1	ORIGINAL ARTICLE
2	
3	Neurochemistry of response inhibition and interference in gambling disorder: A
4	preliminary study of γ-aminobutyric acid (GABA+) and glutamate-glutamine (Glx)
5	
6	Authors: Kathrin Weidacker ¹ , Stephen J. Johnston ¹ , Paul G. Mullins ² ,
7	Frederic Boy ^{1,3} , and Simon Dymond ^{1,4*}
8	¹ Department of Psychology, Swansea University, Singleton Campus, Swansea, United
9	Kingdom
10	² School of Psychology, Bangor University, Bangor, Gwynedd, United Kingdom
11	³ School of Management, Swansea University, Bay Campus, Swansea, United Kingdom
12	⁴ Department of Psychology, Reykjavík University, Menntavegur, Nauthólsvík, Reykjavík,
13	Iceland
14	
15	Submitted 13 January 2021
16	Accepted 16 March 2021
17	
18	*Corresponding Author: Simon Dymond, <u>s.o.dymond@swansea.ac.uk</u>
19	
20	Key words: gambling; MRS; GABA; response inhibition; response interference
21	

DOI: 10.1017/S1092852921000316 This peer-reviewed article has been accepted for publication but not yet copyedited or typeset, and so may be subject to change during the production process. The article may be cited using its DOI.

22	Abstract
23	Objective. Neurobehavioural research on the role of impulsivity in gambling disorder (GD)
24	has produced heterogeneous findings. Impulsivity is multifaceted, with different
25	experimental tasks measuring different sub-processes, like response inhibition and
26	distractor interference. Little is known about the neurochemistry of inhibition and
27	interference in GD.
28	Methods. We investigated inhibition with the Stop Signal Task (SST) and interference with
29	the Eriksen Flanker Task, and related performance to metabolite levels in individuals with
30	and without GD. We employed magnetic resonance spectroscopy (MRS) to record
31	glutamate-glutamine (Glx/Cr) and inhibitory, γ -aminobutyric acid (GABA+/Cr) levels in the
32	dorsal ACC (dACC), right dorsolateral prefrontal cortex (dIPFC), and an occipital control
33	voxel.
34	Results. We found slower processing of complex stimuli in the Flanker task in GD ($p < .001$,
35	η^2_p = .78), and no group differences in SST performance. Levels of dACC Glx/Cr and frequency
36	of incongruent errors were correlated positively in GD only ($r = .92$, $p = .001$). Larger positive
37	correlations were found for those with GD between dACC GABA+/Cr and SST Go error
38	response times ($z = 2.83$, $p = .004$) as well as between dACC Glx/Cr and frequency of Go
39	errors ($z = 2.23$, $p = .03$), indicating general Glx-related error processing deficits. Both groups
40	expressed equivalent positive correlations between post-error slowing and Glx/Cr in the
41	right dlPFC (GD: <i>r</i> = .74, <i>p</i> = .02; non-GD: <i>r</i> = .71, <i>p</i> = .01).
42	Conclusion. Inhibition and interference impairments are reflected in dACC baseline
43	metabolite levels and error processing deficits in GD.
44	

45

46 Introduction

Gambling disorder (GD) is a psychiatric condition characterised by irritability and
failing to stop gambling, recurrent thoughts about gambling and gambling as a coping
mechanism, loss chasing, and hiding gambling behaviours from others or exploiting others
for gambling money^{1, 2}. The health-harming behaviours indicative of GD are now widely
recognised as a public health issue^{3, 4}.

Gambling disorder has long been associated with deficits in self-reported 52 impulsivity^{5, 6} and impaired task performance on behavioural indices of impulsive 53 behaviour^{7, 8}. A range of cognitive-behavioural domains have assessed the broad construct 54 of impulsivity such as attentional inhibition, motor inhibition, discounting, decision-making, 55 and reflection impulsivity⁹. As a result, observed deficits are heterogeneous across studies 56 and individuals and warrant further investigation into the contribution of different 57 impulsivity-related subprocesses in GD^{5, 10}. This may include, for example, inhibitory control 58 understood in terms of prepotent response inhibition and resistance to interference from 59 distractors^{11, 12}. Disentangling the separate and/or combined influence of specific 60 impulsivity-related processes in GD might aid understanding of the various trajectories that 61 62 lead to excessive gambling behaviour and enable future treatment development. One subprocess, response inhibition or the ability to inhibit prepotent responses, is 63 often assessed using the Stop Signal Task (SST)¹³. In the SST, a manual button press is 64 required on most trials upon visual presentation of an arrow. The minority of arrow 65 presentations are followed by an auditory stop signal, indicating the requirement to 66 withhold the prepotent button press. Importantly, the time at which the auditory stop signal 67

68	is delayed in respect to the visual arrow, the stop signal delay (SSD), is adjusted in a
69	stepwise manner, which computes the stop signal response time (SSRT).
70	A second subprocess, response interference or resistance to interference from
71	distractors, is commonly assessed using the Eriksen Flanker task ¹⁴ . Like the SST, a central
72	arrow is presented and the direction it faces determines the required button press. In the
73	Flanker task, the central task-relevant stimulus is either flanked by congruent (C) or
74	incongruent (IC) arrows and presentation of IC flankers induces response competition which
75	increases response times and error rates ¹⁴ .
76	While response interference using the Flanker task has to our knowledge not yet
77	been studied in populations with GD, previous research on problem gambling and response
78	inhibition using the SST has produced mixed results. Inhibition-related variables, such as the
79	SSD and SSRT, often do not dissociate between gambling and non-gambling participants ¹⁵⁻²⁰ .
80	Similarly, response time on Go trials fails to distinguish between those with and without
81	GD ^{21, 22} . However, both prolonged response time and SSRTs are seen in participants with
82	high gambling severity, whereas at-risk gamblers do not differ in their SST performance
83	compared to non-gambling participants ^{17, 23} . Studies of response inhibition in GD show
84	increased SSRTs with moderate to large effect sizes and increased Go response times during
85	Go/No-go tasks with small to moderate effect sizes ²⁴ . In addition to inhibition-related SST
86	measures, only two SST studies, to date, have investigated error frequency and post-error
87	slowing (PES) in gamblers. Lorains et al. ¹⁸ found enhanced error responses on Go trials in a
88	sample of treatment-seeking gamblers, while Lawrence, et al. ²¹ found no differences to
89	controls when investigating a moderate to severe disordered gambling sample. However, it
90	is noteworthy that both studies also investigated the effects of previous trial types (correct

go, correct stop, failed stop) on current, within-session Go responses. Usually, behavioural
responses that are preceded by an error are slower than behavioural responses that are
preceded by correct trials, which might reflect an adaptive mechanism to reduce future
errors or increased salience of errors²⁵⁻²⁷; however, both studies found no differences
between gamblers and non-gamblers on PES.

Despite measuring purportedly different aspects of impulsivity, the neural networks 96 97 recruited during the Flanker Task and SST overlap. Indeed, a recent activation likelihood estimation (ALE) meta-analysis compared the neural networks involved in cognitive 98 inhibition, composed of Stroop and Flanker task data, to those involved in response 99 100 inhibition, consisting of SST and Go/No-go tasks, and found overlap among task-based functional magnetic resonance imaging (fMRI) activity in dorsal anterior cingulate cortex 101 102 (dACC), right-, but not left-hemispheric, dorsolateral prefrontal cortex (dIPFC) and the left anterior insula²⁸. In a Go/No-go version of the Flanker task, interference-related dACC 103 activation correlated positively with response times and error rates during the IC condition, 104 while the number of inhibition errors correlated negatively with response inhibition-related 105 activity in the right, but not left-hemispheric, dIPFC activity²⁹. 106

Functional abnormalities of the overlapping brain areas supporting response inhibition and response distractor interference have been reported in disordered gambling. For example, a recent SST fMRI study assessed high-frequency poker players and revealed increased dACC activity during successful response inhibition compared to non-gambling controls in the absence of SSRT differences¹⁵. However, it is likely that gambling-related abnormalities in the dACC extend beyond neural activation. In previous work conducted with the present sample of males with GD, we showed that baseline glutamate-glutamine

(Glx) levels in the dACC negatively correlate with gambling severity³⁰. This supports related 114 findings showing that medication acting on glutaminergic transmission reduces gambling 115 severity^{31, 32}. It is noteworthy that optimal response inhibition and interference task 116 performance is assumed to depend on optimally balancing excitatory and inhibitory 117 neurometabolites, such as glutamate and y-aminobutyric acid (GABA)³³. Consistent with 118 this, correlations between levels of these metabolites and behavioural performance have 119 120 been reported previously. For instance, percentage of inhibition errors correlate negatively with GABA levels in the $dACC^{34}$, as does self-reported impulsivity, which additionally 121 correlates negatively with GABA+ (+ indicates contributions from unsuppressed 122 macromolecules) levels in the right dIPFC³⁵. Similarly, Chowdhury, et al.²⁰ reported a positive 123 correlation between GABAergic transmission in the motor cortex and SSRTs. Interestingly, 124 despite the absence of group differences in SST performance, Chowdhury, et al.²⁰ also found 125 evidence for reduced GABA_A receptor activity and increased glutamate receptor activity in a 126 GD sample compared to non-gamblers and at-risk gamblers, respectively. Additionally, 127 exogeneous dopamine administration reduced prefrontal GABA_A receptor availability less in 128 treatment-seeking problem gamblers than in healthy volunteers³⁶. 129 In terms of distractor interference, one previous investigation into the relationship 130 between response time differences between IC and C Flanker trials and metabolite levels in 131 the medial/dorsal ACC found no correlation with Glx, while GABA was unassessed³⁷. Little is 132 known, therefore, about the role of GABA in response interference, in GD compared or non-133 GD populations. It is possible, however, that GABAergic processes are involved during 134 Flanker task interference control: Faßbender et al.³⁸ investigated the effects of Lorazepam, a 135 benzodiazepine binding to the GABA_A receptor and thereby enhancing GABA release, on 136

137	Flanker performance and reported increased error rates as well as response times when
138	dosage was increased. On the other hand, performance on the related interference Stroop
139	Task where the distracting stimulus dimension is dominant ¹² , did not significantly correlate
140	with glutamate or GABA in the dACC or parieto-occipital cortex ³⁴ .
141	In sum, the existing evidence reveals conflicting findings on the range and type of
142	impulsive deficits in GD, while little is known about the underlying neurochemistry of
143	impaired response inhibition and interference. The present preliminary investigation
144	therefore sought to undertake a combined behavioural and MRS study utilizing GD and non-
145	GD samples. Baseline GABA+/Cr, and Glx/Cr were assessed in the dACC, right dIPFC (given
146	its' role in Flanker as well as SST tasks ^{28, 29} and self-reported impulsivity ³⁵) and an occipital
147	control voxel and then related to performance indices of response inhibition, using the SST,
148	and distractor interference, using the Flanker task.
149	Methods
150	Participants
151	Twenty-six right-handed male participants were allocated into GD and non-GD
152	groups based on their past year gambling severity scores on the Problem Gambling Severity
153	Index (PGSI) ³⁹ . This resulted in <i>n</i> = 12 in the GD group (i.e., PGSI score > 8; <i>M</i> = 15.2, <i>SD</i> =
154	5.1; M_{age} = 36.3, SD = 9.5) and 14 age-matched, non-GD participants (i.e., PGSI score < 1; M
155	= .071, SD = .027; M_{age} = 35.7, SD = 8.7). The study was approved by the Department of
156	Psychology Ethics Committee, Swansea University and all participants provided signed,
157	informed consent. All methods were carried out in accordance with relevant guidelines and
158	regulations (Declaration of Helsinki). Further data corresponding to the demographics and
159	MRS measures of this sample are reported in Weidacker, et al. ³⁰ . In brief, we previously

160	reported significant negative correlations for the GD sample between Glx/Cr in two
161	locations, the dACC as well as occipital voxel, and gambling severity in terms of the PGSI ³⁹ as
162	well as the DSM-5 ² scores for problematic gambling behaviour. Further, no significant
163	between-group differences were found regarding MRS measures, but the GD group scored
164	significantly lower on full scale intelligence (FSIQ; assessed with the Wechsler Abbreviated
165	Scale of Intelligence ⁴⁰ subtests for Matrix Reasoning and Vocabulary) and higher on
166	Attention deficit hyperactivity disorder (ADHD) symptoms (assessed with the World Health
167	Organization Adult ADHD Self Report Scale version 1.1; ASRS ⁴¹) compared to the non-GD
168	group. Assessed with the Alcohol, Smoking, and Substance Involvement Screening Tests
169	version 3 ⁴² , GD participants scored also significantly higher on alcohol usage. Importantly,
170	age, other substance use such as for tobacco, cannabis, cocaine and amphetamine as well as
171	the presence of Axis 1 disorders (assessed with the MINI International Neuropsychiatric
172	Interview version 5.0.0 ⁴³) were not statistically different between the groups ³⁰ . Due to the
173	significant between-group differences relating to ASRS and FSIQ scores, Pearson
174	correlations were performed to assess the necessity of including them as covariates; none
175	of the correlations with Flanker and SST variables reached significance ($ r < .35$, ps > .08),
176	revealing no indication for inclusion.
177	Assessments

Gambling severity. The PGSI³⁹ assesses the severity of gambling problems via nine
items, on a Likert scale from *never* (= 0; 92.9% of the non-GD group), *sometimes* (= 1; 7.1%
of the non-GD group [1 participant scored 1]), *most of the time* (= 2) to *almost always* (= 3).
All GD participants were categorized as *problem gamblers* (> 8 on the PGSI). The PGSI has

high internal consistency (Cronbach's α = .90) and adequate validity for both GD and non-GD groups^{44, 45}.

The *Diagnostic and Statistical Manual of Mental Disorders 5* (DSM-5)² states nine criteria for problematic gambling behaviour leading to significant past year distress categorized as *mild* (4-5 criteria apply; 33.3% of the gamblers), *moderate* (6-7; 25%) or *severe* gambling problems (8-9, 41.7%).

188 The South Oaks Gambling Screen (SOGS)⁴⁶ assesses gambling risk via 20 items.

189 Participants were characterised as *no problems* (= 0; 92.9% of the non-GD group), *some*

190 *problems* (1-4; 7.1% of the non-GD group [1 participant scored 1]) or *probable pathological*

191 *gambling* (> 5; 100% of the GD group).

192 Procedure

193 Pre-screening for eligibility utilized the PGSI, SOGS, and DSM-5 as well as magnetic resonance exclusion criteria and participants were invited to the Imaging Centre at Swansea 194 University upon meeting the inclusion criteria (i.e., PGSI score ≤ 1 or > 8, right handedness, 195 and safety criteria for scanning). The behavioural and MRS assessments took place on 196 separate days (mean number of days between testing sessions = 15.7). Before MRS testing, 197 participants' blood alcohol levels were measured with single use breathalysers (none of the 198 199 participants had consumed alcohol before testing). Behavioural tasks were administered in a 200 counterbalanced order across participants.

Flanker Task. The flanker task was presented using Psychtoolbox⁴⁷ in combination with MATLAB R2010b (Mathworks Inc., Massachusetts, USA). In the 200 stimuli Flanker task, either congruent (C; 70%) arrows (e.g., >>>>>) or incongruent (IC; 30%) arrows (e.g., >> >>>>) were presented. Participants were instructed to press as fast and accurately as

205 possible in the direction where the middle arrow pointed to (button Z on the keyboard for 206 middle arrows pointing to the left; button M for middle arrows pointing to the right) while 207 ignoring all arrows on the sides. Within each stimulus type (C and IC), arrows pointing to the right and left were presented in equal proportions. The presentation of stimuli was pseudo-208 randomized with the restrictions to not have an IC trial presented at the first trial, exclude 209 210 the possibility of two IC trials in a row, and to have between two and five C trials in between 211 IC trials. In the intertrial interval, a centred fixation cross was presented, with randomized durations between 900 ms and 1200 ms, in steps of 50 ms. Before the start of the 212 213 experimental task, 30 practice stimuli were shown to make participants familiar with the 214 arrow design and task requirements. During this practice part, feedback was presented when response times exceeded 750 ms ("Please try to press faster"), upon wrong button 215 216 presses ("Wrong direction") and following correct button presses ("Well done!"). **Stop Signal Task.** The Stop Signal task (SST) was presented using Psychtoolbox⁴⁷ in 217 combination with MATLAB R2010b (Mathworks Inc., Massachusetts, USA). In the SST, one 218 219 arrow is presented centrally per trial and the participants are asked to press the button corresponding to the direction the arrow is pointing to (right pointing arrows required the 220 button M, left pointing arrows the button Z on the keyboard) as fast and accurately as 221 222 possible. On the minority of trials, an auditory stop signal is presented following the visual arrow, in these trials the participants are asked to inhibit their already initiated motor 223 response as quickly as possible. The experiment was programmed in three experimental 224 225 blocks with a self-paced break in between blocks, per block 100 stimuli were presented (30% of stop trials). Stimulus presentation was pseudo-randomized with the only restriction 226 to prevent two consecutive stop trials. Within each stimulus type (stop, go), left and right 227

228	arrows were presented equally often. In between trials a centred fixation cross was
229	presented, with randomized durations between 900 ms and 1200 ms, in steps of 50 ms. The
230	stop signal delay (SSD), the delay between the visual presentation of the arrow and the
231	auditive stop signal, was initially set to 250 ms at task begin. Thereafter, each correct
232	withholding of button presses in response to stop trials decreased the SSD by 50 ms
233	(minimum was set to 50 ms), incorrectly pressing a button at stop trials increased the SSD
234	by 50 ms. Before the start of the experimental task, 40 practice stimuli (12 stop trials) were
235	presented. One participant was excluded from the non-GD group due to recording issues.
236	MR acquisition
237	MR was acquired using a 3-T Siemens Magnetom Skyra scanner (Siemens Medical
238	Solutions, Erlangen, Germany; software version VD13) in combination with a 32-channel
239	head coil. The MPRage sequence was used to obtain a T1-weighted image with the following
240	parameters: repetition time (TR = 2200 ms), echo time (TE = 2.45 ms), inversion time (TI =
241	900ms), flip angle (8 deg), 192 slices, 1 mm slices.
242	Single voxel MRS was based on the MEGA-PRESS MRS package 48 (provided by the
243	University of Minnesota under a C2P agreement). The following VOIs were acquired in
244	sequence: the dorsal ACC (30x30x20 mm), the right dIPFC (30x20x20 mm) and occipital,
245	between the calcarine fissure and the parieto-occipital sulcus (20x30x25 mm). GABA+ was
246	utilized as an edited estimate of gabaergic concentration (I.e., concentration/level of GABA)
247	in the absence of macromolecule suppression and acquired with the following parameters:
248	TR = 1800 ms, TE = 68 ms, 200 averages (per ON and OFF spectra), 1024 complex data
249	points, editing pulse frequency = 1.90 ppm (4.70 ppm center frequency), editing pulse
250	bandwidth = 52 Hz, offset frequency set to 3.00 ppm (reflecting the offset, relative to water,

251	of the carrier frequency of the slice-selective pulses). Higher-order shimming was performed
252	manually to reduce local field inhomogeneities in each voxel of interest (VOI) and VAPOR
253	was used for water suppression. No outer voxel suppression was applied. See Figure 1 for
254	voxel locations, overlap and Figure 2 for corresponding mean and individual spectra per
255	group. Recommended minimum reporting details for the MRS details are also included in
256	appendix 1 as set out in the Minimum Reporting Standards for In Vivo Magnetic Resonance
257	Spectroscopy (MRSinMRS): Experts' Consensus Recommendations ⁴⁹ . Five participants
258	produced no adequate MRS data for any of the three MRS voxels during acquisition (e.g.
259	hardware failure, excessive motion, inadequate shimming) and were therefore excluded
260	prior to this report.

262

Figure 1. Voxel locations for the dACC, dIPFC, and occipital voxels. Shown is the percentage
 overlap across all participants (from 10 to 100%) per location. Each participant's voxel
 location was transformed into MNI space before calculating the percentages. dACC = dorsal
 anterior cingulate, dIPFC = right dorsolateral prefrontal cortex, POC = posterior occipital

267 cortex.

269

Figure 2. Spectra and example model fit for the dACC, dlPFC, and occipital MRS voxels. The 270 first column (A) shows the individual MRS spectra (from 0 to 4 ppm), the second column (B) 271 272 shows only the critical signal region (from 2.25 to 4 ppm). Both (A) and (B) are colour coded 273 with orange representing participants with and green representing participants without 274 gambling disorder. The respective group average MRS plots are added as a thicker line following the same colour coding. The third column (C) shows an example GannetFit output 275 per MRS voxel. dACC = dorsal anterior cingulate, dIPFC = right dorsolateral prefrontal cortex, 276 POC = posterior occipital cortex. 277

278 279

280 Spectral Quantification

281 MRS quantification was conducted via GANNET 3.0⁵⁰ (Baltimore, MD, USA) in

282 MATLAB on Siemens .rda files (averaged spectra) using the standard processing steps,

inbuilt models and assumptions for this software (details at http://www.gabamrs.com). The

- edited spectrum was based on the subtraction of the 'ON' and 'OFF' spectra following
- alignment of sub-spectra based on the spectral registration algorithm⁵¹. The GANNET
- 286 pipeline models GABA+, Glx and the creatine (Cr) reference as a single-Gaussian, doublet,

287	and singlet, respectively. Data is reported as a raw ratio of area under the fitted curve
288	referenced to Cr (aligned with our previous report on this sample), for each metabolite, and
289	does not account for differential proton densities, metabolite-specific relaxation properties,
290	or tissue make up. In addition to GABA+/Cr and Glx/Cr, we utilized the GABA+/Glx ratio for
291	MRS-related analyses in line with our previous report on this sample. While cerebrospinal
292	fluid (CSF) correction is not necessary when using Cr as reference, grey matter (GM)
293	contribution may however be of influence and is therefore controlled for in all MRS-related
294	analysis via partial Pearson correlations using GM fraction of the respective MRS voxel, GM
295	/(GM + CSF + white matter), as covariate. Per voxel, GM tissue fractions were obtained using
296	unified segmentation ⁵² of the T1-weighted image in SPM12
297	(https://www.fil.ion.ucl.ac.uk/spm/). Within each voxel (e.g. dACC), task performance
298	indices (e.g. SST Go error RTs) were correlated with MRS measures (e.g. dACC GABA+/Cr)
299	and corrected for GM contribution (e.g. GM in dACC MRS voxel) using partial Pearson
300	correlations. However, producing visual representations (scatterplots) of partial Pearson
301	correlations included a few more steps. First, both variables in a correlation pair were
302	corrected for GM contribution by performing linear regressions (e.g. linear regression 1:
303	predicting dACC GABA+/Cr from dACC GM; linear regression 2: predicting SST Go error RTs
304	from dACC GM) and saving the corresponding residuals. These residuals are fully corrected
305	for GM contribution and were used to create the corresponding scatterplot per significant
306	correlation, and are as such simply a visual representation of a partial Pearson correlation,
307	correcting for GM contribution.
308	From the 26 participants included in this report, individual MRS voxels were

Downloaded from https://www.cambridge.org/core. Swansea University, on 28 Jan 2022 at 11:15:24, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1092852921000316

discarded due to inadequate MRS voxel acquisition during scanning, e.g. due to excessive

motion, inadequate shimming, hardware/recording issues (applies to 2 dACC, 1 dIPFC, and 4 310 311 occipital voxels), bad model fit (applicable to 1 dACC voxel), presence of subtraction artifact (1 dACC, 1 occipital voxel), phase issues (1 dIPFC, 2 occipital voxels), and presence of 312 truncation artifact (1 occipital voxel). GANNET Model fit was assessed based on visual 313 inspection and FWHM (Full-width at half-maximum) within 3 SDs from the group mean per 314 metabolite (e.g. within the dACC: GABA+, Glx). Due to excessive FWHM, one additional 315 316 occipital voxel was excluded from analyses concerning GABA+. Data was included from 9 participants in GD and 13 in non-GD for the dACC voxel, leading to mean (and SDs) of the 317 signal-to-noise ratios (SNR) for Glx of 21.77 (14.99) and 29.10 (11.96) and for GABA+ of 318 319 15.54 (10.69) and 18.65 (8.30), respectively for GD and non-GD. For the right dIPFC voxel, 11 GD and 13 non-GD participants were included, with SNRs for Glx equalling 18.61 (8.47) and 320 321 22.13 (7.27) and for GABA+ of 12.77 (5.09) and 16.35 (5.24). For the occipital voxel, 8 GD and 10 (Glx) or 9 (GABA+) non-GD participants were included, leading to SNRs for Glx of 322 18.14 (6.23) and 19.12 (5.45) and SNRs for GABA+ of 19.44 (6.76) and 19.38 (5.90), 323 respectively. The mean FWHM (and corresponding SDs) of included dACC MRS data 324 equalled 14.42 (2.35) and 16.32 (3.15) for Glx, and 16.50 (6.16) and 20.43 (3.18) for GABA+, 325 respectively for GD and non-GD. FWHMs for included dIPFC MRS data equalled 14.51 (1.92) 326 327 and 15.11 (3.21) for Glx, and 16.55 (4.15) and 19.18 (4.25) for GABA+, respectively for GD and non-GD. FWHMs for included occipital MRS data equalled 13.99 (1.21) and 14.95 (1.12) 328 for Glx, and 20.55 (4.01) and 21.76 (3.71) for GABA+, respectively for GD and non-GD. The 329 mean Gannet Fit Error (SD) for included dACC MRS data equalled 8.29 (9.66) and 5.36 (1.71) 330 for Glx/Cr, and 9.42 (5.71) and 8.40 (3.75) for GABA+/Cr, respectively for GD and non-GD. 331 The mean Gannet Fit Error (SD) for included dIPFC MRS data equalled 6.60 (3.09) and 5.96 332

(2.09) for Glx/Cr, and 8.93 (3.44) and 8.16 (3.69) for GABA+/Cr, respectively for GD and nonGD. The mean Gannet Fit Error (*SD*) for included occipital MRS data equalled 6.58 (2.99) and
6.02 (1.42) for Glx/Cr, and 6.47 (3.75) and 5.63 (1.60) for GABA+/Cr, respectively for GD and
non-GD.

337 Statistical Analysis

Flanker Task. First an rmANOVA was conducted on correct response times with 338 group as between-subject factor and trial type (C vs IC) as within-subjects factor. For error 339 processing, two separate one-way ANOVAs were conducted with group as between-subject 340 factor, the first on IC error response times, the second on error percentages. We confined 341 the error analyses to IC trials (% M = 9.04, SD = 8.92, range = 0 to 40), since few participants 342 made errors in C trials (% M = .77, SD = .88, range = 0 to 3.57). One participant per group 343 made no IC errors and both were therefore excluded from the error response time analyses. 344 Post-error slowing (PES) analyses were based on correct trials preceding and 345 following IC errors as suggested for calculating robust PES^{53, 54}. The functional role of PES, 346 the observation that trials following an error produce longer response times than trials 347 being preceded by a correct trial²⁵ is under debate with arguments for reducing future error 348 responses or being a result of the increased salience of errors among others^{26, 27}. Earlier 349 investigations into PES and gambling behaviour were based on only post-error response 350 times, termed the traditional method to calculate PES⁵⁴. Comparing approaches to PES 351 calculation however, showed that the traditional method is affected by global changes in 352 attention and motivation, therefore underestimates PES, and is outperformed by the robust 353 method which compares post-error responses to pre-error responses⁵³. These trial types 354

355	were subjected to an rmANOVA as within-subject factors, adding group as between-subject
356	factor, and the resultant sample size was 11 for GD and 13 for the non-GD group.
357	The Flanker variables (response time differences between IC and C trials, percentage
358	and response times of IC error trials, and PES) were correlated to dACC, dIPFC and occipital
359	MRS variables (Glx/Cr, GABA+/Cr, GABA+/Glx ratio) using partial Pearson correlation
360	coefficients, correcting for grey matter (GM) content within each voxel, , first using all
361	participants and thereafter separately per GD and non-GD. The derived significant partial
362	correlation coefficients were statistically compared following Fisher's <i>r</i> to <i>z</i> transformation.
363	As this was an exploratory study, data are reported using exact <i>p</i> -values without correction.
364	Stop Signal Task. The mean SSD was calculated as the average of SSDs stemming
365	from successful stop trials and trials with premature responses (button presses that
366	occurred before the stop signal). The probability of responses occurring when a stop signal
367	was presented was calculated as inverse of % correct stop trials. To estimate SSRT (stop
368	signal response time), the go response time that matches this probability within the
369	distribution of response times to go trial (including wrong trials and imputing the response
370	times of missed go trials with the maximum of that distribution) was selected, and mean
371	SSD was subtracted from it.
372	The SST exclusion criteria were as follows: SSRTs indicating waiting for the stop signal
373	(e.g., negative SSRT, applicable to one GD participant), probabilities outside the rage of 24.4
374	to 75% (not met by participants in this study), response time higher at unsuccessful stop
375	trials than the mean of the go trial distribution (not applicable to these participants),
376	recording issues (applicable to one non-GD participant). Applying these criteria resulted in a
377	behavioural sample comprised of 11 GD and 13 non-GD participants. Calculations of mean

```
Downloaded from https://www.cambridge.org/core. Swansea University, on 28 Jan 2022 at 11:15:24, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
https://doi.org/10.1017/S1092852921000316
```

SSD, probability and SSRT are in line with recent suggestions on the use of the integration
 method for SST studies⁵⁵.

Group-differences were assessed using separate one-way ANOVAs with group as 380 between-subjects factor on response times to correct Go trials, % errors to Go trials (% M = 381 2.82, SD = 3.71, range = 0 to 17.14), SSDs and SSRTs. Error response times for choice errors 382 (Go: pressing the wrong direction) and inhibition failures (Stop: pressing during stop trials) 383 384 were analysed using an rmANOVA with trial type (Go vs. Stop) as within- and group as between-subjects factor. Post-error slowing was analysed as described above for the 385 Flanker task, making use of trials preceding and following failed inhibition errors, in a 386 387 rmANOVA with group as between-subject factor. Two GD participants did not make errors to Go targets and were therefore not incorporated in the associated response time 388 389 analyses. The MRS variables were correlated to the SST variables (response times to correct go, wrong go and wrong stop trials, percentages go errors, PES, SSD and SSRT) in the same 390 manner as outlined for the Flanker task. Given the additional outlier criteria applied to the 391 SST, the correlations between SST variables and dACC MRS measures were based on 8 GD (7 392 for Go Error response times) and 12 non-GD participants, while correlations between dIPFC 393 MRS measures and SST task-data were based on 10 GD and 12 non-GD participants, and 394 395 correlations between POC MRS measures and SST performance were based on 8 GD and 9 396 (Glx) or 8 (GABA+) non-GD participants.

397 Across tasks, significant rmANOVA results are accompanied by η^2_p as effect size, 398 while Cohen's *d* is used for independent-sample *t*-tests. G*Power 3.1.9.2⁵⁶ was used for 399 sensitivity analysis and the smallest detectable effect size *d* for between-group effects 400 equalled 1.20, given our SST sample sizes, a two-sided α of .05 and 80% power. Regarding *t*-

Downloaded from https://www.cambridge.org/core. Swansea University, on 28 Jan 2022 at 11:15:24, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1092852921000316

401	tests, Levene's Test for Equality of Variances was performed and corrected statistics are
402	reported when applicable. Multivariate normality (of all three variables within a partial
403	Pearson correlation) was ascertained using Chi-square generalized distance plots obtained
404	via the software Statgraphics (Version 18, Statistical Graphics Corporation, Rockville, USA)
405	and all variables included in significant correlations fell within the 95% confidence interval,
406	consistent with the hypothesis of an underlying multivariate normal distribution.
407	Results
408	Demographics
409	As expected, the GD and non-GD groups differed significantly on PGSI scores,
410	t(11.05) = 10.19, p < .001, d = 4.01, SOGS scores, t(11.12) = 11.68, p < .001, d = 4.59, and
411	number of endorsed DSM-5 criteria, $t(11) = 12.45$, $p < .001$, $d = 4.90$ (see Weidacker et al. ³⁰
412	for further details).
413	Response Interference (Flanker task)
414	A rmANOVA on response times across trial types revealed a main effect of trial-type
415	$(F(1,24) = 87.03, p < .001, \eta_p^2 = .78)$, group $(F(1,24) = 6.09, p = .02, \eta_p^2 = .20)$ and a non-
416	significant interaction between group and trial type ($F(1,24) = 3.92$, $p = .06$). Response times
417	to IC trials were significantly slower ($M = 535.27$, $SD = 108.30$) than to C ($M = 424.80$, $SD =$
418	73.70) trials, regardless of gambling status. Gamblers had significantly longer response times
419	(<i>M</i> = 521.40, <i>SD</i> = 105.52) than the non-GD group (<i>M</i> = 444.58, <i>SD</i> = 46.22) when averaged
420	across trial type.
421	No significant effects of group were found when analysing the IC error response
422	times (<i>F</i> (1,23) = 2.32, <i>p</i> = .14) and the percentage of IC errors (<i>F</i> (1,25) = 1.82, <i>p</i> = .19). The
423	rmANOVA on trials preceding and following IC errors revealed significant post-error slowing

424	$(F(1,22) = 11.88, p = .002, \eta_p^2 = .35)$, but no significant main effect of group $(F(1,22) = 11.11, p)$
425	= .30) or interaction between group and trial type ($F(1,22) = .01, p = .93$).
426	Correlations between response interference and MRS measures. Analysing
427	associations between dACC MRS variables and Flanker variables did not reveal significant
428	correlations in the whole sample ($ r_s < .38$, $p_s > .12$). When assessing the correlations
429	within the GD group, dACC Glx/Cr was significantly positively correlated with the proportion
430	of IC Errors ($r = .92$, $p = .001$) the remaining correlations were not statistically significant
431	$(r_s < .69, p_s > .05)$. Within the non-GD group, this correlation, between dACC Glx/Cr and
432	proportion of IC Errors, was not significant ($r = .02$, $p = .94$), as were the remaining
433	correlations ($ r_s < .27$, $p_s > .40$). Using Fisher's r to z transform, the difference between the
434	correlation coefficient obtained for the relationship between dACC Glx/Cr and proportion of
435	IC Errors was significantly larger in GD than the non-GD group ($z = 3.03$, $p = .002$), see Figure
436	3.

439

Figure 3. Scatterplot of the significant correlation (adjusted for grey matter content) between Glx in the dACC and percentage errors to incongruent trials in the Flanker task. This relationship is shown in black for gambling (r = .92, p = .001) and in grey for nongambling participants (r = .02, p = .94). dACC = anterior cingulate cortex. Lines represent the least squares fit to the data.

446 In the dIPFC voxel, no correlations between MRS and Flanker variables were

significant in the whole sample ($|r_s| < .25$, $p_s > .26$), the GD group ($|r_s| < .52$, $p_s > .12$) and

the non-GD group ($|r_s| < .59$, $p_s > .05$). In the occipital voxel, no correlations were significant

for the whole sample ($|r_s| < .35$, $p_s > .21$), the GD group ($|r_s| < .36$, $p_s > .48$) and the non-GD

450 group ($|r_s| < .67, p_s > .05$).

452 **Response Inhibition (Stop Signal Task)**

Analysing the effect of gambling status on correct response times to Go trials in the 453 SST revealed no significant effect (F(1,23) = 3.18, p = .09). The rmANOVA on response times 454 for choice errors for Go and inhibition errors on Stop trials produced a significant main 455 effect of trial type (F(1,20) = 34.25, p < .001, $\eta_p^2 = .63$), due to longer response times when 456 performing errors of inhibition (M = 379.09, SD = 58.50) than errors of choice (M = 195.57, 457 458 SD = 47.26). The interaction between group and trial type (F(1,20) = .63, p = .44) as well as the main effect of group were not significant (F(1,20) = 1.5, p = .23). Further, the percentage 459 of choice errors on Go trials did not differ significantly between groups (F(1,23) = 1.80, p =460 461 .19).

Analysing the SST inhibition-related variables, mean SSDs (F(1,23) = 2.71, p = .11) and SSRTs (F(1,23) = 1.42, p = .25) revealed no significant group differences between GD and non-GD groups. The rmANOVA on post-error slowing revealed no significant main effect of trial type (F(1,22) = 3.94, p = .06), group (F(1,22) = 1.65, p = .21) or interaction between them (F(1,22) < .01, p = .99)

Correlations between response inhibition and MRS measures. Analysing 467 associations between dACC MRS variables and SST variables did not reveal any significant 468 469 correlations in the whole sample ($|r_s| < .39$, $p_s > .09$). When assessing the correlations 470 within the GD group, the response times on Choice (Go) errors correlated positively with GABA+/Cr (r = .86, p = .03) and the GABA+/Glx ratio (r = .936, p = .006). Both correlations 471 472 were not significant in non-GD, with r = -.39, p = .24 for the correlation between Go error response times and GABA+/Cr, and r = -.50, p = .12 for the correlation with GABA+/Glx. 473 Comparing the obtained correlation coefficients for the relationship between GABA+/Cr and 474

475	Go Error response times across groups revealed a significantly stronger correlation in GD
476	than non-GD ($z = 2.83$, $p = .004$), see Figure 4A. Similarly, the correlation between Go Error
477	response times and the GABA+/Glx ratio was significantly larger in GD than non-GD ($z =$
478	3.75, <i>p</i> < .001), see Figure 4B. Further, the % Go Errors correlated positively with dACC
479	Glx/Cr ($r = .85$, $p = .015$) in GD, while this correlation was not significant in non-GD ($r = .02$, p
480	= .95). The remaining correlations were not significant ($ r_s < .58$, $p_s > .17$) in GD and none of
481	the correlations was significant within the non-GD sample ($ r_s < .50, p_s > .11$). Comparing
482	the groups on their correlation coefficients obtained for the association between % Go
483	Errors and Glx/Cr revealed a significantly stronger correlation in GD than non-GD ($z = 2.23$, p
484	= .03), see Figure 4C.

486

Figure 4. Scatterplot of the significant correlations (adjusted for grey matter content) 487 488 obtained for the Stop Signal Task. Data from gamblers are shown in black and data from 489 non-gamblers are depicted in grey. Lines represent the least squares fit to the data. A) Positive, significant, correlation between Go Error response times and dACC GABA+/Cr in 490 gamblers (r = .86, p = .03); this correlation was not significant in non-gamblers (r = -.39, p =491 .24). B) Positive, significant, correlation between Go Error response times and ACC 492 GABA+/Glx ratio in gamblers (r = .936, p = .006); this correlation was not significant in 493 494 nongamblers (r = -.50, p = .12). C) Positive, significant, correlation between % Go Error responses and dACC Glx/Cr in gamblers (r = .85, p = .015); this correlation was not significant 495 496 in non-gamblers (r = .02, p = .95). D) Positive, significant, correlations between post-error 497 slowing (PES) and dIPFC Glx/Cr in gamblers (r = .74, p = .02) and non-gamblers (r = .71, p = .02) 498 .01). dACC = dorsal anterior cingulate cortex, dIPFC = dorsolateral prefrontal cortex. 499 Analysing the partial correlations between dIPFC MRS variables and SST variables in 500

501 the whole sample, revealed a significant correlation between Glx/Cr and PES (r = .69, p <

.001), all remaining correlations were not significant ($|r_s| < .37$, $p_s > .13$). The significant

503	correlation between Glx/Cr and PES was confirmed in both, the GD ($r = .74$, $p = .02$) and
504	non-GD group ($r = .71$, $p = .01$), see Figure 4D. Within the GD group, dlPFC Glx/Cr also
505	correlated negatively with the percentage Go/choice errors ($r =68$, $p = .04$) while this
506	correlation was not significant in the non-GD group ($r = .14$, $p = .68$). When comparing
507	correlation coefficients for the association between dIPFC Glx/Cr and the percentage
508	Go/choice errors across groups, no significant difference was obtained ($z = 1.94$, $p = .05$).
509	The remaining correlations were not significant within the GD ($ r_s < .67, p_s > .10$) and non-
510	GD groups ($ r_s < .45, p_s > .18$).
511	Assessing the significance of the partial correlations between occipital MRS and SST
512	variables revealed no significant correlations in the whole sample ($ r_s < .51$, $p_s > .06$), GD
513	$(r_s < .68, p_s > .22)$, and non-GD $(r_s < .75, p_s > .05)$.
514 515	Discussion
514 515 516	Discussion The present study is the first investigation of distractor interference and response
514 515 516 517	Discussion The present study is the first investigation of distractor interference and response inhibition performance in GD, with <i>in</i> vivo GABA+/Cr and Glx/Cr metabolic measurements
514 515 516 517 518	Discussion The present study is the first investigation of distractor interference and response inhibition performance in GD, with <i>in</i> vivo GABA+/Cr and Glx/Cr metabolic measurements obtained from three brain areas (dACC, right dIPFC, and an occipital control voxel).
514 515 516 517 518 519	Discussion The present study is the first investigation of distractor interference and response inhibition performance in GD, with <i>in</i> vivo GABA+/Cr and Glx/Cr metabolic measurements obtained from three brain areas (dACC, right dIPFC, and an occipital control voxel). Gambling disorder individuals' behavioural performance evidenced prolonged response
514 515 516 517 518 519 520	Discussion The present study is the first investigation of distractor interference and response inhibition performance in GD, with <i>in</i> vivo GABA+/Cr and Glx/Cr metabolic measurements obtained from three brain areas (dACC, right dlPFC, and an occipital control voxel). Gambling disorder individuals' behavioural performance evidenced prolonged response times in the Flanker Task, regardless of stimulus congruency. On the other hand, SST
514 515 516 517 518 519 520 521	Discussion The present study is the first investigation of distractor interference and response inhibition performance in GD, with <i>in</i> vivo GABA+/Cr and Glx/Cr metabolic measurements obtained from three brain areas (dACC, right dlPFC, and an occipital control voxel). Gambling disorder individuals' behavioural performance evidenced prolonged response times in the Flanker Task, regardless of stimulus congruency. On the other hand, SST performance did not suggest prolonged response times or inhibition deficits in those with
514 515 516 517 518 519 520 521 522	Discussion The present study is the first investigation of distractor interference and response inhibition performance in GD, with <i>in</i> vivo GABA+/Cr and Glx/Cr metabolic measurements obtained from three brain areas (dACC, right dIPFC, and an occipital control voxel). Gambling disorder individuals' behavioural performance evidenced prolonged response times in the Flanker Task, regardless of stimulus congruency. On the other hand, SST performance did not suggest prolonged response times or inhibition deficits in those with GD. It is possible therefore that the complex stimuli used in the Flanker task might at least
 514 515 516 517 518 519 520 521 522 523 	Discussion The present study is the first investigation of distractor interference and response inhibition performance in GD, with <i>in</i> vivo GABA+/Cr and Glx/Cr metabolic measurements obtained from three brain areas (dACC, right dIPFC, and an occipital control voxel). Gambling disorder individuals' behavioural performance evidenced prolonged response times in the Flanker Task, regardless of stimulus congruency. On the other hand, SST performance did not suggest prolonged response times or inhibition deficits in those with GD. It is possible therefore that the complex stimuli used in the Flanker task might at least partially explain the reduced processing speed in GD that we observed. Despite error
514 515 516 517 518 519 520 521 522 523 524	Discussion The present study is the first investigation of distractor interference and response inhibition performance in GD, with <i>in</i> vivo GABA+/Cr and Glx/Cr metabolic measurements obtained from three brain areas (dACC, right dIPFC, and an occipital control voxel). Gambling disorder individuals' behavioural performance evidenced prolonged response times in the Flanker Task, regardless of stimulus congruency. On the other hand, SST performance did not suggest prolonged response times or inhibition deficits in those with GD. It is possible therefore that the complex stimuli used in the Flanker task might at least partially explain the reduced processing speed in GD that we observed. Despite error responses in the Flanker Task not differentiating between groups, GD participants expressed

targets, which was significantly larger than the correlation coefficient found within non-GDparticipants.

This is the first report of a positive correlation between dACC Glx/Cr and error rates 528 on the Flanker task; the only previous related investigation focussed on response times and 529 Glx and found no significant association³⁷. These different results suggest that dACC Glx/Cr 530 may play a more prominent role in terms of error rates⁵⁷⁻⁵⁹ than response times, in line with 531 532 previous reports on increased glutamate-glutamine ratio levels in the dACC being associated with increased self-reported impulsivity as well as increased error rates on a Go/No-go 533 task⁵⁷. Similarly, decreased ACC Glutamate/Cr was previously associated with increases in 534 cognitive control-related striatal activation when contrasting Stroop IC to C trials, and this 535 activation in turn was correlated positively with error rates⁵⁹. In sum, despite few 536 537 behavioural differences between GD and non-GD on distractor interference measures, the metabolic differences suggest potentially abnormal dACC function related to error 538 processing. This warrants further investigation of any associated striatal abnormalities in GD 539 during interference-related errors. 540

Response inhibition, in terms of SST performance, has been subject to several investigations in GD, with individual studies finding heterogeneous results and metaanalyses indicating either no or moderate to large effects on SST response inhibition indices, respectively^{16, 24}. Previous research also supports the idea that response inhibition deficits in GD might emerge at higher gambling severity levels^{17, 23}, but this hypothesis was not supported by the present investigation which focussed solely on participants with high gambling severity. However, due to the restrictive inclusion criteria, the current study

suffers from a relatively small sample size and might therefore not be perfectly suited to 548 identify smaller effects and should be a starting point for larger scale research. 549 Like previous investigations on SST-type tasks, PES was unaffected by the presence 550 of GD in both the SST and Flanker tasks, despite both tasks producing significant PES. 551 However, SST and Flanker PES seem to involve different neural aspects, only SST PES 552 correlated positively with Glx/Cr levels in the right dlPFC, and no dissociation in the strength 553 554 of correlation as a function of gambling addiction status was observed. Previous research on neural involvement during PES found a positive correlation between PES and left anterior 555 midcingulate white matter, a region which supports connectivity to frontopolar and 556 dorsolateral frontal brain regions⁶⁰. However, dIPFC involvement in post-error slowing 557 shows task-dependent variations⁶⁰ and might represent a subprocess of PES⁶¹. PES in terms 558 559 of the Flanker task was found to be unaffected by Lorazepam and gamma-hydroxybutyrate, two GABA agonists working on different receptor types^{62, 63}, but PES was less pronounced in 560 Flanker when compared to Stroop and Go/No-go tasks⁶⁴. Within the Stroop task, Moeller, et 561 al.⁶⁵ investigated the effect of methylphenidate on PES and reported enhanced PES 562 following administration of the drug, which is thought to excite GABAergic interneurons as 563 well as increase glutamate uptake^{66, 67}. As such, the finding that the neurochemical 564 involvement in PES differs between Flanker and SST tasks might be due to task design and 565 associated differences in pronunciation of PES. In the SST, it was notable that PES was 566 positively associated with dIPFC Glx/Cr, regardless of gambling status. 567 While our small samples of GD and non-GD showed consistent correlations between 568 PES and dIPFC Glx/Cr levels, analysis of GD participants revealed additional associations 569 between MRS measures and SST error processing indices that differed in directionality and 570

significance to non-GD participants. Previous research on GD and error processing in the SST 571 is limited, with Lorains, et al.¹⁸ revealing enhanced Go error frequency in treatment-seeking 572 problem gamblers, while Lawrence, et al.²¹ found no between-group differences. The 573 current investigation did not reveal behavioural differences in SST error processing, but did 574 suggest between-group correlation differences between SST error processing and MRS 575 measures. In the dACC, GABA+/Cr as well as the GABA+/Glx ratio correlated positively and 576 577 significantly with Go error response times in GD, whereas both correlations were negative and did not reach significance in non-GD. Similarly, in GD, baseline dACC Glx/Cr correlated 578 positively and significantly with the frequency of Go errors, a correlation which was also not 579 580 significant in non-GD. This positive association between dACC Glx/Cr and SST Go errors in GD is resembles that found between dACC Glx/Cr levels and error rates for the Flanker task, 581 582 perhaps indicating a general influence of baseline Glx on error processing deficits in GD. In contrast to the Flanker task, response times in the SST did not depend on 583 gambling status, but the positive correlations between Go error response times and dACC 584 GABA+/Cr and the GABA+/Glx ratio indicated GD-specific abnormalities. Previous research 585 with non-gambling populations showed that enhancing GABA levels via agonists, such as 586 Diazepam or Lorazepam, prolongs response times across tasks^{38, 68}, like the positive 587 588 association between baseline GABA+/Cr and SST response times found in the current investigation. While GABA agonists induce widespread increases in cortical GABA, our 589 investigation found the relationship between GABA+/Cr and response times significant 590 within the dACC voxel. Previous neuroimaging research suggests hypo- or hyper-activation 591 in the dACC during SST in GD and frequent poker players, respectively^{15, 19}. Together, this 592 suggests that in GD dACC function may be affected and accompanied by neurochemical 593

abnormalities, such as stronger associations between baseline GABA+/Cr and SST response
times, as well as stronger correlations between Glx/Cr and error rates across interference
and inhibition tasks.

Despite these promising findings on the relationships between MRS 597 neurometabolites and task performance, the study has limitations. Since we recruited only 598 GD participants with the highest severity level of gambling behaviour (as indicated by PGSI 599 600 scores), and age-matched controls, the presented research is based on small sample sizes regarding the per group correlations. We also provided a full investigation of all previously 601 reported behavioural differences between GD and non-GD to enable a complete overview 602 603 of the findings, this has the consequence of increasing the number of statistical tests conducted. The presented results were not corrected for multiple comparisons and exact p 604 605 values are reported throughout to enable accurate judgement of the significance levels per investigation. Further, we assessed GABA+ and as such interpretation of findings should 606 consider the contribution of macromolecules. Unfortunately, a not minor amount of MRS 607 data had to be excluded due to reasons outlined earlier which further reduced the sample 608 size and the acquired MRS data format almost certainly reduced data quality enhancement 609 during post-processing. Recent advances in edited MRS acquisition, such as the 610 standardisation of the MEGA-PRESS sequence across vendors⁶⁹, and the increased 611 functionality of quantification software in terms of analysable data formats (TWIX, dicom) is 612 likely of great benefit for future investigations. 613 614 Conclusion

615 In sum, this is the first evidence for distractor interference abnormalities in GD, with 616 prolonged response times and associated neural differences specific to incongruent errors.

Downloaded from https://www.cambridge.org/core. Swansea University, on 28 Jan 2022 at 11:15:24, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1092852921000316

617	Additionally, response inhibition did not differ statistically between GD and non-gamblers.
618	Neurochemically, GD expressed enhanced correlations between baseline dACC GABA+/Cr
619	and Go error response times as well as between dACC Glx/Cr and frequency of Go errors in
620	the SST and the frequency of IC errors in the Flanker task. Further, GD and non-GD
621	participants expressed equivalently efficient PES in both response inhibition and distractor
622	interference tasks, while neural involvement of baseline dIPFC Glx/Cr levels in the SST-based
623	PES did not vary depending on gambling status.

624	Acknowledgments
625	SD is funded by Welsh Government through Health and Care Research Wales. The
626	views expressed are those of the authors and not necessarily those of Health and Care
627	Research Wales or Welsh Government. The authors thank the staff of the Imaging Centre,
628	Institute of Life Science, Swansea University for their assistance with data collection.
629	Funding
630	This work was supported by the International Center for Responsible Gaming (ICRG)
631	and intra-mural funding from the Department of Psychology, Swansea University. The ICRG
632	had no further role in study design; in the collection, analysis and interpretation of data; in
633	the writing of the report; and in the decision to submit the paper for publication.
634	
635	Disclosure information
636	Kathrin Weidacker, Stephen J. Johnston, Paul G. Mullins, Frederic Boy, and Simon Dymond
637	have nothing to disclose.
638	

639		References
640	1.	Kristiansen S, Jensen SM, Trabjerg MC. Youth gambling as risky business: An
641		examination of risk perception and perception of skill and luck among Danish
642		adolescents. Journal of Gambling Issues 2014; (29): 1.
643	2.	American Psychiatric Association. Diagnostic and statistical manual of mental
644		disorders (5th ed.). American Psychiatric Association: Washington, DC, 2013.
645	3.	Browne M, Rawat V, Greer N, Langham E, Rockloff M, Hanley C. What is the harm?
646		Applying a public health methodology to measure the impact of gambling problems
647		and harm on quality of life. <i>Journal of Gambling Issues</i> 2017; 36 .
648	4.	Wardle H, Reith G, Langham E, Rogers RD. Gambling and public health: we need
649		policy action to prevent harm. BMJ 2019; 365: I1807.
650	5.	Billieux J, Lagrange G, Van der Linden M, Lançon C, Adida M, Jeanningros R.
651		Investigation of impulsivity in a sample of treatment-seeking pathological gamblers:
652		A multidimensional perspective. <i>Psychiatry Research</i> 2012; 198 (2): 291-296.
653	6.	Romo L, Kotbagi G, Platey S, Coeffec A, Boz F, Kern L. Gambling and Impulsivity: An
654		Exploratory Study in a French Adolescent Population. Open Journal of Medical
655		Psychology 2014; 03 (04): 306-313.
656	7.	Miedl SF, Wiswede D, Marco-Pallarés J, Ye Z, Fehr T, Herrmann M et al. The neural
657		basis of impulsive discounting in pathological gamblers. Brain Imaging and Behavior
658		2015; 9 (4) : 887-898.

660	8.	Kräplin A, Bühringer G, Oosterlaan J, van den Brink W, Goschke T, Goudriaan AE.
661		Dimensions and disorder specificity of impulsivity in pathological gambling. Addictive
662		Behaviors 2014; 39 (11): 1646-1651.
663	9.	Ioannidis K, Hook R, Wickham K, Grant JE, Chamberlain SR. Impulsivity in Gambling
664		Disorder and problem gambling: a meta-analysis. Neuropsychopharmacology 2019;
665		44 (8): 1354.
666	10.	Mestre-Bach G, Steward T, Granero R, Fernandez-Aranda F, Mena-Moreno T, Vintro-
667		Alcaraz C et al. Dimensions of Impulsivity in Gambling Disorder. Sci Rep 2020; 10(1):
668		397.
669	11.	Evenden JL. Varieties of impulsivity. <i>Psychopharmacology</i> 1999; 146 (4): 348-361.
670	12.	Friedman NP, Miyake A. The relations among inhibition and interference control
671		functions: a latent-variable analysis. Journal of Experimental Psychology: General
672		2004; 133 (1): 101.
673	13.	Logan GD, Cowan WB, Davis KA. On the ability to inhibit simple and choice reaction
674		time responses: a model and a method. Journal of Experimental Psychology: Human
675		Perception and Performance 1984; 10 (2): 276.
676	14.	Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target
677		letter in a nonsearch task. Perception & psychophysics 1974; 16(1): 143-149.
678	15.	Brevers D, He Q, Keller B, Noel X, Bechara A. Neural correlates of proactive and
679		reactive motor response inhibition of gambling stimuli in frequent gamblers. Sci Rep
680		2017; 7 (1): 7394.

681	16.	Lipszyc J, Schachar R. Inhibitory control and psychopathology: A meta-analysis of
682		studies using the stop signal task. Journal of the International Neuropsychological
683		<i>Society</i> 2010; 16 (6): 1064-1076.
684	17.	Grant JE, Chamberlain SR, Schreiber LRN, Odlaug BL, Kim SW. Selective decision-
685		making deficits in at-risk gamblers. Psychiatry Research 2011; 189(1): 115-120.
686	18.	Lorains FK, Stout JC, Bradshaw JL, Dowling NA, Enticott PG. Self-reported impulsivity
687		and inhibitory control in problem gamblers. Journal of Clinical and Experimental
688		Neuropsychology 2014; 36 (2): 144-157.
689	19.	de Ruiter MB, Oosterlaan J, Veltman DJ, van den Brink W, Goudriaan AE. Similar
690		hyporesponsiveness of the dorsomedial prefrontal cortex in problem gamblers and
691		heavy smokers during an inhibitory control task. Drug and Alcohol Dependence 2012;
692		121 (1-2) : 81-89.
693	20.	Chowdhury NS, Livesey EJ, Blaszczynski A, Harris JA. Motor cortex dysfunction in
694		problem gamblers. Addict Biol 2020: e12871.
695	21.	Lawrence AJ, Luty J, Bogdan NA, Sahakian BJ, Clark L. Impulsivity and response
696		inhibition in alcohol dependence and problem gambling. Psychopharmacology 2009;
697		207 (1): 163-172.
698	22.	Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Neurocognitive functions
699		in pathological gambling: a comparison with alcohol dependence, Tourette
700		syndrome and normal controls. Addiction 2006; 101 (4): 534-547.

701	23.	Odlaug BL, Chamberlain SR, Kim SW, Schreiber LRN, Grant JE. A neurocognitive
702		comparison of cognitive flexibility and response inhibition in gamblers with varying
703		degrees of clinical severity. <i>Psychological Medicine</i> 2011; 41 (10): 2111-2119.
704	24.	Chowdhury NS, Livesey EJ, Blaszczynski A, Harris JA. Pathological Gambling and
705		Motor Impulsivity: A Systematic Review with Meta-Analysis. Journal of Gambling
706		Studies 2017; 33 (4): 1213-1239.
707	25.	Rabbitt P. Error correction time without external error signals. <i>Nature</i> 1966;
708		212 (5060) : 438-438.
709	26.	Notebaert W, Houtman F, Van Opstal F, Gevers W, Fias W, Verguts T. Post-error
710		slowing: an orienting account. <i>Cognition</i> 2009; 111 (2): 275-279.
711	27.	Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. Conflict monitoring and
712		cognitive control. <i>Psychological review</i> 2001; 108 (3): 624.
713	28.	Hung Y, Gaillard SL, Yarmak P, Arsalidou M. Dissociations of cognitive inhibition,
714		response inhibition, and emotional interference: Voxelwise ALE meta-analyses of
715		fMRI studies. <i>Hum Brain Mapp</i> 2018; 39 (10): 4065-4082.
716	29.	Blasi G, Goldberg TE, Weickert T, Das S, Kohn P, Zoltick B et al. Brain regions
717		underlying response inhibition and interference monitoring and suppression. The
718		European journal of neuroscience 2006; 23(6): 1658-1664.
719	30.	Weidacker K, Johnston SJ, Mullins PG, Boy F, Dymond S. Impulsive decision-making
720		and gambling severity: The influence of γ -amino-butyric acid (GABA) and glutamate-
721		glutamine (Glx). European Neuropsychopharmacology 2020; 32: 36-46.

722	31.	Grant JE, Kim SW, Odlaug BL. N-Acetyl Cysteine, a Glutamate-Modulating Agent, in
723		the Treatment of Pathological Gambling: A Pilot Study. Biological Psychiatry 2007;
724		62 (6): 652-657.
725	32.	Olive MF, Cleva RM, Kalivas PW, Malcolm RJ. Glutamatergic medications for the
726		treatment of drug and behavioral addictions. Pharmacology Biochemistry and
727		Behavior 2012; 100 (4): 801-810.
728	33.	Krause B, Márquez-Ruiz J, Kadosh RC. The effect of transcranial direct current
729		stimulation: a role for cortical excitation/inhibition balance? Frontiers in human
730		neuroscience 2013; 7 .
731	34.	Silveri MM, Sneider JT, Crowley DJ, Covell MJ, Acharya D, Rosso IM et al. Frontal
732		Lobe γ -Aminobutyric Acid Levels During Adolescence: Associations with Impulsivity
733		and Response Inhibition. Biological Psychiatry 2013; 74(4): 296-304.
734	35.	Boy F, Evans CJ, Edden RAE, Lawrence AD, Singh KD, Husain M et al. Dorsolateral
735		Prefrontal γ-Aminobutyric Acid in Men Predicts Individual Differences in Rash
736		Impulsivity. <i>Biological Psychiatry</i> 2011; 70 (9): 866-872.
737	36.	Moller A, Romer Thomsen K, Brooks DJ, Mouridsen K, Blicher JU, Hansen KV et al.
738		Attenuation of dopamine-induced GABA release in problem gamblers. Brain Behav
739		2019; 9 (3): e01239.
740	37.	Weekes BS, Abutalebi J, Mak HK-F, Borsa V, Soares SMP, Chiu PW et al. Effect of
741		monolingualism and bilingualism in the anterior cingulate cortex: a proton magnetic
742		resonance spectroscopy study in two centers. Letras de Hoje 2018; 53(1): 5.

743	38.	Faßbender K, Bey K, Lippold JV, Hurlemann R, Ettinger U. GABAergic Modulation of
744		Response Inhibition and Interference Control. 2020. PsyArXiv. <u>10.31234/osf.io/58uxt</u>
745	39.	Ferris JA, Wynne HJ. The Canadian problem gambling index. Canadian Centre on
746		substance abuse: Ottowa, ON, 2001.
747	40.	Wechsler D. Manual for the Wechsler Abbreviated Scale of Intelligence. The
748		Psychological Corporation, Harcourt Brace & Company. New York, NY; 1999.
749	41.	Kessler RC, Adler L, Ames M, Demler O, Faraone S, Hiripi EVA et al. The World Health
750		Organization Adult ADHD Self-Report Scale (ASRS): a short screening scale for use in
751		the general population. <i>Psychological Medicine</i> 2005; 35 (2): 245-256.
752	42.	World Health Organization. Global status report on alcohol and health; 2018.
753	43.	Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E et al. The Mini-
754		International Neuropsychiatric Interview (MINI): the development and validation of a
755		structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of
756		clinical psychiatry 1998.
757	44.	Currie SR, Hodgins DC, Casey DM. Validity of the Problem Gambling Severity Index
758		Interpretive Categories. Journal of Gambling Studies 2012; 29(2): 311-327.
759	45.	Orford J, Wardle H, Griffiths M, Sproston K, Erens B. PGSI and DSM-IV in the 2007
760		British Gambling Prevalence Survey: reliability, item response, factor structure and
761		inter-scale agreement. International Gambling Studies 2010; 10(1): 31-44.

762	46.	Lesieur HR, Blume SB. The South Oaks Gambling Screen (SOGS): A New Instrument
763		for the Identification of Pathological Gamblers. American Journal of Psychiatry 1987;
764		144: 1184-1188.
765	47.	Brainard DH. The psychophysics toolbox. <i>Spatial CVision</i> 1997; 10: 433-436.
766	48.	Marjańska M, Lehéricy S, Valabrègue R, Popa T, Worbe Y, Russo M et al. Brain
767		dynamic neurochemical changes in dystonic patients: a magnetic resonance
768		spectroscopy study. <i>Movement Disorders</i> 2013; 28 (2): 201-209.
769	49.	Lin A, Andronesi O, Bogner W, Choi IY, Coello E, Cudalbu C et al. Minimum Reporting
770		Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts'
771		consensus recommendations. NMR in Biomedicine 2021: e4484.
772	50.	Edden RA, Puts NA, Harris AD, Barker PB, Evans CJ. Gannet: A batch-processing tool
773		for the quantitative analysis of gamma-aminobutyric acid-edited MR spectroscopy
774		spectra. Journal of Magnetic Resonance Imaging 2014; 40 (6): 1445-1452.
775	51.	Near J, Edden R, Evans CJ, Paquin R, Harris A, Jezzard P. Frequency and phase drift
776		correction of magnetic resonance spectroscopy data by spectral registration in the
777		time domain. <i>Magnetic Resonance in Medicine</i> 2015; 73 (1): 44-50.
778	52.	Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005; 26(3): 839-851.
779	53.	Schroder HS, Nickels S, Cardenas E, Breiger M, Perlo S, Pizzagalli DA. Optimizing
780		assessments of post-error slowing: A neurobehavioral investigation of a flanker task.
781		Psychophysiology 2020; 57 (2): e13473.

782	54.	Dutilh G, van Ravenzwaaij D, Nieuwenhuis S, van der Maas HL, Forstmann BU,
783		Wagenmakers E-J. How to measure post-error slowing: a confound and a simple
784		solution. Journal of Mathematical Psychology 2012; 56(3): 208-216.
785	55.	Verbruggen F, Aron AR, Band GP, Beste C, Bissett PG, Brockett AT et al. A consensus
786		guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-
787		signal task. <i>Elife</i> 2019; 8: e46323.
788	56.	Erdfelder E, Faul F, Buchner A. GPOWER: A general power analysis program. Behavior
789		research methods, instruments, & computers 1996; 28 (1): 1-11.
790	57.	Cohen-Gilbert JE, Sneider JT, Crowley DJ, Rosso IM, Jensen JE, Silveri MM. Impact of
791		family history of alcoholism on glutamine/glutamate ratio in anterior cingulate
792		cortex in substance-naive adolescents. Developmental cognitive neuroscience 2015;
793		16: 147-154.
794	58.	Fu Z, Wu DJ, Ross I, Chung JM, Mamelak AN, Adolphs R et al. Single-Neuron
795		Correlates of Error Monitoring and Post-Error Adjustments in Human Medial Frontal
796		Cortex. <i>Neuron</i> 2019; 101 (1): 165-177 e165.
797	59.	Naaijen J, Lythgoe DJ, Zwiers MP, Hartman CA, Hoekstra PJ, Buitelaar JK et al.
798		Anterior cingulate cortex glutamate and its association with striatal functioning
799		during cognitive control. European neuropsychopharmacology : the journal of the
800		European College of Neuropsychopharmacology 2018; 28 (3): 381-391.
801	60.	Danielmeier C, Eichele T, Forstmann BU, Tittgemeyer M, Ullsperger M. Posterior
802		medial frontal cortex activity predicts post-error adaptations in task-related visual

803		and motor areas. The Journal of neuroscience : the official journal of the Society for
804		Neuroscience 2011; 31 (5): 1780-1789.
805	61.	Danielmeier C, Ullsperger M. Post-error adjustments. Frontiers in psychology 2011;
806		2 : 233.
807	62.	de Bruijn ER, Hulstijn W, Verkes RJ, Ruigt GS, Sabbe BG. Drug-induced stimulation
808		and suppression of action monitoring in healthy volunteers. Psychopharmacology
809		(Berl) 2004; 177 (1-2) : 151-160.
810	63.	Dornbierer DA, Kometer M, Von Rotz R, Studerus E, Gertsch J, Gachet MS et al.
811		Effects of gamma-hydroxybutyrate on neurophysiological correlates of performance
812		and conflict monitoring. European Neuropsychopharmacology 2019; 29(4): 539-548.
813	64.	Riesel A, Weinberg A, Endrass T, Meyer A, Hajcak G. The ERN is the ERN is the ERN?
814		Convergent validity of error-related brain activity across different tasks. Biol Psychol
815		2013; 93 (3): 377-385.
816	65.	Moeller SJ, Honorio J, Tomasi D, Parvaz MA, Woicik PA, Volkow ND et al.
817		Methylphenidate enhances executive function and optimizes prefrontal function in
818		both health and cocaine addiction. <i>Cereb Cortex</i> 2014; 24 (3): 643-653.
819	66.	Guillem AM, Martinez-Lozada Z, Hernandez-Kelly LC, Lopez-Bayghen E, Lopez-
820		Bayghen B, Calleros OA et al. Methylphenidate Increases Glutamate Uptake in
821		Bergmann Glial Cells. Neurochemical research 2015; 40(11): 2317-2324.

822	67.	Urban KR, Li YC, Xing B, Gao WJ. A Clinically-Relevant Dose of Methylphenidate
823		Enhances Synaptic Inhibition in the Juvenile Rat Prefrontal Cortex. Journal of reward
824		deficiency syndrome and addiction science 2017; 2 (3): 69-77.
825	68.	Munoz-Torres Z, Armony JL, Trejo-Martinez D, Conde R, Corsi-Cabrera M. Prefrontal
826		activity decline in women under a single dose of diazepam during rule-guided
827		responses: an fMRI study. <i>Exp Brain Res</i> 2016; 234 (12): 3483-3495.
828	69.	Saleh MG, Rimbault D, Mikkelsen M, Oeltzschner G, Wang AM, Jiang D et al. Multi-
829		vendor standardized sequence for edited magnetic resonance spectroscopy.

Neuroimage 2019; **189:** 425-431.