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Abstract

We study the existence and non-existence of classical solutions for inequalities of type

±�mu ≥ (
�(|x|) ∗ up

)
uq in RN(N ≥ 1).

Here, �m (m ≥ 1) is the polyharmonic operator, p, q > 0 and ∗ denotes the convolution operator, where 
� > 0 is a continuous non-increasing function. We devise new methods to deduce that solutions of the above 
inequalities satisfy the poly-superharmonic property. This further allows us to obtain various Liouville type 
results. Our study is also extended to the case of systems of simultaneous inequalities.
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1. Introduction and the main results

In this paper we are concerned with the following elliptic inequality

±�mu ≥ (
�(|x|) ∗ up

)
uq in RN, (1.1)

and its corresponding systems of inequalities, where N, m ≥ 1 are integers, p, q > 0 and �m

denotes the m-polyharmonic operator. The function � satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� > 0 and �(|x|) ∈ C(RN \ {0}) ∩ L1
loc(R

N);
�(r) is non-increasing on (0,∞);
lim

r→∞ rN�(r) = ∞.

(1.2)

Typical examples of functions � include:

�(r) = r−α, 0 < α < N or �(r) = r−N log−β
(

1 + 1

r

)
, 1 < β ≤ N.

The operator ∗ in (1.1) is the standard convolution operator, that is,

�(|x|) ∗ up =
ˆ

RN

up(y)�(|y − x|)dy.

By a non-negative solution u of (1.1) we understand a function u ∈ C2m(RN), u ≥ 0, such that

ˆ

|y|>1

up(y)�

( |y|
2

)
dy < ∞ (1.3)

and u satisfies (1.1) pointwise.
Note that condition (1.3) is weaker than the condition u ∈ Lp(RN) and that (1.3) is (almost) 

necessary and sufficient in order to ensure that the convolution term �(|x|) ∗ up is finite for all 
x ∈RN . Indeed, for any x ∈RN we have

�(|x|) ∗ up =
ˆ

|y|≤2|x|
up(y)�(|y − x|)dy +

ˆ

|y|>2|x|
up(y)�(|y − x|)dy

≤
(

max|z|≤2|x|u(z)
)p

ˆ

B3|x|

�(|y|)dy +
ˆ

|y|>2|x|
up(y)�

( |y|
2

)
dy < ∞,

by the fact that �(|x|) ∈ L1
loc(R) is non-increasing and (1.3).

We prefer to separate the analysis of (1.1) into two distinct inequalities as follows:

−(−�)mu ≥ (
�(|x|) ∗ up

)
uq in RN, (1.4)
800
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and

(−�)mu ≥ (
�(|x|) ∗ up

)
uq in RN. (1.5)

We study first the inequality (1.4). Our main result in this case reads as follows.

Theorem 1.1. Assume

N,m ≥ 1 and p + q ≥ 2, (1.6)

or

N > 2m and p ≥ 1. (1.7)

If u ∈ C2m(RN) is a non-negative solution of (1.4), then u ≡ 0.

The above result is new even in the semilinear case m = 1.
We are next concerned with the inequality (1.5). The related semilinear problem

−�u ≥ (|x|−α ∗ up
)
uq in RN (1.8)

was completely investigated in [20]. The equality case in (1.8) bears the name Choquard-Pekar 
(or simply Choquard) equation and was introduced in [25] as a model in quantum theory. Since 
then, the prototype model (1.8) has been used to describe many phenomena arising in mathe-
matical physics (see, e.g., [15,19,21] for further details). Quasilinear versions of (1.8) (including 
the case of p-Laplace or mean curvature operator) are discussed in [2,9,10]. Also, singular so-
lutions of (1.8) are considered in [3,4,8,11,12]. It is obtained in [20, Theorem 1] (see also [9, 
Corollary 2.5] for an extension to quasilinear inequalities) that if p ≥ 1 and q > 1 then (1.8) has 
non-negative solutions if and only if

min{p,q} >
N − α

N − 2
and p + q >

2N − α

N − 2
. (1.9)

An important matter in the study of polyharmonic problems is whether non-negative solutions 
of (−�)mu ≥ f (u) in RN enjoy the so-called poly-superharmonic property, that is, whether 
(−�)ju ≥ 0 in RN for all 1 ≤ j ≤ m. This has been shown to be true under some general 
conditions for nonlinearities f (u) without non-local terms (see, e.g. [5,14,16,17,22]). In [14,17]
the authors use a contradiction argument and construct a suitable sequence of power functions 
acting as lower barriers for the spherical average of the solution u. In turn, the approach in [5,16]
relies on a re-centering argument which at each step in the proof one brings forward a new center 
of the spherical average of the functions (−�)ju.

In this paper we show that the poly-superharmonic property is still preserved in case of poly-
harmonic inequalities of type (1.5) in the presence of convolution terms. More precisely we have:

Theorem 1.2. Assume N, m ≥ 1 and either p + q ≥ 2 or p ≥ 1.
If u ∈ C2m(RN) is a non-negative solution of (1.5), then, for all 1 ≤ j ≤ m we have

(−�)ju ≥ 0 in RN.
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Our approach is different from the methods already devised in [5,16,17,22]. More precisely, 
if p + q ≥ 2 we use a general integral estimate which we establish in Lemma 3.1 below. On the 
other hand, if p ≥ 1, we exploit the integral condition (1.3) to construct our argument.

Particularly useful are the integral representation formulae obtained in [1] (see also [6,7]) for 
solutions of (−�)m = μ in D′(RN), where μ is a Radon measure on RN , N > 2m. Such an 
approach was recently adopted in [24] for the polyharmonic Hardy-Hénon equation (−�)mu =
|x|σ up in RN , p > 1. We believe that this is still an underexploited direction of research in the 
study of higher order elliptic equations and inequalities. We shall make use of these facts which 
we recall in Proposition 2.3.

We next focus on Liouville-type results for the inequality (1.5).

Theorem 1.3. Assume N, m ≥ 1 and let u ∈ C2m(RN) be a non-negative solution of (1.5).

(i) If 1 ≤ N ≤ 2 and (p ≥ 1 or p + q ≥ 2), then u ≡ 0.
(ii) If N > 2m and one of the following conditions holds:

(ii1) (p ≥ 1 or p + q ≥ 2) and 
ˆ

|y|>1

|y|−p(N−2m)�(|y|)dy = ∞;

(ii2) p + q ≥ 2 and lim sup
r→∞

r2N−(N−2m)(p+q)�(r) > 0;

then, u ≡ 0.

In the case �(r) = r−α , α ∈ (0, N), we obtain the following result.

Theorem 1.4. Assume N > 2m, m ≥ 1, α ∈ (0, N), p ≥ 1 and q > 1. Then, the inequality

(−�)mu ≥ (|x|−α ∗ up
)
uq in RN (1.10)

has non-negative non-trivial solutions if and only if

min{p,q} >
N − α

N − 2m
and p + q >

2N − α

N − 2m
. (1.11)

In the particular case m = 1, Theorem 1.4 retrieves the result in [20, Theorem 1] which yields 
the optimal condition (1.9) for the existence of non-negative solutions of the semilinear inequality 
(1.8).

We next discuss the corresponding systems associated to (1.5), namely

(−�)mui ≥
n∑

j=1

eij

(
�ij (|x|) ∗ u

pij

j

)
u

qij

j in RN, 1 ≤ i ≤ n (1.12)

and

(−�)mui ≥
n∑

j=1

eij

(
�ij (|x|) ∗ u

pij

j

)
u

qij

i in RN, 1 ≤ i ≤ n (1.13)

where N, m ≥ 1, pij ≥ 1, qij > 0 and (eij ) is the adjacency matrix, i.e., eij satisfies
802
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eij = 0 or 1 and eij = eji for i, j ∈ {1, . . . , n}.
By a non-negative solution of (1.12) (resp. (1.13)) we understand a n-component function 

u = (u1, u2, . . . , un) with uj ∈ C2m(RN), uj ≥ 0, such that

n∑
i=1

ˆ

|y|>1

u
pij

j (y)�ij

( |y|
2

)
dy < ∞ (1.14)

and u satisfies (1.12) (resp. (1.13)) pointwise.
The main result for (1.12) is the following:

Theorem 1.5. Assume N > 2m, m ≥ 1, and let (u1, . . . , un) be a non-negative solution of (1.12). 
If there exist k, � ∈ {1, . . . , n} (not necessarily distinct) such that

ek� = e�k = 1,

pk� + qk� ≥ 2, p�k + q�k ≥ 2, (1.15)

lim sup
r→∞

min
{
r2N−(N−2m)(pk�+qk�)�k�(r) , r2N−(N−2m)(p�k+q�k)��k(r)

}
> 0, (1.16)

then uk ≡ u� ≡ 0.

Theorem 1.5 states that if k is adjacent to � and (1.15)-(1.16) hold, then uk ≡ u� ≡ 0. We 
immediately obtain the following Liouville-type result:

Corollary 1.6. Make the same assumptions as in Theorem 1.5. In particular, suppose that (1.15)
and (1.16) hold for every pair (k, �) such that ek� = e�k = 1. If each connected component of 
the network has more than two nodes, then the only non-negative solution of (1.12) is (0, . . . , 0). 
In particular, if the network has only one connected component and n ≥ 2, then the only non-
negative solution of (1.12) is (0, . . . , 0).

The main result regarding the system (1.13) is the following.

Theorem 1.7. Assume N > 2m, m ≥ 1, and let (u1, . . . , un) be a non-negative solution of (1.13). 
If there exist k, � ∈ {1, . . . , n} (not necessarily distinct) such that

ek� = e�k = 1,

pk�, qk� ≥ 1, p�k, q�k ≥ 1, (1.17)

and (1.16) holds, then uk ≡ 0 or u� ≡ 0 (or both).

Assume next that the adjacency matrix (eij ) is given by

eij =
{

1 if i �= j,

0 if i = j.
(1.18)

From Theorem 1.5 and Theorem 1.7 we find:
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Corollary 1.8. Suppose N > 2m, m ≥ 1 and that (eij ) is defined by (1.18).

(i) Assume (1.15)-(1.16). Then the only non-negative solution of (1.12) is

(u1, . . . , un) = (0, . . . ,0).

(ii) Assume (1.16)-(1.17). Then all non-negative solutions of (1.13) are of the form

(u1, . . . , un) = (0, . . . ,0, uj ,0, . . . ,0) for some j ∈ {1, . . . , n},

where (−�)muj ≥ 0 in RN .

2. Preliminaries

In this section we collect some auxiliary results which will be useful in our proofs.

Lemma 2.1. Let α ∈ (0, N), β > N − α and f ∈ L1
loc(R

N), f ≥ 0, be such that

f (x) ≤ c|x|−β for all x ∈RN \ Bρ,

where c > 0 and ρ > 1/2. Then, there exists a constant C = C(N, α, β, ρ) > 0 such that for all 
x ∈RN \ B2ρ one has

ˆ

RN

f (y)

|x − y|α dy ≤ C

⎧⎪⎪⎨
⎪⎪⎩

|x|N−α−β if β < N,

|x|−α log |x| if β = N,

|x|−α if β > N.

Similar estimates are available in [10, Lemma 2.1], [20, Lemma A.1] (see also [11,13]).

Proof. We have

ˆ

RN

f (y)

|x − y|α dy =
ˆ

|y|≥2|x|

f (y)

|x − y|α dy +
ˆ

1
2 |x|≤|y|≤2|x|

f (y)

|x − y|α dy +
ˆ

|y|≤|x|/2

f (y)

|x − y|α dy.

For |y| ≥ 2|x| we have |x − y| ≥ |y| − |x| ≥ |y|/2, so that

ˆ

|y|≥2|x|

f (y)

|x − y|α dy ≤ C

ˆ

|y|≥2|x|

dy

|y|α+β
≤ C|x|N−α−β .

Similarly we estimate
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ˆ

1
2 |x|≤|y|≤2|x|

f (y)

|x − y|α dy ≤ C|x|−β

ˆ

1
2 |x|≤|y|≤2|x|

dy

|x − y|α

≤ C|x|−β

ˆ

|y−x|≤3|x|

dy

|x − y|α = C|x|N−α−β.

Finally, if |y| ≤ |x|/2 then |x − y| ≥ |x| − |y| ≥ |x|/2. Hence

ˆ

|y|≤|x|/2

f (y)

|x − y|α dy ≤ C|x|−α

ˆ

|y|≤|x|/2

f (y)dy

≤ C|x|−α

⎧⎪⎨
⎪⎩

ˆ

|y|≤ρ

f (y)dy +
ˆ

ρ<|y|≤|x|/2

f (y)dy

⎫⎪⎬
⎪⎭

≤ C|x|−α

⎧⎪⎨
⎪⎩1 + C

ˆ

ρ<|y|≤|x|/2

|y|−βdy

⎫⎪⎬
⎪⎭

≤ C|x|−α + C

⎧⎪⎨
⎪⎩

|x|N−α−β if β < N,

|x|−α log |x| if β = N,

|x|−α if β > N.

The result now follows by combining the above three estimates. �
Lemma 2.2. (see [23, Lemma 3.4]) Let u ∈ C2m(RN) be such that u ≥ 0 and (−�)mu ≤ 0 in 
RN . If

ˆ

BR

udx = o(RN) as R → ∞,

then u ≡ 0.

A crucial result in our approach is the following representation formula for distributional 
solutions of the polyharmonic operator.

Proposition 2.3. (see [1, Theorem 2.4]) Let m ≥ 1 be an integer and N > 2m. Suppose μ is a 
positive Radon measure on RN and � ∈R. The following statements are equivalent:

(i) u ∈ L1
loc(R

N) is a distributional solution of

(−�)mu = μ in D′(RN), (2.1)

and for a.e. x ∈RN we have
805
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lim inf
R→∞

1

RN

ˆ

R≤|y−x|≤2R

|u(y) − �|dy = 0. (2.2)

(ii) u ∈ L1
loc(R

N) is a distributional solution of (2.1), essinfu = � and u is weakly polysuper-
harmonic in the sense that

ˆ

RN

u(−�)iϕ ≥ 0 for all 1 ≤ i ≤ m,ϕ ∈ C∞
0 (RN),ϕ ≥ 0.

(iii) u ∈ L1
loc(R

N) and there exists c = c(N, m) > 0 such that

u(x) = � + c

ˆ

RN

dμ(y)

|x − y|N−2m
for a.e. x ∈RN.

Using Proposition 2.3 we deduce:

Lemma 2.4. Let v ∈ L1
loc(R

N) be a distributional solution of

(−�)mv = f in D′(RN) , N > 2m,

where f ∈ L1
loc(R

N), f ≥ 0, f �≡ 0. Assume that

ˆ

|y|>1

|v|p(y)�

( |y|
2

)
dy < ∞, (2.3)

where p ≥ 1 and � is a function which satisfies (1.2). Then, essinfv = 0 and for some constant 
c > 0 we have

v(x) = c

ˆ

RN

f (y)

|x − y|N−2m
dy for a.e. x ∈RN. (2.4)

In particular v > 0 in RN and

v(x) ≥ c|x|2m−N in RN \ B1, (2.5)

for some constant c > 0.

Proof. We show that v satisfies condition (2.2) in Proposition 2.3 with � = 0. First, if p > 1 by 
Hölder’s inequality and (2.3), for all x ∈RN we have
806
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ˆ

R≤|y−x|≤2R

|v(y)|dy ≤
( ˆ

R≤|y−x|≤2R

|v|p(y)�
( |y|

2

)
dy

) 1
p
( ˆ

R≤|y−x|≤2R

�
− 1

p−1

( |y|
2

)
dy

)1− 1
p

≤ C
( ˆ

R≤|y−x|≤2R

�
− 1

p−1

( |y|
2

)
dy

)1− 1
p

= C
( ˆ

R≤|z|≤2R

�
− 1

p−1

( |z + x|
2

)
dz

)1− 1
p
.

(2.6)
Take R > |x|. By the property (1.2) on � we have

�
− 1

p−1

( |z + x|
2

)
≤ �

− 1
p−1

(3R

2

)
= o(R

N
p−1 ) for all R < |z| < 2R

as R → ∞. Thus, we may further estimate in (2.6) to deduce

1

RN

ˆ

R≤|y−x|≤2R

|v(y)|dy = o(1) → 0 as R → ∞. (2.7)

If p = 1 we simply use the property (1.2) and (1.3) to estimate

ˆ

R≤|y−x|≤2R

|v(y)|dy ≤
ˆ

R≤|y−x|≤2R

|v(y)|�
( |y|

2

)
�−1

( |y|
2

)
dy

≤ �−1
(3R

2

) ˆ

R≤|y−x|≤2R

|v(y)|�
( |y|

2

)
dy

≤ C�−1
(3R

2

)
= o(RN)

for all R > |x| as R → ∞. This shows that (2.7) also holds for p = 1. Hence, v satisfies the 
condition (2.2) in Proposition 2.3 with � = 0. The representation integral (2.4) follows by Propo-
sition 2.3 while the estimate (2.5) follows from [1, Lemma 3.1]. �
3. Proof of Theorem 1.1

We first establish an estimate which holds for the general inequality (1.1).

Lemma 3.1. Let ψ ∈ C∞
c (RN) be such that supp ψ ⊂ B2, 0 ≤ ψ ≤ 1, ψ ≡ 1 on B1. For R > 2

define ϕ(x) = ψ2m(x/R). Then, there exists C > 0 such that any non-negative solution u of (1.1)
satisfies

ˆ

N

uϕdx ≥ CR−N+2m
( ˆ

N

u
p+q

2 ϕdx
)2

. (3.1)
R R
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Proof. It is easy to check that ∣∣∣�m(ψ4m)

∣∣∣ ≤ Cψ2m in RN,

where C > 0 is a positive constant. This yields

∣∣∣�m(ϕ2)

∣∣∣ ≤ C

R2m
ϕ in RN.

We multiply by ϕ2 in (1.1) and integrate. Using the above estimate we find

ˆ

RN

(
�(|x|) ∗ up

)
uqϕ2 ≤ ±

ˆ

RN

ϕ2(�mu) = ±
ˆ

RN

u�m(ϕ2)

≤
ˆ

RN

u

∣∣∣�m(ϕ2)

∣∣∣ ≤ C

R2m

ˆ

B2R

uϕ.

(3.2)

We next estimate the left-hand side of (3.2). By inter-changing the variables and Hölder’s in-
equality one gets

( ˆ

RN

(
�(|x|) ∗ up

)
uqϕ2dx

)2

=
( ¨

RN×RN

�(|x − y|)up(x)uq(y)ϕ2(y)dxdy
)2

=
( ¨

RN×RN

�(|x − y|)up(x)uq(y)ϕ2(y)dxdy
)( ¨

RN×RN

�(|x − y|)up(y)uq(x)ϕ2(x)dxdy
)

≥
( ¨

RN×RN

�(|x − y|)up+q
2 (x)u

p+q
2 (y)ϕ(x)ϕ(y)dxdy

)2

≥�(4R)2
( ¨

B2R×B2R

u
p+q

2 (x)u
p+q

2 (y)ϕ(x)ϕ(y)dxdy
)2

≥ cR−2N
( ¨

B2R×B2R

u
p+q

2 (x)u
p+q

2 (y)ϕ(x)ϕ(y)dxdy
)2

,

where c > 0 is a constant. Now, splitting the integrals according to x and y variables we deduce

ˆ

RN

(
�(|x|) ∗ up

)
uqdx ≥ cR−N

( ˆ

RN

u
p+q

2 (x)ϕ(x)dx
)2

.

Using this last inequality in (3.2) we deduce (3.1). �
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Proof of Theorem 1.1 completed. We shall discuss separately the cases where (1.6) or (1.7)
holds.
Case 1: N, m ≥ 1 and p + q ≥ 2. Let ϕ be as in Lemma 3.1. By Hölder’s inequality we have

ˆ

RN

uϕ ≤
( ˆ

RN

u
p+q

2 ϕ
) 2

p+q
( ˆ

RN

ϕ
)1− 2

p+q

≤ CR
N(1− 2

p+q
)
( ˆ

RN

u
p+q

2 ϕ
) 2

p+q
.

Hence,

( ˆ

RN

u
p+q

2 ϕ
)2 ≥ CR−N(p+q−2)

( ˆ

RN

uϕ
)p+q

.

Using this last estimate in (3.1) we find

ˆ

RN

uϕ ≤ CR
N− 2m

p+q−1 for all R > 2.

In particular, since ϕ = 1 on BR we deduce

ˆ

BR

udx = o(RN) as R → ∞.

By Lemma 2.2 it now follows that u ≡ 0 which concludes our proof in this case.

Case 2: N > 2m and p ≥ 1. We apply Lemma 2.4 for v = −u. It follows in particular that 
v = −u ≥ 0 which yields u ≡ 0. �
4. Proof of Theorem 1.2

The proof of Theorem 1.2 follows from the result below which will also be useful in the study 
of the system (1.12).

Theorem 4.1. Assume N, m ≥ 1 and let � and � satisfy (1.2). Suppose that (u, v) is a non-
negative solution of

⎧⎨
⎩

(−�)mu ≥ (
�(|x|) ∗ vp1

)
vq1

(−�)mv ≥ (
�(|x|) ∗ up2

)
uq2

in RN, (4.1)

where either

p1 + q1 ≥ 2 and p2 + q2 ≥ 2, (4.2)
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or

p1,p2 ≥ 1. (4.3)

Then, for all 1 ≤ i ≤ m we have

(−�)iu ≥ 0 and (−�)iv ≥ 0 in RN.

Proof. If u ≡ 0 (resp. v ≡ 0), then v ≡ 0 (resp. u ≡ 0), otherwise

0 ≥
¨

�(|x − y|)vp1(y)vq1(y)dxdy > 0

which is a contradiction. Hereafter we assume that u �≡ 0 and v �≡ 0. The proof is divided in two 
steps.

Step 1: We have (−�)m−1u ≥ 0 and (−�)m−1v ≥ 0 in RN .
Assume by contradiction that there exists x0 ∈ RN such that (−�)m−1u(x0) < 0. Let ui =

(−�)iu and vi = (−�)iv, 1 ≤ i ≤ m and denote by ū(r), v̄(r) (resp ūi (r), v̄i (r)) the spherical 
average of u and v (resp ui and vi ) on the sphere ∂Br(x0), that is,

ū(r) =
 

∂Br (x0)

u(y)dσ (y) and ūi (r) =
 

∂Br (x0)

ui(y)dσ (y),

v̄(r) =
 

∂Br (x0)

v(y)dσ (y) and v̄i (r) =
 

∂Br (x0)

vi(y)dσ (y).

Then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�ū = ū1 , −�v̄ = v̄1 ,

−�ū1 = ū2 , −�v̄1 = v̄2 ,

· · · · · · · · · · · ·
−�ūm−2 = ūm−1 ,−�v̄m−2 = v̄m−1 ,

−�ūm−1 ≥
 

∂Br (x0)

(
�(|x|) ∗ vp1

)
uq1dσ ≥ 0 ,

−�v̄m−1 ≥
 

∂Br (x0)

(
�(|x|) ∗ up2

)
vq2dσ ≥ 0.

(4.4)

From (4.4) one has −�ūm−1 ≥ 0 which yields −r1−N
(
rN−1ū′

m−1

)′ ≥ 0 for all r > 0 and

ūm−1(0) = (−�)m−1u(x0) < 0.

By integration one gets
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ū′
m−1(r) ≤ 0 and ūm−1(r) ≤ ūm−1(0) = um−1(x0) < 0,

for all r ≥ 0. We can rewrite the last estimate as

(−�)m−1ū(r) ≤ (−�)m−1ū(0) < 0 for all r ≥ 0. (4.5)

Case 1: m is odd. From (4.5) one has

�m−1ū(r) ≤ �m−1ū(0) < 0 for all r ≥ 0.

Integrating twice the above inequality we obtain

�m−2ū(r) ≤ �m−2ū(0) + �m−1u(0)r2

2N
for all r ≥ 0

and proceeding further we deduce

ū(r) ≤ ū(0) +
m−1∑
k=1

�kū(0)

k
j=1[(2j)(N + 2j − 2)] r

2k. (4.6)

Since �m−1ū(0) = (−�)m−1u(x0) < 0, we deduce from (4.6) that

ū(r) → −∞ as r → ∞,

which contradicts the fact that u ≥ 0.
Case 2: m is even. Hence m ≥ 2. From (4.5) we find

�m−1ū(r) ≥ �m−1ū(0) > 0 for all r ≥ 0.

In the same manner as we derived (4.6) it follows that for any 1 ≤ i ≤ m one has

�m−i ū(r) ≥ �m−i ū(0) +
i−1∑
k=1

�m−i+kū(0)

k
j=1[(2j)(N + 2j − 2)] r

2k.

In particular, for i = m we find

ū(r) ≥ ū(0) +
m−1∑
k=1

�kū(0)

k
j=1[(2j)(N + 2j − 2)] r

2k.

Since �m−1ū(0) > 0 and m ≥ 2 it follows from the above estimate that

ū(r) ≥ C1r
2(m−1) − C2 for all r ≥ 0, (4.7)

for some constants C1, C2 > 0.
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Case 2a: Assume that (4.2) holds. Let ϕ be as in Lemma 3.1. In the same way as in the proof of 
(3.1) we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ˆ

RN

uϕdx ≥ CR−N+2m
( ˆ

RN

v
τ
2 ϕdx

)2
,

ˆ

RN

vϕdx ≥ CR−N+2m
( ˆ

RN

u
θ
2 ϕdx

)2
,

(4.8)

where

τ = p1 + q1 ≥ 2 and θ = p2 + q2 ≥ 2.

By Hölder’s inequality we find

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( ˆ

RN

v
τ
2 ϕdx

)2 ≥ CR−N(τ−2)
( ˆ

RN

vϕdx
)τ

,

( ˆ

RN

u
θ
2 ϕdx

)2 ≥ CR−N(θ−2)
( ˆ

RN

uϕdx
)θ

.

(4.9)

From (4.8) and (4.9) we deduce

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ˆ

RN

uϕdx ≥ CR−N+2m−N(τ−2)
( ˆ

RN

vϕdx
)τ

,

ˆ

RN

vϕdx ≥ CR−N+2m−N(θ−2)
( ˆ

RN

uϕdx
)θ

.

(4.10)

We use the second estimate of (4.10) in the first one to obtain

ˆ

RN

uϕdx ≥ CR−N+2m−N(τ−2)−(N−2m)τ−N(θ−2)τ
( ˆ

RN

uϕdx
)τθ

,

which we arrange as

CRN− 2m(1+τ )
τθ−1 ≥

ˆ

BR

udx.

Using (4.7) we find

CRN− 2m(1+τ )
τθ−1 ≥

ˆ

BR

udx = σN

R̂

0

rN−1ūdr

≥ C RN+2(m−1) − C RN for R > 1 large,
3 4
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where C3, C4 > 0 and σN denotes the surface area of the unit sphere in RN . Comparing the 
exponents of R in the above inequality we raise a contradiction, since C3 > 0. This finishes the 
proof of Step 1 in this case.
Case 2b: Assume that (4.3) holds. From (4.7) one can find r0 > 0 and a constant c > 0 such that

ū(r) ≥ cr2(m−1) for all r ≥ r0. (4.11)

Using the fact that rN�(r) → ∞ as r → ∞, by taking r0 > 1 large enough we may also assume 
that

rN�
( r

2

)
≥ 1 for all r ≥ r0. (4.12)

To raise a contradiction, we next return to condition (1.3) for u (in which we replace p with p2). 
From (4.11)-(4.12), co-area formula and Jensen’s inequality we obtain:

∞ >

ˆ

|y|>r0

up2(y)�
( |y|

2

)
dy =

∞̂

r0

ˆ

|y|=r

up2(y)�
( |y|

2

)
dσ(y)dr

=
∞̂

r0

�
( r

2

) ˆ

|y|=r

up2(y)dσ (y) dr

≥ σN

∞̂

r0

rN−1�
( |r|

2

)
ūp2(r)dr

≥ C

∞̂

r0

r2p2(m−1)−1rN�
( |r|

2

)
dr

≥ C

∞̂

r0

r2p2(m−1)−1dr = ∞,

which is a contradiction and concludes the proof in Step 1.

Step 2: We have (−�)m−iu ≥ 0 and (−�)m−iv ≥ 0 in RN for any 1 ≤ i ≤ m.
From Step 1 we know that (−�)m−1u ≥ 0, (−�)m−1v ≥ 0 in RN . Letting um−2 =

(−�)m−2u and vm−2 = (−�)m−2v we want to show next that um−2 ≥ 0 and vm−2 ≥ 0 in 
RN . Suppose to the contrary that there exists x0 ∈ RN so that um−2(x0) < 0. We next take 
the spherical average with respect to spheres centered at x0 and proceed as in Step 1 by dis-
cussing separately the cases m is odd and m is even in order to raise a contradiction. Thus, 
(−�)m−2u ≥ 0, (−�)m−2v ≥ 0 in RN . We proceed further until we get −�u ≥ 0, −�v ≥ 0 in 
RN . �
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Proof of Theorem 1.2. Let � = � and (p1, q1) = (p2, q2) = (p, q). Suppose u is a nonnegative 
solution of (1.5). If u ≡ 0, then the conclusion clearly holds. If u �≡ 0, then (u, u) is a non-negative 
solution of (4.1). By Theorem 4.1 we see that, for all 1 ≤ i ≤ m, (−�)iu ≥ 0 in RN . �
5. Proof of Theorem 1.3

(i) By Theorem 1.2 we see that, for 1 ≤ j ≤ m, (−�)ju ≥ 0 in RN . In particular −�u ≥ 0
in RN . Since N = 1, 2, it is well known that a nonnegative superharmonic function is constant. 
Thus, u = c in RN . By (1.5) it follows that (�(|x|) ∗ up)uq = 0 in RN . This clearly yields u = 0
in RN , otherwise there would exist x0 ∈RN such that u(x0) > 0 and hence (�(|x|) ∗ up)uq > 0
at x0.

(ii1) By estimate (2.5) in Proposition 2.4 we find u ≥ c|x|2m−N in Rn \ B1, for some c > 0. 
Thus, by the hypothesis (ii1) in Theorem 1.3 we find

ˆ

|y|>1

up(y)�
( |y|

2

)
dy ≥ c

ˆ

|y|>1

|y|−p(N−2m)�(|y|)dy = ∞,

which contradicts (1.3).
The proof of part (ii2) follows from the proof of Theorem 1.5. �

6. Proof of Theorem 1.4

Assume first that (1.10) has a non-negative solution u �≡ 0. Then, by estimate (2.5) in Propo-
sition 2.4 we have u ≥ c|x|2m−N in RN \ B1, where c > 0 is a constant. It is easy to check that 
the condition p > (N − α)/(N − 2m) and (1.11)2 follow from Theorem 1.3 with �(r) = r−α .

It remains to prove that q > (N − α)/(N − 2m). If α ≥ 2m then this is clearly true, since 
q > 1. Assume next that α < 2m.

For x ∈RN \ B1 and 1 < |y| < 2 we have |x − y| ≤ 3|x|. Thus,

|x|−α ∗ up ≥
ˆ

RN

f (y)

|x − y|α dy ≥
ˆ

1<|y|<2

up(y)

|x − y|α dy

≥
ˆ

1<|y|<2

up(y)dy

(3|x|)α ≥ C|x|−α.

Thus, |x|−α ∗ up ≥ C|x|−α for all x ∈RN \ B1 and u satisfies

(−�)mu ≥ c|x|−αuq in RN \ B1,

for some c > 0. We know (see, e.g., [18, Example 5.2]) that the above inequality has no solutions 
u ≥ 0, u �≡ 0, if α < 2m and 1 < q ≤ (N − α)/(N − 2m). Hence q > (N − α)/(N − 2m).

Assume now that (1.11) holds and let us construct a positive solution to (1.10). First, we write 
(1.11) in the form

(N −2m)(p+q −1) > N −α+2m (N −2m)p > N −α and (N −2m)(q −1) > 2m−α.
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Thus, we can choose κ ∈ (0, N − 2m) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κ(p + q − 1) > N − α + 2m,

κp > N − α,

κ(q − 1) > 2m − α,

pκ �= N.

(6.1)

For a ≥ 0 we define

F(a, x) = (−�)m
{
(a + |x|2)−κ/2

}
for all x ∈RN \ {0}.

Then,

F(a, x) = (a + |x|2)− κ
2 −2m

m∑
j=0

bj (a)|x|2j for all x ∈RN,

where bj (a) ∈ R. In particular, for a = 0 we find

F(0, x) = |x|−κ−4m
m∑

j=0

bj (0)|x|2j for all x ∈ RN \ {0}. (6.2)

On the other hand, by direct computation one has

F(0, x) = (−�)m
{
|x|−κ

}
=

m∏
j=1

[
(κ + 2j − 2)(N − κ − 2j)

]
|x|−κ−2m > 0, (6.3)

since 0 < κ < N − 2m. Comparing (6.2) and (6.3) we find bm(0) > 0. By the continuous depen-
dence on the data, we can find now a > 0 such that bm(a) > 0. Also,

lim|x|→∞
F(a, x)

|x|−k−2m
= bm(a) > 0.

Thus, there exist c > 0 and R > 1 such that F(a, x) ≥ c|x|−κ−2m for x ∈ RN \ BR .
Let now v(x) = (a + |x|2)−κ/2, where a > 0 satisfies bm(a) > 0. By the above estimates we 

have

(−�)mv ≥ c|x|−κ−2m in RN \ BR. (6.4)

Let ϕ ∈ C1
c (RN), 0 ≤ ϕ ≤ 1 such that supp ϕ ⊂ B2R and ϕ ≡ 1 on BR . For M > 1 define

V (x) = v(x) + Mγ0

ˆ

N

ϕ(y)

|x − y|N−2m
dy for all x ∈ RN,
R
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where γ0 > 0 is a normalizing constant such that

(−�)m
(
γ0|x|2m−N

) = δ0 in D′(RN),

and δ0 denotes the Dirac mass concentrated at the origin.
Thus, V ∈ C2m(RN), V > 0 in RN and from (6.4) we have

(−�)mV ≥ c|x|−κ−2m in RN \ BR. (6.5)

Also, by taking M > 1 large enough we have

(−�)mV = (−�)mv + M > 0 in BR. (6.6)

Observe that for x ∈ RN \ B4R and y ∈ B2R we have |x − y| ≥ |x| − |y| ≥ |x|/2. Thus,

ˆ

RN

ϕ(y)

|x − y|N−2m
dy =

ˆ

B2R

ϕ(y)

|x − y|N−2m
dy

≤ 2N−2m|x|2m−N

ˆ

B2R

ϕ(y)dy

≤ C|x|2m−N.

Using this estimate in the definition of V together with 0 < κ < N − 2m it follows that

V (x) ≤ C0|x|−κ for all x ∈ RN \ BR/2, (6.7)

for some constant C0 > 0.
We next evaluate the convolution term (|x|−α ∗V p)V q and indicate how to construct a positive 

solution to (1.10). Using (6.7) we can apply Lemma 2.1 for f = V p , β = κp > N − α and 
ρ = R/2. It follows that for any x ∈ RN \ BR we have

(|x|−α ∗ V p)V q ≤ c|x|−κq

ˆ

RN

V (y)pdy

|x − y|α ≤ C

{|x|N−α−κ(p+q) if κp < N,

|x|−α−κq if κp > N.

Using this last estimate together with (6.5) and (6.1)1, (6.1)3 we deduce

(−�)mV ≥ C1(|x|−α ∗ V p)V q in RN \ BR, (6.8)

for some C1 > 0. Since (−�)mV and (|x|−α ∗ V p)V q are continuous and positive functions on 
the compact BR (see (6.6)), one can find C2 > 0 such that

(−�)mV ≥ C2(|x|−α ∗ V p)V q in BR. (6.9)

Thus, letting C = min{C1, C2} > 0 and U = C1/(p+q−1)V , it follows that U ∈ C2m(RN) is 
positive and that from (6.8)-(6.9) one has
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(−�)mU ≥ (|x|−α ∗ Up)Uq in RN,

which concludes our proof. �
7. Proof of Theorem 1.5 and Theorem 1.7

Proof of Theorem 1.5. Let L > 0 denote the positive limit in (1.16). Thus, one can find an 
increasing sequence {Ri} ⊂ (0, ∞) that tends to infinity and such that for all i ≥ 1 one has

min
{
R

2N−(N−2m)(pk�+qk�)
i �k�(Ri) , r2N−(N−2m)(p�k+q�k)��k(Ri)

}
>

L

2
. (7.1)

By Theorem 4.1 we deduce that uk and u� are poly-superharmonic. Further, by estimate (2.5) in 
Proposition 2.4 there exists c > 0 such that

uk(x),u�(x) ≥ c|x|2m−N in RN \ B1. (7.2)

Let φ be the positive eigenfunction of −� in the unit ball B1 corresponding to the eigenvalue 
λ1 > 0. We normalize φ such that 0 ≤ φ ≤ 1 in B1 and maxB1

φ(x) = 1. Let ϕi(x) = φ(x/Ri). 
Multiplying by ϕi in the inequality of (1.12) that corresponds to uk we find

ˆ

BRi

(
�k�(|x|) ∗ u

pk�

�

)
u

qk�

� ϕi ≤
ˆ

BRi

(−�)mukϕi

=
ˆ

BRi

(−�)m−1uk(−�)ϕi +
ˆ

∂BRi

(−�)m−1uk

∂ϕi

∂n

≤ λ1

R2
i

ˆ

BRi

(−�)m−1ukϕi,

where we used (−�)m−1uk ≥ 0 by Theorem 4.1 and that, by Hopf lemma, ∂ϕi/∂n < 0 on ∂BRi
. 

Proceeding further one finds

ˆ

BRi

(
�k�(|x|) ∗ u

pk�

�

)
u

qk�

� ϕi ≤
(

λ1

R2
i

)m ˆ

BRi

ukϕi . (7.3)

Let us next estimate the integral in the left-hand side of (7.3). If x ∈ BRi
, then one has

�k�(|x|) ∗ u
pk�

� ≥
ˆ

BRi

�k�(|x − y|)upk�

� (y)dy ≥ �k�(2Ri)

ˆ

BRi

u
pk�

� (y)dy.

Thus, by the fact that 0 ≤ ϕi ≤ 1 one has
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ˆ

BRi

(
�k�(|x|) ∗ u

pk�

�

)
u

qk�

� ϕi ≥ �k�(2Ri)

⎛
⎜⎝ˆ

BRi

u
pk�

� ϕi

⎞
⎟⎠

⎛
⎜⎝ˆ

BRi

u
qk�

� ϕi

⎞
⎟⎠ . (7.4)

Combining (7.4) with (7.3) we obtain

�k�(2Ri)

⎛
⎜⎝ˆ

BRi

u
pk�

� ϕi

⎞
⎟⎠

⎛
⎜⎝ˆ

BRi

u
qk�

� ϕi

⎞
⎟⎠ ≤

(
λ1

R2
i

)m ˆ

BRi

ukϕi . (7.5)

Let τ = pk� + qk� ≥ 2. By Hölder’s inequality we have

⎛
⎜⎝ˆ

BRi

u
τ
2
� ϕi

⎞
⎟⎠

2

≤
⎛
⎜⎝ˆ

BRi

u
pk�

� ϕi

⎞
⎟⎠

⎛
⎜⎝ˆ

BRi

u
qk�

� ϕi

⎞
⎟⎠ . (7.6)

Again by Hölder’s inequality we derive

ˆ

BRi

u�ϕi ≤
⎛
⎜⎝ˆ

BRi

u
τ
2
� ϕi

⎞
⎟⎠

2
τ
⎛
⎜⎝ˆ

BRi

ϕi

⎞
⎟⎠

1− 2
τ

≤ CR
N

(
1− 2

τ

)
i

⎛
⎜⎝ˆ

BRi

u
τ
2
� ϕi

⎞
⎟⎠

2
τ

,

and hence

⎛
⎜⎝ˆ

BRi

u�ϕi

⎞
⎟⎠

τ

≤ CR
N(τ−2)
i

⎛
⎜⎝ˆ

BRi

u
τ
2
� ϕi

⎞
⎟⎠

2

. (7.7)

By (7.5), (7.6) and (7.7) we have

R
2m−N(τ−2)
i �k�(2Ri)

⎛
⎜⎝ˆ

BRi

u�ϕi

⎞
⎟⎠

τ

≤ C

ˆ

BRi

ukϕi,

which we write it as

R
2N−(N−2m)τ
i �k�(2Ri)

⎛
⎜⎝ˆ

B

u�ϕi

⎞
⎟⎠

τ

≤ CR
2m(τ−1)
i

ˆ

B

ukϕi
Ri Ri
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Using (7.1) it follows that for i ≥ 1 large enough we have

L

2

⎛
⎜⎝ˆ

BRi

u�ϕi

⎞
⎟⎠

pk�+qk�

≤ CR
2m(pk�+qk�−1)
i

ˆ

BRi

ukϕi . (7.8)

Similarly, we have

L

2

⎛
⎜⎝ˆ

BRi

ukϕi

⎞
⎟⎠

p�k+q�k

≤ CR
2m(p�k+q�k−1)
i

ˆ

BRi

u�ϕi. (7.9)

Multiplying (7.8) with (7.9) and using the fact that

⎛
⎜⎝ˆ

BRi

ukϕi

⎞
⎟⎠

⎛
⎜⎝ˆ

BRi

u�ϕi

⎞
⎟⎠ > 0 for large i,

we have

⎛
⎜⎝ˆ

BRi

u�ϕi

⎞
⎟⎠

pk�+qk�−1 ⎛
⎜⎝ˆ

BRi

ukϕi

⎞
⎟⎠

p�k+q�k−1

≤ CR
2m(pk�+qk�−1)
i R

2m(p�k+q�k−1)
i .

From here we deduce that there exists a subsequence {Ri} (still denoted in the following by {Ri}) 
such that2

• either 

⎛
⎜⎝ˆ

BRi

u�ϕi

⎞
⎟⎠

pk�+qk�−1

≤ CR
2m(pk�+qk�−1)
i ;

• or 

⎛
⎜⎝ˆ

BRi

ukϕi

⎞
⎟⎠

p�k+q�k−1

≤ CR
2m(p�k+q�k−1)
i .

Assume the second assertion holds. This yields

ˆ

BRi

ukϕi ≤ CR2m
i .

2 We make use of the following basic argument: if aibi ≤ xiyi then either ai ≤ xi or bi ≤ yi (we argue by contradiction 
to prove this fact). Since i ≥ 1 can be any (large) positive integer, along a subsequence we have either ai ≤ xi or bi ≤ yi .
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Using this last estimate in (7.3) we deduce 
(
�k�(|x|) ∗ u

pk�

�

)
u

qk�

� ∈ L1(RN), and so

ˆ

BRi
\BRi/2

(
�k�(|x|) ∗ u

pk�

�

)
u

qk�

� ϕi → 0 as i → ∞. (7.10)

We may estimate the above integral as we did in (7.4) to obtain

ˆ

BRi
\BRi/2

(
�k�(|x|) ∗ u

pk�

�

)
u

qk�

� ϕi ≥ �k�(2Ri)

⎛
⎜⎝ ˆ

BRi
\BRi/2

u
pk�

� ϕi

⎞
⎟⎠

⎛
⎜⎝ ˆ

BRi
\BRi/2

u
qk�

� ϕi

⎞
⎟⎠ .

Finally, we use (7.2) in the above inequality to deduce

ˆ

BRi
\BRi/2

(
�k�(|x|) ∗ u

pk�

�

)
u

qk�

� ≥ CR
2N−(N−2m)(pk�+qk�)
i �k�(2Ri) > CL > 0,

for large i, which contradicts (7.10) and concludes our proof. �
The proofs of Corollaries 1.6 and 1.8 (i) follow immediately.

Proof of Theorem 1.7. The proof of Theorem 1.7 can be carried out in the same way as above. 
The only difference is that we cannot apply Theorem 4.1 to derive that uk and u� satisfy (7.2). 
Instead, we apply Lemma 2.4 to deduce that uk and u� are poly-superharmonic. Further, by the 
estimate (2.5) one has that (7.2) holds. From now on, we follow the above proof line by line. �
Proof of Corollary 1.8 (ii). Let (u1, . . . , un) be a nontrivial nonnegative solution of (1.13). As-
sume, without loss of generality, that u1 �≡ 0. Let i ∈ {2, . . . , n}. Since e1i = ei1 = 1, by Theo-
rem 1.7 we see that ui ≡ 0. This indicates that ui ≡ 0 for each i ∈ {2, . . . , n}. The conclusion 
holds. �
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