
1 

Microparticle formation via tri-needle coaxial electrospray at stable jetting 
modes  

Zhi-Cheng Yaoa,b, Chunchen Zhanga,b, Zeeshan Ahmadc, Yu Pengd, Ming-Wei 
Changa,b,e*  

a Key Laboratory for Biomedical Engineering of Education Ministry of China, 
Zhejiang University, Hangzhou 310027, PR China  

b Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection 
Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 
310027, PR China  

c The Leicester School of Pharmacy, De Montfort University, The Gateway, 
Leicester, LE1  

9BH, UK  

d College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 
310027, PR China  

e Nanotechnology and Integrated Bioengineering Centre, University of Ulster, 
Jordanstown Campus, Newtownabbey, BT37 0QB, Northern Ireland, UK.  

 
 
 
 
 
*corresponding author:  

Dr. Ming-Wei Chang  

*Email: m.chang@ulster.ac.uk; Tel: + 4428953671 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 

Abstract 
 
Multi-layered structured organic particles have had an extensive impact on a wide array 

of biomedical applications not limited to drug delivery, imaging and biosensing. A tri-

needle coaxial electrospraying system was utilized to engineer multi-layered polymeric 

particles in a one-step, facile process at ambient temperatures. The effect of the 

dominant processing parameters on the development of a conical cusp that eventually 

ejects an ultrathin liquid ligament were firstly explored here. Subsequently, the 

validation of the intermediate solutions that possessed different conductivities on 

stabilizing jetting modes and the resulting particle morphology was also investigated. 

Polycaprolactone (PCL) solutions with different molecular weights were selected as the 

outer layer using fluids with various conductivities. Five different formulations were 

studied as the intermediate layers: PCL in acetic acid, ethyl cellulose in acetic acid, 

ethyl cellulose in dichloromethane, ethyl cellulose in ethanol and silicone oil and 

polyvinyl pyrrolidone in water. The results systematically demonstrated that the 

processing parameters (type of polymer, polymer molecular weight, solution 

concentration, flow rate, applied voltage and collector distance) play a significant role 

in the formation of the stable Taylor cone. This study further identified that the coaxial 

arrangement of three needles successfully produced multi-layered microspheres with 

uniform size distribution.  
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1. Introduction 

The engineering and development of organic particles has yielded many opportunities 

to address and treat many challenging medical conditions.  The use of polymers in 

particulate form has exponentially increased in recent years, especially as contrast 

agents and sensors. 1, 2. Successful encapsulation of multiple drugs has been of great 

interest, especially in cases were patient compliance and advanced therapy is crucial. 

For example, a combination of anti-inflammatory and anti-cancer drugs is promising 

for cancer therapy as both the inflammation and prevention of further tumor 

development can be targeted 3, 4. By encapsulating two or more actives in one dosage 

can deliver synergistic therapeutic effects and reduce unwanted side effects 5.   

Microparticles with various morphologies and functions have attracted widespread 

attention in biomedical fields. Their uses have extended to serving as drug carriers for 

oral capsules or injectable agents, providing an adequate environment for 3D cell 

culture and acting as a platform for multimodal imaging and therapy 6-8. Functionalities 

of the particles largely depend on their surface morphology and internal structure 9, 10. 

Due to the possibilities of fabricating microparticles with unique morphologies, the 

development of new and complex functionalities has also arisen 11, 12. For example, 

polymeric hollow particles with pores can be readily used to load actives for an array 

of applications such as film coatings, drug delivery systems, catalysts, crystals, for 

chemistry, biotechnology, and materials science 13. Several methods have been utilized 

for synthesizing such composite particles however most of these approaches are multi-

step processes; requiring additional reaction conditions such as inert gas or maintaining 

reaction temperatures or using elevated processing temperatures or pressure 14, 15. As a 

result, there are some hurdles when attempting to continuously produce multi-layered 

particles for in line production.  In addition to this, current research demonstrates that 
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only polymeric materials with appropriate biosafety, biocompatibility, and 

biodegradation are considered for particle engineering; limiting the selection of 

polymers that can be used with these methods. 16.  

The electrospraying technique is a one-step preparation method which has been widely 

used to engineer particles on micro and nano scale 17, 18. The diameter and surface 

morphology of resulting particles is regulated by process parameter manipulation (i.e. 

flow rate, applied voltage and collector distance)19, 20. Tri-needle coaxial electrospray 

is a facile and versatile method which has been used to produce multilayered (more 

specifically tri-layered) polymeric particles in a one step process which is operated at 

ambient temperature 21. This engineering method allows particles to be collected with 

a solvent, proving to be a cost-effective and convenient way of yielding porous 

polymeric particles. Although the tri-needle electrospraying technique can be exploited 

in preparing composite structure with multiple layers; stable Taylor cone formation is 

crucially affected by different parameters and material and/or solution characteristics 

22-24. Therefore, in this study, we comprehensively explored fundamental conditions of 

achieving a stable co-jetting mode during the tri-axial electrospray process by 

investigating the effects of processing parameters (type of polymer, polymer molecular 

weight, solution concentration, flow rate, applied voltage and collector distance) on the 

formation of Taylor cone and its downstream impact on particle size distribution and 

morphology. 

Polycaprolactone (PCL), a FDA approved biomaterial, is a synthetic biocompatible 

polymer with excellent biodegradability, spinnability, good mechanical properties. It 

has been widely used to engineer particles with various structures for numerous 

biomedical applications 25. Dimethyl silicone oil has also shown its potential in coaxial 

electrospraying due to its advantageous viscosity and stable chemical properties. Ethyl 
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cellulose (EC) and polyvinylpyrrolidone (PVP) can be processed via the multi-needle 

electrospray technique with PCL due to their immiscibility. In this study, PCL was 

employed as the inner and outer layers while silicone oil, EC or PVP as the formed the 

intermediate layer. The effect of polymer molecular weight and the dominant 

processing parameters on the stability of jetting mode and the morphology of the 

sprayed products were systematically explored. 

2. Materials and Methods 

2.1.Materials 

Poly-caprolactone (PCL) with different molecular weights (Mw: 14000, 45000, 80000 

g/mol), polyvinylpyrrolidone (PVP) with a molecular weight of 10000 g/mol, and 

rhodamine B were obtained from Sigma-Aldrich (St. Louis, USA). Dimethyl silicone 

oil, ethyl cellulose (EC), and Nile red were purchased from Aladdin Chemistry Co., Ltd 

(Shanghai, China). Dichloromethane (DCM), ethanol, and glacial acetic acid (HAc) 

were received from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). 

Deionized water (DI water) was produced with a Millipore Milli-Q Reference ultra-

pure water purifier (USA). All chemicals were utilized without any additional 

purification. 

2.2. Solution preparation 

Briefly, the polymers were respectively dissolved into corresponding solvents, and 

placed on a magnetic stirring (VELP ARE heating magnetic stirrer, Italy) in a flask for 

24 hours at 300 rpm at room temperature (~25℃) to achieve homogenous solutions. 

PCL (with different molecular weights: 14000, 45000, 80000 g/mol) was dissolved in 

HAc; PVP was dissolved in DI water; EC was dissolved in HAc, ethanol, or DCM. For 

mapping the jetting status and the formation of a stable Taylor cone during multi-fluid 
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processing, fluorescent dyes at concentration of 0.01 w/v% were added and stirred 

uniformly when preparing the middle solution. According to the dye’s solubility, PVP 

solution was stained with rhodamine B, while other polymer solutions were stained 

with Nile red dye.  

2.2.Characterization of physical liquid properties 

The surface tension of the solutions were measured using an interfacial tensiometer 

(SK200KB, KINO Industry Co. Ltd., USA) based on pendant-drop method, using 

Equation 1 26, 27:  

γ = #$%&∆(
)

     (Equation 1) 

where γ is the surface tension of the solution, ∆𝜌 is the density difference between the 

solution and air, 𝐷, is the maximum diameter of the hanging droplet, H is the correction 

coefficient, which relates to the shape of droplet.  

Solution density was measured using a pycnometer and Equation 2: 

ρx= mx-m0
V0

+ρ0     (Equation 2) 

where 𝑉. is the volume of the bottle, ρ0 is the density of pure water,  ρx is the density 

of the testing solution, m0 is the total mass of the bottle filled with water,  mx is the 

total mass of the bottle filled with testing solution.  

The viscosity of the polymeric solutions was measured using a viscometer (LVDV-II, 

Brookfield, USA). 2 mL of solution sample was added into stainless steel wells and the 

viscosity was measured at 25 °C, using a S21 spindle at 140 rpm. Electrical conductivity 

was measured with a YSI 3200 conductivity meter (YSI, USA) at 25 °C.  

2.4. Fabrication of multilayered composite particles 
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The multilayered microparticles were engineered using a tri-needle electrospraying 

apparatus. As shown in Figure 1, the electrospraying system here consists of 3 

coaxially arranged processing spinneret, a high voltage supply (Glassman high voltage 

Inc. series FC, USA), three syringe pumps (KD Scientific KDS100, USA), a charge-

coupled devices (CCD) camera (Baumer TXG02C, Germany), and a grounded ring-

shape electrode. The inner and outer diameters of the concentric needles were 0.50 mm 

and 0.31 mm, 1.60 mm and 1.07 mm, and 2.85 mm and 2.26 mm, respectively for the 

inner, middle and outer needle.  

 

Figure 1. Schematic diagram of the tri-axial electrospraying system. 

Solutions were drawn into 5 ml plastic syringes which were attached to the conductive 

needle tip using silicone tubing. The infusion rate was controlled using high-precision 

programmable syringe pumps. An electric field was introduced (maximum ~30 kV, 0.1 

mA) between the tri-axial needle and ground electrode via a high voltage supply 

(Glassman high voltage Inc. series FC, USA). The ring-shape electrode with inner and 
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outer diameters of 2.7 cm and 3.5 cm was set directly below the tri-axial needle 5 mm 

away.  

For investigating the influence of processing parameters, the collector distance was kept 

at 20 cm. 20 w/v% PCL dissolved in HAc was infused into the outer layer of the 

spinneret, when dimethyl silicone oil and 10 w/v% PCL solution were loaded into the 

middle and inner layers, respectively.  The flow rates of the outer, middle and inner 

solutions were kept at 5.0, 1,5, and 0.8 mL/h, respectively while the applied voltage 

was kept at 12 kV. During the electrospraying process, the coaxially arranged set-up 

was observed using a high-speed camera. 

2.5. Particles morphology observation 

Optical microscopy (OM, Pheonix BMC503-ICCF, China) and field emission scanning 

electron microscopy (SEM, ProX, Phenom, Netherlands) were used to study the size 

and surface morphology of the resulting particles. For SEM analysis, samples were 

placed on a metallic stud using double-sided conductive tape and were subsequently 

sputtered coating with a layer of gold under vacuum (Ion sputter MC 1000, Hitachi, 

Japan) for 90 s at a current intensity of 25 mA. The micrographs were subsequently 

analyzed using ImageJ software (National Institute of Health, USA) to measure the 

mean particle diameter. The average diameter of the engineered particles was quantified 

100 randomly sampled particles. All the statistical graphs were plotted using Origin 

software (OriginLab, USA). All the experiments were performed in triplicate and data 

is presented as mean±standard deviation (n=3).   

3. Results and Discussion 

3.1.Jetting mode deformation upon altered voltage 
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A stable Taylor Cone is a pre-requisite for generating uniform electrosprayed particles28. 

Here, 20 w/v% PCL (Mw=45000 g/mol) was dissolved in HAc and injected into the 

outer layer of the spinneret, when silicone oil and 10 w/v% PCL solution were infused 

into the intermediate and inner needles of the spinneret, respectively. The flow rates of 

the outer, middle and inner solutions were kept at 5, 1.5, and 0.8 mL/h, respectively. 

As shown in Figure 2, increasing the applied voltage from 0 kV to 20 kV, the droplet 

at the spinneret tip transitioned from dripping mode (Figure 2a-2g) to stable jetting 

(Figure 2h-2n) and finally to multi-jetting mode (Figure 2o).  

 

Figure 2. Transformation of the Taylor cone during the electrospraying process by 

increasing the applied voltage from 0 to 20 kV. A stable cone jet was achieved at 12 

kV, as indicated in (Figure 2k); multi-jet occurred when increasing applied voltage to 

20 kV, as shown in (Figure 2o). 

3.2.Effect of molecular weight of shell solution on jet flow and particle formation 

The outer solution was the ‘driving liquid’ during the coaxial electrospraying process, 

due to the higher electric conductivity of the PCL solution (0.054 µS/cm) compared 

with the intermediate liquid (silicone oil) (as shown in Table 1). Hence, the outer PCL 

solution becomes the dominating force in the electrospraying process 29. As mentioned 
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earlier, to achieve uniform particles a stable cone-jet must be attained. The formation 

of this stable jet is synthetically influenced by gravity, applied electrical force and 

solution surface tension 30. Liquid surface tension was significantly affected by 

molecular weight and concentration of the polymers. Hence, three different PCL 

molecular weights were used for the outer solution to investigate the effect of molecular 

weights of the outer polymeric solution on jetting mode and the resulting particle size 

distribution. Here, silicone oil and 10 w/v% PCL (Mw=45000 g/mol) solution were 

used as the intermediate and inner layer, respectively. 

Table 1. Physical properties of solutions 

Solute@Solvent Concentration 

(w/v%) 

Density 

(g/cm3) 

Conductivity 

(uS/cm) 

Surface 

Tension 

(mN/m) 

Viscosity 

(mPa·s) 

EC@HAc 20 1.064 0.330 42.052 8454±29 

EC@DCM 20 1.275 0.358 46.365 3839±76 

EC@EtOH 10 0.826 20.570 34.783 1727±4 

PVP@Water 20 1.035 1133.000 98.676 44±2 

Silicone Oil / 0.970 0.00 21.846 582±2 

PCL@HAc 

Mw=14000 g/mol 

10 1.050 0.053 43.033 59±1 

PCL@HAc 

Mw=80000 g/mol 

10 1.055 0.208 39.630 1136±4 

PCL@HAc 

Mw=45000 g/mol 

5 1.049 0.054 41.687 43±3 

PCL@HAc 

Mw=45000 g/mol 

10 1.053 0.051 31.606 133±1 

PCL@HAc 

Mw=45000 g/mol 

20 1.057 0.045 39.646 1002±3 
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As seen in Figure 3a-c, by simultaneously regulating the flow rate and applied voltage, 

a stable jet could be achieved using the parameters highlighted in green. The most 

versatile solution which achieved a large operating window when obtaining a stable jet 

contained PCL with molecular weight of 45000 g/mol (Figure 3b). The particles 

fabricated using this solution exhibited the largest diameter amongst the three groups 

of different PCL molecular weight (Figure 3g). Figure S1 shows the optical and SEM 

images of particles generated with different PCL molecular weights. At low molecular 

weights (14000 and 45000 g/mol), insufficient particle solidification was observed with 

oil leakage which subsequently resulted in defective particle structure. Figure 3f shows 

that electrosprayed particles containing a high molecular weight (80000 g/mol) PCL 

shell successfully encapsulated the silicone oil whilst demonstrating the smallest 

average diameter (49.29± 13.21 μm). Some fibrous structures can also be observed 

(Figure S2).  These results demonstrate that the molecular weight of the outer solution 

significantly affects the jetting mode and subsequently plays an important role in 

particle morphology and size distribution.  

As previously reported 31, 32, during single-needle electrospray, molecular weight of the 

solution influences the jetting status as shown in Equation 3: 

ne solution=
φpMw

Me
   (Equation 3)31, 32. 

Here, ne solution is the entanglement number of the polymer solution, φp is the volume 

of the polymer, Mw means molecular weight, and Me presents the molecular weight of 

chain entanglement. ne solution is proportional to the value of Mw. 

With increasing ne solution , the electrosprayed products transformed from 

microparticles to particulate/fibrous matrixes and finally fibers. In accordance with this 
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both particles and fibers were observed using high molecular weight PCL. Based on 

this, in order to achieve a stable jetting mode and uniformity of solely particles, PCL 

with molecular weight of 45000 g/mol was selected for the following study.  

 

 
Figure 3. Effect of molecular weight of shell solution on the jet flow and fabricated 

composite particles. (a)-(c) present the stable jetting range at different process 

parameters using PCL with molecular weight of 14000, 45000, and 80000 g/mol 

(solution concentration is 20 w/v% for all the groups). (d)-(f) show the size distribution 

of microparticles prepared with PCL solution at molecular weight of 14000, 45000, and 

80000 g/mol, respectively. (g) diameter change as a function of PCL molecular weight. 
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3.3.Effect of shell solution concentration on jet flow and particle formation 

The effect of shell solution concentration on jet mode and particle fabrication was 

assessed by altering the outer PCL solution concentration from 5 to 20 w/v%. Here, 

silicone oil formed the middle layer and 10 w/v% PCL formed the inner layer of the 

resulting particles. Stable jetting mode is defined here as a formation of steady Taylor 

cone in the absence of multi-jetting. 

Figure 4a-c demonstrates a stable jet could be formed using the parameters within the 

green regions. This competent area of achieving a stable jet amplified with increasing 

polymer concentration, reaching the largest area at a concentration of 20 w/v%. This 

high concentration results in increased polymer chain entanglement subsequently 

causing an increase in solution viscosity from 43 mPa.s (5 w/v% PCL) to 1002 mPa·s 

(20 w/v% PCL). As shown in Figure 4d-f, with increasing outer PCL concentration, 

the diameter distribution of the resulting particles decreased; changing from being 

between 25-270 µm when using 5 w/v% PCL to 85-110 µm when using 20 w/v% PCL. 

Although these particles were generated by using tri-axial electrospraying, this 

phenomenon has been observed when using single needle electrospraying. This is 

thought to be because of the increase in solution concentration and how this allows for 

sufficient solvent evaporation and solidification of particles 33, 34. The electrosprayed 

samples when using 5% w/v PCL seem to be insufficiently dried droplets of non-

spherical shape (Figure S2a, d, g, j). Increasing PCL concentration to 10 w/v%, 

microparticles were successfully fabricated however once collected the shape of the 

particles changed to show a more flattened morphology as a result of insufficient 

collection distance to allow complete solvent evaporation resulting in oil leakage 
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(Figure S2b e, h, k). When the concentration was further increased to 20 w/v%, 

spherical particles were obtained (Figure S2c, f, i, l). Whilst the theory of sufficient 

solvent evaporation causing reduced diameter distribution has been substantiated in 

previous studies, here the decrease in particle diameter could also be attributed to the 

successful encapsulation of the inner solutions at high shell concentrations. At low 

concentrations (5 and 10 w/v%), polymer entanglement between molecular chains was 

too weak to effectively encapsulate the intermediate and inner solutions.  

 

 
 

Figure 4. Effect of shell solution concentration on jet flow and the fabricated composite 

particles. (a)-(c) present the stable jetting range at different processing parameters using 

PCL at the concentration of 5, 10 and 20 w/v%, respectively. (d)-(f) show the size 
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distribution of microparticles prepared with different PCL concentration. (g) Diameter 

change as a result of outer PCL solution. 

 

3.4.Effect of process parameters on jet flow and particle formation 

A multitude of process parameters have been proven to affect the electrospraying 

process and the fabrication of particles. The most crucial parameters that have been 

identified are applied voltage, flow rate and working distance (the distance between the 

needle exit and the collection plate).  

The voltage that is applied to the system plays an important role in regulating the jet. 

The applied voltage must be strong enough to overcome the surface tension of the 

solution being processed and by atomizing the liquid, the emitted droplet size can be 

altered/controlled 35. Here, the voltage was maintained within the range from 9 to 18 

kV with working distance being kept constant at 20 cm. The flow rate of outer, middle 

and inner solutions was kept at 5.0, 1.5 and 0.8 mL/h, respectively. The resulting 

particles were observed using optical microscopy and SEM, as shown in Figure 5. 

Operating the tri-axial electrospraying process at 9 kV proved to be insufficient due to 

the fabrication of solvent-rich structures; suggesting incomplete solvent evaporation 

and inefficacious jetting mode. Upon hitting the collector plate, the impact force caused 

the structures to flatten (Figure 5a, e, i, m), resulting in the leaking of the silicone oil 

and inner PCL solution. Increasing the voltage to 12 kV (Figure 5n), 15 kV (Figure 

5o) and 18 kV, the topography of the particles became more prominent; becoming more 

defined, forming solid spherical structures when operating the process at 18 kV (Figure 

5p).  
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Figure 5. Microparticles prepared using PCL solutions at different applied voltages. 

From left to right, the collector distances were 9, 12, 15, 18 kV, respectively. The top 

two lines (a-h) are the optical images presenting the particles size distribution, where 

the second row is zoom-in version of the first row. (i-p) are the SEM images, showing 

the surface morphology of the particles, where the bottom row of SEM images is a 

respective magnified view of electrosprayed particles shown above  

 

Figure 6a-d shows the effect of applied voltage on particle diameter and size 

distribution. A much narrower diameter distribution was observed at higher applied 

voltage compared to when operating at a lower voltage (9 kV). It is clear to see from 

the SEM images and Figure 6 that the collapsed structures seen at lower operating 

voltages gradually disappeared with increase in voltage. The morphology of the 

resulting particles transitioned from hemisphere structure to fully spherical particles 
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with smaller particle diameters. This variation trend can be seen in Figure 6m. The 

average particle diameter reduced from 91.6 ± 30.3 µm to 33.1 ± 16.3 µm when 

increasing the operating voltage from 9 kV to 18 kV, respectively. The applied voltage 

has a significant impact on jetting behavior; increasing voltage results in thinner 

electrohydrodynamic jet subsequently fabricating smaller droplets due to an enhanced 

stretching force. 

 

 
Figure 6. Effects of process parameters on particle size distribution. (a)-(d) Size 

distribution of microparticles prepared with the applied voltage at 9, 12, 15, and 18 kV, 

respectively (flow rate was kept as 5.0, 1.5 and 0.8 mL/h for the outer, middle and inner 

layer, individually); (e)-(h) Size distribution of microparticles prepared at flow rates of 

3, 5, 8 and 12 mL/h; (i)-(l) Size distribution of microparticles prepared with the 

collector distance at 10, 15, 20, and 25 cm. Diameter change tendency of the particles 
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with regulating the parameters: (m) applied voltage; (n) flow rate of the outer PCL 

solution; (o) collector distance. 

 

To study the effect of flow rate, the outer PCL solution flow rate was varied between 3 

and 12 mL/h while keeping PCL molecular weight constant at 45000 g/mol. The 

intermediate liquid (silicone oil) and inner liquid (10 w/v% PCL) were infused at a flow 

rate of 1.5 mL/h and 0.8 mL/h, respectively. 3 mL/h proved to be an excessively low 

flow rate for the shell solution which was ineffective to provide enough liquid to 

encapsulate the inner oil (Figure S3a, e, i, m). It was found that spherical particles 

could be achieved when flow rate of the shell solution was increased to 5 mL/h. The 

outer solution successfully encapsulated the inner material effectively, fabricating well-

structured microspheres with no oil leakage (Figure S3b, f, j, n). By further increasing 

the flow rate of the shell solution to 8 and 12 mL/h, it was found that the solvent in the 

outer fluid could not volatilize resulting in deformed, flat particles on the collector plate 

(Figure S3o and p).  

Flow rate optimization for internal and external liquids in co-axial electrospraying is 

crucial when needing to preparing core-shell particles. Diameter distribution of the 

resulting particles fabricated using various shell solution flow rates is shown in Figure 

6e-h with the variation trend being shown in Figure 6n.  It was deduced that increasing 

the flow rate above 5 mL/h led to an increase in microparticle diameter. This is most 

likely due to the larger volume of solution being infused into the processing system 

resulting into insufficient atomization and solvent evaporation. A similar trend was also 

observed at 3 mL/h; due to the relatively low velocity, the outer fluid failed to 

effectively encapsulate the middle and inner layers resulting in loss of the silicone oil. 
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This subsequently resulted in increased particle diameter due to an enlarged core 

diameter and a relatively thinner shell under steady co-axial flow. Therefore, the outer 

flow rate was maintained at a higher flow rate than the inner to ensure sure the core 

could be sufficiently coated with the outer polymer shell [27]. Ding et al. have 

previously reported the applied voltage correlation between spraying nozzle and the 

electrode when engineering PCL microparticles [32].  

In the present study, the effect of collection distance (distance from needle exit to ring-

shaped ground electrode) on PCL core-shell microparticle fabrication using tri-axial 

electrospraying. The microparticles were prepared using different working distances: 

10, 15, 20, and 25 cm while the applied voltage was fixed at 12 kV. At the collector 

distance of 10 cm, incomplete solvent evaporation was observed; resulting in 

significant oil leakage causing the electrosprayed structures to collapse rendering 10 

cm too short an operating distance. Increasing the working distance to 15 cm and 20 

cm, the resulting particles seem to acquire more spherical contours; with the impact 

force causing the shape to change and represent hemispherical morphologies. Further 

increasing the distance to 25 cm saw the fabrication of fully solidified particles, with a 

significant decrease in diameter, as shown in Figure S4. 

Figure 6i-6l demonstrates that increasing the working distance from 10 to 25 cm leads 

to a change in diameter distribution. As the distance increases, the average diameter of 

the engineered particles decreased with the particle size distribution also narrowing. 

This may be attributed to the volatile solvent being given sufficient distance to 

evaporate before particle deposition on the collector plate; resulting in fully formed, 

dry spherical microparticles.  
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Figure 6o highlights the relationship between the mean diameter and the collection 

distance. When the increasing the working distance from 10 cm to 25 cm, the mean 

particle size reduced from 89.5 ± 41.9 µm to 27.3 ± 19.8 µm, respectively. The decrease 

in particle size can be explained by a reduction in incomplete solvent evaporation (as 

the electrode distance increases); possibly resulting in particles with residual solvent 

which had not fully evaporated before reaching the collector. 

3.5.Effect of the intermediate solution on the flow rate and microparticle formation  

Compared with the co-axial electrospraying approach, microparticles prepared via tri-

axial electrospraying contains 3 distinct layers: an inner core and an outer shell with an 

additional intermediate layer which is often designed to encapsulate bioactive 

components. It is important to note that the middle layer can affect the particle 

fabrication process. As a result, the effect of the composition of the intermediate layer 

(PCL@HAc, EC@HAc, EC@DCM, EC@EtOH, silicone oil and PVP@water) on the 

stability of the electro-jet and subsequent particle formation.  

Jetting modes were recorded between the voltage range of 0-16 kV. Dripping, transition, 

and stable jetting modes are shown in Figure 7. All compositions of the intermediate 

layer except PVP@water demonstrated a stable jetting mode between 10 and 16 kV; 

showing good compatibility between all three layers of the multi-layered particles. 

When operating the electrospraying process when using PVP@water as the middle 

solution, stable jetting mode could only be achieved using a narrower voltage range; 10 

– 14 kV. Using a higher voltage than this resulted in solution solidification at the 

processing needle exit. This may be caused by small sprayed droplets forming at the 

high voltage, expediting solvent evaporation and especially with increased PCL 
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concentration, a thin film formed in the outer layer of the particles inhibiting the 

formation of a stable jetting. 

 

Figure 7. Effect of different intermediate solutions on Taylor cone formation during 

the tri-needle electrospraying process. As shown in the bottom row, PVP was stained 

with Rhodamine B, while for other combinations, polymer solutions incorporated 

staining with Nile red to distinguish distinct layers during the electrospray process. 

 

The results collated here prove that when no significant solidification occurred with the 

inner and outer solutions, regardless of miscibility characteristics (i.e. PCL@HAc or 

silicone oil), a stable jet could be formed during tri-axial electrospraying process. While 

solidification happened either in the inner and outer layers, the jetting stability was 

found to be seriously affected; as seen when using PVP@Water as the middle layer 

solution. When there was no chemical interaction among the three solutions in the any 

of the three layers, the jetting stability is mainly dependent on the reaction among the 



22 

solvents in each layer with each solute. If there is some miscibility between the 

components within each solution, fluently stable jetting mode would be easily achieved. 

As shown in Figure 8, when using dye rhodamine B to label the middle layer when 

PCL@HAc or EC@HAc was utilized, uniform microspheres were prepared. Here, the 

solutions in the inner/middle/outer layers were miscible and the fluorescent easily 

dispensed to the inner and outer layers from the middle layer. Therefore, no solid 

boundary was found among the three layers. While using EC@EtOH as the middle 

layer, ultrafine fibers co-occurring with the particles was observed. This was mainly 

due to the poor solubility of PCL in EtOH. When PCL dispersed from the middle layer 

to the inner and outer layers, PCL concentration increased leading to the formation of 

fibrous structures. Additionally, due to good electroconductivity (20.57 µS/cm) of the 

EC/EtOH solution, charging occurred at high applied voltage, facilitating the wide 

diameter distribution. When using EC@DCM as the middle layer, its conductivity 

(0.385 µS/cm) was higher than that of the inner (0.051 µS/cm) or outer layers (0.045 

µS/cm). The driving liquid in the tri-axial electrospray process dominates particle 

formation. Due to the low boiling point of DCM, it evaporated rapidly, enhancing the 

solidification of the middle layer. However, non-uniform beaded fibers were obtained, 

as a result of protracted solidification in the outer layer. When PVP@water was selected 

as the middle layer, due to the blockage and unstable multi-jetting at the exit of 

spinneret, amorphous products were collected, including beaded fibers and particles 

with wide size distribution.   

Leakage of the red dye (rhodamine B) identifying the middle layer also indicates the 

deformation of distinct tri-layered structures caused by the unstable jetting. In contrast, 

when silicone oil was selected as the middle layer, the products were uniform 

microspheres, with red marked middle layer, allowing the identification of definitive 
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core-shell structures with three layers. These results confirm that although jetting 

stability and jetting ability is dependent on a combination of interactions concerning 

gravity, electrical force and interfacial surface tension; the size and morphology of 

particles can be carefully controlled by modifying or altering various process 

parameters. 

 

Figure 8. Effect of different intermediate solutions on microparticle formation and 

surface morphology. 
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Conclusion 

This study explores the effects of dominant electrospraying processing parameters on 

jet formation and stability and particle morphology during tri-axial electrospraying.  

PCL was selected as the inner and outer layers, while using silicone oil, PVP or ethyl 

cellulose as the intermediate layer. The results successfully demonstrated that the 

material properties (polymer type, polymer molecular weight, solution concentration) 

and processing parameters (flow rate, applied voltage and collector distance) play a 

significant role in producing spherical microspheres with uniform size distribution. By 

modifying and regulating these processing parameters, a stable jetting mode can be 

achieved and multilayered microspheres with predesigned size and morphology can be 

successfully engineered for an array of applications in the pharmaceutics remit.  
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