
Vol.:(0123456789)

Automated Software Engineering (2021) 28:11
https://doi.org/10.1007/s10515-021-00289-8

1 3

Discriminating features‑based cost‑sensitive approach
for software defect prediction

Aftab Ali1 · Naveed Khan1 · Mamun Abu‑Tair1 · Joost Noppen2 · Sally McClean1 ·
Ian McChesney1

Received: 28 December 2020 / Accepted: 24 June 2021
© The Author(s) 2021

Abstract
Correlated quality metrics extracted from a source code repository can be utilized to
design a model to automatically predict defects in a software system. It is obvious
that the extracted metrics will result in a highly unbalanced data, since the num-
ber of defects in a good quality software system should be far less than the number
of normal instances. It is also a fact that the selection of the best discriminating
features significantly improves the robustness and accuracy of a prediction model.
Therefore, the contribution of this paper is twofold, first it selects the best discrimi-
nating features that help in accurately predicting a defect in a software component.
Secondly, a cost-sensitive logistic regression and decision tree ensemble-based pre-
diction models are applied to the best discriminating features for precisely predict-
ing a defect in a software component. The proposed models are compared with the
most recent schemes in the literature in terms of accuracy, area under the curve, and
recall. The models are evaluated using 11 datasets and it is evident from the results
and analysis that the performance of the proposed prediction models outperforms
the schemes in the literature.

Keywords  Software bugs/defects · Machine learning models · Discriminating
features · Cost-sensitivity · AUC​ · Recall

1  Introduction

The development of high performance and efficient software systems is increas-
ing day by day. This efficiency is achieved at the cost of software complexity.
Analysing these complex software systems manually is a difficult, tedious and
costly process Rathore and Kumar (2017). To overcome this difficulty automatic
software defect prediction can play a vital role. Though automated software

 *	 Aftab Ali
	 a.ali@ulster.ac.uk

Extended author information available on the last page of the article

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/459194742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-021-00289-8&domain=pdf

	 Automated Software Engineering (2021) 28:11

1 3

 11   Page 2 of 18

defect prediction of large and complex systems is a challenging task, it can be
accomplished by utilising correlated quality metrics.

The cost involved in finding the modules or components containing defects is
also a challenging problem for the software development industry. A Cambridge
University study shows that the cost of software defects has increased to $312 bil-
lion per annum globally Brady (2013). The reason behind the cost increase is that
developers spent most of their time on finding and fixing defects. The developer’s
goal is to release defect free software to the end user. Unfortunately, software
defects are inevitable; for example the US Department of Defence is spending
over four billion dollars for software failures per year Dick et al. (2004).

Techniques of software testing are typically used to reduce defects and ensure
high quality systems However, such testing requires some tedious and exhaustive
test cases to be executed, and this makes the process quite expensive, especially
since the defect removal effectiveness of traditional testing activities can be very
low Ebert and Jones (2009) Arar and Ayan (2015) Kassab et al. (2017) Ammann
and Offutt (2016) Jorgensen (2018) Huda et al. (2017). According to NIST xxx
(2002) and Eckardt et al. (2014), finding defects early in the development process
greatly lowers the average cost of defects. Similarly, it is also widely recognised
that finding defects early in the development process greatly lowers the cost of
removal Sommerville (2004). Moreover, inadequate software testing is causing
$3.3 billion to U.S. software developers and users in the financial services sec-
tor Eckardt et al. (2014). According to a study software defects cost U.S. indus-
try $60 billion a year Tassey (1996). This supports our case that accurate and
automatic software defect prediction should be an important part of the software
development process.

In Gyimothy et al. (2005), the authors used a p-value based ranking of metrics
for finding contributing features for defect prediction using logistic regression. The
authors performed experiments on the open source web and e-mail suite Mozilla
version 1.7. The authors examined a total of eight performance metrics, where only
one metric was found to be non-contributing. In another paper, Malhotra (2015)
reviewed such approaches and found that logistic regression performed poorly, in
terms of prediction, when compared with machine learning approaches. However,
logistic regression provides good explainability and when used in combination
with the best feature selection scheme and cost-sensitive function its performance
improves significantly in predicting defects and quantifying this.

In our experiments we use 11 datasets from the PROMISE Shirabad and Men-
zies (2005) software engineering repository as can be seen in Table 1. It is evident
from Table 1, that most of the datasets are highly skewed (i.e. the number of defect
instances are very small compared to the normal instances). Therefore, our focus
in this work is to precisely predict the defects in the highly skewed data. For this
our current approach utilised the cost-sensitive function to handle the data skew-
ness and to improve prediction performance. In this paper, we propose best fea-
tures-based cost-sensitive logistic regression (CLR) and decision trees ensemble
(CDTE) models to predict software defects. The proposed approaches first find best
discriminating attributes (features) for defect prediction by using analysis of vari-
ance (ANOVA) F-value. Once those features are identified in the next step, CLR

1 3

Automated Software Engineering (2021) 28:11 	 Page 3 of 18  11

and CDTE prediction models are applied to the selected attributes to predict those
instances which contain defects.

In our prior work Ali et al. (2019), we used the p-value to find the discriminat-
ing features for software defects detection. We observed that p-value do not directly
quantify any useful measures of model quality and hence resulted in poor detec-
tion of actual software defects (i.e. very low recall). Therefore, we now consider the
F-value in combination with the p-value to select the best discriminating features
along with the incorporation of cost-sensitivity to improve the detection of actual
defects (i.e. recall).

The rest of the paper is organised as follows: Sect. 2 presents motivation and
scope of the work while Sect. 3 elaborates the defect prediction related work. Sec-
tion 4 describes the proposed cost-sensitive defect prediction using best features-
based logistic regression and decision trees ensemble. Results and discussions
are covered in Sect. 5, while Sect. 6 presents the limitations and future directions.
Finally, Sect. 7 concludes the work.

2 � Motivation and scope

2.1 � Motivation

Software developers face challenges to understand increasingly complex software
and identify and resolve defects efficiently. This is critically important but often very
hard to achieve. The analysis of software development processes established the
need to provide support for early identification of high-risk areas to help prioritise
developer effort and improve efficiency and quality.

With the increasing size of software, it is of key importance for organisations that
developers can easily explore and prioritise work. The aim of the defect detection

Table 1   Datasets description
and level of class imbalance

Dataset description

Dataset Defects Normal Defects
percent-
age

kc1 326 1783 15.46
kc2 107 415 20.50
pc1 77 1032 6.94
pc3 160 1403 10.24
pc4 178 1280 12.21
Mozilla4 5108 10437 32.86
mc1 68 9398 0.72
mc2 52 109 32.30
cm1 50 448 10.04
jm1 2104 8776 19.34
jEdit_4.2_4.3 204 165 55.28

	 Automated Software Engineering (2021) 28:11

1 3

 11   Page 4 of 18

process is to guide the developers to the most critical and fragile parts of software
system during development. Effective software defect prediction will increase the
performance of the application being examined and will reduce the cost of software
development. Moreover, with defect detection and resolution this research will opti-
mize resource use and prevent costly mistakes making it into production systems.

2.2 � Scope

The scope of the work is quite broad in a sense that good quality version controlling
and error reporting will help in the calculation of the qualitative metrics used in this
research. Once the qualitative metrics are being extracted from the source code, then
the next step is to apply the models on those metrics. The scope of this work is lim-
ited to the labelled qualitative metrics extracted from the source code repositories.

3 � Related work

A number of machine learning algorithms have been described in the literature to
address software fault prediction problems. In Malhotra (2015), the authors have
performed a systematic review of machine learning techniques used for software
defect prediction. Moreover, a detailed analysis about the performance of statisti-
cal and machine learning techniques has been carried out to identify the strength
and weaknesses of these techniques used for software defect prediction. Generally,
there is a trade-off achieving higher defect detection rate and higher accuracy rate,
therefore, the machine learning model is considered optimum? if it has attained both
higher defect detection rate and higher accuracy rate. Therefore, the random for-
est approach has been used in Guo et al. (2004) for software defect prediction as it
has previously achieved a higher defect detection rate and higher accuracy as com-
pared to other benchmark techniques such as discriminant analysis and decision tree
algorithm.

The authors in Catal and Diri (2009), have used correlation-based feature selec-
tion (cfs) technique to extract discriminant features from the public NASA dataset.
The discriminant features are further analysed using artificial immune system algo-
rithms for software fault prediction. The performance of the machine learning algo-
rithm has improved using feature reduction technique for software fault prediction.

Likewise, in Osman et al. (2017), the effect of embedded feature selection algo-
rithms has been analysed to improve the performance of the predictive model for
defect prediction. The authors have used three regularization methods Ridge, Lasso
and ElasticNet on Poisson and linear Regression prediction algorithm. The results
show that the proposed technique improves the performance by minimizing the
root mean squared error up to 50% and also improves the stability of the prediction
model.

Moreover, Huda et al. (2017) have proposed a hybrid wrapper-filter approach
for metric selection. The Support Vector Machine (SVM) hybrid heuristics
and Artificial Neural Network (ANN) hybrid heuristics have been used to find

1 3

Automated Software Engineering (2021) 28:11 	 Page 5 of 18  11

discriminant metrics from software defect data. Further, both hybrid models SVM
and ANN were copulated with a maximum relevance (MR) filter to extract more
significant features that achieved high prediction accuracy in software defect pre-
diction. Recently, Son et al. (2019) conducted an empirical study on defect pre-
diction in software (DeP) that covers the prediction and classification techniques
based on defect severity and security-related defects for software. The authors
concluded that an ideal DeP should have the capability of accurately identifying
the defects, and should classify different types of defects on the basis of severity,
security-related defects etc.

Arshad et al. (2018) proposed a semi supervised Deep Fuzzy C-Mean clus-
tering approach for software defect prediction. The proposed approach analysed
supervised and unsupervised data simultaneously to extract useful information
from the dataset. The results of the proposed approach are compared with the
semi supervised techniques used for software fault prediction. Their approach
has outperformed benchmark approaches in achieving high AUC and F-measure
scores. Arasteh (2018) proposed a fault prediction method using Neural Net-
work and Naïve Bayes algorithms. The author compares the proposed approach
with three different defect prediction models including Support Vector Machine
(SVM), Artificial Neural Nketwork (ANN) and Naïve Bayes. The results have
shown that the proposed algorithm outperforms other prediction models in terms
of achieving high accuracy and precision for software fault prediction.

Most of the schemes in the literature suffer from the class imbalance problem,
and hence result in poor prediction of the defects for complex software systems
Ali et al. (2019). As can be seen in Table 2, that most of the schemes in literature
focuses on the performance metrics like, accuracy, AUC for the evaluation. How-
ever, the use of these metrics in imbalanced classes can lead to sub-optimal clas-
sification models and might yield misleading results due to insensitivity towards
skewness in data Branco et al. (2015). For example, a no skill classification model
might produce high accuracy (or low error) by only predicting the majority class.

As for a good quality software system the probability of getting lesser number
of defects containing instances is very high, resulting in a highly imbalance data,
causing the prediction algorithm to mispredict the actual defects. Therefore, in
this paper we propose best features-based cost-sensitive logistic regression (CLR)
and decision trees ensemble (CDTE) models to predict software defects. The

Table 2   A literature review and comparison

Accuracy AUC​ Precision Recall F-measure MAE RMSE

Huda et al. (2017) ✓ ✓

Ali et al. (2019) ✓ ✓

Arar and Ayan (2015) ✓ ✓

Esteves et al. (2020) ✓ ✓ ✓

Proposed models ✓ ✓ ✓ ✓ ✓ ✓ ✓

	 Automated Software Engineering (2021) 28:11

1 3

 11   Page 6 of 18

cost-sensitive learning directs the classification towards optimising the desired
performance criteria, namely focusing on optimally detecting the defects.

4 � Cost‑sensitive defect prediction using best features‑based logistic
regression and decision trees ensemble

Preprocessing of data to extract useful information (also referred as feature extrac-
tion) is one of the most crucial steps in classification and prediction tasks Pen-
dharkar (2005). The accuracy of classification and prediction is strongly dependent
on the extraction of relevant features from the raw data Aparna and Paul (2016).

Analysis of variance (ANOVA) Freedman (2009) is a statistical measure used
to check if the means of two or more features are significantly different from each
other. For the feature selection process, we use the ANOVA F-value (i.e. an estima-
tion of the degree of linearity between the input metric and the output metric). The
ANOVA F-value is sequentially applied to all features and it will then select those
features which are more discriminating according to classes. The ANOVA F-value-
based feature selection process will remove redundant and irrelevant features from
the data set as often as possible and will select an optimal feature subset for precise
prediction of defects. Significant or best features have an impact on the outcome of
any classification algorithm and can increase the performance efficiency even with
a reduced set of training data. Significant/best feature analysis improves scalability,
and processing efficiency for the training and testing of the classifier.

Once the best features are selected using the ANOVA F-value based feature selec-
tion process then the next step is to pass those features to a classification algorithm
for prediction. In this work the classification and prediction schemes are based on
logistic regression and decision tree ensemble (J48 ensemble). The problem with
using logistic regression and decision trees ensemble is that it suffers from the class
imbalance problem. It is also obvious that in any typical software system the num-
ber of instances containing defects will be lower than the normal instances i.e., the
probability of getting highly skewed data is very high. To remedy this situation, a
MetaCost-based Domingos (1999) logistic regression and decision tree ensemble
are used. A simple logistic regression is given in the following Equation 1:

where (�∕(1 − �) is the odds ratio; a, b1, ...bn are the coefficients of the regression
model esti-mated (learned) from the repository data; and x1, ...xn are the features
which we extract from the repository data e.g. loc, cyclomatic complexity etc.

Logistic regression is used for predictive analysis of data to identify the relation-
ship be-tween a dependent binary variable and one or more independent variables
by estimating the probabilities using a logistic function Le Cessie and Van Houwel-
ingen (1992). The reason for choosing logistic regression is that it is quite extensible
and explainable Catal (2011) Sunil et al. (2018) and it is also fairly simple in terms
of implementation. While utilising the advantage of logistic regression simplicity

(1)log
(

�

1 − �

)

= a + b1x1 + ... + bnxn

1 3

Automated Software Engineering (2021) 28:11 	 Page 7 of 18  11

and expandability, we also used decision trees ensemble (CDTE) to add some more
diversity to the defect prediction process.

A simple and generic diagrammatic representation of the proposed cost-sensitive
discriminating/best features-based classification model is presented in Fig. 1, where
the costs are applied during the training phase to make the model learn the associ-
ated costs. The models are first trained with a cost function to minimize the misclas-
sification errors (i.e. in our case defects). In order to achieve minimal defects mis-
predictions, the models are trained with higher costs in the defective class.

This cost assigning and learning model is applied on the logistic regression and
decision tree ensemble to make these models more appropriate for defect predic-
tion and classification or in other words to reduce the cost of defects misclassifica-
tions. Costs learning process is common for both logistic regression and decision
tree ensemble.

5 � Experiments and results

This section provides the details of datasets used in the experiments, the tools and
experimental setup and discussion on the experiments and results. In order to test
the models for various parameters like, time taken for generating the results (i.e.
models execution time), the simulation is performed in Ubuntu. The models are
implemented in Python using Jupyter notebook on Ubuntu virtual machine (VM).
The VM has 160 GB storage and 16 GB memory with a single processor. The host
machine is running Windows 10 and has a 16 GB physical memory with a Core i5
CPU (1.70GHz 1.90 GHz).

The performance of CLR and CDTE models are assessed using 10-fold cross val-
idation, where the datasets are partitioned into a training set to train the model and
a testing set to test the model. In 10-fold cross-validation, the data is divided into
10 equally sized parts, called folds, where the 9 folds are utilized for training the
model and one fold is kept for validation. The trained model is then applied to pre-
dict the target variable in the testing data and the process is repeated 10 times, with
the performance of each model in predicting the set being hold. The performance
is measured by calculating metrics such as accuracy, area under the curve (AUC),
recall, precision, F-measure, Mean Absolute Error (MAE), and root mean square

Fig. 1   Cost-sensitive classification model

	 Automated Software Engineering (2021) 28:11

1 3

 11   Page 8 of 18

error (RMSE). The advantage of this approach is that the input dataset is used for
both training and testing, and each observation is used for testing exactly once.

5.1 � Datasets description

In our experiments 11 datasets from the PROMISE Shirabad and Menzies (2005)
software engineering repository are utilised as can be seen in Table 1. The feature
selection process removes redundant and irrelevant features from the dataset as often
as possible and selects an optimal feature subset for precise prediction of defects. As
stated earlier, significant or best features have an impact on the outcome of any clas-
sification algorithm and can increase the performance efficiency even with a reduced
set of training data. In our experiments the feature set is reduced by 60% in some
cases (for example in the pc3 dataset, the total features are 37 and the reduced set
contains only 15 features). On average the features are reduced by approximately
50% for all the 11 datasets to improve scalability and reduce the processing over-
head of the classifier.

As a case study, only one dataset (i.e. pc3) is selected to explain and dry run
the feature selection process, but this same process is repeated for all the datasets.
Below the process of best discriminating feature selection is explained with refer-
ence to the pc3 dataset. Table 3 provides an F-value-based ranked list of pc3 dataset
features. The feature selection process selects the best nine features out of the 37
features as given in Table 4.

The higher F-value of a feature increases the chances for that particular feature to
contribute to the defect prediction process. Though F-statistic is fairly random, thus,
there is a high likelihood that (some) bad features also might have a high F-statistic,
especially given the number of tests conducted. Apart from this issue, there is still
a good reason to rank the features on the F-statistic e.g., because there is at least a
strong likelihood to only drop bad features, even though this approach may also keep
bad features. Different number of features were used in the experiments for every
dataset to tune the performance of the predictor for best results (i.e. in case of pc3
the optimal results were obtained by using 9 features).

5.2 � Analysis and discussion

The two important parameters False Positive (FP) and False Negative (FN) should
be considered for a cost-effective prediction process Taylor (2015). FP represents
an instance that does not contain any defects but has been identified as a defect by
the predictor, whereas FN refers to the undetected defects by the predictor. Now,
consider the confusion matrixes in Fig. 2, Logistic regression has a very low FP (i.e.
2%), but the FN (i.e. 83%) is very high. Similarly, the decision tree ensemble has
almost the same results, this means that the predictors mis-predict the defects and
consider them as normal instances.

We can conclude that the imbalance between the class frequencies in the test
data appeared to be causing logistic regression and decision trees ensemble algo-
rithms to ignore the defects and return a default prediction of success Taylor

1 3

Automated Software Engineering (2021) 28:11 	 Page 9 of 18  11

(2015). This is not acceptable especially in a cost-effective defect prediction envi-
ronment because the defects in a software system can cause severe problems in
terms of results and expense.

Moreover, to get a complete insight consider Table 5, which shows the True
Positives Rate (TPR)/Recall, and AUC for both logistic regression and decision

Table 3   Sorted attribute list of pc3 dataset

S. No Attribute F-value S. No Attribute F-value

1 LOC_BLANK 196.97 20 CYCLOMATIC_COMPLEXITY 9.66
2 LOC_COMMENTS 125.15 21 DESIGN_DENSITY 9.59
3 PERCENT_COMMENTS 95.47 22 NUM_OPERATORS 9.04
4 LOC_CODE_AND_COMMENT 81.94 23 BRANCH_COUNT 9.00
5 NUMBER_OF_LINES 64.24 24 HALSTEAD_LENGTH 8.91
6 NUM_UNIQUE_OPERATORS 48.55 25 NUM_OPERANDS 8.60
7 MAINTENANCE_SEVERITY 48.08 26 MULTIPLE_CONDITION_

COUNT
8.45

8 ALL_PAIRS 47.91 27 MODIFIED_CONDITION_
COUNT

8.18

9 NUM_UNIQUE_OPERANDS 35.52 28 HALSTEAD_DIFFICULTY 7.54
10 DECISION_DENSITY 31.96 29 CONDITION_COUNT 6.86
11 NORMALIZED_CYLOMATIC_

COMPLEXITY
22.80 30 DECISION_COUNT 5.50

12 LOC_TOTAL 21.53 31 HALSTEAD_VOLUME 4.18
13 HALSTEAD_CONTENT 20.98 32 HALSTEAD_ERROR_EST 4.16
14 CYCLOMATIC_DENSITY 16.54 33 PARAMETER_COUNT 3.39
15 HALSTEAD_LEVEL 16.39 34 ESSENTIAL_COMPLEXITY 1.43
16 LOC_EXECUTABLE 15.97 35 ESSENTIAL_DENSITY 0.84
17 NODE_COUNT 10.73 36 HALSTEAD_PROG_TIME 0.00
18 EDGE_COUNT 10.55 37 HALSTEAD_EFFORT 0.00
19 DESIGN_COMPLEXITY 10.17

Table 4   Best selected features
using F-value

S. No Attribute F-value

1 LOC_BLANK 196.97
2 LOC_COMMENTS 125.15
3 PERCENT_COMMENTS 95.47
4 LOC_CODE_AND_COMMENT 81.94
5 NUMBER_OF_LINES 64.24
6 NUM_UNIQUE_OPERATORS 48.55
7 MAINTENANCE_SEVERITY 48.08
8 CALL_PAIRS 47.91
9 NUM_UNIQUE_OPERANDS 35.52

	 Automated Software Engineering (2021) 28:11

1 3

 11   Page 10 of 18

trees ensemble. It can be observed that the TPR/Recall of the instances contain-
ing defects is very low.

To remedy this situation, a MetaCost approach Domingos (1999) along with best
feature selection scheme is utilised, which can extend an existing predictor with cost
sensitivity. MetaCost creates several re-samples of the training data, uses the predic-
tor to build an ensemble of models trained on those re-samples, then relabels each
instance in the original training data with the highest probability class resulting from
applying the ensemble set of classiers.

MetaCost allows the Logistic regression and decision tree ensemble to consider
higher cost of not predicting a defect, which is an essential feature of the software
testing process. In Table 6 and Table 7 the TPR/Recall is now comparatively very
high. This is because the schemes are now predicting the defects more accurately.

The AUC is a measure of predictor performance, which shows the probability
that a classifier will rank a randomly chosen positive instance higher than a ran-
domly chosen negative one. The AUC value lies between 0.5 to 1, where 0.5 denotes
a bad classifier and 1 denotes an excellent classifier. In our case for all the datasets
on average the value of 77.55 indicates quite good performance as can be seen in
Table 6. Here it is also worth mentioning that the AUC for logistic regression and
Decision Trees Ensemble without MetaCost function is almost the same as with the
inclusion of MetaCost function, which indicates that the performance is not affected
by incorporating the cost-sensitive functionality.

Another important measure of predictor performance is recall, which depicts that
how good is the predictor in predicting the actual defects as given in Equation 2. In
our experiments we achieved higher values for recall, which indicates that the pre-
dictor does a good job in discriminating between the modules containing defects and
the ones without a defect which comprise our target variable as presented in Table 6
and Table 7.

Now, by utilizing the MetaCost function with the best features-based logistic
regression and decision trees ensemble approach the experiments were performed,
and the analysis has been presented in Table 6 and 7. The accuracy is somehow
decreased as compared to the logistic regression and decision trees schemes without
cost-sensitive function, while the AUC is almost the same. But, if we look at the
confusion matrix given in Fig. 2, Fig. 3, the prediction of defects has been improved

(2)recall =
TP

TP + FN

Table 5   Logistic regression
and Decision Tree Ensemble
performance without cost
sensitive function

Scheme Dataset TP Rate/Recall % AUC %

Logistic Regression CM1 12.2 80
JM1 11.6 71.4

Decision Tree Ensemble CM1 2 61.9
JM1 14.2 72.4

1 3

Automated Software Engineering (2021) 28:11 	 Page 11 of 18  11

significantly (i.e. from 16% and 11% to 79.6% and 78.6% for the CM1 and JM1
datasets for logistic regression, and from 2% and 14% to 77.6% and 78.7% for the
CM1 and JM1 datasets for ensemble bagged trees, respectively).

The models execution time is very low which clearly demonstrates its effi-
ciency. It is observed that the assignment of higher cost values during the experi-
ments due to class imbalance causes the increase in the execution time. This

Fig. 2   Confusion matrix without cost-sensitive function

Table 6   Best features-based
cost-sensitive Logistic
regression performance

Scheme Dataset Accuracy % Recall % AUC %

Cost-sensitive
Logistic Regres-
sion

kc1 73 85 81
kc2 80 85 85
pc1 75 88 85
pc3 80 75 70
pc4 75 91 78
Mozilla4 75 92 80
mc1 97 68 80
mc2 75 70 72
cm1 78 80 78
Average 80.27 77.91 77.55

	 Automated Software Engineering (2021) 28:11

1 3

 11   Page 12 of 18

Table 7   Best features-based
cost-sensitive decision tree
ensemble performance

Scheme Dataset Accuracy % Recall % AUC %

Cost-sensitive deci-
sion tree ensemble

kc1 69 80 83
kc2 75 83 85
pc1 88 61 87
pc3 80 68 82
pc4 86 87 91
Mozilla4 93 93 95
mc1 98 67 95
mc2 65 60 68
cm1 70 78 80
jm1 65 79 73
jEdit 65 79 69
Average 77.64 75.91 82.55

Fig. 3   Confusion matrix with best features-based cost-sensitive logistic regression and decision tree
ensemble

1 3

Automated Software Engineering (2021) 28:11 	 Page 13 of 18  11

increase can be seen for CDTE model in case of kc1 dataset and for CLR model
in the case of mc1 dataset where the execution time is 0.56 seconds for both the
models. The models are also evaluated using the parameters like Mean Absolute
Error (MAE), root mean square error (RMSE), precision and F-measure. MAE
measures the average magnitude of the errors in the prediction set. In other words,
MAE calculates the difference between the predicted and the actual values. It
is evident from Table 8 that the models have low MAE values, which indicates
that the models performed better in terms of classifying the defects and normal
instances. Similarly, the models also have a very low RMSE, which calculates the
average squared errors of the set of predictions.

The models performance is also evaluated in terms of precision and F-meas-
ure. Due to the class imbalance in all the datasets used in the experiments, the
aim of this research is to identify the defects instances more accurately. There-
fore, the weighted averages of both precision and F-measure are calculated, which
encompass predictions of majority and minority groups in the data. It can be seen
in Table 8, that both the models performed very well in terms of precision and
F-measure. This clearly demonstrates that the models accurately classified the
defects and normal instances.

Table 8   Execution time and model summary

Dataset Model E-Time/seconds Precision % F-Measure % RMSE MEA

kc1 CDTE 0.56 77.2 79.4 0.45 0.25
CLR 0.15 83.9 77.2 0.4 0.31

kc2 CDTE 0.13 82.1 78 0.44 0.32
CLR 0.05 82.9 81.6 0.39 0.31

pc1 CDTE 0.04 92.2 87.6 0.26 0.1
CLR 0.05 84.3 82.1 0.38 0.27

pc3 CDTE 0.07 88.3 80.5 0.37 0.19
CLR 0.11 88.2 83.3 0.33 0.23

pc4 CDTE 0.06 90.9 84.9 0.29 0.13
CLR 0.11 89.1 80.5 0.34 0.19

Mozilla4 CDTE 0.28 94.5 93.8 0.2 0.07
CLR 0.19 81.8 78.5 0.38 0.26

mc1 CDTE 0.15 98.4 98.7 0.08 0.01
CLR 0.56 93.4 95.3 0.1 0.03

mc2 CDTE 0.03 60.1 64.3 0.46 0.33
CLR 0.03 74.1 73.6 0.45 0.29

cm1 CDTE 0.08 87.4 78.5 0.41 0.2
CLR 0.04 88.3 82.8 0.29 0.37

jm1 CDTE 0.51 77.3 68.7 0.44 0.29
CLR 0.37 77.9 67.8 0.36 0.32

jEdit CDTE 0.03 63.2 60.2 0.47 0.38
CLR 0.04 65.3 75.7 0.43 0.39

	 Automated Software Engineering (2021) 28:11

1 3

 11   Page 14 of 18

5.3 � Comparative analysis

In Arar and Ayan (2015), the authors used a cost-sensitive Artificial Neural Net-
work (ANN) model to predict the defective instances in five datasets (i.e. kc1,
kc2, pc1, cm1, jm1) from PROMISE Shirabad and Menzies (2005). The proposed
best features-based cost-sensitive logistic regression (CLR) and decision trees
ensemble (DTE) schemes are compared with Arar and Ayan (2015) in terms of
accuracy, AUC and recall.

It is evident from Fig. 4 that the proposed best features-based cost-sensitive
logistic regression (CLR) and decision trees ensemble (DTE) schemes have
higher accuracy when compared with the scheme in Arar and Ayan (2015).

The proposed best features-based cost-sensitive logistic regression (CLR) and
decision trees ensemble (DTE) schemes are also compared with the scheme in
Arar and Ayan (2015) in terms of AUC. The proposed schemes has shown good
improvement over the existing cost-sensitive approach in Arar and Ayan (2015)
as can be seen in Fig. 5.

Moreover, the schemes are also compared in terms of recall, which shows how
good the schemes are in predicting actual defects. In Fig. 6, it can be observed
that the proposed schemes have outperformed the scheme in Arar and Ayan
(2015) in terms of recall, which demonstrates that comparatively the proposed
scheme has a very good prediction capability. Due to high class imbalance the
performance of CDTE scheme is comparatively poor for only the pc1 dataset.

Fig. 4   Comparative analysis in terms of accuracy

1 3

Automated Software Engineering (2021) 28:11 	 Page 15 of 18  11

6 � Limitations and future directions

The following section describes some of the limitations and future directions to
extend our work:

–	 The current cost-sensitive classification model only aims to pursuit a classifier
with the fixed misclassification cost throughout the experiments to minimise the

Fig. 5   Comparative analysis in terms of AUC​

Fig. 6   Comparative analysis in terms of recall

	 Automated Software Engineering (2021) 28:11

1 3

 11   Page 16 of 18

misclassification and maximize the accuracy. However, it does not consider the
variable cost for the misclassification. In the future, the work will focus on the
variable/dynamic cost assignment for the classification algorithm, rather than
using a predefined and fixed cost matrix.

–	 The accuracy of the classification model is based on the availability of the good
quality training data. Hence, there is a need for recording of defective instances
in an accurate manner. This can be done by using appropriate commits during the
software development process.

–	 The availability of limited training data may cause problems for the defect detec-
tion model. Hence, there is a need for a model which will keep the developer in
the loop for the retraining of the model. This will incorporate the experience of
the developer in training of the model.

–	 The performance of the models varies for different datasets. There are a large
number of different classification models and there are no “horses for courses”
meaning that we cannot say in advance which classifiers might be successful for
a given problem or setup. We will therefore use a solution where different classi-
fication models could be combined in a way that allows the data to drive the way
in which they are combined.

7 � Conclusion

Late discovery of defects in software systems is very costly, hence, there is a need
for more accurate and efficient automated software defect prediction. There are
numerous software quality metrics available in the literature which can be utilised
to design a defect prediction system. These quality metrics include traditional code
metrics such as McCabe’s complexity measures and Hallstead’s Software Science,
object oriented metrics of which the Chidamber and Kemerer suite (1994) is the
most widely cited. A challenge for the practitioner is to know which metrics are
most valuable in improving the accuracy and efficiency of defect prediction and how
they should be used.

In this paper, our focus is to precisely predict the defects in the highly skewed
data by selecting the best discriminating features. Once the best discriminating
features are selected, we then apply the two cost-sensitive prediction schemes (i.e.
CLR and DTE) on the selected metrics for accurate prediction of defects. The per-
formances of the proposed schemes are compared with recent schemes, and it is evi-
dent from the results that the proposed schemes perform better in terms of accuracy,
AUC, and recall.

Acknowledgements  This research is supported by the BTIIC (BT Ireland Innovation Centre) project,
funded by BT and Invest Northern Ireland.

Declarations 

 Conflict of interests  The author(s) declare(s) that there is no conflict of interest regarding the publication
of this manuscript.

1 3

Automated Software Engineering (2021) 28:11 	 Page 17 of 18  11

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Ali, A., Abu-Tair, M., Noppen, Joost., McClean, Sally., Lin, Zhiwei., McChesney, Ian.: Contributing
features-based schemes for software defect prediction. In International Conference on Innovative
Techniques and Applications of Artificial Intelligence, pages 350–361. Springer (2019)

Ammann, Paul, Offutt, Jeff: Introduction to software testing. Cambridge University Press, Cambridge
(2016)

Aparna, UR., Paul, S.: Feature selection and extraction in data mining. In 2016 Online International
Conference on Green Engineering and Technologies (IC-GET), pages 1–3. IEEE (2016)

Arar, Ömer F., Ayan, K.: Software defect prediction using cost-sensitive neural network. Appl. Soft
Comput. 33, 263–277 (2015)

Arasteh, B.: Software fault-prediction using combination of neural network and naive bayes algo-
rithm. J. Netw. Technol. 9(3), 95 (2018)

Arshad, Ali, Riaz, Saman, Jiao, Licheng, Murthy, Aparna: Semi-supervised deep fuzzy c-mean clus-
tering for software fault prediction. IEEE Access 6, 25675–25685 (2018)

Brady, F.: Cambridge university study states software bugs cost economy \$312 billion per year. Cam-
bridge University (2013)

Branco, P., Torgo, L., Ribeiro, R.: A survey of predictive modelling under imbalanced distributions.
arXiv preprint arXiv:​1505.​01658 (2015)

Catal, Cagatay: Software fault prediction: A literature review and current trends. Expert Syst. Appl.
38(4), 4626–4636 (2011)

Catal, Cagatay, Diri, Banu: Investigating the effect of dataset size, metrics sets, and feature selection
techniques on software fault prediction problem. Inf. Sci. 179(8), 1040–1058 (2009)

Chidamber, Shyam R., Kemerer, Chris F.: A metrics suite for object oriented design. IEEE Trans.
Softw. Eng., 20(6):476–493 (1994)

Dick, Scott, Meeks, Aleksandra, Last, Mark, Bunke, Horst, Kandel, Abraham: Data mining in soft-
ware metrics databases. Fuzzy Sets Syst. 145(1), 81–110 (2004)

Domingos, P.: Metacost: A general method for making classifiers cost-sensitive. In Proceedings of the
fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pages
155–164 (1999)

Ebert, Christof, Jones, Capers: Embedded software: Facts, figures, and future. Computer 42(4), 42–52
(2009)

Eckardt, James R., Davis, Timothy L., Stern, Richard A., Wong, Cindy S., Marymee, Richard K.,
Bedjanian, Arde L.: The path to software cost control. Defense Acquisit. Technol. Logist., pages
23–27 (2014)

Esteves, Geanderson, Figueiredo, Eduardo, Veloso, Adriano, Viggiato, Markos, Ziviani, Nivio:
Understanding machine learning software defect predictions. Autom. Softw. Eng. 27(3), 369–
392 (2020)

Freedman, David A.: Statistical models: theory and practice. cambridge university press (2009)
Guo, L., Ma, Y., Cukic, B., Singh, H.: Robust prediction of fault-proneness by random forests. In 15th

international symposium on software reliability engineering, pages 417–428. IEEE (2004)
Gyimothy, Tibor, Ferenc, Rudolf, Siket, Istvan: Empirical validation of object-oriented metrics on open

source software for fault prediction. IEEE Trans. Softw. Eng. 31(10), 897–910 (2005)
Huda, S., Alyahya, S., Ali, Md M., Ahmad, S., Abawajy, J., Al-Dossari, H., Yearwood, J.: A framework

for software defect prediction and metric selection. IEEE access, 6:2844–2858 (2017)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1505.01658

	 Automated Software Engineering (2021) 28:11

1 3

 11   Page 18 of 18

Jorgensen, Paul C.: Software testing: a craftsman’s approach. CRC press (2018)
Kassab, M., DeFranco, Joanna F., Laplante, Phillip A.: Software testing: The state of the practice. IEEE

Softw., 34(5):46–52 (2017)
Le Cessie, S., Van Houwelingen, Johannes C.: Ridge estimators in logistic regression. J. Royal Statist.

Soc.: Series C (Applied Statistics), 41(1):191–201 (1992)
Malhotra, R.: A systematic review of machine learning techniques for software fault prediction. Appl.

Soft Comput. 27, 504–518 (2015)
Osman, H., Ghafari, M., Nierstrasz, O.: Automatic feature selection by regularization to improve bug

prediction accuracy. In 2017 IEEE Workshop on Machine Learning Techniques for Software Quality
Evaluation (MaLTeSQuE), pages 27–32. IEEE (2017)

Pendharkar, Parag C.: A data envelopment analysis-based approach for data preprocessing. IEEE Trans.
Knowl. Data Eng., 17(10):1379–1388 (2005)

Rathore, Santosh ., Kumar, S.: Linear and non-linear heterogeneous ensemble methods to predict the
number of faults in software systems. Knowledge-Based Syst 119, 232–256 (2017)

Shirabad, J.S., Menzies, T.: The PROMISE repository of software engineering databases. School of
Information Technology and Engineering, University of Ottawa, Canada (2005)

Sommerville, I.: Software engineering, 10th edn. Pearson Education (2016)
Son, Le H., Pritam, N., Khari, M., Kumar, R., Phuong, Pham Thi M., Thong, Pham H., et al.: Empirical

study of software defect prediction: A systematic mapping. Symmetry, 11(2):212 (2019)
Strategic Planning. The economic impacts of inadequate infrastructure for software testing. Nat. Inst.

Standards Technol. (2002)
Sunil, Jinu M., Kumar, L., Neti, Lalita Bhanu M.: Bayesian logistic regression for software defect predic-

tion (s). In SEKE, pages 421–420 (2018)
Tassey, G.: The economic impacts of inadequate infrastructure for software testing. national institute of

standards and technology, 2002. Forschungsbericht (Zitiert auf Seite 2) (1996)
Taylor, P.: Autonomic Business Processes. PhD thesis, University of York (2015)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Aftab Ali1 · Naveed Khan1 · Mamun Abu‑Tair1 · Joost Noppen2 · Sally McClean1 ·
Ian McChesney1

	 Naveed Khan
	 n.khan@ulster.ac.uk

	 Mamun Abu‑Tair
	 m.abu-tair@ulster.ac.uk

	 Joost Noppen
	 johannes.noppen@bt.com

	 Sally McClean
	 si.mcclean@ulster.ac.uk

	 Ian McChesney
	 ir.mcchesney@ulster.ac.uk

1	 School of Computing, Ulster University, BT37 0QB Newtownabbey, UK
2	 Applied Research, BT, Ipswich, UK

	Discriminating features-based cost-sensitive approach for software defect prediction
	Abstract
	1 Introduction
	2 Motivation and scope
	2.1 Motivation
	2.2 Scope

	3 Related work
	4 Cost-sensitive defect prediction using best features-based logistic regression and decision trees ensemble
	5 Experiments and results
	5.1 Datasets description
	5.2 Analysis and discussion
	5.3 Comparative analysis

	6 Limitations and future directions
	7 Conclusion
	Acknowledgements
	References

