The 0 case is the deduction theorem, which is known to hold in CL, so
iff , which is .

The 1 case follows from the deduction theorem along with the fact

that CL coincides with its external logic. Let be

some metainference of level 1. By the deduction theorem, for all 1 :
iff , and iff

. Now, by 1 applications of the transitivity rules,
we can replace each of these sequents with its equivalent one, and get that

Since CL coincides with its external logic, the latter holds iff

1 1 ...

which is

We also need to prove the 2 case. It is enough to show that for each instance
of a rule/axiom of level 2, is derivable in , and that for each instance
of a rule/axiom of level 1, is derivable in . If so, then:

1. For each proof tree of metainferences of level 2 whose leaves are 1 ... and
whose root is there is a proof tree of metainferences of level 1 (a “regu-
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lar” proof tree) whose leaves are 1 ... and whose root is
.

2. For each proof tree of metainferences of level 1 whose leaves are 1 ...
and whose root is , there is a proof tree of level 2 whose leaves are

1 ... and whose root is .

Let us begin with the first claim. Consider an instance of some rules/axiom of
level 2. It is necessarily one of the structural rules, and so by Proposition 3.3
also instantiates that same axiom/rule at level 1.

Consider then the axioms and rules of level 1, namely, the regular sequent rules
and axioms of CL. We have to show that for each instance of some such axiom/rule
, is derivable in . I shall discuss two cases, and leave the rest as an

exercise.

can be derived in the following

way:26

(ii) The proof of the case is more complex. I shall discuss the top-to-
bottom direction, but the proof of the other direction is analogous. What we need to
prove is that for all :

26Recall that is a double-line rule in the calculus given in Section 2.
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What we really need to show is that the metarule :

is admissible in .27 If so, then

whatever is derivable with will be derivable without it. And so, for all :

But actually, is admissible simply because CL coincides with its external
logic.28 That completes the proof of the 2 case.

Now, suppose that the claim holds for some 2. We want to show that it holds
for 1. Since all the rules and axioms of levels 1 are structural, this is an

27Admissibility is defined for metainferences in the same way that it is defined for inferences: an admis-
sible rule is one whose addition to the existing rules of the system doesn’t change the system’s set of
theorems, or, in this case, the set of derivable metainferences. Thus, to prove that a rule is admissible,
we need to show that if certain instances of the premise metainferences hold, the relevant instance of the
conclusion metainference holds as well.
28 Nonetheless, here is a sketch of a proof that is admissible: Assume that the (meta)sequent

holds. So there is a proof tree whose leaves are 1 ... and
whose root is . We show by induction on the proof height how to construct a proof tree of

For a height of 1, if the sequent isn’t active in the proof, then there is a proof tree

of Using 1 , we can weaken with on the left of the bottom sequent and get the
result. If is active in the proof, then there are three options: is derived either by 1 or by or
by . In the first case and so is an identity axiom (and from there the proof is trivial). In

the second case, there is some such that . So and from there with the
1 rules the proof is trivial.

In the third case, there are two options: (i) there is some 1 such that , and (ii) is
of the form and . In the case of (i) we reason:

And once again, enough applications of the 1 rules will get the job done. As for (ii),
is clearly derivable, and then we weaken times with 1 ... respectively. The inductive

step is analogous for, given Cut-elimination, we can assume that the proof involves only sequents with an
empty left-hand side.
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immediate result of Proposition 3.3: for each instance of some axiom/rule of level
, instantiates that same axiom/rule at level 1, and for each instance
of some axiom/rule of level 1, instantiates that same axiom/rule at

level . This completes the entire proof.

Theorem 3.11. For all 2, for all 0 , and for every metainference
: iff

1
.

Proof By nested induction.
Base case: 2, 0. The relevant rules governing inference (metainference of

level 0) are those of 0. But it is known that iff .
I shall also discuss the 1 case. Consider a proof tree of a metainference (of
the first level) 1 . Now, by Proposition 3.3: 1

2
0

1 1

1 1 and so for each instance of axiom/rule 1
2: 0 . Hence,

0 1 . We also need to show that for each instance of axiom/rule
0, is derivable in 1

2. Once again, the proof is similar to that of
Proposition 3.5: it relies on the fact that all the operational rules of 0, which are
also the operational rules of 1

2, are double-line rules. Therefore, it is easy to prove
that their versions are derivable, using instances of 1. For example, both
directions of are derivable as follows:

Hence, 1
2

1 iff 0 1 .

For 1, however, observe that 2 and
1 have only structural rules at these

levels, and so the proof is trivial, given Proposition 3.3.
Inductive step: Assume that the claim holds for some ; then we have to show

that it holds for 1, for all . For 0 1, the relevant rules are those
of 1, and we know from Proposition 3.5 that 1 iff 2

. For , note that 1 and
1 have the same rules (modulo

degrees) which are all structural (at level of 1 and at level 1 of 1 ),
and so, once again, the claim holds, by Proposition 3.3. The same method of proof
also applies to all . This completes the proof.
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