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The theoretical limit for absorption of energy in monochromatic water waves of wave-8

length λ by axisymmetric wave energy converters operating in rigid-body motion was9

established in the 1970s. The maximum mean power generated by a device absorbing10

due to heave motion is equivalent to that contained in λ/2π length of incident wave11

crest. For devices absorbing through surge and/or pitch motions the so-called capture12

width doubles to λ/π. For devices absorbing in both heave and surge/pitch the capture13

width increases further to 3λ/2π. In this paper it is demonstrated it is theoretically14

possible to extend the capture width for axisymmetric wave energy converters without15

bound through the use of generalised (non-rigid body) modes of motion. This concept16

will be applied to vertical cylinders whose surface is surrounded by an array of narrow17

vertical absorbing paddles. A continuum approximation is made to the paddle motion18

which simplifies the problem and allows strategies to be developed for setting the springs19

and dampers that control the power absorption. Results demonstrate that a cylinder of20

fixed size can absorb as much power as demanded from a plane incident wave although21

the practical limitations of linear theory are rapidly breached as that demand increases22

unless the size of the cylinder increases in proportion. In this paper we do not explore23

these limits in detail or further practical design considerations, such as imposing motion24

constraints. The continuum approximation is tested against a discrete paddle simulation25

for accuracy. [doi:10.1017/jfm.2021.645]26

1. Introduction27

Ocean waves offer an abundant source of clean energy, but the reality of designing28

and operating an economically viable, efficient and robust solution for harnessing that29

energy has proved immensely challenging. There are many reasons for this which are30

well documented (Yemm et al. 2012; Garrad 2012; Salter 2016; Cruz 2008). The biggest31

current challenge to continued interest and investment in the development of ocean wave32

energy renewables stems from the recent fall in the cost of production of energy from33

alternative renewable sources, principally wind and solar, now the cheapest form of energy34

production in many parts of the world. For example wind and solar in the UK is 30-50%35

cheaper in 2020 than the UK government’s previous estimate made just 4 years earlier36

(UK Department for Business, Energy & Industrial Strategy 2020). On the other hand,37

it has been anticipated (UK Department of Energy & Climate Change 2011) that a38

carbon neutral future will require renewable ocean energy to contribute a significant and39

vital part of the energy mix. Thus, in addition to existing challenges there is an even40

sharper focus on developing wave energy converters (WECs) which are underpinned by41

† Email address for correspondence: siming.zheng@plymouth.ac.uk
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high efficiency. Practically this requires developing WECs with the capacity to produce42

large amounts of energy from a single installation.43

This demand presents a fundamental problem since it has long been known that there44

are theoretical limits on power absorption for certain types of WEC. For long so-called45

terminator devices which are aligned broadside to the oncoming wave direction it is46

theoretically possible, under classical linearised water wave theory, to absorb up to 100%47

of the incident wave energy along most of their length (e.g. Salter Duck, Bristol Cylinder48

– see Cruz (2008)). Once regarded as the most promising solution, the scaling up of49

capacity requires additional device length with its associated costs.50

However, for axisymmetric devices (which tend to be classified as point absorbers) it51

is theoretically possible to absorb all of the wave energy from a length of incident wave52

crest which exceeds the physical dimensions of the device. Specifically the power available53

to a rigid axisymmetric wave absorber depends only on the wavelength, λ, in the manner54

described in the abstract. Practically, it is hard to exploit since device motions increase55

as the device size reduces and eventually must become constrained (Evans 1981; Pizer56

1993). For attenuator devices aligned with the incoming wave direction (e.g. Pelamis)57

theoretical limits are less clear although a similar principle applies: it is possible to absorb58

energy from a much greater length of incident wave crest than the slender width of the59

device. There are sound arguments (see Mei (1983)) that the amount of energy captured60

can increase with the number of absorbing mechanisms placed along the length of the61

attenuator (articulations between Pelamis raft sections, for example). Again there are62

practical considerations which imply that attenuators either need to be of considerable63

length and/or require constraints to be applied on the motion as in Newman (1979),64

Ancellin et al. (2020) to ensure predictions remain within the limitations of the underlying65

theory.66

A comprehensive study carried out by Babarit (2015) (see Babarit’s Fig. 16) catalogu-67

ing many of the different types of wave energy converter design highlights the role of68

these limits.69

In this paper we return to axisymmetric devices and, instead of allowing them to70

operate and absorb energy in the usual rigid-body modes of motion, consider devices71

which operate in “generalised modes” of motion, reminiscent of ideas developed in72

Newman (1979), Newman (1994). This involves allowing the surface of the device to73

move with more degrees of freedom than would be afforded if the surface of the device74

were rigid. In this paper we imagine that this effect is created by placing a large array of75

narrow paddles around the surface of a vertical cylinder. There may be other approaches76

which produce a similar effect through hydroelasticity, for example. Indeed, Garnaud77

& Mei (2009) have previously shown that a compact array of floating buoys extracting78

power in heave and distributed over a circular region of the surface can absorb more79

than the equivalent size of a rigid cylinder. Zheng et al. (2020) have demonstrated how80

a structured porous cylinder can be capable of exceeding the equivalent rigid body81

absorption limits. Very recently, Michele et al. (2020) have used a distributed power82

take-off system connecting a floating elastic plate to the bed to generate power.83

2. General theory and motivation84

There are a number of different ways of developing the theoretical framework which
describes the capacity of a WEC to absorb power from an incoming plane wave. One
such approach (see Mei (1983)) is summarised below. A plane monochromatic wave of
wavelength λ = 2π/k, angular frequency ω and amplitude A travelling in the positive
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x-direction on water of depth h is described by the velocity potential

φpw(x, y, z) = − iAg

ω
eikxψ0(z) (2.1)

where ω =
√
gk tanh kh is the assumed radian frequency of motion, related to the

wavenumber k and ψ0(z) = cosh k(z + h)/ cosh kh is the depth eigenfunction associated
with propagating waves. Thus, inviscid incompressible linearised water wave theory is in
operation and a time factor of e−iωt has been suppressed so that φpw is a solution of the
governing equations

∇2φ = 0, in the fluid (2.2)

with

φz = 0, on z = −h (2.3)

and

φz − (ω2/g)φ = 0, on z = 0. (2.4)

The mean (time-averaged over a period) flux of energy per unit length of wave crest
contained in the plane wave is calculated from

Ppw =
1

2
Re

{∫ 0

−h
iωρφpw

∂φ∗pw
∂x

dx

}
=

1

2
ρg|A|2cg (2.5)

where the asterisk denotes complex conjugation and cg = dω/dk = 1
2 (ω/k)(1 +85

2kh/ sinh 2kh) is the group velocity.86

The incident plane wave defined by (2.1) can be expressed as the sum of incoming and
outgoing circular waves by writing (e.g. Mei (1983))

φpw(r, θ, z) = φin(r, θ, z) + φout(r, θ, z) (2.6)

where

φin = − iAg

2ω
ψ0(z)

∞∑
n=0

εninH(2)
n (kr) cosnθ (2.7)

and

φout = − iAg

2ω
ψ0(z)

∞∑
n=0

εninH(1)
n (kr) cosnθ (2.8)

where ε0 = 1 and εn = 2 for n > 1. The mean flux of energy to/from infinity87

attributed to the nth circular component of (2.8)/(2.7) has the value Pn = (εnλ/2π)Ppw.88

Contrasting font styles indicate different dimensions of Ppw and Pn (units kW/m and89

kW respectively).90

Consider plane waves incident upon a device which we assume for simplicity is sym-
metric with respect to the incident wave heading. Then far away from the device

φ(r, θ, z) ∼ φpw(r, θ, z)− iAg

ω
ψ0(z)

∞∑
n=0

εninan,0H
(1)
n (kr) cosnθ (2.9)

where an,0 are coefficients determined by the shape and dynamics of the device as well
as the wave frequency. When written as

φ = φin −
igA

2ω
ψ0(z)

∞∑
n=0

εnin(2an,0 + 1)H(1)
n (kr) cosnθ (2.10)
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it can be seen that the power lost to the device is

P =
Ppwλ

2π

∞∑
n=0

εn
(
1− |2an,0 + 1|2

)
. (2.11)

It follows that a non-absorbing device (including fixed, freely floating, or those con-91

strained to move with sprung mooring lines) must have scattering coefficients, an,0 ≡ aSn,0,92

say, satisfying |2aSn,0 + 1| = 1.93

For example, consider a rigid vertical cylinder extending through the depth of the fluid
for which the potential everywhere in the fluid domain may be written (e.g. MacCamy
& Fuchs (1954))

φ(r, θ, z) = − iAg

ω
ψ0(z)

∞∑
n=0

εnin

(
Jn(kr)− J ′n(ka)

H
(1)
n

′
(ka)

H(1)
n (kr)

)
cosnθ (2.12)

wherein aSn,0 = −J ′n(ka)/H
(1)
n

′
(ka) and it is confirmed that |2aSn,0 + 1| = 1.94

More importantly, (2.11) tells us a device with the capacity to absorb energy can95

extract up to the maximum mean power, Pn, from the nth circular component of the wave96

field if its dynamics can be orchestrated to meet the condition an,0 = − 1
2 . For this is to97

happen the device must have the capacity to radiate waves through motions responsible98

for absorbing wave energy in the nth circular mode, i.e., in proportion to cosnθ. For99

example, rigid-body heave motion of an axisymmetric device radiates waves in the zeroth100

circular mode, and so its maximum power absorption is limited to Pmax = P0, whilst101

surge and pitch motions radiate in the n = 1 circular mode giving rise to a maximum102

of Pmax = P1; combined heave and surge/pitch provide a maximum of Pmax = P0 + P1.103

Thus we recover the well-known theoretical limits derived independently by Newman104

(1976), Evans (1976), Budal & Falnes (1977) and summarised in the abstract.105

The capacity to absorb energy in excess of these limits thus lies in the ability to radiate106

in multiple circular modes. This is a well-understood concept and approaches to exploit107

this have been made by Newman (1979), Haren & Mei (1979), Ancellin et al. (2020) for108

elongated attenuator WEC devices and when WECs are comprised of multiple distinct109

absorbers such as Garnaud & Mei (2009), Wolgamot et al. (2012). In both cases the110

operation is characterised by multiple degrees of freedom.111

In this paper we apply the principle to axisymmetric devices by imagining that a WEC112

device is fitted with a large number (N , say) of narrow vertical paddles across its surface113

which oscillate normal to that surface. These paddles could be hinged along a level below114

the water surface or perhaps operate with a linear piston-like motion directed from the115

vertical axis. We suppose the paddles have the capacity to convert hydrodynamic forces116

into useful power.117

The N paddles could by connected to their own springs and dampers and operate
independently from one another. However, for the moment, let us imagine that the paddle
operation can be designed to oscillate as a superposition of M + 1 (say) modes which,
when absorbing, radiate in the far-field with a variation of cosnθ for 0 6 n 6 M . For
example, the n = 0 mode corresponds to the paddles operating synchronously and, in the
n = 1 mode, the paddle oscillation is modulated by cos θ. Then it is possible, in principle
at least, to design the paddle springs and dampers such that

Pmax =
Ppwλ
π

(M + 1
2 ). (2.13)

In this paper we focus on a circular cylinder extending through the depth covered118

with narrow vertical paddles with the capacity to absorb, but do not suppose the type of119
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Figure 1. Sketch of an axisymmetric device: (a) bird’s-eye view of the device with hinged
paddles; (b) section of the device with hinged paddles; (c) section of the device with piston-like
paddles.

complicated engineering solutions or control theory suggested above is needed to operate120

the paddles (see figure 1). Instead, each paddle is supposed to operate independently with121

their own spring and damper and the paper explores strategies to design the springs122

and damper characteristics with a view to developing power beyond that available to123

an equivalent cylinder operating in rigid body motion thereby showing that (2.13) is124

theoretically attainable. This investigation is assisted by the development of a continuum125

approximation to the arrangement of narrow paddles across the surface of the cylinder.126

The accuracy of this approximation is assessed against an exact description of the127

hydrodynamic/mechanical problem for a finite number of paddles.128

The aim of the current work is to highlight the potential for a single axisymmetric129

device fitted with multiple paddles to absorb power in excess of the power from rigid body130

motion. It does not, however, address the important issue of adding motion constraints131

in order that the underlying linearised water wave framework is not compromised.132

3. A cylindrical wave energy converter: governing equations133

A vertical cylinder of radius a centred on the z-axis extends through a fluid of density134

ρ and depth h with a mean free surface on z = 0. An array of N � 1 identical narrow135

vertical paddles are attached to the surface of the cylinder having width 2πa/N assumed136

to be much smaller than their length c (no larger than the fluid depth, h) and the137

wavelength λ. The angular coordinate of the centre of the nth paddle is denoted θn =138

(2n − 1)π/N , n = 1, 2, . . . , N . Each rigid paddle can move in a radial direction along139

its central axial plane and the motion of the nth paddle is resisted by a linear spring140

with spring constant κn and a linear damper with damping rate γn through which power141

is extracted. In motion, the nth paddle oscillates through a small displacement (linear142

or angular) Sn(t) = Re{σne−iωt} where the time dependence of radian frequency ω has143

been assumed.144

The motion of the fluid is governed by a potential φ(r, θ, z) which satisfies (2.2), (2.3)
and (2.4). Additionally, the kinematic condition connecting the velocity of the fluid to
that of the paddles normal to the cylinder surface is written

∂φ

∂r

∣∣∣∣
r=a

= −iωσnf(z) cos(θ − θn), −h < z < 0, θn − π/N < θ < θn + π/N (3.1)

for n = 1, 2, . . . , N and cos(θ − θn) is a geometric factor due to the curvature of the
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paddle surface. In (3.1), f(z) encodes the spatial variation of the displacement along
the length of the paddle. For example, a paddle operating in a radial piston-like motion
along a submerged extent c 6 h will be defined by f(z) = 1, −c < z < 0 and f(z) = 0,
−h < z < −c whereas a paddle operating as a hinged flap pivoted along its bottom edge
along z = −c (c < h) would be defined by

f(z) =

{
z + c, −c < z < 0,

0, −h < z < −c.
(3.2)

The equation of motion for the nth paddle is expressed by

−ω2M(2πa/N)σn = −(κn + C(2πa/N))σn + iωγnσn +Xn (3.3)

whereM is the mass (or moment of inertia) per unit width, C accounts for any buoyancy
restoring force (or moment) per unit width present and

Xn = −iωρ

∫ 0

−h

∫ θn+π/N

θn−π/N
φ(a, θ, z)f(z) cos(θ − θn) adθ dz (3.4)

is the hydrodynamic wave force (or moment). The cosine terms appearing in (3.1) and145

(3.4) are geometrical factors arising from the component normal to the assumed curved146

surface of the paddles.147

When N is large and the width of the paddle, 2πa/N , is small with respect to the
wavelength λ and the length of the paddle, c, we assume that σn may be replaced by dis-
crete evaluations, σ(θn), of a continuous function σ(θ) allowing (3.1) to be approximated
by

∂φ

∂r

∣∣∣∣
r=a

= −iωσ(θ)f(z), −h < z < 0, 0 < θ 6 2π. (3.5)

Similarly, we let κn = κ(θn)(2πa/N) and γn = γ(θn)(2πa/N) where κ and γ are
continuous functions representing the spring force (or torque) and damping rate per
unit width whilst (3.4) becomes

Xn =
2aπ

N
X(θn) ≈ −iωρ

2aπ

N

∫ 0

−h
φ(a, θn, z)f(z) dz. (3.6)

Then the N discrete equations of motion for the N paddles in (3.3) are approximated by
the θ-continuous equation of motion

[κ(θ) + C − ω2M− iωγ(θ)]σ(θ) = X(θ), 0 < θ 6 2π. (3.7)

It follows that the combined dynamic and kinematic boundary condition on r = a is

[κ(θ) + C − ω2M− iωγ(θ)]
∂φ

∂r

∣∣∣∣
r=a

= −ω2ρf(z)

∫ 0

−h
φ(a, θ, z)f(z) dz (3.8)

for −h < z < 0 and 0 < θ 6 2π. We write this as

Λ(θ)ha
∂φ

∂r

∣∣∣∣
r=a

= f(z)

∫ 0

−h
φ(a, θ, z)f(z) dz (3.9)

where

Λ(θ) =
M− ω−2(κ(θ) + C) + iω−1γ(θ)

ρha
. (3.10)
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4. Solution for narrow paddles148

Following the description of the plane wave in (2.1) we can write the full depth-
dependent potential satisfying (2.2), (2.3) and (2.4) as the expansion

φ(r, θ, z) = − igA

ω

∞∑
m=0

ϕm(r, θ)ψm(z) (4.1)

over all depth eigenfunctions

ψm(z) = cos km(z + h)/ cos(kmh) (4.2)

that arise from separating variables: km are the increasing sequence of positive roots of
−ω2/g = km tan kmh and (see, e.g., Mei (1983)). The depth eigenfunctions defined in
(4.2) alongside ψ0(z) defined after (2.1) with k0 = −ik satisfy the orthogonality relation

1

h

∫ 0

−h
ψn(z)ψm(z) dz = Nnδmn (4.3)

for all n,m = 0, 1, 2, . . . where

Nn = 1
2 (1 + sin(2knh)/(2knh))/ cos2(knh). (4.4)

The functions ϕm(r, θ) are given by

ϕ0(r, θ) =

∞∑
n=0

εnin
(
Jn(kr) + an,0H

(1)
n (kr)

)
cosnθ (4.5)

and

ϕm(r, θ) =

∞∑
n=0

εninan,mKn(kmr) cosnθ (4.6)

for m > 1 and Kn(·) are modified Bessel functions.149

We define

Fn =
1

h

∫ 0

−h
ψn(z)f(z) dz, n = 0, 1, . . . (4.7)

as constants which can be calculated for a given f(z). Using (4.1) in (3.9) gives

Λ(θ)a

∞∑
m=0

∂ϕm
∂r

(a, θ)ψm(z) = f(z)G(θ) (4.8)

where

G(θ) =
1

h

∫ 0

−h

∞∑
m=0

ϕm(a, θ)ψm(z)f(z) dz =
∞∑
m=0

Fmϕm(a, θ). (4.9)

It follows after using (4.7) again, that

Λ(θ)aNm
∂ϕm
∂r

(a, θ) = FmG(θ), 0 < θ 6 2π (4.10)

for all m = 0, 1, . . . and so

∂ϕm
∂r

(a, θ) =
N0Fm
NmF0

∂ϕ0

∂r
(a, θ). (4.11)

Application of this relation to (4.5) and (4.6) gives

an,m =
kFmN0

kmF0NmK ′n(kma)
(J ′n(ka) + an,0H

(1)
n

′
(ka)) (4.12)
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for m > 1, after equating coefficients of cosnθ. This important relation illustrates that the150

dependence of the fluid motion through the depth is set by the function f(z) describing151

the vertical displacement of the paddle motion.152

In particular, using (4.12) in (4.5) and (4.6) allows us to express the general solution
(4.1) in the form

φ(r, θ, z) = − igA

ω

∞∑
n=0

εninφn(r, z) cosnθ (4.13)

where

φn(r, z) = (Jn(kr) + an,0H
(1)
n (kr))ψ0(z)

+ (J ′n(ka) + an,0H
(1)
n

′
(ka))

∞∑
m=1

kFmN0Kn(kmr)

kmF0NmK ′n(kma)
ψm(z) (4.14)

is expressed in terms of an,0 only.153

We will also find it convenient to write

G(θ) =

∞∑
n=0

εninGn cosnθ (4.15)

where, from the definition implied by its introduction in (4.8),

Gn = F0(Jn(ka) + an,0H
(1)
n (ka)) +

kaN0

F0
(J ′n(ka) + an,0H

(1)
n

′
(ka))En (4.16)

and we have defined

En =

∞∑
m=1

F 2
mKn(kma)

kmaNmK ′n(kma)
. (4.17)

4.1. Equal springs and dampers154

We let κ(θ) = κ and γ(θ) = γ so that

Λ(θ) =
M− (κ+ C)/ω2 + iγ/ω

ρha
≡ Λ0, (4.18)

say, is a constant and it follows that the boundary condition (3.9) applies to each circular
wave component thus

Λ0ha
∂φn
∂r

∣∣∣∣
r=a

= f(z)

∫ 0

−h
φn(a, z)f(z) dz. (4.19)

Substituting in (4.14), multiplying through by ψ0(z) and integrating over −h < z < 0
gives

kaΛ0(J ′n(ka) + an,0H
(1)
n

′
(ka))N0 = F0Gn (4.20)

where Gn is given by (4.16). Note that integrating over −h < z < 0 with other depth155

functions ψm(z) for m > 1 does not provide any new information as the dependence on156

the vertical has already been incorporated into the solution.157

Thus we can calculate an,0 explicitly from substituting (4.16) into (4.20) and rearrang-
ing to get

an,0 = − ΓnJ
′
n(ka)− Jn(ka)

ΓnH
(1)
n

′
(ka)−H(1)

n (ka)
(4.21)
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where

Γn =
kaN0

F 2
0

(Λ0 − En) . (4.22)

The power generated by the paddles is subsequently calculated using (2.11). After
some lengthy but routine algebra requiring the use of the following Wronksian identity
for Bessel functions

Jn(x)Y ′n(x)− J ′n(x)Yn(x) = 2/(πx) (4.23)

(Abramowitz & Stegun (1964, §9.1.16)) we find that

P =
Ppwλ

2π

(
8N0γ

πωρhaF 2
0

) ∞∑
n=0

εn

|ΓnH(1)
n

′
(ka)−H(1)

n (ka)|2
. (4.24)

Although explicit, this expression above for the power is not particularly informative.158

For example, the maximum power available to each circular mode, Pn = εnλ/2π, is not159

evident in the form given in (4.24), nor is it easy to see how (4.24) could be used to160

optimise P with respect to the spring and damping parameters κ and γ.161

We can, however, derive expressions for κ and γ which maximise the power absorbed in162

any individual circular mode. This can be done in one of two ways. The first is to isolate163

the mth component, Pm, from the sum in (4.24) and then set ∂Pm/∂κ = ∂Pm/∂γ = 0.164

It is easier, though, to use the theoretical framework developed in §2 and impose
am,0 = − 1

2 in (4.21) as a condition for maximum power absorption from the mth circular
wave component and this yields the expression

Γm =
H

(2)
m (ka)

H
(2)
m

′
(ka)

=
(Jm(ka)J ′m(ka) + Ym(ka)Y ′m(ka)) + 2i/(πka)

|H(2)
m

′
(ka)|2

(4.25)

using (4.23) once again. The coefficients an,m for n 6= m are subsequently defined by165

(4.12).166

Equating (4.25) with the definition of Γn in (4.22) implies a complex condition to be
satisfied by Λ0, defined here by (4.18) and equating real and imaginary parts gives the
conditions

γ

ωρha
=

2F 2
0

πk2a2N0|H(2)
m

′
(ka)|2

(4.26)

and
M− ω−2(κ+ C)

ρha
=
F 2
0 (Jm(ka)J ′m(ka) + Ym(ka)Y ′m(ka))

kaN0|H(2)
m

′
(ka)|2

+ Em. (4.27)

These two equations define κ and γ for absorption of the maximum power, Pm, from the167

mth circular wave component.168

4.2. Unequal springs and dampers169

Let us now assume that the springs and dampers can vary with position around the
cylinder so that the boundary condition (3.9) remains as

Λ(θ)ha
∂φ

∂r

∣∣∣∣
r=a

= f(z)

∫ 0

−h
φ(a, θ, z)f(z) dz (4.28)

with

Λ(θ) =
M− ω−2(κ(θ) + C) + iω−1γ(θ)

ρha
=

∞∑
m=0

εmΛm cosmθ (4.29)
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once expressed as a Fourier series. After substituting in the partial wave decomposition
(4.13), multiplying by cos pθ and integrating over 0 < θ 6 2π the result can be expressed
either as

1

2

∞∑
m=0

εmΛma

[
i|p−m|

∂φ|p−m|

∂r
+ ip+m

∂φp+m
∂r

]
r=a

= f(z)ipGp (4.30)

where Gp is defined by (4.16) or as

1

2

∞∑
n=0

εnin
∂φn
∂r

∣∣∣∣
r=a

a
(
Λ|p−n| + Λp+n

)
= f(z)ipGp (4.31)

depending on how one chooses to eliminate the summation variables through the orthog-170

onality of the product of three cosines.171

As in the previous section, there are two ways of proceeding. One is to imagine that
the setting for the springs and dampers have been made such that Λm are presumed
known and then use the system above to determine an,0 and, subsequently, the power
P . Substituting (4.14) and (4.16) into (4.31), multiplying by ψ0(z) and integrating over
−h < z < 0 gives the system of equations

ap,0

[
H(1)
p (ka) + ip

kaN0

F 2
0

EpH
(1)
p

′
(ka)

]
− kaF 2

0

2N0

∞∑
n=0

an,0εninH(1)
n

′
(ka)

(
Λ|p−n| + Λp+n

)
=

−
[
Jp(ka) + ip

kaN0

F 2
0

EpJ
′
p(ka)

]
+
kaF 2

0

2N0

∞∑
n=0

εninJ ′n(ka)
(
Λ|p−n| + Λp+n

)
(4.32)

for p = 0, 1, . . .. When Λn = 0 for n > 1 and Λ(θ) = Λ0, a constant, (4.32) reduces to172

(4.21).173

However, we also have the opportunity to design the settings of springs and dampers
to control the device performance and so we treat Λm as unknown and proceed as if an,0
are prescribed. Following the same procedure as above but with (4.30) replacing (4.31)
leads to

kaN0

2F 2
0

∞∑
m=0

εmΛm
(
Q|p−m| +Qp+m

)
=

ipGp
F0

p = 0, 1, . . . (4.33)

where Qn = in(J ′n(ka) + an,0H
(1)
n

′
(ka)). With a view to reaching the limit (2.13) set

out in the introduction, albeit via a different route, we set an,0 = − 1
2 for n 6 M and

an,0 = −J ′n(ka)/H
(1)
n

′
(ka) for n > M (corresponding to a non-absorbing cylinder – see

Section 2) so that

Qn =

{
1
2 inH

(2)
n

′
(ka), n 6M

0, n > M
(4.34)

and the right-hand side of (4.33) is

ipGp
F0

=

 1
2 ip(H

(2)
p (ka) + (kaN0/F

2
0 )EpH

(2)
p

′
(ka)), p 6M

2ip+1/(πkaH
(1)
p

′
), p > M.

(4.35)

The infinite system of equations (4.33) is then subject, for numerical purposes, to174

truncation subject to suitable convergence for a given M .175
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This process above describes how to fix the values of Λm by tuning for maximum power176

from the first M + 1 circular modes at a specified frequency. At other frequencies an,0177

will need to be determined from (4.32) in terms of the fixed values of Λm.178

Other design strategies could be adopted. For example, there may be benefits to179

distributing the capacity to absorbing the maximum power from different circular modes180

across a range of frequencies. This might mitigate against overloading the device at single181

frequency and could improve its overall performance in real sea states. It’s not yet clear182

from the theory developed above how to design Λm for such an outcome, other than183

perhaps by brute force numerical optimisation.184

5. A discrete paddle calculation185

The previous sections have concentrated on a continuum description of the paddle186

motion and this has allowed us to develop particular strategies for selecting spring and187

damper settings. It is possible to construct solutions for the original arrangement of N188

discrete paddles. Although this does not lead to the same mathematical insight, it will189

allow the accuracy of the continuum description of the absorbing cylinder to be assessed.190

What follows is a standard linear decomposition method (e.g. Mei (1983)) in which we
write

φ = φS +

N∑
q=1

(−iωσq)φ
(q)
R (5.1)

where φS is the scattering problem, subject to an incident plane wave (2.1) and satisfying

∂φS
∂r

∣∣∣∣
r=a

= 0, 0 < θ 6 2π, − h < z < 0 (5.2)

whilst φ
(q)
R is the radiation potential associated with the forced motion of the qth paddle

and satisfying

∂φ
(q)
R

∂r

∣∣∣∣∣
r=a

=

{
f(z) cos(θ − θq), θq − π/N < θ < θq + π/N

0, otherwise.
(5.3)

The solution to the scattering problem for φS is given in (2.12) with an,0 ≡ aSn,0 =

−J ′n(ka)/H
(1)
n (ka). We can take advantage of the earlier theory to write the general

expansion for the radiation potential as

φ
(q)
R =

∞∑
n=0

εninb
(q)
n,0

[
H(1)
n (kr)ψ0(z) +H(1)

n

′
(ka)

∞∑
m=1

kN0FmKn(kmr)

kmNmF0K ′n(kma)
ψm(z)

]
cosnθ

(5.4)
which takes account of the depth dependence f(z) of the paddle. Using (5.4) in (5.3) and
the orthogonality of cosnθ and ψm(z) determines the expansion coefficients as

b
(q)
n,0 =

i−nF0Cqn

2πkN0H
(1)
n

′
(ka)

(5.5)
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where

Cqn =

∫ θq+π/N

θq−π/N
cos(θ − θq) cosnθ dθ

=


( 1
2 sin(2π/N) + π/N) cos θq, n = 1(
sin((n+ 1)π/N)

n+ 1
+

sin((n− 1)π/N)

n− 1

)
cos(nθq), n 6= 1.

(5.6)

The wave force upon the pth paddle is similarly decomposed as

Xp = XS,p +

N∑
q=1

(−iωσq)X
(q)
R,p (5.7)

where

XS,p = −iωρ

∫ 0

−h

∫ θp+π/N

θp−π/N
φS(a, θ, z) cos(θ − θp)f(z) adθdz

= −2iρghAF0

πk

∞∑
n=0

εninCpn

H
(1)
n

′
(ka)

(5.8)

after use of a number of previous results. Similarly

X
(q)
R,p = −iωρ

∫ 0

−h

∫ θp+π/N

θp−π/N
φ
(q)
R (a, θ, z) cos(θ − θp)f(z) adθdz

= −iωhaρ

∞∑
n=0

εninb
(q)
n,0

[
H(1)
n (ka)F0 +H(1)

n

′
(ka)

∞∑
m=1

kN0F
2
mKn(kma)

kmNmF0K ′n(kma)

]
Cpn.

(5.9)

It is common practice to decompose complex-valued radiation forces into real added
inertia and radiation damping components:

X
(q)
R,p = iωApq −Bpq. (5.10)

The equation of motion for the nth paddle in (3.3) is now written

(
κn + C(2πa/N)− iωγn − ω2M(2πa/N)

)
σn −

N∑
m=1

(ω2Anm + iωBnm)σm = XS,n (5.11)

for n = 1, 2, . . . , N . This represents an N × N system of equations for the unknown191

complex-valued paddle displacement amplitudes σn.192

Subsequently, the power generated by the device can be calculated in at least two
independent ways. One is to see from (5.1), (5.4) that the total radiated wave potential
is

φR ∼
N∑
q=1

(−iωσq)

∞∑
n=0

εninb
(q)
n,0H

(1)
n (kr) cosnθ, as kr →∞ (5.12)

and use this with φS to calculate the power in outgoing circular waves and subtract it
from the incoming circular waves.

φout ∼ ψ0(z)

∞∑
n=0

εnin

(
N∑
q=1

(−iωσq)b
(q)
n,0 +

iAg

ω

J ′n(ka)

H
(1)
n

′
(ka)

)
H(1)
n (kr) cosnθ (5.13)
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as kr →∞, and so we can use the expression (2.11) for the power where

an,0 =
ω2

Ag

N∑
q=1

σqb
(q)
n,0 −

J ′n(ka)

H
(1)
n

′
(ka)

. (5.14)

The other method is to calculate the power generated by each of the paddles and sum
over all N paddles to give which results in

P =
ω2

2

N∑
q=1

γq|σq|2. (5.15)

Both expressions are calculated numerically to check the accuracy of the numerical code193

and produce graphically indistinguishable results.194

6. Results195

The power absorption of the cylinder will be measured by using the dimensionless
capture factor, defined as

η =
2πP

λPpw
. (6.1)

A value of η = 1 thus represents the maximum power capable of being absorbed by a196

rigid axisymmetric device operating in heave; η = 3 is the maximum power that a rigid197

body can absorb in any combination of all rigid body motions. Values of η > 3 therefore198

indicate that the cylinder is absorbing power in excess of the capacity of a traditional199

axisymmetric wave energy absorbing device. Many of the results will involve plotting η200

against dimensionless wavenumber ka (= 2πa/λ) and we have chosen to fix the depth201

against the cylinder radius with a/h = 1 throughout the results (changing this value202

does not alter the qualitative nature of results). This means ka . 1
2 represents long203

waves with respect to both the cylinder diameter and the water depth whereas ka ' 5204

implies a wavelength comparable to the cylinder radius.205

The paddles are given a uniform density, ρs, and thickness, d. For paddles hinged along206

the centre of the bottom edge M = 1
3ρsdc(c

2 + d2/4) represents the moment of inertia207

per unit width about the point of rotation C = 1
12ρgd

3 is the buoyancy moment per unit208

width.209

For paddles operating in piston-like motion we will assign values to dimensionless
quantities

M̄ =M/(ρah), C̄ = C/(ρga), κ̄ = κ/(ρga), γ̄ = γ/(ρag1/2h1/2). (6.2)

and for hinged paddles each right-hand side above is additionally divided by c2.210

Numerically, we shall consider values of M̄ = 0.1, C̄ = 0 for piston-like operation and211

M̄ = 0.034, C̄ = 0.0003 for hinged motion. Whilst we are not trying to prescribe exact212

engineering parameters we have based these values on reasonable estimates of a = 10 m,213

h = 10 m, ρ = 1025 kgm−3 and paddles with c = 5 m, d = 1 m and density of ρs = 2ρ.214

Our principle interest will be in adjusting the spring and damper settings to assess the215

performance of the device in relation to the theory we have developed.216

We start using the continuous paddle distribution approximation to assess the perfor-217

mance for a range of spring and damper constants, κ̄ and γ̄ in figures 2 and 3. It can be218

seen that the rigid-body limit of η = 3 is exceeded for values of ka & 1 and one can see219

that generally softer springs provide better performance for lower values of ka and vice220

versa.221
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Figure 2. Capture factor against dimensionless wavenumber for κ̄ = 0.3: (a) piston-like
paddles; (b) hinged paddles.

Figure 3. Capture factor against dimensionless wavenumber for γ̄ = 0.3: (a) piston-like
paddles; (b) hinged paddles.

Instead of fixing the springs and dampers, we implement the optimisation outlined in222

§4.1 which provides a recipe for setting equal spring and damper settings to extract the223

maximum available power from any given circular mode component, m, in the incident224

wave. Results are illustrated in figure 4. In subfigures (b) and (c) the variation of the225

optimal values of κ̄ and γ̄ with frequency are shown alongside the resulting capture factor226

in figure 4(a). According to the optimisation strategy, when m = 0 the capture factor is227

guaranteed to exceed a value of unity and when m > 0 it must exceed η = 2. In practice,228

the amount by which the capture factor exceeds these minimum values can be large,229

since power is absorbed from circular wave components in the incident wave other than230

the one being targeted. Indeed, the capture factor and appears to grow linearly with ka,231

once ka ' m, and that growth is independent of the mode number, m.232

The corresponding results for hinged paddles are shown in figure 5 and are qualitatively233

very similar to piston-like paddle motion.234

To provide additional insight into how the cylinder device is operating we have plotted,235

in figure 6, a snapshot at an intermediate frequency, ka = 2, of the contribution of the236

capture factor from different circular wave components (n along the horizontal axis)237

when equal springs and dampers have been tuned to extract the maximum available in238

particular mode, m at this frequency. We can see that there is significant absorption239

across multiple modes. Taken with the previously observed linear trend in figures 4, 5240

it would appear that close to 100% of the energy flux available is being absorbed by all241

circular modes in the range 0 6 n . ka/m.242

Figure 7 shows the maximum paddle amplitudes at ka = 2 under spring and damper243

tuning optimised to take all the available power from the mth mode. Here we see clearly244
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Figure 4. (a) Capture factor against dimensionless wavenumber for piston-like paddle motion,
with corresponding damper and spring values in (b), (c) optimised in order to capture all the
available power in the mth circular mode.

Figure 5. (a) Capture factor against dimensionless wavenumber for hinged paddle motion, with
corresponding damper and spring values in (b), (c) optimised in order to capture all the available
power in the mth circular mode.
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Figure 6. The partition of capture factor into contributions from the nth circular mode (along
the horizontal axis) at ka = 2 for operation tuned to be optimal for mode m: (a) piston-like
paddles, (b) hinged paddles.

Figure 7. Dimensionless modal amplitudes of the paddles as a function of angle around the
cylinder for springs and dampers tuned to absorb optimally in circular mode m at ka = 2: (a)
piston-like paddles; (b) hinged paddles.

that the paddles are having to work harder to absorb power from higher modes both in245

terms the paddle amplitude and its variation around the cylinder. This is an indicator246

of the practical limitations for such a device. Note also that the hinged paddle requires247

roughly double the amplitude at the surface of the piston-like paddles. It can be seen that248

paddle amplitudes in excess of four times the incident wave amplitude are predicted for249

m = 4 and this would certainly violate the underlying linear assumptions. Indeed, this250

example serves to illustrate the important practical considerations which will impose251

quite severe limitations on how much additional predicted theoretical power one can252

actually exploit. The same comments apply to figure 12.253

The maximum free surface elevation corresponding to the cases referenced in fig-254

ures 6(a), 7(a) is shown in figure 8 where it can be seen again how the paddles are255

working hard to absorb all of the available power for higher values of m where the cosmθ256

variation in the field becomes increasingly visible.257

In figure 9(a) we show the proportion of power absorbed by each circular mode when258

paddles operating in piston-like motion are tuned to absorb 100% of the power available259

in the m = 0 mode. Each set of results comes from different values of ka. Of course 100%260

of power is taken from n = 0, but we again see that as ka increases, the device is taking261

close to 100% available power from modes n less than the integer part of ka. Figure 9(b)262

indicates the distribution of paddle amplitudes around the cylinder for these four sets263

of results. Optimising for total power absorption in mode m = 0 implies the paddle264

operation is well behaved for larger values of ka even though a significant proportion265
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Figure 8. For piston-like paddle motion, the maximum free surface elevation at ka = 2 when
springs and dampers are optimised to absorb 100% of the power available from modes: (a)
m = 0; (b) m = 1; (c) m = 2; (d) m = 3; (e) m = 4.

Figure 9. For piston-like paddle motion: (a) the partition of capture factor into different circular
wave modes when springs and dampers optimised to absorb 100% in mode m = 0 at different
wavenumbers; (b) the corresponding distribution of paddle amplitudes around the cylinder.

of the available power is being absorbed across a number of circular modes. For hinged266

paddle motion, the results are similar with roughly double the amplitudes of the piston-267

like motion. Figure 10 shows the maximum surface elevation corresponding to the cases268

referenced in figure 9.269

In all the previous results, the springs and dampers have been equal around the270

cylinder and this means the device is omni-directional. We now consider the effect of271

tuning the springs and dampers to different values around the cylinder where the device272

operation becomes dependent on the wave heading. For simplicity however, we only273

consider operation under the designed wave heading. Following the recipe for selecting274
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Figure 10. For piston-like paddle motion, the maximum free surface elevation for springs and
dampers optimised to absorb 100% of the power available from the m = 0 mode: (a) ka = 1;
(b) ka = 2; (c) ka = 3; (d) ka = 4.

the spring and damper settings in the main body of the paper we set up the system to275

absorb all of available power in the first M + 1 circular modes and nothing from higher276

modes.277

Figure 11 shows the maximum free surface amplitude at ka = 2 associated with this278

system for M = 1 (η = 3) up to M = 4 (η = 9). For subfigure (d) the surface elevation has279

exceeded the displayed vertical scale and have been top-sliced in the plot. In that case,280

the paddles are working hard to absorb all the available power in the first M + 1 circular281

modes and undergoing large amplitude excursions dominated by a cosMθ variation as282

highlighted by figure 12. Negative springs, where they exceptionally occur, can be offset283

to positive springs by an increase in paddle mass and this has been confirmed numerically.284

The specific strategy of tuning paddles to absorb 100% of the energy from the first M+1285

modes at a specific frequency has also led to the prescription of negative dampers. In286

this case even though the net power is positive, some of the paddles must be driven287

and consume power, rather than absorb power. As can be seen in figure 12(d) this has288

undesirable consequences for fixed paddle parameters operating at wave frequencies for289

which they were not optimised including a net loss of power (illustrated by the curve for290

M = 4 dipping below 0).291

The next set set of figures in this section consider optimising the distribution of springs292

and dampers for M = 3 (η = 7) for ka = 2 up to ka = 4. In figures 13, 14 it is illustrated293

that the paddles are forced to work at amplitudes well in excess of practical limits to294

absorb 100% of the power from the first four circular modes from low frequency waves295

(ka small), but becomes easier for higher frequency waves.296

The final part of the results section compares continuous paddle theory against a297

discrete representation of the paddles. We show a single exemplary case in figure 15 in298
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Figure 11. For piston-like paddle motion, the maximum free surface elevation at ka = 2 when
springs and dampers are optimised to absorb 100% of the power available from the first M + 1
modes: (a) M = 1, (b) M = 2, (c) M = 3, (d) M = 4.

which we fix γ̄ = κ̄ = 0.3 and show the convergence of the results for N paddles placed299

around the cylinder towards the results from the continuum theory. As expected, as the300

wavelength-to-diameter ratio reduces (ka increases), larger values of N are required to301

resolve the variations around the cylinder captured by continuum theory. However, for302

the range of values of ka we have been interested in we can see that the continuum303

theory provides a good approximation to a discrete representation of N ≈ 24 paddles.304

For example, for a 10 m radius cylinder, a system of paddles of width 3 m would be305

accurately predicted by the continuum description.306

7. Conclusions307

In this paper we have outlined a theoretical framework for extending rigid body limits308

on the capacity for an axisymmetric device to absorb power from a plane incident wave.309

This extends established limits to wave absorption by axisymmetric devices undergoing310

rigid body motion by allowing a generalised motion of the surface of the device. This311

general framework is developed into a WEC device by considering a circular cylinder312

extending throughout the fluid depth and surrounded by narrow submerged vertical313

paddles each attached to its own spring and damper. A continuum approximation for314

narrow paddles is presented and the power generated by the cylinder is determined from315

a system of equations which allow us to develop different strategies to determine spring316

and damper settings. Specifically, when all the springs and dampers are identical we can317

determine parameters allowing us to guarantee the absorption of 100% of the energy flux318

available in one circular component of the plane incident wave. Allowing the springs and319

dampers to have different settings as a function of position around the cylinder means we320
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Figure 12. For piston-like paddle motion at ka = 2 optimised to absorb 100% power from
first M + 1 circular modes showing the angular variation of: (a) maximum dimensionless paddle
amplitude; (b) damping parameter, γ̄; (c) spring constant κ̄; (d) the corresponding frequency
response of capture factor.

Figure 13. For piston-like paddle motion, the maximum free surface elevation when unequal
springs and dampers are optimised to absorb 100% of the power available from the first 4 modes
(M = 3, η = 7) at (a) ka = 2, (b) ka = 3, (c) ka = 4.

can extract 100% of the available flux of energy in the first M+1 circular modes where M321

is theoretically as large as we choose. In both cases, results have shown how it is possible322

to achieve well in excess of the standard limit of a capture factor of η = 3 for rigid-body323

motion and capture factors in excess of η = 8 have been reported in computations in this324

paper.325

Despite these claims, there are practical considerations which will limit the value of326

results from this theory. Unless the cylinder is large compared to the wavelength, paddle327

amplitudes exceed the limits of the underpinning linearised water wave theory as the328

demand for power is increased leading to a compromise between power and size of device.329
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Figure 14. For piston-like paddle motion optimised to absorb 100% power from first four circular
modes (M = 3, η = 7) showing the angular variation of: (a) maximum dimensionless paddle
amplitude; (b) damping parameter, γ̄; (c) spring constant κ̄; (d) the corresponding frequency
response of capture factor.

Figure 15. Capture factor against dimensionless wavenumber for different number of paddles,
N , γ̄ = κ̄ = 0.3: (a) piston-like paddles, (b) hinged paddles.

To fully investigate this, motion constraints such as those used by Evans (1981) could be330

implemented.331

The final part of the paper considers the exact description of N discrete paddles which332

is used to confirm that the continuum description of the paddle motion is converged to333

as N increases.334

Paddles are just one means by which the general theory is implemented and other335

practical absorbing systems which provide the same effect such as distributing power336

absorption across the internal surface of a permeable axisymmetric device may work337

just as well (e.g. Zheng et al. (2020) or Garnaud & Mei (2009)).338

339

S.Z. was supported by the European Union funded Marine-I (2nd phase) project340



22 R. Porter, S. Zheng, D. Greaves

(grant no. 05R18P02816). D.G. gratefully acknowledges the EPSRC for supporting part341

of this work through EP/S000747/1.342

343

Declaration of Interests. The authors report no conflict of interest.344

REFERENCES

Abramowitz, M. & Stegun, I. A. 1964 Handbook of mathematical functions. Washington,345

D.C.: Government Printing Office.346

Ancellin, M., Dong, M., Jean, P. & Dias, F. 2020 Far-field maximal power absorption of a347

bulging cylindrical wave energy converter. Energies 13 (20).348

Babarit, A. 2015 A database of capture width ratio of wave energy converters. Renewable349

Energy 80, 610–628.350

Budal, K. & Falnes, J. 1977 Optimum operation of improved wave-power converter. Marine351

Science Communications 3, 133–150.352

Cruz, J. 2008 Ocean wave energy: current status and perspectives. Berlin: Springer.353

Evans, D. V. 1976 A theory for wave power absorption by oscillating bodies. Journal of Fluid354

Mechanics 77, 1–25.355

Evans, D. V. 1981 Maximum wave-power absorption under motion constraints. Applied Ocean356

Research 3, 200–203.357

Garnaud, X. & Mei, C. C. 2009 Wave-power extraction by a compact array of buoys. Journal358

of Fluid Mechanics 635, 389–413.359

Garrad, A. 2012 The lessons learned from the development of the wind energy industry that360

might be applied to marine industry renewables. Philosophical Transactions of the Royal361

Society A 370, 451–471.362

Haren, P. & Mei, C.C. 1979 Wave power extraction by a train of rafts: hydrodynamic theory363

and optimum design. Applied Ocean Research 1 (3), 147–157.364

MacCamy, R. C. & Fuchs, R. A. 1954 Wave forces on piles: a diffraction theory . U.S. Army365

Corps of Engineers Beach Erosion Board, Technical Memorandum.366

Mei, C. C. 1983 The Applied Dynamics of Ocean Surface Waves. New York: Wiley.367

Michele, S., Buriani, F., Renzi, E., van Rooij, M., Jayawardhana, B. & Vakis, A.I.368

2020 Wave energy extraction by flexible floaters. Energies 13 (23), 6167.369

Newman, J.N. 1979 Absorption of wave energy by elongated bodies. Applied Ocean Research370

1 (4), 189–196.371

Newman, J. N. 1976 The interaction of stationary vessels with regular waves. In Proceedings372

of the 11th Symposium on Naval Hydrodynamics, London, pp. 491–501.373

Newman, J. N. 1994 Wave effects on deformable bodies. Applied Ocean Research 16, 47–59.374

Pizer, D.J. 1993 Maximum wave-power absorption of point absorbers under motion constraints.375

Applied Ocean Research 15 (4), 227–234.376

Salter, S. 2016 Wave energy: Nostalgic ramblings, future hopes and heretical suggestions.377

Journal of Ocean Engineering and Marine Energy 2, 399–428.378

UK Department for Business, Energy & Industrial Strategy 2020 Electricity379

Generation Costs, 2020 pp. 1–69.380

UK Department of Energy & Climate Change 2011 UK Renewable Energy Roadmap pp.381

1–106.382

Wolgamot, H.A., Taylor, P.H. & Eatock Taylor, R. 2012 The interaction factor and383

directionality in wave energy arrays. Ocean Engineering 47, 65–73.384

Yemm, R., Pizer, D., Retzler, C. & Henderson, R. 2012 Pelamis: experience from concept385

to connection. Philosophical Transaction of the Royal Society A 370, 365–380.386

Zheng, S., Porter, R. & Greaves, D. 2020 Wave scattering by an array of metamaterial387

cylinders. Journal of Fluid Mechanics 903, A50.388

http://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/911817/electricity-generation-cost-report-2020.pdf
http://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/911817/electricity-generation-cost-report-2020.pdf
http://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/911817/electricity-generation-cost-report-2020.pdf
http://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/48128/2167-uk-renewable-energy-roadmap.pdf

