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Abstract

We study the integrable bi-Yang-Baxter deformation of the SU(2) principal chiral model (PCM) and its 
finite action uniton solutions. Under an adiabatic compactification on an S1, we obtain a quantum mechanics 
with an elliptic Lamé-like potential.

We perform a perturbative calculation of the ground state energy in this quantum mechanics to large 
orders obtaining an asymptotic series. Using the Borel-Padé technique, we determine the expected locations 
of branch cuts in the Borel plane of the perturbative series and show that they match the values of the uniton 
actions. Therefore, we can match the non-perturbative contributions to the energy with the uniton solutions 
which fractionate upon adiabatic compactification.

An off-shoot of the WKB analysis, is to identify the quadratic differential of this deformed PCM with that 
of an N = 2 Seiberg-Witten theory. This can be done either as an Nf = 4 SU(2) theory or as an elliptic 
quiver SU(2) × SU(2) theory. The mass parameters of the gauge theory are given by the deformation 
parameters of the PCM.
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1. Introduction

The task of computing exactly the values of observables in an interacting theory is typically, 
and certainly in the absence of simplifications afforded by supersymmetry or integrability, a dif-
ficult problem. Perturbation theory may be the only viable recourse to this and indeed can be 
capable of making predictions of astonishing accuracy e.g. [1,2]. However, a fundamental limi-
tation of such approaches is that the resultant perturbative series will often have a zero radius of 
convergence. Commonly, we consider some coupling constant z = g2, and perform perturbation 
theory around z ≈ 0 for some observable O:

O(z) =
∞∑

n=0

anz
n, (1.1)

where an will go like n!A−n for a very general class of systems. In QFTs, the origin of this can 
sometimes be anticipated from the similar factorial growth in Feynman diagrams with the order 
of perturbation theory [3–5]. The question then arises what meaning – if any – should be ascribed 
to formal asymptotic perturbative expansions?

Starting with pioneering work of Bogomolny and Zinn-Justin [6,7] it has become clear that 
actually far from being meaningless, a great deal of information is actually deeply encoded in the 
asymptotic expansion. For instance, a growth an = n!(A)−n indicates that the theory contains a 
non-perturbative object (instanton, renormalon, uniton etc) that enters with an action Sinstanton =
A. In this scenario, the use of Borel summation to resum the perturbative series will lead to 
ambiguities (as we shall see later the ray z ∈ R+ corresponds to a Stokes line). Crucially however, 
this ambiguity can be precisely cancelled by the inclusion of a leading order contribution arising 
from the non-perturbative saddle.

Now subleading, in 1
n

, contributions to an encode information about fluctuations around this 
non-perturbative saddle. With sufficient dedication one could then establish, from the pertur-
bative saddle alone, that the perturbation series around the non-perturbative saddle will itself 
typically be asymptotic with a growth indicative of further non-perturbative sectors. Ambiguities 
in resummation here will be cancelled by a higher non-perturbative sector.

The cancellations behave in a very specific way. The perturbative sector saddle [0] is void 
of any instantons, but receives contributions from instanton-anti-instanton events [IĪ] and their 
higher order cousins [InĪn]. The single instanton [I] is to interact with the members of its con-
jugacy class {[In+1Īn]}. This information is also often captured using the “resurgence triangle” 
[8,9]. Two instanton configurations that cancel each other’s ambiguities are said to be in the same 
sector and are hence put in the same of column of the resurgence triangle.

This leads to the idea of resurgence; that deeply encoded in the perturbative expansion lies 
all the non-perturbative information. Physical observables appropriately combine contributions 
from the perturbative sector and relevant non-perturbative sectors into a trans-series, introduced 
by Écalle [10], in such a fashion that all ambiguities are cancelled. The relative weighting of the 
contributions to the trans-series can undergo discrete jumps as z is varied - this is similar to the 
Stokes jump phenomenon.

In the context of quantum mechanics, the interrelation between Borel resummation and the 
Stokes phenomenon is crucial in the understanding of the WKB approximation. The information 
captured in the Voros symbols [11] undergoes jumps encoded by the Delabaere-Dillinger-Pham 
[12] formula. This information can be visualised by understanding the mutations of Stokes graphs 
(detailed in section 5.5) [13–16]. Algebraically, we can capture this information using a Stokes 
2
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automorphism. The celebrated work by Gaiotto, Moore and Neitzke [17,18], connects the very 
same information to the wall-crossing phenomena in N = 2 four-dimensional gauge theories. 
The ideas of resurgence have by now been applied beyond quantum mechanics, to include string 
theory, gauge theory and matrix models [8,9,19–27]. This sampling of works inevitably does not 
do justice to the large body of work on this topic and we recommend the reader to consult the 
review articles of [28–31] both for their pedagogical presentation and wider bibliography.

Our main focus in this paper is to understand how the ideas of resurgence can be applied in 
quantum field theories. To retain a degree of control we choose to work in the setting of 1+1 
dimensional field theories, that happen to be integrable (although in this work integrability will 
not be employed in a crucial fashion). The overall aim here is to expose the interrelation between 
the asymptotic nature of perturbation theory and the non-perturbative sector. With a direct study 
of the large order QFT using Feynman diagrams not viable there are two directions one could 
follow here. First one could exploit the exact integrability of these models and study the resurgent 
properties of the TBA system as in [32–34,33]. A second approach, first used by [35] and the one 
we adopt here, is to consider a reduction of the system to a quantum mechanics where a large 
order perturbative expansion can be carried out directly. In this approach, adiabaticity, achieved 
essentially by including a twist in the reduction, is used to argue that the lower dimensional 
theory still encapsulates the key feature of the higher dimensional one. Following this approach, 
it is possible to identify two-dimensional non-perturbative field configurations (so called unitons 
rather than instantons in the cases we study) as the origin of the objects that give rise to factorial 
behaviour in the reduced QM. This is a crucial first step in establishing the resurgent nature of 
the QFT.

In this work we shall specialise to a particular QFT, called the bi-Yang Baxter model. This 
theory, introduced by Klimčik [36], deforms the principal chiral model (PCM) on a group mani-
fold G with two deformation parameters, denoted by η and ζ , whilst the underlying integrability 
is preserved. When G = SU(2), which will be our specific concern here, it was shown in [37]
that the theory is equivalent to one already introduced by Fateev [38]. There are a few motiva-
tions for studying this particular scenario. First from a resurgence perspective it offers an access 
to having multiple parameters that can be dialled to expose interesting features. Second, we shall 
see very explicitly that resurgent structure will require consideration of saddle configurations in 
a complexified field space. Third, when the two deformation parameters are set equal to each 
other, η = ζ = � which we call the critical line, the deformed SU(2) theory is equivalent [37]
to the so-called η-deformation of S3 viewed as a coset SO(4)/SO(3). This provides an entry 
point to consider similar deformations of AdS5 × S5 [39–41] which are of interest since they 
are thought to encode quantum group deformations in holography. A resurgence perspective was 
given in [42] for the case with only one parameter, i.e. ζ = 0. Here we find whilst some features 
remain, the inclusion of a further deformation parameter enriches the story quite considerably.

Let us briefly summarise the findings of our study:

• The bi-Yang Baxter model admits finite action field configurations that generalise the uniton 
configurations introduced for the PCM by Uhlenbeck [43] and whose role in resurgence was 
expounded in [35,42]. In addition there are finite action field configurations that take values 
in the complexified target space (i.e. consist of complexified field configurations).

• Upon a certain twisted S1 reduction these configurations are seen, in specific regimes of their 
moduli space, to break up, or fractionate, into distinct lumps that resemble instanton-anti-
instanton pairs or complex instanton configurations.
3
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• The twisted spatial reduction of the model results in a quantum mechanics with an elliptic 
potential

V (w) = sd2(w)(1 + (ζ − η)2sn2(w)) , (1.2)

in which the modular parameter m = 4ηζ

1+(η+ζ )2 . Taking one of the parameters to zero, the 
Whittaker-Hill potential studied in [42] is recovered. Moreover, along the critical line η =
ζ = κ , the potential reduces to that studied by [26]. Looking at the co-critical line η = −ζ , 
we recover the potential studied by [20]. This new system thus interpolates between already 
known systems.

• The large order behaviour of the perturbation theory of the ground state energy gives rise, 
using a Borel-Padé transformation, to poles in the Borel plane that are located precisely at 
the values of the action for the above uniton configurations. Commensurate to this we find 
Stokes rays in the ϑ = 0, π directions of the Borel plane, and these are reflected as flip 
mutations of the corresponding Stokes graph.

• The ζ = η = � critical line is distinguished by a discontinuous jump in which the Borel pole 
associated to the one-complex uniton disappears and instead the leading pole in the ϑ = π

ray corresponds to a two-complex uniton. At the special point � = 1
2 , which corresponds to 

an enhanced Z2 symmetry, the real uniton and two-complex uniton have actions of equal 
modulus indicating a perfect cancellation in which the perturbative ground state energy be-
comes a series in g4 rather than g2. This provides a nice field theory example of resonate 
behaviour in resurgence.1

• The WKB quadratic differential corresponding to the potential in Equation (1.2) can be 
equated to the quadratic differential of N = 2 gauge theories in two realisations. First as 
the elliptic SU(2) × SU(2) quiver with one of the gauge couplings sent to infinity and with 
the relative Coloumb branch parameter set to zero. Second as the SU(2) Nf = 4 theory with 
pairwise equal flavour masses. In both cases, the masses are described by the quantum-group 
parameters of the bi-Yang-Baxter model.

The structure of the remainder is as follows: in Section 2 we provide a summary of the model 
under consideration before identifying the uniton configurations in Section 3. We perform the 
reduction to quantum mechanics in Section 4 and perform a detailed perturbative analysis of this 
in Section 5. We end the story by establishing the linkage to the N = 2 gauge theory in Section 6. 
We close with a discussion of a number of possible future directions.

2. Defining the model

In this section we shall review some basic properties of the principal chiral model (PCM) and 
the Yang-Baxter (YB) deformations.

2.1. Lagrangian

The action of the undeformed PCM is

SPCM = 1

2πt

∫
d2σ L [g] , L [g] = Tr

(
g−1∂+gg−1∂−g

)
. (2.1)

1 The potential Equation (1.2) at the critical line was indeed used as an proto-typical example to study such resonances 
in a 0-dimensional toy example in [29].
4
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Here, g is a map from the world-sheet into a group manifold G. The integral is over some world-
sheet, which is spanned by lightcone coordinates σ± = 1

2 (t ± x). We will later transition to a 
Euclidean signature with holomorphic coordinates z = 1

2 (t + ix) and z̄ = 1
2 (t − ix). Derivatives 

with respect to light cone coordinates are denoted respectively by ∂±. Note that ∂±g lives in the 
tangent space and is a Lie algebra g valued form such that g−1∂±g is the left-invariant Maurer-
Cartan one-form.

We will be considering a system with a bi-Yang-Baxter deformation. To define this theory we 
introduce the Yang-Baxter operator R, which satisfies the modified Yang-Baxter equation

[RA,RB] − R([RA,B] + [A,RB]) = [A,B] , ∀A,B ∈ g . (2.2)

Its existence implies that we can define a new Lie bracket which satisfies the Jacobi identity and 
is anti-symmetric (i.e. it defines a homomorphism of Lie algebras)

[A,B]R := [RA,B] + [A,RB] . (2.3)

In this paper, we will specialise to the special case G = SU(2) and we choose a basis ti =
1√
2
σi of the algebra. A concrete solution for the Yang-Baxter operator can then be given by

R =
⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ . (2.4)

Furthermore, we let Adg(u) = gug−1 denote the adjoint operator and we define Rg = Adg−1 ◦
R ◦ Adg . The action with deformation parameters η and ζ , which we sometimes combine into 
χ± = ζ ± η, is given by

Sζ,η = 1

2πt

∫
d2σ L [g] , L [g] = Tr

(
g−1∂+g

1

1 − ηR − ζRg
g−1∂−g

)
. (2.5)

We introduce the notation

J± = ∓(1 ± ηR ± ζRg)−1g−1∂±g , (2.6)

because the field equations and the Bianchi identity corresponding to the action (2.5) can be more 
easily understood in terms of J±.

2.2. Classical Lax structure

Klimčík [36] showed that the following Lax pair with spectral parameter, λ,

L±(λ) = η(R − i)J± +
(
2iη ± (1 + η2 − ζ 2)

)
λ ± 1

J± , (2.7)

satisfies a zero-curvature condition

∂+L−(λ) − ∂−L+(λ) + [L−(λ),L+(λ)] = 0 , ∀λ ∈ C . (2.8)

This condition both follows from and implies the equation of motions and the Bianchi identity 
corresponding to the action (2.5).
5
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2.3. The critical line

As already noted by Klimčík [36], the above formulation hides a certain symmetry between η
and ζ . In particular, when η = ζ ≡ � , a situation that we shall refer to as the critical line, there is 
a restoration of a g → g−1 symmetry. Using the definitions of Adg and Rg , it is easy to verify the 
Lagrangian for the action (2.5), can be written in two equivalent ways. Either it can be written in 
terms of left invariant forms, g−1∂±g, as

L L
ζ,η[g] = Tr

(
g−1∂+g

1

1 − ηR − ζRg
g−1∂−g

)
, (2.9)

or else in terms of right invariant forms, ∂±gg−1, as

L L
ζ,η[g] = L R

ζ,η[g] := Tr

(
∂+gg−1 1

1 − ηRg−1 − ζR
∂−gg−1

)
. (2.10)

However, if we perform the transformation g → g−1 of the left acting Lagrangian, we see that

L L
ζ,η[g−1] = Tr

(
∂+gg−1 1

1 − ηR − ζRg−1 ∂−gg−1
)

= L R
η,ζ [g] = L L

η,ζ [g] . (2.11)

Therefore we see that along the critical line L L
�,�[g−1] = L L

�,� [g]. This enhanced symmetry has 
profound effects on the physics, and we shall revisit this scenario many times in the rest of the 
paper. We shall see in particular that the perturbative structure changes discontinuously on and 
off the critical line.

The critical line also has a second important feature: the SU(2) model on the critical line 
η = ζ is equivalent to the single parameter η-deformation of the sigma-model on S3 viewed as a 
coset SO(4)/SO(3) following the construction in [39,40]. This is quite useful since it allows the 
current study, restricted to the critical line, to have relevance to the behaviour of the deformations 
of general η-deformed cosets, and potentially to the full η-deformation of the AdS5 × S5 string.

The case of η = −ζ , which we describe as the co-critical line, will be discussed shortly in the 
context of the SU(2) model.

2.4. Classical symmetries

The undeformed PCM Lagrangian with group G has a global GL × GR symmetry acting as 
g �→ hLghR . The two deformations break this symmetry down to an abelian subgroup. This is 
augmented by non-local charges that furnish a Possion-bracket realisation of the quantum group 
UqL

(g) × UqR
(g). For the single parameter Yang-Baxter, or η-deformation, for which only GL

is q-deformed and GR is preserved, this was demonstrated first in the context of G = SU(2)

in [44] and shown in general [45]. The quantum group structure in the case of two-deformation 
parameters studied here was described in [39]. Although beyond the current scope, it would be 
remiss not to mention that Lagrangian descriptions exist for quantum group deformed symme-
tries of the full AdS5 ×S5 superstring viewed as a Z4 graded super-coset [40]. Here q is real, but 
somewhat parallel to this have been the construction of q a root-of-unity integrable deformations 
of the AdS5 × S5 superstring [41] which extend the bosonic λ-deformations introduced in [46].

Let us study this in detail for G = SU(2) in Minkowskian signature. We will parametrise the 
group element through Euler angles by

g =
(

cos(θ)eiφ1 i sin(θ)eiφ2

i sin(θ)e−iφ2 cos(θ)e−iφ1

)
, (2.12)
6
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where θ , φ1 and φ2 are fields taking values in [0, π], [0, π] and [0, 2π] respectively. Under the 
U(1)L × U(1)R action δg = εLt3 · g + εRg · t3, such that δφ1 + δφ2 = εL and δφ1 − δφ2 = εR .

The charges are then given by

Q3
L/R =

∫
dσ j3L/R , (2.13)

with

j3L = 1

�(θ)

(
−η sin(2θ)θ ′ + cos(θ)2a+(θ)φ̇1 + sin(θ)2a−(θ)φ̇2

)
,

j3R = − 1

�(θ)

(
ζ sin(2θ)θ ′ + cos(θ)2b+(θ)φ̇1 + sin(θ)2b−(θ)φ̇2

)
,

(2.14)

the corresponding currents. Here primes and dots denote spatial and temporal derivatives respec-
tively and for convenience we have defined

a±(θ) = ζ 2 + η(ζ ± η) cos(2θ) ± ζη + 1 ,

b±(θ) = ζ(ζ ± η) cos(2θ) + ζη ± η2 ± 1 ,

�(θ) = ζ 2 + η2 + 1 + 2ζη cos(2θ) .

(2.15)

We will later return to these Noether currents when we perform a twisted reduction of the theory.
Whilst these U(1) currents define the only local Noether charges Q3

L/R , a crucial property of 

these models [45] is that they exhibit some non-local conserved charges Q±
L/R which furnish the 

algebra under Poisson brackets

{Q+
L/R,Q−

L/R} = i
qQ3

L/R − q−Q3

L/R

qL/R − q−1
L/R

, {Q±
L/R,Q3

L/R} = ±iQ±
L/R ,

qL = exp
2π

σζ

, qR = exp
2π

ση

,

(2.16)

where ση,ζ are given by Equation (2.20). In this way the full GL × GR symmetry is recovered, 
but deformed to have the structure of (a classical version of) a quantum group.

2.5. Quantum integrability

Although we shall not make direct use of it here, for completeness we briefly recall the quan-
tum S-matrix of the theory. Based on the above symmetry structure, it is natural to anticipate 
that the theory has quantum integrability. Recall that the undeformed PCM on a group has an 
S-matrix [47] reflecting the classical GL × GR symmetry with the factorised form

S(θ) = S(θ) ⊗ S(θ) , (2.17)

in which θ is the rapidity, and S(θ) are G-invariant S-matrix blocks. In the deformed theory, the 
quantum S-matrix will still take a factorised form, but with both left and right factors reflecting 
the q-deformed symmetry.

For the case of G = SU(2) this was made precise by Fateev [38] where the S-matrix takes the 
form

Sp ,p (θ) = SSG
γ=p (θ) ⊗ SSG

γ=p (θ) . (2.18)
1 2 1 2

7
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Here the building blocks are Sine-Gordon S-matrices [48]2 for which the soliton-soliton scatter-
ing phase is given by

SSG
γ (θ) = exp i

∞∫
0

dω

ω
sin θω

sinh(πω(γ − 1)/2)

cosh(πω/2) sinh(πγω/2)
. (2.19)

A matching of the parameters in [38] to those used here is given by3 p1 = 2πση, p2 = 2πση.

2.6. RG equations

The sigma-model is renormalisable in the couplings t, η, ζ with RG invariants [50],

ση = 1

tη
, σζ = 1

tζ
, (2.20)

and a non trivial flow4 (at one-loop)

d

d logμ
t = −1

2
t2(1 + (η + ζ )2)(1 + (η − ζ )2) , (2.21)

whose parametric solution is given by

logμ/μ0 = σζ + ση

2
arctan

(
σησζ t

σζ + ση

)
− σζ − ση

2
arctan

(
σησζ t

σζ − ση

)
. (2.22)

There is a single real fixed point at the origin t = η = ζ = 0 but in the complex plane there are 
lines of fixed points

η + ζ = ±i , η − ζ = ±i . (2.23)

The critical line is preserved by the RG flow and, analytically continued, intersects these at a 
special fixed point

η = ζ = i

2
. (2.24)

To understand the significance of the RG flows and the imaginary fixed points it is helpful to 
consider the case of the SU(2) model. The analysis of [39] makes three important observations 
relevant to us.5 The bi-Yang-Baxter Lagrangian can be viewed as a non-linear sigma model in a 
target space equipped with a pure gauge B-field and metric given by

ds2 = 1

1 + χ2+(1 − r2) + χ2−r2

[
dr2

1 − r2 + (1 − r2)(1 + χ2+(1 − r2))dφ2
2

+r2(1 + χ2−r2)dφ2
1 + 2χ−χ+r2(1 − r2)dφ1dφ2

]
,

(2.25)

2 The relation to the quantum group structure of these blocks was detailed in [49].
3 Here of course the relation between the pi in the S-matrix and the classical Lagrangian parameters could be renor-

malised at higher loops.
4 Here we are presenting the result for SU(2) but the change to SU(N) simply introduces a factor of the quadratic 

Casimir on the right hand side of the flow.
5 We thank Ben Hoare for communications on these points.
8
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in which we have used the Euler angles of Equation (2.12) and defined r = sin θ
2 . The first 

observation is that demanding that the metric be regular and real allows not only χ± = ζ ±η ∈ R
but also pure imaginary6 χ± = ik± with | k± |< 1.

Next we can see from the metric that there is, in addition to the Z2 action g → g−1 with 
η ↔ ζ , a second Z2 invariance

θ → θ + π , φ1 → φ2 , φ2 → φ1 , (ζ, η) → (ζ,−η) . (2.26)

In the case of real parameters, which we will mostly consider here, this allows us to restrict 
our attention to η ∈ R+. Note also that this transformation maps the critical η = ζ line to the 
co-critical η = −ζ line.

Finally, and most remarkably, along the imaginary RG fixed points, the target space geometry 
coincides7 with that of an SU(1, 1)/U(1) gauged WZW CFT together with a free U(1) boson. 
The interpretation of this fixed point is the same on the critical line8 (which recall matches the 
η-deformation of S3 viewed as a coset) at the point η = ζ = i

2 . When considered in the context 
of the η-deformation of the AdS3 × S3 superstring, the same limit of imaginary deformation 
parameter is shown to give rise to the Pohlmeyer reduced theory by [37].

Although outside of our present concerns, we note that the bi-Yang-Baxter deformation, when 
supplemented with an appropriate AdS3 factor and RR fields, can be given a supergravity em-
bedding. In [51] this was done in a certain modified supergravity theory and in [52] in a standard, 
non-modified, supergravity theory.

3. Uniton solutions

We now study non-perturbative field configurations, i.e. exact classical solutions of the Eu-
clidean theory with finite action, analogous to instantons. At first sight this may seem counter 
intuitive since there is no obvious topological protection (recall that π2(G) = 0) and it is far 
from obvious that these are good vacua to expand around in a Quantum Field Theory. However 
in a seminal early work by Uhlenbeck [43], classes of such solutions were found and classified 
for the principal chiral model. These solutions are known as unitons due to the additional con-
straint g2 = −Id and have played a prominent role in recent attempts [35,42] to elucidate the 
resurgent quantum structure of two-dimensional quantum field theories.

3.1. Real unitons

In the Hopf angle parametrisation of the group element (2.12), we find a solution to the Eu-
clidean equations of motion given by

φ1 = π

2
, φ2 = π + i

2
log

(
f

f

)
, θ(f,f ) = θ(|f |2), (3.1a)

sin(θ(|f |2))2 = 4|f |2
(1 + |f |2)2 + (η − ζ )2(1 − |f |2)2 =: P(|f |2) , (3.1b)

6 In general such imaginary parameters would result in an imaginary two-form, but in the SU(2) case this two-form is 
pure gauge.

7 With χ± = ik± this limit is obtained by setting k− = 1 and shifting � → �′ + k+�, such that � parameterises the 
free U(1) factor.

8 Even if η and ζ are complexified, we will refer to η = ζ as the critical line in the complex sense, rather than the 
critical plane.
9
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Fig. 1. A plot of the Lagrangian density of the k = 1 real uniton on R2 illustrating the flattening out as the deformation 
parameters are tuned up. The moduli are fixed in these plots such that the uniton is centred at the origin, λ0 = 0, while 
λ1 = 1/2.

with f (z) any holomorphic function of the Euclidean coordinate z = x + t i. Interestingly, the 
solution can be obtained simply from that of the single deformed case constructed in [42] by 
substituting η2 → (η − ζ )2, although this change is not at all apparent from the equations of 
motion. The peculiarity of the critical line η = ζ = � is apparent already at this level; in this 
situation the uniton solution does not depend on the deformation parameter at all (although the 
on-shell value of the action will of course depend on �).

Usually, the topological classification of saddle points in non-linear sigma models with target 
space M depends on π2(M). However, in the present case we have that π2(SU(2)) = π2(S

3) = 0. 
From the uniton solutions (3.1a), we see that the uniton is the embedding of a Riemann sphere 
into a particular S2 ⊂ SU(2). The discretisation of the uniton action can be connected to the 
homotopy group π1(M) of the field space M = {g : S2 → SU(2)}. Therefore, the unitons are 
classified by π1(M) = π3(SU(2)) = Z, see also [53]. Here this quantisation is reflected in the 
order of the polynomial f (z).

Whilst this uniton is not a bona-fide BPS protected solution, for the reasons described above, 
the solution does satisfy a first order ODE pseudo-BPS condition

4x2(θ ′(x))2 = sin2 θ(x) + (η − ζ )2 sin4 θ(x), x = |f |2. (3.2)

In Fig. 1, we illustrate the Lagrangian density of this uniton configuration, for the case that 
k, the degree of f (z), is one. That is, we take f (z) = λ0 + λ1z, where λi are some moduli 
that become significant later. The uniton solution appears as a lump of localised Lagrangian
density. The deformation parameters induce some additional structure, qualitatively described 
by punching a depression and flattening out the lump.

By substituting this solution into the action (2.5), we find

S = 2

πt

∫
d2z

|f (z)|2|f ′(z)|2(θ ′(|f (z)|2))2

1 + η2 + ζ 2 + 2ηζ cos 2θ(|f (z)|2) . (3.3)

To proceed, the integration coordinate is switched from z to w = f (z). The order k of the poly-
nomial f (z) appears as it revolves k times around its integration domain. We can integrate over 
the argument of w, which yields 2π . By changing the integration variable to θ(|w|2), and by 
making use of Equation (3.2) the action evaluates to

S = 2k

2 SI , (3.4)

t (1 + χ+)

10
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with9

SI = 2

m
(χ+arctanχ+ − χ−arctanχ−) , (3.5)

where we recall that χ± = ζ ± η, and we have defined

m = 4ηζ

1 + (η + ζ )2 , (3.6)

the significance of which will become clear later. Similarly, we have rather artificially extracted 
a factor of 1 + χ2+ from the action for reasons that will follow later. Observe that SI is real and 
positive if η and ζ are real and positive.

Moreover, note that in this formulation, SI reduces to 1 + (η + η−1) arctan(η) in the single 
deformation limit ζ → 0, matching the result of [42].

Another way of describing the solution is through a projector � obeying �2 = �. We let

g = i(2� − Id) , =⇒ g2 = −Id , (3.7)

and � given by

� = v† ⊗ v

v† · v , v =
(

1√
f̄
f

1+√P(|f |2)√
1−P(|f |2)

)
, (3.8)

where P(|f |2) is as in Equation (3.1b). This approach might be more amenable to higher rank 
generalisations since it does not require an explicit choice of Hopf coordinates.

3.2. Complex unitons

An important feature of this model is the existence of a second solution to the equations of 
motion which lives in the complexified target space. We shall thus refer to this configuration as 
a complex uniton, and, by contrast, the uniton discussed above shall be referred to as the real 
uniton. For the complex uniton, the configuration of the fields φi shall be the same as for the real 
uniton given by Equation (3.1a). For θ(|f |2), we obtain

θ(|f |2) = π

2
+ i arctanh

(
1

2

(
|f | + 1

|f |
)√

χ2− + 1

)
. (3.9)

When this is substituted into the action we obtain

S = 2k

t (1 + χ2+)
SCI , (3.10)

with

SCI = 2

m
(χ−arccotχ− − χ+arccotχ+) , (3.11)

χ± = ζ ±η and m is as in (3.6). Interestingly, the action of the real uniton and the complex uniton 
arise as the integral of the same function. This leads to a surprising connection which is detailed 
further in Appendix A. Observe that SCI is real and negative if η and ζ are real and positive.

9 The notation SI is perhaps confusing, we have chosen this to be in keeping with other works in the field in which the 
subscript I is meant to invoke instantons.
11
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Fig. 2. A plot of (the real part of) the Lagrangian density of the k = 1 complex uniton on R2 as the deformation 
parameters are tuned to cross the critical line. In (a) there is a clear concentric valley structure which is removed precisely 
at the critical line in (c). The moduli are fixed in these plots at λ0 = 0, λ1 = 1/2.

Readers familiar with the undeformed PCM [35] might wonder why such complex uniton 
configurations played no role there. The answer is simple: although it is still a solution to the 
field equations, its action diverges and plays no important role.

In Fig. 2, we show the (real part) of the Lagrange density of these complex uniton lumps. This 
reveals a peculiar behaviour across the critical line of deformation parameters. At generic values 
of deformation parameters, there is a secondary valley in the Lagrangian density. This structure 
however disappears discontinuously across the critical line.

Similarly discontinuous behaviour is visible directly in the value of the complex uniton action 
eq. (3.11) which exhibits a cusp across the critical line as can be seen from(

lim
η→ζ+ − lim

η→ζ−

)
∂ηSCI = − 4πζ 2

1 + 4ζ 2 . (3.12)

This a strong early hint for a feature that we will later see in detail, namely that the quantum 
behaviour away from the critical line is rather different from that exactly on the critical line.

3.3. Uniton dominance regimes

Whilst discussing the classical aspects of these solutions, let us preempt a little of what is to 
follow. We have in the complex and real unitons two types of classical saddles, and one should 
anticipate that both are important to define the full quantum theory. However, which (classical) 
saddle is most important will depend on where we are in (classical) parameter space. Because 
the configuration with the lowest action yields the biggest contribution in perturbation theory, 
we divide the parameter space spanned by η and ζ into different regions, based on inequalities 
among the actions (3.5) and (3.11). This is displayed in Fig. 3 where one can see that there are 
demarcations between regimes when the absolute value of the real and complex uniton actions 
become equal or integer multiples of each other. One should anticipate that perturbation theory 
will behave differently in different regimes, and this will indeed be the case as will be seen in 
Section 5.

4. Compactification and fractionation

Our primary goal is to expose the quantum resurgent structure of these theories. We shall do 
so in a slightly indirect fashion following the arguments proposed in [35], to reduce the problem 
from a full 1+1 dimensional quantum field theory to a tractable quantum mechanics. This is 
12
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Fig. 3. A plot in the η − ζ plane indicating the hierarchy of the various non-perturbative configurations. In region 1 
(blue) |2SI | < |SCI |; in region 2 (yellow) |SI | < |SCI | < |2SI |; in region 3 (green) |SCI | < |SI | < |2SCI | and finally 
in region 4 (white) |2SCI | < |SI |. The dashed line indicates the critical line � := η = ζ and the point A is where � = 1

2
and SI = −SCI = π and will be shown to exhibit interesting behaviour. The critical line crosses from region 1 to 2 
at � = 1

2
√

3
, where 2SI = −SCI = 8π

4
√

3
. It crosses from region 3 to 4 at � = √

3/2 where SI = −2SCI = 8π

4
√

3
. (For 

interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

achieved by performing an adiabatic reduction on a spatial S1 with a twisted boundary condition 
of the form10

g(t, x + L) = eiHLg(t, x)e−iHR . (4.1)

However, it is more practical, instead, to work with a periodic boundary condition by defining

g̃(t, x) = e−iHLx/LgeiHRx/L =⇒ g̃(t, x + L) = g̃(t, x). (4.2)

Introducing a nonzero HL and HR is like turning on an effective background gauge field in the 
untwisted theory with periodic boundary conditions. This can be subdivided in a contribution 
from a vectorial twist and an axial twist HV,A = 1

L
(HL ± HR).

By an adiabatic compactification, we mean that we are looking for a compactification that has 
no phase transition as we send the compactification radius L of the S1 from large to small. The 
contribution of [35] is the precise analysis of two compactifications: one thermal and one spatial. 
It is shown that the thermal compactification has a phase transition, whereas the spatial compact-
ification under some additional constraints does not. This is measured by F/N2 in the N → ∞
limit, where F is the free energy. This quantity has a sharp transition from O(1) to 0 for thermal 
compactification as we go from large L to small L, whereas for the spatial compactification it 
tends to 0 in the limit for all L. Of course here we are at finite N (the target space is SU(2)) 
rendering some of this discussion moot in point but we retain the strategy employed at large N
with some post-hoc justification.

It was shown in [35] that to achieve adiabatic continuity one must impose two things. Firstly, 
we need to set HA = 0. Secondly, one must minimise the contributions of the Wilson line for 

10 It should be clear from the context if L refers to the compactification radius or if it serves as a label for the left 
symmetry group, in contrast to R for the right symmetry group.
13
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the background gauge field, � = exp(i
∮

dxHV ) = exp(iLHV ), to the free energy which occurs 
when

� = e
νiπ
N diag

(
1, e

2iπ
N , . . . , e

2iπ(N−1)
N

)
, ν = 0,1 ifN = odd, even. (4.3)

For the SU(2) case this means we require

LHV = HL = HR = π

2

(
1 0
0 −1

)
. (4.4)

We will parametrise the effective gauge field as

HL = HR =
(

ξ 0
0 −ξ

)
, (4.5)

so the maximal twist (4.4) is given by ξ = π/2.
The idea here is that this simplifies the theory considerably, retaining only a small selection 

of modes from the full theory, but does so in a way that retains the salient perturbative structure. 
Whilst this approximation is evidently not complete (for instance the role of the renormalisa-
tion in the quantum field theory is somewhat obscured), rather remarkably we will find that we 
can relate the features of perturbation theory in the resultant quantum mechanics obtained after 
shrinking the S1 to the non-perturbative saddles found in the full 1+1 dimensional theory.

To understand the twisted Lagrangian L [g̃], we shall consider the currents under both the 
right and the left acting symmetries g → eiαLσ3ge−iαRσ3 of the untwisted Lagrangian studied in 
Section 2.4. The Minkowskian currents are given by Equation (2.14). In terms of these currents, 
the twisted Lagrangian obtained by substituting the field (4.2) with HL/R given by (4.5) into the 
Lagrangian (2.5) is given by

L [g̃] = L [g] + ξ

L
(j3L + j3R) + 8ξ2

L2�(θ)
sin2(θ)[(ζ − η)2 sin2(θ) + 1] , (4.6)

where we recall �(θ) = 1 + ζ 2 + η2 + 2ζη cos(2θ).
We will now perform a Kaluza-Klein reduction and discard all the spatial dependence. More-

over, we will eliminate all total derivatives. In particular, this means the contribution linear in 
currents j3L/R vanishes. In the resulting Lagrangian, the fields φi become non-dynamic, and thus 
we can focus on the low energy effective theory by setting all momenta in these directions to 
zero.

Following this procedure we thus obtain the reduced Lagrangian

L = 1

t

θ̇2 − 8ξ2

L2 sin2(θ)[(ζ − η)2 sin2(θ) + 1]])
�(θ)

. (4.7)

To put the kinetic term into canonical form it is necessary to redefine variables such that the 
denominator factor �(θ) can be absorbed. This is achieved by defining

θ̃ = F(θ,m) , (4.8)
14
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where F(φ, m) is the elliptic integral of the first kind the modulus m was foreshadowed by 
Equation (3.6). Employing Jacobi elliptic functions,11 the Hamiltonian of the quantum mechan-
ics takes the following form

H = g2

4
p2

θ̃
+ 1

g2 V (θ̃) , (4.9)

with

V (θ̃) = 4ξ2

L2 sd2(θ̃ )(1 + χ2−sn2(θ̃ )) (4.10)

where g2 = t (1 + χ2+). Notice in the ζ → 0 limit, we have that m → 0, which implies that 
am(u) → u, so sn(u) → sinu and dn(u) → 1 such that the potential degenerates to a Whitaker–
Hill type found for the single deformation in [42].

The approach to UV fixed lines, η− ζ = i and η+ ζ = i in the complex plane displays further 
striking behaviour. In elliptic variables these limits correspond to sending m → 1 and m → ∞ re-
spectively. Using the elliptic variables, when we set η − ζ = ±i, the potential becomes tanh2(θ). 
Up to a shift, this is a Pöschl-Teller potential which has an exactly solvable discrete spectrum in 
terms of Legendre polynomials. The m → ∞ limit is better understood without going to elliptic 
variables, indeed setting η = ζ = i

2 we see that �(θ) → sin2 θ such that the Lagrangian (4.7)
describes a free particle. In both cases, one should not anticipate any asymptotic behaviour to 
be exhibited. However, any small deformation away from these points will induce a non-trivial 
potential and a rich resurgent structure will become manifest. This is rather reminiscent of the 
Cheshire cat resurgence [54,25], as we obtain a theory that has energy eigenvalues that are not 
asymptotic in g2, but rather are exact. It would certainly be interesting to understand this directly 
at the two-dimensional level for which the fixed point is understood as a SU(1, 1)/U(1) + U(1)

gauged WZW CFT.
For the remainder of the paper, we shall be studying a quantum mechanical system with 

potential (4.10). Before doing so, let us remark on the fate of the uniton (real and complex) 
under this twisted reduction. The first point to remark is that it is straightforward to modify 
the uniton solutions to accommodate the twisted boundary condition, this is done by simply by 
replacing the holomorphic function f (z) entering in the minimal unitons on R2 with a twisted 
version f (z) = λ0e

−πz/L + λ1e
πz/L.

Recall that on R2 the unitons formed localised lumps of Lagrangian density (with some non-
trivial profile induced by the deformation parameters) and this is true across the moduli space 
parameterised by {λ0, λ1}. In contrast, on the twisted cylinder a different behaviour emerges; 
there are regions of moduli space for which the real uniton breaks up (or fractionates) into well 
separated and clearly distinct lumps of Lagrangian density (see Fig. 4). In this way we anticipate 
that a single real uniton makes a contribution to the dimensionally reduced theory much like an 
instanton anti-instanton pair. The complex uniton exhibits a similar fractionation (see Fig. 5), but 
in addition we observe a strange phenomenon around the critical line: the additional valley in the 
uniton density discontinuously vanishes.

11 In terms of the indefinite elliptic integral of the first kind u = ∫ φ
0 dθ

(
1 − m sin2 θ

)− 1
2 , the Jacobi elliptic sine is 

sn(u) = sinφ. The delta amplitude is dn2(u) = 1 − m sn2(u) and we make use of sd(u) = sn(u) .
dn(u)

15
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Fig. 4. The Lagrangian density of the real uniton on R × S1 with twisted periodic boundary conditions. We have set 
ζ = 0.5 everywhere. In the top row, λ0 = e2 and λ1 = e−4 and we cannot see a clear fractionation. In the bottom row we 
consider λ0 = λ1 = e−5 and there is a clear fractionation.

Fig. 5. The Lagrangian density of the complex uniton on R × S1 with twisted periodic boundary conditions. Here we 
have set ζ = 0.5 and zoomed in to study the behaviour around the critical line η = ζ . In the top row, we show λ0 = e2 and 
λ1 = e−4, which should be contrasted with the bottom row where λ0 = λ1 = e−5 and fractionation is clearly evident. In 
both rows we clearly see, in (c) and (g), a sharp change in the profile as the critical line is reached.

5. WKB and resurgence

In this section we study a Schrödinger Equation(
g4 ∂2

∂θ2 − V (θ) + g2E

)
�(θ) = 0 , (5.1)

with potential (to ease notation we now drop the tilde accent on θ )
16
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V (θ) = sd2(θ)(1 + χ2−sn2(θ)) (5.2)

and g2 = t (1 + (ζ + η)2). We employ the WKB method to obtain an expansion in g2 → 0. We 
make an ansatz

�(θ) = exp

(
i

g2

θ∫
θ0

dθ S(θ)

)
, (5.3)

in which, S(θ) is a function that still depends of g2. This will solve the Schrödinger Equation 
(5.1) if the function S(θ, g2) satisfies the Ricatti Equation

S2(θ) − ig2S′(θ) = p2(θ) , (5.4)

where p(θ) = √
g2E − V (θ) is the classical momentum, as usual. We assume a power series 

ansatz for S(θ)

S(θ) =
∑
n=0

g2nSn(θ) , (5.5)

for which there exists a recursive solution widely available in the literature [30,29,16]. At the 
same time we make a power series ansatz

E =
∑
n≥0

ang
2n . (5.6)

Here, an of course still depends on the parameters η and ζ .
In this section we will compute this perturbative series to a very high order. For explanatory 

purposes, will mostly restrict our investigation to the behaviour along two trajectories: along the 
critical line � = η = ζ and along the line ζ = 1/5. We will study how the behaviour transitions 
as we cross the different regions shown in Fig. 3. Along these trajectories, we compute the Borel-
Padé approximant. We show how its pole structure suggests branch points that precisely match 
the value of the uniton actions (3.5) and (3.11). By looking at the Stokes lines of the quadratic 
form associated to this potential, we see that these contributions can be associated with saddle 
trajectories for real values of the coupling.

Next, we use the uniform WKB ansatz [9] to find an asymptotic form for the perturbative 
expansion. We show that the perturbative series converges rapidly to its asymptotic form. This 
asymptotic form, however, depends on which regions of the parameter space we analyse, as 
different unitons are dominant across the different regions of Fig. 3.

5.1. Borel transform

We use the BenderWu package [55] to compute WKB expansion so that we obtain a perturba-
tive asymptotic expansion of the ground state energy (we will not consider higher level states in 
this paper). Unfortunately, the script runs too slow for general η and ζ so for most of the asymp-
tomatic analysis to come we will be working with explicit values for the deformation parameters. 
For specified values of η and ζ , we could typically obtain 300 order of perturbation theory in 30 
minutes on a desktop computer. The first terms for the deformed model in the expansion come 
out as
17
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E = 1 − 1

4
g2 − 1

16
g4 − 3

64
g6 +O(g8), η = 0, ζ = 0 ,

E = 1 − 1

16
g2 − 61

256
g4 + 777

4096
g6 +O(g8), η = 1

2
, ζ = 0 ,

E = 1 − 69

1600
g2 − 360357

2560000
g4 +O(g6), η = 1

2
, ζ = 1

4
,

E = 1 − 3

32
g4 − 39

2048
g8 +O(g12), η = ζ = 1

2
.

(5.7)

The fact that at η = ζ = 1/2 we obtain a perturbative series in g4 is very specific to this point as 
is explained further in Fig. 15. In essence, it is due to a perfect cancellation of an alternating and 
a non-alternating series. This can be traced back to the equality SI = −SCI = π , see also Fig. 3.

We compute the Borel transform

Ê =
∑
n≥0

an

n! ĝ
2n (5.8)

of this series. We would like to understand something about the singularity and branch cut struc-
ture of the ĝ2-plane, which is also called the Borel plane. We will sometimes use z = g2, while 
s = ĝ2 is the variable in the Borel plane. The idea, and we will be telegraphic here referring 
the reader to the excellent reviews e.g. [29,28], is that the Borel transform has a finite radius of 
convergence and the original divergent series can be re-summed by performing a Laplace trans-
formation on Ê. When the Laplace transformation can be done un-ambiguously this results in a 
finite resummed value for the original series. However, in many interesting cases Ê(s) has poles 
along the integration path s ∈ [0, ∞] defining the Laplace transformation. To give meaning to 
the integration one can instead deform the integration contour and define the lateral resummation 
in the direction ϑ as

SϑE(z) = 1

z

eiϑ∞∫
0

ds e−s/zÊ(s) . (5.9)

A ray, ϑ = ϑ0, is said to be a Stokes direction if Ê(s) has singularities along that ray. One can 
then define two lateral summations Sϑ0+εE(z) and Sϑ0−εE(z) which have the same perturbative 
expansion but differ by non-perturbative contributions, a change known as a Stokes jump. The 
crucial idea of the resurgence paradigm going back to [6,56,57] is that the inherent ambiguity 
between these two perturbative resummations is precisely cancelled by a similarly ambiguous 
contribution from the fluctuations around an appropriate non-perturbative configurations in the 
same topological sector. For instance, in quantum mechanic the path integral over the quasi-zero 
mode separation between an instanton anti-instanton pair has an ambiguous imaginary contribu-
tion that cancels that of the ground state energy ambiguity. The first test of this programme is 
then that the location of the poles in the Borel plane should be in accordance with the values of 
the on-shell action for non-perturbative field configurations.

When performing a numerical calculation, the summation defining the Borel transformation 
has to be cut off at the order to which the perturbative expansion was performed. Hence Ê(z)

becomes a simple polynomial which has no poles. For this reason, we employ the Padé approx-
imant, which is an approximation of the function by the ratio of two polynomials, where the 
coefficients are determined by demanding that the Taylor series matches the original. By calcu-
lating the roots of the denominator of the Padé approximant, we find its poles in the ĝ2-plane. 
18
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Fig. 6. The complex Borel s-plane for ζ = 1
5 at different values of η with blue dots indicating poles of the Borel-

Padé approximation obtained from 300 orders of perturbation theory in g2 (hence we computed a total of 150 poles). 
Accumulations of poles are anticipated to encode branch cuts in the full Borel transform, and isolated poles are expected 
to be residuals of the numerical approximation. The red dashed circle indicates the magnitude of the real uniton action 
located at |s| = 2SI . The green dashed circles indicate the magnitude of the complex 1- and 2-uniton actions located at 
|s| = |SCI |, |2SCI | respectively. For η and ζ real, the real and complex instanton action have an complex argument of 0
and π respectively. We see a clear match to the location of expected branch points with these values. At the critical line 
η = ζ , we observe a curious discontinuous jump; the accumulation of poles at the 1-complex uniton disappears entirely 
and instead, we get an accumulation point at the complex 2-uniton action s = 2SCI .

These are called the (Borel-)Padé poles. An accumulation of Padé poles suggests a branch point 
in the Borel plane. These methods are expanded upon further in [30,29,58,59].

Critically, we find that those branch points can be identified precisely with the finite action 
configurations found previously by the real and complex unitons (3.5) and (3.11)! To be pre-
cise we find branch points located at |s| = |2SI | and |s| = |SCI | in the Borel plane. The factor 
arises because it arises as an instanton-anti-instanton effect. This is illustrated in Figs. 6 and 7
demonstrating the behaviour across the critical line and along it. We are thus able to relate non-
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Fig. 7. The complex Borel s-plane along the ζ = η = � critical line as we cross different region of Fig. 3. Colours, key, 
and numerical approximation as per Fig. 6, but we have also plotted the action of the complex 4-uniton |s| = |4SCI |
as a green circle. In the undeformed model � = 0 there is not complex uniton [35] since it has infinite action. When 
� = 1/5, we are in region 1. At � = 1/2

√
3, we have 2SI = −SCI and cross from region 1 to 2. Notice that a dashed 

red circle coincides with the inner green circle. For � = 2/5, we are in region 2. When � = 1/2 we cross into region 3 
and SI = −SCI . If � = √

3/2 we cross from into 4 where SI = −2SCI . Consistent we the results of Fig. 6, we note that 
along the critical line, the branch points along the negative real axis accumulate at 2SCI , not at SCI .

perturbative contributions with these instanton configuration. It is important to emphasise that 
what we have done is to take a two-dimensional QFT and truncated to a particular quantum me-
chanics, but the relevant non-perturbative saddles are coming from finite action solutions in the 
full two-dimensional theory.

Beyond the headline matching of poles to non-perturbative saddles lies a more intricate struc-
ture. In Fig. 6 we show that for generic real values of η and ζ , the Borel-Padé approximation 
suggests the existence of two Stokes rays. The first is at arg(s) = 0 for which we see evidence 
of a branch cut terminating at the value of the real 1-uniton action. The second is the arg(s) = π

ray and with a cut terminating at the complex 1-uniton action. However, as the parameters are 
tuned to the critical line η = ζ (see Fig. 6 (c)) the location of the cut in the arg(s) = π direc-
tion jumps from the complex 1-uniton to the complex 2-uniton action. Fig. 6 confirms that all 
along the critical ζ = η = � line that arg(s) = π branch cut terminates at the complex 2-uniton 
action. This implies that for the entire range 0 < � < 1

2 the leading pole (the one nearest to the 
origin) continues to be that along arg(s) = 0 at the location of the real 1-uniton action. At � = 1

2
(see Fig. 7 (c)), the action of the complex 2-uniton coincides with that of the real 1-uniton; this 
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Fig. 8. The complex s Borel plane for ζ = 1/5, η = 2i/5. Colours, key, and numerical approximation as per Fig. 6 with 
in addition the argument of the real (complex) uniton indicated by a red (green) dotted ray. The accumulation points still 
gravitate towards the uniton actions and are direct with an argument matching precisely that of the relevant uniton action. 
In this particular case, because Re(η) = Im(ζ ) = 0, we have that χ+ = χ− and therefore the ratio of the actions is real 
and negative. This explains why the angle between the dotted rays is precisely π . We were unable to explain the phases 
of the secondary branch point that have an absolute value equal to that of the real uniton action.

is the non-perturbative feature corresponding to the fact that the perturbative series in eq. (5.7)
discontinuously jumps to being a series in g4 rather than g2 when � = 1

2 .
Having established that it is essential to consider complexified field configurations to un-

derstand the Borel pole structure, it is natural to now analytically continue the deformation 
parameters η and ζ themselves into the complex plane.

Generically, as indicated in Fig. 8, the branch cuts continue to match to the values of the 
uniton actions, and now lie along angles governed by the phase of the uniton action. In Fig. 9
we show what happens as the phase of the critical parameter � is rotated; again we see that the 
directions of the branch cuts track the phases of the unitons. These plots also hint, although the 
numerics are limited, at the existence of a tower of poles located at multiples of the complex 
2-uniton action.

Finally, we study the potential as it approaches the point η = ζ = i
2 which corresponds to the 

RG fixed point. Here, m has a pole, so the elliptic potential is not well-defined (but recall that 
this is a consequence of the Jacobi variables; in the original Euler angle variables this point was 
simply a free theory). The actions (3.5) and (3.11) tend to zero,12 as do the elliptic periods of the 
potential. As discussed in the previous section, though a different change of variable this point 
can be associated to a free theory.

12 In general, we have chosen the branch cuts in the Borel plane to run from 2SI to +∞ and from 2SCI to −∞; here 
however a more natural choice would be to take a cut from 2SI to 2SCI such that cut is removed entirely as the free 
theory point is approached. For this interpretation to make sense it is necessary that the branch points at 2SI and 2SCI

display the same behaviour - which they do (see Equation (5.30)).
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Fig. 9. Here, we consider the critical line � = η = ζ and compute 300 order of perturbation theory. We keep |�| = 1/5
fixed, but vary θ = arg(�). We suspect that the tails splitting into 2 ends is due to numerics and could be resolved by 
going to higher orders. Interestingly, it appears we can see towers of higher order states more easily when η and ζ are 
analytically continued.

Firstly, we consider the behaviour as we rotate around η = ζ = i
2 on the critical line by looking 

at

� = η = ζ = i

2
+ εeiθ . (5.10)

We find that there is an infinite tower of branch points located at

2SCI + 2n(SI − SCI ), n ∈ Z . (5.11)

In particular, for n = 1 and n = 0 there are branch poles at the real and complex uniton actions 
respectively. This is consistent with the previous analyses.

In addition we consider the behaviour as we rotate around η = ζ = i/2 slightly off the critical 
line, that is, let
22



L. Schepers and D.C. Thompson Nuclear Physics B 964 (2021) 115308
Fig. 10. Here, we look at the behaviour around the special point � = i
2 , parametrised by Equation (5.10) with ε = 0.01. 

We observe that the branch poles, indicated by purple triangles, are given precisely by Equations (5.11). Note also that 
we have zoomed relative to other Borel plots shown since both the real and the complex uniton action tend to 0 as � → i

2 .

η = i

2
, ζ = i

2
+ εeiθ . (5.12)

In this case we find a tower of branch points located at

SCI + 2n(SI − SCI ), n ∈ Z . (5.13)

This in particular reproduces the branch point at SCI for n = 0, which is consistent with off-
critical line behaviour. There are also hints off branch point of the tower given by Equation 
(5.11), but the numerics are not as clean.

The relevant Borel plots are shown in Figs. 10 and 11. We emphasise that perturbations of 
the form εeiθ are not relevant for generic values of η and ζ . Only at � = i/2 do these have a 
substantial effect on the Borel poles.
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Fig. 11. Here, we look at the behaviour around the special point η = ζ = i
2 , parametrised by Equation (5.12) with 

ε = 0.01. We find a very clear set of inner branch point given by Equations (5.13). In addition, there are traces of the 
outer tower given by Equation (5.11).

5.2. Uniform WKB

We will also consider the problem through the lens of uniform WKB. The construction by 
Dunnel and Ünsal [9] will be followed closely. We make an ansatz for the Schrödinger equation 
(5.1)

�(θ) = Dν(
1
g
u(θ))√

u′(θ)
, (5.14)

where Dν(θ) is the parabolic cylinder function which satisfies the Schrödinger equation of the 
harmonic oscillator with energy B := ν + 1/2. Contrary to ordinary analysis, ν is not an integer. 
However, in the g2 → 0 limit, it is exponentially close to an integer. The difference with the 
energy level N is denoted by δν = ν − N . The energy eigenvalue in uniform WKB will be 
denoted by E . u(θ) and E are again expanded as a power series in g2:
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u(θ) =
∑
n=0

g2nun(θ), E(B) =
∑
n=0

g2nEn(B) . (5.15)

They will now satisfy a slightly modified Ricatti Equation (Equation (18) of [9]) which can 
be solved perturbatively. Integration constants are determined by demanding that u(θ) is regular 
around θ = 0. En(B) is a polynomial of order n in B of definite parity: En(B) = (−1)n+1En(−B). 
Of course, in our problem, it also depends on η and ζ .

For u0(θ) we find

(u0(θ))2 = 4

θ∫
0

dθ
√

V (θ)

= 4

m

(
χ+ arctan(χ+) − χ+ arctan

⎛
⎜⎝ χ+cn(θ)√

χ2−sn(θ)2 + 1

⎞
⎟⎠+

iχ−
(

log(1 + iχ−) − log

(√
χ2−sn(θ)2 + 1 + iχ−cn(θ)

)))
,

(5.16)

where χ± = ζ ± η. For n > 0, we use a power series ansatz of un(θ) in θ which results in the 
following coefficients for the expansion of the energy at level B

E0 = 2B ,

E1 =
(
4B2 + 1

)
(−1 + χ2− + χ2+ + 3χ2−χ2+)

8(1 + χ2+)
,

E2 = −1

8
B3

(
17χ4− + 16mχ2− + 2χ2− + 1

)
− B

32

(
8m(1 − m + 7χ2−) + 67χ4− + 22χ2− + 3

)
,

(5.17)

where we recall m is given by Equation (3.6). We also found E3, but the expression is too long to 
be displayed usefully. As a consistency check we note coefficients match up perfectly with [42]
upon setting ζ = 0.

5.3. Asymptotic analysis

We now have the ingredients to investigate the asymptotic behaviour of the perturbative series 
for the ground state energy. Let us first split the behaviour into three contributions

En ∼ ESI
n + ESCI

n + E2SCI
n + . . . , (5.18)

where E
kS(C)I
n is a contribution due to the (complex) k-uniton. For the real uniton, this contribu-

tion will look like EkS
n ∝ (2kS)−n�(n + a).

It is possible to use the uniform WKB ansatz to determine the precise asymptotic form for 
E

SI
n . The procedure is detailed in [9] but we shall give a brief overview here. The first step is to 

impose a global boundary condition based on the periodicity of the potential

�(θ + L) = eiα�(θ), (5.19)
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where L is the periodicity and α ∈ [0, π] is the Bloch angle. In addition we demand a Bloch 
condition that relates the values of the wave function at some midpoint of the potential θmidpoint. 
In the potential (5.2), this would be the half period θmidpoint = K(m). We shall therefore need to 
compute u(θmidpoint). By using the periodicities of the Jacobi elliptic functions we find13

u0(θmidpoint) =√
2SI , (5.20)

and

u1(θmidpoint) = log[SI (1 + χ2−)/4]√
2SI

, (5.21)

where SI is given by (3.5). Expanding the boundary condition in terms of ν = N + δν + (δν)2 +
. . . allows us to determine δν in terms of g2. This can be used to compute the N th energy level

E
perturbative
N (g2) = E(N,g2) + δν

[
∂E(ν, g2)

∂ν

]
ν=N

+O((δν)2) . (5.22)

The first ambiguity of E(N = 0, g2), located in the instanton-anti-instanton sector, is the imag-

inary part of δν
[

∂E(ν,g2)
∂ν

]
ν=N

. By considering dispersion relations14

Ek(N = 0) =
∮
C

E(N = 0, g2)

(g2)k+1 d(g2)

= 1

iπ

+∞∫
0

Disc0E(N = 0, g2)

(g2)k+1 d(g2)

(5.23)

for the coefficients (5.15), we can determine an asymptotic form [9]. We calculate Stokes dis-
continuities more carefully in Section 5.4.

The resulting asymptotic expansion from the uniform WKB method is as follows. In the 
regime where |SI | < |SCI |, the perturbative energy coefficients are dominated by the following 
behaviour

ESI
n ≈ A(η, ζ )

(
1

2SI

)n+1

�(n + 1)

(
1 + a1

I (η, ζ )
2SI

n
+O

(
1

n2

))
, (5.24)

where

A(η, ζ ) = − 1

π

16

1 + χ2−
. (5.25)

Because Equation (5.21) is an η → η − ζ substitution compared to the single deformation case, 
the same follows for Equation (5.25). Working in higher order in the wave function allows 
a determination of the sub-leading contributions. E.g. a1

I (η, ζ ), which is a correction due to 

13 Note that because the Jacobi functions appear squared in the potential, we need not worry about the fact that Jacobi 
functions are strictly speaking anti-periodic across the interval 2K(m).
14 C denotes a counter-clockwise closed contour around g2 = 0. The first equality is simply a restatement of (5.15)
using Cauchy’s theorem. Next we deform the contour up and down the positive real axis and around infinity to obtain the 
second equality.
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an instanton-anti-instanton [II ] event, is determined from u2(θmidpoint) which did not however 
prove easy to analytically evaluate.

Furthermore, from our numerical analysis, we predict that the 1-complex uniton and the 2-
complex uniton behave as

ESCI
n ≈ B(η, ζ )

(
1

SCI

)n+1/2

�(n + 1/2)(1 + a1
CI (η, ζ )

2SCI

n
+O(n−2)) , (5.26a)

E2SCI
n ≈ −A(η, ζ )

(
1

2SCI

)n+1

�(n + 1)(1 + a1
2CI (η, ζ )

4SCI

n
+O(n−2)) , (5.26b)

where

B(η, ζ ) = −
√

A(η, ζ )

π
= −4i√

π3(1 + χ2−)

. (5.27)

We emphasise that these predictions for the asymptotic behaviour are not derivable from any 
conventional uniform WKB for generic η and ζ , but are based on empirical evidence.

However, on the critical line we can argue using the uniform WKB the validity of the asymp-
totic expansion E2SCI

n as given by Equation (5.26b). As established by Fig. 6, there is no complex 
1-uniton contribution along the critical line and the ESCI

n contribution (5.26a) vanishes. We 
can use the ellipticity of the potential and argue a second global boundary condition along the 
secondary period of the potential. When evaluating u0(θ) and u1(θ) at the complex midpoint 
iK(1 −m), we obtain precisely Equation (5.20) and (5.21) only with SCI instead of SI . Carrying 
through the argument of uniform WKB, one arrives precisely at (5.26b).

This analysis is consistent with the results from [26] where the system along the critical line is 
studied. It is observed that the potential respects a symmetry that sends m → m′, g2 → −g2 and 
θ → iθ . This Z2 duality interchanges the real and the complex instanton solutions and therefore 
also interchanges their actions. It follows that m = 1

2 is the fixed point of the duality, which 
can be traced back to � = 1

2 . We can also reformulate the m → m′ transformation in terms of 
� by sending � → 1

4�
. Note that the asymptotic expansion of the energy (5.18), (5.24), (5.26), 

respects this symmetry only if we ignore the ESCI
n contribution, which is precisely what happens 

on the critical line. Moreover, at the fixed point m = 1
2 , or � = 1

2 , we have that ESI
n and ES2CI

n

contribute equally. Finally, understanding the interchanging of the two periods of the potential 
as interchanging complex and real instantons, it is clear why we should expect an expansion for 
the asymptotic energy of to the complex instanton when performing uniform WKB along the 
imaginary axis.

In Figs. 12 and 13 we compare the asymptotic expression ESI
n from Equation (5.24) with the 

actual values Epert
n obtained from the perturbative calculation with the BenderWu package. We 

plot the ratio and study its convergence to 1. Doing so in Fig. 12, we numerically verify Equation 
(5.24). The convergence of the raw data (shown in blue in Fig. 12) is somewhat slow - a situation 
that could be improved by determining a1

I (η, ζ ).
However, convergence can be improved spectacularly by using a Richardson transform (see 

e.g. [29,30]). Indeed, with just the second Richardson transform (shown in green in Fig. 12) we 
see convergence between the 300th order perturbative data and asymptotic predictions with a 
typical accuracy of between 4 · 10−7 and 9 · 10−7. This is an impressive agreement approaching 
the theoretical uncertainty resulting from using the second Richardson transformation (results 
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Fig. 12. Here we study the convergence of the perturbative coefficients to the asymptotic prediction (5.24) of the real 
uniton. Their ratio is given by the blue dots. To accelerate the convergence we employ the second Richardson Transfor-
mation, here given in green. In both plots we follow the trajectory where ζ = 1/5. In the left plot η = 19/100, we obtain 
virtually the same results for η = 1/5. Here, we are in the first region of Fig. 3 where |2SI | < |SCI |. Therefore, the real 
uniton is dominant, both on and off the critical line. In the right plot we show η = 2/5, which is in region 2. Using the 
same asymptotic expansion, we see that the approximation fails, because the real uniton is not dominant anymore.

Fig. 13. Colours are as in Fig. 12. We follow the critical line � = ζ = η and compare the perturbative coefficients against 
the asymptotic expansion of the real uniton (5.24). In the first plot � = 1/2

√
3, which is on the border of regions 1 

and 2 of Fig. 3 where SI = −SCI = 8π/3
√

3. In the second plot � = 2/5, which is firmly in region 2. In both cases 
|SI | < |2SCI |. Because along the critical line there is no complex 1-uniton contribution, the real uniton is dominant.

should be accurate to O(1/n3), hence for n = 300 this is 1/3003 ≈ 4 · 10−8). Further theoretical 
uncertainty arises from the undetermined sub-leading terms in the asymptotic prediction. For the 

single deformed potential in [42] we have a1
I (η, ζ = 0) = 1

24

(
−23 + 77η2 + 8

1+η2

)
. Under the 

assumption that a1
I (η, ζ ) is of the same order as a1

I (η, 0), we can estimate the magnitude of this 
uncertainty, which also matches well with the measured accuracy.15

As an additional remark, in Fig. 6 we saw that the single complex instanton contribution 
disappears at the critical line η = ζ . We suspect that a consequence of this is that the 1-uniton 
behaviour of Equation (5.24) remains dominant until |2SI | < |2SCI | if η = ζ . Therefore, the real 
uniton is dominant not only in region 1 of Fig. 3, but also in region 2 along the critical line. This 
is corroborated by the numerical analysis displayed in Fig. 13.

15 To give an impression of the magnitude of this discrepancy, a1
I
(0, 0) = −15, a1

I
(1/5, 0) ≈ −12.2, a1

I
(1/2, 0) = 2.65

and a1(1, 0) = 58.

I
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Fig. 14. Colours are as in Fig. 12. In both plots we follow the trajectory where ζ = 1/5. In the first plot η = 2/5, in the 
second plot η = 1/2. We are thus in the second and third region of Fig. 3. Because |2SI | > |SCI |, the complex uniton is 
dominant, so the perturbative coefficients are compared against the asymptotic expansion of the complex uniton (5.26). 
In Fig. 12, it was observed that ζ = 1/5, η = 2/5 is not well-approximated by the real uniton expansion (5.24). Here we 
see that we should have used the complex uniton expansion (5.26).

Fig. 15. Colours are as in Fig. 12. Here, we study the behaviour along the critical line � = η = ζ . In the first plot, 
� = 1/2, the second plot � = 2/

√
3. We know that in regions 3 and 4 of Fig. 3 along the critical line the complex 2-

uniton is dominant. This is verified by the second figure. However, � = 1/2 is a very special point indeed as it acquires 
equal contributions from the complex 2-uniton and the real uniton. Because SI = −SCI = π , the only difference is that 
these contributions are non-alternating and alternating respectively. These precisely cancel out, leading to a series in g4, 
as already foreshadowed in Equation (5.7).

The computations that support the predictions given by Equation (5.26) are exhibited in 
Figs. 14 and 15. Here, we investigate the regimes in which the 1- and 2-complex unitons are 
dominant. This corresponds to regions 3 and 4 and region 2 off the critical line of Fig. 3.

At the boundary between region 1 and 2 in Fig. 3, we would expect from the asymptotic ex-
pansions (5.24) and (5.26) that the real 1-uniton and the complex 1-uniton interact approximately 
at the same order. For example, the point ζ = 0, ηc = 0.274, considered in [42], belongs to this 
family. However, because the asymptotic expansions do not precisely match, there is not a per-
fect cancellation of alternating and non-alternating terms like there is at � = η = ζ = 1/2. The 
perturbative series along this border is thus in g2 and not in g4.

Combining all the information in the analyses of Equations (5.24) and (5.26) and Figs. 12, 13, 
14 and 15, we thus arrive at the following picture: across the ζ = 1/5 trajectory, varying η, we 
find that the real uniton is dominant in region 1 of 3, while the complex 1-uniton is dominant in 
regions 2, 3, and 4. Along the critical line, there is no 1-complex uniton, thus the real uniton is 
dominant in regions 1 and 2, while the complex 2-uniton is dominant in regions 3 and 4.
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Table 1
Numerical predictions for a1

I
(1/5, η) for 

selected values of η and ζ . We used the 
10th Richardson transform and 300 per-
turbative coefficients. The η = 0 result 
agrees with the exact result from [42].

η a1
I
(1/5, η)

0 −0.509487
1/100 −0.497592
1/20 −0.444087
1/5 −0.157644

Table 2
Numerical predictions for a1

CI
(0.4, η) for 

selected values of η and ζ . We used the 
10th Richardson transform and 150 per-
turbative coefficients. Notice the sudden 
jump at the Critical point η = ζ , be-
cause the 1-uniton approximation breaks 
down at this point. Had we used the EI

approximation, we would have obtained 
a1
I
(0.4, 0.4) = 54.9459. This might sug-

gest the coefficients a1
I

and a1
CI

have a 
simple pole at η = ζ . However, it should 
be noted the numerics are quite unstable 
around the critical point as the asymptotic 
series approximates the perturbative se-
ries much slower.

η a1
CI

(0.4, η)

0.2 0.204395
0.38 7.20539
0.39 14.9317
0.395 34.06471
0.4 431.158
0.41 15.3672

Lastly, let us compare the perturbative calculation with the asymptotic expansion (5.24) to say 
something about a1

I (η, ζ ). Equating the predicted asymptotic to the perturbative expansion and 
rearranging implies that

(2SI )
n+1

�(n + 1)A(η, ζ )
E

pert
n − 1 ≈ a1

I (η, ζ )
2SI

n
. (5.28)

By performing a Richardson transformation on the left hand side we can make predictions about 
a1
I (η, ζ ) in the regime where the real uniton dominates. The same can be done for a1

CI (η, ζ ). 
Example results are given in Tables 1 and 2. In addition, we can predict a1

2CI along the critical 
line for � > 1/2. For example, we expect a1

2CI = −0.0581325 for � = √
3/2. Whilst the a1

I (η, ζ )

can in principle be determined from uniform WKB, there is not yet a systematic understanding 
of how to determine the a1 and a1 .
CI 2CI
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5.4. Stokes discontinuities

In this section we will make a schematic attempt to show the significance of our results and 
how this might be implemented to expose the resurgent structure of the system. We make a 
simplification to further explain the significance of the coefficients A and B in the asymptotic 
forms in Equations (5.24) and (5.26). Let us consider new asymptotic expansions in z = g2 whose 
coefficients ESI

n , ESCI
n and ES2CI

n are, for all n and not just large enough n, given by the leading 
behaviour of Equations (5.24) and (5.26) (the sub-leading behaviour will be discussed later):

ẼI (z) =
∞∑

n=0

ESI
n zn , ẼCI (z) =

∞∑
n=0

ESCI
n zn , Ẽ2CI (z) =

∞∑
n=0

ES2CI
n zn . (5.29)

Their Borel transforms, using Equation (5.8) with s = ĝ2, are given by

ÊI (s) = A(η, ζ )

2SI − s
, Ê2CI (s) = −A(η, ζ )

2SCI − s
, ÊCI (s) = B(η, ζ )

√
π√

SCI − s
. (5.30)

We remind the reader that SCI is a negative real number if η and ζ are real whereas SI will be 
positive real, thus explaining the locations of the Borel poles in our preceding Borel analysis.

Recalling the re-summation in a direction ϑ of a series ψ̃(z) is given by

Sϑψ̃(z) = 1

z

eiϑ∞∫
0

ds e−s/zψ̂(s) , (5.31)

we can also see that the Borel resummation of ẼI is singular only along the positive real axis (i.e. 
there is a Stokes ray along ϑ = 0), whilst the Borel resummations of ẼCI and Ẽ2CI are singular 
only along the negative real axis (i.e. a Stokes ray along ϑ = π ). Resummations along these 
rays are inherently ambiguous. To study these ambiguities we adopt lateral Borel resummations 
Sϑ±ψ̃(z) = Sϑ±εψ̃(z). We thus compute that non-perturbative ambiguity due to the 1-uniton is

(S0+ − S0−)ẼI (z) = −2πi

z
Ress=2SI

[
e−s/z A(η, ζ )

2SI − s

]
= 2πi

z
A(η, ζ )e−2SI /z. (5.32)

The sign after the first equality is due to the clockwise integration contour. Similarly

(Sπ+ − Sπ−)Ẽ2CI (z) = −2πiA(η, ζ )

z
e−2SCI /z. (5.33)

To resum ÊCI (z), we choose the branch cut to go from z = SCI to negative infinity. (Hence the 
branch cut of the square root function lies along the positive real axis.) The integral from 0 to 
SCI does not contribute. For the remaining bit, we switch to an integration variable x = SCI − s, 
and solve the integral. Performing the outlined procedure then gives

(Sπ+ − Sπ−)ẼCI (z) = 1

z

∫
γ

ds e−s/z B(η, ζ )
√

π√
SCI − s

= 2B(η, ζ )
√

π√
z

e−SCI /z (5.34)

The reason we are interested in computing quantities such as (Sϑ+ − Sϑ−)Ẽ(z) is that this 
might shed light on the nature of the Stokes automorphism Sϑ which is defined by

Sϑ+ − Sϑ− = −Sϑ− ◦ Discϑ = Sϑ− ◦ (Sϑ − Id). (5.35)
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The Stokes automorphism describes the analytic structure of the ambiguities as a Stokes ray is 
crossed [30,19].

For the undeformed model [35], it was conjectured that the Stokes automorphism of the per-
turbative sector is due to a contribution E[II ](z) of the instanton-anti-instanton sector. This means 
there would be some expansion around a secondary saddle point that impacts the perturbative se-
ries E[0](z) of the perturbative sector [0] which was calculated above. This intricate interplay of 
sectors from different saddle point is part of the rich study of resurgence as it is the starting point 
of establishing large-order relations.

On the field theory side, different contributions are ascribed to the fractons which constitute 
the unitons. Although typically these contributions are combined in sectors classified by π2, 
we re-emphasise that for the SU(2) PCM this group is trivial. Instead we classify the sectors 
through π3. It is expected within the resurgence paradigm [35,19,30,29,56,57,6] that ambiguities 
should cancel within each sector. That means that the fracton-anti-fracton event should carry an 
ambiguity that matches the ambiguity obtained by resumming the perturbative sector given by 
Equation (5.32).

The contributions due to discontinuities along individual (branch) singularities w are often 
described in terms of Alien derivatives �w defined by

Sϑ = exp

⎛
⎝ ∑

ω∈singϑ

e−w/z�w

⎞
⎠ , (5.36)

where singϑ is the set of singular (branch) points in the direction ϑ . Typically it is of the form 
singϑ = {nA, |n ∈ Zn≥1}, and A = 2SI might be some action. The Alien derivatives hence gener-
ate the Stokes automorphism (for a modern review see [28]). The alien derivative is then expected 
[35] to look like

�2SI
E[0](z) = s1E[II ](z), (5.37)

where s1 is a Stokes constant.

5.5. Stokes graphs

Stokes graphs provide a graphical method to understand the Borel resumability and jumping 
phenomena associated to the WKB solutions of a Schrödinger equation as encoded by the DDP 
formula [12] for the behaviour of Voros symbols [11] across Stokes rays. As parameters in the 
Schrodinger potential are varied, the Stokes graph can undergo topology changes, or mutations, 
which have a rich mathematical structure [15,16] and are captured by the Stokes automorphism 
(5.35) described above. From a physics perspective, the seminal work [60] showed that the muta-
tions of Stokes graphs are intimately related to BPS spectrum of N = 2 four-dimensional gauge 
theory, where the Stokes automorphism describes wall-crossing phenomena.

Let us review some terminology required to explain what is meant by Stokes graphs. We 
consider a Schrödinger equation defined over a Riemann surface � with local coordinate w,(

d

dw2 − 1

g4 Q(w,g2)

)
�(w) = 0 , (5.38)

where g2 is a small parameter in which we construct formal perturbative expansions. In a general 
theory Q(w, g2) itself can be expanded in g, though we are interested here in the case where 
Q(w, g2) ≡ Q0(w) is given by the classical momentum p(w) = √

E − V (w). Under coordinate 
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transformations w → w̃(w), Q0 transforms holomorphically with weight 2 and thus defines a 
meromorphic quadratic differential

φSch = p(w)2dw ⊗ dw . (5.39)

Trajectories of φSch are defined as curves γ of constant phase in the sense that if ∂t is tangent to 
γ then λ · ∂t = eiϑ where φSch = λ ⊗ λ. Equivalently they can be defined by

Im

⎡
⎣ w∫

dw p(w)

⎤
⎦= constant , (5.40)

and these provide a foliation of �. Generically these trajectories will start and end at poles of 
p(w), but a special role is played by Stokes trajectories satisfying

Im

⎡
⎣ w∫

dw p(w)

⎤
⎦= 0 , (5.41)

which have at least one end point at a zero of p(w), which is also called a turning point. A 
Stokes trajectory is a saddle if both end points are located at zeros. It is regular if these zeros are 
different and it is degenerate if it is a loop. Given φSch(w), we define the associated Stokes graph, 
G[φSch], as a graph with vertices comprised of zeros and poles of φSch and edges comprised of 
Stokes trajectories.

It is useful to consider the effect on the Stokes graph of rotating g2 into the complex plane. An 
equivalent way to see this is to define the Stokes graph in a direction ϑ , Gϑ[φSch] = G[e2iϑφSch]
whose edges satisfy

Im

⎡
⎣eiϑ

w∫
a

dw p(w)

⎤
⎦= 0 , (5.42)

where a is a zero of p(w). The crucial linkage is that, if Gϑ has no saddles, then the formal 
WKB solutions to the Schrodinger system are Borel summable in the direction ϑ in the sense of 
Equation (5.31) (this is explained for general surfaces � in [16] reporting on a result attributed 
to Koike and Schäfke [61]). Along Stokes rays, however, a saddle will emerge. As ϑ is varied 
across the ray, the topology of Gϑ will undergo a transition (known as a flip for a regular saddle 
or a pop for a degenerate saddle).

Let us sketch the schematic structure of the Stokes graphs applied to the case at hand for 
which we have

p(w)2 = E − sd2(w)(1 + χ2−sn2(w)) . (5.43)

Because p(w) is an elliptic function with periodic identification w ∼ w+2K(m) ∼ w+2iK(m′), 
it will suffice to study it in its fundamental domain. For η �= ζ there are two distinct poles located 
at w = iK(m′) and w = K(m) + iK(m′). For E �= 0 and η �= ζ there are generically four zero’s 
which are given by solutions of

r4(ζ − η) + r2(1 + mE) − E = 0 , r = sn(w | m) . (5.44)
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Fig. 16. Sketches of the directional Stokes graphs for generic values η �= ζ with 0 < E < Ec . Poles and are shown in 
orange and zeros in purple. We have shown one fundamental domain per Figure, but note that the trajectories can of 
course cross into neighbouring domains. In particular, in (a) and (c), horizontal and vertical trajectories form saddles 
with the images of zero in the next domain.

In the range16 0 < E < Ec = 1 + (η + ζ )2, two of these zeros are located along the Im(w) = 0
axis symmetrically distribute about the half period w = K(m), with the two remaining zeros in 
the Re(w) = 0 axis symmetrically distributed about w = iK(m′). When E = 1 + (η + ζ )2, the 
two reals zeros coalesce at w = K(m) and if the energy increases still further this single zero 
proceeds to acquire an imaginary part and approach the pole at K(m) + iK(m′)

Looking at E < Ec we sketch the directional Stokes graphs in Fig. 16 and 17. In complete 
agreement with the discussion of the Borel pole structure, we see two directions ϑ = 0, π for 
which the graphs contain saddles and over which the graphs undergo flip transitions.

In the critical case of η = ζ an important modification occurs. The two zeros on the imaginary 
axis coincide at, and annihilate against, the pole at w = iK(m′) leaving just two remaining zeros 
situated on the real axis (for E < Ec) and the double pole at the centre of the fundamental 
domain. This topology change is the graphical reason behind the jump in critical line behaviour 
such that the complex 1-uniton makes no contribution. In this case however still saddles persist 
in the two directions ϑ = 0, π as shown in Fig. 18.

16 Here we view E as a parameter that can be continuously varied, and we find taking a small positive E helps in 
regulating the diagrams.
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Fig. 17. The lattice formed in 4 fundamental domains by saddles in the Stokes graph with η �= ζ with 0 < E < Ec for 
ϑ = 0 (left) and ϑ = π (right).

6. Connection to N = 2 Seiberg-Witten theory

From the WKB treatment above we saw that Stokes graphs are a elegant way of visualising 
the structure of the Borel plane. In a seminal work, Gaiotto, Moore and Neitzke [17,18] explained 
how the same structure plays a crucial role in the spectrum of BPS states of d = 4, N = 2 gauge 
theories. The essential idea (going back to the construction of Klemm et al. [62] for SU(2)

theories that will be relevant here) is that BPS states on the Coulomb branch associated with 
M2 branes stretched on a curve γ between sheets of the M5 brane carry charge Z = 1

π

∫
γ

λSW

but have mass given by M = 1
π

∫
γ

|λSW |. The BPS bounds are saturated providing that λSW

has constant phase along the curve, i.e. λSW · ∂t = eiϑ . For certain values of ϑ these Stokes 
curves become finite and start and end at the zero’s of λSW and the BPS state, in this case a 
hypermultiplet, has finite mass.

It is natural to wonder if the integrable theories we consider here have an analogue description 
in gauge theory. Stated more precisely, we are led to ask if there is a gauge theory for which the 
quadratic differential obtained as the square of the Seiberg Witten differential, φSW = λSW ⊗
λSW , matches that defined by the quantum mechanics arising from the reduction of the two-
dimensional non-linear sigma model we consider.

This has been shown to be the case first for the undeformed PCM on S3. The corresponding 
quantum mechanics had a trigonometric Mathieu potential [35] and for which the corresponding 
gauge theory is SU(2), Nf = 0. The resurgent structure of the Schrödinger equation correspond-
ing to this quadratic differential was studied in [19]. An interesting connection with the TBA 
equations of the corresponding integrable SG field theory was made by [63].

For the single parameter η-deformed theory it was shown in [42] that the quantum mechan-
ics has a Whittaker-Hill (or double sine-Gordon) potential and the corresponding gauge theory 
is SU(2), Nf = 2 (in the first realisation of [60]) with equal masses for the flavours. In this 
scenario an interesting connection is made between the masses of the flavours and the RG in-
variant combination of tension and deformation parameter, namely that M = m1 = m2 ∝ ση =
1 .

tη
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Fig. 18. Here we plot the Stokes graphs in the directions ϑ = 0, π2 , π, 3π
2 . Here we display the critical line � = 0.2

and we set E = 0.4. Poles are shown in orange and zeros in purple. As the direction crosses ϑ = 0, π saddles manifest 
themselves and a flip mutation is seen.

Here we shall provide a similar correspondence for the potential with two deformation pa-
rameters. We shall do so in two related ways, first linking to an SU(2) × SU(2) quiver theory 
and secondly linking to SU(2) Nf = 4 theory. To begin it is convenient to understand the form 
of the potential of the quantum mechanics considered above as a generalised Lamé potential.

6.1. The generalised Lamé potential

First, we will rewrite the potential, V (w), in terms of Weierstrass functions ℘(z). We shall 
denote the periods of the Weierstrass function as 2ω1 and 2ω2. The elliptic invariants are given 
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by g2, g3 and the constants ei denote the roots of corresponding cubic. The modular parameter 
of the torus τ = ω2/ω1 is given by

τ = iK(m′)
K(m)

, (6.1)

where m = e2−e3
e1−e3

is the Jacobi elliptic parameter and m′ = 1 −m. They are related to the invariant 
cross-ratio as

ω = (e3 − e1)
2 − 9e2

2

(e3 − e1)2 = 4mm′ . (6.2)

In terms of17 w = z
√

e1 − e3, the potential can then be rewritten as

V (z) = (e1 − e3)

1
3 ((e1 − e2)(e1 − e3) − 3e1) + ℘(z)

(e2 − ℘(z))(e3 − ℘(z))
, (6.3)

when the elliptic moduli are fixed by

e1 = 2 − m

m′ (1 + χ2−) , e2 = 2m − 1

m′ (1 + χ2−) , e3 = −1 + m

m′ (1 + χ2−) . (6.4)

In particular, this means a relation between the z and w coordinate

w = z

√
(1 + χ2+) . (6.5)

We can further rewrite Equation (6.3) as a generalised Lamé potential

V (z) = h +
3∑

i=0

ci℘ (z + ωi) , (6.6)

where

h = (e3 − e1)
(
e2

1 − 3e1 + 2e2e3
)

3 (e2 − e3) 2

c0 = c1 = 0

c2 = (e1 − e3) (−e1 + e3 + 3)

3 (e2 − e3) 2

c3 = (e1 − e2 − 3) (e3 − e1)

3 (e2 − e3) 2 ,

(6.7)

and ω3 = ω1 + ω2 and ω0 = 0.
The Weierstrass form of the potential is also revealing about the nature of the (η, ζ ) → (−η, ζ )

transformation, which was given an interpretation in the PCM context in Equation (2.26). From 
Equation (6.4) it is clear that in the Weierstrass description this corresponds to interchanging 

e2 ↔ e3. This has the effect of rescaling the coordinate by z →
√

e1−e3
e1−e2

z and an overall scaling 

of the potential V → e1−e2
e1−e3

V . Such transformations are easily absorbed in a rescaling of the 
coupling constant and do not alter the physics.

17 At this point we are using z as a coordinate on the torus which we trust will not be confused with the earlier usage as 
g2.
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Let us study two special cases in this formulation. First, the critical line η = ζ ≡ � corresponds 
to e1 − e2 − 3 = 0, which implies that c3 = 0. In this situation, equation (6.3) simplifies to

V (z) = e1 − e3

℘(z) − e2
. (6.8)

However, it is perhaps more natural to think about a co-critical point where η = −ζ . In this 
situation the potential reduces to

V (z) = 1

3
− 1

12η2 (1 − ℘(z)), (6.9)

which is similar to the Lamé potential studied in [20], identifying −4η2 = k2. We know that 
this potential governs the WKB curve of the vacuum structure of SU(2) N = 2∗ Seiberg-Witten 
theory, which is a mass deformation of an N = 4 theory [64].

The ζ → 0 limit is quite delicate in this description as can immediately be seen from the fact 
that the Jacobi elliptic parameter m → 0 and correspondingly the modular parameter diverges 
as τ → i∞. In particular, in this regime not all ei are distinct which is forbidden in the generic 
Weierstrass setting, because the determinant

� = g3
2 − 27g2

3 = 11664(1 + χ2+)2(1 + χ2−)2(χ2− − χ2+)2 (6.10)

of the polynomial 4t3 − g2t − g3 vanishes. However, if we consider the case in which we blow 
up one of the periods ω2 → ∞, we see that

g2 = 2 × 60
∞∑

n=1

1

(nω1)4 = 4π4

3ω4
1

,

g3 = 2 × 140
∞∑

n=1

1

(nω1)6
= 8π6

27ω6
1

,

(6.11)

where we have used that the Riemann ζ -functions takes the following values: ζ(4) = π4

90 and 

ζ(6) = π6

945 . This leads to � = 0, thus we may identify the two limits. To conclude, in this regime, 
ω2 → ∞ and we break the finite double periodicity, i.e. the length of one side of the torus has a 
pole. Moreover, e2 and e3 are not distinct anymore. In particular this leads to a pole in c, c2 and 
c3.

6.2. Nf = 2 elliptic SU(2) × SU(2) quiver theory

We now consider the SU(2) × SU(2) quiver gauge theory with two flavours. To extract the 
relevant differential, we employ Witten’s string theory construction of the Seiberg-Witten the-
ories [65,66]. On the M-theory side, we compactify along the x6 and the x10 direction which 
creates a base torus E with modular parameter τ which is the base Riemann surface. Let z be a 
coordinate on the torus. The Seiberg-Witten curve takes the form [66]

F(v, z) = (v − v1(z))(v − v2(z)) ≡ 0 , (6.12)

in which roots in v are the locations of the D4-branes. Let the locations z1 and z2 of the 2 NS5-
branes be marked points on the base torus. We require that vi(z) has a pole at zi with residue mi

parametrising the masses of the hypermultiplets. In addition, we allow a fibration of the v-space 
over the base torus E around z = 0
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z → z + 2πR, v → v + m1 + m2 . (6.13)

Using the double periodicity and the singularity structure of vi(z), we can completely fix the 
form of the coefficients:

v1(z) + v2(z) = m1ζ(z − z1) + m2ζ(z − z2) − (m1 + m2)ζ(z) + c0

v1(z)v2(z) = 1

4
(m1 + m2)

2℘(z) + B(ζ(z − z1) − ζ(z − z2)) + C,
(6.14)

where B , C and c0 are some moduli and ζ(z) is the quasiperiodic Weierstrass function defined 
by ζ ′(z) = −℘(z) such that the combination 

∑
i aiζ(z′ − z′

i ) = 0 is doubly periodic if 
∑

i ai = 0
and has a simple pole around z = 0 with a residue of 1.

The Seiberg-Witten differential is given by

λSW = v̂dz , (6.15)

in which

v̂ = v − 1

2
(v1(z) + v2(z)) . (6.16)

We can now use the definition of the curve equation (6.12) to determine that

v̂2 = m2
1

4
℘(z − z1) + m2

2

4
℘(z − z2) + u−(ζ(z − z1) − ζ(z − z2)) + u+, (6.17)

where

u± = 〈Tr�2
1 ± Tr�2

2〉, (6.18)

are Coulomb branch moduli.
We would like to match the quadratic differential

φSW = λSW ⊗ λSW (6.19)

to that of Schrodinger system given in Eq. (5.39).
By inspection this identification is achieved when the coordinates z and w are related ex-

actly as described in Equation (6.5) and when the Coulomb branch parameter u− = 0 with the 
locations of the five branes are fixed to the half-periods z1 = ω2 and z2 = ω3. To complete the 
identification we must match the hypermultiplet masses to the parameters of the Schrodinger the 
system and the result is quite striking; we find that they are directly given by the parameters that 
control the underlying quantum group symmetry of the YB deformed PCM

ση = m1 + m2

2ν
, σζ = m1 − m2

2ν
, (6.20)

in which we have reinstated chemical potential and compactification radius in the combina-

tion ν2 = 4ξ2

L2 . The final Coulomb branch parameter, u−, is related linearly to the energy of 
the Schrodinger system (the exact coefficients do not appear very insightful at this stage).

The two gauge couplings of the quiver are given in terms of the torus modular parameter by 
[64]

z1 − z2 = τ1 = 4πi

g2
1

+ θ1

2π
,

τ − (z1 − z2) = τ2 = 4πi

2 + θ2

2π
.

(6.21)
g2
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Now since the roots of the elliptic curve are all real, and the five branes are located at the half 
periods we concluded that z1 − z2 = ω1 ∈R and that τ is pure imaginary. As a result we see that 
the coupling g1 → ∞ with 4πi

g2
2

= τ finite whist the theta angles obey θ1 = −θ2 = 2πω1. In this 

language the critical line is approached in the limit that the mass m2 → 0.

6.3. Nf = 4 SU(2) theory

In [67,68], Ta-Sheng Tai recovers curves with the form (6.6) in some SW curve setting via a 
duality to the Heun equation. We will now show how one obtains the appropriate SW curve.

Let us now connect the Schrodinger system obtained above to the quadratic differential for 
the Seiberg-Witten curve of 4d N = 2 supersymmetric Yang-Mills with SU(2) gauge group and 
Nf = 4 flavours. The theory is specified by a Coulomb branch parameter u, the four flavour 
masses mi and the marginal coupling τYM = 4πi

g2
YM

+ θ
2π

. The UV curve of the theory is given by

F(t, v) = t2(v − m1)(v − m2) + b(v2 − u)t + c(v − m3)(v − m4) = 0 , (6.22)

in which the parameters b and c are related to the elliptic invariants g2 = 1
12

(
b2 − 3c

)
and g3 =

1
432

(
9bc − 2b3

)
and moreover the roots of the polynomial (c + bt + t2) = (t − t+)(t − t−) can 

be understood as relating to the M-theory lifting of the NS5 branes in the IIA picture. The SW 
differential is obtained as

λSW = v̂
dt

t
, v̂ = v − c(m3 + m4) + (m1 + m2)t

2

2(c + bt + t2)
, (6.23)

in which the shifted quantity v̂ is used to factor out the overall U(1) degree of freedom. We can 
define a change of coordinates

t = 4℘(z) − b

3
, (6.24)

by which we can bring the quadratic differential to the form

φSW = λSW ⊗ λSW =
[
h +

3∑
i=0

ci℘ (z − wi)

]
dz ⊗ dz , (6.25)

where wi with i = 1 . . .3 are the half-periods and w0 = 0. The coefficients ci in this expression 
are slightly unedifying expressions depending to t±, the mass parameters and for h also on u, but 
in particular c0 = (m1 − m2)

2 and c1 = (m3 − m4)
2.

We would like to match this to Schrodinger system of eq. (5.39).
Using the relation between coordinates z and w given by eq. (6.5), we find that the matching 

is achieved with setting the flavor masses pairwise equal

m1 = m2 = M , m3 = m4 = M̃ , (6.26)

and relating them to the bi-Yang-Baxter parameters according to

ση = 2

ν

(
M̃ − M

)
, σζ = 2

ν

(
M̃ + M

) 1 + m′

m
. (6.27)

To complete the matching we also need to relate the parameter on the Coulomb branch to the 
energy of the Schrodinger system which is achieved with
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E = ν2(1 + m′)(M2 − u)

M2(1 + m′ + m′2) + 2m′MM̃ − m′M̃2
. (6.28)

To close this section let us remark that along the critical line, parametrised by � = η = ζ , 
we find very particular behaviour in the matching. First we can note that the masses are re-
lated via M̃ = −(1 + 4�2)M . Using (6.1), we find that the elliptic modulus of the torus is 
τ = iK( 1

1+4�2 )/K( 4�2

1+4�2 ). When � = 1
2
√

3
we encounter a point for which the complex uni-

ton action has exactly twice the magnitude as the real uniton action, and at this point we have a 
relation between the masses M̃ = − 4

3M . At this point we have the τ = iK( 3
4 )/K( 1

4 ). Continuing 
to increase the deformation we arrive at � = 1

2 when the complex uniton has the same magnitude 

as the real uniton for which we find τ = i and M̃ = −2M . At � =
√

3
2 , for which |SI | = 2|SCI |, 

we have M̃ = −4M and τ = iK( 1
4 )/K( 3

4 ).
We remark that the previously discussed duality in [26] of the critical system that sends 

κ → 1
4κ

(or m → m′), results in an S-duality sending τ → −1
τ

. In addition we observe that 

� = 1
2
√

3
and � =

√
3

2 are dual under this transformation, whereas � = 1
2 , corresponding to τ = i, 

is self-dual. A similar κ → 1
4κ

mirror duality was observed in an η-deformation of a symmetric 
space AdS5 × S5 sigma model [69]. In a semi-classical regime certain magnon and anti-magnon 
solutions to the TBA equations were found which are related by the mirror duality. This may pro-
vide a hint to extend the duality of instantons and complex instantons of [26] to a sigma model 
setting.

7. Conclusion and outlook

We thus conclude our study of the bi-Yang-Baxter deformed SU(2) PCM. We have seen 
that the model harbours two types of solutions which we have dubbed the real and the finite 
uniton, both with a quantised finite action. By employing an adiabatic compactification [42,35]
we obtained a reduced quantum mechanics whose non-perturbative behaviour is dominated by 
finite action configuration derived from the unitons. Moreover, we were able to find an N = 2
Seiberg-Witten theory that gives rise to the same WKB curve as that of our reduced quantum 
mechanics. By introducing a new example into the framework of resurgence, we hope to expand 
the non-perturbative discourse. In particular, we believe the complex saddle point in our system 
might elucidate more advanced structures of resurgence. Possible future directions of study could 
include:

• In [9], Equation (108), it was observed that the following relation holds for both the double 
well and the Sine-Gordon quantum mechanics

∂E

∂B
= −g2

SI

(
2B + g2 ∂A

∂g2

)
. (7.1)

A(B, g2) is a function that appears in the global boundary conditions of the uniform WKB 
and is determined by u(θmidpoint). It was first introduced by [56,57] and for the Sine-Gordon 
model it reads

ASG(B,g2) = 4
2 − g2 (

B2 + 1
)

− g4 (
B3 + B

)
+O(g6) (7.2)
g 2 4 8 4
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It was shown in [20] that this relation in the undeformed limit is a consequence of a gen-
eralised Matone’s relation [70] on the gauge theory side. In addition, [9] attribute a great 
deal of importance to this relation as it explain a lot of the resurgent behaviour. However, in 
the compactified Yang-Baxter deformed models studied in this paper, there does not appear 
to be a related identity. It would be interesting to understand how the relation (7.1) can be 
modified in systems with a real and a complex saddle point.

• In Figs. 4 and 5 we observed that the uniton with twisted boundary conditions fractionates 
into 2 separate lumps. In the undeformed model [35], it was shown how solutions for these 
individual constituent fractons can be constructed. These are not exact solutions to the equa-
tions of motions, but are rather quasi-solutions, meaning that the equations of motion can 
be satisfied with parametrically good accuracy in some limit of the moduli λi . Critically, it 
was shown that the amplitude of a fracton-anti-fracton event carries an ambiguity that pre-
cisely cancels the Borel-resummation ambiguity of the perturbative sector given by Equation 
(5.32). It would be an impressive check for the resurgence programme to extent this analysis 
to the YB-deformed PCM which also harbours a complex uniton fractionation.

• The Thermodynamic Bethe Ansatz (TBA) is a powerful technique to study integrable field 
theories that exploits the exact scattering matrix of the model, for recent introductions see 
[71–73]. As was mentioned before, the scattering matrix of the SU(2) YB deformed PCM, 
given by (2.18) and (2.19), first appeared in [38]. In the TBA framework of O(N) integrable 
sigma models, Volin [74,32] used integral resolvents to recover the mass gap of the theory 
and find an asymptotic expansion of the energy and particle densities. This approach was fur-
ther expanded to study renormalon ambiguities in Gross-Neveu and PCM models by [75,33]. 
Moreover, it was shown that the resurgent structure of the Sine-Gordon quantum mechanics 
can be reinterpreted in terms of TBA equations [63]. It would be very interesting to extend 
these ideas to the bi-YB deformed PCM.

• The apparent connection between the 2d integrable theory and the N = 2 gauge theories 
provokes a number of questions. First, is this simply coincidental? If not, is there a more 
fundamental way to make this connection we find (that doesn’t require picking particular 
coordinate, adiabatic reduction etc.)? Second, what significance do dualities exhibited on 
the gauge theory side hold for the integrable models? Third, how do the integrable Hitchin 
systems associate to the gauge theory [64] compare to the integrable structures of the PCM 
(e.g. Maillet-brackets and twist functions) and its deformations? If such a connection can 
be made it seems likely it is via the use of affine Gaudin models [76,77]. A final intriguing 
question here is to understand if the wall-crossing phenomena seen in the gauge theory have 
an interpretation and implication for the two-dimensional deformed sigma-model considered 
in this paper.

• In a recent series of papers [78–80], it was shown how one can construct 2d integrable field 
theories from a certain four-dimensional holomorphic Chern-Simons type theory. It was later 
shown by [81] that Yang-Baxter deformations can also be incorporated in this framework. 
A direct question is to understand the more general resurgent structure of integrable 2d field 
theories from the perspective of this 4d gauge theory. A rather concrete first question would 
be to understand the significance of the uniton, and its cousin in complex field space, within 
the gauge theory. A potential root here would be to exploit the connection with affine Gaudin 
models established by [82].
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Appendix A. Evaluating uniton actions

Here, we dwell upon the following observation. When integrating the action, in both the real 
and the complex uniton we switch to w = f (z) coordinates. We transition to polar coordinates 
w = reiθ . Because there is no θ -dependence we integrate it out. When considering the real uni-
ton we make the substitution ρ = r2 − 1, for the complex uniton we substitute ρ = −r2 − 1. 
Remarkably, in both cases we obtain the following integrand:

g(ρ) = −2(2 + ρ)2

(4 + 4ρ + (1 + (ζ + η)2)ρ2)(4 + 4ρ + (1 + (ζ − η)2)ρ2)
, (A.1)

with the only difference that for the real uniton we integrate ρ from positive infinity to −1, for 
the complex uniton, we integrate ρ from −1 to negative infinity.

On the interval (−1, ∞), we can construct a continuous (i.e. without branch cuts) anti-
derivative:

(ζ + η)arctan(
(ζ+η)ρ

2+ρ
) − (ζ − η)arctan(

(ζ−η)ρ
2+ρ

)

4ζη
. (A.2)

This can be used to evaluate the real uniton action (3.5). It cannot be used to compute the complex 
uniton action because it is in particular discontinuous at ρ = −2. On the interval (−∞, −1), we 
can use

(ζ + η)arccot( (ζ+η)ρ
2+ρ

) − (ζ − η)arcot( (ζ−η)ρ
2+ρ

)

4ζη
(A.3)

as an antiderivative to compute the complex uniton action.
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Jointly, they can be used to reconstruct 
∫∞
−∞ g(ρ)dρ. This integral can be easily computed 

using the Cauchy residue theorem. The integrand vanishes in all direction at infinity, and it has 4 
poles, two in the upper half plane and two in the lower half plane. This yields (for η, ζ ∈ R)

∞∫
−∞

g(ρ)dρ = π

4ζη
(|ζ − η| − |ζ + η|). (A.4)

Via the above explanation or by using the identity 2 x arctan(x) + 2 x arccot(x) = π |x|, we thus 
obtain the following relation between the complex and the real uniton actions for η, ζ ∈R

SCI (ζ, η) − SI (ζ, η) = π(1 + (ζ + η)2)

4ζη
(|ζ − η| − |ζ + η|). (A.5)
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