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Abstract

We introduce the CAL model (Category Abstraction Learning), a cognitive framework

formally describing category learning built on similarity-based generalization,

dissimilarity-based abstraction, two attention learning mechanisms, error-driven

knowledge structuring, and stimulus memorization. Our hypotheses draw on an array of

empirical and theoretical insights connecting reinforcement and category learning. The

key novelty of the model is its explanation of how rules are learned from scratch based

on three central assumptions. (1) Category rules emerge from two processes of stimulus

generalization (similarity) and its direct inverse (category contrast) on independent

dimensions. (2) Two attention mechanisms guide learning by focusing on rules, or on

the contexts in which they produce errors. (3) Knowing about these contexts inhibits

executing the rule, without correcting it, and consequently leads to applying partial

rules in different situations. The model is designed to capture both systematic and

individual differences in a broad range of learning paradigms. We illustrate the model’s

explanatory scope by simulating several benchmarks, including the classic Six Problems,

the 5–4 problem, and linear separability. Beyond the common approach of predicting

average response probabilities, we also propose explanations for more recently studied

phenomena that challenge existing learning accounts, regarding task instructions,

individual differences in rule-extrapolation in three different tasks, individual attention

shifts to stimulus features during learning, and other phenomena. We discuss CAL’s

relation to different models, and its potential to measure the cognitive processes

regarding attention, abstraction, error detection, and memorization from multiple

psychological perspectives.

Keywords: Category Learning, Generalization, Abstraction, Attention, Executive

Control
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Classifying objects based on rules happens daily (e.g., classifying whether

something is a bird or not, based on the feature “has wings”). How humans represent

such rules is still under debate. On the one hand, some researchers propose that

category membership is inferred based on the relative similarity to known category

members or clusters stored in memory while learning how to focus attention to stimulus

features that reliably predict categories (e.g. to “wings”; Kruschke, 1992; Love, Medin,

& Gureckis, 2004; Nosofsky, 1986; see further, Hahn & Chater, 1998; Pothos & Wills,

2011). On the other hand, rule theories presuppose (verbal or deliberate) decision

criteria such as decision bounds (e.g., Ashby & Gott, 1988; Reed, 1972), or decision

trees (e.g., Nosofsky, Palmeri, & McKinley, 1994). However, there are many situations

in which humans seem to jointly rely on (abstracted) rules and instance memory (e.g.,

predicting ‘bird’ when wings are observed, but recognizing exceptions, such as ‘bats’

and ‘aircraft’; see M. R. Blair & Homa, 2001; Erickson & Kruschke, 1998; Palmeri &

Nosofsky, 1995; see also Hahn, Prat-Sala, Pothos, & Brumby, 2010), which has inspired

theories that assume a co-existence of corresponding decision strategies or brain systems

(see Ashby, Alfonso-Reese, Waldron, et al., 1998; Bröder, Gräf, & Kieslich, 2017;

Erickson & Kruschke, 1998; Hahn & Chater, 1998; Haygood & Bourne, 1965; Kruschke,

2005; Nosofsky, Palmeri, & McKinley, 1994; Poldrack & Foerde, 2008; Pothos & Wills,

2011).

One problem in the domain of category learning is that most models do not

explain how the cognitive representations underlying ‘rules’ are created (i.e., learned; in

the sense of decision bounds, hypothetical priors, or relational primitives; for related
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discussions see Boroditsky & Ramscar, 2001; Edmunds, Milton, & Wills, 2018; Edmunds

& Wills, 2016; M. Jones & Love, 2011; Kurtz, 2007; Verguts & Fias, 2009), and it is still

unclear how the mechanisms of rule generation and instance memorization interact and

whether they are exhaustive. Here we propose a novel framework of how people learn

cognitive representations of rules and how these dynamically interact with memory

processes. We call this model CAL, which stands for Category Abstraction Learning.

The question about which mechanisms underlie category learning also concerns

growing theoretical challenges, including how people learn to focus attention on relevant

information during classifications, how decision rules are extrapolated for unobserved

categories, or how task instructions affect category learning performance. For one of

these challenges, leading category-learning theories (for an overview see Pothos & Wills,

2011) generally assume that rule-like behavior can be described by mechanisms of

focusing attention on dimensions (e.g., to ’wings’) to predict stimulus outcomes. The

predominant formal way of implementing this mechanism is known as error-driven

attentional learning, as typified by the Attention Learning COVEring map (ALCOVE;

Kruschke, 1992) model, one of the most successful and popular models of category

learning. In ALCOVE, attention shifts away from features that produce erroneous

predictions during learning. However, empirical evidence is accumulating that casts

some doubt on the plausibility of error-driven attention learning.

In particular, first, the well-known idea of error-based correction (or optimal

attention learning; see also Mackintosh, 1975; Rescorla & Wagner, 1972) has been

questioned in recent category-learning studies that use eye-tracking (arguably, if one

assumes that prediction error equals decision error) because overt attentional

reallocation between stimulus features continues even after categorization errors have

ceased (e.g., M. R. Blair, Watson, & Meier, 2009; Le Pelley, Mitchell, Beesley, George,

& Wills, 2016; Matsuka & Corter, 2008; Rehder & Hoffman, 2005a; see further below).

Second, one of the groundbreaking paradigms employs the Six Problem types

introduced by Shepard, Hovland, and Jenkins (1961; see also Kruschke, 1992; Nosofsky,

Gluck, Palmeri, McKinley, & Glauthier, 1994). It has been shown that several models,
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which rely on prediction error, can explain the overall pattern of learning behavior in

this paradigm. Intriguingly, however, the same models fail to explain behavior in this

paradigm when there are slight changes in task instructions (Kurtz, Levering, Stanton,

Romero, & Morris, 2013), or when the category structure is modified to allow

spontaneous rule extrapolation beyond observed instances (Conaway & Kurtz, 2017).

Indeed, after a century of research (Hull, 1920), category-learning behavior is still not

fully understood, and thus there is a need for new psychologically plausible perspectives

on the underlying cognitive processes.

The overarching goal of the current research is to provide a general cognitive

framework of category learning that resolves these and several other issues that we

highlight in the course of this article. Our goal is to precisely describe and explain a

broad range of learning phenomena while minimizing formal flexibility, guided by

psychologically-focused theories from different domains (Wills & Pothos, 2012). This

article is structured as follows. First, we detail the literature and outstanding issues

that motivated our research at the outset. Second, we present a brief overview of the

cognitive hypotheses built into CAL, introducing the constructs of stimulus

generalization, rule abstraction, attention learning, and executive control (of attention

and context-guided rule switching), providing an intuitive understanding of our

modeling hypotheses. In subsequent sections, we provide their theoretical and empirical

foundations as well as discussing related behavioral phenomena in category and

reinforcement learning. Third, we provide a formal description of CAL, followed by

model evaluations including simulations of behavior as well as attention measured with

eye-tracking in classic benchmark paradigms, that previously could not be explained

either alone or within a single model. Fourth and finally, we discuss some novel insights

concerning previous theories of category learning and some broader implications.

Theoretical Background

Much of what is known about category learning (in animals and humans) is

grounded in research on reinforcement learning and discrimination learning (for
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overviews, see e.g., Mackintosh, 1974; Sutton & Barto, 1998). For instance, in their

pioneering work on category learning (or supervised reinforcement learning), Shepard,

Hovland, and Jenkins (1961) provided a paradigm that became a benchmark for

category learning models. In their tasks, participants learned to categorize stimuli with

three binary features (e.g., color [black vs. white], shape [square vs. triangle], and size

[small vs. large]). They learned six category structures varying in difficulty (Problem

Types I-VI, Figure 1A). The primary result was that the learning curves (rate of

increase in accuracy) systematically differed between the problems, such that I > II >

[III, IV, V] > VI (see also Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994).

Figure 1 . (A) Classic category structures Type I-VI (Shepard et al., 1961).

Coordinates represent stimuli with three binary dimensions; black and white circles

indicate categories. (B) Coordinate grid of the incomplete Type II (Exclusive-Or)

structure as trained in Conaway and Kurtz (2017); ‘A’ and ‘B’ refer to categories of

trained stimuli. Shaded cells refer to the extrapolation area for category ’B’.

One successful approach to explaining the relatively quick learning in Types I and

II is to note that, in Type I, one dimension is sufficient to solve the task (separating

white and black circles in Figure 1A), two dimensions are sufficient in Type II, while all

three are relevant in each of the other problems, which has led to the idea of

attention-weighted stimulus processing (Nosofsky, 1986). Subsequently developed

category-learning models include corresponding mechanisms that learn to focus

attention on diagnostic dimensions to predict performance in the Six Problems, such as

ALCOVE (Kruschke, 1992).

ALCOVE stores decision instances as exemplars in memory, which then generalize
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via similarity to the presented stimulus, while also learning which dimensions should be

used to calculate similarity. Another popular approach is the Supervised and

Unsupervised STratified Adaptive Incremental Network (SUSTAIN; Love et al., 2004),

which, similar to the Bayesian rational model by Anderson (1991), assumes that

learning involves the formation of cluster representations in memory. In addition,

SUSTAIN (Love et al., 2004) involves an attention-learning mechanism that focuses on

predictive dimensions to keep the cluster complexity low, if possible. From this

perspective, the number of clusters required for successful learning varies between the

Six Problems, which relates to learning speed.

The empirical findings regarding performance in the Type II problem have recently

been extended. Kurtz et al. (2013) found that if the participants are specifically

instructed to seek rules then the classic findings hold. However, without rule

instructions, the Type II learning curve falls together with III, IV, and V, without

affecting the remaining pattern. Importantly, the overall decrease in Type II

performance in the absence of rule instructions appears to be an aggregate effect of a

bi-modal distribution of categorization accuracy. That is, without rule instructions

some participants perform worse on Type II than on Type IV, while other participants

perform better on Type II than on Type IV. As Kurtz et al. (2013) discuss, this is a

challenging phenomenon for all leading explanatory accounts of category learning.

In principle, ALCOVE (Kruschke, 1992) can predict this learning pattern in the

Type II task assuming that varying instructions induce differences in attention learning

within the population of learners. However, with such an assumption, ALCOVE would

also predict a bi-modal response distribution in Type I (see Kruschke, 1992, p. 28)

raising critical theoretical and empirical questions (see also M. R. Blair, Watson, &

Meier, 2009; M. R. Blair, Watson, Walshe, & Maj, 2009; Matsuka & Corter, 2008;

Rehder & Hoffman, 2005a). Kurtz et al. (2013) therefore suggest exploring alternative

accounts based on factors that interact with learning rule-like category representations

(see also Shepard, Hovland, and Jenkins, 1961).

Interestingly, pigeons and monkeys learn Type II problems more slowly than Type
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IV problems (V. M. Navarro, Jani, & Wasserman, 2019; J. D. Smith, Minda, &

Washburn, 2004), suggesting that quick learning of Type II problems involves

higher-order cognitive processes lacking in non-human animals (see also Lea et al., 2009;

J. D. Smith, Coutinho, & Couchman, 2011). The question is, what this higher-order

process might be, if not attention learning. Indeed, the Type II task can be perfectly

solved by ‘restructuring’ the problem (i.e., breaking down a complex structure into

multiple simpler ones by knowledge partitioning; see also Kalish, Lewandowsky, &

Kruschke, 2004; Lewandowsky, Yang, Newell, & Kalish, 2012). Specifically, one can first

approach the Type II task assuming a single-dimensional rule (e.g. “black → category

B, and white → A”), and then applying this rule in specific contexts (e.g., for small

objects), while applying its inverse in other contexts (e.g., for large objects; see also

Little & Lewandowsky, 2009a, 2009b) — a process which we henceforth call contextual

modulation.

Approaching the Type II problem in this rule-like way will facilitate quick learning

of the task. Conversely, if people are not prompted by instructions to search for

categorization rules, they might approach the problem by memorizing each stimulus,

which might lead to slower learning. Thus, the diverse distributions of human learning

success in Type II may stem from participants relying on different cognitive processes to

master the task, with rule instructions motivating the learner to engage in processes

that trigger contextual modulation.

This idea is corroborated by a recent study, in which the Type II task, which can

also be described as an ‘Exclusive Or’ (XOR) problem, was extended to explicitly test

rule abstraction or ‘extrapolation’ behavior (Conaway & Kurtz, 2017). In this study,

participants were trained on a two-dimensional version of the problem (Figure 1B).

However, some stimuli were left untrained (empty cells in Figure 1B). Crucially, the

untrained stimuli were presented in a subsequent test phase, where about 31% and 45%

of the participants, in Exp. 1 and 2B, respectively, extrapolated ‘B’ for stimuli in the

lower right quadrant (shaded area in Figure 1B), while others responded ‘A’. The

response pattern of those participants who extrapolated ‘B’ corresponded to a complete
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Type II solution, which can be explained in terms of contextual modulation, while the

behavior of the other participants could be explained in terms of learning a rule and its

exceptions, or memorization and similarity-based generalization of the ‘A’ exemplars.

Despite the evident structural similarity between the classic Type II problem and

its incomplete variant, ALCOVE (Kruschke, 1992), by its definition as an

exemplar-similarity model, cannot predict this pattern of extrapolation. While other

models predict extrapolation in this task to some extent, such as the DIVergent

Autoencoder model (DIVA; Kurtz, 2007; see further Conaway & Kurtz, 2017), it seems

to be an open question whether there is an account that can simultaneously explain the

Conaway and Kurtz (2017) result, and the various Type I-VI results (see also Kurtz et

al., 2013; for further discussions). We argue that individual differences in rule learning

(leading to contextual modulation) and memorization might explain all these behavioral

patterns, as well as several further empirical phenomena that we will discuss later. In

the next section, we outline our new model, focusing on the main mechanisms and how

they can explain when and how rules emerge during category learning and how task

instructions might affect these processes.

Category Abstraction Learning

In this section, we introduce our general cognitive hypotheses to allow a basic

understanding of the later analyses without formal background. We then extend the

theoretical and formal definitions in more detail in the subsequent sections. The CAL

framework is comprised of three main theoretical strands of rule learning, attention

learning, and contextual modulation interacting with the fourth component of stimulus

memory, which we explain later. Figure 2 illustrates the core theory of how the first

three factors interact. Thus, CAL is a hybrid account of category learning and

according to the overview provided by Palmeri, Wong, and Gauthier (2004)

conceptually located somewhere between RULEX (Nosofsky, Palmeri, & McKinley,

1994) and ATRIUM (Erickson & Kruschke, 1998). The main focus of our hypotheses

lies on the question of how people abstract category representations, in which the first
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noteworthy difference to the just cited models can be identified. That is, while RULEX

switches between rules stochastically, and ATRIUM learns to associate pre-defined rule

functions (with adjustable decision bounds), CAL is designed to abstract its rules based

on the following psychologically motivated learning functions.

Henceforth, we will use the term ‘simple rules’ to refer to a class of behavior, which

could (but need not) be verbalized into a decision criterion or hypothesis on a single

dimension such as “small objects belong to A, and large objects belong to B” (denoted

small → A, large → B), or “smaller objects are more likely to belong to A than to B”.

First, we suggest that the generation of simple rules can be explained by resolving a

formal distinction between similarity-driven category inference (e.g., Medin & Schaffer,

1978; Shepard, 1987) and dissimilarity-driven category inference (e.g. Ashby & Gott,

1988). More specifically, we propose that in addition to similarity-based generalization

there is a learning process called ‘contrasting’, which refers to an individual’s tendency

to abstract regularities for unobserved instances by their dissimilarity to (currently)

observed instances (e.g., “This feature predicts category A, hence, other dissimilar

features predict category B”).

Different from earlier exemplar-based approaches to dissimilarity (e.g., Hampton,

Estes, & Simmons, 2005; Little, Wang, & Nosofsky, 2016; Stewart & Brown, 2005;

Stewart, Brown, & Chater, 2002; Stewart & Morin, 2007), we assume that these

mechanisms happen during learning and on independent stimulus dimensions.

Consequently, we treat both similarity-like and rule-like behavioral strategies as a result

of two inversely related learning functions in one single process rather than being

qualitatively different processes (for a related discussion see Pothos, 2005; see also

Verguts & Fias, 2009).

We assume that instructions to learn categorization rules affect the degree of

contrasting by tightening the dis-similarity function illustrated in Figure 2 (1) Rule

Learning. The upper part illustrates the basic learning process for a stimulus with

‘Angle’ and ‘Length’ features. ‘B’ is the observed category (Feedback) and ‘A’ is the

unobserved one. The dotted lines reflect associative generalization, and the solid line on
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the ‘Length’ dimension illustrates contrasting which associates distant stimuli with

category ‘A’.

We further assume, that repeated updates during sequential learning adjust

existing beliefs in a self-confirmatory fashion (success-driven). That is, we assume that

feedback which confirms the prediction leads to stronger updates and that erroneous

predictions lead to attenuated updates to maintain previously learned rules (e.g., in

probabilistic environments; see also Craig, Lewandowsky, & Little, 2011). This process

thereby accumulates self-reinforcing category evidence along the feature continuum,

which can (but does not always) result in simple rules with clear category boundaries.

Second, we assume self-confirmatory (not error-driven) attention learning (see also

Love et al., 2004; Nosofsky, Gluck, et al., 1994) based on the idea that learned rules

(e.g., for ‘wings’) are evaluated by how well they predict desired outcomes (subjective

diagnosticity). This leads to focusing attention on the subjectively diagnostic feature
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dimension, as illustrated in Figure 2. We assume that this circularly reinforces learning

more about their rules in subsequent instances while ignoring non-diagnostic rule

dimensions, which seems in line with empirical evidence from eye-tracking studies (e.g.,

Matsuka & Corter, 2008; Rehder & Hoffman, 2005a). Thus, in contrast to the

widespread use of error-driven optimal-learning mechanisms, we argue that attention

learning is better explained by attraction to strongly associated (successfull) predictors

(see also Le Pelley et al., 2016).

For clarity, we do not dismiss the idea that learners react to errors, but do argue

that error detection does not necessarily induce representational correction of the rule

(for a related review in the domain of judgment and decision making see Risen, 2016).

We argue, that one first has to build an idea about successful predictors before one can

focus attention on them. This would also bias the learner to rely on first impressions,

which seems intuitively plausible.

Finally, in CAL, the interaction between rule- and attention-learning mechanisms

builds the fundamental basis upon which higher-order cognition operates, which we call

contextual modulation of simple rules, illustrated in Figure 2 (steps 2 & 3). We assume

that erroneous rules are modulated (e.g. inhibited) if their errors occur in specific

contexts (e.g., specific values on another stimulus dimension). That is, error correction

in CAL happens on a higher cognitive level. The purpose of contextual modulation is

similar to that of learning more complex rules in RULEX (Nosofsky, Palmeri, &

McKinley, 1994) if simple rules fail. However, the actual mechanism in CAL is

somewhat more similar to ATRIUM (Erickson & Kruschke, 1998) in that CAL detects

the contexts, in which the erroneous rule can be applied or not. We also assume that

registering a predictor of rule errors is more likely, if it is itself non-diagnostic of

responses/outcomes (e.g., the angle dimension, in Figure 2 step 1), viewing the

interaction between rule learning and contextual modulation as concerned with different

goals and competing attention mechanisms.

This motivates two novel assumptions about the cognitive processes of category

learning: (1) there is a second attention mechanism that tries to locate sources of rule
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errors (which requires higher-level cognitive control), and (2), that initial learning of a

rule is based on successful classifications, but that even if a successful rule subsequently

leads to (frequent) systematic errors it is not adjusted but left intact, with its execution

affected by the context (see also, Rahnev & Denison, 2018; Risen, 2016), which connects

the model to ideas of knowledge restructuring and partitioning (e.g., Erickson &

Kruschke, 1998; Kalish et al., 2004; Kruschke, 2003). Figure 2 (steps 2 & 3) illustrates

this process, where the rule dimension (‘Length’ short → A, long → B) only correctly

predicts the outcomes when the stimulus is vertical, but not when it is horizontal, which

will lead to paying attention to the ‘Angle’ dimension, not for predicting outcomes, but

for predicting errors. However, we took inspiration from RULEX (Nosofsky, Palmeri, &

McKinley, 1994) by also considering situations in which CAL actively decides to quit

from such complex rules, a feature of CAL which we explain in the Formal Description.

In the following four subsections, we first outline the shared aspects of animal

reinforcement and human category learning that point to the unification of the inference

processes of similarity and dissimilarity (contrasting) into one common mechanism.

Second, we explain how the assumed mental rule-like representations that result from

this process might drive attention learning, and how this might lead to decision biases

(learning overly simplistic rules). Third, we draw the connection from the first two

simple learning processes to those of higher-order error detection, which not only (can)

guard against decision biases (which, in CAL, come from adhering to learned rules in

the wrong situations), but more importantly, also lead to solving complex decision

problems (such as Type II) efficiently. Fourth, and finally, we explain how, in CAL,

stimulus memorization contributes to category inference as a last resort if everything

else fails (basically, conceiving stimulus memorization as a memory for exceptions)

unless CAL directly engages a memorization strategy.

Generalization and Contrasting

In animal-learning studies, pigeons learn to repeat their actions (e.g. pecking) for

specific stimuli (e.g. wavelength of a tone) if they get food for it (reinforcement).
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Interestingly, if stimuli are presented that are similar to the previous one, then pigeons

repeat their responses for those as well, but less frequently with decreasing similarity.

The same type of stimulus generalization can be observed in studies of human

reinforcement learning (Mackintosh, 1974; Sutton & Barto, 1998). This includes

learning which situations are rewarding or punishing (reward learning) and supervised

learning such as category learning (CL), in which reinforcement is typically trial-specific

accuracy feedback designed to teach the selection of different responses (category labels)

contingent on presented stimulus characteristics (e.g., color, size, acoustics). The

overarching behavioral observation that stimulus responses are driven by similarity to

trained instances inspired the law of stimulus generalization (Shepard, 1987), one of the

most influential theories in the area of cognition, inspiring research across a wide range

of domains, such as working memory (e.g., Brown, Neath, & Chater, 2007; Oberauer &

Lin, 2017), machine learning (see Jäkel, Schölkopf, & Wichmann, 2008a), and category

learning (see Pothos & Wills, 2011).

In CL, the principle of stimulus generalization (Shepard, 1987) underlies several

theoretical accounts of category inference. Perhaps most prominently, the theoretical

framework of context theory (e.g., the generalized context model, GCM; Medin &

Schaffer, 1978; Nosofsky, 1986) builds on stimulus generalization by assuming that the

presentation of a stimulus activates stored category exemplars in memory with

activation decaying with psychological distance to the presented stimulus. The

gradually activated exemplars and their associated categories are then integrated into

overall category activation (see Figure 3), an assumption taken up in ALCOVE

(Kruschke, 1992; see also Kruschke, 2005). Instead of exemplars, similarity has also been

theorized to be evaluated based on comparison to abstract category prototypes (e.g.,

Medin, Altom, & Murphy, 1984; Reed, 1972; J. D. Smith & Minda, 1998), perceptrons

(e.g., Goldstone, Steyvers, & Larimer, 1996), or category clusters (see Love et al., 2004;

D. J. Navarro & Griffiths, 2008), showcasing the pervasiveness of similarity-based

learning mechanisms (see also Hahn, 2014; for function learning perspectives see

DeLosh, Busemeyer, & McDaniel, 1997; Lucas, Griffiths, Williams, & Kalish, 2015).
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However, despite the appeal and broad success of these models, similarity-based

generalization cannot explain its simple but intriguing counterpart in animal and

human learning — behavioral contrast (see Mackintosh, 1974; Reynolds, 1961; Zentall,

2005). That is, if a stimulus is first reinforced (e.g. by food), but the reinforcement is

later omitted (i.e., in an extinction phase), then pigeons respond relatively strongly to

stimuli that are dissimilar to the extinguished stimulus (pecking more frequently

compared to a control condition). In other words, pigeons seemingly extrapolate the

presence of food for stimuli dissimilar to the extinguished one.

Contrast-like effects can also be observed in children (e.g., Landau, Smith, &

Jones, 1988; Markman & Wachtel, 1988; see also Kersten, Goldstone, & Schaffert,

1998), and there is evidence for dissimilarity-based processes in adult CL (e.g.

Austerweil, Liew, Conaway, & Kurtz, 2019; Hampton et al., 2005; Little et al., 2016;

Stewart & Brown, 2005; Stewart & Morin, 2007). These dissimilarity-based processes

are sometimes considered to operate on exemplar representations, as in the just-cited

papers, and sometimes considered to be an inherent component of rule-based models

(see also Davis & Love, 2010). That is, rule-based models often use dissimilarity to a

reference point to draw inferences about a stimulus’s category; the corresponding
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psychological representation of the latter is traditionally described as a decision bound

(e.g., Ashby & Gott, 1988; Erickson & Kruschke, 1998; Reed, 1972).

We propose that combining learning functions of similarity and dissimilarity in one

learning mechanism can explain how both similarity-like and rule-like behavior develops

during learning. This approach not only allows us to address the question of how and

why rule instructions might alter category and reinforcement learning behavior, but it

also unifies seemingly long-standing opposing accounts (see also Hahn & Chater, 1998;

Pothos, 2005). The basic idea is illustrated illustrated in Figure 4.
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Figure 4 . Rule-learning via similarity and contrast on two abstracted dimensions. (A)

Line stimulus (S, orange) with angle and length feature dimensions; feedback is

’category A’. (B) Similarity (solid line) and Contrast (dashed) updates illustrated for

the associative strengths between the length dimension nodes and the categories

(present A and absent B, respectively). (C) Resulting evidence ratio further used for

category predictions. Bars correspond to histogram for length dimension in (D), which

illustrates an activation map (darker shading predicts ’category B’) when summing the

predictions of both dimensions. (E) and (F) illustrate two subsequent trials with two

category ’A’ stimuli, and resulting uni-dimensional rule-like representations.

Figure 4 exemplifies rule learning in CAL for a line stimulus that can be assigned

to one of two categories ‘A’ and ‘B’ based on two dimensions angle and length. First,
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we assume that each feature dimension (e.g., length in Figure 4A) is represented

independently from other dimensions (see also Love et al., 2004), in line with theories

assuming that input features are first processed separately (e.g. Treisman, 1998; Wills,

Inkster, & Milton, 2015). These dimensions have single units ordered by the magnitude

they represent, inspired by the concept of elemental stimulus representations (see

Harris, 2006; McLaren & Mackintosh, 2002), the associative learning model (ALM;

DeLosh et al., 1997), as well as theories assuming that mental representations about

any quality (e.g., time, size, brightness) are spatially organized within the region of

direct access in working memory to bind new information into a common relational

structure (see further Oberauer, 2009, p. 52 f.; see also Morton, Sherrill, & Preston,

2017). Note that CAL makes no predictions about conscious deliberation about these

rule dimensions; such processes are neither required nor excluded in CAL’s current

formulation. While we would assume that encoding integral stimuli in this format

should be more difficult, we focus on the case of separable dimensions and discuss the

corresponding implications in the simulation sections.

Stimulus generalization (Shepard, 1987) accumulates evidence for the currently

observed category and contrasting abstracts evidence for the currently absent categories

(‘Contrast’ in Figure 4B). Three aspects of this approach are noteworthy. First, we

assume that this kind of category abstraction happens during learning, but not during

retrieval. Second, contrasting is somewhat akin to the idea of integrative encoding

(Shohamy & Wagner, 2008), with the more general claim that associations can be

created between ‘imagined’ features which either are expected or are simply abstract in

general. And third, during subsequent inferences, every single unit on a dimension can

be queried (without noise) to evaluate the amount of accumulated evidence for or

against a category on that dimension (as evidence ratio in Figure 4C), similar to

Bayesian hypothesis testing (e.g., Tenenbaum & Griffiths, 2001; see also Dayan & Daw,

2008; Kording, 2014). The interplay between both generalization and contrasting,

thereby, builds a continuum (see also Pothos, 2005) of possible inferences for observed

and unobserved events (see Figure 4D-F), including behavioral contrast, and what could
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be called a category boundary (e.g., between nodes 3 and 4 in Figure 4B or F).

Feature Attention

Attention shifts to those components of a stimulus that most reliably predict the

learned or desired outcomes (see Le Pelley et al., 2016). This reliable observation in

category and reinforcement learning has to be accounted for by every learning model.

One consequence related to this phenomenon is an increase in the speed of learning

about the predictor-outcome regularities of the focused dimension (see also L. B. Smith,

Colunga, & Yoshida, 2010), which provides one potential avenue to explain the quick

Type I and Type II learning first observed by Shepard et al. (1961), and related

phenomena (e.g., latent inhibition, conditioned blocking, intra- and extra-dimensional

attention shifts, filtration, and condensation; see further Kruschke, 2001; Lubow &

Gewirtz, 1995; Mackintosh, 1974, 1975; Oades, 1997; Oades & Sartory, 1997).

Perhaps the most commonly implemented formal mechanism to explain attention

shifts is that of optimal attention learning via gradient descent on prediction error (see

Holland & Schiffino, 2016; Kruschke, 1992, 2003; Le Pelley et al., 2016; Pothos & Wills,

2011), which (formally) reduces attention to dimensions if they produce more errors

(the actual outcome differs from the expected outcome) than other dimensions.

Interestingly, however, in their eye-tracking study Rehder & Hoffman (2005a; including

problem types I, II, IV, and VI; see also M. R. Blair, Watson, & Meier, 2009;

M. R. Blair, Watson, Walshe, & Maj, 2009; Matsuka & Corter, 2008; Wasserman, Teng,

& Castro, 2014) showed that attention settles on predictive (or informative) features

only after categorization errors disappeared. In their strongest interpretation (assuming

equivalence of prediction error and decision error), optimal attention learning, as

defined in established accounts (see further Pothos & Wills, 2011), would predict the

opposite, namely, that attention shifts before errors disappear (i.e., to correct the

representation that caused it), such that learning stops without errors.

Although error-driven attention learning can predict the classic ordinal pattern of

performance in the classic Six Problems (Nosofsky, Palmeri, & McKinley, 1994; Shepard
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et al., 1961), the actual process-level data (eye-tracking) reveal open questions

regarding its psychological interpretation (see also Risen, 2016). This seems also to be

the case for models that would assume hypothesis sampling which is not evident in

overt attention shifts during learning (for discussions see Matsuka & Corter, 2008;

Rehder & Hoffman, 2005a), rather in line with early theories about hypothesis reduction

(e.g., Levine, 1966), or “filtration” (e.g., Gottwald & Garner, 1975; Posner, 1964).

As an alternative, we assume that attention follows diagnostic simple rules (see

also, Tversky, 1977, p. 342). For this, CAL screens the existing dimension-outcome

associations for the variance in their predictions and then adjusts its rule-specific focus

of attention, which will affect both learning and inference. This idea draws inspiration

from the previously proposed concept of dimensionalized adaptive learning rates

(DALR; Gluck, Glauthier, & Sutton, 1992; Jacobs, 1988; Nosofsky, Gluck, et al., 1994).

We consequently assume that the impact of a learning update of predictor-outcome

associations (∆wk in Figure 3B) is proportional to a dimension’s (subjective)

diagnosticity, such that focused attention further accelerates the emergence of sharp

category boundaries on a dimension (e.g., Goldstone, 1994; see further Formal

Description of CAL). Furthermore, we assume that focusing on one dimension reduces

the ability to learn about other predictors.

Our working definition of dimension diagnosticity corresponds to existing concepts

of rule-boundary models (e.g., Ashby & Gott, 1988; Bröder, Newell, & Platzer, 2010;

Juslin, Jones, Olsson, & Winman, 2003) and their close formal relation to regression

models. Specifically, we assume that the variance in category predictions over a

dimension is proportional to how informative this dimension is perceived to be (e.g.,

line length co-varies with different categories indicated by the evidence ratios in

Figure 4C), relative to other dimensions (e.g., subjective utility; see also Orquin &

Loose, 2013). However, the diagnosticity of a dimension does not necessarily imply a

monotonic relation between dimension values and outcomes; nominal relations are also

possible (for further details, see the Formal Description of CAL).

In sum, stimulus dimensions (e.g., color and shape) receive more attention in CAL
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if they are subjectively diagnostic compared to others, and learning about

non-diagnostic dimensions eventually ceases unless the more diagnostic dimensions

become erroneous again. This can lead to persistent choice biases (objective decision

errors) if initially observed instances did not represent the true state in the outside

world. However, if simple-rule errors occur systematically (context dependent), CAL

triggers a further mechanism of higher order, which we call contextual modulation.

Contextual Modulation and Representational Attention

By contextual modulation, we broadly refer to the ability, hypothesized in CAL, to

(1) to detect situations (contexts) in which its simple rules lead to systematic errors, (2)

focus attention on the error-predicting context cues, and (3) inhibit the simple rules

before re-mapping them to other responses (modulation). Our theoretical assumptions

about the nature of these processes were inspired by research from multiple domains.

First, in reinforcement learning, animals and humans show increased attention to

the context if a conditioned response is extinguished, as well as a recovery of the

conditioned response if the extinction context is removed (e.g., Alvarado, Jara, Vila, &

Rosas, 2006; Battaglia, Garofalo, & di Pellegrino, 2018; Cobos, González-Martín,

Varona-Moya, & López, 2013; Lucke, Lachnit, Koenig, & Uengoer, 2013; Nelson,

Lamoureux, & León, 2013). From this perspective, context refers to a noticeable change

during extinction, such as a newly presented stimulus, the environment itself but also

temporal dynamics (see further Bouton, 1993; Rosas, Todd, & Bouton, 2013).

Second, a very similar type of behavioral adaptation can be observed in CL, when

categories of stimuli change between contexts, which is usually studied in reference to

knowledge partitioning or restructuring (George & Kruschke, 2012; Sewell &

Lewandowsky, 2011, 2012; Yang & Lewandowsky, 2003, 2004). While some researchers

have proposed that people switch between different modules (rules vs. exemplars as in

ATRIUM; e.g., Erickson & Kruschke, 1998), we argue that decision makers switch

between different rules (similar to RULEX; Nosofsky, Palmeri, & McKinley, 1994), or

task goals (e.g., Ballard, Kit, Rothkopf, & Sullivan, 2013; Morton et al., 2017), similarly



CATEGORY ABSTRACTION LEARNING 22

hypothesized in function learning (Kalish et al., 2004) and visual search (Conci, Sun, &

Müller, 2011), and that systematic rule errors trigger this mechanism.

For example, under our account, a decision-maker could learn the simple rule

“large → A, and small → B” and subsequently notices that it only applies if the shape

of the stimulus took the value “square”, but not for “circles”. Then the rule and its

opposite “small → A, and large → B” can be applied on the basis of the context,

similar to partially remapping the rule to different responses (e.g., Kruschke, 1996;

Wills, Noury, Moberly, & Newport, 2006). Hence, in addition to feature attention

directed at predictors of responses, we propose a second attention mechanism, similar to

previous discussions on representational attention (e.g., Lewandowsky, 2011; Sewell &

Lewandowsky, 2012; see also George & Kruschke, 2012; Johansen & Palmeri, 2002), but

concerned with attending to predictors of rule errors.

Third, contextual modulation might be closely related to executive functions (or

attentional control) in working memory (WM; e.g., Miyake & Friedman, 2012; Miyake

& Shah, 1999), which concerns “domain-general processes that keep stimulus and goal

representations accessible under conditions of interference, distraction, and response

competition” (Kane et al., 2006, p. 750), or “ongoing mental operations and actions,

selectively activating relevant representations and processes and inhibiting irrelevant

ones” (Oberauer, Süß, Schulze, Wilhelm, & Wittmann, 2000; p. 1019). That is, the two

targets of attention (simple rules and context cues that predict their errors) not only

imply an ability of cognitive control to mediate between two different goals (rule

learning versus inhibiting the execution of rules) but a strategic interplay. That is, we

assume that a diagnostic rule is not considered as a modulator during learning, and vice

versa, splitting up attention to different stimulus features for different purposes (see

further Formal Description of CAL).

Contextual modulation challenges common conceptions of error-driven learning, in

two ways. First, it becomes obvious that simple rules have to be maintained instead of

being forgotten or corrected when they produce errors in some contexts, otherwise, any

error-driven adjustment of simple rules would hinder using this rule in other contexts.



CATEGORY ABSTRACTION LEARNING 23

In this vein, when viewing the process of context-dependent rule switching through the

formal lens of picking a candidate function from a pre-defined pool (e.g., Erickson &

Kruschke, 1998; Kalish et al., 2004), it can be easily overlooked that learning simple

rules from experience requires the rule representation to be stable, even when confronted

with prediction errors. Thus, we assume that contextual modulation contributes to

neglecting the errors of simple rules during learning (error discounting; see also Craig et

al., 2011), which has rule-confirmation bias as a natural outcome. Second, rule learning

in CAL is defined as success-driven, while learning from prediction error is defined as a

(strategic) search for sources of errors, which also might differentiate human from

animal learning in terms of executive functions (e.g. Lea et al., 2009).

In summary, besides rule-error discounting, contextual modulation involves

cognitive mechanisms that can (a) register the contexts in which systematic errors

occurred (error detection), and (b) focus attention to the cues that predict rule errors in

future decisions (for behavioral adjustment). Thus, we view modulator (or

representational) attention as concerned with attributing errors to external factors, and

with creating conditional hypotheses for using simple rules.

Configural Memory

As a last resort, CAL creates associations between instance representations and

responses in configural memory if rules have non-systematic exceptions. More

specifically, the default in CAL is to strongly encode stimulus associations into memory

only if its rules fail to predict the categories correctly. However, CAL can also

strategically engage in memorization which we further discuss in the formal description

of configural memory. Our assumptions about learning exceptions (from rules and

modulation) were again motivated from multiple theoretical perspectives.

Most importantly, although category inference based on exemplar-similarity is

among the most popular and successful theories of CL (e.g., Nosofsky, 1992), the formal

assumptions of exemplar models (e.g., the generalized context model; Medin & Schaffer,

1978; Nosofsky, 1986) stand in contrast to observed behavioral patterns in several
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studies. For instance, exemplar models (see also Dougherty, Gettys, & Ogden, 1999) are

global matching algorithms that formally require the existence of all observed instances

in memory, sometimes also under the strong theoretical interpretation “that categories

are represented psychologically as collections of individually stored exemplars”

(Nosofsky, 1988; p. 413; but see Medin, Dewey, & Murphy, 1983, for an alternative

interpretation). Although there are further aspects of feature weighting that would

influence this interpretation (e.g., Nosofsky, 1986), the formal set up of exemplar

models seems not entirely supported by empirical evidence showing that storing single

exemplars in memory depends on whether encountered stimuli were unexpected, or

atypical, compared to the majority of stimuli in the same category (e.g., as exceptions

from rules; M. R. Blair & Homa, 2001; Cook & Smith, 2006; Davis, Love, & Preston,

2012; Erickson & Kruschke, 1998; Homa, Blair, McClure, Medema, & Stone, 2019;

Palmeri & Nosofsky, 1995; Sakamoto & Love, 2004; Shohamy, Myers, Onlaor, & Gluck,

2004; see also Squire, 1992; Squire & Knowlton, 1995).

In line with this evidence, and with previous models of rule learning (e.g., RULEX

Nosofsky, Palmeri, & McKinley, 1994), we assume that encoding of configural

representations is enhanced for rule exceptions and retrieving those instances

temporarily suspends the rule prediction, akin to a top-down intervention.

Consequently, we assume that strongly associated exemplars (signaling their exceptional

status) generalize less strongly to novel stimuli, or, in case of shifting to a memorization

strategy, enforce stimulus identification not generalization (or interference; for a related

discussion see Medin & Schaffer, 1978; , p. 232). Thus, we acknowledge that humans

can encode long-lasting memory representations of single instances in memory, but we

assume that these representations are separate from abstracted similarity-based rule

representations (see also Erickson & Kruschke, 1998).

Conceptually, we view stimulus memorization as demanding cognitive resources to

bind (all) separately perceived stimulus features into one representation (Treisman,

1998; Unsworth, 2019). In category learning, similar views are referred to as

‘Combination Theory’, which conceives configural memories as a result of more complex
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brain processes, relative to learning simple rules which we view as dominant route (see

Lamberts, 1995; Wills, Ellett, Milton, Croft, & Beesley, 2020; Wills et al., 2015).

Consequently, similar but not identical to the error-based formation of clusters in

SUSTAIN (Love et al., 2004) or exception learning in RULEX (Nosofsky, Palmeri, &

McKinley, 1994), we assume that prediction errors of CAL’s rules (i.e., if modulation

fails) lead to feature combination beyond contextual modulation. Otherwise, the

memory update is weak, as further detailed in the formal description.

Formal Description of CAL

In the formal description, we first explain how CAL predicts categories by

outlining CAL’s network layout (see Figure 5) and then describe the formal learning

processes. 1 For a brief overview, the layout in Figure 5 shows that CAL is logically

divided into two systems, the Rule Network (separate rule dimensions interacting with

each other via contextual modulation) and Configural Memory (stored stimuli). The

systems influence each other during learning and inference, which we explain below.

Each of the following sections (i.e., Category predictions and Learning) are

correspondingly structured into mechanisms concerning (a) rule representations on

independent dimensions, (b) contextual modulation and attention, and (c) configural

memory. We explain the use of three modifiable parameters governing the strength of

generalization and abstraction (i.e., similarity and contrast; as illustrated in Figure 4),

contextual modulation (attention control), and memory (strength of encoding).

Although CAL applies to any number of categories, for ease of exposition the following

formal description uses examples for the two-category special case, which is sufficient for

the simulations that follow.

1 A table of all central parameters, variables and learning functions can be found in the online

supplement on OSF, together with a short formal version listing the mathematical equations.
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Figure 5 . Schematic of CAL. (Rule Network) The stimulus S activates connections

(solid lines) between nodes on separate stimulus dimensions (e.g., angle 4, of 1–5) and o

outcomes (lower boxes A and B), which integrate into simple rule predictions (evidence

ratios; e.g., angle r1Io based on the active input I = 4 [orange] on the angle dimension

m = 1). The prediction can be re-gated to another category response z1Ik (upper boxes

A and B) by the modulator from the second (length) dimension (e.g, v12Jok = modulator

n = 2 for dimension m = 1). (Configural Memory) The stimulus also activates

instances in configural memory. The stronger their associative strength (shading) the

narrower their generalization, when integrated into memory-based evidence Hk.

Category predictions

Rule predictions. In the rule network, CAL integrates stimulus information in

psychological space defined by sets of nodes on separate dimensions (bottom squares in

Figure 5) ordered by the magnitude they represent (e.g., angle and length). Each node i

(numbers in squares) on a dimension m is associated to its own set of outcome nodes o

(squares A and B) with strength wmio (initialized to 1/(M + 1), M = number of
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dimensions).2 The current stimulus (orange nodes for angle 4 and length 2 in Figure 5)

activates each outcome node corresponding to their associative strengths. On each

dimension m, the evidence ratios of the activated node [I]-to-outcome[o] associations

yield dimension-specific rule predictions rmIo, calculated as log ’posterior odds’ for a

specific outcome O divided by the sum of associations to other outcomes. Formally,

rmIO = ln
(

wmIO + .1∑
wmI(o 6=O) + .1

)
(1)

A normalization constant of .1 avoids strong evidence from weak weights. A value

of rmIO = 0 indicates equal associative strengths, rmIO > 0 predicts outcome O, and

rmIO < 1 reflects evidence against O.

Contextual modulation. A dimension’s rule prediction for outcome o can be

inhibited and re-mapped to another response (k) by re-gating rmIo to the response

nodes zmIk via modulator nodes vmnjok (the gray boxes behind dimension nodes in

Figure 5) on their active nodes J (orange lines). The j gating nodes of a modulator

dimension n register the accuracy of the simple rule predictions (except if coming from

dimension m = n):

zmIk = αm

∑
n

∑
o

rmIo · 1/(1 + exp(−vmnJok)) (2)

The modulator nodes vmnjok are initialized with .5 for matching and -.5 for

mismatching outcome-response associations. They later can take values between 5 and

-5 (see Equation 13). The parameter αm indicates the subjective diagnosticity of the

dimension m (i.e., feature attention), initialized to 1/M (sum to 1). If there is currently

no modulation process active (see Rule Switching) then gating is omitted

(zmI(k=o) = rmIo), and if a single dimension-modulator combination is rejected (e.g., for

m = 1, n = 2), then it it is excluded from the sum.

Configural memory. The presence of the stimulus S also activates configural

instance representations y via distance dy. Each instance y in memory is associated

2 Throughout this manuscript, a lowercase subscript (e.g. i) denotes the set of possible values of that

index, while an uppercase subscript (e.g. I) denotes a specific value within that set, usually the

selected or active unit.
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Figure 6 . Illustration of recall from memory in CAL on a single dimension m (x-axes)

with two stored instances (y1 → A and y2 → B) according to Equations 4–7. Lines

reflect associative strength to respective categories. If instance y2 increases in memory

strength (left to right graph) then generalization of category ‘B’ narrows. The vertical

line represents the point of indifference during the prediction. The gray area highlights

the stimulus space, in which the category of y1 is favored, otherwise that of y2.

with the category labels k with strengths hyk (initialized to 0). However, in CAL the

distance dy is calculated on a normalized scale. Specifically, the physical values (xmi) on

the nodes i of dimension m are unitized in CAL to σmi.

σmi = xmi −min(xm)
max(xm)−min(xm) (3)

The minimum and maximum values are defined by the context of the experiment

(e.g., shading [black, dark gray, gray, light gray, white] is re-coded to the vector of [0,

.25, .5, .75, 1]).3 This method reduces parameter ambiguity (see Wills & Pothos, 2012)

by decoupling the measurement scale (e.g., the physical appearance of a stimulus

dimension) and changes of the similarity gradients introduced later (i.e., γ), and allows

to non-arbitrarily compare CAL’s parameter estimates across varying stimulus designs.

The normalized values are used to compute the sum of distances between the

current stimulus S to each instance in memory y summed over dimensions m:

dy =
∑
m

|σS
mI − σ

y
mi| (4)

3 An individual’s effective minimum and maximum values might also depend on previous experience;

for reasons of simplicity, the current version of CAL does not capture this.
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Figure 6 illustrates the influence of associative strength via narrowing

generalization in memory-based integration (strong associations hyk signal exception

status or a memorization/identification strategy). First, the total associative strength

hyk of each instance y is transformed.

cy = .5 · exp(−.25 ·
∑

k

hyk) (5)

The values of .5 and .25 are scaling constants. The exponential transform defines

cy as a similarity weight used as Gaussian gradient (see also Jäkel et al., 2008a; Jäkel,

Schölkopf, & Wichmann, 2008b) to calculate the overall sum of category activation ak.

Formally,

ak =
∑

y

exp
(
−

d2
y

2 · c2
y

)
· (.1 + hyk) (6)

Gaussian (rather than exponential) decay is chosen for consistency with the

subsequent rule-learning functions. The normalization constant of .1 added to hyk

avoids by-zero division (in case of zero associations) as well as very strong evidence

ratios for weak associative weights in the subsequent equations.4 The memory-based

prediction HK for a specific response K is then calculated in the same manner as rmIo,

namely as the ratio of the similarity-weighted node-to-category activation:

HK = ln
(

aK∑
k 6=K ak

)
(7)

Taken together, the prediction is a statistically stable solution of a probabilistic

selection, similar to the idea of an exemplar-based random walk (Nosofsky & Palmeri,

1997). Increasing associative strength, however, not only increases the strength of the

prediction but also localizes an instance’s influential space (see also Thompson, 1958,

1959).

4 We also considered deterministic selection of the strongest activated instance. However, the pattern

of results were the same in almost all simulations, besides different scaling of parameters. Our intuition

is that, across a broader range of simulations, the version reported in the current manuscript is likely to

be more adequate, but accept this is a matter for future research.
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Category probabilities. Finally, the probability of choosing category k is

calculated by summing the memory prediction Hk, and the rule predictions R′
k, passed

to a logistic5 response rule:

p(k|S) = 1
1 + exp(−2.5 · [Hk +R′

k]) (8)

We assume that both systems are always active (see Brumby & Hahn, 2017; Hahn,

Prat-Sala, Pothos, & Brumby, 2010; Lacroix, Giguere, & Larochelle, 2005; ; but see

next Equation). Including normalization constants (among others) prevents these

predictions to become 0 or 1. For still being able to provide strong predictions, we

included a scaling constant of 2.5 (for a critical discussion on using freely adjustable

response scaling see Krefeld-Schwalb, Scheibehenne, & Pachur, 2019). The rule

module’s prediction R′
k is defined as:

R′
k = 1

1 + max(abs(Hk))
∑
m

zmk (9)

Dividing the summed rule predictions by the maximum memory-based evidence

(among all categories) represents an automatic memory-based intervention (e.g., with

generally strong encoding, or when strong exceptions are retrieved), with the side-effect

of better scaling of both modules’ predictions. However, in the case of probabilistic

feedback memory strength is non-informative of exception memory. Thus, if CAL

notices that an instance is associated to multiple categories in memory, the division by

the memory evidence is removed, which merits further investigation.

Rule switching. Similar to previous rule models (e.g., RULEX; Nosofsky,

Palmeri, & McKinley, 1994), CAL automatically switches between learning of simple

rules and modulated rules (plus their exceptions), depending on their success or errors,

respectively. The default mode is the latter, in which the above formulas apply. CAL,

quits modulation when a simple rule seems sufficiently accurate according to the

threshold θ (set to .85), then zmI(k=o) = rmIo in Equation 2. Before predicting the

current trial, CAL calculates rule accuracy taking the 5-trials-back average prediction

5 The definition of this response rule is a simplification that suffices for the experiments modeled here;

for alternative implementations see Wills, Reimers, Stewart, Suret, and McLaren (2000).
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on each dimension (i.e., 1/(1 + exp(αmrmIP )); P = correct category). If one of these

rules’ accuracy exceeds θ then response gating is omitted until accuracy becomes lower

again. The values of 5 trials and θ are arbitrary and both parameters could vary freely,

or even change over learning, but sufficed for the simulations that follow (for a similar

method see Nosofsky, Palmeri, & McKinley, 1994). However, note that the strength of

rule learning will indirectly affect when these criteria are met.

CAL also omits single modulators in Equation 2 when they repeatedly lead to

strong prediction errors. Therefore, CAL evaluates modulation errors in the given trial

(i.e., after feedback: 1− 1/(1 + exp(∑m zmIP ))). If the error is larger than θ, CAL

registers the currently most diagnostic dimension among the simple rules, with

max(αm), and the most diagnostic modulator, with max(βn(n6=m)), and counts the error

for this combination. If a count exceeds a further threshold, CAL omits the

corresponding combination during gating in Equation 2. Furthermore, βn for a

modulator is set to 0 in the beginning of each trial, in which the most diagnostic

dimension is part of the rejected dimension-modulator combination.

This tolerance threshold, again, is arbitrary, but we assume that it depends on the

complexity of the category structure defined as the product of the number of categories

and the number of dimensions M ·C, which was sufficient in all simulations. We seek to

address these tentative assumptions and their potential constraints empirically in future

studies. However, we will briefly discuss their role and open questions in the sections

‘Contextual Modulation in Linear and Non-Linear Category Structures’ and ‘Rules and

Exceptions in the 5-4 Problem’.

Learning

Rule learning. Upon feedback (e.g., “This [long, vertical] line is an ‘A’.”), CAL

associates the nodes on the feature dimensions, separately for each dimension m, to the

outcome nodes (o = A and o = B in Figure 5). That is, the feedback ‘A’ is not only

interpreted as evidence for the presence of ‘A’ but also as absence of ‘B’. We henceforth

refer to the present (observed) category as P , and to the absent (unobserved) category
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as P̄ . The associations to category P are updated via excitatory generalization

(similarity), and those to P̄ are updated via contrasting (dissimilarity). Their general

magnitude can vary across the different dimensions through the presence of Ωm, which

we explain after describing each update.

Excitatory generalization. The associations of the dimension nodes to

category P (wmiP ) are updated in a Hebbian fashion (Hebb, 1949) by adding ∆wmiP ,

which is defined by a Gaussian decay of activation (see Appendix A for a discussion on

Exponential versus Gaussian gradients), maximal at input node I on a dimension m,

and symmetrically decreasing in strength with increasing (normalized) distance to it.

Formally,

∆wmiP = Ωm · exp
(
− |σ

S
mI − σmi|2

2 · exp(γ)2

)
· exp

(
−
∑

p̄ wmip̄

wmiP

)
(10)

The width of Gaussian decay is governed by the free parameter γ, which is identically

used (and scaled) in the following two functions below. Large positive values flatten the

generalization decay, discriminating less strongly between similar and dissimilar stimuli.

In CAL, excitatory generalization is self-confirmatory, i.e. reinforces prior

expectations (see also Berndsen, van der Pligt, Spears, & McGarty, 1996; Heit, 1997;

Tenenbaum & Griffiths, 2001; Zhu, Sanborn, & Chater, 2018). Therefore, the update on

each node is weighted by the ratio of its existing associations (wmio), which reduces the

update for nodes that only weakly predict P (i.e., discounting of unsystematic errors).

Contrasting. The inverse generalization update ∆wmiP̄ forms associations

between the dimension nodes and the absent category, such that future stimuli

dissimilar to the current one will be judged as belonging to the absent category (P̄ ):

∆wmip̄ = Ωm

(
1− exp

(
− |σ

S
mI − σmi|2

2 · exp(γ)2

))(
1 + exp

(
− wmiP∑

p̄ wmip̄

))
(11)

The contrasting update is stronger on dimension nodes that predicted the absent

category (i.e., the same prior weight as in Equation 10, but inverted). Adding 1 to this

exponential ensures that contrasting is less dependent on prior predictions (weaker error

discounting), such that hypothesis generation rather than observation (generalization)

changes existing outcome expectations. Generally, the belief-updating mechanism leads

to enhancing category boundaries quickly as soon as rules develop.
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Each update is weighted by Ωm, which defines our hypotheses about purposeful

encoding of each dimension. Formally,

Ωm = (1.1− βn=m)αm · exp
(∑

n

αmβnvmnJP P

)
(12)

The modulator diagnosticity βn (here with n = m) informs whether a dimension is

currently used as modulator (e.g., β1 = 1). Thus, a dimension’s update is reduced

during simple-rule learning if it already predicts modulation of other rules. Including

αm reflects the hypothesis that generalization and contrasting on a dimension m depend

on the attention paid to it (subjective diagnosticity). The exponential term leads to

error discounting if rule errors always repeat in the same context(s), taking the gating

node that links the outcome-response association for category P . It reduces a

dimension’s update if vmnJP P < 0 (active re-mapping) and enhances it if vmnJP P > 0.

Weighting vmnJP P with αm and βn reduces effective error discounting for non-diagnostic

rule(s) and from non-diagnostic modulator(s). When CAL quits modulation to apply a

simple rule, then Ωm = αm.

Re-normalization. Importantly, after adding each update to the old dimension

associations, they are re-normalized by dividing them by the maximum value of that

dimension, with wmio = (wold
mio + ∆wmio)/max(wold

mio + ∆wmio). This means the

associative strengths range between 0 and 1. However, we capped the range at .999 and

.001, mainly to allow CAL to learn nothing when the generalization gradient γ becomes

very broad, otherwise, CAL would always learn rules. The re-normalization has three

further effects. First, it prevents infinite growth of associative strengths and maintains

the plasticity of the basic rule learning process. Second, it applies lateral inhibition

(strong associations inhibit weaker ones). Similar concepts of lateral inhibition have

been implemented in several other models (e.g., Bhatia & Pleskac, 2019; Roe,

Busemeyer, & Townsend, 2001; Wills et al., 2000).

Third, at least one association per category on each dimension always has a

maximum of .999. For instance, if the same stimulus ‘S → A’ is presented repeatedly,

its association to category ‘A’ does not increase. Due to contrasting, however, its

association to alternative categories decreases, thereby increasing the certainty (and
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Figure 7 . Illustration of simple rule learning in CAL on a single dimension m (x-axes)

for three consecutive trials (lines) each with stimulus S → category A. (Top) Weighted

generalization and contrasting updates according to Equations 11 and 12 with γ = −1.

(Bottom) Resulting outcome associations wmio after re-normalization.

response strength) for ‘A’ when S is present. This implementation reflects the idea that

certainty includes learning that alternative outcomes were not missing at random (see

also Meder, Mayrhofer, & Waldmann, 2014). Figure 7 illustrates this mechanism over

three consecutive trials, also showing that generalization narrows the consequential

region with training (see also Shepard & Kannappan, 1991) and contrasting broadens

the contrastive consequential region away from S, similar to what has been called

idealization by contrast (see Davis & Love, 2010).

Figure 8 further illustrates how changes in γ result in rather probabilistic or

deterministic single-dimension rules. For each, we applied CAL once to the same

sequence of 13 trials. In each trial, we presented one stimulus randomly drawn from the

whole range (category A [stimuli 1 to 4], B [5 to 9]). Both kinds of generalization have

been found empirically (e.g., Lee, Hayes, & Lovibond, 2018; Rouder & Ratcliff, 2006).

Furthermore, the changing shapes (or strength) of the prediction curves with increased

training (indicated by line shading) correspond to actual behavior observed by Jones,

Wills, and McLaren (1998).
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wio
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Dimension nodes i

wio
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Dimension nodes i

Probabilistic Rules
γ = .3

Decisive Rules
γ = −1.5

Figure 8 . CAL’s learned associations to two categories (top; wio for categories ‘A’ and

‘B’ with solid and dashed lines, respectively) and resulting category ‘A’ predictions (piA;

bottom) with weaker contrasting (left) and stronger contrasting (right). For each, CAL

learned from the same sequence of stimuli (randomly drawn from the whole range) with

13 trials. Dotted vertical lines indicate the true category boundary. Shaded lines

represent trial-wise states (darker lines reflect later learning trials; last-trial is colored).

Learning modulation. CAL can inhibit the execution of dimension rules via

the modulator associations vmnjok (Equation 2; see also gray lines in Figure 5) as well as

rule learning for current modulators via Ωm (Equations 12– 11). Learning about

potential modulators is achieved by registering the successes and failures of each simple

rule on the modulator score vmnjok. The score is updated for the active input J on a

potential modulator dimension n (with m 6= n) generalizing to adjacent nodes j.

For the matching outcome-response gates (o = k) the update is:

∆vmnj(o=k) = T · exp
(
− |σ

S
nJ − σnj|2

2 · exp(γ)2

)
· (1.1− αm=n)βn ·

(
5− T ′ · vmnj(o=k)

)
(13)

For the mis-matching outcome-response gates (o 6= k) the update is the same but

the direction is reversed, indicated by the sign changes:

∆vmnj(o 6=k) = −T · exp
(
− |σ

S
nJ − σnj|2

2 · exp(γ)2

)
· (1.1− αm=n)βn ·

(
5 + T ′ · vmnj(o 6=k)

)
(14)

The parameter T ′ is a teaching signal, which becomes −1 if the simple rule

predicted the wrong outcome, but 1 otherwise. The parameter T is a combination of T ′

and the free parameter ω, which governs the strength of the update in an exponential

transform. Positive values of ω can be seen as an individual’s tendency or cognitive



CATEGORY ABSTRACTION LEARNING 36

ability to search (and remember) the contexts in which rule errors are present. Formally,

T = T ′

(1 + exp(−ω)) (15)

Generally, Equations 13 and 14 define decelerated growth functions, each with limits -5

and 5. Thus, if the current simple rule prediction was correct the modulator update

positively increases the association between the outcome node o to the same response

node k (i.e., o = k), but negatively to other response nodes (i.e., o 6= k), and vice versa

if the rule prediction was incorrect.

Due to the Gaussian generalization to adjacent modulator nodes j, CAL will tend

to modulate a dimension’s prediction in similar contexts. Weighting the update by

(1.1− αm=n) means that a diagnostic rule can not become a strong modulator of

another rule. Weighting the term by βn (modulator diagnosticity) will reduce learning

about non-diagnostic modulators. However, according to the definitions in the ‘Rule

switching’ section, CAL can switch to using only simple rules, which leads to omitting

Equations 13 and 14. Furthermore, if a single modulator (e.g. n = 1) produces a strong

error (> θ), as defined above, then all its gating nodes vm1jok are re-initialized in this

step, which can be seen as a deliberate act of dropping these conditional hypotheses to

start learning new ones.

Attention. In CAL, dimensions and modulators attract attention (αm and βn), if

they have been learned to reliably predict outcomes and systematic errors, respectively.

For updating αm CAL screens the variation in the category evidence of a dimension m

across its nodes i (i.e., rmiP after the above updates), by taking the standard deviations

SDm of the vector of the evidence ratios:

αm = SDm(rmiP )∑
m SDm(rmiP ) (16)

After this, αm is averaged with the previous αm (∑αm = 1). In cases where only

one stimulus dimension is assumed to be physically perceived (as in most classic

reinforcement learning studies), we assume the presence of a constant context dimension

(with attention initialized as 1/M) without that context dimension providing category

predictions, such that attention to the context dimension decreases over time. Thus, we
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assume that the experimental context serves as a modulator (for a similar approach

Kruschke, 2001). For a concrete example of this usage, see our later section

‘Generalization, Discrimination and Individual Differences in Peak-Shift’.6

The update for the modulator diagnosticity, βn, is defined in a similar manner to

that of αm; in this case using the associations between the rule modulator n on its j

nodes and each dimension m separately (gray lines in Figure 5). Formally,

β′
n =

∑
m 6=n

αm · SD
(∑

ok

vmnj(o=k) −
∑
ok

vmnj(o 6=k)
)

(17)

For each modulator n, the equation cycles through the possibly modulated

dimensions (except m = n). For each dimension m, the sum of associations on

mis-matching gates (o 6= k) is subtracted from the sum scores of matching gates (o = k)

on each j modulator node. A single j score will become positive without re-gating (i.e.,

o = k has positive and o 6= k has negative associations), but negative with re-gating

(i.e., o = k has negative and o 6= k has positive associations). Thus, if the scores

strongly vary over the j nodes, there is contextual modulation and the standard

deviation (SD) of these nodes will increase. For each modulated dimension the SD is

weighted with αm (i.e., the value before applying Equation 16) to neglect modulation of

non-diagnostic rules, before summing over m. The summed SD’s are then normalized:

βn = β′
n∑

n β
′
n

(18)

The βn is then averaged with the previous βn (∑βn = 1). Note, that after a

modulator was reset (e.g., for n = 1, when encountering a strong modulation error),

which can only happen only once per trial, its SD will be zero (e.g., β′
1 = 0). Since the

other modulators will have variance, averaging the update with the previous βn then

attenuates attention on n = 1 towards 0 over time.

Configural Memory. Finally, a memory update strengthens the association

hSP between the memory representation of stimulus S and the correct category P :

∆hSP = B

1 + exp
(
− λ+ exp(1 + 1/(F · C)∑sk h

old
sk )−∑m zmIP

) (19)

6 We also provide an example for how to set up CAL’s input to simulate global context changes that

correlate with learning events (e.g., extinction) in the online manual on OSF.



CATEGORY ABSTRACTION LEARNING 38

First, the parameter λ is a free memory strength parameter, and larger values

increase the updates’ strength. Second, the values of ∆hSP can range between 0 and B,

which is defined as B = 1/M · (C − 1), with M number of dimensions, and C number of

categories. Thus, in line with combination theory (Wills et al., 2015), the difficulty of

binding stimulus features into a configural representation increases with the number of

available dimensions and categories.

The stronger the error of the (modulated) rule, represented by zmIP , the stronger

the update, otherwise, the update approaches 0 if zmIP outweighs λ. Vice versa, larger

values of λ cancel out the influence of rule errors on the log scale (i.e., describing

enhanced memorization regardless of rule errors). In cases of probabilistic feedback, we

assume that prediction errors are uninformative about the exception status of an

instance. Therefore, we implemented that zmIP is removed from this equation from the

moment on, in which CAL receives feedback that contradicts the stored category

associations, which, however, merits further investigation. The term

exp(1 + 1/(F · C)∑sk h
old
sk ) represents the average of associative strengths of existing

memories (with F number of instances with non-zero associations). Adding this term

implements a decelerated learning function, annealing over time (see also Craig et al.,

2011; Kruschke & Johansen, 1999). Intuitively speaking, the more configural knowledge

CAL has, the less it learns.

Model Evaluations

In the following evaluations, we illustrate CAL’s scope and its ordinal predictions

of performance in different paradigms. After describing the general method, we first

report model simulations of, in this order, reinforcement learning on a single continuous

dimension addressing the peak-shift phenomenon (see Purtle, 1973) and individual

differences therein (e.g., Lee et al., 2018). We then illustrate category learning on two

continuous dimensions addressing spontaneous rule-extrapolation in disjunctive

category structures (i.e., incomplete XOR; Conaway & Kurtz, 2017). We then turn to

tasks with binary dimension, first focusing on learning performance in linear vs
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non-linearly separable categories (Medin & Schwanenflugel, 1981) and sub-group

specific learning of exception items therein (Levering, Conaway, & Kurtz, 2019). After

this, we simulate item-specific performance in the classic 5–4 category structure (Medin

& Schaffer, 1978), and eye-tracking patterns during learning the 5–4 structure (Rehder

& Hoffman, 2005b). Finally, we show how CAL, as introduced, predicts the ordinal

difficulty of the classic Six Problems (Shepard et al., 1961) and the influence of rule

instructions or learning strategies on Type II difficulty and response distributions

(Kurtz et al., 2013). Furthermore, we then use CAL as an individual process-tracing

model in the Six Problems eye-tracking study of Rehder and Hoffman (2005a) to assess

the model’s ability to predict individual eye-tracking trajectories during Type I and

Type II learning, in a cross-validation fashion.

Model parameters and general method

In the following simulations, we vary three of CAL’s modifiable parameters (i.e.,

generalization/contrasting γ, memory strength λ, and modulation learning ω) while

holding others fixed (e.g., the accuracy threshold for modulation errors similar to

Nosofsky, Palmeri, & McKinley, 1994). Note that some modifiable parameters are

exponentially transformed within the equations set out above. In this article, we report

the values before these transformations. Stronger contrasting/narrow generalization

(lower values of γ) induces stronger hypotheses about the outcomes of stimuli (which

also affects the likelihood of detecting contextual modulation). Stronger memorization

(higher values of λ) lead to neglecting rule-errors in CAL’s exception learning but also

increase memory encoding in general, thereby representing a continuous shift towards a

pure memorization strategy. Stronger modulation strength (larger values of ω)

represents the ability or sensitivity of detecting and/or storing the contexts in which

errors of simple rules were encountered. We further highlight their use and meaning in

each section.

In each of the simulations, we will not only discuss average patterns, but also how

CAL predicts distributions of individual differences in the population of learners, and
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how external factors (e.g., instructions, practice, stimulus design) might affect these

predictions. Crucially, in contrast to the traditional approach of optimizing one fixed

set of parameters for a paradigm or study, we set the means and standard deviations

(normal distributions) for γ and λ based on theoretic considerations regarding the

cognitive process (or learning ability) of the assumed populations in each study.7 We

then simulated individual samples by randomly drawing parameters from each

distribution and passing them to CAL together with the learning tasks of the paradigm.

This also means, that the prior parameter distributions could be seen as a theoretically

constrained version of parameter-space partitioning (e.g., Pitt, Kim, Navarro, & Myung,

2006). To predict the results in a given study with multiple tasks (e.g., for the Six

Problems in Nosofsky, Palmeri, & McKinley, 1994), we did not adjust the distributions

between tasks within that study.

Our theoretical considerations about study differences mainly concern the effects of

instructions and practice relative to CAL’s (or the participants’) engagement in rule

learning or memorization. For instance, we adjusted the contrasting parameter (γ) to

predict the effect of rule instructions on ordinal task difficulty in the Six Problems

(Nosofsky, Palmeri, & McKinley, 1994) relative to a study without rule instructions

(Kurtz et al., 2013). We will explain the rationale for changing parameter distributions

between studies in each case.

Since the outlined simulations clearly show that CAL can accurately predict

several phenomena in a variety of paradigms which established models fail to predict

(e.g., spontaneous rule extrapolation in XOR, the effect of rule instructions on response

distributions in Type II, or a learning advantage of exception items in non-linearly

separable category structures), we did not further include traditional quantitative

model comparisons. Instead, as initially outlined, our final methodological approach

turns to the question of how well CAL can predict individual attention processes

indicated by eye-movement tracking, highlighting the model’s potential for studying

7 The distribution of ω was left unchanged in all simulations (except for the final process-tracing

approach which was based on parameter optimization).
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relations to individual differences on external measures.

Generalization, Discrimination and Individual Differences in Peak-Shift

In the following, we show how CAL predicts a classic finding known in

reinforcement learning as the peak-shift phenomenon (see Hanson, 1959; Mackintosh,

1974; Purtle, 1973) and individual differences therein, as observed by Lee et al. (2018),

based on the general assumption of the complementary mechanisms of generalization

(Equation 10) and contrasting (Equation 11). A typical version of this paradigm is

illustrated in Figure 9, as used in the study of Lee et al. (2018). There are two learning

tasks, Generalization and Discrimination. In the Generalization task, participants

experience that one stimulus leads to an outcome (CS+; a shock) in 75% of the trials

(probabilistic), and in the Discrimination task, that one stimulus leads to the outcome

(CS+; probabilistic) while another one does not (CS-). Thereafter, unlabelled stimuli

from a broad range of stimuli (e.g., different colors or wavelengths) are tested on

outcome expectancy, which is plotted as a function of perceptual distance to the trained

stimuli (response gradient). In this paradigm, peak-shift refers to a change in the

response gradient in the Discrimination task, relative to the Generalization task. That

is, the peak of the CS+ gradient shifts away from the CS-, usually including ‘positive

contrast’ (see Mackintosh, 1974; , pp. 535 ff.) referring to the cross over of the response

gradients with an increase in response strength regarding CS+.

Peak shift can be observed in both human and non-human animals (e.g., Lee et al.,

2018; Livesey & McLaren, 2009; Lovibond, Lee, & Hayes, 2020; Lynn, Cnaani, & Papaj,

2005; Mackintosh, 1974; Purtle, 1973; Struyf, Iberico, & Vervliet, 2014), suggesting that

rather ‘low-level’ cognitive processes are involved. Accordingly, a traditional explanation

in theories of associative learning, among others, was that the CS+ and CS- overlap in

their (Gaussian) excitatory/inhibitory gradients. However, also the phenomenon of

behavioral contrast (Reynolds, 1961), which inspired CAL’s contrasting mechanism, has

been proposed to be related to the peak shift (see Purtle, 1973; pp. 413f), specifically to

an increase in response strength for the CS+ gradient in the Discrimination task.
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In human learning, researchers increasingly focus on individual differences in this

phenomenon distinguishing similarity-like behavior (e.g., exemplar-similarity or

feature-based) and rule-like behavior (e.g., Lee et al., 2018; Livesey & McLaren, 2009,

2019; Lovibond et al., 2020) and their relation to human personality traits (Nicholson &

Gray, 1972; Wong & Lovibond, 2018). For instance, in their recent fear-conditioning

study, Lee et al. (2018) gave their participants a strategy questionnaire, and found, in

the Generalization task, that the majority of the participants belonged either to a

‘Similarity’ group or a ‘No relation’ group. In the Discrimination task, most

participants described a ‘Similarity’ strategy or relational ‘Linear’ rules. Other patterns

were found for some participants, which is, unfortunately, beyond the scope of this

article, and we focus on the mentioned sub-groups (see further Livesey & McLaren,

2009, 2019; Lovibond et al., 2020; Wong & Lovibond, 2018).

As can be seen in Figure 9A, in the Discrimination task (black squares), the

average gradient of the ‘Similarity’ sub-group was sine-shaped while the gradient in the

‘Linear’ sub-group rather corresponded to a more linear step-function. In the

Generalization task (crosses; ‘None’ in Figure 9A refers to ‘No relationship’) ‘No

relation’ and ‘Linear’ sub-groups were relatively equal. This pattern can be used to

illustrate CAL’s learning hypotheses.

Figure 9B shows CAL’s predictions from two simulations, each averaged across

2000 learning sequences sampled according to the methods reported in Lee et al. (2018).

Consider that a distinction between similarity vs linearity concerns CAL’s rule-learning

parameter γ. The notion of rule learning in this task, however, somewhat differs from

those in other simulations with binary feature dimensions. On binary dimensions, the

stimuli, by definition in CAL, populate the endpoints of the stimulus continuum. When

the stimuli are in the center, as in the current paradigm, stronger contrasting

symmetrically abstracts evidence for contrasting categories around the stimulus, while

weaker contrasting abstracts category evidence further away from the stimulus (see also

Figure 8), producing rather flat (γ ∼ 0), rather linear (γ ∼ −1), or more tightly

S-shaped (γ ∼ −3) gradients.
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Figure 9 . Peak-shift phenomenon and individual differences as studied in Lee et al.

(2018) Exp. 2. Learning Task illustrates conditioning phases in Generalization (left)

and Discrimination tasks (right; x-axes = cue-color continuum; vertical lines indicate

trained stimuli; circles represent trials with probabilistic outcomes for CS+). Test

depicts typical observed behavioral gradients during Test (y-axes = shock expectancy).

Lower panels show (A) data of strategy sub-groups (B) corresponding CAL

simulations with strong (top) versus moderate contrasting (bottom).

Since Lee et al. (2018) assigned the sub-groups using an external measure

(questionnaire) we simulated two relatively homogeneous populations with some

overlap. We simulated γ ∼ Gaussian(−2.3, .5) to reflect a ‘Similarity’ group, and

γ ∼ Gaussian(−1.7, .5) to reflect a ‘Linear/No relation’ group. Please note, following
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the argument by Kurtz et al. (2013) that continuous stimuli promote a mapping of

stimulus features on spatial representations, which is the conceptual basis for rule

learning in CAL, we assumed a slightly stronger and more homogeneous tendency of

contrasting, compared to the paradigms with binary stimulus dimensions.

Modulation was sampled with ω ∼ Gaussian(1, 1). Memorization was sampled

with λ ∼ Gaussian(−6, 1). This memory setting is not comparable to those in all other

simulations that follow due to the probabilistic feedback. If CAL notes that multiple

categories are associated with the same stimulus CAL switches from rule-error driven

encoding to Hebbian memorization, such that encoding becomes equally strong for all

observations, decreasing only over time. For this simulation, we also included a constant

context dimension (i.e., serving as modulation dimension without cue variation, and

without contributing to simple rules or memory predictions). Additionally,

reinforcement-learning research shows, that generalization of CS+ is steeper than for

CS- (e.g., Honig, Boneau, Burstein, & Pennypacker, 1963; Jenkins & Harrison, 1962;

Lovibond et al., 2020; see also Mackintosh, 1974, pp. 525 ff.). We included this

assumption by adding a value of 2 to γ when updating the dimension associations to

‘no shock’.

As can be seen in Figure 9, CAL accurately predicts the pattern of individual

differences due to variations in γ, including peak-shift, increased response strength in

the Discrimination condition (positive contrast), and the cross-over of response

probabilities. The weaker γ for ‘no shock’ also contributed to the quantitative accuracy

of the predictions, by flattening the gradients. To be transparent, although the group

differences depend on γ, the general pattern co-depends on other mechanisms in CAL

concerning the composition of diverse individual patterns (not shown).

Most importantly, CAL’s rule learning generally discounts probabilistic feedback

on CS+ due to the self-affirmative rule learning (belief updating) which counteracts

confusion. The reason that the predictions do not reach 0 or 100% on average, however,

lies in the variability of the individual gradients and the presence of the constant

context dimension. This global context dimension gates the prediction proportional to
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recent rule successes. Individual differences in the extent of this uncertainty (not

shown) depend on modulation strengths (ω) and trial order in the given samples (for a

related discussion on how context associations could also predict, e.g., latent inhibition,

see Kruschke, 2001).

Of course, several models can predict the peak-shift phenomenon, and potentially

also individual differences, including category-learning models. For instance, ATRIUM

(Erickson & Kruschke, 1998) by definition could predict a rule-like pattern in the

Discrimination task when assuming different rule-learning rates in each sub-group.

This, however, seems rather descriptive as its rules are defined by the researcher. Also,

ALCOVE (Kruschke, 1992), with a Gaussian similarity function, would predict a peak

shift and a reduction of it when adjusting its parameter governing the sensitivity to

exemplar-similarity. However, in exemplar models, adding CS– in the Discrimination

task introduces evidence against, not for, the + outcome. Consequently, additional

parameters would be required to also predict positive contrast or a cross-over of

response strengths. For both models, two further free parameters would be required: for

instance, a decision threshold to predict below 50% responding in the Generalization

condition, and an error-discounting parameter to deal with probabilistic feedback (see

Craig et al., 2011; Kruschke & Johansen, 1999).

Taken together, CAL predicts the classic and more recently studied facets of the

phenomenon known as peak-shift, and individual differences therein by adjusting the

strength of generalization/contrasting (γ). This fundamental ability seems to build a

valid basis to investigate more complex category-learning processes and paradigms.

Furthermore, the results illustrate one of CAL’s novel theoretical contributions. That is,

the single aspects of the outlined individual differences in generalization behavior were

previously separately accounted for by qualitatively different models (or modules) such

as feature-based (or exemplar-similarity) processing versus rule-based processing (see

further Hahn & Chater, 1998; Pothos, 2005). In CAL, similarity- and rule-like trends

result from the same cognitive mechanism of rule-learning, which includes the core

principles of belief updating and lateral inhibition, continuously varying in its precision
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(γ). In the following, we present further cases in which similar variations on γ can also

explain observed strategy-like differences in (multi-dimensional) category learning tasks.

Extrapolation in incomplete XOR

We hypothesized that, as in the previous task, individual differences in contrasting

can also explain individual differences in interpolation versus extrapolation after

learning an incomplete XOR task (see Figure 10A), as the strength of contrasting

influences the likelihood of contextual modulation. Specifically, although the

participants in Conaway and Kurtz (2017) only learned about the stimulus-categories

depicted in Figure 10A without learning about the lower right ‘?’ quadrant of the

stimulus space, some participants still extrapolated ‘B’ in a later test phase (31% and

45% of participants in Exp. 1 and 2, respectively).

Besides learning about category labels, this task is quite similar to the above

Discrimination task, but the contingency (e.g., large values on Dimension 2 → B, small

values → A) depends on the second stimulus dimension (e.g., only for low but not for

high values on Dimension 1). Thus, from a CAL perspective, the same dynamics apply

as in the Discrimination task, except for enabling the model to encode the stimulus

dimensions as (potential) rule modulators. That is, first, variations in contrasting lead

to rather sharp or rather flat gradients (with low and high γ, respectively) on each

dimension. Second, however, in incomplete XOR, sharp gradients (labeled ’similarity

like’ in the conditioning task), rather than flat gradients (previously labeled ’rule like’),

produce strong predictions for unobserved instances in the stimulus space. With sharp

gradients (with low γ; strong contrasting), thus, CAL will produce frequent rule errors

correlating with the values of the other dimension, which gives rise to contextual

modulation, even if there is a quadrant unobserved. In this case, CAL predicts

spontaneous extrapolation of the complete XOR category structure.

To simulate this phenomenon, we generated 3000 random sequences of 8 stimuli (2

‘B’ stimuli [presented twice], and 4 ‘A’ stimuli, as illustrated in Figure 10A) within 12

training blocks, identical to the procedure in Conaway and Kurtz (2017), and presented
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Figure 10 . CAL simulation of incomplete XOR, as studied in Conaway and Kurtz

(2017). (A) Coordinate grid with stimulus locations for categories ‘A’ and ‘B’. Grey

cells (‘?’) show nine critical test items. (B) Mean simulated response gradients during

test for ‘extrapolation’ participants (i.e. with mean P(B) > .6 for the critical items).

Shading indicates response probability; black=100% ‘A’. (C) As (B), for ‘interpolation’

participants (with P(B) ≤ .6). (D) Simulated participants, grouped by the number of

category ‘B’ responses on the nine critical items. Lower panel: Distribution of number

of critical ‘B’ responses across 3000 samples (zero = full interpolation; nine = full

extrapolation). Upper panel: CAL’s γ sample parameter, as a function of the predicted

critical ‘B’ responses.

them to CAL. We sampled contrasting with γ ∼ Gaussian(−1.75, .75) similar to the

population as in the simulation of the peak-shift phenomenon. Again, contrasting here

is stronger than for the following simulations with rather qualitative binary dimensions

following the argument that continuous stimuli are easier to map on spatial

representations (Kurtz et al., 2013). Again, we sampled modulation with

ω ∼ Gaussian(1, 1), and memory strength with λ ∼ Gaussian(−.5, 1.5) (which both are
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identical to the subsequent simulation ‘D2’ for the Six Problems)8. We then divided the

3000 samples according to the resulting predicted behavior into two groups -

‘extrapolators’ (those with an average P(B) ≥ .6 on the critical test items) and

‘interpolators’ (with average P(B) < .6; identical to the procedure of Conaway & Kurtz,

2017). We then averaged the predictions on each stimulus within these two groups.

Figure 10B shows the extrapolators, who made up 37.3% of the sample. Figure 10C

shows the interpolators, who made up the remainder of the sample.

The two panels of Figure 10D show CAL’s frequency of ‘B’ responses in the

untrained quadrant (‘?’) and the corresponding γ samples. First, for the lower panel,

we counted the number of ‘B’ choices in each sample in the untrained (grey) quadrant

in the test phase (0–9 reduced category responses). The histogram, thus, shows the

frequency of extrapolated ‘B’ responses across the 3000 simulations (for comparison see

Figures 6 and 11 in Conaway & Kurtz, 2017). The depicted distribution of ‘B’

responses in the untrained quadrant is compatible with the result Conaway and Kurtz

(2017) observed. To our knowledge, there are no other published models that would be

able to predict this pattern.

Second, the upper panel shows the corresponding γ values plotted against the

predicted number of extrapolation responses. Apparently, the relation between γ and

the predicted number of extrapolation responses is not deterministic (with about

r = −.33). That is, while frequent extrapolation mainly occurred with values of γ = −2

and interpolation with larger values, lowering γ < −2.5 decreased the number of

extrapolation responses as well. That is, too narrow generalization (γ < −2.5) during

the modulation update could prevent that contextual modulation (if learned) applies in

the whole unobserved quadrant. For example, registered modulation on values 6 or 7 of

Dimension 1 would hardly generalize to value 5 with very precise generalization (hence

reducing the number of ‘B’ responses).

8 In order to simulate empirical measurement error (or probabilistic responding), we used CAL’s

predicted average response probability for the nine critical items and sampled nine observations from a

binomial distribution.
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In summary, CAL’s predictions corresponded quite closely to the average

behavioral response gradients in the two participant groups of Conaway and Kurtz

(2017; see their Figures 6 and 7), as well as to the observed proportion of participants

who extrapolated category ‘B’ in the untrained quadrant. CAL’s explanation of this

phenomenon highlights the possibility that such individual differences stem from

contrasting processes (inverse generalization), a mechanism that triggers contextual

modulation. The same variation in the strength of contrasting predicted individual

differences in the peak shift. This allows bringing both phenomena together on a

common scale, but with different implications due to the diverging strategy-like effects

of changes in γ. Taken together, these insights provide a coherent picture of the

hypothesized cognitive processes underlying category learning. These, as we will show

in the following sections, also accurately predict the observed patterns of performance

in the classic Six Problems (Nosofsky, Palmeri, & McKinley, 1994; Shepard et al., 1961)

and individual differences therein (Kurtz et al., 2013) and observed individual

differences in learning linearly versus non-linearly separable category structures.

Contextual Modulation in Linear and Non-Linear Category Structures

Another task in which learning of simple rules and their contextual modulation

provides a reasonable explanation of diverse empirical phenomena concerns studies on

linear separability constraints, as introduced by Medin and Schwanenflugel (1981).

Figure 11 depicts a typical implementation. Linear separability (LS) here refers to the

possibility to divide the category space by a weighted-additive rule resulting in a linear

category boundary (i.e., a diagonal plane in Figure 11), while this is impossible in the

non-linear structure (NLS). Note that LS and NLS, respectively, are incomplete versions

of Types IV and III of the classic Types by Shepard et al. (1961), discussed in our next

section. Unlike the classic Types III and IV, which seem equally difficult, NLS learning

has been observed to be easier than LS, most recently discussed from a modeling

perspective by Levering et al. (2019).

In short, while independent-cue models predict an LS advantage (e.g., prototype
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Figure 11 . Three-dimensional illustration of linearly (LS) versus non-linearly separable

(NLS) category structures (numbers indicate stimulus coordinates [x,y,z]). Letters refer

to item types in NLS (P = Protoype, I = Intermediate, E = Exception; see text).

models; Posner & Keele, 1968; Reed, 1972), similarity-based (exemplar- or cluster)

models of categorization (Kruschke, 1992; Love et al., 2004; Medin & Schwanenflugel,

1981), or auto-encoder models (DIVA; Kurtz, 2007) can predict an NLS advantage.

Also, rule models can accommodate this pattern when assuming quicker learning of rule

exceptions in NLS than in LS (Nosofsky, Palmeri, & McKinley, 1994). Thus, the first

goal in this section is to show how CAL’s contextual modulation accounts for this

finding. The second goal, however, is to propose novel CAL predictions concerning more

detailed open questions raised by Levering et al. (2019). That is, we show how CAL

predicts observed individual differences in responding to specific category items, which

established models fail to predict.

For clarity, the stimulus coordinates [x,y,z] and item notations in Figure 11 (‘P’,

‘I’, ‘E’ as Prototype, Intermediate, and Exception, respectively) follow those used by

Levering et al. (2019), referring to the item properties in the NLS structure. The

‘Prototype’ items in NLS are most similar to all other items in their category, and so

forth, for ‘I’ and ‘E’ items. From a CAL perspective, however, three simple (but

imperfect) rules can be solely derived by observing the dominant dimension-category

regularities covering four out of six items (e.g., on dimension x [0,_,_] → A and [1,_,_]

→ B covers four items; or on dimension y [_,0,_] → A and [_,1,_] → B covers four

items; and likewise on dimension z).
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‘P’ items in NLS have the property that they are covered by any of these dominant

rules, which generally predicts high accuracy for ‘P’ items. For ‘I’ items, however, this

is only true for dimension z ([_,_,0] → B and [_,_,1] → A), while this is never true for

‘E’ items. Here, each rule that correctly predicts ‘P’ or ‘I’ always treats one of the ‘E’

items as an exception. In CAL, each of these simple rules is equally likely from the

beginning, which, without further learning assumptions, translates to an ordinal

prediction of item accuracy in NLS (‘P’ > ‘I’ > ‘E’), but not in LS, in which each item

would be an exception for one of these three rules.

Importantly, beyond simple rules, contextual modulation contributes to CAL’s

predicted NLS performance. In particular, an initially learned rule on dimension x

([0,_,_] → A and [1,_,_] → B) would lead to rule-errors on items E[1,0,0] and I[0,1,0],

which happen to share the same value on z [_,_,0]. Thus, when CAL learns this x-rule,

it will also learn contextual modulation when z takes the value 0. This solution, indeed,

almost solves the complete structure, with only one remaining modulation exception of

item P[1,1,0], which is then encoded in configural memory9. In contrast, contextual

modulation in LS rather confuses CAL’s learning performance, because the model

suspects and applies different modulators, of which none is reliable. Another aspect

predicted by contextual modulation in NLS is that extrapolating this kind of

disjunctive category structure leads to quick learning of exceptions with sometimes even

steeper learning curves than for ‘P’ and ‘I’ items (discussed below).

Our CAL simulation is depicted in Figure 12, summarizing 20000 learning

sequences simulated according to the methods reported in Levering et al. (2019). We

sampled γ ∼ Gaussian(−.5, 1.5), ω ∼ Gaussian(−1, 1), and λ ∼ Gaussian(−.5, 1), which

are identical distributions as in the following simulations of the Six Problems (D2; we

applied trial-wise binomial noise before by-participant aggregation within each block).

As can be seen in Figure 12A, CAL’s predicted learning curves (with modulation

enabled) show a clear NLS advantage, which is the observed result (see Levering et al.,

9 A more rare but logically identical solution would arise if CAL, due to trial order or strong

contrasting, abstracts the z-rule ([_,_,0] → A and [_,_,1] → B), and then modulates it if x = 1.
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Figure 12 . CAL simulation of learning LS versus NLS category structures. (A)

Predicted CAL learning curves (accuracy; y-axis) over Training Blocks (x-axis). (B)

Distribution of overall differences in accuracy (NLS – LS; x-axis) in 500 simulated

experiments (N = 40 each), either with contextual modulation enabled (blue) or

disabled (orange). Error bars depict means and 95% intervals. Black triangle shows

effect size observed by Levering et al. (2019). (C) Simulated within-NLS distribution of

all 20000 samples on by-participant item differences (E – [I + P]/2; as in Figure 11),

divided into sub-groups separated by vertical lines (WE = weak exception, ME =

moderate exception, SE = strong exception), and (D) corresponding item accuracy

predictions. Black triangles represent data from Levering et al. (2019).

2019, Figure 4). CAL with the current setting, however, predicts a stronger effect than

in Levering et al. (2019). Importantly, the effect size prediction could be reduced by a

higher mean of the γ distribution (weaker contrasting), which also points towards the

source of the advantage. As mentioned above, contextual modulation can hinder

learning LS, and weaker contrasting reduces the model’s tendency to apply modulation



CATEGORY ABSTRACTION LEARNING 53

(which also would reduce the ease of learning ‘E’ items in NLS). Weaker contrasting,

thus, allows the model to either integrate all rules equally or to learn a

rules-plus-exception solution, which is more reliable without modulation in LS.

Importantly, Levering et al. (2019) discuss that an NLS advantage is not always

statistically significant across different studies, suggesting sample size issues in light of

rather weak effects. Therefore, they provided a large-scale study (N > 100 in each

problem) obtaining an overall NLS advantage (collapsed across all learning trials) of

about 6% relative to LS (d = .46; black triangle in Figure 12B). Based on this effect and

the sample size in the study of Medin and Schaffer (1978) they estimated a statistical

Power of 26%, which calls for investigations with larger sample sizes.

To further estimate the variability of the predicted effect itself, we split up CAL’s

20000 samples into repeated ‘experiments’ each with N = 40. Figure 12B shows the

resulting distribution of standardized effect sizes over the 500 experiments. Instead of

illustrating different settings of γ, which would moderate the effect (as for incomplete

XOR, or Type II in the section ‘Rule Instructions in the Six Problems’), we want to

extend the space of potential research questions, by disabling modulation completely.

From a CAL perspective, there seem to be several design choices that could

prevent contextual modulation, such as integral stimuli or cognitive load. But also

manipulations that could affect CAL’s currently fixed error thresholds, which, if allowed

to vary, would lead to individual differences in rejecting modulation sooner or later. In

this vein, Figure 12A (orange) shows that CAL’s LS performance increases without

modulation, which would also happen if modulation was rejected earlier. The

corresponding distribution of overall effects approaches zero. With this, CAL provides

testable hypotheses about possible influences on learning LS versus NLS structures.10

To gain more insight, Levering et al. (2019) also investigated item-specific

performance on the ‘P’, ‘I’ and ‘E’ items in sub-groups of participants in the NLS task.

Specifically, they first subtracted each participant’s average learning accuracy for

10 Manipulation of cognitive load might also affect other cognitive mechanisms. Thus, the central CAL

prediction would be an equivalence of NLS and LS learning under cognitive load.
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non-exceptions from ‘E’ accuracy, which we equally did for each of CAL’s samples.

Thus, negatives scores indicate worse individual ‘E’ performance than for other items in

the NLS task (see their Figure 5). Figure 12C shows the resulting sample distribution

for CAL’s two simulations. With modulation enabled, the distribution closely resembles

that observed by Levering et al. (2019), including the elongated tail for negative scores.

The simulation with modulation disabled is broader, and also shows that modulation in

NLS increases the proportion of samples with strong ‘E’ performance, which is crucial

for the second important finding of Levering et al. (2019).

The authors sorted their participants into three sub-groups by M +−.5SD on this

score (indicated by the vertical dashed lines in Figure 12C), summarizing participants

with weak (WE), moderate (ME), or strong (SE) exception performance, relative to ‘P’

and ‘I’. They then calculated item-specific learning performances in each sub-group.

Their obtained averages are depicted in Figure 12D (black triangles) next to CAL’s

predictions for each simulation. As can be seen, CAL predicts these patterns with a

subtle but important difference between the two simulations in sub-group SE. In

particular, Levering et al. (2019) discuss that they are not aware of any modeling

account that would predict stronger performance on ‘E’ than on ‘P’. Indeed, CAL

predicts this advantage when modulation is enabled, but not when disabled. That is,

without modulation a strong rule is necessary to store exceptions eventually (which

seems to be true for RULEX as well; Nosofsky, Palmeri, & McKinley, 1994).

Please note, that the general pattern of the two simulations in the WE and ME

groups does not differ because in both cases the ordinal pattern is predicted by

rule-plus-exception learning. The two groups mainly differ in their strength of memory

encoding (λ). With modulation, however, some SE samples of CAL learn exceptions

even more quickly than other item types. In comparison, the question seems to arise

whether the complete empirical distribution in Levering et al. (2019) might be better

captured by assuming a mixture of the two simulations, again, concerning the

participants’ tendency to learn and execute modulation.

In general, with CAL’s predictions, it is also possible to relate learning accuracy to
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the typicality ratings which Levering et al. (2019) obtained for all items (see their

Figure 5). That is, within each sub-group, typicality showed an ordinal correspondence

to learning accuracy, which CAL could cover based on its item-specific predictions.

However, there are differences between the sub-groups, most importantly, showing that

group SE indicated nearly equal typicality for all items (i.e., ‘P’ became less, and ‘E’

more typical, compared to WE and ME), tending to the mid of the scale. The authors

argue, that this pattern might be due to strong memorization in this group.

Interestingly, on average, CAL’s SE samples stored less information in memory

than ME samples. However, learning in both WE and ME samples resulted in the same

hierarchy of encoding strength of ‘P’, ‘I’ and ‘E’ (ascending), reflecting

rule-plus-exception solutions. In contrast, CAL’s SE samples, as described, solved the

task by contextual modulation. In this task, this means ‘P’ items became less typical

(in the rule module of CAL) and ‘E’ items became more typical, which led to weaker

and relatively equal memory strengths. Bringing these aspects together into a

prediction of typicality seems to be an interesting topic for future research.

In sum, CAL not only predicts the classic (but sometimes non-observed) NLS

advantage (Medin & Schwanenflugel, 1981) but also item-specific individual differences

observed by Levering et al. (2019), of which the latter seems not accounted for by other

models. In addition, CAL provides novel testable predictions about the effects of

cognitive load on the learning of LS and NLS category structures, through the effect of

load on the ability or willingness to learn and continuously apply simple rules or

contextual modulation, which may also be extendable to typicality data in this task.

Rules and Exceptions in the 5-4 Problem

In their classic study, Medin and Schaffer (1978) introduced the 5-4 category

structure depicted in Figure 13A (Training; labels ‘A’ and ‘B’ refer to categories; rows

represent stimuli with four dimensions [columns H1, H2, M, L] with different

diagnosticity). Note, simple rules (on ‘H1’ and/or ‘H2’) would lead to acceptable

performance when tolerating or learning their exceptions (A5/B1 and A4/B2,
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Figure 13 . 5-4 problem (Medin & Schaffer, 1978). (A) Category structure with 9

Training items (rows, 5 in category ‘A’, 4 in ‘B’) and 7 Transfer items (right) with

binary features on four dimensions (H1, L, H2, M with [H]igh, [L]ow, and [M]edium

diagnosticity). (B) Schematic illustration for cases of L = 1 and L = 0 (see text).

respectively), and item B4 is the prototype of category B. The table in Figure 13 shows

Transfer stimuli, usually presented in a final test phase without feedback.

The 5–4 problem is often used to test the predictions of exemplar, prototype and

rule models against each other (e.g., M. Blair & Homa, 2003; Johansen, Fouquet,

Savage, & Shanks, 2013; Johansen & Palmeri, 2002b; Lamberts, 1995; Medin, Dewey, &

Murphy, 1983; Minda & Smith, 2002; Nosofsky, 2000; Nosofsky, Palmeri, & McKinley,

1994; J. D. Smith & Minda, 2000; Zaki, Nosofsky, Stanton, & Cohen, 2003). One key

result to explain is that participants often learn item A2 more quickly than A1. The A2

advantage is predicted by reference-point similarity models (e.g., exemplar or cluster

models, such as GCM, ALCOVE, SUSTAIN; Kruschke, 1992; Love et al., 2004;

Nosofsky, 1986), while the inverted pattern would be predicted by prototype models

(Medin & Schaffer, 1978; J. D. Smith & Minda, 2000). The rule-plus-exception model

RULEX (Nosofsky, Palmeri, & McKinley, 1994) also predicts the advantage because

“when exceptions are formed for classifying A1, they often need to be discarded because

they lead to incorrect classifications of stimuli in the contrast category” (p. 60; but see

also Shen & Palmeri, 2016). In other words, the A2 advantage can be explained by

cluster, exemplar, or rule-plus-exception learning, providing strong reasons to assume

that memory-processing in some way influences learning performance in this task.

In the following, we first describe how CAL predicts an A2 advantage, and then
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Figure 14 . CAL simulations of the 5-4 task. (A) Simulated learning advantage for A2

over A1 (y-axis = accuracy). (B1) Data from Medin and Schaffer (1978) Exp. 2, and

Rehder and Hoffman (2005b), and (B2) CAL simulation of test-phase for choosing

category ‘A’ (y-axes). See text for simulation settings of CAL1 and CAL2. (C1)

Block-wise attention predictions derived from CAL2; H1 and H2 overlap; dotted

horizontal lines mark 20% and 30% for better comparison with (C2), showing the

fixation proportions as measured by Rehder and Hoffman (2005b). (D) Distributions of

attention proportions of individuals and CAL (each aggregated over last 5 blocks;

dotted lines mark probabilities in steps of 10%). Circles represent median estimates.

discuss other types of learning routes and resulting predictions. Since multiple models

could account for behavior in this task, we also take a process perspective in an

investigation of how participants attend to non-diagnostic dimensions based on the

eye-tracking results obtained by Rehder and Hoffman (2005b). First, when learning the

5–4 structure, CAL generally picks up that ‘H1’ and/or ‘H2’ are the most diagnostic

dimensions, leading to the strongest rule predictions (1→ A). When encountering the

exceptions of the ‘H1’ rule (i.e., A5 and B1 in Figure 13), CAL encodes these into

memory (much more strongly than rule-conforming items). Thus, these items will exert

a bias on their nearest neighbors (but less on more distant stimuli) of the contrasting

category. This predicts an A2 advantage over A1, because A1’s nearest neighbors are

B1, B2 and A2, but A2 is hardly stored in memory (see Figure 14A).
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However, just as in previously inspected tasks, the rule errors of the most

diagnostic dimensions H1 and H2 coincide with values on the remaining dimensions.

That is, with ‘L = 0’, both rules ‘H1’ and ‘H2 correctly predict the stimulus categories

(Figure 13B), which reinforces these rules if ‘L = 0’. On each dimension, however, ‘H1’

and ‘H2’ rule errors occur when the ‘L’ dimension takes the value 1. Under normal

circumstances, CAL registers this context to modulate the rule errors. This entails that

‘L’ receives some attention early in learning, despite being hardly diagnostic (further

discussed below). In subsequent trials, the modulating context ‘L = 1’, however, also

(over)predicts modulation of, for example, the ‘H1’ rule for stimuli A1, A4, and B2,

which would lead to modulation errors. These cases of early A1 errors have not

necessarily systematic effects in CAL’s responding, because they lead CAL to encode

these modulation exceptions in configural memory. Eventually, CAL rejects ‘L’ if strong

modulation errors repeat and exceed the defined threshold.

The upper panel in Figure 14B1 illustrates test data from two studies. First,

compared to Rehder and Hoffman (2005b), the participants in Medin and Schaffer

(1978) Exp. 2 show stronger test performance on the rule exceptions A4, A5, B1 and

B5, and transfer item T5. While Rehder and Hoffman (2005b) did not seem to use

strategy-inducing instructions, Medin and Schaffer (1978) instructed their participants

that the experiment was about how “we store information in memory” (p. 219). In line

with the argument by Kurtz et al. (2013) that instructions affect how people engage in

the task, it seems possible that Medin and Schaffer (1978) induced a memorization

strategy, which could have affected the participants’ performance relative to Rehder and

Hoffman (2005b).

With CAL, one can capture both patterns. Taking the study of Rehder and

Hoffman (2005b) as a reference point, the main characteristic predicted by CAL is that

the exception items (A4, A5, B1, B2) are learned more slowly than rule-conforming

items. In CAL, ‘memory’ instructions can be represented by increasing the strength of

memory encoding (λ), relative to ‘no instructions’. Due to CAL’s rule-exception

learning, this leads to the item-specific prediction that learning exception items
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increases substantially, without strong benefit for other items which are covered by

simple imperfect rules, except for T5. Item T5 has three nearest neighbors in this task,

and two of them happen to be the exception items A4 and A5. With stronger memory,

thus, CAL would predict that these two instances should more strongly affect

responding to T5 (increased A responses) as it is the only item for which the rule

predictions ‘H1’ and ’H2’ (both B) would be inverted by exception memory if strong

memory ‘intervenes’ (see Equation 9).

To illustrate this hypothesis, we simulated CAL two times with 2000 randomly

generated learning sequences according to the methods reported by Rehder and

Hoffman (2005b), but without learning criterion. Generalization/contrasting was

sampled with γ ∼ Gaussian(−.5, 1.5), modulation strength with ω ∼ Gaussian(1, 1), as

done for the LS and NLS simulation. We sampled memory strength with

λ ∼ Gaussian(−4, 1.5), which is identical to simulations of the other eye-tracking study

of Rehder and Hoffman (2005a) investigating the Six Problems (D4; see next section).

Our two simulations of the 5-4 problem differed as follows. Taking the study of Rehder

and Hoffman (2005a) as reference point, we used the above parameter distributions,

denoted CAL2 in Figure 14. To simulate memory instructions (Medin & Schaffer, 1978)

we added a value of 2.5 to λ, denoted CAL1. Since we later also derived eye-tracking

predictions from CAL2, we additionally simulated salience effects in each sample (one

random feature received four times more attention) but only applied to the updates in

the very first trial for both simulations, as Rehder and Hoffman (2005b) discuss a

corresponding result (the assignment of logical to physical features, however, was

counter-balanced in their study).

As can be seen in Figure 14B2, the two simulated predictions very well

approximate the pattern of both studies. However, it is important to validate the model

assumptions on other measures as well. With their eye-tracking study, Rehder and

Hoffman (2005b) provide a great opportunity to do so. Figure 14C2 shows their

obtained average fixation proportions (before and after a decision) on the four features

over training blocks, together with CAL’s attention predictions (C1). The data were
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first aggregated within each participant and then collapsed across all participants.

CAL’s attention predictions were derived accordingly, using its trial-wise estimates for

αm and βn. Following the logic of the model, we averaged the attention weights on each

dimension when contextual modulation was active but used αm only when CAL

rejected modulation in a given trial. Before aggregation over blocks, we additionally

passed the trial-wise predictions to a four-dimensional Dirichlet distribution to simulate

random fluctuations (e.g., due to scanning or distractions).

As Rehder and Hoffman (2005b) discuss, participants’ allocation of attention to

the stimulus features in the 5-4 task (as measured by eye tracking) could be considered

non-optimal, given that the classification task can be solved perfectly while ignoring ‘L’

completely. CAL, likewise, ‘sub-optimally’ attends to ‘L’ because it initially suspects

dimension ‘L’ to be a modulator, only rejecting it as such when strong modulation

errors accumulate. On average this rejection happens from Training block 13 on

(Figure 14C1). The other dimensions still compete for subjective diagnosticity without

a clear winner.

To illustrate the extent to which CAL predicts individual differences in attention

to ‘L’ (Figure 14D), we averaged each participant’s or sample’s feature attention across

the last five training blocks. In some samples, CAL gave up (i.e. ignored) ‘L’ as

modulator completely and focused on the simple rules. In other cases, CAL kept

attending to ‘L’, either as a modulator or due to generally weak rule learning (γ).

However, while CAL predicts a non-normal distribution of attention to ‘L’ the current

simulation somewhat under-predicts attention to ‘M’. Either the number of considered

modulators, or variations of the fixed modulator rejection threshold or the rule accuracy

threshold would lead to different predictions, and again, it seems worth investigating

the psychological variables that could predict a participant’s tolerance for modulation

errors or alternative hypotheses.

Taken together, CAL’s current hypotheses account well for behavioral patterns in

the classic 5–4 task, including the standard A2 advantage, the general trend of response

gradients, and between-study variability on exception learning potentially due to
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memory instructions. It also predicts the trend of ignoring the least diagnostic

dimension in the second half of learning resulting in a non-normal distribution of

attention. Importantly, as for the NLS–LS paradigm (Medin & Schwanenflugel, 1981),

CAL’s predictions would change, for instance, under manipulations that hinder

contextual modulation (e.g., cognitive load, integral stimuli). In this case, CAL would

predict either a reduction of the A2 advantage (with strong memory) or even a

complete reversal because without modulation ‘L’ (but also ‘M’) are more frequently

considered to provide simple rules (which is prevented by the model’s definition if they

were modulators). That is, CAL then predicts more frequent rule errors (on ‘L’ and

‘M’) for A2 than for A1. Thus, the general question of whether or not participants

(either systematically or individually) engage in simple rules, contextual modulation, or

memorization, again, seems to be an interesting avenue for future research, perhaps

including further investigations of how memory versus rule instructions might affect

performance – as we further discuss in the next section.

Rule Instructions in the Six Problems

Our initial reason for developing CAL was to address the question, raised by Kurtz

et al. (2013), of why an instruction to ‘learn categorization rules’ versus ‘no

instructions’ affects the ordinal pattern of difficulty in the classic Six Problems,

introduced by Shepard et al. (1961). The category structures are depicted in

Figure 15A. Kurtz et al. (2013) observed that rule instructions especially affected the

rate of learning in the Type II problem, but not in the other five Types. CAL is a

formal expression of our answer to this question, which is twofold. From the perspective

of CAL, only the Type II problem can be perfectly solved by contextual modulation

(e.g., ‘large’ → category ‘A’ and small → ‘B’, for circles, but invert the rule for

squares). Thus, if rule instructions affect the likelihood of abstracting simple rules that

trigger their modulation, this should only affect the Type II performance, without

affecting the pattern for the other Types. We first focus on this central prediction and

turn to how CAL learns the other Types in the simulation below.
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As in the previous tasks, CAL generally begins by learning which of the multiple

dimensions could serve as a simple rule (e.g., large → category ‘A’, and small → ‘B’).

Then, in Type II, CAL learns that, for instance, the shape dimension is a modulator of

this rule (apply for ‘circle’, but invert for ‘square’). However, before CAL can learn

about the role of the ‘shape’ dimension, the initial rule (e.g., for ‘size’) needs to be well

established enough to produce strong and systematic prediction errors. Compared with

the previous tasks, however, creating such a simple rule through direct observation

alone is more difficult because the as-yet-unlearned context (circle vs. square), and

hence the correct rule, changes from trial to trial.

However, CAL can establish a simple rule in a single trial by extrapolating beyond

what is observed. For example, the contrasting mechanism in CAL infers that ‘small’ →

‘B’ after having only seen ‘large’ → ‘A’. The strength of this process is governed by γ

(smaller values = stronger contrasting). Assuming random variations on γ, representing

normally distributed individual differences, creates the novel prediction in CAL that

distinguishes the model from alternative learning accounts regarding the Six Problems.

Simulations. From a modeling perspective, two key aspects characterize the

phenomenon observed by Kurtz et al. (2013). The first aspect concerns the reduced

learning speed in Type II without rule instructions (I > II, III, IV, V > VI) relative to

the pattern with rule instructions (I > II > III, IV, V > VI; e.g., Shepard et al., 1961;

Nosofsky, Gluck, et al., 1994), such that other problem types are unaffected.

Second, performance on the Type II problem without rule instructions appears to

be non-normally distributed, varying in different experiments from left-skewed, through

apparently bi-modal, to right-skewed (see Figure 4 in Kurtz et al., 2013). Consistent

with Kurtz et al. (2013), we argue that that rule instructions increase the tendency of

contrasting (i.e., homogeneous strong abstraction of regularities for non-observed

instances in the population), otherwise, we assume more heterogeneous individual

differences in contrasting leading to the non-normal distributions of performance and

the resulting change of ordinal difficulty.

Furthermore, the strength of CAL’s memorization depends on the magnitude of its
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(A) Problem Types (B) Learning Curves
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Figure 15 . (A) Six Problems (Shepard et al., 1961). Shading indicates categories,

circles represent stimulus coordinates in three dimensions. (B) CAL simulations of the

classic pattern (sample D1) and the revised pattern (D2; Kurtz et al., 2013). See text

for explanations and Figure 16 for CAL settings.

rule errors. Thus, if CAL does not find a rule in Type II (which, with weak contrasting,

will happen in some proportion of simulations), it would predict the same performance

as in Type VI, in which there is no feature dimension constituting a rule. In Type I,

CAL in any case will learn the rule quickly since reliable simple rules develop due to

both observation and abstraction. Type III–V, for CAL, are mainly rule-plus-exception

category structures such that in each Type performance reaches 75% quickly (i.e., 6 out

of 8 items are covered by a simple rule), while further increments depend on attempted

modulation and exception learning.

In the latter, there is a non-obvious difference in CAL’s attempted solutions

between these three Problem Types, which however does not produce different average

predictions. In particular, first, Type III has two equally diagnostic dimensions, Type

IV has three, and Type V has one. Second, as similarly discussed for the reduced

versions of Type IV and III (LS and NLS structures, respectively), the exceptions in

Type V (similar to NLS before) share the same value on one non-diagnostic dimension.

In Type V, CAL will occasionally learn this modulator before noticing that it is either

imperfect (non-exclusive) or yields frequent modulation errors in other instances.

The non-obvious consequence is occasional modulator-induced error discounting,

which establishes the most diagnostic rule in Type V more strongly compared to Types
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III and IV. On the one hand, this leads to more accurate simple rule predictions in

Type V than in Types III and IV. On the other hand, it also prevents encoding of

temporarily modulated exceptions during configural memory by reducing the

corresponding error signal. Without modulators in Types III and IV, the rules tend to

be less determined (also because equally diagnostic dimensions compete) but relatively

stable, such that more frequent errors lead to quicker encoding of exceptions.

D1 γ ∼ Gaussian(−3, .5)
λ ∼ Gaussian(.5, 1.5)

D2 γ ∼ Gaussian(−.5, 1.5)
λ ∼ Gaussian(−.5, 1.5)

D3 γ ∼ Gaussian(−.5, 1.5)
λ ∼ Gaussian(3, 1.5)

D4 γ ∼ Gaussian(−.5, 1.5)
λ ∼ Gaussian(−4, 1.5)

Mean Accuracy in First 8 Blocks

Figure 16 . CAL simulations for the Six Problems (Shepard et al., 1961), under four

different parameter settings: D1 (strong contrasting γ, “with rule instructions”, and

enhanced memorization λ with practice), D2 (moderate contrasting, no practice), D3

(moderate contrasting, extensive practice), D4 (moderate contrasting, no practice with

difficult visual stimuli). Histograms depict CAL’s overall sample distributions after

averaging accuracy across the eight training blocks (as done in Kurtz et al., 2013).

They are plotted together with empirical distributions from four studies in the

background (orange; see text) for each Problem that was part of the respective study.

To simulate learning in the Six Problems, we presented CAL with eight blocks of

training (the length of training in Kurtz et al., 2013), and simulated 1000 learning
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sequences for each Problem. In all simulations, we sampled ω ∼ Gaussian(1, 1). To

simulate the instruction effect in Figures 15 and 16 (D1 and D2), we sampled values

from the two different γ distributions with either low values of γ from a homogeneous

distribution (D1; i.e., assuming a reduction of diversity “with rule instructions”) or

higher values of γ from a heterogeneous distribution (D2; “without rule instructions”).

This change of γ was the main driver of the observed differences (see also Schlegelmilch,

Wills, & von Helversen, 2018).

With the D1 simulation, we wanted to approximate the performance in the study

of Nosofsky, Gluck, et al. (1994). In this study, however, the participants solved two

tasks and a significant practice effect was found such that performance generally

increased for the second task. To take this practice effect into account, we also slightly

increased the D1 λ distribution relative to D2, assuming that familiarization with the

stimuli facilitates binding them to categories in memory. The resulting learning curves,

shown in Figure 15, replicate both the classic ordinal pattern of learning with strong

contrasting (D1) and the revised pattern (reduced Type II learning on average) with

weak contrasting (D2).

Figure 16 shows that CAL also captures the various observed distributions of

performance in the Six Problems. Following Kurtz et al. (2013), we calculated the

average accuracy over the first eight blocks of learning for each task and participant and

plotted the resulting simulated distributions11 against known empirical distributions.

Note, that the right-most bar within each histogram represents participants/samples

with three or fewer errors throughout 64 trials of learning (i.e., less than 5% errors).

The simulated distribution of accuracy for the classic ordinal pattern

(Figure 16D1) is closely similar to the corresponding empirical distribution found in

Nosofsky, Gluck, et al. (1994). Further reducing contrasting (increasing γ in D2) while

assuming wider individual variations achieves a similar degree of overlap with the data

11 To simulate empirical measurement error or random deviations when ‘guessing’, we used CAL’s

predicted response accuracy in each sample as the probability of a binomial distribution with 64

observations. This allowed CAL’s simulated response distributions to extend below 0.5.
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from Exp. 2 in Kurtz et al. (2013), although CAL, with the given parameter sampling,

achieves above 95% accuracy less frequently than observed. However, CAL captures the

finding that the reduced Type II performance, which is observed in the absence of rule

instructions, is accompanied by a change in the shape of the distribution.

In two additional simulations, we also wanted to approximate the response

distributions observed in Lewandowsky (2011) and Rehder and Hoffman (2005a), which

show a diverse pattern of responding. CAL can account for these distributions by

assuming that study differences affect the strength of memorization. That is, in the

study of Lewandowsky (2011), the participants solved all Six Problems in two learning

sessions. Similar to Nosofsky, Gluck, et al. (1994), Lewandowsky (2011) observed very

strong practice effects but without finding a substantial Type II advantage, as also

discussed in terms of ‘no rule instructions’ by Kurtz et al. (2013). Thus, we held γ

constant as for D2 and increased CAL’s memory strength parameter (Figure 16D3),

which well approximates the observed response distributions in Lewandowsky (2011).

Note, however, that this parameter change, of course, does not explain why practice

effects might strengthen memory, but the descriptive account points towards a possible

explanation of a beneficial influence of stimulus familiarization (see further discussion of

‘Synthesizing Rules and Memory-Based Inference’).

Finally, Figure 16D4 shows a simulation held against the data of Rehder and

Hoffman (2005a). Although there are only N = 18 participants in each of the four

tested Types, giving rise to a rather unsystematic clustering of participants, we included

a simulation as the data substantially deviated from the classic ordinal pattern (i.e., I <

IV < II = VI in the first 64 trials). Interestingly, the major difference to the other

studies lies in the use of eye-tracking methods, which require strong spatial separation

of the stimulus features for reliable measurement. Furthermore, the binary feature

values themselves were symbols (e.g., ‘?’ vs ‘!’), in contrast to otherwise typical

variations on a physical or quantitative dimension (e.g., size). Both aspects could

contribute to the low performance. To address the question of whether CAL would

predict the same pattern with lower memory strength (e.g., binding spatially separated
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objects in memory is more difficult) we took the settings of D2 but substantially

reduced memory encoding strength. As can be seen, despite the rather few data points,

CAL seems to describe the same population by assuming more difficult memory

encoding compared to simulation D2.

In summary, CAL can account for various learning outcomes in the Six Problems

based on psychologically plausible hypotheses. While the simulation of practice effects

via memory strength is rather descriptive, the predicted effect of rule instructions on

the tendency of contrasting (abstracting regularities) seems crucial, as it differentiates

the model’s predictions from other learning accounts.

Attention learning in Types I and II

We have shown in previous sections that the assumption of individual differences

in contrasting, together with contextual modulation, provides access to individual

differences in strategy-like behavior (rule-like vs similarity-like). This concerned the

peak-shift phenomenon and incomplete XOR, as well as to item-specific accuracy

patterns in linearly versus non-linearly separable category structures. For the Six

Problems (Shepard et al., 1961) we illustrated systematic effects of contrasting and

memorization and predicted response distributions.

In the following, we present a second approach to evaluate CAL from a

process-tracing perspective in two of the Six Problems, also aiming at illustrating the

model’s potential to measure indicators of the underlying cognitive abilities. Instead of

using random sampling for simulation, we optimized CAL’s parameters separately for

individual participants who solved the Type I and II of the Six Problems in the study of

Rehder and Hoffman (2005a), with N = 18 each. In this study, the authors also

obtained eye-tracking measures and we wanted to find out whether CAL, after being

optimized on the classification decisions of each participant, can then predict the

individual attention measures provided by eye tracking without further parameter

adjustment (this can also be conceptualized as a form of model cross-validation).

Therefore, the model was applied to the exact sequence of trials a participant saw, and
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its predictions were fit to the exact categorizations a participant made in each trial.

The detailed methods are explained in Appendix B.

CAL learns to pay attention to dimensions (αm) and their modulators (βn) to

focus on the strongest predictors of outcomes and errors. In the following, we explore

whether these parameters can predict individual eye-tracking trajectories trial-by-trial.

In line with the basic idea of the ‘eye-mind hypothesis’ (Just & Carpenter, 1980), we

assume that the learners’ search for information reflects their state of information

processing. However, while non-attention rather safely indicates lack of information

processing (excluding peripheral vision), it is less clear whether overt attention

measured with eye-tracking implies processing, visual search, or mind-wandering.

Nonetheless, it seems desirable to open up CL process hypotheses to empirical testing.

At least ALCOVE’s extension EXIT (Kruschke, 2001) has been used to hold attention

predictions against eye-tracking data (Kruschke, Kappenman, & Hetrick, 2005), making

“the assumption that attention allocated to a cue generates eye gaze to that cue” (p.

840). Similar views and corresponding process-tracing evidence can be found in other

decision domains, furthermore suggesting that attending to features relevant for a

decision or judgment is the most robust finding in eye-tracking studies of judgment and

decision-making (see Orquin & Loose, 2013; p. 196).

The central phenomenon to explain in eye-tracking studies that investigated the

Type I problem (e.g., Matsuka & Corter, 2008; Rehder & Hoffman, 2005a) is that

participants seldom allocate attention to just a single dimension trial-by-trial before

discovering the rule dimension; they only shift their focus to it subsequently (see

Figure 17, top left). As the authors of these studies discussed, this is a challenging

pattern for hypothesis-testing models (e.g., Nosofsky, Palmeri, & McKinley, 1994) or

COVIS (Ashby et al., 1998) if one assumes that testing a rule for a single dimension

also generates exclusive attention to this dimension. Without this assumption, it seems

difficult to tell why overt attention shifts should be observed at all after solving the task

(for a more detailed discussion including other models see Matsuka & Corter, 2008).

The central prediction of CAL for Type I is that a rule dimension attracts
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Figure 17 . Type I and Type II eye-tracking results from Rehder and Hoffman (2005a)

and CAL’s attention predictions (y-axis; lines: thin = individuals, thick = average),

relative to the last decision error by the participants (trial 0, vertical line); the same

trial was used to anchor CAL’s predictions. For Type I and II the fixations are shown

for the one relevant and the one irrelevant dimension, respectively (horizontal dashed

lines serve as visual anchors for comparison).

attention after it has become a diagnostic predictor. Before this, CAL automatically

searches for modulators of erroneous rules, which can also hinder finding the correct

rule. For Type I, which has one relevant and two irrelevant dimensions, CAL applies

response gating of unsuccessful rules until the model learns about the relevant

dimension such that its internal accuracy reaches the defined 85% threshold, and only

then CAL finally ignores the modulators. When being optimized on each individual in

the data-set of Rehder and Hoffman (2005a), however, CAL simply seeks to

approximate the participants’ categorizations.

To derive the corresponding process data and predictions in Figure 17, we

calculated the participants’ fixation proportions based on all fixations in a given trial

(i.e., before and after the decision) and then calculated the trajectory on the relevant

dimension in Type I, relative to the last trial, in which a participant made an error

(dashed vertical line). Note, that two participants in Type I made their last error after

a period of correct responses. However, we kept these cases in the analysis, as they did

not change the pattern, despite showing a rule focus before their last error (in Type II

this happened in a few more cases).
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For CAL’s prediction we took the fit result of each participant (recall this is fit

only to the categorization decisions) and simply averaged the estimated αm and βn

parameters on each dimension (m = n) on every trial with active response gating, but

only took αm when the model stopped response gating (i.e., contextual modulation);

this is the same approach as we took in our 5-4 eye-tracking simulation. The predictions

for the Type I trajectories in the lower panel of Figure 17 show a clear correspondence

to the actual data. The predicted attention shift indicates CAL’s internal state that

allowed it to best fit the respective behavior. The slower increase of CAL’s attention

indicates continuous changes on αm and βn and the sudden boost in dimension focus

indicates that CAL stopped paying attention to modulators. Note, that a noisy fixation

sampling on top of CAL’s predictions would render the predictions almost

indistinguishable from the data.

We conducted the same analysis for the one irrelevant dimension in Type II,

depicted in the right column of Figure 17. The participants in this task, on average,

begin to ignore the irrelevant dimension about -10 to -20 trials before errors disappear,

but tend to equally distribute attention across all three dimensions before. CAL’s

prediction is very similar to this pattern. However, CAL tended to learn more quickly

than some fitted participants and ignored the irrelevant dimension earlier in these cases,

which pulls down the average trajectory by about 10% in trials -40 to -20. As also can

be seen, CAL only once completely failed to provide a correct attention prediction, for

which the model learned that the irrelevant dimension is the most diagnostic. However,

in this particular case, CAL estimated a memorization strategy, which CAL’s monitors

of rule diagnosticity do not necessarily reflect. We seek to address this current

limitation in future studies.

To show that the corresponding patterns are based on also individually accurate

predictions, and to shed more light on how CAL approximated the participants’ Type II

behavior, we present four example participants in Figure 18 together with CAL’s

predictions. Unfortunately, however, the data did not allow us to differentiate between

the two irrelevant dimensions in Type I, or the two relevant dimensions in Type II,
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because, beyond relevance, the mapping between the logical and physical dimensions

(which was counterbalanced) was unavailable, and we focused on the qualitative

characteristics.

As can be seen, CAL well captured the individual behavior of these participants

such that solving Type I was relatively sudden, and solving Type II was either sudden

(P44) or rather continuously incremental (P50). Besides the obvious match between the

respective attention trajectories, CAL’s parameters captured the learning differences

also on its parameter estimates. For Type I, CAL’s contrasting estimates for P29 and

P35 were γ = −1.51 and γ = 2.57, indicating the quick and slow learning of the simple

rule, respectively. Also, CAL estimated modulation strength with ω = 5 and

ω = −2.85, which indicates strong and weak response gating, respectively. The latter

(P35) is apparent in CAL’s chance predictions before solving the task. For P35 CAL

estimated virtually absent memory strength with λ = −10 (the lower limit during

fitting), indicating absent contribution from exemplar memory, while CAL estimated

λ = 0.49 for P29. Note, however, that λ is difficult to identify when participants hardly

make errors in Type I.

For P44 and P50 in Type II, respectively, CAL estimated contrasting with

γ = −0.70 and γ = −1.13, modulation with ω = −1.64 and ω = −2.74. However,

while both seemed to find the modulation solution in relatively equal ways (solving the

task in about the same number of trials), as also indicated by the eye-tracking patterns,

CAL estimated a difference in memory strength with λ = −10 and λ = 1.24,

respectively. In contrast to Type I, these estimates meaningfully relate to individual

differences in the response characteristics. That is, P50 shows a probabilistic increase in

performance, while P44 solves the task rather suddenly. The probabilistic increase is

approximated via stimulus memory in Type II, while CAL’s contextual modulation

solution (i.e., without contribution from memory) will always be relatively sudden.

In sum, the brief analysis of CAL’s fixation predictions and parameter estimates

for the study of Rehder and Hoffman (2005a) highlights the model’s capability as a

process-tracing model. It also points towards potential applications of CAL as a
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Figure 18 . Example of behavior and fixation proportions of four participants (symbols;

two for Type I, left; and two for Type II, right) from Rehder and Hoffman (2005a) and

corresponding CAL predictions (lines). Upper panel Learning accuracy (y-axes; 1 =

correct) over single trials of learning (x-axes). Dashed lines mark the last error of the

participant. Lower panel Fixation proportions (y-axis; colors indicate relevance of

dimension) over learning trials. ‘Relevant’ attention predictions for P 39 overlap.

parameter-measurement model to test novel hypotheses about individual differences in

such cognitive abilities which may correlate with the processes of category learning.

The examples above provide merely a first glance.

General Discussion

Our goal was to propose a psychologically plausible account of how rule

representations are learned in the context of category learning. We call this theoretical

framework CAL, for Category Abstraction Learning. CAL combines mechanisms of

similarity-based generalization and dissimilarity-based contrast, acting on independent

feature dimensions, to generate rules for observed and unobserved stimuli. Higher-order

learning detects the contexts in which these rules produce systematic errors. CAL then

inhibits and re-maps these rules at the stage of behavioral execution (contextual

modulation), instead of correcting their underlying category representations. While this

leads to self-confirmatory biases towards simplistic (and sometimes wrong) rules, it also

allows the model to quickly solve complex category structures by partially applying the



CATEGORY ABSTRACTION LEARNING 73

learned rules in different contexts. The important drivers of CAL’s behavior include two

separate but related attention-learning mechanisms, which reinforce learning about the

most subjectively diagnostic feature dimensions and the most subjectively effective

modulator dimensions.

Although the current implementation of CAL made use of only three adjustable

parameters, all of which are psychologically interpretable, CAL is nonetheless

structurally more complex than other category-learning models. However, we argue

that CAL’s structural complexity is justified because our fundamental assumptions

reflect a variety of empirical insights and ideas from successful psychological theories in

related cognitive domains. CAL is a synthesized framework with an explanatory scope

that covers traditional as well as novel behavioral observations in a variety of tasks;

tasks that were, thus far, either unexplained or only separately accounted for by a range

of qualitatively different models (e.g., Bayesian, exemplar or rule models).

Summary of Findings

In the current paper, we simulated CAL’s predictions under various category

structures and experimental manipulations. We demonstrated that CAL can

accommodate and explain the key phenomena of (1) individual differences in the

peak-shift phenomenon (Lee et al., 2018; Livesey & McLaren, 2009; Purtle, 1973), (2)

the classic ordering of task difficulty in the six classic problems of Shepard et al. (1961),

(3) the revised ordering of difficulty under the absence of rule instructions and their

underlying individual differences (Kurtz et al., 2013), (4) individual differences in

spontaneous rule extrapolation (Conaway & Kurtz, 2017), (5) the response pattern and

eye-movement data in the classic 5–4 problem, plus item-specific differences between

different studies of this problem (Medin & Schaffer, 1978; Rehder & Hoffman, 2005b),

(6) the learning advantage of non-linearly separable over linearly-separable category

structures (Medin & Schwanenflugel, 1981) and individual differences in item-specific

responding therein (Levering et al., 2019), and (7) individual-level attention shifts in

Type I and II of the Six Problems as measured by eye-tracking (Rehder & Hoffman,
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2005a).

One of our central motivations for developing CAL was to explain the different

ordering of task difficulty that is observed in Shepard et al.’s (1961) Six Problems in the

absence of explicit instructions to use rules (Kurtz et al., 2013; i.e., selectively slower

learning of Type II). We assumed that rule instructions increase the strength of

contrasting (dissimilarity-based abstraction), which in turn leads to contextual

modulation (detecting contexts of rule errors and successes) and hence quick learning in

Type II, relative to conditions without rule instructions. Our simulations confirm that

this explanation accounts for the observed data while also predicting other phenomena

that have not been explained or explained differently, such as individual differences in

peak-shift (Lee et al., 2018), or spontaneous rule extrapolation in incomplete XOR

(Conaway & Kurtz, 2017).

In the following sections, we discuss some of the wider implications from three

perspectives concerning CAL’s mechanisms: (1) rule learning, (2) attention and

modulation, and (3) memory-based inference. In each section, we also discuss CAL’s

limitations, potential improvements, and we conclude by discussing open questions in

the Future Directions section.

Generating Rules via Similarity and Contrast

Central to CAL’s formulation is the proposal that rule-like representations emerge

from the interaction of complementary similarity and dissimilarity mechanisms. This

idea deliberately blurs a widespread formal and theoretical distinction between

similarity-based and rule-based models of categorization (e.g. Ashby & Gott, 1988;

Medin & Schaffer, 1986; Nosofsky, 1986; Reed, 1972; see further Hahn & Chater, 1998;

Pothos, 2005). For instance, exemplar-based theories, which mainly hinge on similarity

functions (e.g., stimulus generalization; Shepard, 1987) to infer categories, are often

considered as a separate class of account (or cognitive process) to rule-based models, in

which category evidence usually increases with measures of distance to a decision

criterion (e.g., decision bound). By combining similarity and contrast on independent
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dimensions, CAL is sensitive to similarity but, over time, also evolves representations

akin to decision bounds. This core concept is not entirely unlike the SUSTAIN model,

which, while being based on similarity, also uses dissimilarity to existing clusters to

drive the formation of new clusters (Love et al., 2004).

The process of rule generation in CAL further includes the idea that prior

knowledge and lateral inhibition on each represented stimulus dimension influence how

much is learned. That is, during learning, strong prior beliefs (i.e., existing associations

between stimulus dimensions and outcomes) are self-reinforced (‘the rich get richer’),

and weaker associations on the same stimulus dimension are inhibited by stronger ones

(lateral inhibition). By so doing, CAL takes the most powerful assumptions from

exemplar-based and rule-based accounts (similarity and dissimilarity) along with

mechanisms common in Bayesian and associative learning models (e.g., prior weighting

and inhibition), and combines them at a common level of explanation (i.e., rule

dimensions, spatially represented in WM). Undoubtedly, this will raise some questions

about possible model mimicry as previously discussed for rules and similarity by Hahn

and Chater (1998). Nonetheless, the theoretical and empirical analyses of our formal

approach suggest that a sharp psychological distinction between similarity-based and

rule-based processes might be both inadequate and unnecessary.

Our assumption (see also Pothos, 2005; Verguts & Fias, 2009) is that there is a

single representational space for all of these processes, which spans a continuum of

behavioral outcomes. This idea addresses the commonly raised question of why

competing formal accounts (e.g., effortful rules versus automatic associations) often can

not clearly distinguish between different behavioral patterns (Barsalou, 1990; Griffiths

& Le Pelley, 2009; Lee et al., 2018; Rouder & Ratcliff, 2006). We argue, there are, at

this level, no sharply different cognitive processes to distinguish.

In future work, we plan to extend CAL to a wider range of tasks; perhaps most

pressingly to tasks in which more than two response categories are possible. In these

cases we would assume that the strength of contrastive generalization decreases with

the number of (expected but unobserved) categories, which provides a range of testable
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predictions (see also Davis & Love, 2010). It seems worthwhile to also consider

probability judgments in addition to categorical decisions, and probabilistic in addition

to deterministic category structures, both of which might provide further insight into

the mechanisms of response competition when probabilities drive decision making

(Wills et al., 2000). We also think the idea of self-affirmative rule-learning may be

particularly applicable to learning in probabilistic environments, for which we have

suggested the hypothesis that probabilistic errors reduce the informational value in the

process of storing rule exceptions (including investigations of error-discounting, e.g.,

Craig et al., 2011).

Our conceptualization of rule learning as occurring via separately represented

dimensions that are spatially aligned in WM (see also Morton et al., 2017; Oberauer,

2009) also has several implications. For instance, it is important to note that separating

dimensions or abstracting rules for each should be very difficult for highly integral

stimuli or non-continuous features, for which there seems to be empirical evidence (e.g.,

Kurtz et al., 2013; see also Kemp, 2012). In CAL, such difficulty could be captured by

assuming weaker generalization/contrasting across the dimensions or absence of

contextual modulation, but considering other structural representations could be an

alternative.

Finally, a central question in the current manuscript has been how one can

conceptualize learning of stable simple rules in situations where those the rules are

imperfect. This led us to consider alternatives to the traditional approach of gradient

descent on prediction error (e.g. Rescorla & Wagner, 1972). In this regard, our

approach is consistent with other recent attempts to move away from optimal-learning

principles, for example, separating error detection from error correction in explanations

of perceptual learning and heuristics and biases in judgment and decision making (e.g.,

M. R. Blair, Watson, & Meier, 2009; Gardner, 2019; Rahnev & Denison, 2018; Risen,

2016). In particular, we argue that the learning of basic rules to categorize stimuli is

not driven by prediction error. Instead, CAL’s self-affirmative (success-driven) learning

induces very simplistic and sometimes false rules (similar to superstition), which might
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also relate to learning social norms (e.g., Schmidt, Butler, Heinz, & Tomasello, 2016)

and lexical learning in early childhood (L. B. Smith, Jones, & Landau, 1996). We claim

that it is beneficial to generate and maintain rules which later produce systematic errors

because this supports being able to solve more complex decision tasks through the

contextual use of these rules. This leads to the further hypothesis that a system like

CAL, which learns simplistic rules and then ‘patches’ their systematic errors, might be

more successful in surviving in later uncertain/unknown environments (with changing

contexts) than a system that tries to learn ‘optimal’ rules that apply universally.

Attention Learning and Contextual Modulation

In CAL, diagnostic dimensions receive more attention relative to other dimensions,

which increases learning speed for these dimensions, but decreases learning about other

dimensions. This basic principle of attentional learning was derived from broad

empirical insights in category and reinforcement learning (e.g., Le Pelley et al., 2016),

and our results show that the proposed mechanistic implementation can predict

individual attention trajectories across category learning (in the study of Rehder and

Hoffman, 2005a).

For example, CAL accounts for the phenomenon that, in the Type I problem,

participants focus their attention on the single diagnostic dimension only after they

have stopped making decision errors. Accordingly, the joint use of eye movements and

decisions in the formal modeling of category learning seems like a promising direction

for future research. Such investigations could also provide deeper insights into the role

of the second attention mechanism we defined, which is concerned with attending to

cues that predict systematic rule errors (modulator attention); a process we described

as contextual modulation. Broadly speaking, if rules lead to decision errors, it is the

context that is blamed, not the rule itself. From the perspective of other rule models in

category learning, this approach is similar to that of RULEX, which systematically

increases the complexity of its hypotheses (Nosofsky, Palmeri, & McKinley, 1994), while

ATRIUM (Erickson & Kruschke, 1998) would rather associate the rule to an exemplar
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that predicts its success. In CAL, the implementation of feature-based modulation of

simple rules, in contrast, comes with the notion of creating conditional hypotheses

based on single contextual features, which might find further application in other

decision domains.

For instance, despite different terminology, contextual modulation seems observable

in studies of reinforcement learning; specifically, the observation that attention is

directed at contexts if learned stimulus-response associations are extinguished, or from

a CAL perspective, if learned rules suddenly are erroneous (see further Nelson et al.,

2013; Romero, Vila, & Rosas, 2003; Rosas et al., 2013). This attention to the putative

causal factors of these errors (contexts), which can concern temporal or environmental

changes (see further Bouton, 1993), is the fundamental ability in CAL to modulate rule

predictions. This precisely predicts variations in Type II learning performance (Kurtz et

al., 2013; Nosofsky, Gluck, et al., 1994; Shepard et al., 1961), but also trial-by-trial eye

movements on stimulus features during Type II learning (Rehder & Hoffman, 2005a).

In line with the observation that animals have difficulties solving the Type II

category structure (e.g., V. M. Navarro et al., 2019; J. D. Smith et al., 2004) we view

contextual modulation as a mechanism of higher cognitive order, allowing goal-directed

application of rules for different stimuli (see also Lea et al., 2009; Morton et al., 2017).

However, as animals can recognize changing contexts in reinforcement learning (see

further Bouton, 1993), another consistent interpretation might be that humans are

quicker in recognizing separable dimensions or are more sensitive to contextual

modulation than animals. But there might be other factors that mediate learning

success, for instance, whether the context changes once (as in a typical extinction

procedure) versus just as often as the actual stimulus (i.e., if the modulating context is

part of the stimulus object, as in the classic Type II problem).

More generally, with CAL’s definition of modulation as cognitive or behavioral

control, investigations of its correlation with measures of working memory capacity or

executive functioning would warrant further examination in several areas, including

studies of category learning in children and the elderly (both of whom seem to be lower
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in executive control than young adults; see also Battaglia et al., 2018; Brocki & Bohlin,

2004; Craske, Liao, Brown, & Vervliet, 2012; Peña, Bedore, & Zlatic-Giunta, 2002), and

comparative studies of extinction, which appears to be somewhat context-specific and

has been suggested to be driven by inhibition of learned associations (e.g., Cobos et al.,

2013). Further studies suggest that executive functions are also impaired in anxiety,

developmental psychopathology, and brain damage, and that attentional control seems

to be impaired in schizophrenia (Ashby & O’Brien, 2005; Dakin & Frith, 2005;

Dovgopoly & Mercado, 2013; Eysenck, Derakshan, Santos, & Calvo, 2007;

Garcia-Villamisar, Dattilo, & Garcia-Martinez, 2017; Haddon et al., 2011; Kéri, 2003;

Klinger & Dawson, 2001; Lipp & Vaitl, 1992; Lubow & Gewirtz, 1995; Oades, 1997;

Pennington & Ozonoff, 1996; Robinson, Goddard, Dritschel, Wisley, & Howlin, 2009).

One strength of formal models, like CAL, is the potential they offer to link results from

disparate populations within a common framework, aiding both diagnostic experimental

design and theoretical coherence.

In the current paper, we focused our specification of CAL on addressing a series of

one- and two-category structures with a few, largely well-defined, ordinal dimensions.

This was for simplicity, and because much of the available evidence concerns such

situations. Nonetheless, we see the CAL framework as also being able to provide

insights about rule learning and contextual modulation in more complex situations

(e.g., Conaway & Kurtz, 2017; Yang & Lewandowsky, 2003, 2004). Generalizing CAL’s

basic assumptions presented in this manuscript is a key topic for future research.

Synthesizing Rules and Memory-Based Inference

In contrast to the long-standing success of exemplar-based models of categorization

(e.g., Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky, 1986; Reed, 1972; Miyatsu,

Gouravajhala, Nosofsky, & McDaniel, 2019) our hybrid rule-learning approach provided

an in-depth account of classic and more recently observed empirical phenomena. As

exemplar accounts are among the most popular theories this deserves more detailed

inspection.



CATEGORY ABSTRACTION LEARNING 80

First, CAL incorporates the assumption that memory reduces to an exception

store if the model learns strong rules (‘knowing when to use memory’). With weak

rules, however, CAL equally but more slowly increases its memory strength for all

encountered stimuli. Hence, when learning includes repeatedly presenting the same

stimuli, then CAL predicts decision errors either due to weak/false rules or due to the

absence of strong category associations in configural memory. On a single dimension,

the resulting error gradients are similar to those of exemplar-similarity accounts, and we

view dis/similarity as key to accurate predictions (see also Shepard, 1987). With

multiple dimensions, the strength of exemplar-based predictions seems to lie in

(multiplicative) attention-weighted cue combination, which CAL can address via

contextual modulation of rules. These aspects seem to cover several phenomena that

have been formerly attributed to exemplar-similarity processing (e.g., Nosofsky, 1986;

Kruschke, 1992) or were previously unexplained. Nonetheless, CAL can engage in

strategic memorization with strong memory encoding to accumulate memory-based

evidence quickly, which, in turn, will override any rule-based prediction.

Second, CAL’s on-demand exception learning is similar to SUSTAIN (Love et al.,

2004), in the sense that SUSTAIN creates a new cluster when no existing cluster

correctly predicts the category of the current stimulus. However, unlike SUSTAIN, CAL

generalizes its instances only narrowly if their associations to the categories are strong.

Consequently, differences in CAL’s predictions for retrieved instances are primarily

driven by how strongly they were encoded during learning. A similar type of memory

strength has been defined in exemplar models (e.g., as a free parameter; see further

Pothos & Wills, 2011). However, in exemplar models, increases in exemplar-memory

strength increase the weight of that exemplar in the summed similarity computation

(for an alternative, see Hu & Nosofsky, 2021). In contrast, increasing memory strength

in CAL reduces the exemplar’s generalization (or interference). This theoretically

commits CAL to the idea that abstraction is mainly driven by the rule-learning

network, and strong memorization is more akin to stimulus identification. In other

words, in exemplar models (e.g., GCM Nosofsky, 1986), if the memory strength
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parameter of an exemplar becomes stronger, an increase in its recall accuracy is

predicted, while a decrease in accuracy for exemplars from other categories is also

predicted (see also Hendrickson, Perfors, Navarro, & Ransom, 2019; Homa et al., 2019;

Schlegelmilch & von Helversen, 2020), similar to a recall bias. In CAL, increasing the

memory strength of a stored instance increases its recall accuracy and decreases its

interfering influence on category inferences for dissimilar instances.

The current success of CAL leads us to argue that future investigations might also

benefit from considering different types of memory stores. When learning imperfect

rules, switching between these rules (in search for a better one), might also concern

discarding exceptions of previous rules (see also Nosofsky, Palmeri, & McKinley, 1994).

From this perspective, it seems possible to conceive exception memory as a temporary

sub-set of active instances in short-term memory, which could be the active part of a

more durable long-term store (Cowan, 1999). Interestingly, a long-term store should

become more stable over time (stimulus familiarization), which might also provide an

explanatory account of practice effects with extensive training (e.g., Lewandowsky,

2011), such that it might become easier to activate sub-sets of exemplars or exceptions

to bind them to (new) responses. However, it also seems worthwhile to consider a

memory store for rule representations (see also Kalish et al., 2004; Sewell &

Lewandowsky, 2011), which may be relevant to the debate over competing versus

conflicting representational memory systems (see Morton et al., 2017; Poldrack &

Foerde, 2008; Seger & Braunlich, 2015).

Future Directions

The theoretical framework that guided the implementation of CAL’s hypotheses is

applicable beyond the paradigms considered in this article. For instance, the hypotheses

of attention-driven learning and contextual modulation could predict the frequently

studied phenomenon known as the inverse base-rate effect (Medin & Edelson, 1988; for

a comprehensive review see Don, Worthy, & Livesey, 2021). Consider a learning phase

that pairs singleton stimuli (e.g., S1 or S2) with outcomes (e.g., O1 or O2), presenting

S1 & S2 → O1 three times and S1 & S3 → O2 once. Thus, S1 itself is not diagnostic of
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any outcome, but observing O1 three times more often than O2 leads participants to

respond O1 when later presented with S1 (i.e., according to the base rate). Of

particular interest is the non-rational tendency to respond O2 when participants are

presented with S2 & S3 in a later test phase (i.e., S3 dominates the decision, although

S2 was observed three times and S3 once).

From a CAL perspective, first, note that the frequent presentation of S1 & S2 →

O1 introduces a trial order effect that frequently leads to learning the rules ‘S1 predicts

O1’ and ‘S2 predicts O1’ first. If participants then encounter S1 & S3 → O2, the rule

‘S1 leads to O1’ would be erroneous in the presence of S3. Here, CAL would treat S3 as

a modulating context that inverts the learned rule when S3 is present (which also

prevents strongly storing S1 S3 as compound in configural memory). Contextual

modulation, thus, could predict an inverse-base rate effect if the the modulating context

S3 generalizes to the rule S2 → O1, which is correlated with S1 → O1.

The question of whether modulators (e.g., S3) may generalize to correlated

dimensions is speculative at this stage. However, it has been argued that probabilistic

errors (e.g., defined as S1 leads to O1 in 75% of the cases) trigger attention to

correlated stimulus features (Little & Lewandowsky, 2009a). The assumption would

also be in line with theories of ‘associative mediation’ and ‘acquired equivalence’ (e.g.,

Hall, Mitchell, Graham, & Lavis, 2003; Meeter, Shohamy, & Myers, 2009; further

discussed below). Importantly, the hypothesis can be tested since CAL would also make

the novel predictions that with contextual modulation the O1 vs O2 response

distribution for S2 & S3 should be bi-modal, just as the Type II performance without

rule instructions (Kurtz et al., 2013), and that preventing contextual modulation during

learning (e.g., due to cognitive load) or rule instructions would affect the tendency of

responding S2 & S3 → O2, which warrants further investigations.

However, the current formal implementation of CAL is tailored to

category-learning paradigms with quasi-continuous dimensions. That is, a full account

of traditional learning phenomena, such as the IBRE, requires considerations of how

CAL represents singleton stimuli and contextual modulation of correlated dimensions.
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First, it is not immediately obvious how singleton cues as in the just described

paradigms could be represented on dimension nodes in CAL. More generally, it is an

open question of what constitutes a stimulus feature or modulator in the first place,

beyond highly integral stimuli. For instance, Shepard et al. (1961) reported that

participants after extensive training noticed that the Type VI problem can be

immediately solved by remembering the first stimulus and then simply counting

whether any subsequent stimulus shares an odd or even number of features. Such

predictions, in CAL, would require pre-processing this information at a meta-stage into

a spatial format. Such deeper considerations could also open up the CAL framework for

comparison to a different type of structuring models that make use of more abstract

predicate logic to learn conceptual differentiation depending on the stimulus format

(Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Kemp, 2012). It seems worth

exploring the space of hypotheses (e.g., conjunctions, disjunctions, conditionals) that

could be generated on any type of stimulus representation, in comparison between

modulation mechanisms as in CAL and other structuring approaches.

For phenomena like the IBRE, the more basic question about potential stimulus

representations further extends to abstractions based on the presence and absence of

singleton cues. For instance, the absence of a cue could induce inference of regularities

for the unobserved cue (e.g., if S1 is missing and O1 is observed, then observing S1

predicts a different outcome) but contrasting could as well operate at a

cross-dimensional level (e.g., if S1 predicts O1, then other cues such as S3 must predict

other outcomes). As each of these assumptions is compatible with the CAL framework,

corresponding investigations might also help to pin down fundamental differences

between rule representations (including abstract features, such as cue absence or

structural features) and configural memory (for observable stimulus elements). In this

vein, applying the proposed learning hypotheses on various types of (compatible)

stimulus or problem features highlights CAL’s potential to guide theoretical

development in future work in different domains.

CAL’s rule-generating mechanisms might be applicable beyond the trial-by-trial
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category-learning tasks considered in this article; for example, in situations where

people generate (creatively imagine) novel instances for unobserved categories. Children

tend to assign unlabeled objects to newly presented categories based on feature

dissimilarity to objects of known categories, implying basic representations of concepts

as mutually exclusive (Landau et al., 1988; Markman & Wachtel, 1988). Thus, despite

uncertainty about what might constrain the number and diversity of abstracted,

unobserved categories (which seems to influence contrastive mechanisms; Austerweil et

al., 2019; Davis & Love, 2010), contrasting as implemented in CAL (i.e., without

exemplars or clusters) might be a driving force behind category generation. That is,

CAL could be easily extended to test additional hypotheses about unsupervised

learning or category generation (i.e., without external error feedback).

Unsupervised learning can be studied in different ways. For example, Livesey and

McLaren (2009) have shown that learning still occurs when participants are tested on

transfer items (or in an extinction phase) after normal category (or reinforcement)

learning. In their experiments, the response gradients became more rule-like with

ongoing testing (for similar rule-transitions see Bourne Jr, Healy, Parker, & Rickard,

1999; Johansen & Palmeri, 2002a). CAL naturally accommodates this kind of effect

under the assumption that, in the absence of feedback, the model’s prediction of

category membership is used to drive self-affirming teaching signals. Consistent with its

other self-reinforcing mechanisms, this would strengthen existing rules, leading to the

observed changes in response gradients. Under such circumstances, CAL would also

translate prior memory-based predictions into rules, which seems like an interesting

avenue for future research.

Another way of studying unsupervised learning is through category construction

(e.g., Ashby, Queller, & Berretty, 1999; Austerweil et al., 2019; Love, 2003; Medin,

Wattenmaker, & Hampson, 1987; Pothos & Chater, 2002). In this case, CAL could be

adapted to choose a first stimulus category randomly, as well as a salient feature, and

then, again, learn in a self-confirmatory fashion. This would lead to narrower category

boundaries with strong contrasting than with weaker contrasting. An interesting
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prediction from this mechanism would be that none of CAL’s error-driven mechanisms

would play a role (exception learning, contextual modulation). This would predict a

major preference for very simplistic categorization rules (e.g., no disjunctive structures,

no exceptions), which seems in line with some existing empirical evidence (e.g., Ashby

et al., 1999).

Conclusion

Our investigations have provided insights into a variety of category learning

paradigms. The described simulations and analyses consistently support CAL’s

assumptions about interacting mechanisms related to similarity-based generalization

and contrasting, attention learning on two levels, contextual modulation, and configural

memory. These assumptions challenge long-standing theoretical and formal concepts of

category learning and provide a fresh perspective on a variety of findings in the field of

category and reinforcement learning. We believe CAL has the potential to explain a

range of other benchmark phenomena in a coherent theoretical and formal framework,

but that is a matter for future work.
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Appendix A - Exponential or Gaussian generalization?

It may be worth briefly expanding on our choice of a Gaussian decay gradient to

drive generalization in CAL. Shepard (1987) suggested that generalization might follow

an exponential gradient, while other researchers pointed out that Gaussian gradients are

commonly observed in human learning (e.g., Ennis, 1988; Nosofsky, 1988). A discussion

in the literature led to the conclusion that a Gaussian decay is appropriate if assuming

uncertainty about exact ‘locations’ of stimuli in psychological space, or perceptual noise

(see also Shepard, 1958; Ennis & Shepard, 1988). This type of uncertainty might be a

part of any process that requires active maintenance of stimulus representations in

working memory (see also Staddon & Reid, 1990), as opposed to (rather rare) situations

in which, for instance, a (small) set of visual stimuli are permanently and completely

visible during learning, or simply depending on the task goal (e.g., categorization vs

identification; Lovibond et al., 2020). While this, indeed, may often be a valid

assumption, a number of animal-learning studies further suggest that response gradients

can change over time from broad Gaussian to more sharply peaked gradients (see

further Mackintosh, 1974; Thompson, 1958, 1959; see also Gluck & Myers, 1993),

showing that clear differentiation can be a consequence of experience. This evidence and

the theoretical considerations motivated our use of the Gaussian gradient in our basic

learning functions, while further assuming interactions with other learning mechanisms

that reduce uncertainty with ongoing rule learning, just as we assumed that enhanced

memorization of a stimulus narrows its generalization during memory-based inference.

However, we think that investigating whether the Gradients can change between

different experimental set-ups or tasks, seems worth investigating in future studies.

Appendix B - Model Optimization and Parameter Estimates

For the individual fits, we optimized one set of parameters (γ, λ, ω) for each

participant individually, based on the trial-wise categorizations in the exact same trial

sequence. For optimization, we used a differential evolution algorithm (e.g. Storn &

Price, 1997). Such algorithms work by assuming NP parents in each generation. Each
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parent is a set of model parameters, randomly selected for generation zero. These

parents are mutated to create children, with the best-fitting children surviving to

become parents. The process is repeated for G generations to estimate the optimal

model parameters.

We set NP to 100, which exceed the minimum recommended values of 10 parents

per parameter (Ardia et al., 2016), and set G to 500. We also inspected the sampling

procedure for different random seeds. They appeared to have little impact on the

overall results but in very few cases changed how the model described the participant

(rule learning vs memorization), which is not surprising as the model is highly

non-linear and trial-order dependent in fitting. However, these cases were negligible,

and the estimates reported for CAL are characteristic of the typical fits observed across

these multiple runs, and we did not change our random seed selection between

participants manually. We sampled the values between [-5, 5] for γ and ω, and between

[-10, 10] for λ. Note that if γ becomes very large > 3 it will eventually stop rule

learning because the similarity gradient becomes virtually horizontal, and the dimension

nodes are capped at .001 and .999 after the update. With horizontal generalization /

contrasting thus, the dimension update reduces to almost zero, and thus clearly indicate

that a participant was best approximated by assuming pure memorization. Likewise, if

λ would become -10, then the model best approximated the participant with pure rule

learning and modulation, but without storing rule exceptions.


