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Abstract

Obesity and its complications constitute a substantial burden. Considerable published research describes the novel
relationships between obesity and gut microbiota communities. It is becoming evident that microbiota behave in a
pivotal role in their ability to influence homeostatic mechanisms either to the benefit or detriment of host health,
the extent of which is not fully understood. A greater understanding of the contribution of gut microbiota towards
host pathophysiology is revealing new therapeutic avenues to tackle the global obesity epidemic. This review
focuses on causal relationships and associations with obesity, proposed central mechanisms encouraging the
development of obesity and promising prospective methods for microbiota manipulation.
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Background
The worldwide prevalence of obesity has approximately
tripled since 1975 with a current estimate of 1.9 billion
adults being classed as overweight (body mass index,
BMI ≥ 25 kg/m2). This currently outnumbers those with
malnutrition [1, 2]. Obesity is defined as the ‘abnormal
or excessive fat accumulation that may impair health’
and is measured using the BMI [3]. Factors contributing
towards the obesity epidemic include an increased acces-
sibility to energy-dense foods, an increase in sedentary
activity and the possible involvement of the gut micro-
biota on host metabolism.
Although the fundamental cause of obesity is an en-

ergy imbalance between the calories consumed and the
calories expended [1], body weight is not influenced by
the calorific ingestion, but rather by the calories that are
absorbed [4]. When adipose tissue exceeds its buffering
capacity to store excess triglycerides, a resulting overflow
of lipids into the systemic circulation occurs [5]. This
lipid overspill to non-adipose tissues such as the liver,

skeletal muscle and pancreas culminates in ectopic fat
storage and the subsequent development of insulin
resistance. Secondly, inflammation in adipose tissue
increases, triggering the production and secretion of
pro-inflammatory cytokines and adipokines, which con-
tribute to the development of peripheral insulin resist-
ance and altered glucose homeostasis [5].

Gut microbiota
In the early 1900s, Élie Metchnikoff, a Russian-born zo-
ologist and microbiologist first postulated the theory
that gut microbiota behave as central modulators influ-
encing host homeostasis and metabolism [6]. He be-
lieved that disruption of host homeostasis by particular
bacteria increased the possibility of a disease state result-
ing in systemic toxicity from bacterial by-products [6].
An adult human is colonised by approximately 100 tril-
lion microbes, most of which are predominantly found
in the gastrointestinal tract (GIT), the largest population
residing in the colon [7].
Scientists are gaining a greater understanding of the

‘normal’ bacterial communities and physiology of
present gut microbiota through population research
such as the Human Microbiome Project [8].
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Taxonomy is the study of classifying microbiota and
provides a rigid structure for the arrangement of par-
ticular microbiota into groups on the basis of mutual
similarity or evolutionary relatedness. In bacterial tax-
onomy the most commonly used ranks (levels) in as-
cending order are species, genera, families, orders,
classes, phyla and domain [9].
The most abundant faecal bacterial groups of both

lean and obese subjects are the phyla Firmicutes and
Bacteroidetes [10, 11]. Approximately 90% of all phy-
lotypes of gut bacteria belong to either the gram-
positive Firmicutes (64%) or the gram-negative Bac-
teroidetes (23%) [8, 12]. Other important phyla are
Proteobacteria, Actinobacteria, Verrucomicrobia and
Fusobacteria [8, 13–15]. The host genome is pivotal
in controlling the composition of gut microbiota,
however many external factors such as diet, illness,
lifestyle, hygiene and the use of medications can con-
tribute to changes in bacterial communities [16–18].
Growing evidence illustrates that dietary modification
may be extremely influential in accounting for gut
microbiota variations [17, 19, 20] (summarised in
Fig. 1).

Microbiota population differences in obesity
Maintaining the heterogeneity and stability within the
gut microbiota community is essential for promoting
host health. Alterations in diversity and microbiota
community structure may affect host metabolism
resulting in obesity. Subjects with obesity have con-
sistently demonstrated a reduction in diversity and

richness in microbial populations which can be re-
versed using weight loss interventions (diet low in fat
and animal products, rich in fruit and vegetables) [21,
22]. Microbial diversity has been linked to the meta-
bolic function of gut microbiota and low bacterial
richness has been suggested to be a risk factor for
obesity and low-grade inflammation [23, 24].
Obesity-related host microbiome display enrichment

in particular gene categories involved in carbohydrate
and lipid metabolism, and enzymes involved in glu-
cose and insulin signaling pathways are down-
regulated [11, 21, 25]. Le Chatelier et al., analysed
gene counts of a large cohort of obese and healthy
subjects. Subjects identified with a low gene count
(LGC) showed traits typical of an ‘obese phenotype’
associated with greater overall adiposity, insulin resist-
ance and dyslipidaemia [26]. LGC subjects also had
increased levels of serum leptin, triglycerides and
free-fatty acids, high density lipoprotein-cholesterol,
decreased serum adiponectin and an elevated inflam-
matory phenotype [26, 27]. Dietary restriction among
overweight or obese patients is less efficient in LGC
than in high gene count individuals when targeting
the improvement of insulin sensitivity and lowering of
lipid and inflammatory biomarkers [26, 28].
The inconsistency across both animal and human

studies regarding the Firmicutes/Bacteroidetes phyla ra-
tio in obesity diminishes the significance of this particu-
lar finding. This review will therefore focus on more in-
depth microbiota relationship findings below phylum
level as summarised in Table 1.

Fig. 1 Contributions towards obesity development including gut microbiota findings
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A specific microbial signature associated with a diag-
nosis of obesity has still not been identified. The most
common gut microbiota composition finding is a reduc-
tion in the butyrate-producing microbes together with
an increase in opportunistic pathogens [29]. Consistent
microbiota findings have displayed reductions in the
abundances of the families Rikenellaceae and Christense-
nellaceae as well as a decrease in the abundance of the
genera Bifidobacterium, Oscillospira and Akkermansia
[10, 11, 22, 29–32].
Many of these depleted microbiota provide beneficial

attributes to the host. Bifidobacterium is associated with
elevated short chain fatty acids (SCFAs), decreased lu-
minal lipopolysaccharide (LPS) and improved intestinal
barrier function [31, 48]. The importance of these mech-
anisms are discussed in individual sections later in the
review. Both Christensenellaceae and Akkermansia cor-
relate with lower visceral fat mass, a type of fat that is
considered to be an adverse cardiometabolic risk factor
when in excess [24, 49]. Akkermansia is a mucin-
degrading microbe inhabiting the outer mucus layer of
the intestinal barrier and is associated with a healthier
metabolic status in obese humans [24]. It has been

reported that having increased amounts of Akkermansia
in the gut prior to embarking on a weight loss
programme leads to greater improvements in glucose
homoeostasis, blood lipids and body composition [24].
In addition to the above findings, two species within

the Rikenellaceae family have been identified that correl-
ate negatively with BMI: Alistipes finegoldii and Alistipes
senegalensis [33]. This finding has been replicated in a
German weight-loss intervention study who enrolled fe-
male participants on a very low calorie diet and found
that the genus Alistipes was a marker of persistent
weight-loss success [34]. The species Faecali prausnitzii
is also significantly reduced in obesity, particularly in
those patients with diabetes [11, 35]. Weight loss in
obese adults has been shown to have the reverse effects
on microbiota composition and enhances the relative
abundances of Faecali prausnitzii, Akkermansia and
Christensenellaceae [22, 32, 36].. Faecali prausnitzii is an
important butyrate-producing microbe and is under-
stood to provide host protection against bacterial trans-
location [50].
Specific gut microbiota have also been reported to in-

crease in obesity: - the families Prevotellaceae,

Table 1 Gut microbiota differences in obese human and rodent cohorts, preoperative bariatric dietary cohort, post-bariatric surgery
human and rodent cohorts, post-allogenic FMT cohort

Cohort Microbiota Findings

Obese cohort [10, 11, 22, 29–32] ↓ Rikenellaceae and Christensenellaceae
↓ Bifidobacterium, Oscillospira and Akkermansia

Obese cohort [33] ↓ Alistipes finegoldii and Alistipes senegalensis

Obese cohort [34] Alistipes =marker of persistent weight loss success

Obese cohort [11, 35] ↓ Faecali prausnitzii

Obese cohort [21, 32, 36] Weight loss ↑ Faecali prausnitzii, Akkermansia and Christensenellaceae

Obese cohort [37] ↑ Prevotellaceae, Coriobacteriaceae, Erysipelotrichaceae, and Alcaligenaceae

Elevated BMI [38, 39] ↑ Roseburia

Obese cohort [40] ↑ Eubacterium dolichum

Obese cohort [37] ↑ H2-producing bacteria; (Prevotellaceae, certain groups within the Firmicutes and Archaea)

Obese cohort [11, 26] ↑ gram-negative microbes
↑ Fusobacterium, Escherichia-Shigella, Pseudomonas and Campylobacter

Obese children and overweight women [30, 41] ↑ Staphylococcus aureus

Obese cohort on preoperative diet [42] ↓ Streptococcaceae and Ruminococcaceae
↑ Rikenellaceae and Bifidobacteriaceae

Post-bariatric surgery [37, 42, 43] ↑ Gammaproteobacteria (Enterobacteriaceae)
↓ Firmicutes (Clostridium difficile, Clostridium hiranonis, and Gemella sanguinis)
↓ methanogens

Post-bariatric surgery [43, 44] ↑ Escherichia, Klebsiella, and Pseudomonas

Six months post-bariatric surgery [42] ↑ Streptococcaceae and Veillonellaceae
↓ Bifidobacteriaceae

Rodent model – post bariatric surgery [45] ↑ Bacteroidetes, Verrucomicrobia, and Proteobacteria
↑ Alistipes, Akkermansia, and Escherichia

Rodent model – post bariatric surgery [46] ↑ Proteobacteria (Enterobacter hormaechei)
↓ Firmicutes and Bacteroidetes

Allogenic FMT recipients [47] ↑ Roseburia intestinalis
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Coriobacteriaceae, Erysipelotrichaceae and Alcaligen-
aceae [37]. Secondly, increased abundance of the genus
Roseburia is consistently reported in subjects with ele-
vated BMI [38, 39]. Roseburia has the ability to hydro-
lyse and ferment polysaccharides into SCFA, thereby
increasing energy harvest from the diet [51]. Lastly, the
species Eubacterium dolichum has been positively asso-
ciated with visceral fat mass as a surrogate marker of
obesity [40].
The generation of hydrogen (H2) in the GIT provides

an inhibitory effect on gut microbiota resulting in re-
duced fermentation [52]. H2-producing bacteria; origin-
ating mainly from the Prevotellaceae family, certain
groups within the Firmicutes and H2-oxidizing methano-
genic Archaea, have been found to be in significantly
greater numbers in microbiota communities of obese
subjects [37]. Archaea are not bacteria but comprise a
separate taxonomic kingdom and are organisms consist-
ing of a single cell without a nucleus [53]. Methanogens
readily absorb H2 allowing for continued carbohydrate
fermentation by H2-producing bacterial groups resulting
in greater SCFA availability and an increased availability
of calories [37, 54].
As discussed later in this review, gram-negative bac-

teria provide a ready source of LPS, increasing the likeli-
hood of systemic host inflammation. Gram-negative
bacteria including the genera Fusobacterium, Escheri-
chia-Shigella, Pseudomonas and Campylobacter are all
prevalent in obesity [11, 26]. The family Prevotellaceae,
which provides a source of bacterial LPS is significantly
enriched in obese subjects [37]. Lastly, the species
Staphylococcus aureus, a well-known opportunistic
pathogen, was found to be in reduced quantities in chil-
dren who maintain normal weight compared with chil-
dren that are overweight several years later [41]. This
finding was also replicated in a cohort of overweight
women [30].
It is clearly demonstrated that a reduction in gut

microbiome diversity occurs in obese subjects, but there
are still many unanswered questions on the precise mi-
crobial population of an obese gut microbiome. Whether
it is more important to focus on microbiota composition
at phyla or deeper levels such as genus and species re-
mains open to debate and if the absence, depletion or
presence of particular microbiota contributes to the
development of obesity.

Microbiota contribute to the development of obesity
The exact mechanisms by which ‘obese microbiota’ in-
fluence the development of obesity is still unfolding.
Animal models have been widely utilised for the in-
depth analysis of the microbe-host relationship and
allow for the investigative impact of microbiota interven-
tions in the pathogenesis of obesity. In this section we

explore the basic involvement of the gut microbiome in
mouse models before focusing on the potential
mechanisms.
Germ free (GF)-mice display attributes indicating the

possibility of resistance to developing obesity induced by
consuming a high-calorific diet strongly suggesting a
possible causal role for gut microbiota [55]. Allowing
both GF and conventional mice (C57BL/6) access to un-
limited chow, it was observed that GF-mice exhibited
considerably less (42%) total body fat than conventional
mice, despite ingesting a daily consumption of 29% more
chow [56]. Lupp et al. [57], also analysed GF-mice and
observed that this particular cohort weighed significantly
less and eliminated twice as many calories in their stool
compared with their conventional counterparts. To-
gether, these findings demonstrate that GF-mice harvest
less energy from their diets suggesting that the presence
of the gut microbiome increases energy harvest.
To better understand the gut microbiome involve-

ment, GF-mice (C57BL/6), were colonised with gut
microbiota extracted from conventionally raised obese
mice. Within fourteen days, the GF-mice had subse-
quently increased their total body fat content by 60%
with associated insulin resistance, despite ingesting re-
duced amounts of chow [56]. Several possible mecha-
nisms were proposed: - increased microbial fermentation
of dietary polysaccharides that could not previously be
digested; subsequent increase in intestinal absorption of
both monosaccharides and SCFAs; and microbial regula-
tion of host genes that promote deposition of lipids in
adipocytes [56].
Turnbaugh et al. [58], performed microbiota trans-

plantation into GF-mice (lean) with microbiota extracted
from both obese and lean mice. All mice were allocated
equal amounts of chow. Fourteen days post-procedure,
the cohort who had received ‘obese’ microbiota had in-
creased their total body weight compared to those who
had received ‘lean’ microbiota who remained lean [58].
The investigators also examined the ‘obese’ rodent’s gen-
ome and discovered significant enrichment of gene tags
(GLB1: β-galactosidase, melA: α-galactosidase, GAA: α-
glucosidase, PFKL: 6-phosphofructokinase) encoding for
enzymes involved in the degradation of dietary polysac-
charides that would be otherwise indigestible [58].
Ridaura et al. [59], were the first group to perform hu-

man faecal microbiota transplantation (FMT) on a co-
hort of GF-rodents. Gut microbiota were extracted from
adult human female twin pairs discordant for obesity.
Initially, all GF-rodents were considered to be of normal
weight, allocated low-fat chow and co-housed. Rodents
who received ‘obese’ FMT exhibited growth in their total
body and fat mass while those who received ‘lean’ FMT
remained lean. Stool sequencing indicated successful in-
tegration of the human donor microbiota, including the
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transfer of functions associated with the respective lean
or obese microbial communities [59].

Homeostatic mechanisms influenced by gut microbiota in
the development of obesity
Gut microbiota have the capability to impact host physi-
ology both to its benefit and detriment either directly or
via microbial metabolites [60, 61]. Almost 10% of all cir-
culating metabolites in an adult human are derived from
microbiota and participate in metabolic pathways [51].
We discuss the most important mechanisms involving
the contribution of gut microbiota leading to the devel-
opment of host obesity (summarised in Fig. 2).

Short chain free fatty acids
The production of SCFAs by microbial fermentation has
been linked to reductions in body weight and adiposity
[62]. SCFAs are small organic monocarboxylic acids and
constitute the major microbial metabolites produced
during anaerobic carbohydrate fermentation in the gut
[63]. SCFAs consist of one to six carbons of which acet-
ate (C2), propionate (C3) and butyrate (C4) are the most
abundant (≥95%) [64]. GF-mice are devoid of SCFAs,
highlighting the central role of microbiota in the pro-
duction of SCFAs [65, 66]. SCFAs target host metabolic
signaling pathways through coupling action with selected
G-protein-coupled receptors (GPR41, GPR43, GPR119,
GPR109A), which are abundant in adipocytes, gut im-
mune cells and epithelial cells [67–70].

These receptors are not stimulated equally by all
SCFAs. Propionate primarily activates GPR41, butyrate
activates GPR109A, whereas GPR43 and GPR119 can be
activated by acetate, butyrate and propionate at similar
rates [70, 71]. The order Clostridiales provides the lar-
gest microbiota population towards the production of
SCFAs including the genera Anaerostipes, Clostridium,
Coprococcus, Dorea, Eubacterium, Faecalibacterium,
Roseburia, Ruminococcus, Peptococcus, and Peptostrepto-
coccus [72].
The activation of receptors GPR41 and GPR43 induces

the secretion of peptide tyrosine-tyrosine (PYY), redu-
cing host appetite by directly stimulating the central ner-
vous system [73, 74]. GPR41 coupling has the ability to
initiate the expression of leptin from adipocytes [75, 76]
and was first discovered using GPR41 deficient mice that
displayed substantially lower leptin levels than corre-
sponding wild-type mice [77]. Leptin acts on the hypo-
thalamus, reducing food intake by inhibiting the release
of neuropeptide Y (NPY) and promotes an increase in
host metabolic rate consequently enhancing energy
expenditure.
GPR43 receptor coupling with acetate directly reduces

lipolysis in adipocytes, decreasing plasma-free fatty acids
suggesting a possible therapeutic role for receptor
GPR43 in lipid metabolism regulation [78]. Studying
wild-type rodents, the receptor GPR43 was found to be
mainly expressed in immune and white adipose tissue
(WAT). Observing the activation of GPR43 in WAT
found that insulin-induced protein kinase B (AKT)-

Fig. 2 Host metabolic pathways influenced by gut microbiota and metabolites including SCFAs, Fiaf inhibition, bile acid metabolism, intestinal
mucosal barrier and host inflammatory pathway
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activation was significantly reduced, resulting in less fat
accumulation. In conclusion, GPR43-deficient rodents
are phenotypically obese in contrast to rodents with a
specific overexpression of GPR43 in WAT, who remain
lean even when subjected to a high calorific diet [38].
SCFA coupling with receptors GPR43 and GPR109A

provides anti-inflammatory protection for the host.
GPR43 coupling promotes the production of antimicro-
bial peptides RegIIIγ and β-defensin and immunity-
related cytokines such as interleukin (IL)-1, IL-6, IL-12
and IL-18 [39, 79]. GPR109A activation suppresses co-
lonic inflammation and carcinogenesis by promoting
anti-inflammatory properties in colonic macrophages
and dendritic cells, which induce the differentiation of
regulatory and IL-10-producing T cells [80].
Acetate, the most abundant SCFA is produced by en-

teric bacteria from the genera Lactobacillus, Bifidobac-
terium, Akkermansia, Bacteroides, Prevotella,
Ruminococcus and Streptococcus [81]. Acetate is readily
absorbed, transported to the liver to be used as an en-
ergy source and also utilised as a substrate for the syn-
thesis of cholesterol and long-chain fatty acids [82]. The
presence of acetyl-coenzyme A synthetase in adipose tis-
sue allows for the use of acetate in lipogenesis on enter-
ing the systemic circulation [64]. Large quantities of
systemic acetate may enhance host production of the
‘hunger hormone’, ghrelin, which is released from enter-
oendocrine cells in the GIT worsening hunger, reducing
metabolic rate and increasing gastric motility and gastric
acid production [83].
Butyrate has particular importance in host homeostasis

and may contribute to the regulation of body weight.
The genera Anaerostipes, Clostridium, Coprococcus,
Dorea, Eubacterium, Faecalibacterium, Roseburia and
Ruminocococcus all produce butyrate. The most abun-
dant producers appear to be the species Faecalibacter-
ium prausnitzii, Eubacterium rectale and Roseburia
intestinalis [84, 85]. Eubacterium and Anaerostipes have
the ability to interact with Bifidobacterium to enhance
their butyrate production capacity [86].
Butyrate promotes energy expenditure, possibly redu-

cing obesity through the enhancement of mitochondrial
activity (activates AMP-activated protein kinase, increas-
ing adenosine triphosphate (ATP) consumption and the
induction of peroxisome proliferator-activated receptor
gamma coactivator one (PGC-1) activity), in association
with the up-regulation of the expression of genes in-
volved in lipolysis and fatty acid oxidation [87, 88]. Bu-
tyrate supplementation in rodents maintained on a high-
calorific diet has been observed to prevent the develop-
ment of dietary obesity and insulin resistance [89]. At
cellular level, butyrate was noted to increase mitochon-
drial respiration [89]. Butyrate may reduce energy intake
by invoking a host anorectic response by increasing the

plasma levels of glucagon-like peptide 1 (GLP-1), glucose
dependent insulinotropic polypeptide (GIP) and PYY
[87, 88].
Propionate is mainly produced by the genera Phasco-

larctobacterium, Bacteroides, Dialister, Megasphaera,
Veillonella, Coprococcus, Roseburia, Ruminococcus and
Salmonella [81]. Propionate stimulates the release of the
anorectic gut hormones PYY and GLP-1 and has the
ability to stimulate a gut–brain circuit through the ac-
tion of receptor GPR41 thus leading to the induction of
intestinal gluconeogenesis (IGN) gene expression. Up-
regulation of IGN by propionate reduces body weight
gain and adiposity, independent of food intake [90]. Pro-
viding propionate supplementation, results in a reduc-
tion in weight, abdominal adipose tissue and hepatic fat;
an improvement in insulin sensitivity; increased satiety
and reduced appetite [91, 92].

Reduced activity of fasting-induced adipose factor
Fasting-induced adipose factor (Fiaf) is a circulating lipo-
protein lipase (LPL) inhibitor produced by the intestine,
liver and adipose tissue [93]. Gut microbiota efficiently
suppress Fiaf expression in the ileum, enhancing the ac-
tivity of LPL and increasing cellular uptake of fatty acids
and storage of triglycerides in adipocytes [56]. LPL is the
key enzyme that acts on the endothelial surface of extra-
hepatic capillaries, releasing large amounts of fatty acids
from lipoproteins for the uptake of tissues for produc-
tion or storage of energy [94]. Bäckhed et al., demon-
strated that hepatic lipogenesis appears to be induced in
conventionalised GF-mice (CONV-D). The importance
of Fiaf in this regulatory pathway was clarified by com-
paring GF- Fiaf knockout (Fiaf−/−) rodents to their
wild-type littermates. In the absence of Fiaf, rodents
gained substantially more weight than their littermates
due to enhanced LPL activity. It is therefore possible
that a reduction in Fiaf activity was responsible for the
increased adiposity in CONV-D mice [56].

Bile acids
Bile acids (BA) are cholesterol-derived metabolites pro-
duced in hepatocytes, which are conjugated to glycine or
taurine and 95% reach the entero-hepatic circulation fol-
lowing reabsorption in the terminal ileum [95]. The pri-
mary BAs chenodeoxycholic acid (CDCA) and cholic
acid (CA) are essential for lipid/vitamin digestion and
absorption. Small quantities of primary BAs reach the
colon where gut microbiota have the capability to con-
vert them into secondary BAs through the processes of
deconjugation, dehydroxylation, and reconjugation. Ex-
amples are deoxycholic acid (DCA), ursodeoxycholic
(UDCA) and lithocholic acid (LCA) [96]. In the colon,
conjugated CA and CDCA are deconjugated and then
dehydroxylated at the 7α-position for the formation of
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the secondary bile acids DCA and LCA, respectively
[97].
BA deconjugation is catalysed through the enzymatic

activity of bile salt hydrolases (BSH) found within gut
microbiota particularly from the genera Lactobacillus,
Bifidobacterium, Enterobacter, Bacteroides and Clostrid-
ium [98, 99]. Microbial BSH is an enzyme which en-
hances BA intestinal reabsorption, promotes intestinal
colonisation and can provide a nutritional source of sul-
fur, nitrogen and carbon [96]. Unlike BSH activity, only
a small number of genera such as Clostridium and Eu-
bacterium possess the enzyme 7α/ß-dehydroxylase
which participates in the conversion of primary to
secondary BAs [96]. Gut microbiota also possess the
capability to influence BA synthesis through the metab-
olism of the naturally occurring FXR antagonist tauro-β-
muricholic acid [100, 101].
Disruption to the microbiota population strongly af-

fects BA metabolism leading to a failure in the
conversion of primary BAs, resulting in their accumu-
lation [102, 103]. Both primary and secondary BAs
exert their biological effects by activating nuclear and
plasma membrane receptors (nuclear farnesoid X re-
ceptor (FXR) or the G protein-coupled receptor
(TGR5)) which control the synthesis and metabolism
of BAs. Primary BAs bind to the FXR receptor
whereas secondary BAs bind to the TGR5 receptor
[99]. Stimulation of these receptors initiates signaling
cascades and activates gene expression involved in the
regulation of glucose homeostasis, lipid metabolism,
energy expenditure and inflammation [96, 104].
Receptor TGR5 is expressed in brown adipocytes,

macrophages, hepatic Kupffer cells, gallbladder epithe-
lium and the colon [105]. TGR5 signaling enhances
energy expenditure in adipose tissue through the ac-
tion of cyclic adenosine monophosphate (cAMP) in-
creasing the induction of type 2 deiodinase (DIO2),
which converts and activates thyroid hormone T4 to
T3 to stimulate energy metabolism in mitochondria.
In the colon, the action of cAMP stimulates the re-
lease of GLP-1 in L cells. TGR5 signaling also has the
ability to suppress inflammation in macrophages, the
intestine and hepatocytes by inhibiting nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-
κB) translocation, antagonising tumour necrosis factor
alpha (TNFα) and NF-κB-dependent induction of pro-
inflammatory cytokines [105].
Stimulation of the FXR receptor induces gene expres-

sion involved in lipogenesis and de novo cholesterol syn-
thesis including apolipoprotein C-II, apolipoprotein E,
peroxisome proliferator-activated receptor alpha
(PPARα) and syndecan-1 [105]. Secondly, FXR stimula-
tion triggers a reduction in very low density lipoprotein
(VLDL) production by inhibiting the mitochondria

triglyceride transport protein which is necessary for the
assembly of VLDL particles [102]. Thirdly, FXR receptor
signaling improves reverse cholesterol transport by en-
hancing the activity of the phospholipid transport pro-
tein which transports cholesterol from peripheral tissues
to the liver for the conversion into BAs, thus preventing
the accumulation in macrophages. Lastly, FXR stimula-
tion induces fibroblast growth factor 19 (FGF-19) syn-
thesis which inhibits BA synthesis, increases host
metabolic rate, induces the hepatic leptin receptor and
increases fatty acid oxidation [105]. Introducing the FXR
agonist obeticholic acid was found to improve obesity-
related disorders in an animal model [106].
The participation of the gut microbiota in the metab-

olism of BAs strengthen its role as a central regulator of
lipid metabolism contributing to the progression of host
obesity. Further research is required to clarify the central
role of the gut microbiome in regulating BAs as an im-
portant mechanism towards the pathogenesis of obesity.

Intestinal mucosal barrier
The mucosal lining of the GIT acts as a preventative
barrier, reducing undesirable interactions between the
gut epithelium, viruses, toxins and pathogenic bacteria
[107]. It is well established that obesity is associated with
mucosal barrier dysfunction with increased permeability
and greater levels of systemic LPS in obese rodents [48].
Disruption of the mucosal lining allows for the trans-
location of toxins, resulting in metabolic endotoxaemia
and subsequent low-grade inflammation, autoimmunity
and oxidative stress [108, 109].
Gut microbiota take part in colonisation resistance

which reinforces the mucosal barrier against colonisa-
tion by pathogens and provide continuous stimulation of
pathogen recognition receptors to increase the produc-
tion of mucins and antimicrobial peptides [110]. Muco-
sal adherent microbiota, such as the species
Akkermansia muciniphila, are important for homeostatic
epithelial cell stimulation [24]. Other microbiota have
also been consistently reported to benefit gut barrier
function. Both the genus Roseburia and the species Fae-
cali prausnitzii are important butyrate-producing mi-
crobes which are well understood in their ability to
provide protection against bacterial translocation [50,
51]. Lastly, an increased abundance of the genus Bifido-
bacterium has been associated with reduced gut leaki-
ness and a reduction in serum LPS [31, 48].
GIT mucosal function is maintained via several mech-

anisms including appropriate localisation and distribu-
tion of tight junction proteins, normal endocannabinoid
system tone, and LPS detoxification by intestinal alkaline
phosphatase. The presence of SCFAs enhances gut bar-
rier integrity [109, 111]. Gut microbiota have the ability
to disrupt tight junction proteins, alter alkaline
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phosphatase activity and selectively modulate colonic ex-
pression of the cannabinoid receptor 1 (CB1), strongly
impacting permeability through effects on zonula
occludens-1 and occludin [112, 113]. Brun et al., ana-
lysed cross-sections of intestine obtained from obese ro-
dents which demonstrated a reduction in the tight
junction protein occludin and an irregular distribution
of zonula occludens-1 [114].

Inflammatory response
Obesity is associated with a state of chronic low-grade
inflammation with abnormal expression and production
of multiple inflammatory mediators [115–117]. Inflam-
mation in metabolic disease was first described by Hota-
misligil et al., who demonstrated the ability of adipocytes
to express the cytokine TNFα and that TNFα expression
in adipocytes of obese animals is intensified [118]. Gut
microbiota exacerbate inflammation through the activity
of LPS, an essential component of the cell walls of
Gram-negative bacteria [119–121]. The genera Fusobac-
terium, Escherichia-Shigella, Pseudomonas and Campylo-
bacter are all prevalent in obesity [11, 26]. LPS from
members of the families Enterobacteriaceae and Desulfo-
vibrionaceae exhibit an endotoxin activity that is 1000-
fold greater than LPS from Bacteroideaceae [122].
Dietary fat, which is incorporated into triglycerides

combines to form larger chylomicrons for systemic
transportation, has a high affinity for LPS. Intestinal ab-
sorption of dietary fat therefore facilitates the direct
movement of LPS into the systemic circulation [119].
Once in the circulation, LPS is recognised and triggers
both the innate and local immune response and the sub-
sequent release of pro-inflammatory molecules TNFα,
IL-1, IL-6, and inducible nitric oxide synthase (iNOS)
[16]. LPS is also believed to play a role in host develop-
ment of leptin resistance [123], causing hyperphagia and
weight gain, further increasing fat intake, raising LPS
and leading to further inflammation [124].
Obese rodents exhibit significantly greater levels of

plasma LPS than their lean counterparts and also display
low-grade systemic inflammation [125]. Subcutaneous
injection of the species Escherichia coli LPS into wild-
type rodents maintained on standard chow produced the
development of inflammation, obesity, fasted glycaemia
and insulinaemia. Importantly, in cluster of differenti-
ation 14 (CD14)-knockout mice, in which LPS cannot be
recognised by the innate immune system, there was a re-
duction or even a complete lack of development of most
features of metabolic diseases induced by high calorific
chow or a LPS infusion [125].

Microbiota population differences after bariatric surgery
Bariatric surgery is currently the only available treatment
for morbid obesity that consistently achieves and

sustains substantial weight loss [126]. The Roux-en-Y
gastric bypass (RYGB), is the most commonly per-
formed bariatric operation and involves the creation of
a small gastric pouch from the fundus of the stomach.
The distal stomach and proximal small intestine are
bypassed by anastomosing the distal end of the mid-
jejunum to the proximal gastric pouch (creating the
Roux limb), and then reattaching the biliary and pan-
creatic limb at a specified distance along the Roux limb
[37, 44]. This procedure alters acid exposure to the gas-
tric remnant and proximal small bowel, restricting the
quantity and type of food that can be ingested comfort-
ably and allows a degree of nutrient malabsorption by
reducing the length of the small bowel. The resulting
rise in pH, increase in oxygen, downstream delivery of
bile acids and consequent alteration in food ingestion
may contribute to the changes seen in the gut micro-
biota population [37, 42, 44].
Gut microbiota changes after bariatric surgery have

been reported in both rodent models and humans. No
significant differences in diversity or relative abundance
have been demonstrated between the differing bariatric
procedures, a RYBG or sleeve gastrectomy [42]. In prep-
aration for surgery, patients are instructed to follow a
preoperative diet, which significantly adjusts the gut
microbiota population. A reduction in the abundance of
the families Streptococcaceae and Ruminococcaceae was
noticed alongside a significant increase in Rikenellaceae
and Bifidobacteriaceae [42]. After surgery, large in-
creases in Gammaproteobacteria (96.2% of which were
members of the family Enterobacteriaceae), a propor-
tional decrease in Firmicutes (the species Clostridium
difficile, Clostridium hiranonis, and Gemella sanguinis),
and a loss of methanogens was reported [37, 42, 43].
Several facultative anaerobes in the Proteobacteria (the
genera Escherichia, Klebsiella, and Pseudomonas) were
also discovered at enhanced levels [43, 44]. An increase
in the abundance of the families Streptococcaceae and
Veillonellaceae and a decline in Bifidobacteriaceae that
persisted for at least six months after surgery have also
been observed [42].
The Bacteroides/Prevotella population has been seen

to increase and remain stable post-RYGB at a quantity
seen in lean control subjects. The higher the increase in
the proportions of Bacteroides/Prevotella, the greater the
reduction in body fat mass and plasma leptin [44].
Performing a RYGB in a rodent model markedly alters

the composition of the distal gut microbiota as early as
one week after surgery, a change that progressed over
time and stabilised after five weeks independent of diet
[45]. Specific changes in the gut microbial community
were demonstrated including enrichment in three dis-
tinct taxonomic groups; evident at phylum level—Bac-
teroidetes, Verrucomicrobia, and Proteobacteria; to
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genus level—Alistipes, Akkermansia, and Escherichia
[45]. A substantial increase in the abundance of Proteo-
bacteria specifically the species Enterobacter hormaechei
and a reduction in Firmicutes and Bacteroidetes has also
been observed [46].
Liou et al. [45], performed FMT procedures using

microbiota extracted from rodents who had a RYGB
procedure. The control arm facilitated mice that had
received a sham RYGB. It was demonstrated that the
rodent cohort who had received the treatment-FMT
displayed substantial weight reduction and loss of fat
mass compared to their counterparts receiving sham-
FMT [45]. Further research focusing on GF-rodents
colonised with RYGB microbiota illustrates the accu-
mulation of 43% less body fat and a lower respiratory
quotient than rodents colonised with ‘obese’ micro-
biota. This particular finding suggests the reduction
in usage of carbohydrates and increased utilisation of
lipids as a potential energy source [43].. In both stud-
ies, a decrease in adiposity and body weight without a
change in chow intake was observed suggesting
RYGB-associated microbiota may either reduce the
ability to harvest energy from the diet or produce sig-
nals regulating energy expenditure and lipid metabol-
ism [45].

Future manipulation of microbiota
As the evolving exploration for causality between
obesity and microbiota continues, attention has been
diverted to the search for techniques in microbiota
manipulation with the objective of restoring a bal-
anced gut microbiota community. FMT techniques
have been refined and involve the transfer of carefully
screened faecal material containing microbiota from a
healthy donor into an identified ‘diseased’ patient with
the intention of cure [127]. Probiotics and prebiotics
are also proposed methods to manipulate the gut
microbiota population in order to improve metabolic
conditions, however FMT is considered to have the
potential for being more successful. FMT has the
ability to transfer entire donor microbiota communi-
ties, including their metabolites, to the identified re-
cipient, with the perceived enhanced capability to
correct microbiota disruption over single microbial
targets such as probiotic supplementation [128].
FMT studies aiming to improve metabolic parame-

ters are increasing in number. Vrieze et al., were the
first group (2012) to perform human FMT using
treatment-naive subjects diagnosed with metabolic
syndrome [47]. Eighteen subjects were randomised to
receive either FMT produced from lean male donors
(BMI < 23) or autologous transfusions. Subjects who
received allogenic transfusions were noted to have im-
proved peripheral insulin sensitivity (after 6 weeks)

but this effect deteriorated with time and there was
considerable individual variability. Allogenic recipients
demonstrated higher abundances of butyrate-
producing bacteria (the species Roseburia intestinalis)
post-treatment [47].
Two randomised studies investigated the effects of

using lean allogenic FMT in subjects diagnosed with
metabolic syndrome [129, 130]. Both studies failed to
show any improvement in metabolic parameters or
subject physiology. However, it was noted that recipi-
ents of the lean allogenic FMT mostly, but not all
were found to have gut microbiota composition that
shifted towards an appearance similar to the donor’s
profile implying unsuccessful engraftment [129, 130]
(see Table 2).
It has been estimated that a sample size of 1700

subjects per study is likely needed to adequately as-
sess the relationship between obesity and microbiota
composition after correcting for variables (17). Of the
research that has already been completed, carefully
controlled FMT has satisfied the safety requirements
but with underwhelming clinical findings at present.
FMT has demonstrated its potential for restoring both
gut-microbiota composition and functionality however
better understanding of the mechanisms through
which these alterations translate into metabolic out-
comes is still unknown. With the continued introduc-
tion of advancing technology and an ever-increasing
co-morbid population, further exploration is still re-
quired for the clarification of gut microbiota causality
before the routine establishment of microbiota
manipulation occurs.

Study strengths and limitations
This review updates previous literature by bringing
together the central microbiomic theories underpin-
ning obesity from a metabolome perspective. It is
limited by a persistent lack of consensus understand-
ing of the mechanistics by which the microbiota
exert their obesogenic effect, and given the hetero-
geneity of the literature was conducted in a non-
systematic way.

Conclusion
The gut microbiota has enormous metabolic capacity
behaving as a central modulator in the contribution to-
wards obesity. Research clearly indicates significant
discrepancies in determining the cause or effect relation-
ship between the gut microbiota and obesity. The rela-
tionship has partly been established at structural level,
however it seems that functionality rather than the
composition of microbiota populations may contain the
answers to the mechanisms underlying obesity. This re-
view has discussed central mechanisms involving the gut

Cunningham et al. Lipids in Health and Disease           (2021) 20:65 Page 9 of 13



microbiota in their ability to promote obesity develop-
ment such as the inhibition of Fiaf, altered production of
SCFAs, heightened inflammatory pathways, increased
gut permeability with resulting endotoxaemia, and dis-
rupted BA metabolism as future druggable and modifi-
able targets. Given the increasing output of controlled
research we should soon have a better understanding of
the gut microbiota:obesity association and whether clin-
ically modulating the gut microbiome through FMT will
provide a new therapeutic option for the management of
this complex disorder.
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