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Abstract 19 

Building Integrated Photovoltaic Thermal (BIPV/T) systems are promising solutions 20 

for serving local electricity and heat demands in Net Zero Energy Buildings (NZEB). 21 

Despite BIPV/T offering clear energetic and space saving advantages compared to 22 

separate BIPV and solar thermal, overheating occurs when no thermal demand exists, 23 

resulting in reduced yields, stagnation damage, and excessive fluid pressures. Whilst 24 

continuous fluid flows mitigate overheating, corresponding parasitic demands and 25 

space requirements are significant (pumps, large storage tanks or heat rejection 26 

equipment). This two-part study examines an alternative approach to BIPV/T, 27 

addressing overheating by combining BIPV and Integrated Collector-Storage Solar 28 

Water Heater (ICSSWH) concepts. Solar heating capabilities of ICSSWH collectors 29 

are well established and their overnight heat loss characteristics provide passive 30 
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overheating control. BIPV-ICSSWH approaches have yet to be investigated 31 

extensively. This paper (Part 1 of 2) reviews state-of-the-art and performance 32 

benchmarks in BIPV/T and ICSSWH; proposes new performance metrics enabling 33 

fairer comparisons; and develops a heat transfer model for BIPV-ICSSWH façade 34 

elements employing Planar Liquid-Vapour Thermal Diodes (PLVTD) to regulate 35 

absorber temperatures and heat losses. Multi-day solar thermal collection, 36 

photovoltaic generation, and overnight heat retention behaviours are simulated in 37 

different climates. The modelling results (experimentally validated in Part 2 of 2) 38 

suggests BIPV-PLVTD-ICSSWHs with single transparent covers and ≈90% PLVTD 39 

diodicity achieve 𝜂𝑇,𝑐𝑜𝑙≈60% solar thermal efficiency at N≈0.035m2K∙W-1, PV/T 40 

performance ratio PRT3≈75%, and heat loss coefficient Ur,sysAsys/u≈20 W·m-3K-1. The 41 

novel BIPV-PLVTD-ICSSWH approach can reduce maximum stagnation by 20°C 42 

compared to conventional BIPV/T and therefore support NZEB realisation during 43 

global efforts to tackle the climate crisis. 44 

Graphical abstract 45 
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PV/T solar absorber  
generates heat and power  
at ηT≈60% and ηE≈11% 

Integrated Collector-Storage Solar Water Heating  
vessel reduces parasitic energy consumption & reduces 
maximum stagnation temperature by 20°C  

Planar Liquid-Vapour Thermal Diode 
reduces over-night heat losses enabling  
Ur,sysAsys/u≈20 W·m-3K-1 and ηT,24≈35% 

Integrated into NZEB facades to increase 
solar collection area whilst also reducing 
demands on valuable floor and roof space 



1 Introduction 47 

Net-Zero Energy Buildings (NZEB) are increasingly being designed with Building 48 

Integrated Photovoltaics (BIPV) to generate electricity and Building Integrated Solar 49 

Thermal Systems (BISTS) to supply domestic hot water and thermal energy to 50 

contribute towards space heating demands (COST, 2015). Approximately one-third of 51 

global final energy consumption (125 of 400EJ annually) can be attributed to 52 

residential and service sector buildings (IEA, 2018; IEA/UN, 2018) where it is primarily 53 

used for space heating & cooling (40%) and domestic hot water production (20%). 54 

Buildings are correspondingly responsible for ~39% of global CO2 emissions which 55 

need to be radically and rapidly cut in order to mitigate the climate crisis. For 56 

residential and commercial buildings in a variety of climates, BISTS can provide 57 

between 10% and 90% of space heating and domestic hot water energy demands 58 

(Smyth et al., 2006; Li et al., 2013; Drosou et al., 2014; O'Hegarty et al., 2014; Good 59 

et al., 2015; Mehdaoui et al., 2019; Beausoleil-Morrison et al., 2019; Billardo et al., 60 

2019) and BIPV can cover similarly large proportions of building electrical loads (Good 61 

et al., 2015; Sorgato et al. 2018; Belussi, 2019; Li et al., 2019). Mismatches between 62 

energy demands and solar availability (instantaneously, diurnally and over inter-63 

seasonal timescales) mean that thermal energy storage is an essential part of most 64 

BISTS and is crucial for achievement of a high solar fraction. Electrical energy storage 65 

is likewise crucial for high solar fraction BIPV systems and can be implemented in the 66 

form of batteries or as “virtual storage” via an import-export connection to the grid, 67 

perhaps in combination with load scheduling (Kats and Seal, 2012). Integrated 68 

Collector-Storage Solar Water Heater (ICSSWH) concepts have potential to reduce the 69 

costs of BISTS and to minimise loss of valuable floor space associated with 70 

conventional solar hot water storage. Very few authors (Krauter, 2004; Ziapour et al., 71 

2014; Pugsley et al., 2016) have considered the potential for combining PV and 72 

ICSSWH concepts, integrating ICSSWHs into building facades (Smyth et al., 2019; 73 

Harmim et al., 2019), or using them as a thermal source for heat pumps (Pugsley et 74 

al., 2017). The present work examines the synergy of combining PV and ICSSWH 75 

concepts in the BIPV and BISTS context and explores potential benefits of introducing 76 

Planar Liquid-Vapour Thermal Diodes (PLVTDs) to improve PV-thermal heat transfer 77 

and reduce overnight heat losses. 78 

Traditionally, solar thermal and photovoltaic collectors have been applied as bolt-on 79 

elements to building envelopes, usually fixed to roofs and tilted towards the equator 80 

at the latitude angle to maximise annual insolation, or in some cases fixed to facades. 81 

These building applied collectors compete for available space and can adversely affect 82 

the visual aesthetics of building exteriors. Table 1 summarises insolation and average 83 



irradiance levels for three contrasting climate locations (Belfast, UK; Rome, Italy; 84 

Riyadh, Saudi Arabia) at different latitudes based on 22 years of extra-terrestrial solar 85 

radiation measurements and earth surface satellite imagery (NASA, 2019; Stackhouse 86 

et al., 2018). Large seasonal and locational variations are apparent for horizontal 87 

(100<Gavg<600 W/m2 and 3<H24<27 MJ/m2), latitude tilted (200<Gavg<600 W/m2 and 88 

5<H24<24 MJ/m2) and sun tracking surfaces (200<G<800 W/m2 and 6<H24<37 89 

MJ/m2). Equator-facing vertical surfaces consistently receive 200<Gavg<500 W/m2 and 90 

4<H24<14 MJ/m2 for all three locations which represents a much more seasonally 91 

stable resource, albeit of generally lower intensity. The daily insolation received by a 92 

vertically oriented equator-facing surface corresponds to 60-75% of the maximum 93 

available (relative to a sun-tracking surface) in winter and 19-46% of the maximum 94 

available energy in summer. It should be noted that much higher instantaneous 95 

irradiances (Ginst≈1000 W/m2, occasionally higher due to cloud reflections) will occur 96 

on clear sunny days at times when the sun is aligned normal to the collector plane. 97 

Building Integrated Photovoltaic-Thermal (BIPV/T) systems combine solar electricity 98 

and thermal energy (hot air and/or water) generation into the building envelope. The 99 

collectors form an integral part of the architecture to make aesthetically pleasing and 100 

efficient use of all available insolated building envelope surfaces. This becomes 101 

increasingly important for NZEBs, especially where there is a high ratio of energy 102 

demand to envelope surface area, and in particular to the case of relatively tall 103 

buildings (Saretta et al., 2020) where roof space for solar collectors (and likewise land 104 

area for ground source heat collection) is inherently limited. Façade integrated BIPV/T 105 

is a good option in higher latitude locations (such as Belfast) where significant energy 106 

is required for heating and lighting in winter when the solar altitude is low and vertical 107 

surfaces receive more insolation than horizontal surfaces (see Table 1). Despite 108 

offering clear energetic advantages when suitable thermal demands exist, PV/T 109 

collectors suffer similar stagnation and overheating problems as closed-back BIPV 110 

systems (ie reduced electrical yields and eventual delamination damage) and 111 

conventional solar flat plate solar water heaters (ie over-pressurisation, denaturing of 112 

heat transfer fluids, damage to selective coatings, melting of polymeric components) 113 

when no thermal demands exist. This can be avoided by ensuring continuous fluid 114 

flows on hot sunny days but the corresponding parasitic energy requirements (eg for 115 

pumps and/or heat rejection fans) typically far exceed the modest gains in electrical 116 

yields and the ancillary equipment (large thermal stores and/or heat rejectors) occupy 117 

valuable floor space.   118 



Table 1 – Comparison of solar radiation levels on horizontal, vertical, tilted, and sun-tracking surfaces at different latitudes 119 

 120 

 
Cool, wet and  
cloudy climate 

Warm and  
sunny climate 

Hot, dry and very 
sunny climate 

Location (Latitude, Longitude) 
Belfast, UK 

(54.6N, 5.9W) 

Rome, Italy 

(41.9N, 12.5E) 

Riyadh, Saudi Arabia 

(24.6N, 46.7E) 

Annual global horizontal insolation (a) (Hh365, MJ/m2) 3247 6073 7495 

Summertime (a) average 
daily insolation  

(H24, MJ/m2) 

Horizontal surface  15.3 25.8 26.6 

Sun tracking surface  20.4 37.3 35.8 

Latitude tilted surface 13.8 23.8 24.3 

Vertical surface 9.4 11.5 6.9 

 Daylight hours duration (tday, hours) 16.2 14.6 13.4 

Wintertime (a) average  
daily insolation 

(H24, MJ/m2) 

Horizontal surface 2.7 7.7 14.2 

Sun tracking surface 5.9 16.8 23.7 

Latitude tilted surface 4.7 13.1 17.6 

Vertical surface 4.4 12.4 14.3 

 Daylight hours duration (tday, hours) 8.4 9.8 10.9 

Summertime (b)  
typical irradiance 

(Gavg, W/m2) 

Horizontal surface (c) 279 527 596 

Sun tracking surface (c) 373 762 802 

Latitude tilted surface (d) 270 525 592 

Vertical surface (e) 215 292 191 

Wintertime (b)  
typical irradiance 

(Gavg, W/m2) 

Horizontal surface (c) 101 243 398 

Sun tracking surface (c) 221 530 665 

Latitude tilted surface (d) 204 467 549 

Vertical surface (e) 194 469 486 

 121 

Table notes: 122 
a) Data from NASA (2019) based on averages for the summer months May, June, July and August and winter months November, 123 

December, January and February. Values for sun tracking collectors are based on total diffuse plus direct radiation.  124 
b) Based on average daily insolation level divided by the estimated number of “useful” daylight hours. 125 
c) The number of “useful” daylight hours for a sun tracking surface is taken to be 1 hour less than the total number of daylight hours to 126 

account for the fact that the sun is partially obscured by the horizon at dawn and dusk.  127 
d) The number of “useful” daylight hours for horizontal and equator-facing latitude-tilted surfaces is taken as 2 hours less than the total 128 

number of daylight hours. This is to reflect the fact that the sun is incident at grazing angles (<15° relative to the collector plane) during 129 
the first and last hours of the day, which results in these surfaces receiving <25% of the available direct beam irradiance. 130 

e) The number of “useful” daylight hours for equator-facing vertical surfaces is taken as 75% of the total number of daylight hours to account 131 
for dawn and dusk grazing incidence angles (as explained in Note “d”) plus additional grazing incidence angles which occur near solar 132 
noon at low latitude locations during summer. 133 

 134 



 135 

Figure 1: Key components of the BIPV-PLVTD-ICSSWH concept 136 

 137 

Integrated Collector-Storage Solar Water Heaters (ICSSWH) are an alternative to 138 

conventional flat plate or evacuated tube collector solar water heating systems. Whilst 139 

ICSSWH systems suffer significant overnight heat losses (eg unavailability of stored 140 

heat for morning bathing etc) they offer a number of advantages in respect of cost, 141 

space, and inherent passive protection from overheating. Development of the novel 142 

BIPV-PLVTD-ICSSWH concept proposed in this two-part study has the potential to 143 

overcome key problems associated with the individual technologies (namely, BIPV/T 144 

overheating during stagnation, and ICSSWH overnight heat losses) and to realise new 145 

synergies. An exploded diagram illustrating the component parts of a BIPV-PLVTD-146 

ICSSHW collector is shown in Figure 1. The present paper (Part 1 of 2) introduces the 147 

BIPV-PLVTD-ICSSWH concept; reviews the fundamental operating principles of PV/T, 148 

ICSSWH and PLVTD components; and establishes state-of-the-art performance 149 

benchmarks. A new heat loss performance metric (Ur,sysAsys/u with units W∙m-3∙K-1) is 150 

proposed to enable ICSSWHs of differing sizes and shapes to be compared more fairly. 151 

New thermal and electrical performance metrics (diurnal thermal efficiency ηT,24 and 152 

PV/T performance ratio PRT3) are also proposed to facilitate better comparisons 153 



between different technologies. An energetic model of the BIPV-PLVTD-ICSSWH 154 

concept is presented and some key theoretical considerations concerning heat removal 155 

factors and thermal diodicity are discussed. The energy model has been used to predict 156 

temperatures, solar thermal collection, photovoltaic generation, and overnight heat 157 

retention behaviours over multi-day periods in a variety of climates. Modelling results 158 

have been compared with appropriate benchmarks to highlight the potential benefits 159 

of the BIPV-PLVTD-ICSSWH concept in the context of applications in NZEB facades. 160 

The concluding part of the study is presented in a separate paper (Part 2 of 2) which 161 

describes realisation and laboratory testing of a prototype to demonstrate operation 162 

and validate the theoretical model. 163 

 164 

2 State-of-the-art in relevant technologies 165 

2.1 Photovoltaic-thermal (PV/T) systems 166 

The concept of combining PV and thermal absorbers into a single collector initially 167 

arose from a need to remove unwanted heat from early PV modules (especially those 168 

incorporating concentrating reflectors) whose electrical efficiency was compromised by 169 

high temperatures. The first PV/T collectors were designed to use this “waste” heat for 170 

residential water and air heating applications. Zondag (2008) gives a comprehensive 171 

review of 30 years of flat plate PV/T collector development and more recent reviews 172 

are given by Michael et al. (2015); Besheer et al. (2016) and Sultan & Efzan (2018), 173 

amongst others. Whilst popularity of PV systems has sky-rocketed in recent years 174 

owing to rapidly declining costs, PV/T systems have failed to achieve commercial 175 

success. Recent academic advances in PV/T collector development have explored the 176 

use of nanofluids to improve heat transfer and nanomaterials for phase change thermal 177 

storage or optical filtering (Abdelrazik et al., 2018; Das et al., 2018). Recent advances 178 

in system-level approaches, applications, and economics of BIPV/T (Buonomano et al., 179 

2016; Yang & Athienitis, 2016; Barone et al., 2019) include studies on heat pump 180 

integration (Good et al., 2015; Calise et al., 2016; Qu et al., 2016) and the 181 

multifunction façade context (Li et al., 2019; Tian et al., 2019).  182 

2.2 Electrical behaviour of PV/T systems 183 

Electrical efficiencies of PV/T collectors are typically 5 to 15% depending on PV cell 184 

material type and heat delivery temperature. The main drivers of electrical efficiency 185 

(assuming no shading) are the inherent PV cell efficiency characteristics; cell operating 186 

temperature; and optical losses. Individual PV cells each nominally produce ~0.5V, 187 



although voltage reduces with increasing temperature and tends towards zero under 188 

low irradiance or short circuit conditions. Current flows depend upon PV cell material 189 

type and are proportional to area and incident irradiance level; inversely proportional 190 

to applied electrical load resistance (tending to zero under open circuit conditions); 191 

and typically increase slightly with increasing cell temperature. Cells connected 192 

together in series all operate at the same current, while cells connected in parallel all 193 

operate at the same voltage. Temperature gradients sometimes exist over PV/T 194 

absorber surfaces causing cells to operate at different maximum power points. 195 

Operating point voltage differences caused by temperature non-uniformities can 196 

significantly reduce electrical efficiency if cells are connected in parallel but generally 197 

have minimal effect on series connected cells. Monocrystalline (mc-si) and 198 

polycrystalline (pc-si) silicon PV cells, and amorphous silicon (a-si), Cadmium Telluride 199 

(CdTe) and Copper Indium Gallium Selenide (CIGS) thin film cells have all successfully 200 

been used for PV/T. Crystalline silicon typically offers high efficiency (15<E<18%) at 201 

low temperatures but pronounced reductions occur with increasing temperature. Lower 202 

efficiencies (6<E<12%) are typical for thin film cell types. Multijunction cells, formed 203 

of several layers of different PV materials with different band gaps, have the highest 204 

known photovoltaic efficiencies but are expensive and typically only used for spacecraft 205 

applications. Inclusion of transparent covers over PV/T absorbers significantly reduces 206 

heat loss but correspondingly increases optical losses and hence reduces electrical 207 

efficiency. Experimental work by Guarracino et al. (2019) found that transparent 208 

covers can significantly reduce electrical efficiency, especially at oblique solar incidence 209 

angles when refection losses are typically more significant than cell temperature 210 

effects. Zondag (2008) suggests uncovered BIPV/T façade electrical efficiencies are 211 

commonly enhanced by ~10% compared to non-ventilated BIPV due to beneficial heat 212 

removal but can be compromised by ~10% compared to conventional naturally 213 

ventilated roof-mounted PV modules if heat delivery temperatures are high (similar 214 

findings are reported by Fuentes et al., 2018). Net electrical yields from BIPV/T 215 

systems can be lower than those from BIPV owing to the parasitic electricity 216 

consumption by pumps and fans facilitating heat removal. Parasitic consumption 217 

increases when buildings have no significant heat demand (eg no space heating 218 

required in summer and relatively low hot water usage) and waste heat rejection 219 

equipment becomes necessary to prevent overheating damage caused by stagnation 220 

(delamination, excess fluid pressures, etc).  221 

Cells and modules are commonly characterized with reference to Standard Test 222 

Conditions (STC at G=1000 W/m2 irradiance with spectrum AM1.5 and T0=25°C cell 223 



temperature) using performance metrics derived from current-voltage curves. Key 224 

metrics (defined in Equations 1 to 4) include short circuit current (Isc), open circuit 225 

voltage (Voc), electrical power delivered at the maximum power point (qE,mpp), fill factor 226 

(FF), voltage-temperature coefficient (𝐾𝑉:𝑇), current-temperature coefficient (𝐾𝐼:𝑇) and 227 

voltage-irradiance coefficient 𝐾𝑉:𝐺. Performance deviates from the ideal current-voltage 228 

curve (FFideal = 1) with increasing irradiance and increasing temperature such that 229 

typical real values are 0.75<FFSTC<0.85 and 𝐾𝑉:𝑇 = -0.45%/K for c-si and 230 

0.5<FFSTC<0.7 and 𝐾𝑉:𝑇= -0.25%/K for thin film (DGS, 2008). Current-temperature 231 

coefficients (𝐾𝐼:𝑇) and are usually positive but an order of magnitude smaller than 𝐾𝑉:𝑇. 232 

According to Santbergen et al. (2010) non-linear voltage-irradiance coefficient values 233 

are typically 𝐾𝑉:𝐺≈100% for irradiances of primary interest (400<G<1200 W∙m-2), 234 

𝐾𝑉:𝐺≈80% for cloudy conditions (G=100 W∙m-2) and 𝐾𝑉:𝐺<50% for very low irradiances 235 

(G<50 W∙m-2).   236 

The electrical output of a conventional PV module operating under realistic conditions 237 

deviates significantly from that occurring under STC owing to a variety of cell 238 

temperature and irradiance effects. Cell temperatures (T0) are determined by the 239 

ambient temperature (Ta) and incident irradiance level (G) as well as module mounting 240 

arrangements and local wind speed effects. Irradiance incident on the PV cell surface 241 

is determined by the prevailing irradiance level and spectrum (which are functions of 242 

latitude, time of day, module mounting angle, and local weather conditions) as well as 243 

optical losses associated with cell coverings (eg cover glass, cell encapsulation 244 

materials, front-of-cell electrical contacts etc). Deviations relative to STC are further 245 

pronounced in the case of PV/T modules owing to the influence of the fluid temperature 246 

(T3) upon the cell temperature (T0) and because transparent covers required to reduce 247 

heat loss inherently reduce the effective transmissivity (). A sensible approach to the 248 

characterization of PV/T module electrical performance is therefore to define a 249 

Performance Ratio comparing the device’s maximum electrical power output (𝑞𝐸,𝑚𝑝𝑝,𝑇3) 250 

at operating fluid temperature (T3) relative to a chosen reference value. Santbergen 251 

et al. (2010) use the standard maximum power output (qSTC) as the reference value 252 

(PRSTC as defined by Equation 5). We propose an alternative (PRT3 as defined by 253 

Equation 6) which takes the reference value as being the power output of an ideal PV/T 254 

module with perfect optical (=1) and heat transfer characteristics (F=1 so that T0=T3) 255 

and full coverage of the absorber by PV cells (A0=A1). Based on work of other authors 256 

(notably Zondag et al., 2003; Santbergen et al., 2010 and Guarracino et al., 2019) 257 

suitable benchmark values are PRT3=85% and PRT3=75% for uncovered and covered 258 

collectors respectively.   259 



𝑞𝐸,𝑚𝑝𝑝 = 𝐼𝑚𝑝𝑝 ∙ 𝑉𝑚𝑝𝑝 = 𝐹𝐹 ∙ 𝐼𝑠𝑐 ∙ 𝑉𝑜𝑐        Equation 1 260 

𝐾𝑉:𝑇 =  
𝑉𝑜𝑐,𝑇0  −  𝑉𝑜𝑐,𝑆𝑇𝐶

𝑉𝑜𝑐,𝑆𝑇𝐶 (𝑇0−25)
          Equation 2 261 

𝐾𝐼:𝑇 =  
𝐼𝑠𝑐,𝑇0  −  𝐼𝑠𝑐,𝑆𝑇𝐶

𝐼𝑠𝑐,𝑆𝑇𝐶 (𝑇0−25)
          Equation 3 262 

𝐾𝑉:𝐺 =  
𝑉𝑜𝑐,𝐺

𝑉𝑜𝑐,𝑆𝑇𝐶
           Equation 4 263 

𝑃𝑅𝑆𝑇𝐶 =
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑜𝑓 𝑃𝑉𝑇 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑎𝑡 𝑇3 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑜𝑓 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑒𝑙𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑎𝑡 𝑆𝑇𝐶
=

𝜂𝐸,𝑚𝑝𝑝,𝑇3

𝜂𝑆𝑇𝐶
=

 𝑞𝐸,𝑚𝑝𝑝,𝑇3(𝐺 ∙ 𝐴1)−1

𝑞𝑆𝑇𝐶(𝐺𝑆𝑇𝐶 ∙ 𝐴0)−1 
  Equation 5 264 

𝑃𝑅𝑇3 =
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑜𝑓 𝑃𝑉𝑇 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑎𝑡 𝑇3 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑜𝑓 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑒𝑙𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑎𝑡 𝑇3
=

 𝑃𝑅𝑆𝑇𝐶

 2−( 1− [𝑇3−25]𝐾𝑉:𝑇) ∙ ( 1− [𝑇3−25]𝐾𝐼:𝑇)
 Equation 6 265 

2.3 Thermal behaviour of PV/T systems 266 

Solar thermal efficiencies of PV/T collectors are typically 60<T<80% when working 267 

fluid and ambient temperatures are equal (zero loss condition) but commonly T<30% 268 

for collectors producing domestic hot water in cool climates. Cell type and packing 269 

factor; front-of-cell electrical contacts or transparent conductors; absorber substrate 270 

characteristics; and encapsulation material properties, together determine the optical 271 

properties and heat transfer characteristics of PV/T absorbers. Solar thermal efficiencies 272 

of PV/T absorbers are generally lower than those of dedicated solar heat collectors 273 

because absorption coefficients (0.70.9) and emissivities (0.20.6 bare or 274 

0.70.9 encapsulated) of PV cells are inferior to those achieved by solar selective 275 

coatings (≈0.95 and ≈0.1). Thermal efficiencies are also inherently reduced because a 276 

proportion of the input solar energy is converted to electricity when a suitable load is 277 

connected (Guarracino et al., 2019). High emissivities of PV cells and encapsulation 278 

materials increases radiative heat losses which become particularly significant at high 279 

heat delivery temperatures. Typical PV/T collector constructions are discussed in detail 280 

by Santbergen et al. (2010) and Dupeyrat et al. (2011). Most liquid-heating PV/T 281 

collectors take the form of individual PV cells or whole module laminates glued or bonded 282 

to conventional metal solar thermal absorbers (eg sheet-and-tube, flow channel, or roll-283 

bond types). High thermal conductance through bonding layers joining PV cells to 284 

absorber substrates is required to minimise absorber temperatures, minimise heat 285 

losses, and maximise solar thermal efficiency. Likewise, convective heat transfer 286 

between absorber substrates and working fluids should be maximized. Zondag (2008) 287 

discusses PV/T collectors featuring overall conductances in the range 40 to 288 



250 W·m-2K-1 with the poorest example of heat transfer occurring in a collector 289 

featuring a 5mm silicone bonding layer where cell-to-fluid temperature difference was 290 

12°C corresponding to >10% reduction in thermal output and ~5% reduction in 291 

electrical yield. Dupeyrat et al. (2011) fabricated a high efficiency collector with 0.5mm 292 

thick Ethylene-Vinyl Acetate bonding layer achieving 700 W·m-2K-1 between PV cells and 293 

a 1.2mm roll-bond aluminium thermal absorber. Fragile PV cells must be protected 294 

against damaging mechanical forces (eg torsions during handling, wind loads, and 295 

impacts from hail or vandalism); protected against water ingress; and electrically 296 

isolated from metal substrates. External protection usually takes the form of a glass 297 

or transparent polymer layer bonded to the front side of the PV cells. This can be 298 

supplemented by one or more tertiary transparent covers to reduce heat loss in cases 299 

where high delivery temperatures or operation in cold and windy climates is required 300 

(ie heat delivered at >20°C higher than ambient). Like conventional solar thermal 301 

collectors, PV/T must be protected against high stagnation temperatures (especially 302 

when fitted with tertiary transparent covers) and withstand thermal shocks caused by 303 

rapid changes in climatic conditions or fluid flow transients (eg cold water flowing into 304 

hot collectors). Damage can occur due to high fluid pressures; differential thermal 305 

expansion stresses; melting and UV light degradation of polymeric component 306 

materials. Stagnation damage prevention requires continuous operation of fluid 307 

circulation systems during hot and sunny periods and heat rejection systems may be 308 

required when thermal demands are low or intermittent.  309 

2.4 Integrated Collector-Storage Solar Water Heaters 310 

Solar water heating systems typically have three main components: the collector, the 311 

heat transfer system, and the storage vessel. Storage vessels in conventional pumped 312 

solar water heating systems tend to be bulky and consume valuable floor space. In hot 313 

climates, thermosiphon solar water heaters with close-coupled storage tanks are 314 

popular owing to their passive operation, simple installation, externally located storage 315 

tank, and relatively low cost. Integrated Collector-Storage Solar Water Heaters 316 

(ICSSWH) combine the solar absorber and the thermal storage tank into a single unit 317 

to save floor space within the building and to reduce the amount of pumping energy 318 

required. They are usually passive devices in which part of the storage tank envelope 319 

is used as a solar absorber. This minimises system size and quantity of material 320 

required for manufacturing, leading to lower unit costs (Tripanagnostopoulos & 321 

Souliotis, 2006), less embodied energy, and greater space efficiency. The greatest 322 

drawback of ICSSWHs and close-coupled thermosiphon solar water heaters is that a 323 



large area of storage vessel surface is inherently exposed to the outdoor environment 324 

and thus susceptible to heat loss, especially in cold and windy climates. Smyth et al. 325 

(2006) provides a comprehensive review from a technical perspective and traces 326 

development history back to the 1800s. A more recent review by Singh et al. (2016) 327 

attempts to categorise designs according to whether they are non-concentrating (eg 328 

flat plate or tank box systems), concentrating (eg compound parabolic) or employing 329 

phase change materials. The working principle of an ICSSWH is shown in Figure 2 and 330 

the key components and design considerations are: 331 

• Collector inclination and orientation affects diurnal and seasonal variation 332 

of solar radiation incident on absorber surfaces and also affects natural 333 

convection and storage tank stratification. 334 

• Transparent covers minimize convective (and some radiative) absorber heat 335 

losses and are essential for ICSSWH collectors designed to produce domestic 336 

hot water or to operate in cold and windy climates. 337 

• Storage tank size, shape, & configuration affect collection and retention 338 

efficiencies, stratification and achievable temperature. Tanks are usually heavily 339 

insulated on their non-absorbing sides to reduce heat loss. 340 

• Fabrication material choices are the primary factor determining cost but also 341 

affect solar absorption and heat transfer characteristics (desired solar gains and 342 

unwanted losses), robustness and longevity.  343 

Original academic works on ICSSWH technologies over the last decade have examined 344 

tank temperature stratification and draw-off mixing effects (Garnier et al., 2009; 345 

Borello et al., 2012); use of thermal diodes and concentrating reflectors to reduce heat 346 

loss (Souliotis et al., 2011&2017; Smyth et al., 2015a&b, 2017, 2018, 2019; 347 

Muhumuza et al., 2019a&b and 2020); and use of phase-change thermal storage 348 

materials and heat pipes (Tarhan et al., 2006; Eames & Griffiths, 2006; Chaabane, 349 

2014; Bilardo et al., 2019). Studies by Krauter (2004) and Ziapour et al. (2014) 350 

examined the performance (respectively through experimental and simulation work) 351 

of novel PV-ICSSWH devices and identified a dearth of published work on similar 352 

concepts. Facade integration of PV-ICSSWH units (Pugsley et al., 2016 & 2017; Smyth 353 

et al., 2019) has potential to increase available solar collection area, save floor space, 354 

reduce parasitic pumping energy requirements, and reduce material costs, but 355 

presents a number of practical challenges such as imposed structural loadings and 356 

maintenance access arrangements (considered in more detail in Part 2 of 2).   357 

 358 



 359 

Figure 2: Energy conversion and loss mechanisms in ICSSWH 360 

 361 

Almost all ICSSWH collectors feature some form of transparent cover because 362 

overnight tank heat losses from uncovered absorbers would result in unacceptably low 363 

morning-time tank temperatures. Solutions such as double covers, thermal diodes, or 364 

heat pipes need to be considered for ICSSWH systems designed to produce domestic 365 

hot water when operating in cold and windy climates. The volume-to-absorber area 366 

ratio (u/A) is an important consideration in ICSSWH design as this determines the rate 367 

at which the tank gains heat from the incident sunlight during collection periods and 368 

also the rate at which heat is lost from the absorber to the ambient environment during 369 

retention periods (cloudy or overnight). Storage tank shape can significantly affect the 370 

solar collection and heat retention performances (owing to its influence on absorber 371 

orientation and exposure; thermal stratification; and overall heat loss coefficients) as 372 

well as physical robustness and aesthetics. In particular, tall tanks tend to promote 373 

stratification (which maximises potential heat delivery temperatures); triangular and 374 
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trapezoidal shapes enable inherent tilting of absorber surfaces (to align with the sun); 375 

whilst cylindrical tanks offer inherent passive single-axis solar tracking and tend to be 376 

more robust than cubic tanks. Tank envelopes must support the weight of water 377 

contained within them and be able to withstand thermal expansion pressures (sealed 378 

units/systems) and any externally imposed hydraulic pressures (from mains water or 379 

raised header feed tanks). Tanks must be insulated to minimise heat loss from the 380 

back and sides (those not used to absorb solar heat) but the insulation thickness can 381 

add significantly to overall size. Smyth et al. (2006) and Singh et al. (2016) cite 382 

numerous ICSSWH collector examples featuring single or multiple cylindrical, cuboid, 383 

triangular, trapezoidal and pyramid tanks with volume-to-absorber area ratios in the 384 

range 0.05<u/A<0.3 m3/m2 with 0.1 m3/m2 being a typical tank size. Small volumes 385 

of stored water cause large diurnal temperature fluctuations in solar heating systems. 386 

Larger volumes reduce fluctuation magnitudes thereby reducing summertime 387 

overheating and wintertime freezing risks, but the resulting reduced maximum 388 

temperatures can increase legionella risks. Schmidt & Goetzberger (1990) suggest 389 

u/A>0.07 m3/m2 for Northern European climates to reduce freeze risks. Amerongen et 390 

al. (2013) suggests limiting criteria of u/A<0.03 m3/m2 and u/A<0.06 m3/m2 for 391 

northern and southern European climates respectively in respect of controlling 392 

legionella risk in direct-flow solar water heating systems. Using ICSSWH principles in 393 

the context of BIPV/T presents an opportunity to prevent damagingly high stagnation 394 

temperatures without the need for heat rejection equipment and offers significant 395 

potential benefits in terms of reducing parasitic energy consumption for fluid pumping. 396 

Such systems should be designed as indirect-flow types which employ heat exchangers 397 

to mitigate legionella risk. 398 

2.5 Solar thermal collection and heat retention behaviour 399 

The thermal power output (qT) of solar thermal collectors is conventionally represented 400 

in the Hottel-Whillier-Bliss form (Equation 7) and presented in the form of efficiency 401 

curves (see Figure 3) where the x-axis is the solar thermal condition (N according to 402 

Equation 8) and the y-axis is the instantaneous solar thermal collection efficiency (𝜂𝑇 403 

according to Equation 9). On such plots, the y-axis intercept indicates maximum solar 404 

thermal efficiency under zero heat loss conditions (𝜂𝑇 = 𝐹 ∙ 𝜏 ∙ 𝛼 where T3-Ta=0); the line 405 

gradient (F∙UL) represents the overall heat loss coefficient referenced to the absorber 406 

area (A1); and the x-axis intercept indicates the stagnation condition (maximum 407 

achievable temperature for a given N when ηT→0 and T3 = T1). The y-axis intercept is 408 

sometimes referred to as the “optical efficiency” because many conventional solar 409 

thermal collectors achieve near perfect absorber-to-fluid heat transfer under these 410 

conditions (F>0.95) and overall efficiency is determined by the transmission-411 



absorption product (𝜏 ∙ 𝛼). Heat removal factor (F) describes the effectiveness of 412 

absorber-to-tank heat transfer which can be expressed according to Equation 10. 413 

Production of electricity reduces the amount of heat available for transfer into the tank 414 

thus Equation 10 remains valid for the hypothetical scenario of 100% electrical 415 

efficiency where qE=G∙A1 which would result in F=0.  416 

𝑞𝑇 = 𝐹 ∙ 𝐺 ∙ 𝐴1 ([𝜏 ∙ 𝛼] − [𝑈𝐿
𝑇3−𝑇𝑎

𝐺
])      Equation 7 417 

𝑁 =
𝑇3−𝑇𝑎

𝐺
           Equation 8 418 

𝜂𝑇 =
𝑞𝑇

𝐺∙𝐴1
           Equation 9 419 

𝐹 =
𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 ℎ𝑒𝑎𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
=

𝑞𝑇

[𝜏∙𝛼−𝜂𝐸]∙𝐺∙𝐴1
     Equation 10 420 

−𝑞𝑇 = 𝑈𝑟,𝑠𝑦𝑠 𝐴𝑟,𝑠𝑦𝑠 (𝑇3 − 𝑇𝑎)       Equation 11 421 

 422 

 423 

Figure 3: Typical solar collector performance characteristics (at 2m/s wind speed) 424 

 425 

Equations 7-10 are only relevant when the collector is illuminated (G>0). When the 426 

ICSSWH is in darkness, the total heat loss (-qT) is determined by the overall heat loss 427 

coefficient (Usys) referenced to the overall envelope heat loss area (Asys) and the 428 

temperature difference between the tank and the ambient (T3-Ta) as expressed by 429 

Equation 11. The key difference between the collection and retention heat loss 430 
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coefficients is that Usys describes the total heat loss from the storage tank assuming 431 

that it emanates from the whole envelope (Asys) whereas UL describes the total heat 432 

loss from the storage tank assuming that it emanates from the absorber (A1) which is 433 

separated from the storage tank by heat removal factor F. The effective heat loss area 434 

can be taken as approximately equal to the absorber area (Asys≈A1) if the storage tank 435 

and sides of the collector are highly insulated or approximately equal to the whole 436 

envelope area (Asys≈A1+A3i) if the insulation of the storage tank and sides has similar 437 

performance characteristics as the transparent cover. It is difficult to determine a 438 

sensible value for Asys in other less definite cases.   439 

In the case of conventional solar thermal collectors where heat is extracted and 440 

delivered by a continuous fluid flow, the thermal power gain can be determined through 441 

steady state testing based upon the mass flow rate, specific heat capacity, and inlet-442 

to-outlet temperature difference (qT=m∙cp∙ΔTout-in). However, in the case of ICSSWH 443 

devices, there is commonly no fluid flow during solar collection periods and thus steady 444 

state conditions rarely occur (except in the very unusual case where a concurrent heat 445 

demand exactly matches solar heat collection). Instead, the thermal power gained by 446 

an ICSSWH is usually determined using either quasi steady-state or whole-day testing 447 

based upon the rate of temperature rise of the stored thermal mass (qT =M∙cp∙ΔT3/tcol). 448 

Equation 12 defines the total insolation (Hcol) during the collection period (tcol) to enable 449 

determination of daily average solar thermal efficiency (𝜂𝑇,𝑐𝑜𝑙) according to 450 

Equation 13. The ability of an ICSSWH collector to retain stored heat for a period of 451 

time (tret) when no solar resource is available (eg at night when G≈0) can be quantified 452 

in terms of heat retention efficiency (𝜂𝑇,𝑟𝑒𝑡 according to Equation 14) which is defined 453 

as the ratio of thermal energy in the tank at the end of the retention period (t=tcol+tret) 454 

divided by the thermal energy in the tank at the start of the retention period (t=tcol). 455 

Collection periods are chosen to represent specific latitudinal and seasonal 456 

circumstances but are commonly taken as 6, 8 or 12 hrs (tcol=21600, 28800 or 43200s) 457 

with corresponding retention periods of 18, 16 or 12 hrs (tret=64800, 57600 or 458 

43200s). Energy contained in the tank at a given time (𝑄T[𝑡]) is determined by the 459 

product of its heat capacity (M·cp) and temperature (𝑇3[𝑡]) normalised to respective 460 

ambient temperatures at the end of the preceding collection period (𝑇𝑎[𝑡𝑐𝑜𝑙]) and 461 

averaged throughout the retention period (�̃�𝑎[𝑡𝑟𝑒𝑡]). Retention efficiency can be used to 462 

determine an overall reverse mode heat transfer coefficient (Ur,sysAsys according to 463 

Equations 15) which describes heat lost across the tank-to-ambient temperature 464 

difference (𝑇3[𝑡=𝑡𝑐𝑜𝑙]  −  �̃�𝑎[𝑡𝑟𝑒𝑡]). A corresponding overall forward mode heat transfer 465 



coefficient can be defined (Uf,sysAsys, according to Equation 16) to describe heat loss 466 

across the tank-to-ambient temperature difference during collection periods (𝑇3[𝑡=𝑡𝑐𝑜𝑙]  −467 

 �̃�𝑎[𝑡𝑐𝑜𝑙]). Dynamic modelling of heat loss during retention periods (−∆𝑄𝑇[𝑡𝑟𝑒𝑡]) and heat 468 

gained during collection periods (∆𝑄𝑇[𝑡𝑐𝑜𝑙]) can be performed using Equations 17 and 18 469 

which are essentially the inverse forms of Equations 15 and 16.  470 

𝐻𝑐𝑜𝑙 = ∫ Gt=tcol
t=0           Equation 12 471 

𝜂𝑇,𝑐𝑜𝑙 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 𝑠𝑡𝑜𝑟𝑒 𝑎𝑡 𝑡=𝑡𝑐𝑜𝑙 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑡=𝑡0 𝑡𝑜 𝑡=𝑡𝑐𝑜𝑙 
=

𝑀∙𝑐𝑝(𝑇3[𝑡=𝑡𝑐𝑜𝑙] − 𝑇3[𝑡=𝑡0])

𝐻𝑐𝑜𝑙∙𝐴1
   Equation 13 472 

𝜂𝑇,𝑟𝑒𝑡 =
𝑅𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 𝑠𝑡𝑜𝑟𝑒 𝑎𝑡 𝑡=𝑡𝑐𝑜𝑙+𝑡𝑟𝑒𝑡 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 𝑠𝑡𝑜𝑟𝑒 𝑎𝑡 𝑡=𝑡𝑐𝑜𝑙
=

𝑀∙𝑐𝑝(𝑇3[𝑡=𝑡𝑐𝑜𝑙+𝑡𝑟𝑒𝑡] − �̃�𝑎[𝑡𝑟𝑒𝑡])

𝑀∙𝑐𝑝(𝑇3[𝑡=𝑡𝑐𝑜𝑙] − 𝑇𝑎[𝑡=𝑡𝑐𝑜𝑙])
  Equation 14 473 

𝑈𝑟,𝑠𝑦𝑠𝐴𝑠𝑦𝑠 =
𝑀∙𝑐𝑝

 𝑡𝑟𝑒𝑡
ln (

1

𝜂𝑇,𝑟𝑒𝑡
)        Equation 15 474 

𝑈𝑓,𝑠𝑦𝑠𝐴𝑠𝑦𝑠 =
𝑀∙𝑐𝑝

 𝑡𝑐𝑜𝑙
ln (

1

𝜂𝑇,𝑐𝑜𝑙
) = 𝐹 ∙ 𝑈𝐿𝐴1       Equation 16 475 

−∆𝑄𝑇[𝑡𝑟𝑒𝑡] = 𝑄𝑇[𝑡=𝑡𝑐𝑜𝑙]

𝑇3[𝑡=𝑡𝑐𝑜𝑙] − �̃�𝑎[𝑡𝑟𝑒𝑡]

𝑇3[𝑡=𝑡𝑐𝑜𝑙] − 𝑇𝑎[𝑡=𝑡𝑐𝑜𝑙]

(1 − [𝑒
 
𝑈𝑟,𝑠𝑦𝑠 𝐴𝑠𝑦𝑠 𝑡𝑟𝑒𝑡

𝑀∙𝑐𝑝 ]

−1

)   Equation 17 476 

∆𝑄𝑇[𝑡𝑐𝑜𝑙] = 𝐹 ∙ 𝐴1 (𝐻𝑐𝑜𝑙 ∙ 𝜏 ∙ 𝛼 − 𝑡𝑐𝑜𝑙  𝑈𝐿(𝑇3[𝑡=𝑡0] − 𝑇𝑎[𝑡=𝑡0])) [𝑒
 
𝐹∙𝑈𝐿 𝐴1 𝑡𝑐𝑜𝑙

𝑀∙𝑐𝑝 ]

−1

  Equation 18 477 

Heat could feasibly be drawn from the ICSSWH to serve a variety of thermal load 478 

demands at different times of the day (eg morning or evening bathing, space heating 479 

at night, etc). If all available heat is consumed during a single short duration draw-off 480 

event occurring once every 24h, the maximum availability of stored heat (QT,24max, 481 

Equation 19) occurs when the tank temperature reaches its maximum (near the end 482 

of the collection period, usually just before dusk) and minimum availability of stored 483 

heat (QT,24min, Equation 20) coincides with the time when the lowest tank temperature 484 

occurs (near the end of the retention period, usually around dawn). Provided that tcol 485 

and tret cover a contiguous 24h period then the product of the collection and retention 486 

efficiencies can reasonably be described as the diurnal thermal efficiency, where 487 

T,24=1 if all available solar energy incident during tcol is collected and then retained 488 

without loss for the duration of tret, or T,24=0 if no heat was collected or all collected 489 

heat was lost. The total diurnal efficiency (T+E,24) is the sum of the diurnal thermal 490 

efficiency and the diurnal electrical efficiency (E,24) and can be defined according to 491 



Equation 21. It is important to note that diurnal thermal efficiency (by this definition) 492 

is a relative measure of long-term performance and that non-zero values do not 493 

necessarily imply net heat gain in a given 24h period. For example, heat gained on a 494 

cloudy day following several warm sunny days could well be less than the amount of 495 

heat lost during a subsequent cool night, even with relatively high collection, retention 496 

and diurnal thermal efficiencies. 497 

𝑄𝑇,24𝑚𝑎𝑥 = 𝜂𝑇,𝑐𝑜𝑙 ∙ A1 ∙ 𝐻𝑐𝑜𝑙       Equation 19 498 

𝑄𝑇,24𝑚𝑖𝑛 = 𝜂𝑇,𝑐𝑜𝑙 ∙ 𝜂𝑇,𝑟𝑒𝑡 ∙ A1 ∙ 𝐻𝑐𝑜𝑙      Equation 20 499 

𝜂𝑇+𝐸,24 = 𝜂𝑇,24 + 𝜂𝐸,24 = 𝜂𝑇,𝑐𝑜𝑙 ∙ 𝜂𝑇,𝑟𝑒𝑡 +
1

𝑡𝑐𝑜𝑙
∫

𝑞𝐸

𝐺∙𝐴1

𝑡=𝑡𝑐𝑜𝑙

𝑡=0

   Equation 21 500 

Table 2 summarises performance values reported in previous experimental studies on 501 

ICSSWH collector prototypes to serve as benchmarks for the devices examined in this 502 

and future studies. A confusing variety of metrics and test methodologies are reported 503 

in the literature, but most can be readily interpreted and converted into 𝜂𝑇,𝑐𝑜𝑙, 𝜂𝑇,𝑟𝑒𝑡, 504 

and 𝑈𝑟,𝑠𝑦𝑠𝐴𝑠𝑦𝑠 parameters according to the definitions given above. It is important to 505 

ensure that the solar thermal condition is properly accounted for when comparing 506 

reported collection efficiencies because 𝜂𝑇,𝑐𝑜𝑙 inherently reduces with increasing N. Test 507 

duration and tank-to-ambient temperature difference must be borne in mind when 508 

comparing retention efficiencies because 𝜂𝑇,𝑟𝑒𝑡 inherently reduces with increasing tret 509 

and ΔT3a. Likewise, comparisons between heat loss coefficients must be made with 510 

caution because there is a lack of consistency concerning definitions for reference areas 511 

(these are variably reported based on the absorber, aperture, or whole envelope area) 512 

and because 𝑈𝑠𝑦𝑠𝐴𝑠𝑦𝑠 inherently increases in proportion to the physical size of the 513 

ICSSWH. To enable fair comparisons in relation to heat retention performance, we 514 

propose two new heat loss coefficient metrics, one of which is referenced to stored 515 

water volume (Ur,sysAsys/u) and the other of which is referenced to the effective aperture 516 

area (Ur,sysAsys/A1). The latter has the advantage of being broadly equivalent to F∙UL 517 

values reported for conventional solar water heating collectors whereas the former is 518 

very useful when drawing comparisons between ICSSWH collectors with very different 519 

storage tank sizes and shapes. It should be noted that the data reported in Table 2 is 520 

drawn from a variety indoor and outdoor tests for which the influences of variables 521 

such as wind speed (which affects heat losses) and solar incidence angle (which affects 522 

optical losses) cannot easily be determined. Data in Table 2 suggests a state-of-the-523 

art benchmark ICSSWH collection efficiency of 𝜂𝑇,𝑐𝑜𝑙≈60% at N≈0.035m2K∙W-1 524 



(comparable to efficiencies achieved by basic conventional solar thermal collectors, 525 

refer to Figure 3) and state-of-the-art benchmark heat loss coefficients of 526 

Ur,sysAsys/A1≈1 W∙m-2K-1 and Ur,sysAsys/u≈10 W∙m-3∙K-1 at ΔT3a≈25°C (equivalent to a 527 

100L cube shaped tank fully insulated on all sides with 30mm insulation of conductivity 528 

k=0.025 W∙m-1K-1).    529 

 530 

Table 2: Performances of ICSSWH collectors reported in the literature  531 

ICSSWH description 

Solar 
thermal 

collection 
efficiency 

Over-
night heat 
retention 
efficiency 

Test 
duration 

Overall 
heat loss 
coefficient 

Effective 
aperture 

area 

Water 
storage 
vessel 
volume 

Aperture 
specific 

heat loss 
coefficient 

Volume 
specific 

heat loss 
coefficient 

𝜼𝑻,𝒄𝒐𝒍 𝜼𝑻,𝒓𝒆𝒕 
𝒕𝒄𝒐𝒍

+ 𝒕𝒓𝒆𝒕 
𝑼𝒓,𝒔𝒚𝒔𝑨𝒔𝒚𝒔 𝑨𝟏 𝒖 

𝑼𝒓,𝒔𝒚𝒔𝑨𝒔𝒚𝒔

𝑨𝟏
 

𝑼𝒓,𝒔𝒚𝒔𝑨𝒔𝒚𝒔

𝒖
 

(%) (%) (hours) (W∙K-1) (m2) (L) (W∙m2K-1) (W∙m3K-1) 

Near-triangular trapezoidal prism tank, 
single glazed, 25mm insulation. 
Thermosiphonically coupled absorber 
channel, thermal diode reverse flow stop 
valve. (Mohamad, 1997) 53* 66 12+12 4* 0.55 100 7.3* 40* 

Semi-flat trapezoidal tank, double (?) 
glazed, 50mm insulation. 
Thermosiphonically coupled absorber 
channel, thermal diode reverse flow stop 
valve. (Faiman et al., 2001) 34 84 11+8.5 2.8 1.15 120 2.4 23 

Horizontal cylindrical tank, two-part CPC 
reflector, single glazed. 
(Tripanagnostopoulos et al., 2002) 

STS-1A & 2A: Single tank 41 58 12+12 5.3 0.95 100 5.6 53 
STS-1B & 2B: Modified reflector 48 57 12+12 5.5 0.95 100 5.8 55 

DTS-2B: Double tanks, modified reflector 50 50 12+12 6.7 0.95 100 7.1 67 

Cylindrical tank, selective coating, two-
part CPC reflector, single glazed, 
insulated. (Smyth et al., 2003)  

A2: Basic design 52 45 8+16 4.2 0.92 57 4.6 74 
A4: Internal perforated sleeve added 58 53 8+16 3.4 0.92 57 3.7 60 

A8: extra insulation added 59 61 8+16 4 0.92 85 4.3 47 

Close-coupled tubular absorber on top of 
a flat cuboid tank with bulbous head. 
Tank fully enclosed with 40mm insulation. 
(Sopian et al., 2004) 

1: Free thermosiphonic flow 45 18 8+16 40.9 2.30 329 17.8 124 
2: Thermal diode reverse flow stop valve 45 52 8+16 15.6 2.30 329 6.8 47 

Double horizontal cylindrical tanks, three-
part CPC reflector, single glazed, 
insulated. Tripanagnostopoulos & 
Souliotis (2006) 

DTS-B2 reflector design variant 55 53 12+12 6.5 1.01 107 6.4 61 
DTS-C2 reflector design variant 46 59 12+12 5.5 0.75 107 7.3 51 

Horizontal cylindrical tank-in-tank, 
selective coating, two-part CPC reflector, 
single glazed, insulated. Air-filled annulus. 
(Souliotis et al., 2011) 33 66 12+12 1.5 0.83 44 1.8 34 



Cuboid tank, selective coating on 
underside, 50mm insulation elsewhere. 
Single glazed aperture with reflectors 
(1.8x CPC, reverse circular & straight) 
directing light onto inverted absorber. 
(Smyth et al., 2005) 

1: No baffles in reflector 43 86 8+16 0.81 0.36 38 2.3 21 
2: Two full-width transparent baffles 40 92 8+16 0.45 0.36 38 1.3 12 
7: One half-width transparent baffle 46 85 8+16 0.84 0.36 38 2.3 22 

Horizontal cylindrical tank, selective 
coating, two-part CPC reflector, glazed, 
insulated. (Souliotis et al., 2013) 

3A: Single glazing 54 61 12+12 4.85 1.48 102 3.3 48 
3B: Double glazing 53 65 12+12 4.2 1.48 102 2.8 41 

Horizontal cylindrical tank-in-tank, 
selective coating, two-part CPC reflector, 
single glazed, insulated. Evacuated 
annulus part-filled with water to form a 
thermal diode (Souliotis et al., 2017) 

Starting pressure 86mbar 29 74 12+12 1.29 0.83 44 1.6 29 
Starting pressure 998mbar 31 68 12+12 1.66 0.83 44 2.0 38 

Vertical cylindrical tank-in-tank, matt 
black, transparent plastic cylindrical 
cover, insulated ends. Evacuated annulus 
(38mbar) with pumped thermal diode. 
(Smyth et al., 2018) 36* 61 6+18 0.9 0.32 28 2.9 32 

Horizontal cylindrical tank-in-tank, matt 
black, transparent plastic cylindrical 
cover, insulated ends. Evacuated annulus 
part-filled with water to form a thermal 
diode (Muhumuza et al., 2019) 

1: Aluminium outer vessel, no capillary 28* 25 6+18 1.5 0.24 17 6.1 88 
2: Stainless steel outer vessel + capillary 31* 40 6+18 1 0.24 17 4.1 59 

3: As variant 2 but longer vessels 29* 48 6+18 1.3 0.40 28 3.2 46 

Horizontal rectangular tank, matt black, 
insulated on 5 sides with double glazed 
cover (Harmim (2019) 47 93 12+12 2.6 1.13 60 2.3 43 

Benchmarks         
Minimum reported in literature 28      1.3 12 
Average reported in literature 43      4.6 49 
Maximum reported in literature 59      17.8 124 
Targets for ICSSWH development 60      1.0 10 

Collection efficiencies reported in the table relate to an average daily solar thermal condition of N=0.035±0.005 m2K∙W-1. Retention efficiencies and 532 
heat loss coefficients reported in the table relate to a normalised stored water temperature of ΔT3a = 25±10°C (averaged over the retention period). 533 
Exceptions where data relates to N ≈ 0.01 m2K∙W-1 and ΔT3a ≈ 10°C are marked with asterisk*. Reported values of A1 relate to the transparent 534 
aperture area (excluding external framing elements) which is typically the same as the absorber area for non-concentrating ICSSWH devices. 535 

 536 

2.6 Planar Liquid-Vapour Thermal Diodes 537 

A thermal diode is a unidirectional heat transfer device that operates in a manner 538 

analogous to an electrical semiconductor diode by offering low resistance (thermal 539 

conductance) in one direction and high resistance (thermal insulation) in the other. 540 

Thermal diode devices have been used to successfully reduce heat loss via reverse flows 541 

in thermosiphonic solar water heaters (one-way valves employed by Mohamad, 1997; 542 

Faiman et al., 2001; Sopian et al., 2004), to promote stratification in hot water storage 543 

tanks (Smyth et al., 1999 and Rhee et al., 2010), and to reduce overnight heat losses 544 

from ICSSWH absorbers (De Beijer, 1998; Quinlan, 2010; Souliotis et al., 2011&2017; 545 



Smyth et al., 2015a&b, 2017, 2018, 2019; Pugsley et al., 2016 & 2017; Muhumuza et 546 

al., 2019a&b and 2020).  547 

Planar Liquid-Vapour Thermal Diodes (PLVTD) consist of two parallel plates of area 548 

A=yz separated by a cavity of depth x which contains a quantity of working fluid 549 

maintained in a thermodynamic state close to saturation (Pugsley et al., 2019 & 2020). 550 

During forward mode operation, wetting of the hottest plate (evaporator) through 551 

contact with the liquid working fluid generates vapour, which then migrates to the 552 

colder plate (condenser) where it releases its latent heat and generates condensate to 553 

complete the cycle. During reverse mode operation, the hottest plate is kept dry so 554 

that no vapour can be generated, no latent heat transfer occurs, and the partially 555 

evacuated cavity acts as an insulator (see Figure 4). Requirements, functions and 556 

interactions of the main PLVTD components can be summarised as follows, based on 557 

Pugsley et al. (2017 & 2020): 558 

• Evaporator and condenser plates should be formed of thermally conductive 559 

material and should be as thin as possible to maximise forward mode heat 560 

transfer. Choice of plate thickness is also governed by the inherent need to 561 

prevent structural deformation caused by implosion forces associated with the 562 

combination of cavity vacuum and external atmospheric pressure. Internal 563 

supporting structure is generally required in large PLVTDs. Hermetic sealing is 564 

required to prevent infiltration of non-condensable gases.   565 

• Cavity sidewalls and internal structure should have low thermal 566 

conductivity to minimise bridging that would otherwise cause unwanted reverse 567 

mode heat transfer. These elements must provide sufficient structural strength 568 

to prevent deformation and should be formed of low-outgassing materials to 569 

avoid risk of vacuum degradation (also applies to plates and seal materials). 570 

Internal structures must not significantly impede vapour flows between the 571 

plates in order to avoid impairing forward mode heat transfer.  572 

• Working fluid selection considerations include saturation pressure at operating 573 

temperature, specific heat capacity, liquid & vapour thermal conductivities, 574 

liquid & vapour viscosities, latent heat of vaporisation, cost, flammability, 575 

toxicity, global warming and ozone depletion potential. Water appears to be a 576 

suitable fluid. Determination of required quantity involves consideration of plate 577 

area, cavity volume, the need to minimise thermal inertia, and the need to avoid 578 

evaporator dry-out at high temperatures. Working fluid reservoirs should be 579 

designed to prevent thermal bridging between the plates. 580 



• Evaporator wetting and condensate return mechanisms must ensure 581 

continuous and uniform working fluid flows during forward mode operation and 582 

should preferably maintain dry plates in reverse mode. Evaporator hydrophilicity 583 

and condenser hydrophobicity are important considerations. Evaporator wetting 584 

can be achieved by a variety of active (eg pumped falling film or spray) or 585 

passive (eg capillary wick or pockets) techniques. Consideration should be given 586 

to parasitic energy consumption by pumps in active systems.  587 

Experimental and theoretical work by Pugsley et al. (2016, 2017, 2019 & 2020) 588 

demonstrated that large vertical PLVTDs (A=0.98m2 and x=70mm deep) suitable for 589 

integration in façade mounted ICSSWH collectors can be realised to achieve reverse 590 

mode insulation of Ur<2 W·m-2K-1 and forward mode heat transfer in the range 591 

50<Uf<900 W·m-2K-1. Reverse mode insulation is determined by PLVTD dimensions 592 

such that thermal conductance decreases with increasing depth. Forward mode heat 593 

transfer is highly dependent upon PLVTD operating conditions such that thermal 594 

conductance increases with increasing temperature and increasing heat flux but is 595 

relatively insensitive to PLVTD dimensions.  596 

Using a vertical PLVTD as the connecting element between PV cells and water storage 597 

tank in a BIPV-ICSSWH facade system has the potential to not only reduce ICSSWH 598 

heat losses by improving tank insulation, but also to improve thermal and electrical 599 

collection efficiencies by improving heat transfer. Given that PLVTDs essentially act as 600 

heat spreaders (Boreyko and Chen, 2013) there is also potential for electrical efficiency 601 

improvements associated with improved PV cell temperature uniformity.   602 

 603 

 604 

 605 

Figure 4: Schematic diagram of a PLVTD 606 

 607 

 608 

FORWARD MODE  
Plate 1 wetted and hotter than Plate 2 
Latent heat transfer from 1→2 

REVERSE MODE 
Plate 2 dry and hotter than Plate 1 
No latent heat transfer from 2→1 
(conduction and radiation only) 

x 

y 

z 



3 Theoretical understanding of a BIPV-PLVTD-ICSSWH 609 

3.1 Energy balance model 610 

The fundamental physical arrangement of the BIPV-PLVTD-ICSSWH device proposed 611 

in Figure 1 can be represented by the lumped parameter model shown in Figure 5 and 612 

the equivalent resistance network shown in Figure 6. The model describes how the 613 

input solar flux (G) is absorbed by the PV cells (at temperature T0) where it is converted 614 

to thermal energy and electrical energy. The thermal power is either lost (q0a) to the 615 

ambient environment (at temperature Ta) or transferred through the thermal diode 616 

(q03) to heat the water storage tank (at temperature T3) where it becomes available 617 

for delivery to thermal loads (qT). Heat transferred from the absorber to the stored 618 

water passes through the diode (R12) and storage tank mantle (R23) thermal 619 

resistances. Some of the solar heat gained by the tank is lost through the insulated 620 

tank sidewalls and back plate (q3a through R3i+Ria). Heat losses through the insulated 621 

thermal diode sidewalls (q4a) are neglected as these are small by comparison. Absorber 622 

heat losses (q1a) pass through the absorber laminate (R15), transparent cover (R6), 623 

airgap (R56) and ambient (R6a) thermal resistances which act in series to determine the 624 

overall absorber loss resistance (R1a). It is assumed that each element is isothermal 625 

and that heat fluxes are constant across the plane of each element. The amount of 626 

electrical power produced by the PV cell array (qE=IPV.VP) is dependent upon the 627 

irradiance (G); the pump and load electrical resistances (RP+Rload); and the PV cell 628 

array electrical characteristics (represented by RPV) which are themselves dependent 629 

upon the cell material properties and temperature. Some of the electrical power 630 

generated by the PV is delivered to a small pump (qp) which distributes a working fluid 631 

film to wet the PLVTD evaporator and the remainder (qE) is available to serve applied 632 

electrical loads (Rload). It is assumed that all electrical energy used to drive the pump 633 

is eventually converted to heat which is added to the stored water (qP,T=qP,E=IP.VP).  634 

Collection behaviour of the BIPV-PLVTD-ICSSHW can be modelled by considering the 635 

energy balances within the absorber laminate (Equation 22), storage tank (Equation 636 

23), and connected electrical load (Equation 24) by accounting for the transparent 637 

cover transmissivity (); the absorber surface area (A1) and absorptivity (); and the 638 

electrical currents flowing from the PV output (at voltage VP) to ground through the 639 

PV, pump and load (IPV, IP and Iload respectively). It should be noted that the optical 640 

efficiency () is dependent upon the solar incidence angle. Substituting Equation 24 641 

into Equation 1, and the resultant expression into Equation 23, yields Equation 25 642 

which describes overall thermal power output. In cases where the pump is fed from an 643 

external power supply (as occurred for solar simulator laboratory tests described in 644 

Part 2 of 2) the overall thermal power output is described by Equation 26. 645 



 𝜏 ∙ 𝛼 ∙ 𝐺 ∙ 𝐴1 = 𝑞𝐸 + 𝑞𝑃 + 𝑞03 + 𝑞0𝑎     Equation 22 646 

 𝑞𝑇 = 𝑞03 + 𝑞𝑃 − 𝑞3𝑎       Equation 23 647 

 𝑞𝐸 = 𝑞𝑃𝑉 − 𝑞𝑃 = 𝑉𝑃(𝐼𝑃𝑉 − 𝐼𝑃) = 𝑉𝑃𝐼𝑙𝑜𝑎𝑑     Equation 24 648 

 𝑞𝑇 = 𝜏 ∙ 𝛼 ∙ 𝐺 ∙ 𝐴1 − 𝑉𝑃𝐼𝑙𝑜𝑎𝑑 − 𝑞0𝑎 − 𝑞3𝑎     Equation 25 649 

 𝑞𝑇 = 𝜏 ∙ 𝛼 ∙ 𝐺 ∙ 𝐴1 − 𝑉𝑃(𝐼𝑃𝑉 + 𝐼𝑃) − 𝑞0𝑎 − 𝑞3𝑎    Equation 26 650 

Inspection of the thermal resistance network in Figure 6 indicates that absorber heat 651 

loss (q0a) can be expressed in terms of normalised absorber temperature (ΔT0a=T0-Ta) 652 

and the series thermal resistances R05+R56+R6+R6a to create Equation 27. Tank heat 653 

loss (q3a) and tank heat gain (q03) can likewise be expressed in terms of normalised 654 

tank temperature (ΔT3a=T3-Ta) and the absorber-to-tank temperature difference 655 

(ΔT03=T0-T3) together with relevant thermal resistances to create Equations 28 & 29.  656 

 𝑞0𝑎 =
𝑇0−𝑇𝑎

𝑅05+𝑅56+𝑅6+𝑅6𝑎
=

𝛥𝑇0𝑎

𝑅0𝑎
      Equation 27 657 

 𝑞3𝑖 =
𝑇3−𝑇𝑎

𝑅3𝑖+𝑅𝑖𝑎
=

𝛥𝑇3𝑎

𝑅3𝑎
       Equation 28 658 

 𝑞03 =
𝑇0−𝑇3

𝑅01+𝑅12+𝑅23
=

𝛥𝑇03

𝑅03
       Equation 29 659 

During collection, absorbed solar radiation is converted to heat and electricity in 660 

accordance with the absorber laminate energy balance. Substituting Equations 27 & 661 

28 into Equation 25; and substituting Equations 28 & 29 into Equation 23; yields 662 

Equations 30 & 31 which describe the maximum amount of thermal power that the 663 

tank can deliver over a sustained period. Substituting Equations 27 & 29 into 664 

Equation 22 and rearranging into Equation 32 allows the absorber temperature (T0) to 665 

be evaluated. Substituting Equation 30 into Equation 9 allows the solar thermal 666 

collection efficiency to be evaluated according to Equation 33. It should be noted that 667 

the term VPIP is only relevant when pumping power for the PLVTD evaporator wetter is 668 

supplied by the PV cells.  669 

 𝑞𝑇 = 𝜏 ∙ 𝛼 ∙ 𝐺 ∙ 𝐴1 − 𝑉𝑃𝐼𝑙𝑜𝑎𝑑 −
𝑇0−𝑇𝑎

𝑅0𝑎
−

𝑇3−𝑇𝑎

𝑅3𝑎
    Equation 30 670 

 𝑞𝑇 =
𝑇0−𝑇3

𝑅03
+ 𝑉𝑃𝐼𝑃 −

𝑇3−𝑇𝑎

𝑅3𝑎
       Equation 31 671 

 𝑇0 =
(𝑅03𝑅0𝑎)(𝜏∙𝛼∙𝐺∙𝐴1−𝑞𝐸−𝑞𝑃)+𝑇𝑎𝑅03+𝑇3𝑅0𝑎

𝑅03+𝑅0𝑎
     Equation 32 672 

 𝜂𝑇 =
(𝑇0−𝑇3)

𝑅03
⁄  − 

(𝑇3−𝑇𝑎)
𝑅3𝑎

⁄ +(𝑉𝑃𝐼𝑃)

𝐺∙𝐴1
      Equation 33  673 



 674 

 675 

Ta Ambient environmental temperature   G Incident solar radiation flux 

T0 Photovoltaic cell temperature  G Absorbed solar radiation 

T1 Temp. of absorber laminate substrate and evaporator  q03 
Thermal power transferred from the absorber to the 
water storage tank through the thermal diode 

T2 Temperature of condenser plate and tank mantle  qT Net rate of heat gained by the stored water bulk 

T3 Temperature of water bulk stored in the tank  q0a Absorber heat loss rate 

T4 Thermal diode sidewall temperature  q3a 
Rate of heat loss from the back and sides of the 
water storage tank not covered by the thermal diode 

T5 Absorber laminate surface temperature  qE Net electrical power yielded  

T6 Transparent cover temperature  qP 
Electrical power consumed by the evaporator wetter 
pump which is then all converted to heat 

Figure 5: Lumped parameter model of a BIPV-PLVTD-ICSSWH 676 
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 678 

 679 

G Absorbed solar radiation VP Evaporator wetter pump supply voltage 

qT+E Thermal and electrical power available for use Va Earth electrical potential (zero voltage) 

q0a Heat lost from the absorber IPV Current delivered by the photovoltaic module 

q03 Solar thermal power transferred to tank Iload Current drawn by the load 

q3a Heat lost from the water storage tank IP Current drawn by the evaporator wetter pump 

qP Wetter pump power (electrical becomes thermal) Rload Electrical load connected to photovoltaic module 

R1a Overall absorber heat loss thermal resistance RPV Electrical resistance of photovoltaic module 

R23 Water storage tank mantle thermal resistance RP Electrical load of the evaporator wetter pump 

R3i+Ria Water storage tank back and side insulation Ta Ambient environmental temperature 

R4ia Thermal diode sidewall insulation (assumed infinite) T0 Photovoltaic cell temperature 

R56 Air gap between absorber and transparent cover T1 Absorber substrate & evaporator plate temperature 

R6 Transparent cover thermal resistance T2 Temperature of condenser plate and tank mantle 

R6a External air convection & radiation to ambient T3 Temperature of water bulk stored in the tank 

R15 Absorber laminate thermal resistance  T4 Thermal diode sidewall temperature 

R01 Thermal resistance of laminate behind cells  T5 Absorber laminate surface temperature 

R05 Thermal resistance of laminate in front of cells  T6 Transparent cover temperature 

Figure 6: Thermal and electrical resistance network for a BIPV-PLVTD-ICSSHW 680 
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 𝑈𝑟,𝑠𝑦𝑠 =  
1

𝐴𝑠𝑦𝑠
[

1

𝑅3𝑎
+

1

(𝑅03+𝑅0𝑎)
]      Equation 34 681 

 𝜂𝑇,𝑟𝑒𝑡 =
𝑀∙𝑐𝑝∆𝑇3𝑎[𝑡=𝑡𝑐𝑜𝑙]− 𝑡𝑟𝑒𝑡[ 

(�̃�3[𝑡𝑟𝑒𝑡]−�̃�0[𝑡𝑟𝑒𝑡])
𝑅03

⁄ −
(�̃�3[𝑡𝑟𝑒𝑡]−�̃�𝑎[𝑡𝑟𝑒𝑡])

𝑅3𝑖𝑎
⁄  ]

𝑀𝑐𝑝(𝑇3[𝑡=𝑡𝑐𝑜𝑙]−𝑇𝑎[𝑡=𝑡𝑐𝑜𝑙])
 Equation 35 682 

 𝐹 =
R0a

R03+R0a
[

𝐺∙𝐴1−𝑞𝐸

𝐺∙𝐴1
]       Equation 36 683 

 𝐹 ∙ 𝑈𝐿 =
1

𝐴1
 [

1

𝑅3𝑎
+

1

(𝑅03+𝑅0𝑎)
] [

𝐺∙𝐴1−𝑞𝐸

𝐺∙𝐴1
]     Equation 37 684 

At night when there is no solar radiation (G=qE=qP=0) the network on Figure 6 685 

simplifies somewhat because the electrical elements become inactive and there is no 686 

solar flux component. The tank loses heat to the absorber at the same rate as the 687 

absorber loses heat to the ambient such that Equation 22 simplifies to q03+q0a=0 and 688 

the electrical and optical terms of Equations 30-32 become zero. The heat loss 689 

coefficient can be expressed in terms of thermal resistances according to Equation 34. 690 

Likewise, combining Equations 14 & 31 yields Equation 35 which enables the heat 691 

retention efficiency to be evaluated. Heat removal factor can be evaluated using 692 

Equation 36 (obtained from inspection of Figure 6) or Equation 37 (obtained by 693 

substituting Equation 34 into Equation 10). It is interesting to note that in the case of 694 

a thermal-only collector (qE=0), inspection of Equation 36 confirms that F→1 when 695 

R0a→∞ or R03→0; F→0 when R03→∞ or R0a→0; and F=0.5 when R03=R0a. 696 

3.2 Thermal diodicity and its effect on performance 697 

Diodicity coefficient (𝜍) is a dimensionless measure of thermal rectification and is a 698 

useful performance measure for thermal diodes. It is commonly defined according to 699 

Equation 38 as a scalar based on the apparent thermal conductivities (k) of the device 700 

in forward (f) heat transfer mode and reverse (r) insulation modes. It can alternatively 701 

be written in terms of thermal power (q), heat flux (q/A), thermal conductance 702 

(U=k/x), or reciprocal thermal resistance (1/R=UA). A reasonable target for diodicity 703 

of PLVTDs in ICSSWH applications would be 𝜍 > 99% to replicate absorber transparent 704 

cover arrangements in ICSSWH devices where the insulation of high quality double 705 

glazing unit is U≈1.2W·m-2K-1 (Twidell & Weir, 2006) and heat transfer across the 706 

absorber should be U>200W·m-2K-1 (Dupeyrat et al., 2011, Deng et al., 2019).  707 

 𝜍 =
𝑘𝑓−𝑘𝑟

𝑘𝑓+𝑘𝑟
  (0 ≥ ≥ )      Equation 38 708 

Heat transfer through the diode component in a BIPV-PLVTD-ICSSWH device is 709 

represented in the lumped parameter model by thermal resistance (R12=1/U12A1). 710 



Inspection of Figure 6 highlights that this is a key component in the absorber-to-store 711 

thermal resistance R03=R01+R12+R23 which has a major influence upon the absorber 712 

temperature (T0), heat removal factor (F) and heat loss coefficients (UL and Usys) as 713 

described by Equations 29-37. Given that the solar thermal and photovoltaic collection 714 

efficiencies are dependent upon F∙UL and T0 respectively, and that the heat retention 715 

behaviour is determined by Ur,sys, it is very clear that the U12 of the PLVTD has a major 716 

influence upon performance. To quantify this, the model described in the preceding 717 

sections has been used to examine how thermal diode resistances affect the 718 

performance of a notional BIPV-PLVTD-ICSSWH with A1=1m2 collection area, u=100L 719 

storage tank, and the component properties set out in Table 3.  720 

Pugsley et al. (2019 & 2020) proposed and validated calculation methods and a 721 

parametric design approach for evaluating the thermal resistances exhibited by a 722 

PLVTD and developed a working prototype. Tests demonstrated that the prototype 723 

(A=0.98m2 and x=70mm deep) achieved reverse mode insulation of 724 

Ur,12=1.7 W·m-2K-1 (equivalent to R12=0.6 K/W) and typical forward mode heat transfer 725 

of Uf,12=38 W·m-2K-1 (equivalent to R12=0.03 K/W) corresponding to diodicity of 726 

≈90%. Analysis concluded that an order of magnitude increase in forward mode 727 

performance could feasibly be realised by improving evaporator wetting uniformity. 728 

Equations 5-10, 32 & 37 have been used to calculate the results on Figures 7 & 8 which 729 

illustrate how varying forward mode thermal conductance (1<Uf,12<1000 W·m-2K-1, 730 

equivalent to 0.001< R12<1 K/W) affects the solar thermal collection efficiency (ηT,col) 731 

and PV/T performance ratio (PRT3). Low diode thermal conductance impairs absorber-732 

to-tank heat transfer causing high absorber temperatures which increase heat losses 733 

(thus poor solar thermal collection efficiencies on Figure 7) and resistive electrical 734 

losses (thus poor PV/T performance ratios on Figure 8). The degree to which low diode 735 

thermal conductance adversely affects performance is dependent upon operating 736 

conditions (G, Ta, T3, wind speed and electrical loads) but follows a similar trend for all 737 

scenarios investigated. A notional “knee” point is apparent at Uf,12≈100 W·m-2K-1, 738 

above which minimal performance benefit is gained for order of magnitude increases. 739 

This knee corresponds closely to the point at which the zero-loss solar thermal 740 

collection efficiencies of bare and covered collectors are approximately equal 741 

(𝜂𝑇,𝑐𝑜𝑙≈75% at N≈0 m2K∙W-1, no wind, no load).  742 

The target benchmark solar thermal collection efficiency (𝜂𝑇,𝑐𝑜𝑙≈60% at 743 

N≈0.035m2K∙W-1 and 2m/s wind speed, established in Table 2) is narrowly missed 744 

(𝜂𝑇,𝑐𝑜𝑙≈58%) for a covered BIPV-PLVTD-ICSSWH with Uf,12≈100 W·m-2K-1 but is 745 



achievable under “no wind” conditions or if the diode thermal conductance is increased 746 

to Uf,12≈500 W·m-2K-1.  Whilst Figure 7 clearly shows that a transparent cover and air 747 

gap is essential for achieving the solar thermal performance benchmark (this is 748 

unachievable for a bare absorber, irrespective of Uf,12 or wind speed), the PR curves 749 

on Figure 8 illustrate how the corresponding reduction in transmissivity reduces the 750 

photovoltaic performance. PV/T performance ratios are worst when diode thermal 751 

conductance is low, ambient temperature is high, and the collector is operating close 752 

to the zero-loss solar thermal condition (N=0). The maximum achievable PR value is 753 

limited by the PV cell packing factor which in the modelled case is A0/A1=75% but with 754 

careful design could feasibly be A0/A1≈90% to enable the benchmarks discussed in 755 

Section 2.2 to be achieved.   756 

Equations 15, 34 & 37 have been used to calculate the results shown in Figure 9 which 757 

illustrate how varying the reverse mode thermal conductance 758 

(0.1<Ur,12<100 W·m-2K-1, equivalent to 0.01< R12<10 K/W) affects the overall heat 759 

loss coefficient (Ur,sysAsys/u) and the corresponding overnight heat retention efficiency 760 

(ηT,ret for a tret=12h period). It is clear that overnight heat loss increases with increasing 761 

diode thermal conductance. High Ur,12 values worsen vulnerability to wind induced heat 762 

losses, especially when the bare absorber is exposed (no cover). On the basis of the 763 

Ur,12=1.7 W·m-2K-1 reported by Pugsley et al. (2020), the results suggest that the BIPV-764 

PLVTD-ICSSWH design described by Figure 1 and Table 3 would achieve ηT,ret>80% 765 

and a heat loss coefficient of Ur,sysAsys/u≈20 W·m-3K-1 which is better than most of the 766 

ICSSWHs encountered in the literature (see Table 2) but somewhat shy of 767 

Ur,sysAsys/u<10 W·m-3K-1 benchmark target. Achieving the benchmark would require the 768 

reverse mode PLVTD thermal conductance to be Ur,12<0.5 W·m-2K-1. Further 769 

interrogation of the model suggests that diode performance is relatively less important 770 

if absorber heat loss is better controlled (double glazing and/or low emissivity surface 771 

treatments) or if the tank is poorly insulated. 772 

  773 



Table 3: Basis and assumptions for the modelled BIPV-PLVTD-ICSSWH  774 

Quantity Value Unit Basis 

Volume of water in storage tank (u) 0.1 m3 Typical tank size reported in literature  

Aperture and absorber area (A1) 1 m2 Typical absorber size reported in literature 

PV cell coverage of absorber area (A0) 0.75 m2 15 strings, each formed of 8 quarter-cell pieces (78x78mm)   

Depth of PLVTD (x12) 70 mm Dimension as discussed by Pugsley et al. (2020)  

Depth of tank (x3) 100 mm Tank volume divided by absorber area 

Absorber-to-ambient conductance (U5a, bare) 
5mm clear acrylic bonded to PV cells, no air gap  

10.9* W∙m-2K-1 Calculated from radiative & convective components as per Twidell & 
Weir (2006) assumes T5=50°C, Ta=15°C, ε5=0.8, ε6=0.9 

Absorber-to-ambient conductance (U5a, covered) 
as above + 30mm air + 3mm clear acrylic cover  

4.0* W∙m-2K-1 
Calculated from radiative & convective components as per Twidell & 
Weir (2006) assumes T5=50°C, Ta=15°C, ε5=0.8 

PV cell-to-absorber thermal conductance (U01) 400 W∙m-2K-1 Polymer bonding layer 0.5mm, thermal conductivity k=0.2 W∙m-1K-1 

PV cell-to-air thermal conductance (U05) 40 W∙m-2K-1 Bonded transparent cover 5mm, thermal conductivity k=0.2 W∙m-1K-1 

Tank wall-to-water thermal conductance (U23)  250 W∙m-2K-1 
Natural convection heating of fluid adjacent to a vertical plate for 
T2=50°C, T3=49°C equations recommended by Pugsley et al. (2020) 

Tank insulation thermal conductance (U3a) 0.25 W∙m-2K-1 Rigid foam insulation 100mm, thermal conductivity k=0.025 W∙m-1K-1 

Optical transmissivity (, bare)  
5mm clear acrylic bonded to PV cells, no air gap  

96 % 
Estimated from optical reflection and absorption loss analysis offered by 
Kalogirou (2009) assuming normal incidence. 

Optical transmissivity (, covered)  
as above + 30mm air + 3mm clear acrylic cover  

88 % 
Estimated from optical reflection and absorption loss analysis offered by 
Kalogirou (2009) assuming normal incidence. 

Optical absorptivity of PV cells () 90 % Value suggested by Dupeyrat et al. (2011) for mc-si PV cells 

Optical emissivity of encapsulated PV cells () 80 % Nominal value for PV with bonded polymer cover, from Zondag (2008)  

Standard power output of PV cell (qSTC) 4.24 W 156x156mm pseudo square mc-si M-2BB solar PV cell (Bosch, 2010) 

Voltage-temperature coefficient (KV:T) -0.37 %/K 156x156mm pseudo square mc-si M-2BB solar PV cell (Bosch, 2010) 

Current-temperature coefficient (KI:T) +0.03 %/K 156x156mm pseudo square mc-si M-2BB solar PV cell (Bosch, 2010) 

Values were chosen to be representative of the BIPV-PLVTD-ICSSWH prototype used for the experimental work (see Part 2 of 2). Stated values 775 
of U5a marked with asterisk* relate to the “no wind” condition. Model accounts for effect of U5a increasing with increasing local wind speed according 776 
to the relation offered by Twidell & Weir (2006). Calculations assume that evaporator wetter pump power is negligible (qp ≈ 0) and that the external 777 
electrical load has a resistance which enables operation at maximum power point. 778 



 779 

Figure 7: Dependence of solar thermal collection efficiency upon forward mode thermal diode conductance (zero electrical load qE=0) 780 

 781 

 782 

Figure 8: Dependence of PV/T Performance Ratio upon forward mode thermal diode conductance  783 
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 784 

Figure 9: Dependence of overnight heat retention performance upon reverse mode thermal diode conductance  785 

 786 

3.3 Behaviour in different climates  787 

Figure 11 compares predicted behaviours of different BIPV-PLVTD-ICSSWH devices to 788 

illustrate the overall influence of the PLVTD upon water storage tank temperature (T3, 789 

assumed fully mixed), diurnal thermal efficiency (ηT,24) and maximum power point 790 

photovoltaic efficiency (𝜂𝐸,𝑚𝑝𝑝) over a multi-day period without thermal load (ie no hot 791 

water draw-offs). Results were calculated using Equations 5-10, 15-21, 32, 34 & 37 792 

based upon the physical attributes described in Figure 1 and Table 3; a wind speed of 793 

2 m/s; data for summertime average daily solar insolation on a vertical equator facing 794 

surface in Rome (H24=12MJ/m2, see Table 1); and corresponding average ambient 795 

temperatures of Ta=25°C during daytime and Ta=19°C at night (NASA, 2019). The 796 

three modelled variants are summarised on Figure 10.  797 
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 798 

Figure 11: Investigated model variants 799 

 800 

Figure 11 shows how tank temperatures (starting at T3=Ta=25°C) rise each day (solar 801 

collection) and fall each night (net heat losses) during an 8-day period of summertime 802 

stagnation (eg no thermal load due to a building being unoccupied during vacations). 803 

All three device variants achieve similar zero-loss solar thermal efficiencies (ηT≈75% 804 

at N=0 m2K·W-1 as per Figure 7) and therefore also achieve similar maximum tank 805 

temperatures (T3≈Ta+13≈38°C) and average electrical efficiencies (ηE≈11%) during 806 

Day 1. However, their differing overnight heat loss coefficients result in differing tank 807 

temperatures by dawn the next day, which causes differences in overall Day 1 diurnal 808 

thermal efficiencies (ηT,24=ηT,col∙ηT,ret) such that the conventional PV/T with separate 809 

tank performs best (Variant C: ηT,24=42%), the BIPV-ICSSWH without thermal diode 810 

performs worst (Variant A: ηT,24=28%) and the BIPV-PLVTD-ICSSWH achieves a good 811 

compromise (Variant B: ηT,24=35%). After 8 days stagnation, tank temperatures have 812 

Heat 
Store 

(B)   BIPV-PLVTD-ICSSWH collector with proven realisable thermal diode 

ς ≈ 90% based upon Uf,12 = 38 W·m-2K-1 and Ur,12 = 1.7 W·m-2K-1 

Typical thermal diode forward and reverse mode conductances as reported by 
Pugsley et al. (2016, 2017 and 2020). 

Heat 
store 

(A)   BIPV-ICSSWH collector without thermal diode 

ς ≈ 0% based upon Uf,12 = Ur,12 = 500 W·m-2K-1 

Generally similar to the device investigate by Ziapour et al. (2014). 

Heat 
Store 

(C)   PV/T collector with near-ideal thermal diode 

ς ≈ 99.98% based upon Uf,12 = 1000 W·m-2K-1 and Ur,12 = 0.1 W·m-2K-1 

This would in principle behave in a similar manner to a fin and tube PV/T 
(Dupeyrat et al., 2011) with a separate indoor insulated water storage tank 
connected via a pumped hydraulic loop. 



risen to T3=46°C, 55°C and 64°C for Variants A, B and C respectively. Consequently, 813 

in terms of Day 8 performances, the conventional PV/T with separate tank performs 814 

worst (Variant C: ηT,24=10.6% and ηE≈10.0%) and the BIPV-ICSSWH without thermal 815 

diode performs best (Variant A: ηT,24=21.4% and ηE≈10.8%). The device with the 816 

BIPV-PLVTD-ICSSWH again achieves a compromise (Variant B: ηT,24=17.1% and 817 

ηE≈10.3%). Figure 11 results were calculated based on average summer conditions 818 

for a south facing wall in Rome. In practice, the ambient temperatures and insolation 819 

levels during a particularly hot and sunny period could be considerably higher than 820 

average, and those typically occurring during winter would be notably lower.  821 

Dupeyrat et al. (2011) suggest that 85°C is an appropriate maximum temperature 822 

limit for PV/T absorbers constructed using conventional Ethylene Vinyl Acetate (EVA) 823 

lamination techniques. Calculations based on H24=20MJ/m2,  Ta=35°C during daytime, 824 

and Ta=25°C at night, and no wind, suggest that maximum summertime tank and 825 

absorber stagnation temperatures could reach a potentially damaging T3≈T0≈106°C in 826 

the case of a conventional PV/T (Variant C) but would be maintained at a lower and 827 

safer maximum temperature of T3≈T0≈86°C in the case of the BIPV-PLVTD-ICSSWH 828 

(Variant B) and would reach only T3≈T0≈67°C in the case of a simple BIPV-ICSSWH 829 

without PLVTD (Variant A). This clearly demonstrates the benefit of the BIPV-ICSSWH 830 

concept in respect of minimising stagnation temperatures. In practice, conventional 831 

PV/T systems require continuous pumping of heat transfer fluid from the collector to 832 

the tank during sunny periods, otherwise much higher absorber stagnation 833 

temperatures will occur (T0>150°C). Inherent electricity demands to run pumps would 834 

significantly reduce net electrical yields. By contrast, a BIPV-ICSSWH or BIPV-PLVTD-835 

ICSSWH approach does not require pumps to operate when there is no thermal 836 

demand, hence the net electrical yield would be higher than for conventional PV/T.  837 

Calculations for a typical winter scenario in Rome based on H24=12.4MJ/m2 (see 838 

Table 1), Ta=14°C during daytime, and Ta=8°C at night, and 5m/s wind, suggest that 839 

the Day 1 diurnal thermal efficiency of a BIPV-PLVTD-ICSSWH (Variant B: ηT,24=30%) 840 

would be notably better than that of a BIPV-ICSSWH without PLVTD (Variant A: 841 

ηT,24=21%), although slightly worse than for conventional PV/T (Variant C: ηT,24=38%). 842 

This clearly demonstrates the benefit of incorporating a PLVTD to reduce overnight 843 

heat losses and thus make heat available during the night and early morning hours. 844 

 845 



 846 

Figure 11: Comparison of tank temperature, diurnal thermal efficiency, and electrical efficiency over a multi-day period   847 

 848 

4 Conclusions 849 

This two-part study examines an alternative space-and-energy-efficient approach to 850 

BIPV/T which combines BIPV, ICSSWH, and PLVTD concepts. This paper (Part 1 of 2) 851 

has reviewed the state-of-the-art for each of the technologies and established the 852 

following benchmark performance targets: 853 

• Solar thermal efficiency 𝜂𝑇,𝑐𝑜𝑙≈60% at N≈0.035m2K∙W-1 and 2m/s wind speed. 854 

• Heat loss coefficients of Ur,sysAsys/A1≈1 W∙m-2K-1 and Ur,sysAsys/u≈10 W∙m-3∙K-1 at 855 

ΔT3a≈25°C and 2m/s wind speed. 856 

• PV/T performance ratios (relative to an ideal PV/T collector) of PRT3=85% and 857 

PRT3=75% for uncovered and covered collectors respectively. 858 

A heat transfer model of a BIPV-PLVTD-ICSSWH façade element was developed to 859 

enable solar thermal collection, photovoltaic generation, and overnight heat retention 860 

behaviours to be evaluated under various operating scenarios. Subsequent work 861 

(presented in Part 2 of 2 of this study) provides experimental validation of the model. 862 

The model was interrogated based on notional A1=1m2 solar absorber area, 75% PV 863 
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cell coverage, and u=100L storage tank to examine how electrical and thermal 864 

performances are influenced by PLVTD diodicity characteristics. Key findings can be 865 

summarized as follows: 866 

• Increasing forward mode PLVTD thermal conductance improves solar thermal 867 

and photovoltaic performances. The degree of improvement gained is dependent 868 

upon operating conditions such as irradiance, ambient temperature, heat 869 

delivery temperature, wind speed and electrical load.  870 

• Benchmark PV and solar thermal collection targets are achievable if the PLVTD 871 

achieves Uf,12>500 W·m-2K-1 and PV cell coverage is >90%, although there is 872 

only minimal benefit (<2%) to be gained by increasing forward mode diode 873 

thermal conductance above the knee value of Uf,12≈100 W·m-2K-1. Lower PLVTD 874 

conductances impair absorber-to-tank heat transfer causing high absorber 875 

temperatures which increase heat and electrical losses.  876 

• Reducing reverse mode PLVTD thermal conductance improves overnight heat 877 

retention performance. Achieving the target benchmark would require 878 

Ur,12<0.5 W·m-2K-1. Excessive heat losses and vulnerability to wind worsen 879 

significantly above a notional threshold of Ur,12≈2 W·m-2K-1, especially when the 880 

absorber is exposed (no cover).  881 

The model was used to predict the multi-day period behaviour of various BIPV-PLVTD-882 

ICSSWH design and operating scenario variants, without thermal load. Key findings 883 

can be summarized as follows: 884 

• During summertime in Rome (insolation H24=12MJ/m2, wind speed 2 m/s, 885 

ambient temperatures Ta=25°C daytime and Ta=19°C at night) diurnal thermal 886 

efficiency of ηT,24=35% and average photovoltaic efficiency of ηE≈11% are 887 

predicted for the base case PLVTD (Uf,12=38 W·m-2K-1 and Ur,12=1.7 W·m-2K-1). 888 

Solar thermal and photovoltaic performances are minimally sensitive to changes 889 

in forward mode PLVTD conductance in the range 38<Uf,12<1000 W·m-2K-1. 890 

• Under particularly hot and sunny conditions (insolation H24=20MJ/m2, no wind, 891 

ambient temperatures Ta=35°C daytime and Ta=25°C at night) the model 892 

predicts that the base case BIPV-PLVTD-ICSSWH would limit maximum tank and 893 

absorber stagnation temperatures to T3≈T0≈86°C without the need to operate 894 

fluid circulation pumps whereas a conventional PV/T system could reach a 895 

potentially damaging T3≈T0≈106°C and would require pumps to be energised 896 



continuously during collection periods to prevent even higher (T0>150°C) 897 

temperatures developing. 898 

• Overnight heat retention is very sensitive to changes in reverse mode PLVTD 899 

conductance such that increasing or decreasing in the range 900 

0.1<Ur,12<500 W·m-2K-1 changes diurnal thermal efficiency by ±7% relative to 901 

the base case (Ur,12=1.7 W·m-2K-1). Pronounced heat losses occur during winter 902 

in the Ur,12 500 W·m-2K-1 case owing to low ambient temperatures and increased 903 

wind speeds and become very reliant on the insulation provided by the 904 

transparent cover. 905 

The passive BIPV-PLVTD-ICSSWH approach to controlling overheating significantly 906 

reduces the risk of stagnation damage and increases net electrical yields compared to 907 

conventional BIPV/T approaches. This alternative approach to BIPV/T could have 908 

positive impacts in the context of realising NZEBs as part of global efforts to tackle the 909 

climate crisis.  910 
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Nomenclature 919 

Latin symbols 920 

A Surface area [m2] 921 

cp Specific heat capacity at constant pressure [J·kg-1 K-1] 922 

FF Photovoltaic Fill Factor [%] 923 

G Solar irradiance [W·m-2] 924 

H Solar insolation [MJ·m-2] 925 

I Electrical current [A] 926 

k Thermal conductivity [W·m-1 K-1] 927 

K Photovoltaic performance correction coefficients [% or %/K] 928 

m Mass [kg] 929 

M Mass flow rate [kg∙s-1] 930 

N Solar Thermal Condition [m2·K·W-1] 931 

q Thermal or electrical power [W] 932 

𝑄[𝑡] Thermal energy, cumulative during time period [MJ] 933 



PR Performance ratio [%] 934 

R Thermal or electrical resistance [K·W-1] 935 

t Time [s] 936 

T Temperature [°C] 937 

�̃�[𝑡] Average temperature, during time period [°C] 938 

u Volume [m3] 939 

U Thermal conductance or heat transfer coefficient [W·m-2 K-1] 940 

V Electrical voltage [V] 941 

x Distance along an axis which is parallel to the PLVTD depth [m] 942 

y Distance along horizontal axis perpendicular to PLVTD depth [m] 943 

z Distance along an axis which is perpendicular to x and y axes [m] 944 

 945 

Greek and other symbols 946 

𝛼 Absorptivity 947 

𝜀 Emissivity 948 

ΔT Temperature difference [°C] 949 

 Efficiency [%] 950 

 Diodicity [%] 951 

 Transmissivity 952 

 953 

Subscripts 954 

0 Photovoltaic cells 955 

1 Planar Liquid-Vapour Thermal Diode, Plate 1 which is the evaporator in forward mode 956 

2 Planar Liquid-Vapour Thermal Diode, Plate 2 which is the condenser on forward mode 957 

3 Hot water storage tank 958 

4 Sidewalls of the Planar Liquid-Vapour Thermal Diode 959 

5 External surface of the solar absorber 960 

6 Transparent element covering solar absorber 961 

0a Between PV cells and ambient environment 962 

03 Between PV cells and hot water storage tank 963 

1a Between solar absorber and ambient environment 964 

12 Between (or average of) the two plates 965 

15 Between the PLVTD and the external surface of the solar absorber (through the laminate) 966 

23 Between the PLVTD and the water storage tank 967 

24 Diurnal period of 24 hours 968 

3a Between water storage tank and ambient environment 969 

3ia  Between water storage tank and ambient environment through insulation 970 

365 Annual period of 365 days 971 

4a Between PLVTD sidewalls and ambient environment 972 

56 Across the air gap between the solar absorber and transparent cover 973 

6a Between the transparent cover and the ambient environment 974 

a Ambient environment 975 

avg Average 976 

col Collection (period of solar absorber illumination, eg daytime) 977 

E Electrical 978 

f Forward mode 979 

h Horizontal orientation 980 



inst Instantaneous 981 

L Loss to ambient environment 982 

load Applied electrical load 983 

mpp Maximum Power Point 984 

oc Open circuit 985 

P Pump 986 

PV Photovoltaic 987 

r Reverse mode 988 

ret Retention (period without solar absorber illumination, eg night-time) 989 

sc Short circuit 990 

STC At Standard Test Conditions 991 

sys Whole system 992 

T Thermal 993 

T3 At the hot water storage tank temperature 994 

I:T Current-Temperature relationship 995 

V:T Voltage-Temperature relationship 996 

V:G Voltage-Irradiance relationship 997 

 998 

Abbreviations 999 

a-si Amorphous silicon 1000 

BIPV Building Integrated PhotoVoltaics 1001 

BISTS Building Integrated Solar Thermal Systems 1002 

CdTe Cadmium Telluride 1003 

CIGS Copper Indium Gallium Selenium 1004 

ICSSWH Integrated Collector-Storage Solar Water Heater 1005 

mc-si Mono-crystalline silicon 1006 

NZEB Net Zero Energy Building 1007 

pc-si  Poly-crystalline silicon 1008 

PLVTD Planar Liquid-Vapour Thermal Diode 1009 

PV/T Photovoltaic-Thermal 1010 
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