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Oliver Dougal Gilliatt Rupar 

An assessment of universal tumour associated antigens in primary liver neoplasms.  

Abstract 

Rates of primary liver cancer are increasing in the Western world, a fact yet to be 

reflected in research with most currently undertaken in Asia. Whilst here in the UK, 

during a diagnostic and therapeutic workup within the NHS, surgically resected tumours 

are routinely kept in storage for up to thirty years. Meaning there is a huge, currently 

unused, resource that could potentially be included in clinical research. 

The regional specialist centre in the Southwest of England has been performing liver 

resections since 2005, no basic-science research has been performed using these 

archived specimens. In this research I have assessed the presence of genetic alterations, 

attempted to quantify the transcriptome, and measured protein expression in patients 

with liver cancer using a digital pathology platform. Telomerase and Survivin, the two 

targets of these endeavours, have previously been shown to be expressed in numerous 

cancer types, earning the title ‘universal tumour associated antigen.’ The techniques 

used in this research project are, mostly, already used in healthcare diagnostics, 

meaning there is potential for vastly increasing the power of these results should the 

study be increased.  

Genetic alterations in the promoter sequences were amplified and sequenced using 

DNA from archived samples. Attempts to quantify the transcribed component which 

have been locked away in tiny exosomes (which lack degradation enzymes) were made 

using a quantitative polymerase chain reaction. Protein expression was detected in 

tumours and background liver tissues using immunohistochemistry and quantified using 

digital pathology techniques on whole-slide images. Haematological protein levels were 

assessed using the enzyme linked immunosorbent assay. All of these characteristics 
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were then compared with clinical measures such as tumour size, grade, stage, vascular 

invasion, overall survival, and diseases associated with liver carcinogenesis.  

Lessons learned from my work, particularly the techniques used on the source material, 

could be used in any NHS department without the need for significant financial 

investment required for a formal research facility. Access to these precious resources 

allows a more accurate representation of these antigens in the local clinical cohort. 

Below I have provided evidence that Telomerase promoter mutations are an HCC-

specific alteration, and are present in tumours with vascular invasion. There is also early 

evidence that these mutations may correlate with a reduced overall survival. The 

Survivin promoter has been found to be a germline characteristic, whilst Survivin 

protein expression has been found to correlate with numerous adverse clinical features 

including tumour stage, grade, vascular invasion, perineural invasion and overall 

survival. These results are very encouraging and could possibly even be used as a risk-

stratification tool during future routine clinical liver tumour workup, as an aid to 

identify patients at a higher risk of adverse clinical outcomes.  
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1 Introduction 

Primary liver cancers (PLCs) are the sixth most common cancer type and, globally, the 

second most common cause of cancer related deaths (Bray et al., 2018; Pezzuto et al., 

2017). The two most common sub-types of primary liver cancer are Hepatocellular 

Carcinoma (HCC) and Cholangiocellular Carcinoma (CCA) which account for the vast 

majority (more than 99%) of PLCs. HCCs are tumours of the liver cells (hepatocytes) 

and comprise around 80-90% of all PLCs with CCAs, or bile duct malignancies, 

accounting for 10-15% of the remaining tumours.  

In the UK PLCs are the 18th most common cancer type and account for 2% of new 

cancer diagnoses annually (Cancer Research UK, 2017). However, it is predicted that 

age standardised rates (ASR) of British PLCs will increase, by up to 43% for men, 

between 2014 to 2035 from 16 to 23 cases per 100,000 (Smittenaar et al., 2016). The 

predicted rise in cases for women is less marked, from 6.87 to 8.32 cases per 100,000 

patients within in the same timeframe, but is nonetheless a notable increase in disease 

frequency. Therefore, there is a national (and international) need for improved 

understanding of the mechanisms involved in tumourigenesis for both current and future 

patients.  

The most pronounced increases in rates of PLC have generally been observed in 

Holland, the UK and the USA (Liu et al., 2019). The reasons for this are multitudinous 

and centre on the fact that the aetiology of primary liver is evolving from traditional risk 

factors (viral hepatitis & alcohol - discussed more below) to include newer aetiologies 

(obesity, type two diabetes and the metabolic syndrome) that are only now becoming 

clinically apparent. These conditions result in chronic liver damage and cellular 

regeneration and can result in the reversible deposition of fibrous tissues (fibrosis) upon 
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repeated injury-regeneration cycles that can progress to the permanent deposition of 

scar tissue (cirrhosis). The correlation between fibrosis, cirrhosis and carcinogenesis has 

been established in HCC but does not correlate with rates of cholangiocellular 

carcinogenesis, as most of these tumours occur sporadically. 

1.1 Hepatocellular Carcinoma 

The World Health Organisation (WHO) classify seven subtypes of Hepatocellular 

Carcinoma, based on morphological phenotypes (International Classification of 

Diseases for Oncology, 2019). The tumour subtypes are: hepatocarcinoma, 

fibrolamellar, scirrhous (sclerosing), spindle cell variant (sarcomatoid), clear cell, 

pleomorphic and mixed (hepatocholangiocarcinoma/ HCC-CCA) tumours.  

Other classifications are available such as those based on cellular architectural patterns 

or cytological variants and can occur in combination (Hamilton & Aaltonen, 2000; 

Torbenson, 2017). Architectural variants include: trabecular (plate like), 

pseudoglandular/ acinar, compact and scirrhous. Cytological properties include: 

pleomorphic cell, clear cell, sarcomatous change, fatty change, bile production, 

inclusion bodies (Mallory hyaline, globular hyaline, pale or ground glass), fibrolamellar 

and finally undifferentiated HCC (Hamilton & Aaltonen, 2000). Of note, where the 

tumour may display characteristics from more than one morphological subtype, the 

tumour with the worse prognosis is ultimately used for classification and 

prognostication (Torbenson, 2017). Some variants of HCC – such as scirrhous – have 

no prognostic difference when compared to classical HCCs (Jiang et al., 2018). 

However, prognostic differences between HCC subtypes, such as fibrolamellar and 

mixed tumours have a better and worse prognosis respectively (Bergquist et al., 2016; 

Jiang et al., 2018; Torbenson, 2017). Hence, HCC classifications are not exhaustive, or 

mutually exclusive, and cannot possibly reflect the wide variety of genetic mechanisms 

involved in carcinogenesis. There are clearly many ways of sub-classifying HCCs, some 
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of which will not have been recorded in archived clinical samples. For the purposes of 

consistency, the WHO adopted classification will be used in preference to others.  

Overall, there is a significant volume of evidence describing tumour morphology in 

great detail with mixed evidence for patient outcomes, such as overall mortality. In the 

era of personalised medicine, with a multitude of aetiological causes of PLC the genetic 

make-up of tumours may hold the key to further understanding neoplastic initiation and 

development. 

1.1.1 Subtypes  

1.1.1.1 Good prognosis: FL-HCC 

A relatively common subtype of HCC that occurs in younger patients and carriers a 

more favourable prognosis is called fibrolamellar HCC (FL-HCC). Intra-tumoural 

bands of parallel fibrous tissues are characteristic for this disease that is diagnosed 

based on typical histological characteristics. Contrary to traditional HCCs, fibrolamellar 

tumours are only found in patients where there is no background cirrhosis present 

(Torbenson, 2017). There are also no known risk factors for developing FL-HCC 

(Shafizadeh & Kakar, 2013) but a segmental deletion yielding the DNAJB1-PRKACA 

gene fusion has been recognised as a signature event in FL-HCC, (Kastenhuber et al., 

2017). 

1.1.1.2 Intermediate prognostic tumour types 

The so called ‘classical HCCs’ account for the majority of hepatocellular tumours with 

no difference in prognosis between classical and scirrhous subtypes (Jiang et al., 2018). 

The steatohepatitic variant of HCC is, somewhat unsurprisingly, associated with 

metabolic diseases but does not appear to have any correlation with gender, aetiology, 

tumour size, number of lesions or grade of tumour (Jain et al., 2013).  In a small HCV 

cirrhosis associated HCC cohort, 35% of HCCs were of the steatohepatitic subtype, 
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with 64% of this subgroup having at least one risk factor for NAFLD/ NASH (Salomao 

et al., 2010).  

Clear cell HCCs are generally well differentiated tumours arising on a background of 

cirrhosis, and have a male preponderance (2.3:1, M: F ratio) but are more common in 

women than traditional HCC (~7:1 M: F ratio) (Yang et al., 1996). There is mixed 

evidence showing either slightly better, or equivocal, differences in prognosis of clear 

cell HCCs (Jabbour et al., 2019; Yang et al., 1996). Clear cell HCCs carry a higher rate 

of isocitrate dehydrogenase 1 (IDH-1) mutations compared to other HCC subtypes with 

these mutations conferring a poorer prognosis by altering cellular metabolism and 

promoting tumourigenesis (Lee et al., 2017). This molecular sub-classification of 

tumours holds intriguing diagnostic and therapeutic implications as the advent of 

targeted IDH therapies may increase the therapeutic arsenal available to clinicians.  

Scirrhous HCCs highlights the diagnostic difficulties of assessing PLCs, as they can be 

radiologically indistinguishable from CCA, whilst also possessing intra-tumoural 

fibrosis similar to FL-HCC (Jabbour et al., 2019). However, when assessing 

immunohistochemical expression, a combination of Arginase-1 and Glypican-3 (GPC-

3) expression is 100% sensitive for scirrhous HCC when differentiating from CCA 

(Krings et al., 2013). This is further evidence of the power of specific, targeted, analysis 

in PLCs, and that different approaches may yield similar results for tumour assessment 

and stratification. 

1.1.1.3 Poor prognostic tumours 

Mixed HCC-CCA, Sarcomatoid and small cell HCCs are quite rare and hold a poorer 

prognosis compared to classical HCCs. In many respects, sarcomatoid HCCs have 

similar properties to mixed HCC-CCA, with comparable rates of lymph node 

metastases and adjacent organ invasion (Li et al., 2018). In terms of median overall 
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survival, sarcomatoid HCCs have a worse prognosis (8.7 months with a 0% 3-year 

survival) compared to mixed tumours (24.9 months, 36% 3-year survival) (Li et al., 

2018; Liao et al., 2019). If patients undergo liver transplantation, mixed tumours have a 

high rate of recurrence, especially within the first year after surgery, demonstrating their 

aggressive tumour behaviour (Park et al., 2013).  

The rarity of these subtypes of HCC makes estimates of prognostic differentiation 

challenging this is typified by case reports identifying small cell HCCs, a case series of 

three tumours (from 520 HCCs at one centre) described poor survival after diagnosis 

(one month for two patients and 5 months for the third patient) in elderly patients 

(Zanconati et al., 1996). Two of these patients were deemed unfit for invasive treatment 

and the tumours were found at autopsy.  

1.1.2 Aetiology 

Around 90% of HCCs arise in the context of chronically inflamed, scarred, cirrhotic, 

liver tissues (Jindal et al., 2019; Mittal & El-Serag, 2013). The inflammation-

metaplasia-carcinoma sequence that occurs is responsible for the majority of these 

cancers developing as the increased rates of cellular turnover hence allowing more 

opportunities for driver mutations to develop. However, there are certain circumstances 

when tumours occur in the absence of cirrhosis, such as in the context of NAFLD 

without cirrhosis and in fibrolamellar tumours (Kulik & El-Serag, 2019; Torbenson, 

2017).  

Globally, the rates of PLC are changing to reflect chronological variations in causative 

risk factors – with reductions in countries where Hepatitis B Virus (HBV) was 

previously a major driver (SE Asia and Africa) and rising incidence in countries like the 

UK, which have seen a sharp increase in number of individuals with cirrhosis. 
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However, the legacy of chronic viral hepatitis still accounts for the majority of HCC 

cases, when considered at the international scale.  

The global burden of diseases such as hepatitis, cirrhosis and diabetes have increased 

between 1990 - 2010 by 46.4%, 32.5% and 92.7% respectively (Lozano et al., 2012). 

These deeply concerning increases in liver cancer-associated conditions go some way to 

explain the recorded increase in rates of PLC. Western diet and lifestyle will play an 

increasing prominent role in the aetiology of future PLCs in North America and Europe. 

As obesity rates continue to soar in the Western world, future rates of PLC are predicted 

to reflect the already measurable increase in obesity driven cancer development 

(Massoud & Charlton, 2018). 

1.1.2.1 Fibrosis & Cirrhosis 

Scarring of the liver (cirrhosis) is an irreversible change that results from chronic 

inflammation and is found in 80-90% of post mortem autopsies in patients with HCC 

(Fattovich et al., 2004). The majority of the remaining 10 – 20% of HCCs in this study 

had a degree of liver fibrosis with only a very small proportion having absolutely 

normal background liver histology (Fattovich et al., 2004). More recent evidence has 

indicated that the risk of HCC remains low in all patients without cirrhosis, with the 

exception of those with higher fibrotic indices (Kulik & El-Serag, 2019). However, 

there is no simple dose-response relationship for fibrosis/cirrhosis and HCC 

development, indicating the complexity of this highly heterogeneous disease entity. 

Amongst newly diagnosed cases of HCC, in the absence of advanced fibrosis or 

cirrhosis, NAFLD is the largest aetiological factor in an American study cohort (Kulik 

& El-Serag, 2019).  

Fibrosis is the result of increased extra cellular matrix (ECM) deposition secondary to 

chronic inflammation and activation of both the innate and adaptive immune responses 
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(Parola & Pinzani, 2019). The pro-fibrogenic environment resulting from chronic 

inflammation leads to hepatic stellate cell (HSC) recruitment, activation and trans-

differentiation into fibrogenic myofibroblasts (Tsuchida & Friedman, 2017). Inhibiting 

the activation of HSCs is the target of a number of phase II and III clinical trials which 

are exciting potential therapies of the future. As the number of hepatotoxic insults 

increases the risks of developing HCC is also raised. An example of multifactorial 

hepatotoxic insults is highlighted by the increase in incidence of HCCs in non-cirrhotic 

diabetics who drink alcohol, owing to the synergistic effect of multiple hepatotoxins 

(Kulik & El-Serag, 2019).  

Changes in hepatic cellular structure and physiology from ECM deposition, 

proliferating activated stellate cells and neovascularisation of hepatic sinusoids result in 

cirrhosis (Tsochatzis et al., 2014). Cirrhosis was previously considered an advanced 

stage of liver fibrosis with irreversible distortion of the hepatic vasculature (Schuppan 

& Afdhal, 2008). However, there is increasing evidence from the follow up of treated 

viral hepatitis patients, that this might not be the case. Successful treatment of the 

underlying pro-fibrotic disease reduces the pro-inflammatory environment and leads to 

a regression in fibrotic indices as fibrolytic pathways are up-regulated (Jung & Yim, 

2017).  

When the native sinusoidal endothelial cells are disrupted, there is shunting of blood 

from portal and arterial vessels to the hepatic veins results in a decrease in exchange 

between hepatic sinusoids and hepatocytes, further reducing liver function (Schuppan & 

Afdhal, 2008).  The molecular mechanisms behind this are complex, but sinusoidal 

endothelial cells are defenestrated then capillarised, causing a loss of substrate 

exchange (Zhou et al., 2014). As the functionality of liver cells decreases with repeated 

exposure to noxious stimuli, scar tissue deposition increases further reducing the 

functional capacity of the liver (Jung & Yim, 2017).  
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Annual rates of HCC incidence in cirrhosis varies between 4 – 30%, depending on the 

underlying aetiology (PBC and HCV respectively), demonstrating an irrefutable 

increase in cancer-risk, regardless of the underlying disease process causing cirrhosis 

(Fattovich et al., 2004). 

1.1.2.2 Infectious Causes of HCC 

Globally, HBV and HCV are thought to be responsible for 43.3 % and 18.7% of 

primary liver cancers respectively (Liu et al., 2019). The prevalence of these infectious 

diseases, and their legacy (i.e., cirrhosis and liver cancer) varies widely depending on 

geographical location. Liver cancer has traditionally been most prevalent in eastern 

Asian countries and sub-Saharan Africa, and between them account for up to 83% of 

cases globally (GLOBOSCAN 2012 (IARC), 2015). In the most part this is due to 

vertical transmission of HBV during childbirth coupled with historically low rates of 

vaccination against HBV in these host countries. The risk of developing HCC from 

HBV is associated with the length of infection, viral load and the severity of liver 

disease present as HBV is able to integrate into the hosts’ DNA (Forner et al., 2018; 

Schulze et al., 2015).  

The other main hepatotropic infection, HCV is more prevalent in Western populations 

and are associated with iatrogenic infection from blood product transfusion or 

recreational intravenous drug use (El-Serag, 2011; Forner et al., 2012). HCV is now 

curable in over 95% of cases with the direct acting antivirals (DAA) and the widespread 

use of these has already resulted in a fall in number of cases of chronic HCV, and fewer 

cases of HCV-associated HCC.  

However, active viral hepatitis remains the main driving factor behind global HCC 

development (Kulik & El-Serag, 2019). As such the WHO has invested heavily in a 
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global effort to eliminate viral hepatitis transmission in all member states, with an 

ambitious target of a 90% reduction in new cases by 2030 (Cooke et al., 2019). 

In the US, prior to curative treatment for HCV being available, rates of cirrhosis had 

doubled in patients with HCV along with a 10-fold increase in the rates of HCC (Mittal 

& El-Serag, 2013). A demonstration of the dynamic relationship between aetiology and 

carcinogenesis is exemplified by rates of HCV attributable HCC that are decreasing, 

after the advent of direct acting antivirals (DAA), from 46.4% in 2013 (prior to DAA 

use) to 33.7% in 2016, when measured by transplant-indication for HCC treatment 

(Vaziri et al., 2018). Age standardised rates of PLC due to HCV had increased by 7.6% 

from 1990 to 2010, whilst those due to HBV have only risen by 2.6% in the same 

period (Lozano et al., 2012). With synergistic effects of multiple hepatotoxic insults on 

fibrotic and cirrhotic changes reducing the local and global burden of HBV and HCV 

infections will lead to a decrease in future HCC development (Jindal et al., 2019; Mittal 

& El-Serag, 2013).  

We very much find ourselves in unknown territory for monitoring patients who have 

achieved a sustained viral response (SVR) against HCV, as a result of DAA therapies. 

Previously these patients would have required regular surveillance for HCC 

development as they were deemed high risk but the need for large prospective 

multicentre studies are required to clarify this (Peck-Radosavljevic and Singal, 2019). 

In SE Asia and sub-Saharan Africa, a carcinogen produced by Aspergillus species 

(Aflatoxin B1) is able to grow in foodstuffs (grain, corn, cassava) when stored in high 

moisture conditions (Mittal & El-Serag, 2013). The dietary ingestion and hence 

exposure to these toxins promotes mutations in the tumour suppressor gene, p53, 

resulting in a genetic basis of tumourigenesis in as many as 90% of Aflatoxin-related 

HCCs (Gouas et al., 2009). The regions where Aflatoxin-related HCCs and HBV-

related HCCs overlap considerably account for a synergistic effect of dual-exposure 
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leading to an increased chance of developing HCC (Schulze et al., 2015). Fortunately, 

rates of Aflatoxin-related PLCs in the West are vanishingly rare as the climatic 

conditions required for Aspergillus growth simply do not occur. 

1.1.2.3 Diet, Lifestyle & Environmental. 

The link between heavy alcohol consumption (>80g/day) and cirrhosis development is 

well established, however full comprehension of the mechanisms involved remain 

incompletely understood (Mittal & El-Serag, 2013; Morgan et al., 2004). What is clear 

is that even mild alcohol consumption (10g/day, ~ 1unit) is associated with a higher rate 

of carcinogenesis (Ganne-Carrié & Nahon, 2019). The mechanisms whereby alcohol 

induces changes in cellular signalling are complex. Increased production of reactive 

oxygen species, increased gut permeability, changes in folate and lipid metabolism, 

activation of innate immunity and toxic effects on mitochondrial biology are just some 

of the mechanisms proposed to be adversely altered by ethanol (Ganne-Carrié & Nahon, 

2019). The societal effects of chronic alcohol ingestion (addiction, unemployment, 

tobacco smoking etc.) and those in lower socioeconomic groups are associated with 

poorer outcomes. Those addicted to alcohol present at a later stage, have poor 

concordance to screening and follow up owing to the addictive nature of the substance 

(Ganne-Carrié & Nahon, 2019).  

In Italy and the US, alcohol is thought to cause between 32-45% of HCCs, and at higher 

rates when there was HCV was a cofactor in tumour development (Morgan et al., 2004). 

Globally alcohol accounts for 14.7% of primary liver cancers in 2016, but there are 

wide geographical variations with up to 34.5% of PLCs in Western Europe being 

attributed to alcohol excess (Liu et al., 2019).   

As waistlines expand and medical conditions such as dyslipidaemia, diabetes mellitus 

and the metabolic syndrome are increasing due to poor diet and an increasingly 
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sedentary lifestyle. These metabolic diseases are resulting in increased rates of primary 

liver cancer owing to the metabolic burden being placed on the liver as it digests the 

increased dietary fat and macronutrients that result in the inflammatory states: non-

alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis: NASH (Jindal 

et al., 2019).  Diet and lifestyle factors are inextricably linked to type two diabetes, the 

rates of which are increasing globally. Whilst type two diabetes is a risk factor for HCC 

development, there is also the possibility of NAFLD acting as an independent risk 

factor, though the evidence for this is less certain (Kulik & El-Serag, 2019). Rates of 

death from PLC are increased five-fold in those with a high baseline body mass index 

(BMI), further highlighting the link between obesity and hepatocarcinogenesis (Forner 

et al., 2018). Regardless of geographical location, alcohol intake or diabetic status, an 

elevated BMI (>25 kg/m2) is linked to liver cancer generation (Jindal et al., 2019).  

1.1.3 Incidence  

A national study, using data from all hospital discharge records in France from between 

2009 and 2012 found 31927 incident cases of adult HCC giving an annual incidence of 

16.4 cases per 100,000 (Goutté et al., 2017). Eighty percent of these cases were in men, 

73.4% occurred in cirrhotic patients and 44% were as a result of alcohol consumption, 

in the absence of viral infection. Somewhat surprisingly, 36.4% had an unknown 

aetiology.  

Incidence rates have exploded in Western populations recently, with a rise of 62.8% of 

cases in men (41.2% in Women) between 1990 to 2009 in the US (AACR Cancer 

Progress Report Writing Committee et al., 2013). Furthermore, in America, HCC cases 

have increased considerably since the 1970’s. In 1973 the incidence of HCC was 1.51 

cases per 100,000 whilst in 2011 it was 6.20 per 100,000 (Njei et al., 2015). 

Interestingly, there have been large increases in PLC in high socioeconomic index 

countries, with the UK having the third highest increase in estimated annual percentage 
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change, reflecting both the changing landscape of aetiological conditions (amongst 

others: rich diet and alcohol as mentioned above) associated with PLCs, (Liu et al., 

2019). 

Gender is important in HCC development and varies geographically with a 4:1 male: 

female ratio in South Korea, and approaching a 2:1 (male: female) ratio in UK (Mittal 

& El-Serag, 2013). Circulating oestrogen plays a role in HCC tumour development as 

fewer women develop HCC, and in women who are treated for HCC, oestrogen 

replacement (for menopausal symptoms) is protective, giving a reduced risk of HCC-

recurrence and prolonged survival (Fujiwara et al., 2017). The immunomodulatory 

effects of oestrogens (immune-stimulating) is thought to result in less inflammatory 

damage, apoptosis and oxidative stress compared with immune suppressing androgens 

which increases fibrogenesis (Ruggieri et al., 2018). 

However, developing countries may be underestimating the reported rates of HCC 

owing to their poor-quality data provided, and limited abilities to detect or manage 

HCCs, with an estimated 120,772 missed incident cases of HCC in 2012 (Sartorius et 

al., 2015). This incomplete data makes accurate estimates of HCC rates difficult to fully 

describe, but are improving with time. 

1.1.4 Stage 

Numerous disease staging systems used when assessing HCCs. These include the 

tumour- lymph node-metastasis (TMN), Okuda, Cancer of the Liver Italian Program 

(CLIP), Japanese Integrated Staging (JIS), Chinese University Prognostic Index (CUPI), 

Hong Kong Liver Cancer (HKLC) and most commonly used in the West, the Barcelona 

Clinic Liver Cancer (BCLC) staging system (Forner et al., 2018). HCC is stage-

orientated for cancer therapies, with various treatment options offered to patients 

depending on the stage hierarchy of their disease (Vitale et al., 2020). These stage-
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boundaries are not fixed, as roughly half of patients benefit from down-staging therapies 

able to reduce tumour burden, meaning carefully selected patients can be considered for 

curative treatment such as liver transplantation (Bryce & Tsochatzis, 2017). Staging 

disease is currently based on radiological and liver dysfunction parameters, with 

minimal emphasis being placed on individual tumour biology in this era of personalised 

medicine. The one exception being serially measured alpha-foetoprotein (AFP) 

>100ng/ml was found to be the only independent risk factor of HCC recurrence post 

liver transplant (Mehta et al., 2020). 

Generally, in earlier stage disease more treatment options are available to patients. The 

five BCLC stages of HCC (stage 0, A, B, C and D) and their respective survival 

statistics are outlined in figure 1, which takes into account not only the stage of disease, 

but also other disease characteristics (such as the size and number of tumours, portal 

pressures, liver function and other associated diseases) as well as the patients 

performance status (Forner et al., 2018). 
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Figure 1. Stages of HCC disease, management and expected survival. 

Therefore, patients that undergo surgical resection, or transplantation, have relatively 

confined tumour disease, which has the potential to be a selection bias to any studies 

solely analysing these tissues. 

1.1.5 Grade 

Since 1954 the Edmondson-Steiner (ES) classification of HCCs has been in use with 

grades I-IV correlating with adverse features of cellular differentiation (Edmondson & 

Steiner, 1954). From the most differentiated (grade I, well differentiated), to increased 

cytoplasmic & nuclear volumes (grade II, mild differentiation), increased 

hyperchromatic features with an increase in relative nuclear proportion in the cell (grade 

III, moderately differentiated) to variable, often scanty, cytoplasmic volumes with 

intensely abundant and hyperchromatic nuclei and non-cohesive cell masses (grade IV, 

poorly differentiated) (Nakashima et al., 1987). This four-tier system has not always 

been adopted, with a modified three-tier (well, moderately and poorly differentiated) 
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grading system occasionally used (Rastogi, 2018). With ES’ grades I and II being 

incorporated into a modified ‘well differentiated’ class to facilitate this simplification, 

but grouping tumours as grades I & II (favourable) vs III & IV (unfavourable) has been 

undertaken extensively in the literature (Pawlik et al., 2007). 

 Interestingly, whilst pre-operation biopsy of tumour samples has no correlation with 

post-transplant survival, comprehensive histological assessment of explant livers does 

give an accurate determinant of survival post liver transplant, with worst outcomes in 

the poorest differentiated tumours (Pawlik et al., 2007; Tamura et al., 2001). This may 

well confirm that comprehensive assessment of the whole tumour is required to reduce 

the sampling error that inevitably occurs from a biopsy. Tumour stage remains the most 

important factor when assigning appropriate treatment regimens in HCC. 

1.1.6 Regional Variations in HCC Prevalence 

Regional variations in HCC broadly reflect the differences in aetiology underlying 

carcinogenesis. South East Asian, Chinese, Sub-Saharan and East-African cancers 

account for >80% of the number of cases and are predominantly due to HBV and, to a 

lesser extent, Aflatoxins (Choo et al., 2016). The vertical transmission of HBV results 

in HCC diagnosis approximately a decade younger than those from North America and 

Europe, where HCV is acquired later in life (Mittal & El-Serag, 2013). Mittal & El-

Serag also state that alcohol consumption, HBV and HCV rates are higher, and 

potentially more carcinogenic, in men which may partially explain the male 

preponderance of HCCs. Zucman-Rossi et al have grouped these more aggressive 

tumours (HBV-associated, increased vascular invasion, poorer overall survival) together 

and called them a proliferation class, with the non-proliferation class being made up of 

HCV and alcohol-related disease which confers a less aggressive phenotype (Zucman-

Rossi et al., 2015). Alongside viral hepatitis, NAFLD is another common disease entity 

that is becoming increasingly responsible for both Eastern and Western HCC 
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development (Choo et al., 2016). In America, NAFLD is now the leading cause of 

chronic liver disease (Mittal & El-Serag, 2013).  

In the UK HCC mortality rates are steadily increasing, compared to the overall 

downward trend in both European neighbours and across the world. In the UK both men 

(+67.9%) and women (+57.1%) saw significant increases in mortality rates, compared 

to France (M: -14%, F: -12.6%), Germany (M: +15.6%, F: +1.3%) and Spain (M: -

14.7%, F: -39.2%) as well as significant decreases in Japan (M: -42.1%, F: -41.0%), 

Korea (M: -30.1%, F: -29.0%) and Hong Kong (M: -23.7%, F: -11.0%) thus 

highlighting global differences in HCC mortality data (Bertuccio et al., 2017). With 

such marked increases in UK HCCs, further work describing this cohort is vital to help 

improve patient outcomes. 

Owing to the global variations in the aetiology of HCC, Zucman-Rossi state: “the 

highly heterogeneous nature of HCC makes genomic classification of this disease and 

identification of clinically relevant biomarkers more challenging compared with other 

solid tumours like lung and colon cancers” (Zucman-Rossi et al., 2015). 

1.1.7 Genetics of HCC 

The genetic landscape of HCC is incompletely understood. Large multicentre studies of 

European patients with HCC are based on French and German patient cohorts (who also 

have a decreasing HCC-specific mortality rates, contrary to the UK) and are based on 

surgically resected tumours. The ability to sequence the exome, transcriptome and 

whole genome has allowed genetic variations, their associations with nucleic acid 

sequences and ultimately altered protein expression, to be correlated with disease 

characteristics.  Cell signalling pathways involved include altered telomere biology, cell 

cycle, Wnt/beta-Catenin, epigenetic, NRF2/KEAP1, RAS/ RAF/MAPK and 

AKT/mTOR pathways (Madduru et al., 2019; Nault et al., 2020).  
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Driver mutations occur when random genomic alterations are clonally expanded 

because they have occurred in a ‘cancer gene’ (Hanahan & Weinberg, 2000; Stratton, 

2011). The neoplastic cells then have a survival advantage because of their increased 

ability to divide, can resist normal homeostatic control or otherwise demonstrate a 

hallmark of cancer. If a mutation does not confer a survival benefit, which occurs in the 

majority of cases, then these are termed passenger mutants (Stratton, 2011).  

Enormous effort researching the genetics of HCC has been undertaken using 

fresh/frozen tumour samples from surgical resection specimens and discovered that 

Telomerase activation is the most common mechanism for tumour initiation in HCCs, 

occurring in 70-90% (Nault et al., 2019). Recruitment for these studies has so far not 

included UK-based patients to any significant degree. Telomerase promoter mutations 

(pTERTMuts) are associated with alcohol driven HCCs in a western European cohort, 

indicating a potential aetiology-specific association (Schulze et al., 2015). Other groups 

have found an association between HCV-driven HCCs and pTERTMuts, demonstrating 

that there is incomplete understanding of the exact mechanisms involved in telomere 

biology and carcinogenesis (Ally et al., 2017). It is clear that more work is required to 

improve understanding of any potential associations.  

However, the available data provides an intriguing insight into how genetic alterations 

are associated with aetiological processes. Early work described the role of tumour 

protein 53 (TP53) mutations in Aflatoxin B1 associated HCCs and subsequent 

understanding of other cell-signalling pathway alterations have been facilitated by the 

technological advances (Nault et al., 2020).  

With the increased availability of next generational sequencing technologies, subgroups 

of HCCs have been found based on their genetic profiles. For HCCs the most 

commonly dysregulated driver pathway has been in aberrations in the Telomerase 

Reverse Transcriptase (TERT) gene occurring in 70-90% of all tumours (Nault et al., 



 18 

2019; Schulze et al., 2016). This Telomerase enzyme is involved in altered Telomere 

maintenance via promoter mutations (60%), gain of function amplifications (5%) and 

Hepatitis B Virus (HBV) integration (5%).  Other candidate drivers that have been 

described include TP53, CTNNB1 and ARID1A (Schulze et al., 2015; Totoki et al., 

2014). These studies have focussed on fresh-frozen libraries of liver tissues, owing to 

the relative ease of using this resource when compared to FFPE archives. Further 

evidence of telomere biology alterations in liver disease has been shown with shorter 

telomere length and rare promoter mutations associated with NAFLD (Donati et al., 

2017).  

Recently irregularities in the diagnostic accuracy of cellular morphology alone for 

detecting fibrolemellar HCC have been highlighted, with some inter-reporter 

inconsistencies becoming apparent. Protein kinase cAMP-activated catalytic subunit 

alpha (PRKACA) FISH assays for a genetic rearrangement were positive in 99% (102 

of 103) of typical FL-HCC, and in 75% (9/12) of the diagnostically uncertain (initially 

categorised as ‘?FL-HCC’) when assessed with cellular morphology alone (Graham et 

al., 2018). Some tumours that are initially misdiagnosed as HCC later turn out to be FL-

HCCs containing the gene fusion when appropriately analysed, demonstrates the power 

of assessing a single genetic abnormality (Lalazar & Simon, 2018; Simon et al., 2015).   

1.1.7.1 UTAA in HCC 

Survivin and Telomerase have been described as the archetypal universal tumours 

antigens (UTAA) as they are expressed in a wide range of cancers and are a Hallmarks 

of Cancer (Hanahan & Weinberg, 2000, 2011). When any tumour expresses UTAA 

they are deploying mechanisms to evade normal physiological control by evading 

apoptosis (Survivin) or enabling replicative immortality (Telomerase) to promote 

tumourigenesis.  
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Survivin predominantly present in the nuclei of HCC tumours with IHC and correlates 

with proliferation indices (Ito et al., 2000). Indeed, it is the nuclear translocation of 

Survivin in HCCs from the cytoplasm of quiescent non-malignant liver cells that may 

constitute an important mechanism of cell proliferation and differentiation in 

carcinogenesis (Moon & Tarnawski, 2003). Significant positive correlations exist 

between IHC-detected nuclear Survivin and grade, microvascular invasion, mitosis, 

local recurrence and disease-free survival indicating the essential role Survivin may 

play in hepatocarcinogenesis (Fields et al., 2004). 

Telomerase activity is present in around 90% of HCCs, with promoter mutations being 

both responsible for this, and the most common genetic alteration in HCC (Nault et al., 

2019). Indeed, these promoter mutations are HCC specific, with none occurring in CCA 

(Quaas et al., 2014). Telomerase activity, as measured by the telomerase repeat 

amplification protocol (TRAP assay – a PCR based assessment of enzyme activity) has 

been linked to an increase risk of tumour recurrence after resection, suggesting a role in 

malignant tumour biology (Kobayashi et al., 2001). Telomerase protein, detected by 

IHC, in tumour tissues has been linked to tumour worse grade, the presence of a portal 

vein thrombosis and HBV insertion into the genome in a Chinese cohort (X. Zhou et al., 

2016). Whilst serum detection of telomerase mRNA has been proposed as an adjunct to 

AFP to increase the accuracy of HCC detection (El-Mazny et al., 2014). 

1.1.8 Treatment 

The treatment of HCC is complex and determined by tumour stage and underlying liver 

disease severity. There is a deficit of care between the most unwell patients (advanced 

tumour burden, advanced liver cirrhosis and poor liver function) and the treatment 

options they are offered. In simple terms: the patients most in need of therapy are not 

medically fit for surgical resection, and all treatment is therefore palliative in nature.  
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Curative options are more likely to be successful in early disease and in the UK, many 

centres use the Barcelona Clinic Liver Cancer (BCLC) staging of disease to guide 

treatment decisions (Llovet et al., 1999). Criteria that are measured to facilitate the 

BCLC stage are the size of the tumour, the presence and severity of cirrhosis and other 

markers of liver functionality as well as the patients’ ability to perform their activities of 

daily living (Hartke et al., 2017).  

1.1.8.1 Surgical. 

Surgical management offers the best chance of a cure for HCC, but is only offered to 

5% of patients based on their stage of disease at diagnosis (El-Serag, 2011). In the 

absence of cirrhosis, surgical resection of a portion of the tumour containing liver is the 

treatment of choice with long term cure possible (Forner et al., 2012).  

Liver transplantation is an option for some cases and offers the prospect of curing both 

the HCC and the underlying liver disease. However, the risk of tumour recurrence post-

transplant increases with tumour size and decisions are often based on the 

internationally recognised Milan criteria (C.-Y. Liu et al., 2015; Mazzaferro et al., 

1996). Patients with early-stage disease (BCLC stage A) defined by a single tumour 

being 5cm or less, or up to three tumours with the largest 3cm or less, with no vascular 

spread or extra-hepatic disease in the context of moderate to severe cirrhosis benefit the 

most from liver transplantation (Galle et al., 2018; C.-Y. Liu et al., 2015). Only a small 

minority of patients fulfil these criteria leaving the majority of patients’ very limited 

options, most of which are often palliative.  

1.1.8.2 Loco-regional therapies. 

Transarterial chemoembolisation (TACE) therapy involves the delivery of 

chemotherapy via a catheter to a vascular tumour. Conventional TACE uses a Lipiodol 

based emulsion to deliver a chemotherapeutic and embolising agents, whereas Drug 
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Eluting Bead TACE (DEB-TACE) uses chemotherapy loaded beads delivered into the 

tumour vasculature to release antineoplastic agents over a longer period of time whilst 

also embolising the tumour’s arterial supply (Raoul et al., 2019). TACE has become the 

treatment of choice in intermediate stage HCC as it is a life prolonging treatment but it 

can also be used as a down staging (bridging) therapy to reduce tumour size and 

facilitate liver transplantation.  

TACE has been quoted as achieving a successful downstage in 48% of cases with a 

tumour recurrence rate in the transplanted liver around 16% when reported in a recent 

meta-analysis of 950 patients (Parikh et al., 2015). There is no benefit of neo-adjuvant 

Sorafenib (a multi-kinase inhibitor) plus TACE compared to TACE alone prior to liver 

transplant for HCC, as patients’ tumours from the two groups demonstrated similar time 

to progression (Hoffmann et al., 2015). 

When not prescribed as a bridging therapy TACE is the most commonly used palliative 

treatment regimen when surgical treatment is not possible. For treating intermediate 

stage (BCLC stage B) HCC, DEB-TACE confers a median survival of 47.7 months 

when BCLC treatment guidelines are strictly adhered to (Burrel et al., 2012). However, 

it is acknowledged that these inferences can only be made when there is judicious use of 

BCLC criteria. TACE can be used out with intermediate stage disease, but less strict 

adherence to BCLC guidelines can mean patient outcomes may be compromised 

(Palmer et al., 2020; Raoul et al., 2019). 

Combining systemic therapies with DEB-TACE (Sorafenib and DEB-TACE) in 

intermediate (BCLC stage B) HCC demonstrates no reduction in time to progression in 

the dual treated arm of the trial when compared to DEB-TACE alone (Lencioni et al., 

2016). Further studies are on-going, exploring the role of immunotherapy being used in 

conjunction with loco-regional therapies, with initial results demonstrating combined 
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therapies are well tolerated, but significantly more work in this area is required (Greten 

et al., 2019). 

1.1.8.3 Ablative Treatment 

Radiofrequency ablation (RFA) and microwave ablation (MWA) are physical 

treatments that lyse cells by generating heat. The ablation is targeted using ultrasound or 

CT and a probe inserted into the tumour to deliver the thermal injury. RFA is able to 

deliver complete tumour necrosis and has similar outcomes compared to surgical 

resection in BCLC stage 0 (very early stage, single nodule tumour < 2cm) HCC, at a 

reduced cost (Galle et al., 2018). This study compared 3996 resection and 4424 ablated 

patients and concedes that the only benefit of surgical resection would be to provide 

tissue for histopathological analysis of high-risk features, such as vascular invasion, 

poor differentiation and satellite tumours. Judicious use of RFA in a clinically 

appropriate patient can be used in conjunction with surgical resection in intermediate 

(BCLC B, normally treated with locoregional therapy alone) stage HCC, demonstrating 

a combination of chemotherapeutic regimes may lead to better overall survival with a 

longer time to progression (Espinosa et al., 2018).  

1.1.8.4 Systemic therapies. 

First line treatment for advanced HCC (BCLC stage C) has been the multi-kinase 

inhibitor, Sorafenib, for more than a decade (Bouattour et al., 2019). Sorafenib targets 

tyrosine kinases, significantly improves overall survival from 7.9 to 10.7 months and 

results in a longer time to progression (5.5 vs. 2.8 months) when compared to placebo 

(Rimassa et al., 2019). Other immunotherapeutic options in HCC includes checkpoint 

inhibitors, currently offered after failed Sorafenib treatment, with further trials assessing 

the role of combination, or even first line use of this novel drug-class, (Onuma et al., 

2020) .  
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With positive results emerging from phase II/III trials for second line agents including 

the multikinase inhibitors Regorafenib, Lenvatinib and Cabozantinib as well as 

encouraging results from studies of the check point inhibitors including Ramucirumab, 

Nivolumab and Pembrolizumab clinical guidelines will doubtless change very soon to 

reflect these developments (Bouattour et al., 2019; Foerster & Galle, 2019). Significant 

potential for further improving therapies targeting the most commonly altered genetic 

variations in HCC, such as pTERTMuts, beta Catenin, TP53 and ARID1A driver 

mutations is highlighted by their presence in the majority of HCCs (Bouattour et al., 

2019).  

Clinically useful genetic aberrations that commonly occur in various tumours, including 

HCC, requires a ‘drug-able target’. For TP53 this requires the wild type confirmation of 

p53 to be stabilised and allows the protein to fold normally. The ability to induce 

conformational change in p53 mutants by the compound APR-246 results in apoptosis 

induction in tumour cells and has been involved in clinical trials (Parrales & Iwakuma, 

2015). The Wnt/beta-catenin pathway involves a large number of proteins and kinases 

with numerous targets being assessed in pre-clinical models and clinical trials. Various 

Tankyrase, Porcupine, Disheveled and beta-Catenin inhibitors are being researched in 

the pre-clinical setting (Krishnamurthy & Kurzrock, 2018). Further clinical trials 

exploring Porcupine inhibitors, Wnt antibodies, beta-catenin inhibitors, Notch 

signalling inhibitors, gamma secretase inhibitors and inhibitors of Hedgehog signalling 

are also being explored in a wide range of solid and haematological tumour types, 

further highlighting the potential for personalised medicine based on universally 

expressed tumour antigens (Krishnamurthy & Kurzrock, 2018). 

For Telomerase, the oligonucleotide inhibitor, Imetelstat, targets the active site template 

region of TERC and demonstrates anti-tumour activity (Nault et al., 2019). Imetelstat is 

known to accumulate in the liver, spleen and bone marrow and has been used in phase 
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I/II trials for acute myeloid leukaemia and myelodysplastic disease (Saraswati et al., 

2019). The small molecule Telomerase inhibitor, BIBR1532, has demonstrated positive 

pre-clinical results but further clinical studies are required (Tahtouh et al., 2015). Other 

examples of novel approaches for therapy includes immunotherapy targeted against 

Telomerase and Survivin. The multi-peptide vaccine strategies are in phase one trials 

for metastatic breast cancer (clinical trials identifier: NCT01660529) and advanced 

myeloma (clinical trials identifier: NCT00834665) with the results keenly awaited. 

1.2 Cholangiocarcinoma 

Cholangiocarcinomas (CCAs) are a wide-ranging and diverse group of malignancies 

that arise from biliary epithelial cells. Early work in this field did not differentiate 

between the different methods of classifying CCA, such as anatomical relationship, 

macroscopic growth pattern, microscopic features or classification by cell of origin 

(Krasinskas, 2018). As such there was significant room for improvement in 

international classification methods, and now a legacy of uncertainty regarding true 

rates of each tumour type. The most commonly used is the classification by anatomical 

site: intrahepatic, perihilar or distal (Krasinskas, 2018; Tyson & El-Serag, 2011; Wirth 

& Vogel, 2016). Confusingly the lack of consensus of nomenclature has resulted in a 

large number of approaches, with some authors using the intrahepatic/extrahepatic 

terminology when describing CCAs. As such there is an unreliable archive of classified 

tumours. Truly intrahepatic CCA (iCCA), are rare and account for roughly 10% of all 

CCAs, and 15% of PLCs. The majority of CCAs (~2/3) of extrahepatic 

cholangiocarcinomas (eCCA) are perihilar (pCCA) and the remaining ~1/3 are distal 

CCA (dCCA), but for convention both pCCA and dCCA have been grouped together as 

eCCA (Hemming, 2019, p219). 

The nomenclature is important for differentiating CCAs as there has been a variation in 

reported use of terms used to describe the same disease entity that has lead to moderate 
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confusion and requires an international standard to be adopted to clarify this issue 

(Tyson & El-Serag, 2011). A specific example being the perihilar/ Klatskin/ 

extrahepatic tumour – which is the same disease by a variety of different names – that 

has variably been included with the intrahepatic CCAs, considered an entity in its own 

right and occasionally with other, more distal, cholangiocarcinomas. This is important 

to note as there have been reported surges in incidence rates of iCCA compared to 

eCCA, where the perihilar lesions are included with true intrahepatic CCAs (A. 

Bergquist & von Seth, 2015; Tyson & El-Serag, 2011). Accordingly, as many as 91% of 

perihilar tumours may have been erroneously recorded as iCCAs thus contributing to a 

false inflation in the incidence of iCCA when compared to other subtypes of CCA 

(Tyson & El-Serag, 2011; Welzel et al., 2007).  

Intrahepatic cholangiocellular carcinomas arise from the second order bile ducts, or 

more peripherally within the liver parenchyma, with perihilar CCA originating from 

between the second order bile ducts and the cystic duct and finally distal CCAs are from 

the cystic duct to lower down the biliary tree (Banales et al., 2016). Other authors have 

concluded the differentiation between subtypes of CCA, in anatomical terms at least, as 

being in relation to the second order bile ducts alone differentiating between iCCA and 

eCCA (Krasinskas, 2018). There are ongoing efforts to standardise the diagnosis of 

CCA, based on anatomical location, despite the historical lack of clarity in this field. 

Intriguingly the original classification of diseases in the ICD-0 and in the case of hilar 

CCA, have not been consistently recorded throughout recent history (Bridgewater et al., 

2014). Leading to perihilar/hilar CCA coalescing independently with intrahepatic CCA 

and extrahepatic CCA across the published literature (Tyson & El-Serag, 2011).  

Intrahepatic CCAs can be further sub-classified by their histological features and 

whether or not they are producing mucin (Krasinskas, 2018). Large duct, type 1, iCCAs 

tend to be columnar, produce mucin and resemble the bile duct epithelium whilst small 



 26 

duct, type 2, iCCAs resemble cholangiocytes and are more cuboidal in their shape. 

Small duct iCCAs are associated with some risk factors shared with HCCs, such as viral 

hepatitis and cirrhosis and large duct iCCAs share aetiology with more chronic biliary 

diseases, which will be discussed further below. The type of tumour that grows tends to 

reflect the clinico-pathological features that are seen when comparing small and large 

duct neoplasms. Small ducts growths tend to be mass forming in nature and the larger 

ducts grow in a periductal infiltrating pattern, resulting in strictures or other thickened 

biliary epithelial growths (Banales et al., 2016). 

1.2.1 Anatomical location 

The nomenclature describing the site of CCAs relating to their anatomical site in 

relation to the cystic duct and the second order bile ducts, as outlined in figure 2, 

adapted from (Banales et al., 2016).  

 

 

Figure 2. The anatomical locations of Cholangiocarcinoma.  

Intrahepatic (also known as peripheral tumours) occur in the smaller calibre biliary tree, 

as denoted by the occurring further downstream than the second division in the bile 

ducts. Hilar/perihilar neoplasms occur between the second order bile ducts and the 

cystic duct, which receives bile from the gallbladder. Distal tumours occur further 

downstream than the cystic duct and can frequently present earlier with obstructive 
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jaundice-type symptoms. Prognosis is best for dCCA, moderate for pCCA and poor for 

iCCA in terms of overall survival and tumour-specific mortality (Hang et al., 2019). 

1.2.2 Aetiology 

Unlike HCC 70% of CCA arise sporadically, without pre-existing liver or biliary 

disease (Vogel & Saborowski, 2017). This is in stark contrast to HCC, where the 

majority of cases are in the chronically inflamed, cirrhotic, liver. The remaining ~30% 

of CCAs arise on the background of chronic biliary pathology, in the UK most 

commonly in patients with primary sclerosing cholangitis (PSC) (Tyson & El-Serag, 

2011). The aetiology of CCAs can be broadly divided into sporadic, autoimmune, 

biliary, infectious, and environmental/ lifestyle associated.  

Intrahepatic CCAs (iCCA) and HCCs can share various risk factors, such as HCV 

infection, non-alcoholic fatty liver disease (NAFLD) and hereditary haemochromatosis 

(HH) (Welzel et al., 2007). Extrahepatic CCAs are more associated with biliary 

disorders that impede the normal flow of bile such as primary sclerosing cholangitis 

(PSC), cholelithiasis (gallstone disease) and congenital abnormalities of the bile duct 

(Vogel & Saborowski, 2017).  

Chronic inflammation of the biliary tree with biliary stasis, regardless of the underlying 

cause, is a significant risk factor when compared to a healthy population (Tyson & El-

Serag, 2011). Examples of conditions that cause this include: biliary cirrhosis, 

cholelithiasis, hepatolithiasis, choledocholithiasis, cholecystitis and cholecystectomy 

(Tyson & El-Serag, 2011; Welzel et al., 2007).  

Autoimmune conditions such as primary biliary cholangitis (PBC) and primary 

sclerosing cholangitis (PSC) are associated with the development of CCA. PSC is most 

strongly associated with malignant cholangiocellular growth, with an astonishing 1560-

fold increase in risk of developing CCA when compared to a background population (A. 
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Bergquist & von Seth, 2015; Wirth & Vogel, 2016). The lifetime risk of developing 

CCA in PSC is quoted at around 5 – 15%, but this may be an underestimation of the 

disease burden as post mortem diagnosis of CCA in PSC has been quoted to be as high 

as 41% (Levy et al., 2005). The annual risk of developing CCA in PSC is 0.5 – 1.5% 

with 50% of CCA tumours being diagnosed within one year of PSC diagnosis (A. 

Bergquist & von Seth, 2015). 

When considering infectious causes as risk factors for CCA there is considerable 

geographic variation – one example being that 20% of Taiwanese having 

hepatolithiases, compared to 1-2% of patients in the West. The biologically plausible 

relationship between stone formation, chronic irritation and inflammation that results in 

malignant transformation appears sound. However, given that up to 30% of 

hepatolithiases are associated with liver fluke infections in endemic regions, these risk 

factors may not be independent as there may be a synergistic relationship between 

associated risks. The two main culprits for liver fluke infection are O. viverrini and C. 

sinensis, both of which come from raw, undercooked or pickled scaly fish from SE Asia 

with both flukes recognised as being carcinogenic to humans (Tyson & El-Serag, 2011). 

Fluke infection plays a significant role in CCA development in endemic regions but do 

not account for Western disease. 

Other infectious risk factors associated with CCA development are the hepatitis viruses: 

HBV and HCV. The global burden of HCV is higher in Western countries, whilst HBV 

is more a disease of sub-Saharan Africa and South East Asia (Sia et al., 2017). Research 

into the role HBV and HCV play in iCCA development have unsurprisingly come to 

reflect the disease prevalence in the host country (Tyson & El-Serag, 2011).  

As most cholangiocellular carcinomas are sporadic without apparent risk factors there 

are limited screening tools available (Banales et al., 2016; Khan et al., 2012). Around 

30% of CCAs develop in patients with a chronic liver disease, such as PSC, and Khan et 
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al put it succinctly: “No benefit in screening for CCA in PSC has been proven and there 

is no robust screening test.”  

1.2.3 Incidence 

Globally, the highest rates of iCCA are found in North East Thailand with 113 cases per 

100,000 for men and 50 cases per 100,000 in women (Kirstein & Vogel, 2016). In 

Australia there are as few as 0.2 cases per 100,000 in men, and 0.1 per 100,000 in 

women, highlighting the significant geographical variation in cases (Tyson & El-Serag, 

2011). In Thailand the incidence is linked to aetiology as the rates of liver fluke 

infections are endemic, as mentioned above. 

The incidence of CCA also appears to vary based on the anatomical location of 

tumours. In the US the incidence of iCCAs have increased by 128% from 1973 – 2012 

to 1.6 cases per 100,000 people, with mortality tripling in the decade leading up to 2008 

(Kirstein & Vogel, 2016). In the UK there are 2.17 cases per 100,000.  

Regrettably, as mentioned above, it is quite common for reported rates of disease to not 

differentiate between iCCA, pCCA and dCCA, making accurate estimates of their 

respective rates difficult to determine (Bridgewater et al., 2014). Tyson and El-Serag 

put it succinctly: “misclassifications can substantially impact the findings of 

epidemiological studies. Consequently, no definitive statement can be made on the 

temporal trends of cholangiocarcinoma in most world regions,” (Tyson & El-Serag, 

2011).  

1.2.4 Stage 

The TNM classification is used to stage both iCCA and pCCA with a recent advance 

from the 8th edition of the AJCC, as can be seen for iCCA in figure 3, (Krasinskas, 

2018).  
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Figure 3. Evolving iCCA staging classification.  

From the 7th edition of the American Joint Committee on Cancer (AJCC) the TNM 

stage was incorporated and allows survival prediction and prognostic stratification 

(Banales et al., 2016). In both classifications there are 5 stages of detectable tumour, 

starting with the non-invasive tumour in situ (Tis), then the more recognisable stages T1-

4. The main differences between the 7th and 8th iteration are the introduction of size 

criteria for T1 tumours (without vascular invasion) and sub-categories to reflect this. 

There is also simplification of the T2 tumour stage, compared to the 7th edition. 

From the SEER (Surveillance, Epidemiology and End Results Cancer Registries) 

database, a large cohort of 11710 patients with CCA were studied from 1973 to 2015. 

Most tumours were hilar (i.e., pCCA, 48.0%) closely followed by iCCA (46.6%) with 

only 5.3% being dCCA (Hang et al., 2019). Across all CCA, most tumours are stage IV 

(53.2%) followed by stages II (21.0%) and stage I (18.6%) with 6.6% being stage III 

and 0.5% stage 0 (Hang et al., 2019). Regrettably 49.7% of tumours (from 5611 

patients) were so advanced that surgery was deemed inappropriate and therefore not 

undertaken. This is further evidence of the current unmet need for liver tumour patients 

as most present with advanced late-stage disease that are not amenable to curative 

treatment. 
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Given the previously reported issues with tumour location (iCCA vs. eCCA) another 

report has estimated that iCCA account for 6-10%, pCCA for 60% and dCCA 30% (A. 

S. Khan & Dageforde, 2019). For pCCA there is also the modified Bismuth-Corlette 

classification system for pCCA that considers the location of the stricture and 

contributes to other staging systems, but should not be considered a staging system in 

its own right (A. S. Khan & Dageforde, 2019). 

1.2.5 Grade 

Cholangiocarcinoma is usually graded as well, (~15-20%), moderately (~40-55%) or 

poorly differentiated (~30-40%) with similarity to normal cholangiocytes decreasing 

with worsening grade  (Hang et al., 2019; Ma et al., 2019). Tumour grade is an 

independent prognostic predictor for both overall survival and cancer specific survival 

in iCCA (Ma et al., 2019). Poorly differentiated, high grade, tumours are also 

significantly associated with positive lymph node metastasis, another adverse clinical 

feature of iCCA (Martin et al., 2019).  

1.2.6 Genetics of CCA 

The genetics of CCA varies in sporadic versus infection associated cases with different 

mutational profiles reported with liver fluke (O. viverrini) related or unrelated CCA 

(Kongpetch et al., 2015). Viverrini-related CCA have mutations in TP53, KRAS, 

SMAD4, MLL3, RNF43, PEG3 and ROBO2 whereas epigenetic modulators such as 

BAP1, IDH1/2 and PBRM1 are more frequently mutated in non-viverrini-related CCAs 

(Kongpetch et al., 2015). However, TP53, ARID1A and KRAS mutations have also 

been shown in fluke-independent CCAs, demonstrating that molecular classifications 

may be of more relevance than aetiological cause, in this era of personalised medicine 

(Stavraka et al., 2019). So far, the role of immunotherapy in CCA has involved small 
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study numbers with modest responses to checkpoint inhibition in a selected cohort, and 

further studies are ongoing  (Kelley et al., 2020). 

Recurring evidence exists that drug-able pathways such as Ras/Raf/MEK/ERK, 

P38/MAPK, PI3K/mTOR pathways metabolic alterations (IDH1/2) as well as 

chromatin remodelling (ARID1A/ PBRM1/BAP1) have been identified by next 

generation sequencing to be involved in carcinogenesis (Xie et al., 2016). 

Druggable molecular aberrations occur in iCCA with FGFR small molecule kinase 

inhibitors (FGFR2 fusions in 7-14% of iCCA), mutant IDH inhibitors (IDH1/2 mutants 

in 23-28%), HDAC inhibitors such given the BAP1 (9-12%) and ARID1A (15-36%) 

presence, MET kinase inhibitors (MET-HGF in 7%), Mcl-1 selective inhibitors (Mcl-1 

in 16-21%), MEK inhibitors (KRAS (11-25%) and AKT/mTOR inhibitors (PI3K-AKT-

mTOR in 4-8%) all being described (Rizvi & Gores, 2017). Identification of druggable 

targets such as these will help guide molecular sub-classification of CCA and is likely 

to increase in the future (Kirstein & Vogel, 2016). There is evidence that, in animal 

models, Beta-catenin and Wnt signalling drives CCA growth, with small molecule Wnt 

inhibitors reduces tumour growth and increases apoptosis (Boulter et al., 2015). 

1.2.6.1 UTAA in CCA 

There have been a few studies of UTAA in CCA. Survivin has been reported in CCA 

previously in a series of 24 consecutive cases with 4 cases demonstrating strong nuclear 

protein with IHC which corresponded to a reduced overall survival (11 vs. 20 months, 

p= 0.033) (Javle et al., 2004). These results were not reproduced in a Chinese cohort of 

patients, where no correlations between Survivin levels and clinical features were found 

(Chang et al., 2004). Previous work combining both human CCA and animal models 

has found Survivin to be preferentially expressed in human tumour cells and also 

present in over 80% of tumour epithelial cells in a rat model of CCA (Boulter et al., 
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2015). In addition to this, biliary excretion of Survivin has been used, in combination 

with serum CA 19-9, to help differentiate between benign and malignant biliary 

obstruction in human studies, indicating that Survivin may play a role in 

cholangiocarcinogenesis (Y. Liu et al., 2017).  

Interestingly a carcinogenic toxin (Thioredoxin) secreted by liver fluke O. viverrini has 

been shown to up-regulate anti-apoptosis genes, including Survivin, in a cholangiocyte 

cell culture model (Matchimakul et al., 2015). In other cholangiocyte cell culture 

models, putative anti-tumour compounds (Guggulesterone and Curcumin) successfully 

induced caspase-dependent apoptosis and downregulated Survivin levels, as detected by 

Western Blot (Koprowski et al., 2015; Zhong et al., 2015).  

Telomerase protein has been detected in iCCA and pre-neoplastic lesions, using in situ 

hybridisation and in a separate study, telomerase activity has been detected in CCA 

biopsy samples (using the TRAP assay) indicating its potential role in CCA (Itoi et al., 

2000; Ozaki et al., 1999). Furthermore, quantitative PCR has also detected hTERT 

mRNA in both HCC and biliary tumour tissues whilst noting its absence in background 

tissue and GIST tumours (Udomchaiprasertkul et al., 2008).  

Serum hTERT mRNA has been detected in 85% of CCA patients, and is absent in 

healthy volunteers, indicating a potential role as a biomarker (Leelawat et al., 2006). 

However, more recent research assessing the expression of hTERT mRNA in cell lines 

and primary human hepatocytes (PHH) has found that Telomerase is present in 

cholangiocytes but at significantly lower levels than PHHs (Qin et al., 2018). These 

findings vary between cell lines, so should be interpreted with caution (Lie-A-Ling et 

al., 2006; Qin et al., 2018). A recently developed telomerase inhibitor, KML001, is well 

tolerated in advanced CCA patients but has failed to demonstrate anticancer effects (Jo 

et al., 2019). 
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1.2.7 Prognosis 

Complete surgical resection currently the only curative treatment option in CCA (Ting 

et al., 2016). Whilst chemotherapy, loco-regional therapies or radiotherapy can prolong 

survival, patients with more advanced disease are precluded from surgical management 

(Raoof et al., 2017). Comprehensive assessment of the extent of tumour disease, by 

cross sectional imaging, as well as ensuring adequate liver function are necessary to 

ensure operations are undertaken on appropriate patients (A. S. Khan & Dageforde, 

2019). Adverse features include tumour number, tumour size, vascular invasion, lymph 

node metastasis, advanced tumours stage at diagnosis, metastatic disease, poor tumour 

grade, male gender and increased age (Ma et al., 2019; Raoof et al., 2017; Wang et al., 

2013).  

The presence of adverse clinical features (multifocal disease, large vessel vascular 

invasion and/or metastatic spread) determine whether or not a CCA is technically-

resectable. Median survival in CCA is 24 months, but a dismal 3.9 months in untreated, 

unresectable disease (Krasinskas, 2018). In patients with unresectable CCA given 

chemotherapy, overall survival increases to 8.1 months with Gemcitabine and is further 

lengthened with the addition of Cisplatin to 11.7 months. Five-year survival rates for 

surgically resected tumours ranges from 25 – 50% with poorer outcomes in patients 

with positive surgical margins giving a median survival of 12-21 months in these cases 

(A. S. Khan & Dageforde, 2019).  

1.2.8 Treatment 

This section will review the treatment options for iCCA only.  

1.2.8.1 Surgical 

Surgery is the only curative option but requires that sufficient functional liver will 

remain post-procedure and that the disease is not late stage (A. S. Khan & Dageforde, 
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2019). Around 12-40% of iCCA are surgically resectable at presentation, but this 

requires a highly technical and extensive operation (Mazzaferro et al., 2020). Nearly 

80% of resectable iCCA require an extended hepatectomy and 29% of cases undergo 

extra-hepatic bile duct resection (Bridgewater et al., 2014). A recent meta-analysis has 

found that down-staging tumours (with chemotherapy, radiotherapy or TACE) prior to 

resection significantly improves overall survival from 12 to 29 months, P< 0.001 

(Kamarajah et al., 2020). Tumours with pathologically or clinically positive lymph 

nodes benefit from chemotherapy post resection. In clinically positive LN metastatic 

disease, combining surgery and chemotherapy significantly improves survival compared 

to surgery alone (+10.1 months) or chemotherapy alone (+10.6 months) indicating the 

benefit of a combined approach (Martin et al., 2020).  

Liver transplantation for iCCA remains controversial. In highly selected cohorts, liver 

transplantation may be of benefit and is not currently offered to patients, but this 

remains a contentious issue. Intrahepatic tumours <2cm (very-early iCCA) have a 5-

year recurrence rate of 18%, compared to 61% for multifocal tumours, or tumours >2cm 

in size (Vogel & Saborowski, 2017). In transplantation for iCCA, irrespective of the 

tumour size, >50% of patients have recurrence within 2 years with 2-year survival 

(48%) and 5-year survival (23%) reflecting an aggressively recurrent disease  (Mosconi 

et al., 2009). In the rare cases of very-early iCCA in patients that are not resection 

candidates (e.g., due to cirrhosis) a multicentric single arm clinical trial is currently 

under way to confirm the effectiveness of liver transplantation (Mazzaferro et al., 2020). 

In the more commonplace cases with iCCA >2cm with no evidence of vascular spread, 

or extrahepatic disease, neoadjuvant chemotherapy has been used as a bridging 

treatment to transplant, and recommenced 4-6 weeks post-transplant, achieving an 

impressive 5-year overall survival rate of 83% (Lunsford et al., 2018). This is further 
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evidence that liver transplantation may become a standard treatment in selective cases 

of iCCA. 

1.2.8.2 Locoregional Therapies 

Locoregional treatments can be used with life prolonging intent or to achieve tumour 

downstaging to facilitate surgery. In stage III disease, confined within the liver, 

locoregional therapies (RFA/TACE/TARE) can be used to treat patients with palliative 

intent (Bridgewater et al., 2014). In lymph node positive iCCA, there is no survival 

benefit of surgery compared to TACE, with fewer adverse outcomes in the non-operated 

cohort (Scheuermann et al., 2013). However, adverse clinical measures such as a highly 

vascular tumour, or Child Pugh B cirrhosis are poor prognostic features when TACE is 

used, highlighting the importance of judicious patient selection for medical therapies 

(Vogl et al., 2012). Intrahepatic CCA are not usually hypervascular (unlike most HCCs) 

but can demonstrate some degree of vascularity on angiography, further complicating 

whether or not these tumours are amenable to TACE (Bridgewater et al., 2014). 

Convincing evidence for the role of neoadjuvant TACE and TARE in iCCA is currently 

lacking and requires further research (Massironi et al., 2020; Mazzaferro et al., 2020). 

Other down staging techniques are available, such as pre-surgical selective internal 

radiation therapy (SIRT) in conjunction with chemotherapy in iCCA in achieving an 

18% rate of conversion to R0 resection with no significant toxicity (Mazzaferro et al., 

2020).  

1.2.8.3 Systemic Therapies 

Combination chemotherapy (Gemcitabine & Cisplatin) improves overall survival 

(compared to Gemcitabine alone) from 8.1 months to 11.7 months when there is 

extrahepatic disease (A. S. Khan & Dageforde, 2019; Valle et al., 2010). Another 

combination therapy is Gemcitabine and Oxaliplatin which increases overall survival to 

12.4 months, with fewer side effects that may be better tolerated by patients (Massironi 
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et al., 2020). There is also increasing evidence that combination therapies give better 

survival statistics, regardless of whether it is dual-drug treatment, or a combination of 

chemo-radiotherapy (Bridgewater et al., 2014). 

Promising targets for personalised medicine in iCCA include FGFR small molecule 

kinase inhibitors, IDH mutant inhibitors and checkpoint inhibitors (PD-1) that are 

currently under investigation as potential treatment options (Massironi et al., 2020; 

Rizvi & Gores, 2017). Checkpoint inhibition may be clinically useful in selected cases 

of CCA, with further results expected imminently, (Kelley et al., 2020). 

1.3 Mixed Hepatocellular-Cholangiocellular Tumours 

Mixed Hepatocellular-Cholangiocellular tumours are a rare form of PLC, comprising 

around 1% of all liver tumours (Moeini et al., 2017). By their very nature, expressing 

characteristics of both CCA and HCC, mixed (sometimes called combined) liver 

tumours are a diverse group displaying varying similarities to HCCs and CCAs. When 

comparing mixed tumours with HCCs and CCAs, mixed tumours display intermediate 

overall survival and prognostic behaviours, as they are sandwiched between the poorer 

prognosis of CCA and the relatively better prognosis of HCC (A. Q. Wang et al., 2016). 

Mixed tumours have traditionally been graded like CCAs and have a poorer prognosis 

than HCCs (Joseph et al., 2019). 

However, at the genetic level, mixed tumours are more akin to HCCs despite some 

similarities with CCAs being present. The tumour suppressor TP53 and ARID1A are 

commonly altered in both CCA and mixed tumours but pTERTMuts, BRAF and FGFR2-

BICC1 alterations are specific to mixed tumours (Moeini et al., 2017). 

The polymorphous nature of mixed tumours makes classification somewhat difficult, 

however the WHO recognises both the classical and the less common stem cell 

phenotypes of mixed HCC-CCA (Stavraka et al., 2019). A significantly rarer tumour 
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type called a collision tumour is found to have both CCA and HCC occurring separately 

with no transition region from one cellular morphology to another (Stavraka et al., 

2019). 

1.3.1 Aetiology 

There is currently no international consensus on the aetiological causes of mixed PLC 

(Stavraka et al., 2019). The most recent WHO classification has placed all PLCs on a 

spectrum, with HCC and CCA at the extremes and mixed tumours, with all their 

inherent heterogeneity, somewhere in between (Sciarra et al., 2020). Most mixed 

tumours occur in the context of cirrhosis with viral hepatitis, autoimmune diseases, fatty 

liver disease, alcohol consumption and congenital cystic diseases of the hepatobiliary 

tree also playing a significant role (Mok et al., 2016). 

1.3.2 Incidence 

The demographic profile of mixed tumours is incomplete because of its rarity (Stavraka 

et al., 2019). It is known that mixed tumours account for 1.1% of PLCs (53 of 5049) 

with three tumour subtypes (Yoon et al., 2016). Type A/type I mixed tumours (also 

called collision tumours) are when simultaneous HCC and CCA are coincidentally 

detected, type B/II are when the tumour is truly transitional with elements of both HCC 

and CCA intermingled with type III being a fibrolamellar HCC with mucin producing 

glands within the same tumour (Jarnagin et al., 2002). Allen & Lisa are responsible for 

the alphabetical (and excluded FL-HCC appearing tumours from their initial analysis) 

and Goodman et al for the numerical nomenclature (Allen & Lisa, 1949; Goodman et 

al., 1985). 

Mixed tumours appear to occur in approximately equal measure across both sexes (52% 

M, 48% F) and share demographic and clinical features of CCA (Jarnagin et al., 2002). 

When previously there was increasing data that mixed tumours should be considered as 
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distinct entities from both CCA and HCC, and not a subclass of each respective parent 

(Wachtel et al., 2008). But genomic profiling of mixed tumours has highlighted more 

similarities to HCCs with pTERTMuts and TP53 both occurring in 80% of cases (Joseph 

et al., 2019). Clearly mixed tumours are highly complex in their nature and are not yet 

fully described.  

1.3.3 Genetics 

As mixed tumours possess morphological features of both CCA and HCC, it would be 

prudent to assume the genetic profiles also reflect this. Gene expression profiling, DNA 

copy number and exome sequencing of another cohort of mixed tumours highlight 

classical-type mixed tumours express genetic components of both HCC and iCCA 

whilst iCCA and HCCs are completely distinct entities (Moeini et al., 2017). Mixed 

tumours with stem cell features are more HCC-like, but still possess some 

characteristics of iCCA. Indeed, current diagnostic advice highlights the high degree of 

heterogeneity in morphology, immunophenotype, molecular biology and clinical 

features mixed tumours possess, making diagnosis difficult (Sciarra et al., 2020).   

Given the clinical course and prognosis of mixed CCA-HCC is more similar to CCA 

with staging and treatment algorithms reflecting this, it is surprising to learn the most 

recent evidence actually indicates to opposite. With pTERTMuts, and TP53 alterations in 

80% of mixed tumours (in common with HCCs) but no IDH1/2, FGFR2 or BAP1 

(similar to iCCAs) found with next generation sequencing technologies, it appears 

mixed tumours are more similar to HCC than previously thought (Joseph et al., 2019). 

However, these findings are somewhat uncertain as other researchers have used online 

compendiums of genetic data (GeneCards) and found that mixed tumours are 

predominantly a subtype of CCA (Mok et al., 2016). Some genetic commonality does 

exist between HCC, iCCA and mixed tumours, such as ARID1A and TP53 alterations 

but most differences are more nuanced, as shown in table 1 (Stavraka et al., 2019).  
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Table 1. Genetic alterations in hepatocellular carcinoma (HCC), cholangiocellular carcinoma (CC) and combined 
HCC-CCA (cHCC-CC).  

 

1.4 Universal Tumour Associated Antigens 

The Universal Tumour Associated Antigen (UTAA) describes the presence of proteins 

found widely expressed in malignancies (Gordan & Vonderheide, 2002; Paschen, 

2009). UTAA are a diverse group of proteins that are rarely found in healthy adult 

homeostasis yet appear to flourish in, and are detectable across, a wide range of solid 

organ and haematological malignancies (Altieri, 2008). Similar mechanisms are 

deployed for the evasion of normal homeostatic control by a wide range of malignant 

neoplasms and the antigens associated with them have been detected across a variety of 

tumour types. This has lead to UTAA being described as possessing the Hallmarks of 

Cancer (Hanahan & Weinberg, 2000, 2011).  Resisting cell death and enabling 

replicative immortality are two of the six proposed mechanisms that are required for 

cancerous cells to evade homeostatic control (Hanahan & Weinberg, 2000, 2011) with 

the ability of cancerous cells to inhibit apoptosis (Survivin) or to enable replicative 

immortality by increasing telomere length (Telomerase) being archetypal methods by 

which tumours achieve these Hallmarks of Cancer.  

There has been some characterisation of Survivin, in cancers of the lung (Y. Xie et al., 

2012), brain (Fangusaro et al., 2005), cervix (Zannoni et al., 2014) and breast (Stoetzer 

et al., 2013) where it has been associated with poorer prognosis, resistance to current 
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therapies and higher recurrence rates (Altieri, 2008). There is ongoing work to describe 

the exact mechanisms by which Survivin has these effects in tumour biology. 

The rate-determining enzyme for telomere extension, Telomerase, has been reported to 

be present in up to 98% of cancer cell lines and 90% of 101 biopsies from twelve 

tumour types (Kim et al., 1994). Telomerase catalyses the addition of the hexameric 

repeat (TTAGGG) to the ends of telomeres thus reversing the natural shortening that 

telomeres undergo during cell division. This lengthening of telomeres increases the 

theoretical Hayflick limit that ultimately results in cellular senescence after a finite 

number of cell divisions.  

1.5 Survivin 

Survivin was first described in 1997 in malignantly transformed cell lines as well as 

being found in foetal tissues (Ambrosini et al., 1997). Survivin has also been reported as 

being the fourth most commonly transcribed protein that is elevated in human cancers, 

indicating its clinical relevance across a number of tumour subtypes (Velculescu et al., 

1999). 

Survivin is a member of the inhibitor of apoptosis (IAP) family of eight genes and, at 

142 amino acids in length (16.5kDa) is the smallest. It has a number of functions within 

the cell (Wheatley & Altieri, 2019) and is characterised by the presence of a single copy 

of the Baculovirus IAP Repeat (BIR) that is required for apoptosis inhibition 

(Athanasoula et al., 2014). There is incomplete understanding of the roles undertaken by 

Survivin in various cellular compartments and processes, and it appears that this curious 

‘adaptor protein’ is able to interact with, and transport, other proteins to their required 

destination (Wheatley & Altieri, 2019).   
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1.5.1 Historical information & discovery 

Survivin was first described in foetal tissues, solid organ tumours and haematological 

malignancies in the late 1990s (Ambrosini et al., 1997). With undetectable levels of 

Survivin mRNA in terminally differentiated adult tissues (with the exception of thymus 

and to a lesser extent, placenta and testes) and a re-appearance in adult malignancies, 

Survivin has courted interest as a potential biomarker and therapeutic target for more 

than 20 years. More recent work has also found Survivin in components of the immune 

system, such as B and T lymphocytes, and occasionally in cells with a high turnover 

rate, such as the basal keratinocytes of the skin as well as the cells of the gastrointestinal 

tract (Dallaglio et al., 2014; Lorenzetti et al., 2019).  

1.5.2 Structure & Function 

Survivin is vital for physiological cell division as homozygous deletion is incompatible 

with embryonic development (Altieri, 2010). The structure of the 142 amino acids is 

integral to Survivin’s numerous functions. With an N-terminal baculovirus inhibitor of 

apoptosis repeat (BIR, aa 20 - 90) containing a zinc-binding domain, linked to a C-

terminal alpha helix (aa 98 – 142) that facilitates homo-dimerisation of the Survivin 

monomer, this small protein has a complex structure, as determined by X-Ray 

crystallography (Noel et al., 2000; Wheatley & Altieri, 2019). Alongside this alpha 

helix, three other proteins can associate and create the chromosomal passenger complex 

(CPC) whose presence is essential for mitosis to occur.  

In normal cell division, the constituent parts of the CPC comprise three proteins 

(Survivin, Borealin and the inner centromere protein: INCEPT) and an enzyme (Aurora 

B kinase) which are essential for chromosome condensation, spindle assembly, ensuring 

microtubule-kinetochore alignment and cytokinesis (Jeyaprakash et al., 2007). A tri-

helical bundle forms from each of the three non-enzymatic component parts and in 
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addition to Aurora B kinase forms a novel enzymatic subunit whose exact functions are 

difficult to fully assess, given the interdependence of the constituent parts, but are 

nonetheless vital for their functionality (Jeyaprakash et al., 2007).  

Survivin is involved in a positive feedback loop by utilising the alpha helical binding 

region to detect phosphorylated histone during mitosis (as a part of the CPC). This 

recruits chromatin whilst activating Aurora B which in turn phosphorylates Survivin, 

resulting in activation and ensuring chromosomal orientation during mitosis (Kelly et 

al., 2010; Wheatley & Altieri, 2019). The CPC localises to the chromosomes, then the 

inner centromere during mitosis and is intricately involved in the orchestrated 

movement of the microtubules, mitotic spindle assembly and cytokinesis required for 

cellular division (Athanasoula et al., 2014; Rosa et al., 2006). Maximal expression of 

the CPC occurs in the G2/M phase of the cell cycle with interruption of this association 

resulting in a loss of apoptosis inhibition (F. Li et al., 1998).  

The exact location of Survivin during mitosis is somewhat contentious as there is 

evidence that demonstrates both tubulin (microtubule and centrosome) association and 

Survivin residing within in the CPC, both of which are detectable with novel tracer-

technologies that can track Survivin movements in real time and confirmed their likely 

presence in these distinct subcellular pools (Beghein et al., 2016). These distinct 

subcellular pools are felt to play differing roles throughout the cell cycle and remain 

incompletely understood. Expression of Survivin has been demonstrated in peroxisomes 

(Beghein et al., 2016), mitochondrial (Dohi et al., 2004), cytoplasm (Shimamoto et al., 

2009), and the nucleus (Dallaglio et al., 2014).  

Apoptotic pathways are classified as intrinsic or extrinsic depending on the mechanisms 

involved. Extrinsic pathways are triggered by ligation of the ‘death receptors’ of the 

Tumour Necrosis Factor-Receptor (TNF-R) family, whilst intrinsic pathways are 

triggered by stimuli (such as irradiation or cytotoxic drugs) that leads to cytochrome-C 
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release from mitochondria, ultimately triggering caspase-9 activation (Athanasoula et 

al., 2014). Survivin is unable to interact with caspases by itself but can interact with 

XIAP or hepatitis B virus X-interacting protein (HBXIP) to inhibit caspase activation 

and thus reduce apoptosis (Peery et al., 2017; Wheatley & Altieri, 2019). The Survivin-

XIAP complex stabilises XIAP and increase their anti-caspase potency, whilst 

sequestering XIAP from the pro-apoptotic smac/DIABLO, which remains within the 

mitochondria which is itself retained by intra-mitochondrial Survivin (Athanasoula et 

al., 2014). 

The role of Survivin in cancer centres on the loss of normal, cell cycle dependent, 

expression. De-repression of the naturally cyclic Survivin expression results in 

continuous synthesis throughout the cell cycle (Wheatley & Altieri, 2019). This results 

in the unrestrained expression of Survivin in cancerous tissues. There are mentions in 

the literature of sometimes contradictory findings when classifying subcellular 

localisation in tumours when comparing survival statistics, or disease stage. 

Specifically: cytoplasmic positive staining in CRC being associated with more 

advanced disease stage and poorer overall survival, (Shimamoto et al., 2009). This is 

contradicted by correlations between nuclear positivity of both premalignant and 

malignant skin lesions (highest expression in poorly differentiated squamous cell 

carcinoma) when compared to normal skin (Dallaglio et al., 2014).  

Yet more complexity, and confusion, arises when considering that some published 

works have not differentiated between subcellular locations of positive staining as 

peroxisomal and mitochondrial localisation will be indistinguishable from cytoplasmic 

pools of Survivin, unless specifically searched for (Wheatley & Altieri, 2019). Needless 

to say, there is much scope for expanding these fields of study to potentially clarify the 

independent roles played by Survivin during cellular respiration, and how these are 

exploited in both pre-cancerous and cancerous growths.  
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1.5.3 Isoforms & Location 

Six isoforms of Survivin have been described with varying degrees of understanding as 

to their exact cellular function, with a further 4 (as yet undetected) hypothetical 

isoforms (Sah & Seniya, 2015). Wild type, DeltaEx3, 3alpha and 3B appear to have 

anti-apoptotic actions, whilst 2B has reduced anti-apoptotic functionality owing to a 

truncated functional (BIR) domain and 2Alpha have apparent pro-apoptotic properties 

(Mishra et al., 2015; Sah & Seniya, 2015). However, some conflicting results have 

emerged as to the precise interactions between the variants, with a theorised role for 

heterodimers between WT Survivin and the 2alpha or 2B isoforms, being inconsistently 

demonstrated by various research groups and isoforms 2alpha, 2B and 3B apparently 

not interfering with cellular division in any capacity (Athanasoula et al., 2014). There is 

clearly potential for more work to be done to elucidate the mechanisms involved in 

these processes. 

Wild type Survivin associates with microtubules of the mitotic spindle in the G2/M 

phase of the cell cycle that results in a breech in the apoptotic checkpoint, where 

aberrant cells would normally proceed to programmed cell death (F. Li et al., 1998). 

The subcellular location of Survivin was thought to be either microtubule associated or 

as a chromosomal passenger complex, however in HeLa cells roughly 80% of Survivin 

is cytosolic, with the remaining 20% being nuclear (Fortugno et al., 2002).  

Various authors have described poor outcomes when nuclear Survivin has been 

detected. Hasby & Mokhtar found that 90% of HCCs (n=20) expressed nuclear Survivin 

in a small Egyptian cohort of patients, with an increased expression in poorer grades of 

tumour, and less prevalent in cirrhotic control samples, when measuring IHC staining 

intensity (Hasby & Mokhtar, 2010). In a larger cohort of German patients with 

oesophageal squamous cell carcinoma (n = 84), nuclear expression was detected in 80 

% (n = 67) and associated with shorter overall survival (p= 0.003) whereas cytoplasmic 
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Survivin was noted in 63% of cases (n = 53) and had no prognostic relevance 

(Grabowski et al., 2003). Similarly, when studying colorectal cancer, Nuclear Survivin 

was correlated with metastatic disease (p = 0.026) whilst cytoplasmic staining did not 

correspond to any disease parameter (Jakubowska et al., 2016).  

In non-small cell lung cancer, there has been sufficiently contradictory evidence on the 

prognostic relevance of nuclear Survivin that a meta-analysis was undertaken to assess 

the overall results (Y. Xie et al., 2012). Eight hundred and twenty-three patients were 

included in the pooled analysis and IHC was used to assess the location of Survivin in 

the tumour tissues. When the results were viewed overall, there was no significant risk 

of having nuclear Survivin staining (HR = 1.54, 0.79 – 3.02) but when taking into 

account the ethnicity of the study participants, nuclear Survivin was associated with 

reduced survival in Caucasians with NSCLC, HR = 2.38 (1.60 – 3.43). The authors 

conclude that nuclear Survivin is associated with poor prognosis in Caucasians with 

NSCLC, which introduces the potential for a potential genetic, or even geographical 

variation in Survivin expression rates.  

However, cytoplasmic Survivin has been reported in 69/71 (97.2%) of cases of locally 

advanced cervical cancer with a mere 7 cases of nuclear staining in the same cohort 

(9.8%) (Zannoni et al., 2014). Women with high cytoplasmic levels had a shorter 

disease-free survival (5-year DFS 80.8% vs 55.3%, p = 0.033), a positive lymph node 

status (p = 0.036) and residual tumour (p = 0.016) with no correlation between nuclear 

expression of Survivin and disease characteristics.  

It is apparent from the literature that Survivin is detected in a wide range of tumours, 

and in some pre-malignant lesions, with varying implications for tumour stage, grade, 

or size as well as prognosis.  
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1.5.4 Pathophysiology 

As described above, accumulations of Survivin have traditionally been described as 

either nuclear or cytoplasmic in nature, but the real location of these fractions is more 

nuanced. As mentioned above: nuclear, cytoplasmic, mitochondrial and peroxisomal 

stores have been described previously (Athanasoula et al., 2014; Beghein et al., 2016). 

The role of inter-compartmental shuttling of Survivin has been proposed as a potentially 

key step in carcinogenesis. Nuclear Survivin is transported to the cytoplasm because of 

a nuclear export signal (NES) with in a leucine-rich region of the molecule, and is 

exported by the evolutionarily conserved export receptor Crm1 (Knauer et al., 2007). 

NES-region knock out studies and NES-specific antibodies have abrogated Survivin’s 

ability to be exported from the nucleus and inhibit apoptosis, which was confirmed in a 

small IHC-based cohort of CRC patients, who had poorer prognoses with cytoplasmic 

Survivin (Knauer et al., 2007). However, these findings have not been replicated in 

other tumour types, with a plethora of tumours correlating a worse prognosis with 

nuclear expression of Survivin. The importance of intermolecular interactions when the 

CPC is formed is highlighted by the findings that both deltaEx3 and 2B isoforms have a 

reduced affinity for Borealin and hence do not locate to the CPC (Noton et al., 2006). 

The relevance of Survivin’s interactions during physiological and pathological 

processes become apparent when targeted therapies are considered. The broad 

categories include the inhibition of partner-protein interactions, homodimerisation, gene 

transcription, as well as inducing degradation of Survivin mRNA, or exploiting 

Survivin’s peptide sequence by using a vaccine-based immunotherapeutic approach (F. 

Li et al., 2019). 

1.5.4.1 Detection/ Promoter variants 

In 2004, Xu and colleagues sequenced cancerous cell lines and compared them to 

normal counterparts noting a few single nucleotide polymorphisms (SNPs) present in 
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the promoter region of the BIRC5 gene encoding Survivin (Y. Xu et al., 2004). The 

most intriguing of these SNPs (31 base pairs upstream of the transcription start site, 

position -31, C to G ‘mutant’) results in increased expression of both Survivin mRNA 

and protein and has subsequently been assigned the unique positional code rs9904341. 

As had previously been noted, there are several CDE/CHR transcriptionally sensitive 

regulatory repressor domains that control transcription in the G1 phase of the cell cycle. 

These can be found in the promoter region of Survivin (CDE: -6, -12, -171. CHR: -42) 

carrying the sequence motifs GGCGG and ATTTGAA respectively (F. Li et al., 1998). 

Mutations in these repressor domains would result is de-repression of Survivin in the 

G1 phase resulting in increased transcription and hence, higher levels of both mRNA 

and protein. 

1.5.4.2 Protein Expression & Detection 

Commercially available enzyme linked immunosorbent assay (ELISA) kits have been 

used to detect Survivin in peripheral blood samples specimens in a variety of cancers. 

There has been reported success in correlating serum Survivin in pancreatic cancer that 

correlated with disease parameters such as perineural invasion, venous invasion, lymph 

node spread metastasis, cell differentiation and recurrence (Dong et al., 2015). Serum 

Survivin was also found to be higher in patients with malignant (compared to benign) 

brain tumours, and also associated with the GG promoter at the -31 position (Kafadar et 

al., 2018). The relationship between a hepatobiliary tumour subtype (Gall bladder 

carcinoma) has been correlated with higher Survivin levels with adverse 

clinicopathological features such as advanced stage of disease and moderate/poor 

differentiation of tumour cells (Nigam et al., 2014). 

However, these findings need to be taken in context of other reports claiming that serum 

Survivin is not useful in the identification of patients with cancer. Jakubowska and 

colleagues reported higher serum Survivin in healthy controls compared to patients with 



 49 

colorectal cancer (81.8% compared to 38.2%), albeit in a small single centre study of 55 

patients with CRC with 22 control subjects (Jakubowska et al., 2016). Jia and co-

workers have stated unequivocally similar views in their paper titled ‘Survivin is not a 

promising serological maker for the diagnosis of hepatocellular carcinoma’ (Jia et al., 

2015). This somewhat damning statement is backed by evidence from two separate 

commercially available ELISA kits (R&D and Abnova) that found no significant 

difference when measured in HCC patients and healthy controls, and also found an 

extremely low correlation coefficient (0.0064, p=0.481) when comparing identical 

serum samples with the different kits (Jia et al., 2015).  

1.5.4.3 Global Variation 

When Turkish brain tumours were assessed for the -31C/G promoter variant 

(rs9904341) and compared with serum levels of Survivin, significantly higher levels 

were detected in the GG homozygotes (Kafadar et al., 2018). However, rs9904341 GG 

homozygous breast cancer patients in Egypt had a better prognosis and lower levels of 

serum Survivin, indicating some potential differences between tumour type or 

geographic variation (Motawi et al., 2019). In a case-control study of Serbian paediatric 

Wilm’s Tumours found GG homozygotes were at a higher risk of developing cancer, 

and those with cancer and the GG variant had a poorer prognosis (Radojevic-Skodric et 

al., 2012). 

However, a recent meta-analysis of case-control studies across a broad range of cancers 

has found Asian rs9904341 CC homozygotes are significantly more likely to develop 

cancer, with no equivalently significant relationship in Caucasians (Moazeni-Roodi et 

al., 2019).  More work describing potential ethical variations is required, especially as 

no studies have been undertaken in the British population thus far.   



 50 

1.6 Telomerase 

Telomerase is the enzyme required for telomere extension, and is conserved across 

many eukaryotic species (Wu et al., 2017). The enzyme facilitates the lengthening of 

telomeres, thereby increasing a cells ability to continue dividing beyond the 

physiologically pre-determined number of cell divisions. Eukaryotic DNA polymerase 

exploits an RNA primer when initiating DNA synthesis in the 5’ to 3’ direction and 

when it is later removed, this leaves up to 200 nucleotides uncopied (Singh et al., 2015). 

The aptly named end replication problem describes these missing 100-200 base pairs 

per cell division (Musgrove et al., 2018). Constant shortening of linear chromosomal 

ends during each cellular division ultimately results in cell cycle arrest, senescence or 

apoptosis (Singh et al., 2015). Therefore, a mechanism to halt or reverse this division-

shortening effect has been shown to increase the number of cellular divisions, and 

immortalising the cell.   

Telomerase has been detected in germline cells, haematopoietic cells, stem cells as well 

as in rapidly renewing cells and in cells with a high mitotic rate (Leão et al., 2018). 

Initial work described the expression of Telomerase in predominantly embryonic and 

adult germline tissues, such as foetal and adult Testes and ovaries, and their absence in 

oocytes and sperm (Wright et al., 1996).  In normal human cells Telomerase remains 

unexpressed, however it has been quoted as having detectable levels of activity in 

98/100 immortal cell lines as well as in 90/101 human cancers (Kim et al., 1994). 

1.6.1 History & Discovery 

Early work describing the presence of Telomerase in yeast, Tetrahymena, by Greider & 

Blackburn was undertaken in 1985 (Greider & Blackburn, 1985). This work has more 

recently earned them the 2009 Nobel Prize in Physiology/Medicine, an honour they 

shared with Szostack for the simultaneous nature of their work on the enzyme (Szostak 
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& Blackburn, 1982). The initial findings demonstrated Telomerase to be a 

ribonucleoprotein that required the presence of both the catalytic protein, encoded by 

hTERT, as well as the RNA subunit, hTERC or hTR, to be functionally active (Shay & 

Wright, 2019). Over the decades since the breakthrough discovery of Telomerase it has 

been found to be conserved across as a wide range of species and the structure in 

humans was finally described in 2018 using cryo-electron microscopy (Nguyen et al., 

2018). Whilst the sequences of the catalytic component of Telomerase (TERT) are 

conserved over many species, there is considerable divergence in the sequences of 

integral Telomerase-RNA (TR/ TERC) across species (Musgrove et al., 2018; Nguyen 

et al., 2019). These differences highlight the fact that telomerase physiology is 

incompletely understood. However, there is evidence that the human TR/TERC 

(hTERC) is expressed in a wide range of tissue types whilst the catalytic subunit 

(hTERT) is only present in the malignant or premalignant state (Leão et al., 2018). This 

further emphasises importance of understanding the role played by hTERT in human 

tumours, and whether it can be used as a potential biomarker. As hTERT is widely 

expressed across a range of neoplastic growths, any findings in liver tumours may have 

implications beyond this one organ.  

Telomerase facilitates the hexameric repeat (TTAGGG) being added to the ends of 

telomeres, thus reversing the natural shortening that telomeres undergo during cell 

division. As approximately 100 - 200 base pairs are lost from chromosomal end-

sequences with every cellular division (Singh et al., 2015). Telomere extension 

increases the theoretical Hayflick limit thus delaying the ultimate state of cellular 

senescence by extending the finite number of cell divisions that can occur (Shay & 

Wright, 2011). Hence the cellular clock is being reset, allowing cells to develop 

replicative immortality.  
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1.6.2 Structure 

Structural studies of human Telomerase have been challenging due to its very low 

abundance (Nguyen et al., 2019). The telomerase ribonucleoprotein includes the 

catalytic telomerase reverse transcriptase (TERT) and telomerase RNA component 

(TR/TERC) that includes the internal template required to extend telomeres (Musgrove 

et al., 2018). The ribonucleoprotein complex has a characteristic called repeat addition 

processivity (RAP) that allows translocation of and realignment to the RNA template to 

allow multiple TTAGGG repeats to be added to the 3’ chromosomal end, the specifics 

of which are still under study (Musgrove et al., 2018). Various other proteins interact 

with the TERT-TERC complex, in humans these are called small Cajal body 

ribonucleoprotein (scaRNP) which includes dyskerin, NOP10, NHP2 and possibly 

GAR1 (Chan et al., 2017). 

The Telomeric DNA complex, and support machinery includes the Shelterin complex 

(Leão et al., 2018). The Shelterin complex includes TRF1, TRF2, POT1, TIN2, RAP1 

and TPP1 and is able to locate Telomeres by TTAGGG recognition motifs in TRF1, 

TRF2 and POT1 (Singh et al., 2015). TRFs 1 and 2 bind double-stranded DNA, POT1 

binds ssDNA and TIN2 and TPP1 mediate shelterin assembly and TERT recruitment 

(Chan et al., 2017). Hence, recruitment of TERT-TERC complexes to the chromosomal 

ends is due to the presence of the Shelterin complex of proteins and is stabilised by 

dyskerin (Chan et al., 2017; Nault et al., 2019). 

1.6.3 Pathophysiology 

The pre-determined number of cellular divisions that are possible in terminally 

differentiated somatic cells is due to the length of telomeres. There is a shortening of 

between 100 - 200 base pairs during each cellular division because of the removal of the 

RNA primer/template from the DNA template, leaving an uncopied single strand of 
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DNA exposed and uncopied into the daughter cell (Singh et al., 2015). As Telomerase is 

able to extend telomeres a new equilibrium is reached in malignant cells with a balance 

between telomere extension and degradation being achieved and therefore extending the 

previously finite number of cellular divisions into the realms of the infinite.  

1.6.3.1 Telomerase Promoter Mutants 

The promoter region of a gene is upstream of the 5’ transcription start site and facilitates 

the binding of RNA polymerase, alongside other transcription factors that allows 

transcription to initiate. Mutations in the promoter regions (pTERTMuts) can disrupt 

normal cellular processes and can result in an increase or decrease of mRNA, and 

subsequent protein expression (de Vooght et al., 2009). 

Whilst pTERTMuts were initially found in familial and sporadic malignant melanoma 

there have been cases reported in a wide range of cancers, including approximately 60% 

of hepatocellular carcinomas (Nault et al., 2013) making it the most common genetic 

aberration in HCCs, (Zucman-Rossi et al., 2015). The mutations in question are -

124/C228T and -146/C250T, are mutually exclusive, and are associated with increased 

Telomerase expression and activation in other tumour types such as glioblastoma, 

urothelial carcinoma, oligodendroglioma, medulloblastoma and thyroid carcinoma 

(Huang et al., 2015).  

Mutations in the promoter region of the hTERT gene (-146/C250T and -124/C228T) 

creates a new consensus motif that facilitates transcription machinery binding to the 

promoter region of the gene (Akincilar et al., 2016). The E-Twenty-Six (ETS) family of 

transcription binding motifs has 27 members, with a specific member (GABPA) 

demonstrating C250T and C228T specific binding and increases in transcription of 

Telomerase (Akincilar et al., 2016). These pTERTMuts are heterozygous and occur in 

transcriptionally active, unfolded chromatin (Stern et al., 2015). Clinically, pTERTMuts 
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are highly correlated with increased transcription as well as increased Telomerase 

activity (Huang et al., 2015).  

Telomerase promoter mutations occur in a wide range of tumour types, stages and 

grades and are thought to be an early driver mutation for tumour development (Leão et 

al., 2018). The presence of these mutations in pre-neoplastic nodules of cirrhotic 

patients, as well during the metaplastic processes Hepatic Adenomas undergo to 

progress to HCC, confirms that this can be an early step in tumourigenesis in liver 

tissues (Nault et al., 2013). Also, pTERTMuts occur with increasing frequency from low 

grade though to high grade dysplastic nodules as well as in early HCCs, further 

evidencing the early-carcinogenic nature of this common genetic alteration (Nault & 

Zucman-Rossi, 2016). Intriguingly the prevalence of pTERTMuts in HCCs varies with 

geographic region, with more mutants in Western populations (around 60%) compared 

to those studied in the East (~30%) (Huang et al., 2015; Schulze et al., 2016).  

Techniques used to identify pTERTMuts include Sanger sequencing PCR products from 

fresh frozen tumour tissues (Nault et al., 2013), next generation sequencing of frozen 

tumours (Nault et al., 2017) as well as sequencing DNA extracted from formalin fixed 

paraffin embedded (FFPE) tissues (Huang et al., 2015). Analysis of the archived (FFPE) 

tissues has used amplification of specific sequences with polymerase chain reaction 

(PCR) and either analysis by restriction fragment length polymorphism (RFLP) or, less 

frequently, Sanger sequencing. Notably the majority of small-scale studies have used 

the PCR-RFLP approach rather than more modern techniques.  

1.6.3.2 Other Genomic Alterations 

Telomerase expression is under the control of genes that are known to be highly 

expressed in the liver (Nault et al., 2019). Viral insertion into hepatocyte DNA is 

another mechanism that can increase telomerase expression and occurs in around 26% 
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of HBV related HCCs (Nault et al., 2013; Paterlini-Bréchot et al., 2003). In Asian HCC 

studies, Telomerase is upregulated by one of two mechanisms: pTERTMut can occur, 

giving an extra binding site for the ETS, or HBV is inserted in to the telomerase 

promoter region which accounts for the lower rates of pTERTMuts seen in Asian 

populations (Nault et al., 2019). 

Telomeric DNA can fold back on itself and a single stranded can invade the telomeric 

DNA, creating a t-loop, that is further protected from degradation by the Shelterin 

complex (Cesare & Reddel, 2010). This Telomerase-independent telomere protective 

mechanism occurs in up to 10-15% of all cancers and is called an alternative 

lengthening of telomeres (ALT) pathway that is now detectable (Zhang et al., 2019).  

1.6.3.3 Telomerase Enzyme Detection 

The Telomerase Repeat Amplification Protocol (TRAP assay) was originally developed 

by Kim et al to assess Telomerase activity (Kim et al., 1994; Singh et al., 2015). 

Essentially the TRAP assay measures Telomerase function by amplifying the 

Telomerase extension products using polymerase chain reaction (PCR) which are then 

detected by gel electrophoresis (Mender & Shay, 2015). As the amplification step 

greatly increases sensitivity of detection, this accounts for the fact that ~85-89% of 

fresh human tumour biopsies, and 98% of malignant cell lines, as well as ovaries and 

testes have detectable telomerase activity (Kim et al., 1994; Singh et al., 2015). 

Correlating telomerase activity with IHC data has found that cells with detectable 

Telomerase activity have a positive nuclear signal for TERT protein whilst those with 

undetectable telomerase activity do not (Singh et al., 2015).  

A limitation of the TRAP assays being that either fresh tissues or cell lines are required 

for the purposes of analysis. Hence telomerase activity from archived FFPE material is 

currently unavailable for assessment. 
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1.6.3.4 Protein Expression 

To be able to explore the potential use of Telomerase as a biomarker of tumour 

development, various detection methods are possible across a range of sample types. In 

peripheral blood samples these include ELISA and analysis of small extracellular 

vesicles (exosomes) amongst others. Serum detection with ELISA has been undertaken 

in non-small cell lung cancer patients with a lower probability of survival observed in 

patients who expressed Telomerase compared to non-expressers (Targowski et al., 

2010).  

More recent work has been undertaken when exploring the role exosomes play in 

carcinogenesis. Exosomes are small vesicles secreted by every tissue and found in all 

bodily fluids that were initially thought to be a waste product of cellular regeneration (P. 

Li et al., 2017). Telomerase positive exosomes can alter hTERT negative fibroblasts in 

to hTERT positive fibroblasts, thus demonstrating how these curious, subcellular 

vesicles can seed malignant characteristics in to a host cell (Gutkin et al., 2016). Whilst 

analysis of the exosomal expression of hTERT mRNA from serum has been described 

across a wide range of malignancies little is known of any role exosomal Telomerase 

plays in PLC, (Goldvaser et al., 2017). 

Immunohistochemical and immunofluorescence detection of TERT has been 

undertaken in a wide range of tumour types, using a very diverse array of antibodies and 

detection methods. There is a lack of consensus in the published literature as to exactly 

what constitutes a positive control for TERT expression. Online repositories such as the 

Human Protein Atlas, and UniProt, state the RNA levels are detectable in lung, GI tract, 

Testis and lymphoid tissues (thymus, appendix, spleen, lymph node, tonsil and bone 

marrow) but protein levels are undetectable. Manufacturers of various monoclonal and 

polyclonal antibodies have not reached consensus the cellular and subcellular location 

of TERT expression for the purposes of a positive control. Some have stated that Tonsil 
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is a positive control, others have created genetically altered cell lines to overexpress 

TERT and use these as a positive control. There has been extensive evidence of the 

presence of TERT (by detection of the enzymatic activity, using the TRAP assay) that 

has been corroborated with Western blot data reporting similar detection in a variety of 

tumours, and in some adult tissues (Kim et al., 1994). Human testes appear to be one of 

the few normal human tissue types that have detectable TERT activity as well as 

detectable protein levels, that also stain positively in the nuclei of spermatocytes and 

maturing spermatids (Hiyama et al., 2001). 

Owing to an incompletely understood physiological role of TERT, there is some 

evidence from the literature that other pools of Telomerase may well be present, outside 

the confines of the nucleus. Up to 20% of TERT is found in mitochondria and may 

migrate from the nucleus in states of oxidative stress to perform TERC-independent 

functions that are protective to the host mitochondria and increase tumour-cell survival 

(Chiodi & Mondello, 2012). This non-nuclear pool of TERT also complicates the 

staining of tumour tissues as they are otherwise indistinct from other extra-nuclear 

components, and can appear in the cytosol as well as the nucleus (Fujimoto et al., 2001; 

Y. Yang et al., 2002). 

However, a small number of authors feel the detection of Telomerase using IHC may 

well be intrinsically flawed, owing to technical issues with the primary antibody (Y. L. 

Wu et al., 2006). Meaning that Telomerase IHC data should be interpreted with caution 

(Kim et al., 2013). 

1.7 Exosomes 

Exosomes were discovered as small vesicles jettisoned from maturing reticulocytes 

(Harding et al., 1983; Pan & Johnstone, 1983). The size of these vesicles being between 

30-100nm and are part of the continuum of small particles of various sizes, 
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compositions, densities and bud from every cell and detected in every bodily fluid ever 

tested (Raposo & Stoorvogel, 2013). The importance of defining the origin of exosomes 

and differentiating them from their mimickers, microvesicles (MVs), is because the 

MVs can bud directly from the cell-membrane whilst exosomes are small packages of 

genetic material that come from the multi-vesicular endosome (MVE) that are 

endosomal in origin and are normally destined for lysosomal degradation (Raposo & 

Stoorvogel, 2013).  

Hence there are some unique features of exosomes such as the presence of the trans-

membrane tetraspanins (CD9, CD63, CD81, CD82) that have been used as a 

confirmatory biomarker as well as the lack of internal degradation machinery that 

allows for the presence of RNAs such as mRNA, microRNA and non-coding RNAs 

(Cheng et al., 2019). Other behavioural properties of exosomes include the ability to 

influence transcriptional activities of cells by the transfer of mRNA, e.g., resulting in 

detectable Telomerase proteins being found in non-malignant cells (Gutkin et al., 2016). 

Vesicles either fuse to the recipient cell’s plasma membrane, or are endocytosed, thus 

allowing the transfer of the genetic material from the original cell to any recipient cell 

capable of uptake (Harding et al., 2013; Raposo & Stoorvogel, 2013). This ability to 

transfer genetic material from one cell type to another has been proposed as a 

mechanism of tumourigenesis. These unique characteristics allow exosomes to be 

exploited as potential biomarker source for a variety of cancers. 

An increasing body of evidence is accumulating to implicate exosomes with epithelial 

to mesenchymal transition (EMT) as well as in cancer associated fibroblasts (CAFs) 

both of which are present in the tumour microenvironment (TME) (Chen et al., 2019). 



 59 

1.7.1 Exosomal Survivin 

Exosomal Survivin in detectable from cell culture and has even been implicated in 

exosomal internalisation, as blocking exosomal Survivin results in a reduction of 

internalised vesicles (Gonda et al., 2018). In cell culture models there is differential 

detection of Survivin in exosomes, depending on the cell line of origin. Survivin was 

the most commonly isolated IAP (by western blot analysis) when compared to XIAP, 

cIAP1, cIAP2 and Survivin as it was present in all six cell lines analysed (Valenzuela et 

al., 2015). 

Tantalisingly, the potential locations Survivin can now be found in has expanded 

because of the exosomal proportion. This extracellular pool of Survivin confirms its 

status as a tumour associated antigen as it can modulate the TME and permit tumour 

growth (S. Khan et al., 2015). However there remains a considerable amount of work to 

record and reporting the role exosomal surviving may, or may not, play in human 

cancer growth.  

1.7.2 Exosomal Telomerase 

Given the lack of degradation machinery within exosomes, it is unsurprising that 

telomerase has also been reported in these small vesicular bodies. Cancer cell lines that 

express hTERT (and have detectable Telomerase activity) can also secrete exosomes 

have been transfected into hTERT-negative fibroblasts cells (Gutkin et al., 2016). The 

previously hTERT-negative somatic cells start expressing detectable telomerase activity 

within 24 hours (Gutkin et al., 2016). This is a truly remarkable finding and neatly 

demonstrates the ability of exosomes to seed immortality traits to other cells. The 

authors of the paper remarked on the increased replicative ability of these transfected 

somatic cells, and note the reversal of senescence in a small proportion of the cell 

populations. 
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This same group has expanded their work into a clinical cohort of 133 patients with 

various solid and haematological tumour types, not including liver cancers, and found 

varying levels of exosomal mRNA accordingly (Goldvaser et al., 2017). The serum-

derived exosomes make for an ideal study material as serum samples are routinely taken 

for clinical assessment and do not require special processing or storage methods. 

Intriguingly the serum exosomal levels correlated well with the patients’ disease 

progress, with a corresponding drop in detectable mRNA following curative surgical 

resection. Obviously, there is considerable work yet to be done in this field, as well as 

some novel research analysing the role exosomes play in PLC.  

1.8 Project Aim 

The aim of this project is to elucidate the role universal tumour antigens play in primary 

liver tumours. Assessing known genetic alterations in promoter sequences, and levels of 

transcribed UTAA RNA, and proteomic expression will all be explored and correlated 

with clinical data. Comparing UTAAs in tumour and background liver will allow me to 

ascertain whether genetic alterations are germline or somatic in nature. Whilst using 

paired samples for protein quantification will allow individual protein levels to be 

compared for each patient, as well as exploring correlations with clinical parameters.  

Ultimately this project will confirm that UTA are indeed tumour-specific and find that 

promoter mutants, or protein levels can be used as a potential biomarker in future 

clinical practice.  
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2 Material & Methods 

There is an inherent bias in studying tissues from patients that have been selected to 

undergo surgical treatment. This selection bias is unfortunately unavoidable, but every 

effort has been made to include samples from every patient that has been cared for at 

University Hospitals Plymouth since the hepatobiliary service commenced in 2005. As 

no previous research assessing hepatic neoplasms has been undertaken, at the basic 

science level, in the region this also has implications for the potential impact of the 

work. This exploratory descriptive work aims to initiate liver cancer research in the 

South West that will hopefully have local, regional, national and international 

implications for the greater understanding of hepatic carcinogenesis. 

2.1 Archived Clinical Material 

2.1.1 Ethical Stipulations 

The Research Ethics Committee (REC) approval for use of the archived tissues for my 

research was given with support of the confidentiality advisory group (CAG) allowing 

Health Research Authority (HRA) approval for the project. To satisfy the CAG that this 

research would not inappropriately use data from patients, the Caldicott Guardian 

(Consultant Cardiothoracic Surgeon, Mr Adrian Marchbank) stipulated that every 

consent form signed by the patient prior to their operation must be visually inspected to 

ensure that each patient did not actively opt out of participating in research. There is a 

small box on the consent form the patient can mark should this be their wish. This was 

achieved with the help of the Research, Development and Innovation (RD&I) 

department at University Hospitals Plymouth as the overwhelming majority of medical 

records were still in the paper-based format. Notes were requisitioned reviewed in the 

RD&I offices. On the rare occasion that the consent form for the liver resection 

operation was missing from the archives this patient was excluded from further 
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participation. The opportunity to view the medical notes to review the consent form for 

each surgical procedure has facilitated a review of the past medical history of all of the 

patients who underwent surgery.  

A requirement for ethical approval as stated by the REC is that I, the researcher, must 

be blinded to the origin of the donor tissues. Fortunately, helpful colleagues in the 

Department of Cellular and Anatomical Pathology at University Hospitals Plymouth 

were able to randomise the tissue samples, thus fulfilling this criterion. Different sample 

numbers were given for each research activity (i.e., DNA extraction and IHC) and in the 

order in which tissue blocks were processed. As such, there was no correlation between 

samples DNA 001 and IHC 001. If a repeat analysis was required (due to insufficient 

DNA extraction) then a new study number was issued to the repeat sample to minimise 

any other source of bias.  

Finally, the use of tumour samples for research must not deplete the archive available 

for the potential use in future patient care. Meaning that larger specimens (resection 

tissues rather than biopsy samples) are more appropriate as the volume of tissue 

available for use is considerably larger than biopsy samples. 

2.1.2 Auditing Potential Recruits 

Once ethical approval for research was granted, it was possible to undertake an audit of 

all liver specimens held on the UHP databases. As the Hepatobiliary surgical service 

was established in 2005 this was the start point for recruitment purposes. As only larger 

surgical specimens will yield a sufficient volume of poor-quality liver tissues, these 

were the initial targets for use.  However as there is no code recorded for ‘liver 

resection’ or ‘wedge resection of liver’ all liver tissues screened, hence manual 

checking of the database of samples was required.  
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All histopathological specimens receive a primary and secondary diagnostic code. In 

this case, the primary diagnostic code (T-62000) denotes that the tissues originate from 

the liver, the accompanying secondary diagnostic code is given for the tissue diagnosis 

(such as hepatocellular carcinoma) as outlined in table 2.   

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 includes all biopsy and surgical resection specimens from 2005 until August 

2017. Each individual sample also receives a unique sample number that can be 

searched on the hospital laboratory information management system (LIMS), which at 

UHP is iLab. The details held of iLab include the sample type (biopsy, surgical 

resection specimen) as well as descriptive terms for the tissue analysis, the size of the 

tumours and whether there is vascular or perineural invasion. An example to illustrate 

the importance of cross referencing the iLab reports is demonstrated in one case: a 

fibrolamellar HCC being coded as ‘Carcinoma, NOS.’ Whilst being labelled as a 

carcinoma is technically correct a more accurate method of recording the tumour types 

Number Diagnosis Secondary Code 
445 Adenocarcinoma, metastatic, NOS M-81406 
369 Adenocarcinoma, NOS M-81403 
114 Hepatocellular carcinoma, NOS M-81703 
4 Hepatocellular carcinoma, fibrolamellar M-81713 
43 Cholangiocarcinoma M-81603 
23 Carcinoma, metastatic, NOS M-80106 
11 Carcinoma, NOS M-80103 
11 Adenoma, NOS M-81400 
11 Bile duct adenoma M-81600 
6 Liver cell adenoma M-81700 
6 Transitional cell carcinoma, NOS M-81203 
4 Small cell carcinoma, NOS M-80413 
3 Malignant melanoma, NOS M-87203 
2 Neuroendocrine carcinoma M-82463 
1 Clear cell adenocarcinoma, NOS M-83103 
1 Carcinosarcoma, NOS M-89803 
1 Squamous cell carcinoma, NOS M-80703 

1055 Total  

Table 2. The diagnostic codes for all liver specimens (biopsy and surgical resection) at Derriford 
Hospital from 2005 until September 2017. 
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is required for research purposes. The abbreviation ‘NOS’ refers to samples being ‘not 

otherwise specified.’ 

This method of screening has relied on correct coding by the reporting pathologist. 

However, this is a potential cause of bias at this screening stage as highlighted by one 

case being added to the database after the patient was met in follow up clinic, having 

had their tumour erroneously coded.  

Further analysis of the archive search results separated out the surgical resection 

specimens from the biopsy samples. Surgical resection specimens FFPE tissues are 

typically 15x10mm in size, which is a significantly larger amount of tissue than can be 

provided from a single needle biopsy. As mentioned above: biopsy samples were felt to 

be inappropriate for use in research as their inclusion and processing may deplete the 

tissue archive completely.  

Searching through the euphemistically coded ‘Adenocarcinoma, NOS’ and ‘Carcinoma, 

NOS’ yielded further cases of primary liver neoplasms. The decision tree can be seen in 

figure 4 and outlines how the 1055 samples were reduced to samples that could be used 

in research – the colour red denotes excluded samples.  
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Figure 4 All 1055 samples from the tissue archive at UHP between 2005 & 2017.  

Upon closer review of the 117 resection specimens in figure 4, 11 of the CCA were 

distal extrahepatic tumours, and therefore excluded. Five further HCC cases were 

Primary	Diagnositic	code:	Liver,	n	=	1055.																																																																					

Primary	Liver	Lesions
Hepatocellular	Carcinoma,	NOS.	n	=	114.

Hepatocellular	Carcinoma,	fibrolamellar.		n	=	4.
Cholangiocarcinoma,	n	=	43.	
Adenoma,	NOS.	n	=	11.	

Bile	Duct	Adenoma,	n	=	11.	
Liver	cell	adenoma,	n	=	6.	

Excluded:
Biopsy,	n	=	50.

PM	Tissue,	n	=	18.
No	consent	sheet	found,	n	=	5.
Incidental	finding,	n	=	4.	

No	access	to	tissues	blocks,	n	=	3.
Duplicate	listing,	n	=	2.	

Insufficient	material,	n	=	2.	
Extensive	necrosis,	n	=	2.
Review	of	samples,	n	=	2.	

Spindle	Cell	Carcinoma,	n	=	1.
Patient	under	18	,	n	=	1.

Included:	
HCC,	n	=	47

Fibrolamellar	HCC,	n	=		4.
Mixed	HCC-CCA,	n	=	7.	

Cholangiocarcinoma,	n	=	31.
Adenoma,	n	=	10.	

Final	Numbers
HCC	=	47.	

Fibrolamellar	HCC	=	6.	
Mixed	HCC-CCA	=	7.	

CCA	=	47.	
Adenoma	=	10.	

Adenocarcinoma,	NOS.	n	=	369	samples	requiring	
review	of	Pathology	report.
Carcinoma	NOS.	n	=	11.	

Excluded:
Biopsy	,		Non	primary	hepatic	

neoplasm,	n	=	363.		

Included:
Fibrolamellar	HCC,	n	=	2.	(Carcinoma,	NOS	
and	one	patient	recruited	from	clinic)

Cholangiocarcinoma,	n	=	16.	
(Adenocarcinoma,	NOS)

Excluded:
Adenocarcinoma,	Metastatic,	NOS.	n	=		445

Carcinoma,	Metastatic.	n=	23.
Transitional	Cell	Carcinoma,	NOS.	n	=	6.

Small	Cell	Carcinoma,	NOS.	n	=	4
Malignant	Melanoma,	NOS.	n	=	3.
Neuroendocrine	Carcinoma,	n	=	2.	

Clear	Cell	Carcinoma,	n	=	1.	
Carcinosarcoma,	NOS.	n	=	1.	

Squamous	Cell	Carcinoma,	NOS.	n	=	1. 569	potential	patients	remaining
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recruited prospectively from clinic, resulting in 52 HCCs as well as 6 FL-HCC. All of 

the potential primary liver neoplastic surgical resection specimens have been recorded 

with the culmination of this advanced screening being shown in table 3.  

 Neoplasm Number 
Hepatocellular carcinoma 52 

Fibrolamellar Hepatocellular carcinoma 6 
Mixed Hepatocellular-Cholangiocellular carcinoma 7 

Cholangiocellular carcinoma 36 
Adenoma 10 

Total 111 
Table 3 Surgical resection specimens of primary liver neoplasms by tumour sub-category. 

 

2.2 Prospectively Recruited Patients 

Seventy-four patients have been recruited into the Inflammatory Liver Biobank (REC 

reference: 15/LO/0948), including two cases of follow up bloods when a second set was 

taken prior to a second intervention. Five of these prospectively recruited patients 

underwent surgical resection for HCC and have been included in the final study figures 

in table 3. Of the 74 patients, 49 samples were taken from patients undergoing treatment 

for a primary hepatic pathology with the remaining 26 samples from patients who had 

surgical excision of a colorectal metastasis. Control groups include both healthy 

volunteers (n=10) and stable cirrhotic patients under six monthly HCC-surveillance 

(n=10). 

2.3 Research Cohort 

The research cohort for tumour resections includes 111 patients is shown in table 4. It is 

worthwhile to remember that there are selection biases due to these patients being 

offered an operation and that were deemed medically fit enough to undergo this 

treatment. Clinical follow up includes patients who died within one month of their 

operation. Viral hepatitis per tumour category: HCC (one dual Hepatitis B&C, 7 
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Hepatitis C, one Hepatitis B), CCA (one each Hep B and C), Mixed tumour (one dual 

Hep B&C, 3 Hep C). Metabolic risk factors include the clinical characteristics diabetes 

mellitus, and obesity in addition to histological features: NAFLD & steatosis.  

 
Table 4. Clinical characteristics of the study cohort. 

Regrettably the medical records for biomarkers (such as AFP, CA19-9 and CEA) were 

incomplete so this data has not been included. Of the 58 HCCs, at least 19 were missing 

an AFP, and of the 36 CCAs there was no record of an AFP value in at least 14 cases 

and no recorded CA19-9 from a minimum of 23 patients. 

2.3.1 Haematological Samples 

Four vacutainers of serum (BD Vacutainer® SST™ II Advance, Thermo Scientific™) 

and two EDTA (BD Vacutainer® K2E 7.2mg, Thermo Scientific™) blood samples were 

taken from each patient. The samples were gently inverted 10 times after venesection 

with the serum samples requiring 30 minutes at room temperature. After inversion, 

EDTA samples were immediately stored at 4 degrees Celsius until further processing. 

Both serum and plasma samples were then centrifuged at 2500g for 10 minutes at 4 

degrees Celsius. Plasma and Serum samples are stored in 1ml aliquots; buffy coat and 

red blood cells are stored separately in various volumes, determined by the amount 

available in each individual sample. All blood samples are stored in 2-dimensional 

barcoded blood tubes (1.0ml External Thread Next-Gen Jacket Tube with 2D code on 

Neoplasm HCC FL-HCC CCA Mixed Adenoma

Total 52 6 36 7 10

Male 40 (76.9%) 4 (66.7%) 16 (44.4%) 5 (71.4%) 1 (10.0%)

Female  12 (23.1%) 2 (33.3%) 20 (55.6%) 2 (28.6%) 9 (90.0%)

Age (range) 67 (41 - 84) 33 (22 - 42) 64 (44 - 83) 60 (47 - 72) 37 (27 - 51)

Months follow up (range) 47 (0 - 130) 94 (21 - 159) 35 (0 - 129) 31 (3 - 76) 88 (30 - 138)

Fibrotic 26 (50.0%) 0 (0.0%) 9 (25.0%) 6 (85.7%) 3 (30.0%)

Cirrhotic 16 (30.7%) 0 (0.0%) 1 (2.8%) 6 (85.7%) 0 (0.0%)

Viral Hepatitis 9 (17.3%) 0 (0.0%) 2 (5.6%) 4 (57.1%) 0 (0.0%)

Metabolic Risk Factors 28 (53.8%) 0 (0.0%) 15 (41.7%) 3 (42.9%) 8 (80.0%)
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Tube Base & Linear Barcode, HRN on side, with Screw Cap, Brooks Automation Ltd) 

all of which are kept at minus 80 Celsius.  

2.3.2 Tissue Samples 

Regrettably, there was no provision in place at UHP for sampling fresh tumour for 

research purposes. Space in the Histopathology department was deemed insufficient to 

allow for a ‘hot desk’ to be used for sample cut up on an ad hoc basis as, and when, 

research samples came from theatres. FFPE tissue samples from patients who were 

prospectively recruited were processed in the same manner as the archived tissue 

samples.  

2.4 DNA from FFPE Tissues 

In the National Health Service formalin fixed paraffin embedded (FFPE) tissues are 

kept for 30 years after removal from a patient. Given the huge archive of tissues a single 

hospital would create, and the associated inventory costs, it has become increasingly 

popular to store samples off site, more recently for UHP samples, in a climate-

controlled site in mid-Wales. Tissue blocks that could potentially be used for research 

have clinical details such as tumour size, tissue morphology and surgical resection 

margin stored indefinitely on the digital databases. These archives can be searched for 

by their individual case number on the iLab system to assess their suitability for use in 

research, as well as recording clinical details from the formal histopathological reports. 

Characteristics such as size of resection specimen can be cross-referenced to ensure 

only samples of adequate size are included for research. The tissue blocks are shipped 

from the storage unit to UHP by a hospital-approved courier.  

To avoid any potential breach of confidentiality the tissue blocks are stored and 

processed within the Department of Cellular and Anatomical Pathology at UHP. Blocks 

from various parts of the tumour or background liver were each given a unique 
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designation when being prepared with the key to this is readily available on the 

database.  

Using a microtome (Leica RM 2135) in the Pathology Department at University 

Hospitals Plymouth, 5µm slices of tissue were cut from the tissue blocks. The first few 

slices were discarded to avoid oxidative damage affecting the tissues under analysis. 

Three 10µm curls of tissue are taken from the FFPE tissue block and were sealed in 

sterilised 1.5ml Eppendorf tube immediately. Tissue from the tumour, as well as 

background tissue (where possible) from the same patient was taken to explore any 

differential expression between the background liver tissue and the any neoplastic 

growth. To reduce the chance of contamination between samples; gloves were worn 

throughout the handling process, the cutting blade (Thermofisher Scientific MX35 ultra) 

changed for every tissue block and any surface that has come into contact with the cut 

tissue was cleaned with 90% alcohol between tissue blocks. Tissue curls were sealed in 

sterile Eppendorf tubes, figure 5. The liver tissue is generally brown in colour with the 

surrounding paraffin being white. 

 

Figure 5. Eppendorf tubes containing tissue curls extracted from FFPE archived materials.  

FFPE tissue curls were transported to the university research labs and the commercially 

available kit (QIAamp DNA FFPE Tissue Kit, Qiagen) was used to extract DNA from 

these samples following the protocol from QIAamp DNA FFPE Tissue Handbook, as 
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outlined briefly below. Buffers AL and ATL were heated to 70 degrees Celsius in a 

water bath to dissolve precipitates.  

Deparaffinisation was undertaken with 1ml of xylene and vigorous vortexing (ZX3 

Vortex Mixer, Fisherbrand) for 10s, following by centrifugation at full speed 

(Centrifuge 5418, Eppendorf) for two minutes at RT. Occasionally a small amount of 

tissue remained unprocessed and was filtered out during centrifugation steps, as 

outlined in fig 6. The presence, or otherwise, of this material did not impact on 

subsequent results obtained.  

 

Figure 6 Spin columns used for DNA extraction from FFPE tissues. The clear eluate in left image. Some tissue 
remains in the filter after processing in the right image. 

The supernatant was removed by pipetting with care taken to ensure the pellet remained 

undisturbed and 1mL of ethanol (purity > 99.8%, Honeywell) was added to the tissue 

pellet. The vortexing, centrifuging steps and supernatant removal steps were repeated to 

remove the ethanol. Residual ethanol was encouraged to evaporate as the Eppendorf lid 

was left open and the samples were heated to 37 Celsius in a heat block for ten minutes. 

The tissue pellet was then re-suspended in 180µL of Buffer ATL, with the addition of 

20µL of proteinase K and briefly mixed by vortexing. This mixture was then incubated 

at 56 Celsius in a heat block for one hour, followed by a further hour incubating at 90 

Celsius for another hour to partially reverse formaldehyde modifications.  



 71 

The samples were cooled to RT and briefly centrifuged to remove drops from inside the 

lid. Buffer AL (200µL) was added, mixed by vortexing, and followed by the addition of 

200µL of ethanol and further, brief, vortexing. The lysate was again briefly centrifuged 

to remove droplets from inside the lid and was then transferred into a spin column 

within a 2mL collection tube. This spin column was then centrifuged at 6000g 

(8000rpm) for one minute, with the flow through/eluate discarded. Wash steps (Buffer 

AW1 then AW2) were undertaken with the addition of 500µL of wash buffer AW1, 

followed by centrifugation at 6000g and discarding the flow through. The process was 

repeated with the addition of 500µL of wash buffer AW2. The spin column membrane 

was then dried by centrifuging at 20,000g/14,000rpm for three minutes in a new, sterile, 

2mL collection tube. The column was then placed in a sterile 1.5mL Eppendorf with 

80µL of Buffer ATE (elution buffer) used in the elution step and allowed to equilibrate 

for five minutes at RT. Finally, the sample was spun at full speed (20,000g/14,000rpm) 

for one minute with the eluate being kept. Two microlitres of eluted DNA was placed 

on the NanoDrop™ 2000 spectrophotometer (Thermo Scientific™) to assess both the 

quality (260/280 ratio) and quantity (concentration, in ng/µL) of extracted DNA. 

Samples were labelled and stored at -20 Celsius until required.  

2.5 Sequence Amplification 

The published literature was searched for primer pairs that had been successfully used 

for the polymerase chain reaction (PCR) targeting short DNA sequences of the 

promoter regions. The information is outlined below in tables 5 & 6. Which can be 

compared to a recent meta-analysis that reports the use of PCR-RFLP or TaqMan 

assays, rather than Sanger sequencing, as the preferred method of detection for Survivin 

SNPs (Moazeni-Roodi, Ghavami and Hashemi, 2019). As can be demonstrated from 

table 5, the preferred source of DNA for assessing the Survivin promoter is whole 

blood, rather than FFPE tissues. 



 72 

Tissue of Origin 
(reference) 

DNA Source PCR Product 
(base pairs) 

Analysis 
Method 

Primer Name 

Wilms Tumour 
(Radojevic-Skodric 
et al., 2012) 

FFPE tissue 151 RFLP Surv F1 R1 

Gastric Cancer 
 (Yang et al., 2009) 

Whole blood 151 RFLP Surv F1 R1 

Urothelial Cancer  
(Wang et al., 2009)  

Whole blood 341 RFLP Surv F2 R2 

Breast Cancer 
(Rasool et al., 
2017) 

Whole blood 341 RFLP Surv F2 R2 

HCC (Bayram et 
al., 2011) 

Whole blood 341 RFLP Surv F2 R2 

Ovarian Cancer 
 (Han et al., 2009) 

Whole blood 

 

329 

 

 

RFLP Surv -31 F3 R3 

Surv -625F + R 

Colorectal Cancer 
(Yamak et al., 
2014) 

FFPE tissue 329 RFLP Surv -31 F3 R3 

Surv - 241 F + R 

Surv -625 

Table 5 Research resources for Survivin -31G/C SNP detection.  

Sanger sequencing the PCR product of the pTERT region was more commonly 

undertaken, as well as using a variety of sources of sample DNA, as shown in table 6. 

Tissue of Origin 
(reference) 

DNA 
Source 

PCR Product 
(base pairs) 

Analysis 
Method 

Primer Name 

Glioblastoma Multiforme 
(GBM) (Purkait et al., 2016) 

FFPE & 
Frozen 

163 Sanger Short TERT 

Malignant Melanoma 
 (Horn et al., 2013) 

Whole 
blood 

163 Sanger Short TERT 

Low Grade Glioma 
 (Chan et al., 2015) 

FFPE 163 Sanger Short TERT 

13 Tumour types 
(Huang et al., 2015) 

FFPE 190 Sanger TERT F3 R3 

Follicular Thyroid Adenoma 
(Wang et al., 2014) 

Frozen NS Sanger hTERT Promo F + R 

Bladder Cancer, Glioblastoma. 
(Liu et al., 2013) 

NS 235 Sanger hTERT Promo F + R 

HCC & HCAs  
(Nault et al., 2013) 

Frozen 163 Sanger Short TERT 

Bladder Cancer (Pivovarcikova 
et al., 2016) 

Voided 
Urine and 

FFPE 

NS NGS and 
Sanger 

hTERT Promo F + R 

Table 6 Research resources for determining Telomerase promoter region SNP detection. 
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2.5.1.1 Initial Work 

Oligonucleotides were ordered in and trialled using CRC FFPE tissues as the template 

DNA, with the polymerase (Dreamtaq) that had been used by other members of the lab 

undertaking PCR with cell culture samples. When creating a mastermix for n samples, 

enough reaction volume was made for n+2 reactions, to ensure enough reaction mixture 

for a no-template negative control and to allow for pipetting error. Initial PCR 

preparation was undertaken on the bench top, but this was quickly moved to a laminar-

flow hood to avoid contamination of constituent components and thus erroneous results. 

The initial reaction mixture, as shown in table 7. 

Component Volume for one 50µL reaction Final concentration 

DreamTaq 5 µL 1X 

dNTPs (2µM) 5 µL 0.2µM 

Forward Primer (10µM) 0.5 µL 0.1µM 

Reverse Primer (10µM) 0.5µL 0.1µM 

Template (max 200 ng) 1µL As required 

Polymerase 0.25µL 1 U 

Ultrapure, distilled water. 37.75µL - 
Table 7. Reagents for PCR using DreamTaq polymerase. 

With reaction conditions as outlined in Table 8 using the Labtech GS4 G-Storm, Gene 

Technologies Thermal Cycler: 

Step Temperature (Celsius) Time 

Initial denaturation 95 3 minutes 

40 cycles of steps 1-3: 

1. Denature 95 30 seconds 

2. Anneal 52 30 seconds 

3. Extend 72 1 minute 

Final extension 72 5 minutes 

Hold  4 Indefinite 
Table 8. Reaction conditions for PCR using DreamTaq polymerase.  
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PCR products were run on a 2% Agarose gel with a 100base pair ladder (Gene Ruler, 

ThermoFisher) and loading dye (Loading Dye 6X Orange DNA, ThermoFisher) and 

distilled water. Small volumes of PCR product (4 µL) were mixed with loading dye 

(Loading Dye 6X Orange DNA, ThermoFisher) and run alongside to assess the size of 

PCR product. Optimisation for Dreamtaq included altering magnesium concentrations 

as well as the quantity of template DNA added and gradient PCR.  

2.5.2 Optimisation 

2.5.2.1 Primer Selection 

There was poor reproducibility and results from extensive work with longer PCR 

products (>200 base pairs) so efforts were concentrated on targeting shorter sequences 

in the promoter regions of both Survivin and Telomerase. There were also a number of 

potential target sequences but regions around Survivin -31 and Telomerase -124 

(C228T) & -146 (C250T) were focussed on. Given that most DNA taken from FFPE 

tissues is of a poor quality and fragmented at around 250 base pairs, there were 

limitations on the selection of potential primer pairs (Dedhia et al., 2007). 

2.5.2.2 Gradient PCR 

The primer sequences (composed of nucleotides G, C, T and A) were known, but early 

work found that some of reactions needed further optimisation. Approximate annealing 

temperature (Ta) for the primers selected for PCR was estimated using the calculated 

melting temperature (Tm) in degrees Celsius as demonstrated by the equations below: 

Tm = 4(G+C) + 2(A+T).  

Also;  

Ta = Tm -5  

As previously used (Roux, 2009).  
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The Ta was used as the mid-point for the gradient PCR to assess various annealing 

temperatures simultaneously. There was also the opportunity to focus on smaller 

temperature steps (less than one degree Celsius) or create a grid of temperatures and 

alter a secondary component of the reaction, like magnesium concentration, as shown in 

figure 7, (Najafov et al., 2017).  

 

Figure 7. A grid pattern for altering two components of PCR simultaneously. 

2.5.2.3 Template DNA 

The quantity of template DNA used in the PCR reaction was polymerase dependent, as 

advised by the manufacturers. Generally, between 100 – 200ng of DNA was added to 

the PCR reaction, and only in exceptional circumstances, such as repeated failures of 

results, was this amount of template DNA increased. 

2.5.2.4 Enzyme Selection 

Owing to the relatively short and frail nature of the FFPE DNA, not all of the 

commercially available polymerase enzymes were able to amplify certain primer pairs.  

For Survivin the Accuprime™ Pfx polymerase (Thermo Scientific™) yielded the highest 

success whilst for the Telomerase promoter region the best candidate was the KAPA2G 

Fast Hotstart ReadyMix polymerase. Other enzymes that were trialled included: Q5 

High Fidelity Polymerase (New England Biolabs), Accuprime™ Taq DNA Polymerase, 

High Fidelity (Thermo Scientific™).  
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2.5.2.5 Universal Primers 

In an attempt to increase the read length of the PCR product for Survivin (151 base pair 

sequence) a universal primer was added on to the 5’ end of the primers (Kelley and 

Quackenbush, 1999). The increase in size of the universal primer would, theoretically, 

have resulted in a PCR product that was longer than the original sequence by the same 

number of base pairs. Sadly, the quantities of PCR product that resulted were too low 

(i.e., significantly below the 100ng minimum required) to allow for Sanger sequencing.  

Initial results from sequences were delivered using primers for the 151 base pair 

sequence the chromatograms demonstrated the region of interest being as little as 20 

bases from the start of the sequence. In an attempt to increase the read length, universal 

primers were added on to the 5’ end of the original oligonucleotides to lengthen the 

PCR product.  

The two universal primers chosen (M13-21 and M13-29) did not cause any primer-

dimer or form hairpin loops (due to inverted repeats) when run on online software 

platforms such as OligoEvaluator (Sigma-Aldrich) and Multiple Primer Analyzer 

(Thermo Scientific). The oligonucleotides that were used are outlined below in table 9. 

Primer Name Oligonucleotide Sequence 

Survivin 31 F1 AAGAGGGCGTGCGCTCCCGACA  

Extended F1 M13-21F 
(Ext. F1) 

TGTAAAACGACGGCCAGTAAGAGGGCGTGCGCTCCCGACA 

Survivin 31 R1 GAGATGCGGTGGTCCTTGAGAAA 

Extended R1 M13-29R 
(Ext. R1) 

CAGGAAACAGCTATGACCGAGATGCGGTGGTCCTTGAGAAA 

Table 9. The addition of universal primers (Extended F1/R1) to the underlined oligonucleotide sequence for a primer 
pair, Survivin F1 R1, that have been previously used in assessing the Survivin promoter region. 

Underlined regions in the above table highlights the same oligonucleotide sequence 

with the addition of the universal primer at the 5’ end of the sequences, which are not 
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underlined. Gradient PCRs were undertaken with the added universal primers using the 

annealing temperatures of between 60 and 72 Celsius. 

2.5.3 Survivin Promoter 

The reaction volume was dictated by the polymerase used for PCR, as such for 

Accuprime a reaction volume of 50uL was required. Master mixes were created on ice 

and included an additional volume to allow for pipetting error. Each mastermix was 

created for 12 reactions, which included a no template negative control for quality 

assurance. For each reaction the following quantities were used, as advised by the 

manufacturer and is shown in table 10. 

Component Volume for one 50µL reaction Final concentration 

10X AccuPrime Pfx Reaction Mix 5 µL 1X 

Forward Primer (10µM) 0.75 µL 0.15µM 

Reverse Primer (10µM) 0.75µL 0.15µM 

Template DNA (max 200 ng) 2µL As required 

AccuPrime Pfx DNA Polymerase 0.4µL 1 U 

Ultrapure, distilled water. 41.1µL - 
Table 10. Reagent for the Accuprime Pfx polymerase for PCR. 

For optimisation of the reaction for maximal PCR product, a gradient PCR was 

undertaken using the same template DNA and reaction mixture in one thermal block. 

There was a heated lid, maintained at 112 Celsius. Once the thermocycler had 

completed the thermal block was held at 10 Celsius until the PCR products were placed 

on ice or at 4 Celsius. Cycling conditions can be found in table 11. 
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Step Temperature (Celsius) Time 

Initial denaturation 95 2 minutes 

35 cycles of steps 1-3: 

1. Denature 95 15 seconds 

2. Anneal 52 - 64 30 seconds 

3. Extend 68 1 minute 

Final extension 68 5 minutes 
Table 11. Reaction conditions for gradient PCR targeting the Survivin promoter region, using the Accurprime Pfx 
polymerase. 

Following the reaction conditions outlined in table 11, the optimal annealing 

temperature for the Survivin promoter was found to be 62 Celsius. 

2.5.4 Telomerase Promoter 

As the Accuprime Pfx polymerase enzyme was successful in sequencing FFPE DNA 

from the Survivin promoter region, it was trialled with primers targeted to the 

Telomerase promoter region with disappointing results. Despite considerable attempts 

at optimisation there was a distinct lack of single clear bands when viewed after gel 

electrophoresis. Gradient PCR, Touchdown PCR and variable concentrations of 

Magnesium yielded poor results.  

When trying to recapitulate the experiment to sequence the promoter region of 

Telomerase, having had difficulties with alternative polymerase enzymes, the KAPA2G 

enzyme was purchased. Given that it was used in two separate publications using two 

different primer combinations it was felt that exploring this as a potential polymerase 

was essential (Chan et al., 2015; Huang et al., 2015).  

The reaction volume required for the KAPA2G polymerase was 25µL. Mastermixes 

were also made for a total of 12 reactions with one volume for the no template negative 

control and one volume spare. The reaction volumes are outlined below, as advised by 

the manufacturer, in table 12. 
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Component Volume for one 

25µL reaction 
Final Concentration 

2X KAPA2G Fast Hotstart 
ReadyMix 

12.5µL 1X 

Forward Primer (10µM) 1.25µL 0.5µM 

Reverse Primer (10µM) 1.25µL 0.5µM 

Template DNA 1µL As required, <100ng total 

Ultrapure, distilled water 9µL - 
Table 12. Reagents for the KAPA2G Fast Hotstart PCR. 

Gradient PCR was undertaken with two sets of primers (yielding 163 and 190 base pair 

products) using the KAPA2G polymerase. Initial temperatures for the annealing steps 

were between 56.1 and 63.1 Celsius in ~1-degree increments. A more focussed gradient 

PCR analysing annealing temperature steps 60.1 - 63.9 Celsius was undertaken to 

clarify the best annealing temperature and can be seen in table 13.  

Step Temperature (Celsius) Time 

Initial denaturation 95 3 minutes 

45 cycles of steps 1 - 3. 

1. Denaturation 95 15 seconds 

2. Annealing 56.1 - 63.1 15 seconds 

3. Extension 72 1 second 

Final extension 72 10 minutes. 
Table 13 Reaction conditions for a gradient PCR targeting the Telomerase promoter region. 

Reaction mixtures for Telomerase promoter gradient PCRs. After successfully 

producing enough PCR product to send for sequencing, the following final reaction 

conditions were used for all following reactions.  

Following optimisation, the best annealing temperature was found to be 60 Celsius. 

Once the Thermocycler had completed the program the thermal block was held at 10 

Celsius until the PCR products were placed on ice or stored at 4 Celsius. 
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2.5.5 PCR Quality Assurance 

A 2% Agarose gel (Topvision Agarose Thermo Scientific™) was used to confirm the 

presence of the correct size of amplification product using added SYBR™ Safe DNA 

Gel Stain (Thermo Scientific™) using a 100 base pair DNA ladder Generuler 100BP 

Plus (Thermo Scientific™) and analysing with the gel imager (Labtech GS4 G-Storm, 

Gene Technologies Thermal Cycler) (Promega Guide to Agarose Gels., 2018). Gels 

were made with 1X TAE buffer and loaded with a small volume of PCR product: 6 µL 

for Survivin (with 1uL of added loading dye 6X Orange DNA loading dye, Thermo 

Scientific™), and 3 µL for Telomerase promoter PCR products. No additional loading 

dye was required for the KAPA2G reactions as it was already included in the reaction 

mixture. 

A clean, single band on the gel was required for sequences to be processed further 

providing the no-template negative control remained did not demonstrate a band, thus 

implying there was no contaminants in the mastermix.  

2.5.5.1 PCR Purification 

Once the PCR product has demonstrated a single, clean, band on a 2% agarose gel, it 

was concentrated for ease of sequencing. The PCR products were purified using a DNA 

clean and concentration kit (DNA Clean & Concentrator-5 Zymo Research) as outlined 

briefly below. 

In a 1.5mL Eppendorf, five volumes of DNA binding buffer was added to one volume 

of PCR product and briefly vortexed and centrifuged to remove contents from the inside 

of the lid. The mixture was then transferred to the spin column, which was placed inside 

a collection tube and centrifuged at full speed for 30s. 200µL of wash buffer was added 

to the column and centrifuged at full speed for 30s. The flow-through was discarded and 

the wash step was repeated again. Finally, 15µL of distilled water was added to the 
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column matrix and incubated at RT for one minute. The spin column was transferred to 

a sterile 1.5ml Eppendorf and centrifuged at full speed for 30s to elute the PCR product. 

The Quality and quantity of this purified PCR product was then assessed using a 1.5µL 

volume (NanoDrop™ 2000 spectrophotometer Thermo Scientific™). Only samples with 

260/280 ratios greater than 1.8 were used for further analysis. 

2.5.5.2 Sanger Sequencing 

To enable bi-directional sequencing, 2µL of the forward primer (10nM) was added to 

100ng of purified PCR product in a sterile 1.5mL Eppendorf tube. The addition of 

sterile nuclease/RNase free distilled water was added to give a final volume 14µL. This 

was process was repeated with the reverse primer to enable bi-directional sequencing 

from a single, purified, PCR product. A barcode label was placed on each sample, 

provided by LGC Genomics GmbH, and these were then posted for Sanger Sequencing.  

2.5.5.3 Sequence Analysis 

Once the sequenced files were made available by LGC, a genome database was 

searched for similar sequences and this demonstrated that the correct target had been 

amplified. The software package, Macvector, has been used to check the quality of the 

sequences and find the region of interest (ROI) with confirmation of sequence requiring 

bi-directional concordance. Visual inspection of the chromatograms was undertaken, 

with evidence of contaminated and uncontaminated samples shown in figure 8.  

 

Figure 8. Chromatograms from MacVector with evidence of contamination (left) compared to an uncontaminated 
sequence. Note the low confidence (red bars, >1% error in the left image) compared to the high-confidence (green 
bars, <1% error in the right image) in base calls.  
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Chromatogram data was compared to reference database (Genome Reference 

Consortium Human genome build 37, GRC37) to assess for polymorphisms in the ROI. 

GRC37 was used in favour of GCR38 as the SNPs referenced throughout the literature 

in the Telomerase promoter region remained in their respective positions (-124 and -146 

upstream of the transcription start site) instead of the right-shift that is understood to 

have taken place with later editions of GRC (National Centre for Biotechnology 

Information, 2017).  

2.6 Immunohistochemistry 

Formalin Fixed Paraffin Embedded (FFPE) tissue sections were cut at 4 µm by the 

Department of Cellular and Anatomical Pathology at University Hospitals Plymouth 

and mounted on positively charged glass slides. Optimisation of primary antibody was 

performed on various non-liver tissue sections. For Survivin, the positive control was 

human tonsil, for Telomerase normal testis was used. Negative controls were run in 

parallel with the positive control and normal liver by omission of primary antibody.  

The indirect staining method with the avidin-biotin complex and 3,3′-Diaminobenzidine 

(DAB) tissue staining, with Mayer’s haematoxylin as counterstain, for assessment of 

tissue expression of tumour antigens. 

2.6.1 Antibody Selection 

Online resources, such as Biocompare, as well as the published literature were searched 

for potential primary antibodies for IHC. Preference was given to antibodies that have 

previously been published using immunohistochemistry on paraffin (IHC-P) tissues. 

The results can be seen in table 14.  
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Antibody Advised 
Dilutions 

Isotype Citations + Reference 

Survivin (71G4B7), Cell 
Signalling Technologies 
(#2808s). 

1:400 Rabbit 
Monoclonal 
IgG 

219, (de Graaff et al., 2017) 

TERT Antibody 2C4, Novus 
Biologicals. (NB100-317). 

1:50 Mouse 
Monoclonal 
IgM 

18, (Lotfi et al., 2014) 

Anti-Telomerase reverse 
transcriptase antibody, C-
terminal, 
Abcam (ab183105) 

1:50 – 
1:200 

Rabbit 
Polyclonal IgG 

8, (Yang et al., 2017) 

TERT Antibody (A-6), 
Santa Cruz Biotechnology 
(sc-393013). 

1:50 – 
1:500 

Mouse 
Monoclonal 
IgG2b 

4, (Zhou et al., 2017) 

Table 14. Published literature was consulted to screen potential IHC antibodies for detecting Telomerase and 
Survivin in human tissue samples. 

2.6.2 Optimisation 

2.6.2.1 Selection of Positive Controls 

Using FFPE tissues allows for the assessment of cellular morphology as well as being 

able to stain for various proteins and assessing their expression in various subcellular 

localisations. To ensure appropriate positive and negative controls were used in staining 

a mixed approach was used in the assessment of potential positive controls.  

Manufacturers tend to include a putative positive control in their literature, but 

Torlakovic and colleagues have stated that these can be “both imprecise and inadequate 

in providing the information needed” for reproducibility in the assessment of sensitivity 

and calibration of IHC staining (Torlakovic et al., 2015). Thus, a combination of 

methods was used to ascertain a true positive control, given that intracellular location 

would, hopefully, vary across tumour grades and stages.  

Online resources, such as Uniprot and The Human Protein Atlas (HPA) were used in the 

first instance. The vast quantities of data available on the HPA reference a wide range 

of common tumour and tissue subtypes, but this is not exhaustive, as many cellular and 

subcellular expression patterns remain undocumented (Cornish et al., 2015). An idea of 

the expected cellular expression and subcellular location of staining in tissues can be 
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found by combining both online resources and the published literature as shown in table 

15. 

Target Antibody Expected Tissue 
Expression 

Expected 
Intracellular 
location 

Evidence Source 

Survivin Survivin 
(71G4B7) 
Rabbit Mab 
IgG 

Tonsil, Male 
Tissues, GI Tract. 

Nuclear in Germinal 
Centre Cells (GCC) 
>> Non GCCs. 

The Human Protein 
Atlas 

Survivin Abcam, 
EP2880Y. 

Tonsil, NOS. Nuclear Journal, (Varughese, 
Skjulsvik and Torp, 
2017) 

Telomerase Abcam, 
ab183105. 

Human sarcoma, 
glioma, tonsil, 
ovarian and 
thyroid cancer 
tissues. 

Nuclear Manufacturer’s 
website & Journal 
(Zou et al., 2016) 

Telomerase Thermo Fisher 
Scientific 2C4 
clone, MA5-
16034 

Human Tonsil Nuclear Journal, (Carkic et al., 
2016) 

Telomerase Bio-Techne 
NB100-317 

Not stated Nuclear/Nucleolar Manufacturers & 
publications (Lotfi et 
al., 2014; Biron-
Shental et al., 2016) 
  

Telomerase Santa Cruz 
A6 Ab 
C12 Ab 

Lymph node, 
Tonsil. 
Tonsil, Paediatric 
Thymus. 

 
Nuclear 
Nuclear 

Manufacturers & 
publication (Zhou et 
al., 2017) 

Table 15. Published positive controls for IHC.   

Confidence in the Survivin antibodies was boosted by their significant use in peer-

reviewed publications. However, Telomerase antibodies have fewer references and 

there is less consensus on exactly what tissues should stain positive for this protein. 

Online resources state that there should be no expression of Telomerase in Tonsillar 

tissues, yet this is regularly cited as an appropriate positive control.  

Combining online resources and the literature allows clarifies the detection of 

Telomerase in tissues (such as testis, ovary, placenta) with western blot and confirms 

the functionality of the telomerase enzyme using the telomerase repeat amplification 

assay (Kim et al., 1994). Optimisation of potential antibodies was undertaken in these 

potential tissue types.  
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2.6.2.2 Retrieval Buffer 

For the purposes of optimisation both Tris-EDTA and Citrate buffers were trialled to 

ascertain which gave the best results. Tris-EDTA 10X concentrated stock was made by 

adding 24g of Triz (Sigma-Aldrich®) and 2g of EDTA (Sigma-Aldrich®) to 1L of 

deionised water at pH 9, using 5M HCl (Sigma-Aldrich®). A 1:10 dilution was made 

with distilled water for use in the antigen retrieval stage of IHC.  

Citrate buffer 1X working stock was made with the addition of 2.1g Citric acid (Sigma-

Aldrich®) to 1L deionised water at pH 6 using 5M NaOH (Sigma-Aldrich®).  

2.6.2.3 Primary Antibody Dilutions 

The Survivin primary antibody was diluted to 1:400 in 1X TBS-T. The Telomerase 

antibody was also diluted to 1:400, but in a 2% Goat serum (v/v) TBS-T.  

2.6.2.4 Blocking Steps 

A number of blocking steps were used in the optimisation process to reduce background 

staining. Endogenous peroxidase was blocked with 3% Hydrogen Peroxide (Fisher 

Scientific) in Methanol (VWR®).  

For routine staining, a second blocking step was used. Serum from the host species of 

the secondary antibody was used in a 1:100 dilution in TBS-T. One drop (50uL) of 

serum was added to 5mL of TBS-T and gently mixed by vortexing and 150uL was 

added to each slide mounted section of tissue. Using serum from the host secondary 

(Horse for Survivin, Goat for Telomerase) can help reduce background staining  

(Ramos-Vara, 2005).  

To block nonspecific binding of endogenous Biotin, samples were incubated 

sequentially with Avidin D solution and then with a Biotin solution (both: Vector 

Laboratories) to give a near-irreversible binding in the Avidin-Biotin complex  

(Bratthauer, 2010). 
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In an attempt to reduce background-staining, serum from the host species for the 

biotinylated secondary was diluted to a concentration of 2% (v/v) when diluting the 

Telomerase primary antibody. Alternatively, the Survivin primary antibody was diluted 

in TBS-T.  

2.6.2.5 Biotinylated Secondary & Detection 

An IgG specific universal kit was purchased and used in the detection of the primary 

antibody. The Vectastain Elite ABC HRP Kit (Peroxidase, Universal. Vector 

Laboratories) was used in the detection of Mouse/Rabbit IgG with horse anti-rabbit 

/mouse secondaries and normal horse serum used for this isotype of antibody. For 

Telomerase a Mouse anti human IgM primary antibody, a separate biotinylated 

secondary (Goat anti mouse) and serum (goat) was substituted, keeping the same ABC 

complexes and detection technique that was provided in the Elite ABC HRP kit. 

Detection was with 3,3'-diaminobenzidine (DAB) solution (Sigma-Aldrich®; #D4293) 

made up in distilled water (with vortexing) and the addition of the urea tablet provided, 

with further vortexing. The DAB solution was made up and used within 1 hour.  

2.6.2.5.1 Isotype Specificity 

In theory there should be minimal isotype crossover between anti-IgG and anti-IgM 

secondary antibodies with the IgM and IgG primary antibodies, respectively. However, 

with manufacturer of the Telomerase 2C4 antibody stated there is crossover, with 12% 

of IgM primary antibodies being detectable using an anti-IgG secondary. Using this 

method for staining has the potential to vary from batch to batch and the vendor could 

not guarantee consistency of results if an anti-IgG secondary was being relied on to 

detect an IgM primary antibody. Hence the decision was made to use isotype specific 

primary and secondary antibody combinations to overcome this potential issue.  



 87 

2.6.2.6 Reducing Background Staining 

Various blocking steps were used throughout the optimisation process. These included, 

blocking with secondary antibody host animal serum, using secondary host sera to 

dilute primary antibody to a working concentration, shortening primary antibody 

incubation times, diluting the antibodies (primary and secondary) and DAB dilutions 

were all explored to give the best possible staining in positive control tissues. This work 

was felt to be critical given that subcellular location was to be described in tumour and 

background tissues. 

2.6.2.7 Telomerase IHC Optimisation 

The optimisation processes for the Survivin IHC involved fewer steps, compared to the 

Telomerase antibody, confirming a higher confidence in the data generated. Regrettably 

there has not been an equivalent quantity of published research assessing the use of IHC 

to assess tissue expression of Telomerase, perhaps due to poorer quality antibodies 

available, which necessitated significant optimisation steps as will be discussed later. 

There are fewer published works that have used IHC for Telomerase protein 

quantification to draw from as potential sources of antibody. In fact, there are some who 

question the quality, sensitivity and specificity of the antibodies that are commercially 

available and state that “hTERT immunohistochemistry data should be interpreted with 

caution,” as a result (Wu et al., 2006; Kim et al., 2013).  

However, as a key step in a rat HCC model being the nuclear translocation of 

Telomerase (Chen and Kong, 2010). Also, other researchers focussing on nuclear 

positivity when detecting Telomerase with IHC in various tumour served as a basis for 

our IHC interpretation of these results (Lotfi et al., 2014; Saeednejad Zanjani et al., 

2019).   
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There is increasing evidence that non-tumour tissues can possess Telomerase activity 

with typically cited examples being testis, ovary, placenta and thymus tissues (Hiyama 

et al., 2001). An obvious starting point in the optimisation process is the selection of 

both a positive control tissue, and an antibody that that detects appropriately. Small 

volumes of antibodies were purchased, used at 1:100 dilution, on the five different 

tissue types as outlined in figure 9. 
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Figure 9. Four different antibodies used on five different tissue types to find a suitable positive control. Citrate 
antigen retrieval was used for all with antibodies used at 1:100 dilution. Imaged at 200X. 
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With expert review, the most consistent antibody was felt to be the Novus, with best 

staining in normal testis. Other, less referenced, antibodies either gave extremely vague 

(A6, C12) or non-specific positivity (Abcam) compared to the Novus Antibody. Further 

optimisation, including blocking steps, can be seen in figure 10.  

 

Figure 10. Goat blocking serum for diluting primary antibody. 

Numerous steps were introduced to reduce the non-specific background staining from 

the Novus antibody. As outlined in figure 10 a 2% goat serum block was used, and the 

protocol was altered from overnight incubation with primary antibody (4 Celsius) to a 

one-hour (RT) incubation step which greatly reduced the non-specific staining. 

To ensure consistency with previously published work, figure 11 demonstrates 

positively staining spermatids, with less intensely stained primary and secondary 

spermatocytes. The left panel shows a 1:400 dilution of primary antibody in 2% goat 

serum, incubated for one hour at RT, on normal testis with spermatocytes, spermatids 

and spermatozoa staining positively at 200X magnification with 100micron scale bar. 

Right panel shows a previously published image of human testis with staining in the 

spermatocytes (Hiyama et al., 2001). 
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Figure 11. Telomerase expression in testicular tissues.  

Therefore, the positive control tissue was decided as normal Testis, with a primary 

antibody diluted to 1:400 in a 2% (v/v) goat serum.  

2.6.2.8 DAB Supply 

Initial purchases of SIGMAFAST™ 3,3’-Diaminobenzidine tablets worked very well 

for detection of Survivin protein in tonsil and liver tissues. Owing to unforeseen delays 

in receiving delivery from the manufacturer an alternative source was required for 

detecting Telomerase. Repeated rounds of optimisation were necessary to ensure 

comparable staining with an adequate substitute.  

2.6.3 Experimental Procedure 

Sections were incubation at 60 °C for thirty minutes to de-waxed the slides, followed by 

two five-minute washes in xylene (Fisher Scientific) and two further five-minute 

washes in 100% ethanol (VWR®). Sections were then washed in running tap water for 

five minutes before blocking by submersion in 3% hydrogen peroxide (Fisher 

Scientific) in methanol (VWR®) for 30 minutes at RT, then washed in running water for 

10 minutes. Antigen retrieval was performed by pre-treatment with either EDTA buffer 

(6.8 mM EDTA, 19.81 mM Tris base) pH 9.0 or citrate buffer (10 mM citric acid) pH 

6.0. Sections were boiled in pre-treatment buffer for 30 minutes and then washed under 

running water for 10 minutes before equilibration in Tris buffered saline-Tween-20 
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(TBST) buffer (0.05 M Tris base, 8% NaCl, 0.045% Tween-20) pH 7.6 for five 

minutes. Next, sections were blocked in 1% normal horse/goat serum in TBS-T buffer 

for 30 minutes at RT followed by an avidin-biotin block (Vector Laboratories Ltd; #SP-

2001) to block nonspecific binding of endogenous biotin consisting of a 15-minute 

incubation with Avidin D solution at RT, a brief one-minute wash in TBS-T and then a 

15-minute incubation with Biotin solution. Finally, sections were drained of biotin 

solution and incubated in primary antibody diluted in TBS-T (Survivin)/ TBS-T + 2% 

Goat serum (Telomerase), overnight at 4 °C (Survivin) / one hour RT (Telomerase).  

Sections were washed twice by immersion in TBS-T for five minutes and biotinylated 

secondary antibody (Vectastain® Universal Elite ABC kit; #PK-6200; Vector 

Laboratories Ltd) applied for 30 minutes at RT. Sections were washed twice by 

immersion in TBS-T for five minutes and incubated with biotinylated HRP (Vectastain® 

Elite ABC Reagent; Vectastain® Universal Elite ABC kit) for 30 minutes at RT 

according to manufacturer’s protocol. Sections were again washed twice by immersion 

in TBST for five minutes before incubation in 3,3'-diaminobenzidine (DAB) solution 

(Sigma-Aldrich®; #D4293) for 5 minutes to allow detection of protein and then washed 

for 10 minutes under running water. Counterstaining of sections was performed with 

application of Mayer’s haematoxylin solution (Sigma-Aldrich®; #MHS1) for two 

minutes and excess removed by washing under running water for 10 minutes. Finally, 

sections were washed twice for five minutes in 100% ethanol, followed by two five-

minute washes in xylene and then mounted onto coverslips using DPX mounting agent, 

(Sigma-Aldrich®; #06522), applied facedown, inspected to ensure no air bubbles were 

obscuring the tissue, then turned face-up to allow the mounting media to set.  

2.6.4 Digital Assessment of Immunohistochemistry 

Whole tissue sections were scanned using the Glissando Slide Scanner (Objective 

Imaging) at 40X magnification and stored on encrypted hard drives (diskashur2, HDD 
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iStorage) to facilitate compatibility with NHS security protocols. Individual sections 

were assessed and sufficient data points were included to ensure the software was able 

to triangulate the position of tissue sections on the glass slides. Data was stored in the 

“.svs” format and assessed using a Lenovo ThinkCentre (Intel CORE i5 vPro 8th Gen 

processor) desktop computer. 

The open source free-to-use software, QuPath (https://qupath.github.io) version 0.1.2, 

was used in the assessment and quantification of the scanned images. Version 0.1.2 is 

the most recent stable edition QuPath that runs glitch-free and has been used in other 

published articles (Bankhead et al., 2017; Loughrey et al., 2018). Subsequent 

development editions of QuPath – so called ‘milestone’ versions – are more up to date 

but may require ‘bug-fixes’ and caution has been advised by their creator. Hence the 

more stable version of the software was used. Online tutorials were extremely 

informative and outlined the main features of the software package (Bankhead, 2018). 

QuPath’s positive cell detection, along with the addition of smoothed features, creates 

67 different parameters for assessing individual cells in the study tissues. Random trees 

classifiers were used on each image, utilising the interactive nature of the software to 

learn the various tissue types present. As cells are classified based on morphological 

and environmental features representative regions of tumour, background liver, 

inflammatory cells, stromal tissues and necrotic tissue were used, when present, for this 

optimising process. Detection classifiers were created that identified various cellular 

subtypes that could then be assessed for DAB staining intensity. 

Tumour cells were classified as being negative (-), weakly positive (+), moderately 

positive (++) or strongly positive (+++) based on the intensity of DAB nuclear 

positivity. It is important to note that the software is unable to differentiate between true 

nuclear staining (denoted by haematoxylin overlaid by DAB) from any 

artefactual/incidental haematoxylin/DAB overlay, unless trained to do so by a classifier. 
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If there is nonspecific staining that overlays haematoxylin, this could be erroneously 

interpreted as a positively stained nuclei, as was evident when using the Telomerase 

antibody.  

The intensity of staining was determined using pre-set values (<0.2 was negative, ≥0.2 

but <0.4 for +, ≥0.4 but <0.6 for ++ and ≥0.6 for +++) for Survivin quantification. For 

Telomerase an optimisation process was required and intensity measures of adjusted 

accordingly (<0.3 was negative, ≥0.3 but <0.5 for +, ≥0.5 but <0.7 for ++ and ≥0.7 for 

+++) as described later. Short sequences of code were written (using the ‘script’ 

function) to ensure these optimisation steps were included for each image assessed and 

that each object selected was appraised to ensure consistent results. The addition of 

“selectAnnotations();” into the code meant that when an area of tissue was highlighted 

for assessment, regions could be excluded if there were potential contaminants such as 

ink present, or a tissue fold that would give a false reading. Small areas (approximately 

5000 cells) were used to ensure the accuracy of positive cell detection, and that cells 

were being classified appropriately prior to whole slide assessment.  

Internal positive controls (predominantly inflammatory cells) were useful in ensuring 

the quality of the IHC undertaken, and were excluded from the analysis of staining 

intensity owing to a quirk in the software that means only tumour cells were assessed 

for this characteristic. As each individual classifier was trained to recognise 

inflammatory cells, the intensity of non-tumour cells is ignored by the current iteration 

of the QuPath algorithm. This script was then run on a whole slide basis, with care 

being taken to avoid the outer rim of the tissue as this could give a false positive reading  

(Reichling et al., 2019).  

The whole slide-image was assessed using the individual script of code that relied on 

the unique classifier that had been created for each tissue sample. This ensured the 
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sensitivity of tumour/background/inflammatory cell detection was tailored to each 

individual slide and therefore ensured maximal accuracy in this measurement. 

2.6.4.1 Project Size & Classifier Clarifications 

The Project is the file name for samples that are assessed together. The classifier is the 

tool that undertakes this assessment and can either be used across a number of samples 

(in a project) or can be created for each individual tissue sample being assessed. 

Assessment of tissues have been made after dividing them into groups based on 

histological subtype and using a single classifier to detect similar cells across a number 

of slides in one project (Reichling et al., 2019) or assessed a whole project 

simultaneously, having identified individual cells of interest on each slide when creating 

the classifier (Morriss et al., 2020). A third method of assessing tissues has also been 

published and involves teaching the object classifier for cell subtypes on each slide  

(Stålhammar et al., 2019). There are limited reports of the time required for these 

processes to be undertaken but the range cited for slide assessment varies from less than 

one minute (using the powerful Intel Xeon Gold 6128 CPU processor) to ten minutes 

per slide (K. Liu et al., 2019; Morriss et al., 2020). 

The potential benefits of being able to teach the classifier a wide range of 

morphologically diverse tumour types in training and validation cohorts. This would 

allow a powerful computer to use machine learning to detect malignant cells based on a 

very large training cohort as demonstrated by the 843 training and 212 validation cases 

Liu et al studied when studying nasopharyngeal carcinoma (K. Liu et al., 2019).  

However, as the ethical stipulations associated with this project mandate that the 

researcher be blinded to the patient characteristics and outcomes when studying the 

tissues, histological subgroup analysis was not appropriate as this would have involved 

a complex, partial, un-blinding process that would have violated these stipulations.  
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2.6.4.2 Creating an Object Classifier 

The process of teaching QuPath what cells to classify as tumour, inflammatory cell, 

stoma or background liver is intuitive and relatively simple. A visual guide is outlined 

in figure 12.  

With the page viewed in landscape, in the top left image, a yellow box has been drawn 

and will be used to teach QuPath how to process of detection and assigning cell classes 

within it. The ‘positive cell detection’ tool has been used in the top right image, where 

haematoxylin and DAB overlay each other. Note the arrowheads in the upper left of the 

image – these are not tumour cells but are being detected as a ‘positive’ cell by the red 

colouring. In the bottom left picture, the previously arrow-headed stromal cells have 

been highlighted in a drawn on blue ring (see arrow) and assigned as ‘stroma.’ QuPath 

has now learned that cells appearing similar to these (non-tumour) cells are re-classified 

within this optimisation box. Another arrow in the centre of the bottom left image is 

teaching QuPath what tumour cells look like. Other shapes (both in red and blue) have 

been drawn into this space over similar looking (either tumour or stroma) to better 

educate the software.  

Finally, the intensity-assessment is made (see bottom right image) across the whole 

tissue sample (note no box around the small number of cells as in the three other 

images) that gives blue (negative), yellow (+), orange (+ +) and red (+ + +) staining 

values. Pre-set and manually entered intensity values can be used for this step. Both the 

stroma and any negatively staining cells have been assigned the colour blue in this 

illustrative example.  
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Figure 12. Creating an object classifier in QuPath.  
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Once the image has been processed in its entirety, the processed image is quality 

controlled by visual inspection and, if it appears satisfactorily accurate, QuPath is then 

able to report Allred and H-scores. The time taken to teach the object classifier for a 

new image is approximately 1-2 minutes, with the following full slide assessment 

taking about 4-8 minutes, depending on the size of the data file. This is comfortably 

within the ten minutes previous researchers have quoted for the full assessment of each 

sample (K. Liu et al., 2019; Morriss et al., 2020). 

2.6.4.3 Trial Datasets 

Survivin stained tissues were the first to be assessed using the QuPath software in this 

cohort. A consultant Histopathologist with a subspecialty interest in hepatic pathology, 

Dr Jemimah Denson, assessed the tissues for their intensity of staining, and the 

percentage of cells staining positively. Dr Denson assessed a small cohort of randomly 

selected samples and the respective scores compared with those reported by QuPath.  

When the test cohort was assessed on QuPath and compared to Dr Denson’s 

quantification it quickly became apparent that attempting to use a single classifier 

across different tumour types would result in poor quality data. Examples of these 

issues include the computer slowing down considerably and intermittently crashing 

when the project size (number of images added to one file) was larger than ten images. 

As, on average, ten images account for between 30GB and 40GB of data that were open 

and being assessed simultaneously the available computer power meant an alternative 

approach would be necessary.  

Intracellular accumulation of lipoproteins is present in hepatocytes to varying degrees 

from different patients. These accumulations are associated with chronic liver 

dysfunction and their presence varies widely in across tissue samples. An advantage of 

creating individual detection classifiers means that the presence of these inclusions can 
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be accounted for when assigning a particular morphological feature to a tumour cell or 

normal hepatocyte.  

After re-assessing the staining of a small cohort of slides, there was considerable 

agreement between the algorithm and Dr Denson’s assessment. The quality of the 

Survivin antibody is readily apparent, and had been used in peer-reviewed publications 

more than 200 times, at the time of selection, including for the use of IHC on FFPE 

samples.  

2.6.4.4 Optimising Telomerase IHC interpretation 

The Survivin cohort was analysed using the pre-set values for staining intensity on 

QuPath. Regrettably when the same approach, using the installed values for staining 

intensity, was attempted in a test cohort of Telomerase IHC tissues the resulting data 

was inaccurate. An optimisation phase for assessing the Telomerase antibody-staining 

intensity was required that necessitated a range of cut off scores for to be tested and 

compared with Consultant Histopathologist, Dr Denson’s, scores. The parameters are 

outlined in table 16. 

Intensity Scores Negative 1+ 2+ 3+ 

Pre-Set <0.2 ≥0.2 but <0.4 ≥0.4 but <0.6 ≥0.6 

Alternative 1 <0.3 ≥0.3 but <0.5 ≥0.5 but <0.7 ≥0.7 

Alternative 2 <0.4 ≥0.4 but <0.6 ≥0.6 but <0.8 ≥0.8 

Table 16. Parameters used for optimising staining positivity for Telomerase IHC. Intensity measures are arbitrary 
units based on the optical density sum.  

A small batch of ten randomly selected samples was assessed using an object classifier 

whose only difference was the gated values for intensity scores outlined in table 16. 

This meant that there was minimal sample processing (i.e., none - other than the 

intensity values altering) between runs to ensure the only variable that changed between 

assessments was the staining intensity score. These results were then compared with Dr 
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Denson’s assessment of the tissues meaning the best fit for staining intensity was 

Alternative 1.  

This is perhaps a reflection of the less published antibody used in the assessment of 

Telomerase (used in 18 previous publications, not 219 as per the Survivin antibody) or 

maybe even the fact that Telomerase IHC may not be as readily interpreted, or indeed 

vary widely between antibodies (Kim et al., 2013). 

2.6.4.5 Quantifying Tissue Staining 

Appropriate scoring systems are required to fully describe the extent of tissue positivity 

(or otherwise) when assessing immunohistochemical data. To reduce whole slide image 

data to a simple, transferrable, interpretable format requires a scoring system, or 

systems, that have been designed to convey this information. There are two classical 

assessment methods: The Histological score (H-score) and the Allred scoring systems. 

Both the Allred & H-scores were initially devised to assess breast cancer tissues to 

differentiate between negative and strongly positive expression, and various levels in 

between (McCarty et al., 1986; Allred et al., 1998). This has helped researchers and 

clinicians convey degrees of tissue positivity for steroid receptor status since the late 

1980s. The H-score, out of 300, is calculated by the following formula (McCarty et al., 

1986): 

H-score (0-300) = 0*(% 0 intensity) +1*(% 1+ intensity) + 2*(% 2+ intensity) + 3*(% 3+ intensity) 

H-scores have been used in non-breast cancer research studies to quantify tissue 

staining metastatic liver disease from uveal melanoma and metachronous colorectal 

cancers  (Tamagawa et al., 2013; Gardner et al., 2014). The Allred score incorporates 

both the proportion of cells (proportion score, PS) and the intensity of staining (intensity 

score, IS) as outlined from Allred’s original paper studying breast cancer receptor 

staining in figure 13, (Allred et al., 1998). The Allred score = PS + IS.  
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Figure 13. Visual representation of the proportion score (PS) and the Intensity score (IS) giving the combined Allred 
Score. 

Proportion scores of 0 is for no staining, a score of 1 is for up to 1% of cells being 

positive, for between 1-10% of cells (score 2), 10.1-33.3% (score 3), 33.4-66.6% (score 

4) and 66.7-100% (score 5). The intensity of staining requires finite values to be 

interpreted (which QuPath accounts for) with values of 0, 1, 2 and 3 depending on how 

intensely stained the cells are, to give an Allred score from 0-8. This method has been 

used to study steatohepatitis in hyperlipidaemia, as well as the epidermal growth factor 

receptor status in colorectal cancer research (Rokita et al., 2013; Sturzeneker et al., 

2019). 

The Allred score was devised to assess Oestrogen receptor positivity in breast cancer 

and has been used in conjunction with Progesterone receptor status since the 1990s 

(Rhodes et al., 2020). Breast tumours are considered negative with an Allred score of 2, 

or lower, and have been stratified as low-expressing (Allred score 3-5) and high 

expressing scores (Allred 6-8) to further characterise both the extent and intensity of 

protein level (Campbell et al., 2016). In one case series 27% of breast cancers had an 

Allred score of 0 and 66% a score of 8, indicating the non-normal distribution of 
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staining intensity as shown in figure 14, (Rhodes et al., 2020).

 

Figure 14. Allred scores for Oestrogen and Progesterone receptors in Breast cancer.  

These scores were manually assessed and highlight the near-binary expression of 

Oestrogen receptors in this cohort of breast cancer specimens. There is clearly the 

potential for digital pathology to undertake some of this semi-quantification, especially 

when assessing a normal/near-normal distribution of protein expression. If Allred scores 

are normally distributed, dividing up the samples in no, low and high expression could 

yield greater accuracy in results. Figure 14 also gives a good representation of the 

positively staining (weak through to strong expression) found when semi-quantifying 

IHC. 

As significant numbers of cells are counted, and assessed, in QuPath, both scores will 

be used in the subsequent analysis to compare results. There is also precedent for sub-

categorising the intensity of tumour-expressing protein levels when prognosticating 

tumours with higher expression of Oestrogen or Progesterone (Campbell et al., 2016). 

There has also been a phase II/III trial in breast cancer patients using the cut off values 

of 6-8 for ‘ER rich’ tumours, and tailoring their therapy accordingly, (Ellis et al., 2010).  

2.7 ELISA 

Biobanked serum samples were thawed and used to in conjunction with commercially 

available enzymes linked immunosorbent assay (ELISA) kits.  



 103 

2.7.1  Survivin ELISA 

Serum Survivin levels were tested using the Human Survivin Quantikine® kit (R& D 

Systems®) using the manufacturers protocol as detailed below. Owing to the uncertain 

effect serum would have on the ELISA, experiments were repeated with both the 

provided diluent, and then with a 10% (v/v) healthy volunteer serum as the diluent for 

the standards. All samples, including controls, were run in duplicate. 

2.7.1.1 Preparation of Standards 

The Quantikine® standard was reconstituted from the lyophilised form with addition of 

900µL of deionised water, to give a stock concentration of 20,000 pg/mL, and allowed 

to completely reconstitute for 15 minutes. Subsequently, 100µL of this stock 

concentrate was added to 900µL of calibrator diluent, RD6-47, to give a high-standard 

concentration of 2000pg/mL, and mixed by pipetting. Serial dilutions were then made 

using equal parts calibrator diluent (500µL) and the mixed preceding concentration, as 

outlined in table 17. The calibrator diluent was used as the zero standard. 

Vial Volume of Diluent 
(µL) 

Volume (µL) & source of 
standard 

Final Concentration 
(pg/mL) 

A 900 100, Stock concentrate 2000 

B 500 500, vial A 1000 

C 500 500, vial B 500 

D 500 500, vial C 250 

E 500 500, vial D 125 

F 500 500, vial E 62.5 

G 500 500, vial F 31.3 

H 1000 N/A 0 

Table 17. ELISA reagents using the Survivin Quantikine® kit (R& D Systems®). 

For the repeat experiment to ascertain the effects, if any, of serum on the assay, the 

standards were diluted in 10% (v/v) healthy volunteer serum in the provided calibrator 

diluent. Reconstitution of the lyophilised standard was undertaken with deionised water 

only. The low standard (vial H) was 10% (v/v) healthy volunteer serum only.  
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The Quantikine Immunoassay Control Group 8 (catalogue number QC23, R& D 

Systems®) was used for an assessment of the assay function. Controls are present in 

low (143 – 360 pg/ml), medium (385 – 1015pg/ml) and high (834 – 1815 pg/ml) 

concentrations having been prepared in diluted porcine serum and subsequently 

lyophilised. The control samples contain numerous recombinant human cytokines in 

each vial.  

2.7.1.2 Experimental Procedure 

Microplates were removed from storage at -20 Celsius and left to equilibrate to RT. 

Room temperature assay diluent (RD1-9) was added to each well (100 µL) with equal 

volumes of standard, control or sample per well, to give a total volume of 200µL in 

each well. An adhesive strip was then used to cover the wells which were then 

incubated at RT for two hours on a horizontal orbital microplate shaker (Thomas 

Scientific, 0.12” orbit at 500 ± 50rpm). Well contents were then aspirated and washed 

with 400 µL (1x concentration) wash buffer for a total of four wash cycles using a 

multichannel pipette. Residual liquid was removed with inversion between steps, with 

blotting against clean paper towel after the last wash step. 

Human Survivin conjugate (200 µL) was then added to each well, covered with a new 

adhesive strip and incubated at RT for two hours on a horizontal orbital microplate 

shaker (Thomas Scientific, 0.12” orbit at 500 ± 50rpm). Aspiration and wash cycles 

(x4) were repeated. Substrate solution (200µL) was added to each well and the samples 

were covered and incubated at RT on the benchtop whilst being protected from light, for 

thirty minutes. Following this 50 µL of Stop solution was added to each well allowing a 

homogenous change in colour from blue to straw-yellow. Optical density (OD) was then 

measured within 30 minutes at both 570 nm and 540 nm with the recorded reading 

corrected for the 570 nm wavelength (540 nm – 570 nm) to correct for optical 

imperfections in the plate.  



 105 

For calculating the relative differences in absorbance between wells, the 540 nm-570nm 

readings were used and each reading had subtracted the zero-standard (0 pg/mL) 

reading to demonstrate relative differences in absorbance.  

2.7.1.3 Calibration Curves 

Samples were run in duplicate and calibration curves were calculated for each ELISA 

run. These calibration curves can be seen in figures 15 & 16, depending on the diluent 

used. Error bars demonstrate the standard deviation.  

 

Figure 15. Standard curve used to correlate optical density (OD) with concentration using the calibrator diluent. 

To account for other, serum, effects these experiments were repeated, as shown in 

figure 16.  

 

Figure 16. Standard curve used to correlate optical density (OD) with concentration using 10% (v/v) healthy 
volunteer (HV) serum in calibrator diluent. 
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2.7.2 Telomerase ELISA 

Serum hTERT was detected using the Human Telomerase Reverse Transcriptase 

(TERT) ELISA Kit (abx251454, abbexa®). Samples and standards were run in 

duplicate and the effect serum had on the assay was ascertained by running the 

experiment with calibrator diluent (as provided by the manufacturer) and in 10% (v/v) 

healthy volunteer serum.  

2.7.2.1 Preparation of Standards 

To ensure all of the lyophilised powder was used, the dry powder was centrifuged 

briefly to ensure there were no residues in the cap of the vial. To the lyophilised 

powder, 1 mL of Sample/Standard diluent was added and mixed by pipetting and then 

allowed to sit for 15 minutes at RT. Care was taken to avoid mixing by vortexing as this 

would destabilise the protein. Once reconstituted, each standard was used immediately 

and then discarded to ensure optimal accuracy in measurement. Subsequent serial 

dilutions of the standards are outlined in table 18. 

Vial Volume (µL) of additional 
Sample/Standard Diluent 

Volume (µL) & 
source of standard 

Final Concentration 
(ng/mL) 

A N/A 1000, Standard. 10 

B 500 500, vial A 5 

C 500 500, vial B 2.5 

D 500 500, vial C 1.25 

E 500 500, vial D 0.63 

F 500 500, vial E 0.31 

G 500 500, vial F 0.16 

H 500 N/A 0 

Table 18. Standards prepared from the ELISA Kit (abx251454, abbexa®).  

For the repeat experiment to ascertain the effects, if any, of serum on the assay, the 

standards were diluted in 10% (v/v) healthy volunteer serum in the provided 

sample/standard diluent. The low standard (vial H) was 10% (v/v) healthy volunteer 

serum only.  
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2.7.2.2 Experimental Procedure 

All reagents and kit components were equilibrated to room temperature before use. Into 

each well, 100 µL of standard, sample or zero control was added, covered with adhesive 

strip and incubated at 37 Celsius for 90 minutes. Following this incubation step, the 

liquid contents was discarded and (without a wash step) 100 µL of the biotin conjugated 

antibody was added to each well. A new adhesive coverslip was added and then 

incubated at 37 Celsius for a further 60 minutes.  

The well contents were discarded and three washes with 1X wash buffer were 

undertaken using a multi-channel pipette, with a 90 second soaking period for each 

wash step. Well contents were completely removed (with inversion) after each stage and 

after the final wash step the plate was inverted and blotted against clean absorbent paper 

towels. 100 µL of HRP working solution was then added to each well, covered with 

new adhesive plastic and incubated at 37 Celsius for 30 minutes.  

The well contents were discarded and five wash steps, as described above, was 

undertaken. TMB substrate (90 µL) was added to each well, covered and incubated at 

37 Celsius, in dark conditions, for 20 minutes. Stop solution (50 µL) was then added to 

each well with a concurrent colour change to a homogenous straw-yellow. Absorbance 

measurements were undertaken at 450 nm immediately.  

For calculation of the relative absorbance, the zero-standard (0 ng/mL) reading was 

subtracted from the recorded reading from each well, at 450 nm.  

2.7.2.3 Calibration Curves 

Samples were run in duplicate and mean values were taken, as can be seen in figures 17 

& 18.  
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Figure 17. Standard curves used to correlate OD with concentration using only calibrator diluent with the 
Telomerase ELISA Kit (abx251454, Abbexa 

Standard curves for samples run in duplicate using provided diluent (not 10% HV 

serum) are shown in figure 17. The OD reading for the 10 ng/ml high standard was 

lower than expected, so both calibration curves (one including the 10ng/ml reading and 

one excluding it) are shown.  

When the calibration curve was run in 10% HV serum, the results were disappointing, 

as can be seen in figure 18. 

 

Figure 18. The standard curve used to correlate OD with concentration using 10% HV serum as calibrator diluent 
from the Telomerase ELISA Kit (abx251454, Abbexa. 

As can be seen from the calibration curve in figure 18, there is no clear relationship 

between telomerase concentration and optical density when the standards are diluted in 

10% healthy volunteer serum. Some OD values were negative, and so a log-log graph 

cannot be calculated.  
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2.8 Exosome Work 

Exosomes were extracted from biobanked serum samples using a commercially 

available kit that exploits the precipitation method as has been reported previously 

(Gutkin et al., 2016; Goldvaser et al., 2017). Choosing the precipitation method over 

ultracentrifugation was prudent as processing could be undertaken using routine bench 

top equipment and currently has the maximal exosomal yield when compared to other 

methods of retrieval (Patel et al., 2019).  

2.8.1 Experimental Procedure 

2.8.1.1 Exosome Isolation 

The Total Exosome Isolation Reagent, from Serum (Invitrogen, catalogue number 

4478360) was used and the procedure followed was, briefly, outlined below. Serum 

samples were removed from the -80 Celsius freezer defrosted and placed on ice. Serum 

samples were centrifuged at 2000 x g for 30 minutes at 4 Celsius to remove cells and 

debris. The supernatant of clarified serum was transferred to an RNAse/DNAse free 

Eppendorf tube, taking care to not disturb the cellular pellet, and placed on ice. 

Workable volumes of clarified media (250 μL) had 0.2 volume equivalents (50 μL) of 

Total Exosome Isolation reagent added to them and were mixed vigorously by pipetting 

until a cloudy, homogenous, solution was present. The reaction mixture was then stored 

at 4 Celsius for 30 minutes. Following this step, the reaction mixture was then 

centrifuged at 10000 x g for 10 minutes at room temperature. The supernatant was 

discarded to leave a yellow/orange pellet of exosomes in the bottom of the Eppendorf. 

A single wash step involved the addition of 1x PBS (Thermofisher) and then carefully 

removing the PBS whilst the exosomal pellet remained at the bottom of the Eppendorf 

tube. The Exosomal pellet was resuspended in 500 μL QIAzol (Qiagen) with care taken 

to work in a fume hood and work with filtered tips. The resuspension phase can take up 
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to 15 minutes with larger exosomal pellets and involves mixing extensively by 

pipetting. 

2.8.1.2 RNA Extraction 

2.8.1.2.1 Exosomal RNA 

Chloroform (Sigma Aldrich), 100μL, was added to the samples when under the fume 

hood with a p1000 filtered pipette and mixed by shaking manually for 15 seconds. 

Samples were then centrifuged at 12000 x g for 15 minutes at 4 Celsius. Following 

centrifugation, the clear upper phase was transferred to a new RNAse/DNAse free 

Eppendorf tube for RNA extraction. Care was taken to not aspirate the white middle 

layer (protein) or touch the sides of the Eppendorf tube whilst pipetting to minimise 

contamination at this stage. PCR grade Isopropanol (Sigma Aldrich) (250μL) was added 

to the samples and mixed by flicking the Eppendorf tubes. The samples were then 

stored overnight at -20 Celsius to facilitate RNA precipitation.  

The following day the samples were removed from -20 Celsius and centrifuged at 

12000 x g for 10 minutes at 4 Celsius. The supernatant was removed, discarded, and 

then 500μL of 75% molecular grade ethanol (Sigma Aldrich) was added to the stable 

RNA pellet. Samples were then centrifuged at 7500 x g for 5 minutes (4 Celsius) and 

then the supernatant was carefully removed and discarded. At this stage the RNA pellet 

was less stable so some of the dilute ethanol was left in the Eppendorf and left to air-dry 

on the bench top.  

The RNA pellet was then resuspended in 40μL nuclease free molecular grade water 

(who/where) then incubated at 56 Celsius on a heatblock (Dri-Block DB 2D, Techne) 

for 10 minutes. Following this step, the RNA could be quantified and quality assessed 

using a NanoDrop™ (2000 spectrophotometer Thermo Scientific™) comparing nucleic 
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acid contents to the nuclease free water used for the final dilution step. Extracted RNA 

was either used immediately or stored at -80 Celsius prior to further experimentation.  

2.8.1.2.2 Cell Lines 

The Huh7.5 cell line was used as a calibrator for qPCR. The TRIzol extraction method 

was used for RNA extraction, with spin-column purification using Direc-zol RNA 

Miniprep (Zymo Research, catalogue number R2050). The experimental procedure is 

outlined briefly below.  

Growth media was removed and 0.3mL of TRIzolÔ reagent (Invitrogen, catalogue 

number 15596026) was added per 1x106 cells directly into the culture dish, with 

homogenisation by pipetting. Samples were then incubated for five minutes at RT. 

Equal volumes (0.3mL per 1x106 cells) of ethanol (purity > 99.8%, Honeywell) was 

added to the lysed sample. The liquid was then transferred to a Zymo-Spin IICR 

Column (Zymogen) in a new DNase/ RNase free collection tube. The sample was 

centrifuged (10000 x g, 30 seconds, RT) and the flow-through discarded.  

DNase 1 treatment was undertaken and the reagents were mixed in a separate Eppendrof 

tube: 6µL of DNase 1 to 75µL of DNA digestion buffer, and mixing by gentle 

inversion. The addition of RNA Wash Buffer (400µL) into the spin column, with 

centrifugation (10000 x g, 30 seconds, RT), discarding the flow through and then the 

addition of the DNase 1 mix. Incubation in the spin column for 15 minutes at RT.  

Then 400µL of Direct-zol RNA PreWash was added to the column, centrifuged (10000 

x g, 30 seconds, RT), and the flow through was discarded. The Pre-Wash step was 

repeated once more. Washing the RNA by addition of 700µL RNA Wash Buffer to the 

column and centrifuged (10000 x g, 1 minute, RT), followed by transfer of the column 

into a sterilised DNase/ RNase-free Eppendorf. The RNA was eluted with the addition 
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of 50µL of DNase/ RNase-free water, followed by centrifugation (10000 x g, 30 

seconds, RT).  

The RNA was assessed using the NanoDrop™ 2000 spectrophotometer (Thermo 

Scientific™) to assess both the quality (260/280 ratio) and quantity (concentration, in 

ng/µL) of extracted RNA. Only RNA with a 260/280 ratio >1.8 was used for 

subsequent experiments. Aliquots were stored at -80 Celsius.  

2.8.1.3 Reverse Transcription 

The reverse transcription of RNA to cDNA was done using Applied Biosystems™ 

High-Capacity cDNA Reverse Transcription Kit with RNAse Inhibitor (Catalogue 

number 4374967) as outlined below.  

Kit components were thawed on ice and a 2X mastermix was created as outlined in 

table 19, making n+1 aliquots for n samples. 

Component Volume per reaction 

10X Reverse Transcription Buffer 2.0 μL 

25X dNTP Mix 0.8 μL 

10X Reverse Transcription Random Primers 2.0 μL 

MultiScribe™ Reverse Transcriptase 1.0 μL 

RNAse Inhibitor 0.5 μL 

Nuclease Free Water 3.7 μL 

Total Volume 10.0 μL 

Table 19. Reverse transcription reaction volumes for the Applied Biosystems™ High-Capacity cDNA Reverse 
Transcription Kit with RNAse Inhibitor.  

The 2X mastermix was mixed with gentle vortexing and centrifugation. The final 

reaction was assembled with the addition of 1 μg of RNA added to 10 μL of the 2X 

mastermix and additional nuclease free water to make a final reaction volume of 20 μL 

in nuclease free Eppendorfs. The blank, no template control, reaction mix had 10 μL of 

nuclease free water added to 10 μL of the 2X mastermix to ensure no contamination had 

occurred that would be alter the experimental findings. 
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After briefly centrifuging the reaction mixtures to eliminate air bubbles and ensure 

reaction mixtures were in the bottom of the Eppendorfs, they were placed on ice.  The 

Thermal Cycler (Labtech GS4 G-Storm, Gene Technologies) was set with the following 

steps: table 20.  

Settings Step1 Step 2 Step 3 Step 4 

Temperature 25 °C 37 °C 85 °C 4 °C 

Time 10 minutes 120 minutes 5 minutes ∞ 

Table 20. Reverse Transcription reaction conditions for Applied Biosystems™ High-Capacity cDNA Reverse 
Transcription Kit with RNAse Inhibitor.   

Once the reaction was complete samples were stored at 4 Celsius until processed for the 

qPCR.  

2.8.1.4 qPCR 

Quantitative PCR was undertaken using the Applied Biosystems™ TaqMan™ Fast 

Advanced Master Mix (catalogue number 4444557) and TaqMan™ gene expression 

assay probes for Survivin (BIRC5, Assay ID Hs00977611_g1, catalogue number 

4331182), Telomerase (TERT, Assay ID Hs00972650_m1, catalogue number 4331182) 

and the housekeeping gene hypoxanthine phosphoribosyltransferase 1 (HPRT1, Assay 

ID Hs02800695_m1, catalogue number 4331182). Each of the assay probes contained 

the FAM™ reporter dye labelled TaqMan™ minor groove binder (MGB) moiety and 

were purchases in 250 reaction quantities. The specific assays were selected because 

they targeted nucleic acids that spanned more than one exon with respective amplicon 

lengths of 113 base pairs (BIRC5), 57 base pairs (TERT) and 82 base pairs (HPRT1).  

The experimental reagents were used in the following quantities as outlined in table 21. 

Volumes for n+1 reactions were made up to account for pipetting error. 
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Component Volume per reaction (µL) Final Concentration 

Mastermix 10.0 1X 

Assay Probes 1.0 1X 

Nuclease-free water 7.0 - 

cDNA 2.0 - 

Total volume 20 µL - 

Table 21. TaqMan qPCR reaction mix. 

With the reaction conditions in a Lightcycler 480 (Roche) thermocycler as outlined in 

table 22. 

Step Temperature (Celsius) Time Ramp Rate 

Hotstart 95 2 min 4.4 

45 cycles of 1 & 2.   

1. Denature 95 15 sec 4.4 

2. Annealing 60 1 min 2.2 

Followed by a single cooling step 

Cooling 40 30 sec 2.2 

Table 22. Reaction conditions, as outlined by for use with the TaqMan and custom TaqMan Gene Expression Assays. 

The sealed 96 well plates were then frozen for subsequent analysis, should it be 

required.  
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3 Promoter Sequencing Results. 

3.1 Introduction 

As detailed in chapter 2, DNA from archived samples was often of poor-quality samples 

and difficult to sequence, often requiring multiple cycles of PCR reaction, gel analysis, 

purification of PCR products and finally sending samples off for Sanger sequencing. 

DNA extracted from very early samples (DNA 1 – 6) were of such poor quality that 

repeat processing was required, so these study numbers do not feature in any examples 

as the tissues were re-anonymised when extraction and processing of DNA was 

undertaken. Visits to the Derriford Combined Laboratories (DCL) proved very helpful 

as a similar technique (DNA extraction from FFPE samples and PCR amplification) is 

used clinically for the assessment of methylation status of brain tumours for the O(6)-

methylguanine-DNA methyltransferase (MGMT) DNA repair gene and assessing 

epidermal growth factor receptor (EGFR) mutations in lung cancer (Bethune et al., 

2010; Thon, Kreth and Kreth, 2013). 

3.1.1 Survivin PCR Optimisation 

Initial sequencing work was undertaken targeting the promoter region upstream of the 

Survivin transcription start site. Some considerable optimisation was required to ensure 

an appropriate PCR product was achieved consistently. 

3.1.1.1 Primer Selections 

Initial reactions were undertaken using previously published primer pairs/reaction 

conditions to explore potential combinations for use in the whole cohort. In figure 19 

DNA extracted from FFPE colorectal carcinomas (samples 16c and 17a) were run on a 

2% gel alongside a 100base pair ladder.  
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Figure 19 highlights bands that are present at roughly halfway between 100 and 200 

base pairs when the SurvF1R1 primer pair (annealed at 57 Celsius, 151bp PCR product) 

was used, confirmed with DNA from two separate tumour samples. The smaller PCR 

product (128 base pairs) was non-detectable in both reactions, indicating a failed 

experiment when annealed at 55 Celsius.  

Alternative PCR primer pairs were also trialled as outlined in figure 20. As figure 20 

demonstrates, there were inconsistent results with the larger (329bp) PCR product, with 

some reproducibility (lower half) with some primer-dimer in the negative control lane. 

Expected PCR products for the primer pairs known as Han-625 (125 base pairs) and 

Han-31 (329 base pairs) when run in duplicate should have yielded reproducible results 

Figure 19. A 2% Agarose gel for the PCR products in test samples 16c and 17a. 

Figure 20. A 2% Agarose gel for the PCR products using DNA from sample 11c. 
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when annealed at 57 Celsius (Han et al., 2009). In the top panel, there is primer-dimer 

(present faintly in the negative control lane) and only one of two repeats have given an 

expected PCR product size, with a number of other non-specific bands also present. In 

the lower part of figure 20, there is also primer dimer present, but more consistent 

bands, if a little fuzzy, are present in both lanes. The inconsistent and non-specific 

nature of the results shown in figure 20 indicated that perhaps the best candidate for 

further use was the SurvF1R1 primer pair.  

Sequences of fewer than 150 base pairs have not been recommended for Sanger 

sequencing by the LGC Genomics, meaning primer pairs that gave sequences shorter 

than this were potentially viable but preference would be given to a larger PCR product 

if this was technically feasible to produce this. Fortunately, SurvF1R1 gave a sequence 

of 151bp in size and the potential to further increase the PCR product size using 

universal primers, as discussed below.  

3.1.1.2 Gradient PCR & Enzyme Selection 

Initial experiments used polymerases that were available within the lab group 

(Dreamtaq) failed to register consistent results. Small aliquots of Accuprime PFx and 

Q5 polymerases were trialled and gave promising initial results.  

Gradient PCR reactions facilitate a relatively rapid optimisation process for defining the 

best annealing temperature for PCR reactions. To maximise the potential primer 

combinations available to use for reactions, gradient PCR reactions were also 

undertaken with other promising primer-pairs. Given the Han-31 primer pair gave a 329 

base pair product size, this would have made sequencing easier if it worked sufficiently 

well. As can be seen in figure 21 the desired PCR product size of 329 base pairs has not 

been achieved and there is also evidence of primer-dimer – as shown by the <100bp 

band in the negative (no template) control sample.  
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Figure 21 fails to replicate previous successful PCR reactions, despite annealing over a 

wide range of temperatures. Given that previous groups have struggled to reproduce 

PCR reactions for targets >200 base pairs, it was felt the Survivin-31 F1R1 primer pair 

(yielding a 151 base pair PCR product size) should be used for subsequent experiments.  

There were encouraging results from an alternative polymerase, Q5, and one of the 

initial gels is shown in figure 22.  

Regrettably when this experiment was repeated, there was no reproducibility of the PCR 

products. 

Figure 21. A 2% Agarose gel from a gradient PCR reaction using the ‘Han -31’ primers and the Accuprime 
polymerase. 

Figure 22. A 2% Agarose gel from a gradient PCR using the ‘Surv F1R1’ primers and the Q5 polymerase.  
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Accuprime PFx polymerase was found to give the best results when annealing at 

62.1℃, as shown in figure 23 so was ultimately adopted as the enzyme of choice for 

PCR reactions sequencing the Survivin promoter region. 

There is some non-specific smear-artefact in the bands observed in figure 23 with the 

exception of lane 11 (annealing at 62.1 Celsius) and as such, this temperature step was 

selected for use with the SurvF1R1 primers, and the Accuprime Pfx polymerase. 

 

Figure 23. A 2% Agarose gel from a gradient PCR using the ‘Surv F1R1’ primers and the Accuprime Pfx 
polymerase. 
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3.1.1.3 Universal Primers 

In an attempt to increase the read length of the PCR product a universal primer was 

added on to the 5’ end of the forward primer (Kelley and Quackenbush, 1999). A 

number of hybrid primers were created with universal primer added to the 5’ end of 

either the forward or reverse primer, resulting in a larger PCR product that would 

theoretically neatly navigate this issue, figure 24 and table 23.  

 

Figure 24. Left side: A 2% Agarose gel with annealing temperatures as follows: Red (61.1℃), Yellow (61.9℃), Blue 
(63.1℃) and Purple (64.0℃). The layout outlined in the top half of the panel is replicated in the bottom half. Ext 
denotes the extended primer with F1 and R1 being the unaltered originals: Ext-R1 is the extended version of the R1 
primer, Ext-F1 is the extended version of the F1 primer. Notably the ExtF1-ExtR1 combination failed to produce a 
PCR product at every annealing temperature tested. 

The universal primers are each 18 base pairs long, giving the predicted PCR product 

sizes outlined in table 23 and the gel from PCR reactions in figure 24. There was some 

success in creating a larger PCR product using both the extendedF1-R1 (ExtF1-R1) and 

F1-extended R1 (F1-ExtR1). Regrettably the quantities of PCR product created in these 

reactions were too low (i.e., below the 100ng minimum required) to allow for Sanger 

sequencing.  

Primer 
Combination 

Predicted PCR product 
size (Base pairs) 

ExtF1-R1 169 

F1-R1 151 

ExtF1-ExtR1 187 

F1-ExtR1 169 

Table 23. Predicted PCR product sizes of various primer pairs, including the additional universal primers. 
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3.1.2 Telomerase Optimisation 

Experience gained from optimising PCR reactions for the Survivin promoter was 

transferred to the optimisation for the Telomerase promoter region. This streamlined the 

optimisation process as fewer primer pairs and enzymes were trialled as a PCR product 

of around 200 bases was the desired goal. 

3.1.2.1 Primer Selection 

Recently published papers used predominantly two pairs of primers when undertaking 

Sanger Sequencing of higher quality DNA (from frozen tissue or extracted from whole 

blood) and these were purchased for experiments (Nault et al., 2013; Huang et al., 

2015; Purkait et al., 2016). Primer pairs called ‘short TERT’ and ‘TERT F3R3’ yielding 

163 and 190 base pair sized PCR products respectively.  

3.1.2.2 Gradient PCR and Enzyme Selection 

As both the Accuprime and Q5 polymerases were readily accessible these combinations 

were trialled, as outlined in figure 25. 

 

Figure 25. A 2% Agarose from PCR using Accuprime Pfx & Q5 polymerases. 

However, these early results were beset with problems of a lack of reproducibility. 

Thus, the literature was consulted for an appropriate enzyme that had previously been 

used with these primer pairs. Both Chan et al and Huang and colleagues used KAPA 2G 

DNA Polymerase to great effect, so an aliquot of this was purchased for 
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experimentation (Chan et al., 2015; Huang et al., 2015). Gradient PCR reactions using 

both primer pairs can be seen in figure 26.  

 

Figure 26. A 2% Agarose Gel of gradient PCR comparing primer pairs and the KAPA 2G polymerase. 

Nonespecific PCR products and smearing was noted using the Short Tert primer pair 

(top panel). Fewer problems were observed with the F3R3 primers (lower panel) and 

annealing at 60℃ gave a consistently good PCR product. A more focused gradient PCR 

reaction was undertaken and can be seen in figure 27. 
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Figure 27. An abbreviated 2% Agarose Gel of a focused gradient PCR comparing primer pairs using the KAPA 2G 
polymerase. 

The strongest band was consistently found when combining the Tert F3R3 primer pair 

(bottom panel) and annealing at 60.1 Celsius, giving a PCR product size of just under 

200 base pairs in size. Hence reaction conditions for sequencing were set using 60 

Celsius, F3R3 primers and the KAPA 2G polymerase. 

3.1.3 Results from MacVector 

Once the reaction conditions were determined, large-scale processing was undertaken to 

ensure DNA from all samples were sequenced. Once the reactions had been undertaken, 

gels run, PCR product purified, a specific mass of PCR product, in addition to either a 

forward or reverse primer, and sent for Sanger sequencing there was a repository of 

sequence data available for interpreting. MacVector software was used to analyse files 

in the “.ab1” format.  

3.1.3.1 Survivin Promoter 

3.1.3.1.1 Quality Assurance 

Visual inspection of chromatograms was necessary to ascertain the quality, or 

otherwise, of the sequence data generated. Examples of both high and low-quality 

sequence data can be seen in figure 8.  
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To ensure the sequences were accurate enough for further assessment, the BLAST 

search function of MacVector was used which facilitated the comparison of the ‘Query’ 

(PCR product) with the NCBI database, as shown in figure 28.  

 

Figure 28. Output data from MacVector software comparing the PCR product ‘Query’ to the NCBI reference 
database ‘Subject’. The single error is during an AA base repeat otherwise giving 103/104 bases in sequence (>99% 
accurate) that is recognised as homologous to Human Survivin (gene: BIRC5). 

Each chromatogram was visually inspected to ensure further analysis was appropriate. 

A small number of initial sequences were fully assessed using the BLAST assessment 

tool and have been populated to give the table 24.  

Sample PCR Product Size Sequence Orientation Ref Seq Result 

F7a 103 Forward >99% (103 of 104) 

R7a 101 Reverse 99% (99 of 100) 

F7b 106 Forward >98% (102 of 104) 

R7b 103 Reverse 99% (99 of 100) 

F8a 99 Forward 98% (98 of 100) 

R8a 99 Reverse 99% (99 of 100) 

F8b 103 Forward 98% (98 of 100) 

R8b 101 Reverse 98% (98 of 100) 

F9b 106 Forward >99% (103 of 104) 

R9b 101 Reverse 100% (100 of 100) 

F11b 107 Forward >99% (103 of 104) 

R11b 101 Reverse 100% (99 of 99) 

F11c 107 Forward >99% (103 of 104) 

R11c 101 Reverse 100% (100 0f 100) 

Table 24. Forward (F) and reverse (R) sequences from early results (study sample numbers 7-11) are compared to a 
reference database for Survivin PCR products. The reference sequence ‘Ref Seq’ result demonstrates the percentage 
of sequence homology between PCR product and the reference database. 

Generally, there was excellent agreement between the PCR product and the reference 

database, with the majority of cases giving >98% sequence homology.  
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A green bar above a sequence position means a Phred quality score >20 (i.e., <1/100 

chance of an error) whilst a red bar above a number indicates a higher (>1/100) chance 

of an error occurring when assigning a base – see below.  

3.1.3.1.2 Finding the ROI 

The sequence was assessed by ensuring an appropriate level of quality based on the 

Phred-called chance of an error – see below. Once sequences were deemed an 

acceptable level of quality, the region of interest was found using the search function on 

MacVector. For Survivin this was TCGC_GGA in the forward sequence and 

GTCC_GCG for the reverse direction with the underscore representing the -31 position 

of interest. Only when there was complementary agreement (i.e., C in the forward and 

G in reverse) would the status of the -31 position be ascertained.  

3.1.3.1.3 Example Sequences 

Chromatograms in figure 29 show a black waveform for G nucleotides (GG 

homozygote, top of image) a blue for C (CC homozygote, bottom image) and both a 

black and a blue waveform for the CG heterozygote (middle of fig 29). As can be seen 

in all three chromatograms, there is evidence of poor-quality data at the start of the 

sequence – as shown by the red bars (>1% chance of error) up to the ~10th base in 

sequence. The addition of the 18 bases from the universal primer at the 5’ sequence 

upstream of the F1R1 primer would have neatly removed this error-prone region. 

However, it was not technically feasible as the efficiency of the PCR reactions 

deteriorated when the extended primer was used. 
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Figure 29. Chromatograms of forward sequences around the Survivin -31C/G position. 

Chromatograms at the top (GG homozygote, position 32), middle (CG heterozygote, 

position 33) and bottom (CC homozygote, position 35) are seen in figure 29. The green 

bars over the sequence number indicates the ‘phred’ base-calling accuracy in 

measurement, with an assumed error rate of <1%. When a red bar is seen (as in the case 

in position 33 in the heterozygous middle sequence) the error rate is above this 1% 

threshold. 
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3.1.3.2 Telomerase Promoter 

Telomerase sequencing reactions were processed after all the data regarding the 

Survivin -31G>C was known. This delay meant access to the MacVector software was 

re-purchased as the annual subscription had elapsed. 

3.1.3.2.1 Quality Assurance 

Regrettably an update to the software meant the BLAST sequence analysis tool did not 

function as previously described for the Survivin sequences. These original Survivin 

sequences were re-run and gave the same non-interpreted reading, as given for the new 

Telomerase sequences, as the software stalled. An example of this error can be seen in 

fig 30. 

 

Figure 30. Analysis of the forward sequence from the Telomerase PCR products sample 144b using the ‘.ab1’ 
format. 

However, the Telomerase promoter sequences generated were generally a lot cleaner 

than those for Survivin, with significantly better base-calling ability when viewing the 

“.ab1” files. The ‘phred’ base call numerical values (denoted by the green box above the 

base) consistently gave quality scores >30 (i.e., 0.1% chance of error, 99.9% accurate) 

and regularly gave readings of 50 (0.001% error or 99.999% accurate) or more. An 

example of the quality assessment taken from a chromatogram report from the forward 

sequence of 144b is shown in table 25.  
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Chromatogram Raw Data report for 144b 
 Index 

Position  Base 
Phred 

Quality 
26   C 52 
27   C 45 
28   C 40 
29   G 40 
30   G 52 
31   G 52 
32   T 52 
33   C 32 
34   C 32 
35   C 32 
36   C 45 
37   G 45 
38   G 45 
39   C 52 
40   C 40 
41   C 45 
42   A 40 
43   G 45 
44   C 52 
45   C 55 
46   C 55 
47   C 52 
48   C 52 
49   T 45 

Table 25 Sequences from the Telomerase promoter were of significantly higher quality, as measured by the ‘phred 
quality’ given by the MacVector software. 

Shorter sequences of the PCR products were used as input queries on the BLAST search 

engine. The areas searched contained both of the positions of interest (-124 and -146) to 

ensure WT/mutational status was adequately checked (see below). An example of 

search results for ten samples is shown in table 26. 

 

 

 

 

 

 



 129 

Sample PCR Product 
Positions (size) 

Sequence 
Orientation 

Ref Seq Result Duration of Search 
(minutes) 

96a 20 -55 (36) Forward 100% (36/36) 38 

96a 70 – 110 (41) Reverse 100% (41/41) 32 

137b 20 -55 (36) Forward 100% (36/36) 25 

137b 70 – 110 (41) Reverse 100% (41/41) 29 

112b 20 -55 (36) Forward 100% (36/36) 25 

112b 70 – 110 (41) Reverse 100% (41/41) 40 

144b 20 -55 (36) Forward 100% (36/36) 30 

144b 70 – 110 (41) Reverse 100% (41/41) 34 

146a 20 -55 (36) Forward 100% (36/36) 4 

146a 70 – 110 (41) Reverse 100% (41/41) 33 

Table 26.Telomerase PCR products from samples are shown alongside their regions of interest, sequence orientation 
and the Ref Seq result (accuracy) are shown alongside the duration of the search of the NCBI database. 

Assessing these shorter sequences still took some considerable time but confirmed 

primers had amplified the correct target DNA. Examples of these BLAST searches can 

be seen in figure 31. 

 

Figure 31. BLAST sequences for the Telomerase promoter are compared to NCBI reference  

Figure 31 shows sample 112b with forward (upper image) and reverse (lower image) 

sequences confirming 100% homology. 

3.1.3.2.2 Finding the ROI	

The region of interest for the Telomerase promoter was different from that of Survivin 

as there were two targets in the same genetic sequence, as outlined in table 27. 
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Target Forward Sequence Reverse Sequence 

-124 AGCCCC_TCCGGGCC CCCGGA_GGGG 

-146 ACCCCT_CCGGGT ACCCGG_AGGGG 

Table 27 Forward and reverse sequences for the mutational, or wild type, signatures in the Telomerase promoter 
region. 

The mutational hotspots in the forward sequences tended to be roughly in the region of 

position 30 (-146) and 50 (-124) and for the reverse orientation around 80 (-124) and 

100 (-146). The raw sequence data was searched using the targets outlined in table 27. 

The same approach of using the search function to find the regions of interest, whilst 

making a simultaneous quality assessment based on the Phred score, that has previously 

been adopted was used to ensure accuracy of base-calling of the neighbouring bases. 

3.1.3.2.3 Example Sequences 

Example sequences from the Telomerase promoter region PCR products can be seen in 

figure 32. 
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Figure 32. Chromatograms of Telomerase promoter regions, as visualised on MacVector.  

A wild type promoter sequence is shown in the top sequence of figure 32, with blue C 

waveforms, with heterozygous CT alleles in the -124 (middle sequence, position 51) 

and the -146 position (bottom sequence, position 29).  

3.2 Interpreting Promoter Status  

Repeat experiments of either failed/un-interpretable runs were undertaken, maximising 

the data available for interpretation. Once as many sequences as possible were known, 

given the previously described limitations of using poor quality DNA, the un-blinding 

process was undertaken. On the rare occasions that repeated reactions yielded no 
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results, the unblinding process allowed these troublesome samples to be identified and a 

repeat cycle of randomisation, DNA retrieval, PCR reactions/analysis to be undertaken. 

The DNA was sometimes retrieved from the same block, or another tumour block to 

maximise the samples being studied. It was also relatively common that the background 

liver tissue block was either already, or was very nearly, exhausted due to the extensive 

IHC assessment of the liver tissues for the diagnostic work-up. When there was no 

background liver tissue available for research, only tumour samples were assessed. 

3.2.1 Survivin Promoter 

Excluding repeats, DNA from 261 samples underwent amplification with bi-directional 

confirmation of sequence in 254 samples (97.3%). This larger cohort includes the 

extrahepatic CCA. Of the 7 samples withdrawn from further analysis, one was 

withdrawn from the study as it is a spindle cell Cholangiocarcinoma and 6 others failed 

repeated attempts at PCR amplification. 

When dCCA were excluded from analysis, sequences from 234 individual samples were 

attempted with 5 withdrawn from consideration (the spindle cell CCA and 4 that could 

not be amplified successfully) giving a similar sequencing success rate of 97.8% 

(229/234) across samples. The 4 failed samples were all from tumour tissues.  

The Survivin promoter SNPs were fully concordant between background and tumour 

samples across all sequenced samples. This germline characteristic can be seen in 

figures 33-36. This is a surprising finding as it was expected that the -31 promoter SNP 

would mutate from WT in the background tissue. The pSurv CG heterozygotes (purple 

background), GG homozygotes (green background) and CC homozygotes (blue 

background) are highlighted in tumour (T) and background (BG) liver samples in 

figures 33 – 36.  
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Figure 33. Survivin -31G/C alleles in Mixed HCC-CCA and background liver.  
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Figure 34. Survivin -31G/C alleles in Adenoma and background liver.   
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Figure 35. Survivin -31G/C alleles in Hepatocellular carcinoma and background liver. 

Figure 36. Survivin -31G/C alleles in Cholangiocellular carcinoma and background liver. 
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The minor allele frequency for the -31G>C (rs9904341) Survivin promoter for C has 

been reported as between 0.31 – 0.47 (Allele Frequency rs9904341 - SNP - NCBI, 

2020). From all samples sequenced in this cohort the minor allele frequency for C is 

0.33, which is within these previously described limits. 

3.2.2 Telomerase Promoter 

For the Telomerase promoter, excluding repeats, DNA from a total of 271 individual 

tissues was retrieved. Five samples were withdrawn from this pool, comprising the 

spindle cell CCA and 4 samples with inconclusive results. Results were deemed 

inconclusive when there was a lack of agreement between bi-directional sequences. 

Therefor a total of 266 sequences (98.5%) of the original cohort of all liver neoplasms 

(i.e., including the extrahepatic CCA) were recorded. When the dCCA were excluded 

(leaving n=243), bi-directional sequences were taken from 98.8% (240/243) of samples 

processed. When more than one tumour sample was processed, a positive result was 

recorded if either tumour contained the -124/-146 mutation – with interesting inter and 

intra-tumoural heterogeneity that will be discussed below. 

The telomerase promoter mutations were absent in all background tissues and only 

present in tumour samples of hepatocellular lineage. Intriguingly, there were no 

pTERTMuts in any Cholangiocarcinoma or Adenomas studied. All mutations were 

heterozygous, in agreement with the published literature (Cevik, Yildiz and Ozturk, 

2015; Bell et al., 2016). The pTERTMuts status of all neoplasms has been outlined in 

table 28. 

Tumour WT (%) Mutant (%) 
Hepatocellular Carcinoma 40 (69%) 18 (31%) 

Cholangiocellular Carcinoma 36 (100%) 0 (0%) 
Mixed HCC-CCA 6 (86%) 1 (14%) 

Adenoma 10 (100%) 0 (0%) 
Table 28. Telomerase promoter mutation rates across the primary hepatic neoplasms studied. 
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With 31.0% (18/58) of HCCs containing a pTERT mutant, this is similar to other 

reported mutation rates of 30-60% (H. W. Lee et al., 2017; Nault et al., 2019). For the 

purposes of simplification, HCC has included fibrolamellar HCC in the reported 

numbers in table 28 as one FL-HCC that contained a -124 promoter mutation (C228T). 

Should comparisons exclude FL-HCC, then similar rates (32.1%, 17/53) of pTERT are 

mutated in traditional HCCs.  Of the 19 pTERTMuts found, 17 (89.5%) were in the -124 

position with 2 (10.5%) in the -146 position (C250T), in similar proportions to 

previously described (Nault et al., 2013). Both mutations in this hotspot region were 

mutually exclusive, also in agreement with previous results (Vinagre et al., 2013; Jiao et 

al., 2018).  

The pTERTMuts in various neoplasms can be viewed in figures 37 - 40 with -124/ -146 

mutants highlighted by a red/green box respectively in tumour (T) and background 

(BG) liver.  
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Figure 37 Telomerase promoter mutations in Mixed tumours. 
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Figure 38. Telomerase promoter mutations in Adenomas. 
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Figure 39. Telomerase promoter mutations in Hepatocellular carcinomas. 

Figure 40. Telomerase promoter mutations in cholangiocellular carcinomas.  
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It was relatively common for there to be more than one tumour in the HCC-liver 

resections. When more than one tumour was present within the resected tissues, or when 

there were two whole tumour blocks from a single patient, every effort was made to 

retrieve DNA and sequence the Telomerase promoter regions in these cases. 

Regrettably this was somewhat limited by some blocks being absent from the archive, 

but in 13 of the 52 HCCs it was possible to undertake this dual-sequencing. The results 

from available samples can be seen in figure 41.  

 

Figure 41. Intra-tumoural and inter-tumoural heterogeneity in tumour samples from 13 patients. 

After initial difficulty sequencing tumour DNA from samples 24 & 116, tissue curls 

from a second tumour block were taken simultaneously when re-cutting the original 

tumour block. Somewhat surprisingly, intra-tumoural heterogeneity was found in these 

double-sequenced samples with both containing a WT and -124 pTERT mutation. An 

implication of this sampling bias being that the reported mutation rate may be higher 

than the 31% reported here, assuming satisfactory accuracy in the amplification and 

sequencing technique used. 

Intriguingly, inter-tumoural heterogeneity was found in samples 7, 14, 19, 42 and 143 

whilst samples 8, 13, 30, 39, 140 and 145 only contained pTERTWT.  

3.3 Statistical Analysis of Results 

Statistical analysis was performed using IBM SPSS Statistics 24. Correlation between 

promoter status and clinical parameters were examined using Pearson’s Chi squared test 

when there were >2 categorical dependent/independent variables. When both variables 

were nominal, Fishers exact test was used. The level of significance was set as 0.05 and 
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exact significance (two sided) been used throughout, with the Bonferroni method used 

to adjust p-values when comparing column proportions. 

Overall survival was defined as the time from the operation and death, or last follow up 

set to 6th January 2020. Survival curves were plotted using Kaplan-Meier method and 

analysed with the Log-rank test.  

Comparison between two groups was performed with the Mann-Whitney U-test as the 

outcome data was quantitative and non-normally distributed. Comparisons between 

three or more groups used the Kruskal-Wallis one-way analysis of variance (ANOVA) 

test for similar reasons. A P-value of <0.05 (two sided) was considered statistically 

significant.  

3.3.1 Survivin Promoter 

Pooled analysis of the results from the Survivin promoter sequencing across all 

neoplasia can be seen in table 29.  
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pSurv: All Neoplasms N CC CG GG P-value 

Gender Female 44 3 22 19 0.954 

Male 65 5 34 26 

Outcome Alive 51 4 25 22 0.914 

Dead 58 4 31 23 

Fibrosis Absent 65 5 30 30 0.489 

Present 43 3 25 15 

Cirrhosis Absent 86 6 39 41 0.042 

Present 22 2 16 4 

Viral Status No Infection 94 6 47 41 0.342 

Viral Hepatitis 15 2 9 4 

Metabolic Risk 
Factors 

- 56 5 29 22 0.835 

+ 53 3 27 23 

Genetic Liver 
Disease 

- 99 8 52 40 0.609 

+ 10 0 5 5 

Tumour Type HCC 50 4 23 23 0.109 

FL-HCC 6 1 2 3 

CCA 36 3 21 12 

Mixed HCC-CCA 7 0 7 0 

Adenoma 10 0 3 7 

Table 29. Across all neoplasms studied, clinical measures are compared with alleles for the Survivin -31G/C.  

When considering all neoplasms studied, the only statistically significant finding was 

that that fewer cirrhotic patients were GG homozygotes. Survivin alleles with GG 

homozygotes: 18.2% (4/22) have background liver cirrhosis, compared to 47.7% 

(41/86) of non-cirrhotically-derived liver tumours. In the CG heterozygotes, 72.7% 

(16/22) of the cirrhotics were CG heterozygotes compared with 45.3% (39/86) of the 

non-cirrhotics, ꭓ² (2) = 6.341, p= 0.042. None of the other clinical measure differed 

significantly between Survivin promoter alleles. 
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3.3.1.1 All Malignancies 

When excluding the benign adenomas, comparisons between clinical and pathological 

characteristics and the pSurv alleles can been seen in table 30. There were no significant 

results. Viral hepatitis, metabolic risk factors and genetic liver disease also failed to 

demonstrate any significant differences and have not been shown in table 30.  

pSurv: Malignancies N CC CG GG P-value 

Gender Female 35 3 20 12 0.900 

Male 64 5 33 26 

Outcome Alive 41 4 22 15 0.863 

Dead 58 4 31 23 

Margin R0 57 5 29 23 0.741 

R1 41 3 24 14 

Fibrosis Absent 58 5 28 25 0.519 

Present 40 3 24 13 

Cirrhosis Absent 76 6 36 34 0.078 

Present 22 2 16 4 

Tumour 
Stage 

I & II 65 4 38 23 0.258 

III & IV 25 4 11 10 

Grade Well Diff 11 0 7 4 0.396 

Mild/Mod Diff 65 8 33 24 

Poorly Diff 17 0 11 6 

Vascular 
Invasion 

No VI 42 3 24 15 0.861 

VI 51 5 27 19 

+ 10 0 5 5 

Tumour Type HCC 50 4 23 23 0.168 

FL-HCC 6 1 2 3 

CCA 36 3 21 12 

Mixed HCC-CCA 7 0 7 0 

Table 30. Across all malignancies studied, clinical measures are compared with alleles for the Survivin -31G/C.  

A non-significant difference in the distribution of GG homozygotes in the non-

cirrhotic/cirrhotic groups is demonstrated in table 30. Nearly 20% of tumours (4/22, 
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18.2%) that develop in the context of cirrhosis are GG homozygotes, compared to 

44.7% (34/76) of malignancies from non-cirrhotic livers, ꭓ² (2) = 5.200, p= 0.078. 

When comparing Survivin promoter variants across tumour type, 46.0% (23/50) of 

HCCs, 33.3% (12/26) of CCAs and 0.0% (0/7) of Mixed tumours contain GG 

homozygotes, ꭓ²(6) = 8.974, p= 0.168.  

3.3.2 Survivin Promoter & Tumour Subtype 

3.3.2.1 HCC+FL-HCC 

There were no associations found between clinical measures and -31G/C Survivin 

promoter genotypes in either the grouped HCC + FL-HCC, as outlined in table 31, or 

HCC subgroups (data not shown). The analysis of pSurv and corresponding 

subgrouping of alleles does not yield any significant correlations with clinical disease in 

all HCCs.  
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pSurv: HCC & FL-HCC N CC CG GG P-value 

Gender Female 13 2 6 5 0.651 

Male 43 3 19 21 

Outcome Alive 28 3 13 12 0.859 

Dead 28 2 12 14 

Margin R0 39 4 16 19 0.619 

R1 16 1 9 6 

Fibrosis Absent 31 3 13 15 0.923 

Present 25 2 12 11 

Cirrhosis Absent 41 3 16 22 0.212 

Present 15 2 9 4 

Tumour 
Stage 

I & II 31 1 15 15 0.093 

III & IV 18 4 8 6 

Grade Well Diff 10 0 6 4 0.645 

Mild/Mod Diff 36 5 16 15 

Poorly Diff 6 0 3 3 

Vascular 
Invasion 

No VI 31 2 15 14 0.772 

VI 21 3 10 8 

Table 31. Across all HCC subtypes studied, clinical measures are compared with alleles for the Survivin -31G/C.  

Most HCCs were stage I/II and CC homozygotes comprised 3.2% of these tumours, 

however of the 18 stage III/IV HCCs the CC allele accounted for 22.2% of these, ꭓ² (2) 

= 4.667, p= 0.093. Otherwise, no significant difference in the distribution of alleles was 

found when comparing clinical parameters.  

3.3.2.2 Cholangiocarcinoma & pSurv 

As there were no pTERTMut in Cholangiocarcinoma, the analysis of promoter sequences 

was limited to pSurv. I found no significant correlations when comparing pSurv and 

clinically recorded data, as outlined in tables 32. Subgroup analysis, including the effect 

of dominant alleles (data not shown) also failed to find any significant difference 

between clinical parameters.  
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Unique to CCA tumours is the presence (or otherwise) of perineural invasion as well as 

the location (iCCA vs. pCCA) that has been routinely reported upon in the clinical 

records. However, there was no significant distribution in the alleles of the Survivin 

promoter SNP when considering any clinical parameter. When the iCCAs were 

assessed, there was also no difference in the distribution of the pSurv alleles, data not 

shown. 

pSurv: CCAs N CC CG GG P-value 

Gender Female 20 1 12 7 0.774 

Male 16 2 9 5 

Outcome Alive 12 1 8 3 0.862 

Dead 24 2 13 9 

Margin R0 12 1 7 4 1.000 

R1 24 2 14 8 

Fibrosis Absent 26 2 14 10 0.885 

Present 9 1 6 2 

Cirrhosis Absent 34 3 19 12 1.000 

Present 1 0 1 0 

Tumour 
Stage 

I & II 27 3 16 8 0.359 

III & IV 7 0 3 4 

Grade Well Diff 1 0 1 0 0.685 

Mild/Mod Diff 24 3 12 9 

Poorly Diff 9 0 6 3 

Vascular 
Invasion 

No VI 8 1 6 1 0.308 

VI 26 2 13 11 

Perineural 
Invasion 

- 18 2 12 4 0.446 

+ 18 1 9 8 

Table 32. Across all CCAs studied, clinical measures are compared with alleles for the Survivin -31G/C.  

3.3.2.3 Mixed 

As all seven of the mixed tumours were found to be CG heterozygotes, statistical 

analysis of differences in clinical/pathological findings was unable to be undertaken. 
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3.3.2.4 Adenoma 

The benign adenomas clearly did not possess malignant behaviours (vascular invasion, 

stage, grade, etc) and so these inappropriate measures have been removed from the 

comparisons outlined in tables 33. There were also no CC homozygotes in the studied 

tumours, meaning the results are essentially the same and that comparing CC to 

CG+GG is not possible.   

 

Table 33. Clinical measures are compared in the Adenomas, depending on the Survivin -31G/C alleles. 

3.3.3 Discussion 

With the surprising result of 100% concordance between tumour and background liver 

tissues for Survivin’s rs9904341 across all samples there was a distinct lack of clinically 

meaningful correlations subsequent to this. The status of the Survivin -31 SNP should 

be considered a germline characteristic, rather than a somatically altered mutation that 

facilitates tumourigenesis.  

When the pooled results were interpreted the single statistically significant result is the 

Survivin GG homozygote occurring more often in non-cirrhotic livers that facilitated 

the growth of both benign and malignant neoplasms (p=0.042). When considering all 

malignant tumours, and their pSurv status, the distribution of GG tumours did not differ 

between cirrhotic and non-cirrhotic liver tissues, ꭓ² (2) = 5.200, p= 0.078.  

The significance these results is of limited value in this small cohort of patients. The 

GG allele did not correlate with any tumour type across all neoplasms (p= 0.109) or in 

the malignant cohort, p= 0.168. Given that GG homozygous patients have previously 

been shown to be associated with an increased risk of solid organ malignancy (in 

N CC CG GG P value
Female 9 0 2 7
Male 1 0 1 0
Absent 7 0 2 5
Present 3 0 1 2

+ 8 0 2 6
- 2 0 1 1

Metabolic Risk 
Factors

1.000

Fibrosis 1.000

pSurv: Adenoma

Gender 0.300
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NSCLC at least) my findings should not be overstated, rather interpreted with caution 

(Aynaci et al., 2013). 

Otherwise, the Survivin promoter SNPs did not correlate with any other clinical or 

pathological characteristic that was measured.  Analysing Survivin promoter status in 

primary liver cancer is not a useful tool, based on the evidence seen here. 
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3.3.4 Telomerase Promoter 

Given the more straightforward results from the pTERT sequences (heterozygous 

mutation or WT only) statistical analyses were more limited when compared to pSurv as 

can be seen from table 34. For the purposes of data analysis both the -146 and -124 

mutations were reported together as a ‘mutant’, in line with previous publications (Horn 

et al., 2013; Huang et al., 2013). 

pTERT: All Neoplasms N Mutant WT P value 

Gender Female 45 1 44 0.001 

Male 66 18 48 

Outcome Alive 51 6 45 0.210 

Dead 60 13 47 

Fibrosis - 66 6 60 0.009 

+ 44 13 31 

Cirrhosis - 87 10 77 0.004 

+ 23 9 14 

Viral Hepatitis - 96 14 82 0.131 

+ 15 5 10 

Metabolic Risk 
Factors 

- 57 8 49 0.453 

+ 54 11 43 

Genetic Liver 
Disease 

- 101 17 84 0.680 

+ 10 2 8 

Tumour Type HCC 35 17 52 0.002 

FL-HCC 6 1 5 

CCA 36 0 36 

Mixed HCC-
CCA 

7 1 6 

Adenoma 10 0 10 

Table 34. Clinical measures are compared between mutants and wild type Telomerase promoter across all 
neoplasms.  

From table 34 there are a few interesting correlations to report when considering 

Telomerase promoter mutations across the whole study cohort. Of the 19 pTERTMuts 

present, 18 occurred in men. Mutations occurred more often in 27.3% of men’s cancers 
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compared to 2.2% of female patients, p= 0.001. There were more pTERTMuts that grew 

on a background of fibrosis (29.5%) compared to non-fibrosis-derived liver tumours 

(9.1%, p= 0.009). Perhaps indicating a correlation with early tumour development. 

Telomerase promoter mutations also occurred more frequently in the context of 

background liver cirrhosis (39.1%) compared to non-cirrhotically derived liver tumours 

(11.5%, p= 0.004). Finally, pTERTMuts appear to be an HCC-lineage specific mutation, 

with 17/19 occurring in HCCs (ꭓ² (4) = 18.432, p= 0.002), one case occurring in FL-

HCC and the final pTERTMuts being in a mixed HCC-CCA tumour. There were no 

pTERTMuts in either the CCAs or the Adenomas in this cohort. There was no difference 

in the distribution of the clinical parameters: viral hepatitis (p= 0.131), metabolic 

disease (p= 0.453) and genetic liver disease (p= 0.680) so these parameters will not be 

discussed further.  

When excluding benign adenomas from consideration, pTERTMuts occur more often in 

men (27.7%) compared to women (2.8%, p= 0.001). Across all malignancies pTERTMuts 

occurs in 31.7% of patients with liver fibrosis compared with 10.2% in non-fibrotic 

hepatic tissue, p= 0.01. Non-cirrhotic livers yield tumours with pTERTMuts in 13.0% of 

cases compared to 39.1% of cirrhotic livers (p= 0.012).  

Across all malignancies, pTERTMuts occur more frequently in HCCs compared with 

CCA and Mixed tumours (ꭓ² (3) = 15.013, p= 0.003). However, in the malignant cohort 

there was no significant correlation with all-cause mortality, positive surgical margin, 

tumour stage/grade or vascular invasion. Risk factors such as viral hepatitis, metabolic 

risk factors or genetic liver disease also failed to demonstrate any correlation with 

pTERTMuts. When excluding the benign neoplasms, table 35 highlights the results from 

the pooled analyses.  
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pTERT: All Malignancies N Mutant WT P value 

Gender Female 36 1 35 0.001 

Male 65 18 47 

Outcome Alive 41 6 35 0.444 

Dead 60 13 47 

Margin R0 58 14 44 0.196 

R1 41 5 36 

Fibrosis - 59 6 53 0.01 

+ 41 13 28 

Cirrhosis - 77 10 67 0.012 

+ 23 9 14 

Tumour Stage I & II 65 9 56 0.221 

III & IV 26 7 19 

Grade Well Diff 11 2 9 0.401 

Mild/Mod Diff 66 14 52 

Poorly Diff 17 1 16 

Vascular 
Invasion 

- 42 7 35 0.794 

+ 52 10 42 

Tumour Type HCC 35 17 52 0.003 

FL-HCC 6 1 5 

CCA 36 0 36 

Mixed HCC-CCA 7 1 6 

Table 35. Clinical measures are compared between mutants and wild type Telomerase promoter sequences across all 
malignancies. 
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3.3.5 Tumour Specific Analyses 

With pTERT found almost exclusively in HCCs, subgroup analysis of all HCCs (i.e., 

including FL-HCC, table 36) and traditional HCCs (excluding FL-HCCs, table 37) was 

undertaken.  

pTERT: HCC & FL-HCC N Mutant WT P value 

Gender Female 14 0 14 0.003 

Male 44 18 26 

Outcome Alive 28 5 23 0.049 

Dead 30 13 17 

Margin R0 40 13 27 1.000 

R1 16 5 11 

Fibrosis - 32 6 26 0.044 

+ 26 12 14 

Cirrhosis - 42 10 23 0.066 

+ 16 8 8 

Tumour 

Stage 

I & II 31 8 23 0.528 

III & IV 19 7 12 

Grade Well Diff 10 2 8 0.519 

Mild/Mod Diff 37 13 24 

Poorly Diff 6 1 5 

Vascular 

Invasion 

- 31 6 25 0.068 

+ 22 10 12 

Table 36. Clinical measures are compared between mutants and wild type Telomerase promoter sequences across all 
HCCs.  

Table 36 reports pTERTMuts in HCC & FL-HCC showing a strong male predominance 

with 40.9% of men harbouring a mutation compared with 0.0% of women, p= 0.003. 

There is also a weaker, although still significant, association with fibrosis (46.2% of 

tumours that arise in the context of fibrosis yield pTERTMuts compared with 18.8% of 
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non-fibrotically derived tumours, p= 0.044. It’s interesting that the highest rate of 

finding pTERTMuts in HCCs is in those with fibrotic liver disease as it maybe the 

aetiology of HCC is different in those with a chronic liver disease with a longer duration 

giving more time for the mutation to emerge and predispose to HCC. The inter-

relationship between cirrhosis and pTERTMuts is less certain as 50.0% of cirrhotics have 

a mutation, compared with 23.8% of non-cirrhotic patients, p= 0.066.  

There is also a new association with all-cause mortality as 43.3% of those who die have 

a pTERTMuts compared with 17.9% of those who live, p= 0.049. However, this finding 

is of marginal significance given the smaller study numbers and the relatively large p-

value.  

All other clinical and histopathological characteristics did not demonstrate a significant 

difference between the pTERTMut/WT groups. Vascular invasion occurs more often 

(although non-significantly so) in 45.5% of tumours with pTERTMuts, compared with 

19.4% of non-mutated tumours, p= 0.068.  

When FL-HCC are excluded and traditional HCC’s pTERTMuts status is assessed, the 

results are shown in table 37. Mutations occur in 42.7% of male patients, compared with 

0.0% of females, p= 0.005. Of those who have died, 44.8% harbour a pTERTMuts 

containing tumour, compared with 17.4% of patients still alive, p= 0.043. Tumours that 

invade the vasculature have a higher pTERTMuts rate (52.6%) compared with non-

invasive tumours (20.17%, p= 0.031).  

In classical HCCs pTERTMuts occur in the context of fibrosis in 46.2% of patients, 

compared with 19.2% of those with non-fibrotic liver tissue, p= 0.075. And cirrhotics 

have a pTERTMuts rate of 50.0%, compared with 25.0% in non-cirrhotics, p= 0.111. 

Both of these previous measures were significantly associated with pTERTMuts, but in 
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the smaller sample size these are no longer significantly correlated, albeit with a 

convincing trend for pTERTMuts occurring in the context of fibrosis. 

pTERT: HCC only N Mutant WT P value 

Gender Female 12 0 12 0.005 

Male 40 17 23 

Outcome Alive 23 4 19 0.043 

Dead 29 13 16 

Margin R0 36 12 24 1.000 

R1 14 5 9 

Fibrosis - 26 5 21 0.075 

+ 26 12 14 

Cirrhosis - 36 9 27 0.111 

+ 16 8 8 

Tumour 

Stage 

I & II 29 8 21 0.516 

III & IV 17 7 10 

Grade Well Diff 8 2 6 0.689 

Mild/Mod Diff 35 13 22 

Poorly Diff 5 1 4 

Vascular 

Invasion 

- 29 6 23 0.031 

+ 19 10 9 

Table 37. Across traditional HCCs, clinical measures are compared between mutants and wild type Telomerase 
promoter sequences. 

3.3.5.1 Mixed 

In the small cohort of seven mixed tumours there were no significant relationships 

between clinical or pathological data and the pTERTMut. This is perhaps due, at least in 

part, to the small number of mixed tumours studied.   
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3.3.6 Discussion 

My results demonstrate that pTERTMuts are an HCC-lineage specific somatic mutation 

(p= 0.001), are associated with male gender (p=0.001), and adverse clinical measures 

when compared across the entire study cohort. When comparing malignant liver 

tumours pTERTMuts remain a male phenomenon (p= 0.001), occur more frequently in 

HCCs (p= 0.002), occur more frequently in the context of fibrotic (p= 0.01) and 

cirrhotic (p= 0.012) background liver tissues. Previously published data has also 

reported an absence of pTERTMuts in CCA, in agreement with our findings (Quaas et al., 

2014).  

The role of chronic inflammation selecting for pTERTMuts in malignancies is only 

significant when considering the whole tumour cohort and not in tumour sub-type 

analyses. This is possibly a reflection of the selection bias in patients offered surgery 

(fewer than expected patients with cirrhosis) or the small cohort of patients being 

studied. This aetiology of PLCs must also be considered with the established links 

between fibrosis, cirrhosis and HCC development compared to the much more sporadic 

neoplastic nature of CCAs. These differences could potentially explain how some 

correlations are apparent when considering larger groups (all hepatic 

neoplasms/malignancies and all HCC subtypes) but are absent when only considering 

classical HCCs. As fibrolamellar HCCs are histologically and genetically very different 

to traditional HCCs comparisons have been made assessing if there are differences 

when FL-HCCs are included/excluded. However, when comparing all HCC subtypes 

(including FL-HCC) there is a significant relationship between pTERTMut and fibrosis 

(p=0.044), but no significant relationship with tumourigenesis in the context of cirrhotic 

liver tissues, p= 0.066. Furthermore, when assessing all HCCs the male association 

endured (p= 0.003) as did the correlation with all-cause mortality, p= 0.049.  
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When FL-HCC tumours are excluded, an HCC tumour specific analyses confirms the 

strong male association with pTERTMuts (p=0.005) and demonstrates weak, albeit 

statistically significant, correlations with vascular invasion (p= 0.031) and all-cause 

mortality (p= 0.043).  

Male preponderance of pTERTMuts has been previously reported in HCCs but no 

significant correlation for vascular invasion was reported in their cohort (Nault et al., 

2013). Work from a Korean cohort larger than ours (but still using FFPE tissues as a 

DNA source) have found pTERTMuts preferentially occurring in men (p= 0.027) and in 

28.8% of HCCs (H. W. Lee et al., 2017).  

When considering non-hepatic tumours, pTERTMuts have been associated with adverse 

clinical measures including vascular invasion in a recent meta-analysis of 11,382 cases 

of thyroid carcinoma (Yang et al., 2020). My work has increased the number of HCCs 

under study and also shown a similar association, indicating altered tumour biology 

based on a promoter mutation. 

3.3.7 Comparisons between Groups 

The continuous variables of age (years) and tumour size (mm) were recorded with 

comparisons made between promoter status overall, and at the level of tumour subtype. 

3.3.7.1 All Neoplasms 

No significant relationships were found between pSurv/ pTERT status and age or 

tumour size across all neoplasms, as outlined in table 38.  
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All Neoplasms N Tumour Size (mm)  Age (years) 

Mean 
Rank 

Mean +/- 
S.D. 

Median Mean 
Rank 

Mean +/- 
S.D. 

Median 

pSurv CC 8 51.0 59.5 +/- 19.2 67.5 54.4 66.6 +/- 37.6 55.0 

CG 56 56.0 62.6 +/- 12.9 64.0 56.6 78.3 +/- 53.1 70.0 

GG 45 54.4 59.8 +/- 15.8 63.0 53.1 72.5 +/- 46.1 60.0 

ꭓ²(2)  0.205  0.296  

p-value 0.903 0.862 

 

pTERT WT 92 58.4 77.8 +/- 48.0 63.0  53.4 60.0 +/- 14.8 63.0 

Mut 19 44.4 64.0 +/- 59.3 45.0 68.4 66.8 +/- 11.7 69.0 

U  653.0  1100.0  

p-value 0.083 0.065 

Table 38. For all neoplasms, clinicopathological characteristics are analysed based on the promoter mutational 
status of pSurv and pTERT.  

When comparing all neoplasms, a Kruskal-Wallis test showed that there was no 

significant difference in tumour size based on the Survivin promoter variants, ꭓ²(2) = 

0.205, p= 0.903, with mean rank scores of 51.0 for the CC homozygote, 56.0 for the CG 

heterozygote and 54.4 for the GG homozygote. Similarly, there was no significant 

difference in patient age based on the Survivin promoter variants, ꭓ² (2) = 0.296, p= 

0.862, with a mean rank of 54.4 (CC), 56.6 (CG) and 53.1 (GG).  

A Mann-Whitney U test demonstrated that pTERTMuts tended to occur in smaller 

tumours (median size 45mm, mean rank 44.37) compared to wild type (median size 

63mm, mean rank 58.4) but this was not a significant difference, U= 653.0, p= 0.083. 

With a median age of 69 years (mean rank 68.4) pTERTMuts tended to develop in 

develop in older patients, compared to pTERTWT, whose median age was 63 (mean rank 

53.4) however this was not a statistically significant difference, U= 1100.0, p= 0.065. 

This data will have been skewed by the presence of the benign adenomas, which are 

assessed below. 
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3.3.7.2 All Malignancies 

Grouped into malignant neoplasms, results are shown in table 39.  

All Malignancies N Tumour Size (mm)  Age (years) 

Mean 
Rank 

Mean +/- 
S.D. 

Median Mean 
Rank 

Mean +/- 
S.D. 

Median 

pSurv CC 8 47.3 66.6 +/- 37.6 55.0 46.2 59.5 +/- 19.2 67.5 

CG 53 51.9 79.5 +/- 53.9 70.0 49.4 64.0 +/- 11.5 65.0 

GG 38 48.0 69.8 +/- 46.5 60.0 51.6 63.9 +/- 13.0 67.5 

ꭓ²(2)  0.482  0.281  

p-value 0.786 0.869 

 

pTERT WT 92 53.4 77.8 +/- 48.9 65.0  49.2 62.8 +/- 12.8 66.0 

Mut 19 40.7 64.0 +/- 59.3 45.0 58.7 66.8 +/- 11.7 69.0 

U  583.5  925.0  

p-value 0.089 0.204 

Table 39. For all malignant neoplasms, clinicopathological characteristics are studied based on the promoter 
mutational status of pSurv and pTERT. 

When comparing all malignant neoplasms, a Kruskal-Wallis test showed that there was 

no significant difference in tumour size based on the Survivin promoter variants, ꭓ²(2) = 

0.482, p= 0.786, with mean rank scores of 47.3 for the CC homozygote, 51.9 for the CG 

heterozygote and 48.0 for the GG homozygote. Similarly, there was no significant 

difference in patient age based on the Survivin promoter variants with a mean rank 

scores of 46.2 (CC), 49.4 (CG) and 51.6 (GG), ꭓ² (2) = 0.281, p= 0.869.  

Interestingly, pTERTMuts occurred in smaller malignant liver tumours (median size 

45mm, mean rank 40.7) when compared with pTERTWT tumours (median 65mm, mean 

rank 53.4) but this difference was not statistically significant, U= 583.5, p= 0.089. This 

finding is perhaps more representative of the role Telomerase plays in smaller 

malignant tumours, when considering the entire malignant cohort, but any further 

associations in tumour sub-group analysis may lack the study numbers required to fully 

describe this.  
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The median age for patients who develop a Telomerase mutation was 69 (mean rank 

58.7) which is older than patients with WT tumours (median 66, mean rank 49.2) but 

this difference was not significant, U= 925.0, p= 0.204.  

3.3.7.2.1 HCC& FL 

When comparing all HCCs, a Kruskal-Wallis test showed that there was no significant 

difference in tumour size based on the Survivin promoter variants, ꭓ²(2) = 0.796, p= 

0.672, with mean rank scores of 29.7 for the CC homozygote, 30.4 for the CG 

heterozygote and 26.4 for the GG homozygote. Similarly, there was no significant 

difference in patient age based on the Survivin promoter variants, ꭓ²(2) = 1.907, p= 

0.385, with a mean rank scores of 18.9 (CC), 29.6 (CG) and 29.3 (GG).  

A Mann-Whitney U test showed that pTERT status had no significant effect on tumour 

size with WT tumours tending to be larger (median size 82.5mm, mean rank 31.7) 

compared to the mutants (median size 45.5, mean rank 24.6), but this was not a 

statistically significant difference, U= 271.5, p= 0.137. Wild type tumours occurred in 

younger patients (median age 66, mean rank 28.0) when compared to mutant tumours 

(median age 70, mean rank 32.8), but this difference also failed to reach significance, 

U= 419.0, p= 0.321.  

3.3.7.2.2 HCC Only 

When comparing classical HCCs, a Kruskal-Wallis test showed that there was no 

significant difference in tumour size based on the Survivin promoter variants, ꭓ²(2) = 

1.117, p= 0.572, with mean rank scores of 30.3 for the CC homozygote, 26.8 for the CG 

heterozygote and 23.6 for the GG homozygote. Similarly, there was no significant 

difference in patient age based on the Survivin promoter variants, ꭓ² (2) = 1.306, p= 

0.520, with mean ranks of 17.6 (CC), 25.8 (CG) and 26.6 (GG).  
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A Mann-Whitney U test demonstrated that pTERTMuts status had no significant effect 

on tumour size. Wild type HCCs were larger (median 80mm, mean rank 28.5) 

compared to mutants (median 45mm, mean rank 22.4) but not significantly so, U= 

228.0, p= 0.175. Telomerase mutations occurred in HCCs from older patients (median 

age 72, mean rank 28.5) when compared with their WT counterparts (median age 67, 

mean rank 25.5) but lacked statistical significance, U= 331.0, p= 0.513. 

3.3.7.2.3 CCA 

When comparing all CCAs, a Kruskal-Wallis test showed that there was no significant 

difference in tumour size based on the Survivin promoter variants, ꭓ²(2) = 1.109, p= 

0.574, with mean rank scores of 12.7 for the CC homozygote, 19.5 for the CG 

heterozygote and 18.3 for the GG homozygote. Similarly, there was no significant 

difference in patient age based on the Survivin promoter variants, ꭓ² (2) = 1.600, p= 

0.449, with mean ranks of 25.8 (CC), 17.7 (CG) and 18.1 (GG).  

3.3.7.2.4 Adenoma 

A Mann-Whitney U test showed that the two pSurv variants present in the 10 benign 

tumours had no significant correlation with Adenoma size (U= 13.0, p= 0.667), and was 

not correlated with patient age (U= 9.0, p= 0.833). 

3.3.8 Discussion 

There is no significant difference between either Survivin promoter variants, or 

Telomerase promoter mutants, when comparing tumour size or patient age. However, 

when considering the whole cohort, median pTERTMuts were smaller compared to WT 

(p= 0.083) and occurred in older patients, p= 0.065.  

My findings from the HCC tumour sub-group analyses (both including and excluding 

FL-HCCs) found that pTERTMuts occurred (non-significantly) in older patients, and in 

smaller tumours, similar to others findings. Previously published work regarding 
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pTERTMutant tumours found them to be smaller (<5cm, p=0.01) and in older patients 

(>60 years old, p=0.08) (Nault et al., 2013). However, Nault’s work only assessed 

HCCs (as opposed to all hepatic neoplasms, including FL-HCC) and the significance of 

these differences was not reflected in the tumour subtype analysis.  

3.3.9 Survival Analysis 

Survival analysis was undertaken by plotting Kaplan-Meier curves using the Log Rank 

(Mantel-Cox) method for overall survival. When quoted the average survival data is 

recorded in the following manner: mean survival +/- standard error (95% confidence 

interval). There was extremely limited data in the clinical records of patient specific 

data, such as disease-free survival (dfs) or progression free survival (pfs) so only overall 

survival has been recorded.  

3.3.9.1 All Neoplasms 

Kaplan-Meier survival analyses for all neoplasm and their respective pTERT & pSurv 

status can been seen in figure 42. There were no significant associations across the 

whole cohort.  

There was no difference in survival between pTERTMut/WT, as shown in the Kaplan-

Meier plot (top left) in figure 42, ꭓ² (1) = 0.819, p= 0.366. Average survival data for 

WT tumours include a mean survival time of 81.5 +/- 7.4 months (95% CI 67.1 – 96.0) 

and median survival time of 76.0 +/- 27.0 months (95% CI 23.0 – 129.0). Patient with 

pTERTMuts had a mean survival time of 65.7 +/- 14.2 months (95% CI 37.9 – 93.5) and 

a corresponding median survival of 42.0 +/- 12.9 months (95% CI 16.7 – 67.3). Cox 

regression analysis also failed to demonstrate any correlation between Survival and 

pTERTMut/WT status.  
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Figure 42. Cumulative survival based on Telomerase/ Survivin promoter status across all  

There was also no difference in cumulative survival based on the Survivin promoter 

allele status, ꭓ² (2) = 0.251, p= 0.882. Average survival data for CC homozygotes 

includes a mean survival duration of 62.4 +/- 15.1 months (95% CI 32.7 – 92.0) with no 

median survival data fewer than 50% of these patients died. CG heterozygotes had a 

mean survival of 76.6 +/- 9.2 months (95% CI 58.5 – 94.6) and median survival of 55.0 

+/- 21.7 months (95% CI 12.5 – 97.4). GG homozygotes had a mean survival of 84.0 

+/- 10.7 months (95% CI 63.1 – 104.9) and median survival of 74.0 +/- 30.9 months 

(95% CI 13.4 – 134.6.  

When grouping C-containing alleles together (so-called C-dominance) there was no 

difference in Survival, ꭓ² (1) = 0.163, p= 0.687. The GG homozygotes had a mean 

survival of 84.0 +/- 10.7 months (95% CI 63.1 – 104.9) and median survival of 74.0 +/- 

30.1 (95% CI 13.4 – 134.6) compared with the grouped (CC+CG) mean survival of 

77.7+/- 8.7 months (95% CI 60.7 – 94.7) and median survival of 55.0 +/- 20.9 months 

(95% CI 14.1 – 95.9).  
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Comparing the CC homozygotes with G-dominant alleles found no significant 

difference on survival, ꭓ² (1) = 0.036, p= 0.849. Mean survival for CC homozygotes 

was 62.4 +/- 15.1 months (95% CI 32.7 – 92.0). The G-dominant alleles had a mean 

survival of 80.7 +/- 7.1 months (95% CI 66.8 – 94.6) and median survival of 62.0 +/- 

16.6 months (95% CI 29.6 – 94.4). Subsequent analyses in tumour subtypes also failed 

to find any correlation between allele-dominance and overall survival and have not been 

show in the following figures.  

3.3.9.2 All Malignancies 

When excluding the benign adenomas, the malignant neoplasms were considered 

together, as shown in figure 43, with no significant difference in cumulative survival. 

 

Figure 43. Cumulative survival based on Telomerase/ Survivin promoter status across all malignancies.  

There was no difference in survival between pTERTMut/WT, as shown in the Kaplan-

Meier plot in figure 43, ꭓ² (1) = 0.104, p= 0.747. Average survival data for WT tumours 

include a mean survival time of 71.8 +/- 7.7 months (95% CI 56.6 – 86.9) and median 

survival time of 36.0 +/- 22.7 (95% CI 0.0 – 80.5). Patient with pTERTMuts had a mean 

survival time of 65.7 +/- 14.2 months (95% CI 37.9 – 93.5) and a corresponding median 

survival of 42.0 +/- 12.9 months (95% CI 16.7 – 67.3).  

There was no difference in cumulative survival based on the Survivin promoter allele 

status, ꭓ² (2) = 0.278, p= 0.870. Average survival data for CC homozygotes includes a 
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mean survival duration of 62.4 +/- 15.1 months (95% CI 32.7 – 92.0) with no median 

survival data fewer than 50% of these patients died. CG heterozygotes had a mean 

survival of 71.9 +/- 9.4 months (95% CI 53.5 – 90.2) and median survival of 39.0 +/- 

16.2 months (95% CI 7.3 – 70.7). GG homozygotes had a mean survival of 69.5 +/- 

11.1 months (95% CI 47.7 – 91.3) and median survival of 42.0 +/- 24.4 months (95% 

CI 0.0 – 89.9).  

3.3.9.3 HCC+FL 

Subgroup analyses of all HCC tumours (including FL-HCC) also found no associations 

between promoter status and cumulative survival, as can be seen in figure 44.  

 

Figure 44. Cumulative survival based on Telomerase/ Survivin promoter status across all HCC subtypes.  

There was no difference in survival between pTERTMut/WT, as shown in the Kaplan-

Meier plot in figure 44, ꭓ² (1) = 3.043, p= 0.081. Average survival data for WT tumours 

include a mean survival time of 93.8 +/- 11.1 months (95% CI 72.0 – 115.5) and no 

median survival data as >50% of patients survived. Patient with pTERTMuts had a mean 

survival time of 61.5 +/- 13.9 months (95% CI 34.2 – 88.8) and a corresponding median 

survival of 39.0 +/- 8.0 months (95% CI 23.3 – 54.7). Cox regression analysis also 

failed to demonstrate any correlation between Survival and pTERTMut/WT status.  

There was no difference in cumulative survival based on the Survivin promoter allele 

status, ꭓ² (2) = 0.053, p= 0.974. Average survival data for CC homozygotes includes a 

mean survival duration of 48.2 +/- 12.7 months (95% CI 23.3 – 73.1) with no median 
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survival data fewer than 50% of these patients died. CG heterozygotes had a mean 

survival of 89.2 +/- 13.7 months (95% CI 62.3 – 116.0) and no median survival data 

fewer than 50% of these patients died. GG homozygotes had a mean survival of 84.0 +/- 

13.1 months (95% CI 68.4 – 105.2) and median survival of 74.0 +/- 26.7 months (95% 

CI 21.7 – 126.3.  

3.3.9.4 HCC Only 

Assessing associations between promoter status and survival in HCC (excluding FL-

HCC) also yielded no significant associations, as seen in figure 45.  

 

Figure 45. Cumulative survival based on Telomerase/ Survivin promoter status across traditional HCCs.  

There was no difference in survival between pTERTMut/WT, as shown in the Kaplan-

Meier plot in figure 45, ꭓ² (1) = 3.006, p= 0.083. Average survival data for WT tumours 

include a mean survival time of 73.5 +/- 8.8 months (95% CI 56.2 – 90.8) and no 

median survival data as >50% of patients survived. Patient with pTERTMuts had a mean 

survival time of 49.9 +/- 10.7 months (95% CI 29.0 – 70.9) and a corresponding median 

survival of 39.0 +/- 8.7 months (95% CI 21.9 – 56.7). Cox regression analysis also 

failed to demonstrate any correlation between Survival and pTERTMut/WT status.  

There was no difference in cumulative survival based on the Survivin promoter allele 

status, ꭓ² (2) = 0.029, p= 0.986. Average survival data for CC homozygotes includes a 

mean survival duration of 42.8 +/- 14.7 months (95% CI 14.0 – 71.5) with no median 

survival data fewer than 50% of these patients died. CG heterozygotes had a mean 



 164 

survival of 66.8 +/- 10.5 months (95% CI 46.3 – 87.3) and a median survival of 62.0 +/- 

24.9 months (95% CI 13.1 – 110.9). GG homozygotes had a mean survival of 70.7 +/- 

10.8 months (95% CI 49.4 – 91.9) and median survival of 74.0 +/- 25.5 months (95% 

CI 23.9 – 124.0).  

3.3.9.5 Cholangiocarcinoma 

There were no pTERTMuts in CCA, but the survival curves for pSurv can be seen in 

figures 46 & 47. Figure 46 shows all CCAs analysed collectively and figure 47 is a 

subgroup analysis of all intrahepatic CCA.  

 

Figure 46. Cumulative survival based on Survivin promoter status across all CCAs.  

There was no difference in cumulative survival based on the Survivin promoter allele 

status, ꭓ² (2) = 2.403, p= 0.301. Average survival data for CC homozygotes includes a 

mean survival duration of 52.0 +/- 21.7 months (95% CI 9.4 – 94.6) with a median 

survival of 36.0 +/- 16.3 months (95% CI 4.0 – 68.0). CG heterozygotes had a mean 

survival of 56.3 +/- 11.8 months (95% CI 33.2 – 79.4) and a median survival of 30.0 +/- 

13.2 months (95% CI 4.2 – 55.8). GG homozygotes had a mean survival of 23.0 +/- 7.2 

months (95% CI 8.8 – 37.1) and median survival of 12.0 +/- 7.9 months (95% CI 0.0 – 

27.4).  
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Figure 47. Cumulative survival based on Survivin promoter status across intrahepatic CCAs.  

There was no difference in cumulative survival based on the Survivin promoter allele 

status, ꭓ² (2) = 1.867, p= 0.393. Average survival data for CC homozygotes includes a 

mean survival duration of 60.0 +/- 31.3 months (95% CI 0.0 – 121.0) with no median 

survival as >50% of patients survived. CG heterozygotes had a mean survival of 58.6 

+/- 12.5 months (95% CI 34.1 – 83.1) and a median survival of 39.0 +/- 17.0 months 

(95% CI 5.7 – 72.3). GG homozygotes had a mean survival of 25.6 +/- 8.5 months 

(95% CI 9.0 – 42.2) and median survival of 12.0 +/- 7.0 months (95% CI 0.0 – 25.7).  

3.3.9.6 Mixed Tumour pTERT survival analysis 

All seven of the mixed tumours were CG heterozygotes therefore assessing cumulative 

survival based on pSurv status was not possible. There was a single pTERTMuts in the 

mixed tumour cohort, the only survivor, however the small size of the cohort meant that 

this was did not result in a significant result when considering cumulative survival, ꭓ² 

(1) = 1.437, p= 0.231, figure 48.  
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Figure 48. Cumulative survival based on the Telomerase promoter status in mixed HCC-CCA. 

3.3.10  Discussion 

There are no significant relationships between promoter status and cumulative survival 

for either pSurv SNPs or the pTERTMuts. Even when tumour subgroups were analysed 

correlation between promoter status and cumulative survival was consistently absent in 

this small study cohort. Telomerase promoter mutations have been shown to be an 

HCC-lineage specific genetic alteration, and it appears that cumulative survival may be 

shorter in these patients both within the whole HCC cohort (p= 0.081) and when the FL-

HCCs are excluded (p= 0.083). In a larger cohort of HCCs this relationship could be 

further clarified, which highlights the possibility of using genetic analysis to stratify 

patients into high, and low-risk groups for clinical follow up.  

3.4 Promoter Sequences - Discussion 

Amplifying DNA extracted from FFPE tissues presented significant technical 

challenges but with persistence and much refinement of the methods used ultimately 

yielded some very interesting results. Given that every hospital pathology department in 

the country, if not the world, uses FFPE tissue blocks for diagnostic purposes the 

methods used here are readily transferable to an enormous potential research resource. 

This could open up the entire research archive for assessment (not only of UTAA 

promoter sequences) giving a truly representative picture of promoter sequences, which 
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might only be limited by archival and storage capacity and storage logistics. However, 

there are some limitations when using poor quality DNA but in the absence of a frozen 

tissue biobank, these results demonstrate similar detection rates to those found in the 

published literature – such as the minor allele frequency of pSurv and the rate of 

pTERTMuts in HCCs.  

3.4.1 Major Findings 

The Telomerase promoter mutation results are the most interesting, and statistically 

significant findings in the sequencing results. There was consistent evidence of 

pTERTMuts being associated with male gender when all neoplasms (p= 0.001) and the 

malignancies (p= 0.001) were compared.  

There was also considerable evidence of associations with pTERTMuts and HCC, and 

HCC-lineage, tumours in the whole cohort (p= 0.002) and in the malignant cohort (p= 

0.003). Therefore, the putative associations with fibrosis (p= 0.009), cirrhosis (p= 

0.004) in the whole cohort must be interpreted with some caution, as both fibrosis and 

cirrhosis are pre-cancerous conditions that cause HCCs to develop in the context of 

chronic cirrhosis.  

Within the HCC-only cohort of tumours the male preponderance was also present (p= 

0.005) as was a weak association with all-cause mortality (p= 0.043) and slightly more 

convincing association with vascular invasion (p= 0.031) and pTERTMuts. However, 

when considering cumulative survival there was reduced median survival in pTERTMuts 

compared to pTERTWT, but this lacked significance in both the classical HCCs (p= 

0.083) and when combined with FL-HCCs (p= 0.081).  

The Survivin promoter SNP was confirmed as a germline in nature given the 100% 

concordance between background liver, and tumour tissues. This was the limit of the 

major findings in the Survivin promoter sequence in this cohort.  
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3.4.2 Minor Findings 

Significantly fewer cirrhosis-associated neoplasms were associated with the Survivin 

promoter GG homozygous allele across the whole study cohort, p= 0.042. However, 

this result was not significantly replicated in sub-analyses, including the malignant 

cohort, p= 0.078. An apparently lower rate of cirrhosis in GG homozygotes (p= 0.042) 

is of some interest when assessing the whole cohort. This could be because of the two 

main tumour groups (HCC & CCA) there was an equal number of CG/GG (n=23) 

alleles in the HCCs, whilst there were more heterozygotes (21) compared to GG 

homozygotes (12) in the CCAs.  

When tumour size and patient age are considered, the pTERTMuts status may be 

important in larger malignancies. Across the whole cohort pTERTMuts correlate with 

larger tumours (p= 0.083) and advanced patient age (p= 0.065). However, then the 

benign Adenomas are excluded (of which 90% occur in young women in this study) 

pTERTMuts lose their correlation with patient age (p= 0.204) but still appear to occur in 

(non-significantly) smaller malignant tumours, p= 0.089.  

When considering pTERTMuts in the malignant cohort, the associations between fibrosis 

(p= 0.01) and cirrhosis (p= 0.012) are weaker, which is not terribly surprising given that 

Adenomas occur in young women, rather than in the context of chronic inflammation. 

The weak association between pTERTMuts and fibrosis in all HCCs (p= 0.044) becomes 

non-significant when the FL-HCCs – which are not associated with traditional risk 

factors for HCC development - are excluded (p= 0.075). This casts some doubt on the 

implication of these findings in this small study cohort. However, there is also a 

significant selection bias in these surgically managed tumours, which will certainly 

impact any potential impact of this data.  
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3.4.3 Commentary and Future work 

There is evidence of a potential sampling bias with both inter-tumour and intra-

tumoural heterogeneity in the expression of Telomerase promoter mutations. For 

patients 24 and 116, DNA extracted from different tumour tissue blocks gave different 

pTERTMuts results. This could either be due to true tumour heterogeneity, or a result an 

unsatisfactory lower limit of detection for assigning mutation/WT status in amplified 

DNA sequences. It is thought-provoking to consider whether pTERTMuts would also be 

present in metastatic tumours, which would require a refinement of the methodologies 

to allow sequencing from biopsy samples.  

However, the pTERT mutation rate (31-32%) is within the range that has been 

previously reported at an international level (30-60%) but is lower than expected for the 

predominantly European, compared to Asian, population that has been studied here. 

Whether this is a true representation, or falsely low is difficult to state with any 

certainty. To further answer this question, the same techniques could be used on DNA 

taken from multiple tissue blocks, to fully characterise the cohort. Introducing a more 

sensitive amplification methods could also achieve this. This has been shown in 

Melanoma, where Telomerase promoter mutations are an independent prognostic risk 

factor, so perhaps increasing the study size will lead to greater clarity on the role 

pTERTMuts have in HCCs, (Griewank et al., 2014). 

Future work could include using alternative techniques, such as droplet digital PCR 

(which has recently become more accurate) for detecting point mutations.  Detection 

rates for ddPCR have been quoted as being roughly double that of Sanger sequencing 

when detecting the Y373C FGFR3 mutation in bladder cancer (Borkowska et al., 2019). 

Some work has been published in the pTERT field quoting a lower limit of detection of 

0.17% when using ddPCR to assess malignant melanoma, albeit whilst using Sanger 

sequencing as the gold standard (McEvoy et al., 2017). 
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What must be remembered in this cohort is the sampling bias of patients that are fit 

enough to undergo major abdominal surgery. Only 23 of the patients are cirrhotic, 

which is known to be a major driver in carcinogenesis, so caution should be exercised 

when interpreting the findings. Further work could include sequencing needle biopsy 

specimens, to ascertain whether this is technically feasible and yields meaningful 

results. This would allow a more comprehensive cohort of tumour samples to be 

sequenced, helping to clarify any possible relationships I have found.  

The Survivin promoter work has, broadly, been less interesting than that of pTERTMuts. 

Apart from the concordance between tumour and background liver samples, there are 

few correlations with clinical disease outcomes as in the pTERT analyses. Expanding 

the Telomerase-activation studies to include other activating events (DNA integration, 

ALT, etc) could highlight the role of Telomerase in PLCs. Techniques required for this 

would need fresh/frozen materials, but these findings in FFPE tissues is a solid 

foundation to build upon.  

Critiquing the technical methods used would allow me to potentially improve the 

confidence of the sequencing results. It would potentially have been more scientifically 

rigorous to run a positive control for every PCR reaction, but given the use of no-

template negative controls ensuring no contaminated samples, it was felt that this was 

adequate. However, previous work in the field (i.e., not using a known positive control) 

has found this approach satisfactory, and been adopted in completely different fields 

where genotyping by PCR is done (Radojevic-Skodric et al., 2012; Jacquot et al., 

2019). As the number of samples processed simultaneously on a single gel (n=22) 

extracted using the same technique, samples acted as their own internal control, rather 

than relying on an exogenous/endogenous control run in the same reaction tube that 

may reduce the efficiency of the PCR (QIAGEN, 2020). As stated by QIAGEN on their 

website, negative controls are adequate to rule out any contaminations interfering with 
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the assessment of nucleic acids, whilst endogenous homologous internal controls will 

compete for reagents and reduce the efficiency of the reactions. 
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4 Survivin Immunohistochemistry 

4.1.1 Introduction 

This chapter describes my immunohistochemistry findings to define Survivin 

expression in a range of tumour types. Ensuring the proteomic detection, and 

quantification, of tumour-associated antigens required rigorous optimisation to ensure 

an accurate (and meaningful) interpretation of the data was possible. Assessing the 

expression of UTAA in PLCs was reliant on commercially available antibodies that 

have been extensively used in peer-reviewed publications. The Survivin antibody 

ultimately chosen for this research project has been used many times in the published 

literature (219 at the time of selection, 228 at the time of writing, including in FFPE 

studies) giving weight to the reliability of the results (Cell Signalling Technology, 

2020).  

4.1.2 Survivin IHC Optimisation 

Almost without exception Survivin 71G4B7 Rabbit monoclonal antibody (Cell 

Signalling) has consistently used nuclear staining in tonsillar tissue for a positive 

control. Published literature and online resources such as the Human Protein Atlas 

(HPA) confirm significant expression of nuclear Survivin in tonsil tissues, which made 

the initial optimisation steps straightforward (Thul et al., 2017; Cell Signalling 

Technology, 2020). Optimisation, as outlined in figure 49, found the best dilution of 

primary antibody. 
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Figure 49. Optimisation steps for the Survivin primary antibody. Images shown at 200X magnification. 

With citrate buffer for antigen retrieval and a 1:400 dilution of antibody with overnight 

incubation at 4 Celsius selected as giving the best balance of strong positive staining 

with minimal background ‘noise.’ Figure 49 highlights the quality of this antibody as 

there is no expression in background liver tissues. Experiments were repeated in 

triplicate, on different days, to ensure reproducibility and reliability of the protocol. 

Source material (Tonsil) was used in every batch of IHC as a positive control, and if the 

control tissue block was being diminished, a separate tissue block of tonsil was run in 

parallel to ensure consistency in nuclear staining between positive controls.  

4.1.3 QuPath Assessment of Tissues: Survivin 

The perfect artificial intelligence software would simultaneously analyse tissues, 

undertake quantification and use machine learning to constantly improve accuracy. This 

would involve QuPath assessing the morphological features observed in a specific 

tumour type and would require both exploratory and validation cohorts. However, this 

would have required some degree of un-blinding during this - hypothetical - 

optimisation process which, although desirable, was not feasible whilst working within 

the ethical constraints of this project.  

As outlined above: I, the researcher, am to be blinded to the tissues being studied. This 

meant the creation of classifiers (a method of training the software to recognise cell 
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types - more on this later) somewhat difficult. Training software to recognise HCCs and 

CCAs simultaneously as ‘tumour’ resulted in poor quality results when compared to an 

expert commentator’s assessment. As both HCCs and CCAs demonstrate significantly 

different cellular morphology it is unsurprising that an object classifier designed to 

differentiate between cells (i.e., tumour versus benign versus inflammatory cell) based 

on cellular morphology struggled in this combined cohort. Furthermore, when more 

than 10 images (each image-file being around 3-4 gigabytes in size) were open 

simultaneously with the same classifier the software regularly froze, or crashed, which 

made for a slow and frustrating process. 

As a result of both the ethical and logistical issues during optimisation, the decision to 

create individual classifiers for each slide was made. The classifier is able to detect both 

the nuclear haematoxylin (blue) and the chromogen (in this case a brown colour) using 

a process called colour deconvolution which the human eye is unable to do. QuPath’s 

default is to use DAB/Haematoxylin for classifiers, meaning this process is 

standardised, and therefore reproducible. This meant the quality of the data was reliable 

and also compared very favourably with an expert commentator's assessment of 

staining. It also meant the computing power available was not regularly overloaded 

when assessing protein levels, which sped up the quantification steps considerably. This 

case-by-case analysis relies on accurate assessment of the tissue samples being studied, 

with an inherent bias that should be acknowledged when interpreting the results. 

Whole tissue slides were assessed for the proportion and intensity of staining positivity 

in both tumour and background liver samples. Selective tissues can be seen in the 

images below, comparing the raw image files (bottom row) and the colour coded (top 

row) data post-processing in figure 50.  
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Figure 50. HCC tumours with varying degrees of nuclear positivity for Survivin. Scale bar: 100 microns. 

The colour scheme is as follows: negative (blue), + (yellow), ++ (orange) and +++ (red) 

as the intensity of the nuclei staining progresses (lower images) with warmer colours 

(upper images) predominating from left to right in figures 50 & 51. Both negatively 

staining tumour nuclei and stromal cells are shown by subtly different shades of blue. 

 

Figure 51 CCA tumours with varying degrees of nuclear positivity for Survivin. Scale bar: 100 microns. 

For CCA, the differences in staining intensity can be seen in figure 51. In both figures 

50 and 51 there is evidence of clear nuclear staining with minimal stromal, or 

cytoplasmic, staining.  
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4.1.4 IHC Results: Survivin 

Survivin immunohistochemistry staining, allowing levels to be assessed, was achieved 

in 98.2% (109/111) of tumours and in 85.6% (95/111) of the background tissues. The 

two tumour samples that were not able to be assessed were both extensively necrotic 

and therefore did not counterstain with nuclear haematoxylin, thus rendering them un-

assessable. Of the 16 cases where background liver tissue was unable to be assessed 13 

(11.7%) were because there was no background tissue available for the study, and the 

remaining three (2.7%) were extensively necrotic and also lacked haematoxylin 

counterstaining. Internal positive controls (lymphocytes) were present and all tissues 

and demonstrated, stained positively, and were accounted for when the project classifier 

was being trained.  

Average expression of Survivin, quantified using both the Allred (0, 2 – 8) and H-scores 

(0 – 300), can be seen in table 40. Comparisons between paired tumour and background 

staining, and the statistical significance of these differences, can also be seen in this 

table. 

All Neoplasms H-Score Allred Score 

Tumour Background Tumour Background 

Mean +/- S.D. 82.9 +/- 62.6 15.1 +/- 1.4 5.2 +/- 1.4 3.3 +/- 1.0 

Min - Max (Range) 0.5 - 239.8 (239.3) 0.0 - 148.7 (148.7) 2 – 8 (6) 2 – 7 (5) 

Median 63.9 3.6 5.0 3.0 

Test Statistic Z= -8.1, p= 4.8 E-16 t(92) = 13.1, p= 9.2E-23. 

Table 40. Average tumour and background liver Survivin levels using the H-score and Allred score.   

Table 40 shows significantly more Survivin in tumour compared with paired 

background tissue-staining scores across all samples by both quantification methods. 

The median values (for the non-normally distributed difference in H-Score) and paired 

mean values (using the normally distributed difference in Allred score) both confirmed 

significantly more Survivin expression in tumour, compared to paired background liver 
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tissues (p= 4.77E-16 and p= 9.19E-23 respectively). It is noteworthy at this stage to 

emphasise that the differences in Allred scores are normally distributed, and that the 

tumour protein levels have greater statistical significance. In analyses comparing protein 

expression in tumour compared to background liver tissues the overall differences in 

expression were visualised, thus determining the statistical test subsequently selected. 

The Wilcoxon signed-rank test does not assume normality, as opposed to the Paired-

Samples T-test, the most appropriate statistical test was used depending on the original 

data. The test statistic used can be simply ascertained when consulting the tables below: 

the Z-score (i.e., Z=) denotes the Wilcoxon signed-rank test whilst the Paired-Samples 

T-test is shown by (t(degrees of freedom)= ).  

Given the germline nature of the Survivin promoter rs9904341 I investigated for 

potential differences between the intensity of staining in tumour/background tissues 

with CC, CG and GG Survivin alleles. No significant differences were found figure 52 

demonstrates the non-significant differences across the three alleles. 

 

Figure 52. No allele preferentially expressed more Survivin when assessing all neoplasms, using both the Allred and 
H-Scores.  
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Also, there was a significant difference in Survivin staining between tumour types when 

considering both the neoplastic tissues (figure 53, top row) and background livers 

(bottom row).  

Figure 53 outlines differences in Survivin expression by tumour sub-type. 

 

Figure 53. Differential expression of Survivin by tumour type. 

The H-scores (ꭓ² (4) = 10.923, p= 0.027) and the Allred scores (ꭓ² (4) = 9.701, p= 

0.046) varied between tumour types with average values shown in tables 41 and 42.  

H-Score HCC FL-HCC CCA Mixed 
HCC-CAA 

Adenoma 

Mean +/- S.D. 68.6 +/- 57.4 138.0 +/- 73.8 100.7 +/- 62.5 83.5 +/- 65.8 60.3 +/- 54.8 

Median 53.1 143.2 98.1 79.3 54.8 

Mean Rank 47.9 79.7 64.6 55.0 43.0 

Table 41 Average H-score values (scale 0 – 300) for Survivin expression across tumour types.  

Table A shows the highest level of detected Survivin was found in FL-HCCs with the 

lowest in Adenomas. Uncorrected pairwise comparisons of the H-scores are 

significantly different between FL-HCC and Adenoma (p= 0.025), HCC and CCA (p= 

0.016) and HCC and FL-HCCs (p= 0.020). However no pairwise differences differed 

significantly when adjusted for multiple analyses.  

P= 0.027P= 0.046

P= 0.511P= 0.559
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Allred Score HCC FL-HCC CCA Mixed HCC-CAA Adenoma 

Mean +/- S.D. 5.0 +/- 1.3 6.5 +/- 1.2 5.6 +/- 1.4 5.3 +/- 1.1 4.9 +/- 1.4 

Median 5.0 7.0 6.0 5.0 5.0 

Mean Rank 48.4 81.7 62.5 54.9 46.7 

Table 42. Average Allred scores (0, 2 - 8) for Survivin expression across tumour types.  

When the Allred score was used the highest levels were also detected in FL-HCCs (as 

shown in table 42) and the lowest in Adenomas. Similar to the H-score analysis, 

uncorrected pairwise comparisons for Allred scores are also significantly different 

between FL-HCC and Adenoma (p= 0.028), HCC and CCA (p= 0.036) and HCC and 

FL-HCC (p= 0.012). Similar to the H-score findings, once the significance was adjusted 

for multiple analyses, none of these differences were statistically significant. 

In summary I have found that there is a significant difference in tumour/ background 

liver Survivin expression (table 40) with differential expression of Survivin depending 

on the tumour type (figure 53). However, within this small study cohort the significance 

of pairwise comparisons is not certain when corrected for multiple analyses, meaning 

further work would help clarify whether this is a true relationship, or not.  

4.1.4.1 Clinical Correlates with Tumour Survivin Expression 

Survivin levels across the whole cohort were correlated with clinical measures. Table 43 

outlines protein expression differences between groups with P-values representing the 

level of significance of differences between the nominal outcome variable (Gender: 

M/F. Outcome: Dead/Alive, etc) and whether the tumour/ background Survivin 

quantification scores have a statistically significant difference between these groups. 

There is no data in table 43 about whether these differences are positive or negatively 

correlated, as this will be addressed subsequently. 

No statistically significant association between variation in Survivin expression in 

background liver tissue and clinical correlates was found. However, tumour Survivin 

expression was found to correlate with several clinical characteristics.    
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All Neoplasms Tumour Survivin Background Survivin 

H-Score Allred Score H-Score Allred Score 

Gender 0.591 0.568 0.964 0.694 

Outcome 0.007 0.011 0.433 0.360 

Fibrosis 0.231 0.272 0.824 0.812 

Cirrhosis 0.053 0.061 0.923 0.742 

Viral Hepatitis 0.213 0.267 1.000 0.906 

Metabolic Risk Factors 0.575 0.933 0.748 0.974 

Genetic Liver Disease 0.834 0.996 0.228 0.594 

Table 43. The distribution of Survivin staining across all neoplasms, based on clinical measures. 

Survivin expression appears to be differentially expressed between patients who have 

gone on to die, compared to those still alive. There is no significant difference in tumour 

Survivin expression (quantified using both the Allred and H-score) between: genders, 

fibrosis/cirrhosis derived tumours, and did not differ based on any further underlying 

inflammatory condition (viral hepatitis, metabolic or genetic diseases). Importantly: 

there were no significant relationships found between Survivin expression in 

background liver tissues and any clinical parameter measured. However, some caution 

must be exercised when comparing malignant characteristics (vascular invasion, margin 

positivity, etc) when the benign Adenomas are included – despite these being coded as 

missing data in SPSS – therefore these results will be further clarified below, figure 54.  

 

Figure 54. Higher Survivin levels are associated with all-cause mortality. 
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As can be seen from figure 54, using both the Allred and H-Scores, the mean ranks of 

Survivin were higher in tumour of those who died (62.04 and 62.66 respectively) 

compared to those alive (46.99 and 46.29, respectively). The level of statistical 

significance varies depending on the method of quantification used (p= 0.007 for the H-

Score and p= 0.011 for the Allred score).  

Scale variables such as tumour size in mm, and patient age at the time of operation were 

compared with the intensity of staining measures, as outlined in table 44.  

 

Table 44. There is no correlation between tumour/background Survivin levels and the patient age (years) or the 
tumour size (mm).  

There are no significant correlations between age or tumour size and Survivin in 

tumours or background liver tissues, but there is a suggestion of a positive correlation 

between tumour size and the intensity of staining (correlation coefficients ~ 0.17) and 

with significance P~0.076 reflected in similar values from both methods of recording 

tumour intensity staining. Patient age and tumour size are compared to staining intensity 

using Spearman’s rank test with 2-sided P-values with the level of significance set at 

0.05. 

Continued use of both quantification methods makes for a somewhat clunky and 

repetitive analysis. Given that the Allred scores are easier to visualise, interpret, uses a 

smaller scale, appears to be more representative of the study cohort and have been used 

in other published works for differentiating between high/low protein expressors this 

method will be used for the remainder of the analysis. Stratifying tumours by high/low 

protein expression based on their Allred score has been reported in breast cancers. It 

appears to be a suitable way of conveying protein expression by combining both the 

H Score Allred H Score Allred
Correlation Coefficient 0.160 0.113 -0.101 -0.16

P Value 0.097 0.243 0.330 0.122

Correlation Coefficient 0.171 0.170 0.054 -0.031
P Value 0.075 0.077 0.601 0.780

Age

Tumour 
Size

All Neoplasms
Tumour Survivin Background Survivin
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intensity of staining, as well as the percent of tumour that positively stain (Ellis et al., 

2010; Campbell et al., 2016). In both of these published papers an Allred score of 6-8 

was deemed ‘high expression’ when assessing the Oestrogen/Progesterone receptor 

expression when used to prognosticate, or otherwise stratify patients for offering an 

alternative chemotherapy regimen. However, two methods differentiating between 

groups was undertaken for completeness, as shown in figure 55. 

Assigning a threshold for a SurvivinHigh score of 5-8 (left image) or 6-8 (right image) 

helps to differentiate survival characteristics based on Survivin expression in tumours as 

shown in the Kaplan-Meier survival curves in figure 55.  

 

Figure 55. Tumours that express high levels of Survivin are associated with a reduced cumulative survival. 

With high levels of tumour Survivin (i.e., SurvHigh = Allred score 6 – 8) demonstrating a 

clearer, more statistically significant, reduction in cumulative survival, ꭓ² (1) = 13.013, 

p= 0.003. Using this method, patients with SurvivinLow-expressing tumours had a longer 

median survival (62.0 +/- 17.0 months, 95% CI 28.6 – 95.4) compared with 

SurvivinHigh-expressing neoplasms (24.0 +/- 3.2 months, 95% CI 17.7 – 30.3).  

Using the alternative (but not used elsewhere in the literature) threshold for tumour 

positivity (e.g., 0-4 low, and 5-8 high) gave a non-significant reduction in overall 

survival in tumours that express more Survivin, p= 0.056. Therefore, the higher cut off 

value for expression (Allred low scores 0-5 and high 6-8) was used for all further 
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tumour subgroup analyses. This approach was supported both by my data and the 

literature, table 45, (Ellis et al., 2010; Campbell et al., 2016). 

All Neoplasms: Survivin N SurvLow 

% (n) 

SurvHigh 

% (n) 

P-Value 

Gender Female 45 55.6 (25) 44.4 (20) 0.437 

Male 65 63.1 (41) 36.9 (24) 

Outcome Alive 51 74.5 (38) 25.5 (13) 0.006 

Dead 59 47.5 (28) 52.5 (31) 

Fibrosis - 66 59.1 (39) 40.9 (27) 0.841 

+ 43 62.8 (27) 37.2 (16) 

Cirrhosis - 87 56.3 (49) 43.7 (38) 0.090 

+ 22 77.3 (17) 22.7 (5) 

Viral Status - 95 58.9 (56) 41.1 (39) 0.778 

+ 15 60.0 (10) 40.0 (5) 

Genetic Liver 
Disease 

- 100 60.0 (60) 40.0 (40) 1.00 

+ 10 60.0 (6) 40.0 (4) 

Tumour HCC 52 73.1 (38) 26.9 (14) 0.032 

FL-HCC 6 33.3 (2) 66.7 (4) 

CCA 35 42.9 (15) 57.1 (20) 

Mixed 7 57.1 (4) 42.9 (3) 

Adenoma 10 70.0 (7) 30.0 (3) 

pSurv Allele CC 8 75.0 (6) 25.0 (2) 0.352 

CG 55 65.5 (36) 34.5 (19) 

GG 45 53.3 (24) 46.7 (21) 

Table 45. High tumour Survivin and clinical correlations. 

High tumour Survivin is correlated with all-cause mortality, being detected in 52.5% 

(31/59) of those who have died compared with 25.5% (13/51) of those still alive, p= 

0.006. SurvivinHigh was expressed to varying degrees depending on the tumour type, ꭓ² 

(4) = 10.209, p= 0.032. The majority of HCCs preferentially expressed SurvivinLow with 

73.1% (38/52) falling into this category, whilst the majority of CCAs (57.1%, 20/35) 

had SurvivinHigh.  However as comparing malignant traits when including benign 
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tumours (Adenomas) within a cohort this may lead to some erroneous data being 

produced, these characteristics will be more fully assessed below. 

More non-cirrhotic-derived tumours (43.7%, 38/87) expressed SurvivinHigh levels 

compared with tumours from cirrhotic patients (22.7%, 5/22), albeit to a non-significant 

extent, p= 0.090. Higher Survivin expression did not significantly correlate with gender, 

fibrosis, viral hepatitis, metabolic liver disease, genetic liver disease or any of the 

Survivin promoter variants, or subgroups of these variants. Teasing out the role of high 

tumour Survivin will be examined in the tumour subtype sections that follow. 

4.1.5 Tumour Subgroup Analysis 

As mentioned above, given the heterogeneous nature of the tumours being studied 

includes both benign and malignant neoplasms as well as clinical measures particular to 

certain tumours (e.g., perineural invasion in CCA, no malignant characteristics in 

Adenomas) subgroup analysis was undertaken to fully understand the study cohort. 

4.1.5.1 All Malignancies 

The clinical presentation, management and disease-course of primary liver malignancies 

is clearly very different from that of benign hepatic neoplasms. As such it is possible to 

compare malignant characteristics (tumour size, tumour stage, vascular invasion, etc) 

between tumour types, as well as overall survival data, further highlighting differences 

in Survivin expression and disease characteristics.  
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4.1.5.2 Clinicopathological Features 

Reassuringly there was a highly significant difference between tumour and background 

Survivin levels, as shown in table 46.  

All Malignancies Allred Score 

Tumour Background Liver 

Mean +/- S.D. 5.3 +/- 1.3 3.3 +/- 1.1 

Min – Max (range) 2 – 8 (6) 2 – 7 (5) 

Median 5.0 3.0 

Test Statistics t(82) = 12.9, p= 1.8E-21 

Table 46. Average Survivin expression in the malignant cohort. 

Differences in mean Allred scores between tumour (5.3) versus background liver (3.3) 

were normally distributed (t(82)= 12.9, p= 1.8E-21), highlighting the highly significant 

nature of this relationship. 

Survivin expression, based on tumour type, is shown in figure 56.  

Survivin was differentially expressed across malignant tumour types with FL-HCCs 

expressing the most (mean rank 73.7, median 7.0), followed by CCAs (56.2, median 

6.0), Mixed tumours (49.0, median 5.0) and finally HCCs (43.1, median 5.0), ꭓ² (3) = 

9.079, p= 0.028, figure 56.  

P=	0.028 

Figure 56 Differential Survivin expression by tumour type in malignancies.  



 186 

Allred Score: All Malignancies Correlation Coefficient (rho) P-Value 

Patient Age 0.087 0.393 

Tumour Size 0.201 0.046 

Table 47. Across all malignancies, higher Survivin levels may be positively correlated with larger tumours. 

When assessing tumour size and differential staining, it appears there is a weakly 

significant positive correlation (rho = 0.201, p= 0.046) between tumour size and Allred 

score. With benign tumours excluded it appears that larger tumours grow by evading 

apoptosis, table 47. There was no correlation between patient age and Survivin 

expression, p= 0.393. Comparing clinical characteristics in the malignancies is shown in 

table 48.  

All Malignancies Tumour Allred Score Distribution 

Outcome (Dead vs Alive) P= 0.016 

Margin P= 0.056 

Cirrhosis P= 0.039 

Stage I & II vs. III & IV P= 0.047 

Vascular Invasion P= 0.008 

Table 48.  Survivin distribution across all malignancies, based on clinic-pathological characteristics. 

In the malignant cohort there is a highly significant relationship between tumour 

Survivin in tumours with vascular invasion (p= 0.008), as well as there being some role 

in overall outcome, p= 0.016. There is also a significant difference between those with 

liver cirrhosis (p= 0.039 and a marginally significant difference in Survivin expression 

when early (I & II) and late (III & IV) stage tumours, p= 0.047. Tumour Survivin 

expression did not differ significantly between R0 and R1 resection specimens, p= 

0.056. 

As shown in table 48 another property that is significantly different between groups is 

the vascular invasion of tumour. These differences are shown graphically, with more 

data, in figure 57.  
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Figure 57. Higher Survivin levels are associated with vascular invasion of tumour samples. 

Tumours with vascular invasion (VI+) had a greater Allred score (mean rank of 52.9) 

compared to VI- malignancies (mean rank of 38.5, U=1372, p= 0.008). Median Survivin 

values for VI+ tumours was also greater (6.0) than in VI- tumours (5.0). Both of these 

metrics highlight the invasive nature of Survivin expressing tumours and how greater 

Survivin expression can correlate with adverse histopathological features in this study 

cohort. 

Differences in Survivin staining in early versus late-stage disease is of borderline 

significance with mean ranks lower in early (41.7) compared to late stage (53.5) 

disease, U= 1012, p=0.047, as shown in figure 58.  

 

Figure 58. Higher Survivin levels may be associated with more advanced stage disease.  

Median Survivin values for early-stage disease (5.0) was also lower than those found in 

more advanced tumours (6.0), implying this is perhaps a true representation of these 

average values. 

As mentioned above, it was somewhat surprising to find higher levels of Survivin in 

tumours from non-cirrhotic, compared with cirrhosis-derived tumours when all 

malignant neoplasms are assessed, as shown in figure 59, p= 0.039. 
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Figure 59. Across all malignancies, higher Survivin levels are significantly associated with tumours that arise in 
non-cirrhotic livers. 

Surgically resected cirrhosis-derived liver tumours express less Survivin, as quantified 

with the Allred score, (mean rank 38.77) compared with non-cirrhosis-derived tumours 

(mean rank 52.61), U= 600, p= 0.039. However, the median values for both being 5.0, 

highlighting the borderline significance of this finding.  

Furthermore, the study cohort is not representative of the majority of patients with liver 

cancer, meaning these findings need to be interpreted with caution owing to this 

selection bias. The asymmetric distribution of tumours arising on a background of 

cirrhosis (n=22, mostly classical HCCs) compared to those tumours arising from non-

cirrhotic livers (n=76, almost all CCAs) will confound this finding. As I have shown 

above, CCAs express significantly more Survivin than HCCs so the significance of 

cirrhosis/ low-expressing tumours correlating is of perhaps somewhat limited value.  

4.1.5.3 Overall Survival based on Survivin Expression 

There remains a weakly significant difference in Survivin in tumours when assessing 

all-cause mortality, as shown in figure 60, p= 0.016. 

 

Figure 60. Across all malignancies, higher Survivin levels are significantly associated with all-cause mortality.  

 The Allred scores in malignant tumours from patients who have gone on to die is 

higher (mean rank 55.67) than in tumours from patients who are still alive (mean rank 
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41.98, U= 1518), p= 0.016. This is also reflected in the median values of those who died 

(6.0) compared with the alive patients (5.0).   

Assessments of cumulative survival in SurvivinHigh malignancies is shown in the Kaplan 

Meier survival curve in figure 61, ꭓ² (1) = 11.321, p= 0.001.  

 

Figure 61. High Survivin expressing malignancies have a reduced cumulative survival.  

Median survival in SurvivinLow expressing malignancies was 80.0 +/- 25.8 months (95% 

CI 29.4 – 130.6) compared to the shorter survival observed in SurvivinHigh expressing 

tumours 39.0 +/- 12.6 months (95% CI 14.2 – 63.8), p= 0.001.  

4.1.5.4 Dichotomised Survivin Expression and clinical features.  

Table 49 outlines how high tumour Survivin is associated with the adverse clinical 

measures of all-cause mortality, tumour stage and vascular invasion. As shown below in 

table 49, high tumour Survivin was more common in tumours from patients who 

subsequently died (31/59, 52.5%) compared with those still alive (10/41, 24.4%) p= 

0.007. Over half of tumours (28/51, 54.9%) that invaded the vasculature had high 

tumour Survivin compared with 21.4% (9/42) in non-invasive tumours, indicating the 

association with this malignant characteristic, p= 0.001. SurvivinHigh is also present in 

more advanced tumours (stages III & IV), being detected in 60.0% (15/25) of late stage, 

compared with 32.3% (21/65) of early-stage disease, p= 0.029. 
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Malignancy - Survivin N SurvivinLow 

% (n) 

SurvivinHigh 

% (n) 

P-value 

Outcome Alive 41 75.5 (31) 24.4 (10) 0.007 

Dead 59 47.5 (28) 52.5 (31) 

Margin R0 58  67.2 (39) 32.8 (19) 0.062 

R1 40 47.5 (19) 52.5 (21) 

Fibrosis - 59 57.6 (34) 42.4 (25) 0.680 

+ 40 62.5 (25) 37.5 (15) 

Cirrhosis - 77  54.5 (42) 45.5 (35) 0.084 

+ 22 77.3 (17) 22.7 (5) 

Tumour 
Stage 

I & II 65 67.7 (44) 32.3 (21) 0.029 

III & IV 25 40 (10) 60 (15) 

Tumour 
Stage 

I 30 83.3 (25) 16.7 (5) 0.007 

II 35 54.3 (19) 45.7 (16) 

III 19 36.8 (7) 63.2 (12) 

IV 6 50 (3) 50 (3) 

Grade  Well 11 72.7 (8) 27.3 (3) 0.716 

Mild/ Mod 65 58.5 (38) 41.5 (27) 

Poor 17 58.8 (10) 41.2 (7) 

Vascular 
Invasion 

- 42 78.6 (33) 21.4 (9) 0.001 

+ 51 45.1 (23) 54.9 (28) 

Tumour HCC 52 73.1 (38) 26.9 (14) 0.018 

FL-HCC 6 33.3 ( 2) 66.7 (4) 

CCA 35 42.9 (15) 57.1 (20) 

Mixed 7 57.1 (4) 42.9 (3) 

pSurv 
Allele 

CC 8 75.0 (6) 25.0 (2) 0.228 

CG 52 65.2 (34) 34.6 (18) 

GG 38 50 .0 (19) 50.0 (19) 

Table 49. High tumour Survivin correlates with the clinic-pathological measures.  

When further characterising individual tumour stages, SurvivinHigh was found at 

increased levels in more advanced tumour stages with only 16.7% (5/30) of stage I, 

45.7% (16/35) of stage II, 63.2% (12/19) of stage III and 50.0% (3/6) of stage IV, 

expressing high levels of tumour Survivin, ꭓ² (3) = 11.777, p= 0.007. Also, SurvivinHigh 
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expression was significantly different between tumour types as only 34.6% (18/52) of 

HCCs compared with 57.1% (20/35) of CCAs highly expressed Survivin, ꭓ² (3) = 9.674, 

p= 0.018.  

There is a non-significant increase in tumour Survivin detected in tumours from non-

cirrhotic (35/77, 45.5%) compared with cirrhotic livers (5/22, 22.7%) p= 0.084. Fewer 

of the R0 resections (19/58, 32.8%) expressed high tumour Survivin levels, compared 

with R1 resections (21/40, 52.5%, p= 0.062). There is no correlation between high 

tumour Survivin and tumour grade (p= 0.716), fibrosis (p= 0.680) or cirrhosis (p= 

0.084) and no association with increased levels of Survivin and any particular 

rs9904341 allele, p= 0.228. 

SurvivinHigh may be a useful adjunct in determining higher-risk liver tumours as 

adversely associated clinical measures (vascular invasion, advanced tumour stage and 

highlighting patients that are at an increased risk of early death) are significantly 

associated with these characteristics in this relatively small malignant cohort. 

4.1.5.5 HCC 

In HCCs, as with all neoplasms I have studied, there is a significant increase in Survivin 

expression in tumours compared to background liver tissues, as shown in table 50.  

HCC Allred Score Tumour Background Liver 

Mean +/- S.D.  5.1 +/- 1.3 3.3 +/- 1.1 

Min – Max (range) 2 – 8 (6) 2 – 7 (5) 

Median 5.0 3.0 

Test Statistic t(42) = 8.8, p= 3.8E-11 

Table 50. Average Survivin expression in HCCs, and paired background livers.  

There remains a greater expression of Survivin in tumours compared to paired 

background liver samples, when quantified using the Allred score (mean tumour 5.1 

compared to background, 3.3, t(42)= 8.8, p= 3.8E-11). As has been shown above, the 
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Survivin quantification has, on average, been lower than that detected in other tumour 

types. An in-depth analysis to ascertain the role of Survivin in HCCs will show 

correlations with some malignant characteristics.  

To further clarify the role of Survivin in HCCs and any potential relationships between 

adverse clinical measures, table 51 highlights significant differences between groups.   

Clinical measures: HCC Significance of Allred Score Differences 
Between Groups 

Fibrosis P= 0.142 

Cirrhosis P= 0.238 

Stage I & II vs III & IV P= 0.106 

Vascular Invasion P= 0.013 

Tumour Grade* P= 0.007 

Table 51. Differential Survivin expression, based on clinic-pathological characteristics in HCC, when FL-HCCs are 
excluded. 

 Survivin expression differs significantly between tumours with vascular invasion (p= 

0.013) and between tumour grades, p= 0.007. Figures 62 and 63 assess these differences 

further. 

 

Figure 62. HCCs with vascular invasion express more Survivin.  

As figure 62 demonstrates, the Allred score mean ranks for VI+ tumours are 29.8 vs 

20.1 (VI-) U= 377, p= 0.013. Median Survivin is greater in VI+ tumours (6.0) compared 

with their VI- counterparts (5.0).  

As can be seen from figure 63, there is significantly more Survivin staining in 

mild/moderately differentiated HCCs (mean rank 26.6, median 5.0) compared to well 

differentiated tumours (9.4, median 4.0) ꭓ² (2) = 10.037, p= 0.005. Interestingly there is 
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minimal increased Survivin expression in poorly differentiated tumours (mean rank 

26.3, median 5.0) compared with MMD (p= 1.00) and WD tumours, p= 0.087. These 

differences represent an increase in apoptosis inhibitor quantity in tumours of less 

favourable differentiation.  

 

Figure 63. Survivin expression in HCCs can discern well-differentiated tumours from mild/moderately differentiated 
HCCs. 

There was no correlation between Survivin expression and the patient’s age (p= 0.085), 

or tumour size, p= 0.448. High expression of tumour Survivin is not associated with 

cumulative survival, ꭓ² (1) = 2.225, p= 0.136. Median survival in SurvivinLow HCCs 

was 62.0 +/- 27.3 months (95% CI 8.4 – 115.6) did not differ significantly when 

compared with SurvivinHigh HCCs 24.0 +/- 15.0 (95% 0.0 – 53.4).  

Survivin expression in the background liver from which various tumour grades grew 

from can be seen in figure 64. Survivin expressed by the background liver varied 

significantly depending on the tumour grade that subsequently grew, ꭓ² (2) = 6.692, p= 

0.035. The Survivin mean rank of background liver from which well differentiated 

tumours grew (14.80) was significantly lower than livers which gave poorly 

differentiated HCCs (30.80, p= 0.042).  
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Tumour Grade: Hepatic Survivin N Mean Rank Mean +/- S.D. Median 

Well Differentiated 5 14.8 2.8 +/- 0.8 3.0 

Mild/Moderately Differentiated 30 19.7 3.3 +/- 1.2 3.0 

Poorly Differentiated 5 30.8 4.0 +/- 0.7 4.0 

 
Figure 64. Levels of Survivin in background liver samples may be significantly different between livers that go on 
to develop well versus poorly differentiated tumours.  

 
Categorising HCCs into high/low Survivin expressers based on Allred score showed a 

correlation with high Survivin and both tumour stage and vascular invasion – see table 

52.  
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HCC N SurvivinLow 

% (n) 

SurvivinHigh 

% (n) 

P-value 

Fibrosis - 26 69.2 (18) 30.8 (8) 0.755 

+ 26 76.9 (20) 23.1 (6) 

Cirrhosis - 36 69.4 (25) 30.6 (11) 0.506 

+ 16 81.3 (13) 18.7 (3) 

Tumour Stage I & II 29 86.2 (25) 13.7 (4) 0.007 

III & IV 17 47.1 (8) 52.9 (9) 

Tumour Stage* I 21 90.5 (19) 9.5 (2) 0.026 

II 8 75 (6) 25 (2) 

III 14 50.0 (7) 50.0 (7) 

IV 3 33.3 (1) 66.7 (2) 

Grade  Well 8 100 (8) 0.0 (0) 0.130 

Mild/ Mod 35 65.7 (23) 34.3 (12) 

Poor 5 80 (4) 20 (1) 

Vascular 
Invasion 

- 29 89.7 (26) 10.3 (3) 0.002 

+ 19 47.4 (9) 52.6 (10) 

pSurv Allele CC 4 50.0 (2) 50.0 (2) 0.172 

CG 23 87.0 (20) 13.0 (3) 

GG 23 69.6 (16) 30.4 (7) 

Table 52. High tumour Survivin correlates with the clinico-pathological characteristics in HCCs.  

High Survivin was significantly associated with vascular invasion and more advanced 

disease.  Just over half the tumours that invade the vascular network (VI+) express high 

levels of Survivin (10/19, 52.6%) compared to around 1 in 10 of less invasive tumours 

(3/29, 10.3%, p= 0.002). High Survivin is expressed in 52.9% (9/17) of advanced stage, 

compared to 13.8% (4/29) of early-stage disease, p= 0.007. When comparing individual 

tumour stages, more express high Survivin at a more advanced stage with 9.5% (2/21, 

stage I), 25% (2/8, II), 50% (7/14, III) and 66.7% (2/3) of stage IV tumours having high 

tumour Survivin levels, ꭓ²(3) = 9.124, p= 0.026. This stepwise increase in Survivin 

expression across adversely associated tumour grades suggests a possible role for this 

apoptosis inhibitor in HCC progression.   
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4.1.5.6 A Note on FL-HCCs 

There was preferential expression of Survivin by FL-HCCs (median Allred score: 7.0), 

differentiating them from HCCs. Given the clear difference in Survivin expression 

between HCCs and FL-HCCs, as well as the different clinical presentation (younger 

patients, not associated with cirrhosis and only a single death within the follow up 

period) these tumours have therefore have been excluded from the HCC analysis. When 

considering a small cohort of six tumours, there are no significant correlations between 

Survivin expression and any clinical parameter, including cumulative survival.   

4.1.5.7 CCA 

The Cholangiocarcinomas also express significantly more Survivin in tumour, 

compared to paired background liver samples as shown in table 53.  

CCA Allred Score Tumour Background Liver 

Mean +/- S.D. 5.3 +/- 1.4 3.1 +/- 0.9 

Min – Max (range) 2 – 8 (5) 2 – 5 (3) 

Median 6.0 3.0 

Test Statistic t(26) = 7.3, p= 9.4E-8 

Table 53. Average Survivin expression in CCAs and paired background liver tissues. 

Unlike in HCC, in CCA differences in tumour Survivin protein levels were associated 

with the promoter variants of rs9904341, figure 65, p= 0.047. The mean ranks of CC 

(6.67), CG (17.2) and GG (22.17) are significantly different (p= 0.047) with particular 

difference between the homozygous alleles, as outlined in figure 65, when pairwise 

comparisons are made.  
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Figure 65. Survivin promoter variants differentially express Survivin protein In CCAs.   

Comparisons of Survivin expression between groups (based on clinical measures) is 

outlined in table 54.  

Clinical measures: CCA Significance of Allred Score 
Differences Between Groups 

Outcome P= 0.005 

Fibrosis P= 0.092 

Stage I & II vs III & IV P= 0.024 

Vascular Invasion P= 0.310 

Tumour Grade* P= 0.291 

Perineural Invasion P= 0.045 

Table 54. Survivin expression in all CCAs varies based on clinico-pathological characteristics. 

Tumour Survivin levels appear to differ significantly in all-cause mortality (outcome), 

early vs late-stage disease and perineural invasion. Allred scores for Survivin 

expression in early and late-stage disease is shown in figure 66. 

 

Figure 66. Higher Survivin expression in more advanced stage disease in CCA.  

Tumour Survivin is lower in early-stage disease (mean rank 15.2, median 5.0) compared 

with more advanced disease (mean rank 25.0, median 6.0), in this study cohort, U= 129, 

p= 0.024.  
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CCA has a propensity to spread through the neural network (perineural invasion) of the 

liver and this feature was associated with higher levels of Survivin expression, figure 

67. 

 

Figure 67. Higher Survivin levels may be associated with perineural invasion in CCA.  

The presence or absence of perineural invasion (PI+/-) was recorded in 35 of the CCAs 

included in this study. Of the 35 CCAs included, the Allred score mean rank for those 

with perineural invasion (21.4) was significantly higher than those tumours without 

perineural invasion (14.4, U= 214, p= 0.045). Whilst this is a small cohort and includes 

both intrahepatic and perihilar CCA, it’s interesting to see this adverse clinical measure 

associate with higher Survivin levels and that this is also reflected in Survivin median 

values (PI+ 6.0, PI- 5.0).  

There is a non-significant trend towards fibrosis-related CCAs expressing more tumour 

Survivin when compared with their non-fibrotic counterparts using Allred-score, U= 

146, p= 0.092. However, for all CCAs there was no correlation between the scale 

variables age (rho = 0.291, p= 0.089) and tumour size (rho = 0.181, p= 0.299). 

4.1.5.8 Survival data and Survivin Expression 

Quantified levels of Survivin protein and how these differ across all-cause mortality are 

outlined in figure 68.  
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Figure 68. Higher tumour Survivin levels are associated with all-cause mortality. . 

Comparing the Allred score mean ranks (alive 11.4, dead 21.5, U= 217.5, p= 0.005) 

demonstrates that higher Survivin level, as it was for HCC, is associated with all-cause 

mortality. This is supported by median CCA Survivin being lower in those patients still 

alive (5.0) compared to those who have subsequently died (6.0). Cumulative survival 

analysis with CCA categorised into high and low Survivin groups is shown in figure 69.  

 

Figure 69. Cumulative survival differences based on Survivin expression in CCA.  

There is a significant reduction in overall survival in CCA that express high levels of 

Survivin, ꭓ² (1) = 9.823, p= 0.002. Median survival in SurvivinHigh CCA is 15.0 +/- 7.8 

months (95% CI 0.0 – 30.3) compared to an overall median survival of 24 +/- 6.7 

months (95% 10.9 – 37.1). As 60% of those with SurvivinLow CCAs are still alive, a 

median value (i.e., 50% survival) has not yet been reached, and cannot therefore be 

commented upon. However, differences in mean survival in SurvivinLow (mean 86.6 +/- 

15.0 months, 95% CI 57.3 – 115.9) and SurvivinHigh (mean 25.0 +/- 6.2 months, 95% CI 

12.8 – 37.1) tumours make it a potential biomarker for assisting in prognosticating 

survival in CCA.  



 200 

4.1.5.9 SurvivinHigh and Clinicopathological Correlates in CCA 

Clinical correlations and low/high expressing CCAs are shown in table 55. 

CCA N SurvivinLow 

% (n) 

SurvivinHigh 

% (n) 
P-value 

Outcome Alive 12 83.3 (10) 16.7 (2) 0.001 

Dead 23 21.7 (5) 78.3 (18) 

Fibrosis - 26 53.8 (14) 46.2 (12) 0.053 

+ 8  12.5  (1) 87.5 (7) 

Tumour 
Stage 

I & II 27 55.6 (15) 44.6 (12) 0.021 

III & IV 6 0.0 (0) 100 (6) 

Tumour 
Stage* 

I 5 80.0 (4) 20.0 (1) 0.048 

II 22 50.0 (11) 50.0 (11) 

III 5 0.0 (0) 100.0 (5) 

IV 1 0.0 (0) 100.0 (1) 

Grade  Well 1 0.0 (0) 100.0 (1) 1.000 

Mild/ Mod 23  47.8 (11) 52.2 (12) 

Poor 9 44.4 (4) 55.6 (5) 

Vascular 
Invasion 

- 8 62.5 (5) 37.5 (3) 0.418 

+ 25 40.0 (10) 60.0 (15) 

Perineural 
Invasion 

- 17 52.9 (9) 47.1 (8) 0.315 

+ 18 33.3 (6) 66.7 (12) 

pSurv 
Allele 

CC 3 100.0 (3) 0.0 (0) 0.021 

CG 20 50.0 (10) 50.0 (10) 

GG 12 16.7 (2) 83.3 (10) 

Table 55. High Survivin expression in CCAs, and clinic-pathological characteristics. 

All-cause mortality is linked with high tumour Survivin, with 78.3% of those patients 

that went on to die expressing high levels, compared with just 16.7% of patients still 

alive, p= 0.001. One hundred percent of the advanced stage tumours expressed high 

levels of Survivin compared with 44.4% of early-stage tumours, p= 0.021. When 

assessing each individual CCA stage, and comparing high Survivin expression, a stage-

dependent pattern emerged. Twenty percent (1/5) of stage I tumours expressed high 
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Survivin levels which increased with more advanced tumours, as shown by increased 

Survivin expression by stage II (11/22, 50%), III (5/5, 100%) and IV (1/1, 100%) 

tumours, ꭓ²(3) = 7.590, p= 0.048. 

Unlike in HCC an allele-dependent expression of Survivin was demonstrated in CCA. 

The CC allele tumours only expressed low levels of Survivin (i.e., 0% high Survivin 

expression) with 50% (10/20) of CG heterozygotes and 83.3% (10/12) of the GG 

homozygotes expressing high Survivin levels, ꭓ² (2) = 7.778, p= 0.021.  

4.1.5.10  Differentiating CCAs: Perihilar vs. Intrahepatic 

There was no difference in Survivin expression between iCCA and pCCA tumour 

samples, p= 0.654. However, when comparing the background liver levels of Survivin, 

a significant difference becomes apparent.  

Of the 36 CCAs studied 28 had background liver tissues available for assessment. Four 

of these were from pCCAs, which demonstrated significantly higher Survivin 

expression compared to the background livers from iCCAs. Quantification found a 

mean rank iCCA (13.21) lower than pCCA (22.25) to a significant extent, U= 79, p= 

0.042. The significance of this difference is uncertain, but could possibly be related to 

chronic inflammation from, for example, biliary stasis that is known to occur more 

frequently in perihilar, and distal CCAs. Further work is required to clarify these 

findings.  

4.1.5.11 iCCA 

Analysing the iCCAs as a separate group found similar correlations as the CCA cohort 

overall. Mean Allred scores for tumour (5.3) compared with background liver (2.9, 

t(22)= 7.4, p= 2.3E-7) confirm that Survivin is expressed more in iCCA tumours 

compared to background liver samples, with no difference in Survivin expression based 

on the three rs9904341 alleles, p= 0.143.  
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As in the CCA cohort, Survivin expression in iCCA was associated with tumour stage 

(figure 70, p= 0.026), perineural invasion (Mean ranks PI+18.7, PI- 12.4, U= 146.5, p= 

0.048) and increased mortality (mean rank dead 18.1, alive 9.9, U= 155.5, p= 0.009).  

 

Figure 70. Survivin expression differentiates between stage I and stage III disease in iCCA.   

SurvivinHigh expressing iCCA was also shown to be associated with reduced cumulative 

survival, ꭓ² (1) = 6.934, p= 0.008, figure 71.  

 

Figure 71. High Survivin expressing iCCA have a reduced cumulative survival. 

Median survival in SurvivinHigh iCCA is 19.0 +/- 8.0 months (95% CI 3.3 – 34.7) 

compared to an overall survival of 27.0 +/- 8.0 months (95% CI 11.3 – 42.7). Average 

survival for SurvivinLow (>50% still alive therefore median statistics from KM are not 

calculated. However, mean Survival for SurvivinLow is 88.0 +/- 16.6 months (95% CI 

55.6 – 120.5) which is greater than that of SurvivinHigh iCCAs (28.8 +/- 7.4 months, 

95% CI 14.3 – 43.2).  
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4.1.5.12 Mixed 

There were only seven mixed CCA-HCCs for comparison which are of particular 

clinical interest owing to their mixed cell-lineage. As there are so few of these mixed 

tumours this does limit the strength of any conclusions.  

As for all other PLCs Survivin expression was higher in tumour than background liver 

table 56.  

Mixed Allred Score Tumour Background Liver 

Mean +/- S.D. 5.3 +/- 1.1 3.7 +/- 1.2 

Min – Max (range) 4– 7 (3) 3– 6 (3) 

Median 5.0 3.0 

Test Statistic Z = -2.2, p= 0.026 

Table 56. Average Survivin expression in mixed tumour and paired background liver.  

The Allred score mean differences were also significantly higher in tumour samples 

(5.3) compared to background liver (3.7, Z= -2.232, p= 0.026). All of the mixed 

tumours were rs9904341 CG heterozygotes so comparisons between allele’s Survivin 

levels was not possible. 

Of the 7 mixed tumours, 3 were high expressors of Survivin (Allred 6-8). In this small 

study subset of samples, there were no significant differences in the distribution of 

Survivin expression between any groups (based on clinical characteristics). Mixed 

tumours that expressed high levels of Survivin were not associated with a change in 

cumulative survival, ꭓ² (1) = 0.856, p= 0.355. 

All of the tumours (3/3, 100%) from patients with metabolic risk factors expressed high 

levels of Survivin, with the converse being true of those without metabolic risk factors 

(i.e., 0/4, 0%) p= 0.029.  
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4.1.5.13 Adenomata 

The benign Adenomas also expressed more Survivin in tumours tissue than paired 

background liver using the Wilcoxon signed rank method, as shown in table 57. 

Adenoma Allred Score Tumour Background Liver 

Mean +/- S.D. 4.9 +/- 1.5 3.5 +/- 0.7 

Min – Max (range) 3 – 7 (4) 3 – 5 (2) 

Median 5.0 3.0 

Test Statistic Z = -2.3, p= 0.024 

Table 57. Average Survivin expression in Adenomas and paired background liver tissues. 

Allred score median values for tumour Survivin (5.0) is greater than in background liver 

(3.0, Z= -2.263, p= 0.024). No correlation was seen between Survivin levels and clinical 

characteristics, patient age (rho= 0.204, p= 0.571), tumour size (rho= -0.168, p= 0.642) 

or the promoter rs9904341. As expected with benign tumours, all patients were alive at 

end of follow up, so there were no survival differences.  

4.1.6 Discussion	

Using a digital pathology platform to quantify expression of a single protein (Survivin) 

has been achieved in both tumour and paired background liver samples using whole 

slide images. With neoplastic expression of Survivin is consistently higher in both 

benign and malignant neoplasms, it appears to be a method deployed during the 

neoplastic growth of liver tumours, whether they are benign or malignant growths. This 

is analogous to previous reports of gastric carcinoma expresses more Survivin compared 

to normal gastric mucosa (Gu et al., 2014), as well as Survivin being reported as 

expressed by both benign and malignant ovarian neoplasms, (He et al., 2018). 

4.1.6.1 Major Findings 

Digital approaches for quantification and stratification of Survivin expression have 

discovered correlations between clinical characteristics and protein expression at the 
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level of the entire cohort and in tumour subgroup analyses. When considering the whole 

study cohort (including the benign Adenomas), Survivin is present at higher levels in 

tumours of those patients with a poorer prognosis – those that die sooner, demonstrating 

its role in overall survival, p= 0.011.  

Further to this, elevated tumour Survivin has been consistently demonstrated to 

correlate with clinical characteristics including vascular invasion (p= 0.008) and all-

cause mortality (p= 0.016) and positively correlated with tumour size (p= 0.046) in the 

malignant tumours under study. However, when subsequent size (and age) correlations 

between Survivin expression are explored in tumour subtypes, there is no further 

evidence in support of these initial findings. This may be because the sample size is 

simply too small, or indeed it could be an example of a false discovery due to serial 

analyses.  

Within the two main tumour sub groups (HCC and CCA) there is a divergence of 

clinical behaviours when it comes to Survivin-expressing tumours. CCAs express more 

Survivin than classical HCCs (p= 0.028), which explains the somewhat anomalous 

correlation of cirrhosis and lower tumour Survivin, p= 0.039. More HCCs (compared to 

CCAs) develop in the context of cirrhosis so it seems sensible that the data reflects this. 

It is also possible that cirrhotic liver is less able to inhibit apoptosis given then increased 

cellular turnover as a result of the chronic inflammatory process. Therefore, tumours 

from non-cirrhotic tissues are perhaps more able to react to (and overcome) 

physiological control mechanisms, such as apoptosis, given their inflammation-naïve 

state. However, this cohort is not representative of all PLCs, owing to the selection bias 

inherent in this surgically managed group of patients, potentially limiting the 

transferability of these results. It is important to remember that FL-HCCs expressed the 

most Survivin of all the tumours under study. As these tumours are both clinically (i.e., 
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present in younger, non-cirrhotic patients) and morphologically distinct from classical 

HCCs, this perhaps explains the inverse relationship to Survivin expression.   

When assessing HCCs, there is a strong correlation between Survivin expression and 

tumour grade (p= 0.007) as well as vascular invasion (p= 0.013) but no adverse survival 

associated with Survivin-expression, p= 0.246. Vascular invasion has recently been 

reported as being associated with Survivin expressing HCCs, similar to my findings 

(Kapiris et al., 2019). More historical data has correlated Survivin expression with VI, 

local recurrence and disease-free survival, but not tumour grade, (Fields et al., 2004). It 

is clear that Survivin expression is related to some HCC tumour characteristics, but 

further work is required to fully ascertain these relationships. 

The three grades of HCC (well, mild-moderately and poorly differentiated) express 

significantly different amounts of Survivin ꭓ² (2) = 10.032, p= 0.007. This highlights a 

novel, potentially useful method of stratifying well differentiated tumours from 

mild/moderately differentiated has been highlighted in this study based on their ability 

to express Survivin.  Significantly lower levels of tumour Survivin were found in well 

differentiated HCCs (compared to mild/moderately differentiated HCCs) using the 

Allred score, p= 0.005. Further to this, the level of Survivin expressed by the 

background liver varied significantly depending on the tumour grade that it 

subsequently generates, p= 0.035. The Survivin in background livers from which well 

differentiated tumours grew was significantly lower than livers which gave poorly 

differentiated HCCs, p= 0.042. Thus, quantifying the Survivin in background liver 

tissue could help identify poorly differentiated HCCs – which could be a useful aid 

when fully assessing the histopathological characteristics. 

When considering Survivin expression in CCAs – elevated expression is associated 

with a poor outcome (p= 0.005), advanced tumour stage (p= 0.024), perineural invasion 



 207 

(p= 0.045). As CCAs are less common than HCCs, and generally confer a poorer 

prognosis Survivin expression could be clinically useful to identify higher risk tumours 

to help monitor future surgically managed patients. There is limited published data on 

the role of Survivin in CCA, with a study from 2004 in a cohort of 24 patients being one 

of the largest other groups having been studied which also found poorer outcomes in 

patients with high levels of expression, (Javle et al., 2004). As such, the work I have 

presented here contributes significantly to the body of knowledge and further outlines 

the clinical parameters correlate with high tumour Survivin expression.  

4.1.6.2 Other Findings 

Further evidence of malignant characteristics has potentially been demonstrated when 

considering tumour stage. Using the Allred method for quantification there appears to 

be more Survivin present in advanced stage (III and IV) malignancies compared with 

the earlier stage tumours, U= 1012, p= 0.047. An important caveat to consider here is 

the fact that tumour stage is being compared across tumour types, which is not typically 

done clinically. However, it is interesting to compare this finding with the tumour sub-

group analyses. Elevated levels of Survivin have previously been associated with 

advanced grades of cervical cancer, renal cell cancer and HCCs (Baytekin et al., 2011; 

Liu et al., 2015; Kapiris et al., 2019). 

Oddly, the FL-HCCs expressed the most Survivin compared to HCCs (p= 0.028) yet 

carry a better prognosis. As the histological and clinical characteristics of FL-HCC are 

also very different from traditional HCCs these two entities were separated for the 

purposes of analysis. It is unclear why there is significantly more Survivin in this small 

cohort of tumours, so future work could involve increasing the numbers of FL-HCCs 

assessed to better understand the role of Survivin in these rare tumours. 
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When assessing cholangiocarcinomas, the first evidence of allele-dependant Survivin 

expression becomes apparent in our study cohort, with GG homozygotes expressing 

more Survivin, p= 0.047. These GG homozygotes have been demonstrated to have a 

higher risk of developing oral cancer in Taiwanese patients (Weng et al., 2012) 

and occur more commonly in malignant glial cell brain tumours, compared with benign 

intracranial neoplasms in a Turkish cohort (Kafadar et al., 2018). These results back up 

the cell culture data, where GG homozygotes express more Survivin than other alleles, 

therefore it does make sense that (at least in this Western cohort of patients) the GG 

alleles correlate with increased Survivin expression. However, a complicating factor for 

this being patient ethnicity, as there is an established difference in allele frequencies 

depending on ethnicity based on a recent metanalysis, with more cancers in Survivin 

promoter CC homozygotes in Asians (but not Caucasians) adding further complexity to 

the data interpretation (Xu et al., 2014).  

When all CCAs are included (iCCA and pCCA) significantly more Survivin has been 

detected in GG, compared to CC homozygotes, when using the Bonferroni correction 

for adjusted significance, p= 0.048. Similar results, albeit lacking statistical 

significance, are found when the iCCA are compared, p= 0.143. Once again; a larger 

cohort of patients would allow me to clarify whether this relationship further.  

Advanced stage tumours expressed more Survivin when comparing stage III/IV disease 

with stage I/II CCAs, p= 0.024. Mechanistically it makes sense that the more advanced 

a tumour has spread, the more able it is to evade normal physiological control, such as 

programmed cell death. A relatively CCA-specific characteristic (perineural invasion) 

was found to when higher Survivin expression was detected with PI+ tumours 

expressing more than PI-, U= 214, p= 0.045. This is yet further evidence of Survivin 

expression potentially being a useful adjunct in assessing PLCs in routine clinical care. 
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However, this is a small cohort and further work would be required to fully describe the 

potential use of Survivin expression in CCAs.  

Of the 36 CCAs studied 28 had background liver tissues available for assessment. Four 

of these were from pCCAs, which demonstrated significantly higher Survivin 

expression compared to iCCAs. Quantification found a mean rank for iCCA which was 

lower than that of pCCA, p= 0.042. It is interesting that Survivin is differentially 

expressed in the liver tissues, based on the anatomical location of the primary tumour. 

This may be secondary to inflammatory reaction than can occur in cholestasis, which is 

known to occur more frequently in CCAs that develop further down the biliary tree. 

4.1.6.3 SurvivinHigh Expression 

In SurvivinHigh expressing malignancies median survival was found to be significantly 

shorter compared to SurvivinLow expressing malignancies, further characterising adverse 

survival in tumours that strongly express Survivin protein, ꭓ² (1) = 11.32, p=0.001. 

Similar results have also been previously reported in oesophageal cancer (Grabowski et 

al., 2003). Therefore, elevated Survivin expression could be used to highlight patients 

who would benefit from closer follow up after surgery. 

When the malignancies are stratified into SurvivinHigh/Low groups based on their Allred 

score, more Survivin expression correlates with advanced tumour stage (III & IV, p= 

0.029), as well as demonstrating a stepwise increase in protein as tumour stage 

increases, ꭓ² (3) = 11.777, p= 0.007.  

High Survivin expressing malignancies were grouped together and correlated with a 

reduced cumulative survival, p= 0.001. Other common associations across the entire 

malignant cohort between SurvivinHigh included increased expression in tumours with 

vascular invasion (p= 0.001) and in CCAs, p= 0.018.  
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In tumours that have invaded the vasculature, significantly more of these had 

SurvivinHigh levels of expression, further indicating the relevance of this relationship, p= 

0.001. Vascular invasion has only recently been reported as being associated with 

Survivin expressing HCCs, similar to my PLC findings (Kapiris et al., 2019).  

The SurvivinHigh expressing HCCs did have a lower cumulative survival, as well as 

being more prevalent in late-stage disease (p=0.007) and in tumours that invaded the 

vasculature (P= 0.003), partly replicating the findings of Kapiris et al in their recent 

HCC research (Kapiris et al., 2019). There is an incremental increase in SurvivinHigh 

expression through stages I-IV of HCCs, further clarifying the role of Survivin as an 

adverse clinical feature, ꭓ²(3) = 9.124, p= 0.026. Using a different technique, but finding 

similar results to us, Montorsi and colleagues used real time PCR to demonstrate 

significantly more Survivin in HCC than background liver (P= 0.01) and that increased 

Survivin levels correlated with high tumour grade (P= 0.05) and vascular invasion (P= 

0.005) (Montorsi et al., 2007). 

Whilst SurvivinHigh CCAs are associated with all-cause mortality (p= 0.001) and a 

reduced cumulative survival (p= 0.002) and a more advanced stage of disease, p= 0.021. 

In CCAs tumour Survivin was linked to all-cause mortality, p= 0.005. Splitting CCAs 

into SurvivinHighl/Low expression has confirmed this, with SurvivinHigh having a 

significantly shorter overall survival, ꭓ² (1) = 9.823, p= 0.002. 

4.1.7 Conclusion 

Quantifying Survivin expression in liver cancers has been shown to correlate with 

adverse clinical measures, including overall survival, in this study cohort. This early 

evidence suggests there may be a role in quantifying Survivin expression during the 

routine clinical diagnostic work up to highlight high risk patients.  When considering 
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the main liver cancer sub-types, different characteristics correlated with elevated 

Survivin levels in both the tumour, and occasionally the background liver samples.  

4.1.8 Further Work 

It has been possible to commence liver cancer research in the Southwest region, whilst 

including relatively small numbers for research, whilst using novel histological 

quantification methods. Further work could include expanding the study cohort to 

include patients that are surgically resected at another hospital, or even using local 

tumour biopsy samples. Both of these avenues have potential logistical limitations 

(geographical and potentially exhausting the tissue archive respectively) but would help 

by further clarifying my initial findings.  

Given the promising results from the Survivin expression in tumours, it would seem 

sensible to fully explore whether this protein is detectable in the circulation. Whether 

circulating tumour DNA or, as outlined below, other haematological assays could be 

used to quantify this. Correlations between Survivin expression in peripheral samples as 

well as in tumour will only be possible in a prospectively recruited cohort. Greater 

understanding of the biological processes involved in apoptosis inhibition would also be 

of merit, warranting further work in this field. Specific investigations into the role of 

epigenetic alterations such as promoter methylation status, and whether microRNAs 

alter Survivin expression seem like sensible places to start (Lyu et al., 2018; Rahban et 

al., 2019). 
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5 Telomerase Immunohistochemistry 

5.1.1 Introduction 

This chapter outlines my Telomerase IHC findings. As extra optimisation steps were 

required in the processing and interpretation of Telomerase IHC, and the previously 

reported concerns surrounding Telomerase IHC data interpretation there are 

understandably some concerns regarding the true accuracy of these results (il Yu et al., 

2017). However, during the work here, there has been internal consistency within this 

research project, as well as some extensive optimisation steps that have been outlined 

below.  

5.1.2 QuPath Assessment of Tissues: Telomerase 

By way of example of the 4 categories of tissue staining, figure 72 demonstrates 

representative HCCs with figure 73 the CCAs. Negative (-) tissue stains do have some 

small background staining and blue nuclei. As the colour scheme becomes warmer from 

yellow (+) to orange (++) and red (+++) the intensity of staining increases accordingly.  

 

Figure 72. HCC tumours with varying degrees of nuclear positivity for Telomerase. Scale bar: 100 microns. 

In figures 72 & 73 there is evidence of non-specific background staining for Telomerase 

that was reduced through extensive optimisation. The current QuPath software package 
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was only able to quantify nuclear staining intensity even though cytoplasmic expression 

may be present in the tissue. This is an obvious area for improvement in future work for 

this project.  

 

Figure 73. CCA tumours with varying degrees of nuclear positivity for Telomerase. Scale bar: 100 microns.   

5.1.3 IHC Results: Telomerase 

When comparing tumour versus background liver staining intensity, both the H-Score 

and Allred score were used initially, as shown in table 58.  

All Neoplasms H-Score Allred Score 

Tumour Background Tumour Background 

Mean +/- S.D. 31.6 +/- 32.5 19.4 +/- 25.7 4.1 +/- 1.1 3.6 +/- 0.1 

Min - Max (Range) 0.1 – 157.2 (157.1) 0.1 – 180.2 (180.1) 2 – 7 (5) 2 – 7 (5) 

Median 21.9 11.4 4.0 3.0 

Test Statistic t(94) = 3.750, p= 0.000306 t(94) = 4.272, p= 0.000046 

Table 58. Average Allred and H-Score for quantifying Telomerase expression across all neoplasms.  

Data from 95 paired samples (95/111, 85.6%) assessed demonstrated a significant 

difference in quantified Telomerase between tumour and background liver tissues using 

both the H-score (t(94) = 3.750, p=0.000306) and Allred score (normally distributed, t 

(94) = 4.272, p=0.000046).  
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Assessing the role pTERTMut, and how these mutations affect the levels of Telomerase 

detected across all neoplasms (despite being an HCC-lineage-specific mutation) can be 

seen in figure 74. Comparisons between the mutational status of the tumour tissues as 

well as background liver tissues, some of which went on to develop a mutation were 

made.  

 

Figure 74. The effect of Telomerase promoter mutation on expressed Telomerase protein, across all neoplasms.  

Across all hepatic neoplasms there is no significant relationship between Telomerase 

promoter mutants and detectable levels of tissue Telomerase. Furthermore, there is no 

difference in Telomerase levels in the background tissues near Telomerase promoter 

mutation containing tumours.  
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Differences in Telomerase levels across tumour subtypes is shown in figure 75.

 

Figure 75. Tumour Survivin may be preferentially expressed in CCAs.  

There were no significant differences in Telomerase expression, based on tumour 

subtype using either the Allred score [ꭓ²(4) = 6.048, p= 0.196)] or the H-Score [ꭓ²(4) = 

9.281, p= 0.054].  

Individual tumour scores are shown in tables 59 & 60, based on the Allred score and H-

score respectively.  

Allred Score HCC FL-HCC CCA Mixed 
HCC-CAA 

Adenoma 

Mean +/- S.D. 4.0 +/- 1.0 4.3 +/- 1.5 4.4 +/- 1.1  4.1 +/- 0.9   4.1 +/- 1.0 

Median 4.0   4.0 5.0  4.0   4.0 

Mean Rank  48.4 55.1 64.6 56.0 53.0 

Table 59. Average Allred scores (0, 2 - 8) for Telomerase expression in tumour sub-types. 

With CCA only expressing slightly more Telomerase than any of the other tumour 

subtypes, albeit to a non-significant extent, p= 0.196. These findings are replicated 

using the H-score below.  

 

P= 0.196 

P= 0.559 

P= 0.054 

P= 0.461 
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H-Score HCC FL-HCC CCA Mixed 
HCC-CAA 

Adenoma 

Mean +/- S.D.  26.4 +/- 32.1  42.6 +/- 44.0 44.7 +/- 32.7  37.3 +/- 31.0  33.4 +/- 34.1  

Median 17.4   25.9  41.8 27.7   22.3 

Mean Rank  45.7 61.3 66.2 60.3 53.6 

Table 60. Average H-score values (scale 0 – 300) for Telomerase expression in tumour sub-types. 

The H-score has a wider range in average values but still fails to differ between tumour 

subtypes, p= 0.054. The standard deviation of the Telomerase levels is consistently 

greater than 30.0, and sometimes greater than the mean value – indicating the results 

need to be interpreted with caution.  

If the FL-HCC and HCCs are included in one group then the Allred score demonstrates 

greater Telomerase expression found higher expression is CCAs (mean rank 64.6), 

Mixed tumours (56.0), Adenomas (53.0) compared with HCCs (49.1), albeit to a non-

significant extent, ꭓ²(3) = 5.784, p= 0.123. However, using the H-score finds a 

statistically significant expression of Telomerase in tumour types, ꭓ²(3) = 7.974, p= 

0.047, with a mean rank Telomerase score of 66.2 for CCAs, 60.3 for Mixed tumours, 

53.6 for Adenomas and 47.4 for HCCs. This is further assessed in figure 76.  

 

Figure 76. Tumour-specific Telomerase expression.  

With mean ranks of 66.2 (CCA) and 47.4 (all HCCs) there is significantly more 

Telomerase in the cholangiocellular tumours, when assessing pairwise comparisons 

p=0.032. There is no significant difference between other tumour types, but it is 
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interesting to note that the mean ranks of mixed tumours (60.3) lies between that of 

CCAs and HCCs, albeit to a non-significant extent in this small study cohort. 

The distributions of clinical measures and whether these vary with levels of Telomerase, 

and their respective significance was explored across all clinical parameters. The only 

example of any difference in the distribution of Telomerase Allred scores in these 

groups was when Metabolic risk factors were concerned and was replicated in both the 

Allred (p= 0.007) and H-score (p= 0.004).   

There is a significant difference in the distribution of tumour telomerase levels in 

patients with, and without, metabolic risk factors. This is further assessed in figure 77. 

 

Figure 77. Telomerase expression in tumours is not associated with metabolic risk factors. 

It appears that, across all neoplasms, there is more Telomerase detected in tumours that 

arise in the absence of metabolic risk factors or associated conditions when compared to 

patients who have metabolic risk factors (overweight, obese, non-alcoholic fatty liver 

disease or diabetes mellitus). Those tumours that develop in the absence of metabolic 

risk factors (mean ranks H-score 66.37, Allred 62.51) have significantly more 

Telomerase than tumours from metabolic patients (mean rank H-score 45.83, Allred 

46.77) to a relatively high level of significance (H-score p= 0.004, Allred p= 0.007).  

Relationship between age (years) and tumour size (mm) and the Allred or H scores is 

shown in table 61.  
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Table 61. There is no correlation between tumour/background Telomerase levels across all neoplasms and the 
patient age (years) or the tumour size (mm). 

No significant correlations between tumour/background liver staining intensity and 

patient age/ tumour size were found. All correlation coefficients were negative, as 

shown in table 61, but lacked statistical significance.  

When stratifying high and low levels of tumour Telomerase, and whether this affects 

cumulative survival, Kaplan-Meier curves were created to assess these subgroups, 

figure 78.  

 

Figure 78. Telomerase expression is not associated with cumulative survival. 

Both thresholds used for assessing high/low tumour Telomerase did not find a 

significant difference in cumulative survival. With the higher threshold for designating 

‘high expression’ of Telomerase, there is a non-significant difference in survival, ꭓ² (1) 

= 0.931, p= 0.335. TelomeraseLow expression gave a median survival of 74.0 +/- 21.8 

months (31.2 – 116.8) compared to a median of 39.0 +/- 13.5 months (95% CI 12.5 – 

65.5) in TelomeraseHigh expressing tumours.  

H Score Allred H Score Allred
Correlation Coefficient -0.059 -0.017 -0.078 -0.070

P Value 0.544 0.863 0.449 0.495

Correlation Coefficient -0.031 -0.028 -0.028 -0.012
P Value 0.745 0.773 0.807 0.909

Age

Tumour 
Size

All Neoplasms
Tumour Telomerase Background Telomerase
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When considering the more stringent high telomerase category (Allred scores 6-8), 

which has been used in the literature and in the Survivin analyses above, disease 

characteristics compared across these groups can be seen in table 62. 

All Neoplasms: Telomerase N TERTLow 

% (n) 

TERTHigh 

% (n) 

P-Value 

Gender Female 44 56.8 (25) 43.2 (19) 0.224 

Male 65 69.2 (45) 30.8 (20) 

Outcome Alive 50 70.0 (35) 30.0 (15) 0.317 

Dead 59 59.3 (35) 40.7 (24) 

Fibrosis - 65 58.5 (38) 41.5 (27) 0.160 

+ 43 72.1 (31) 27.9 (12) 

Cirrhosis - 85 60.0 (51) 40.0 (34) 0.143 

+ 23 78.3 (18) 21.7 (5) 

Viral Hepatitis - 94 62.8 (59) 37.2 (35) 0.566 

+ 15 73.3 (11) 26.7 (4) 

Metabolic Risk 
Factors 

- 57 50.9 (29) 49.1 (28) 0.003 

+ 52 78.8 (41) 21.2 (11) 

Genetic Liver 
Disease 

- 99 63.6 (63) 36.4 (36) 1.000 

+ 10 70.0 (7) 30.0 (3) 

pTERT Mutant WT 90 61.1 (55) 38.9 (35) 0.190 

Mut 19 78.9 (15) 21.1 (4) 

Tumour HCC 50 78.0 (39) 22.0 (11) 0.027 

FL-HCC 6 66.7 (4) 33.3 (2) 

CCA 36 44.4 (16) 55.6 (20) 

Mixed 7 57.1 (4) 42.9 (3) 

Adenoma 10 70.0 (7) 30.0 (3) 

Table 62. Clinico-pathological correlates based on high Telomerase expression. 

TelomeraseHigh levels are seen in 49.1% (28/57) of tumours from patients without 

metabolic disease such as diabetes, obesity and fatty liver disease compared with 21.2% 

(11/52) of those with metabolic conditions, p= 0.003. Also, TelomeraseHigh levels are 

also noted to occur in 55.6% (20/36) of CCA tumours compared with 42.9% (3/7) of 
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mixed tumours, 30.0% (3/10) of Adenomas, 22.0% (11/50) of HCCs, and in 33.3% 

(2/6) of FL-HCCs, ꭓ² (4) = 10.573, p= 0.027.  

Otherwise, there was no increased Telomerase expression in either gender, in those that 

have subsequently died (outcome variable), fibrosis, cirrhosis, genetic or viral hepatitis 

driven tumours. Malignant characteristics will be assessed below. 

5.1.4 Tumour Subgroup analysis 

Owing to the heterogeneous nature of the tumours studied, with clear differences 

between staining preference between tumour types, tumour groups, and subgroups were 

further analysed.  For the sake of simplicity, consistency, and to avoid repetition, the 

Allred score has been used preferentially in subsequent analyses. 

5.1.4.1 All Malignancies. 

As a hallmark of cancer, and to reduce any potentially confusing bias in the analysis 

Telomerase levels in malignant tumours have been compared to background tissues, as 

shown in table 63.  

All Malignancies Allred Score 

Tumour Background 

Mean +/- S.D. 4.1 +/- 1.1 3.5 +/- 1.0 

Min - Max (Range) 2 – 7 (5)  2 – 7 (5) 

Median  4.0 3.0 

Test Statistic t(84) = 4.272, p= 0.000052 

Table 63. Average Telomerase expression on malignant tumours and paired background livers. 

There are increased levels of Telomerase expressed in tumour tissues than 

corresponding background liver sample. The Allred score mean values for tumour 

Telomerase (4.1 +/- 1.1) was significantly higher that background liver (3.5 +/- 1.0), 

t(84) = 4.264, p= 0.000052. 

Between the malignancies, average Telomerase expression can be seen in figure 79.  
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Figure 79. Telomerase expression is not tumour specific.  

Of the malignant tumours, CCAs expressed the most Telomerase (mean rank 58.5, 

median 5.0) compared to HCCs (mean rank 43.8, median 4.0), FL-HCCs (mean rank 

49.9, median 4.0) and Mixed tumours (mean rank 50.7, median 4.0) but this was not 

statistically significant, ꭓ² (3) = 5.978, p= 0.113. 

Telomerase expression and potential correlations with age and tumour size are shown in 

table 64. There are no statistically significant correlations between tumour size, or 

patient age, and the quantification of Telomerase tumour tissues. 

Allred Score: All Malignancies Correlation Coefficient (rho) P-Value 

Patient Age -0.051 0.619 

Tumour Size 0.019 0.855 

Table 64. There is no correlation between tumour/background Telomerase levels and patient age, or tumour size in 
malignant tumours.   

When exploring whether clinical characteristics are associated with differential 

Telomerase expression, the results can be seen in table 65.  

All Malignancies Tumour Allred Score Distribution 

Gender P= 0.073 

Outcome P= 0.809 

Metabolic Risk Factors P= 0.002 

Table 65. Differential expression of Telomerase based on clinico-pathological findings. 

Differences in the tumour Telomerase distribution are seen when comparing patients 

with, and without, metabolic disease risk factors or associated conditions (p= 0.002) and 

P= 0.113
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a non-significant difference of Telomerase expression based on gender is also apparent, 

p= 0.073. These differences are further assessed below in figures 80 & 81. 

 

Figure 80. Higher tumour Telomerase levels are found in tumours from patients that do not have metabolic risk 
factors. 

The Allred score demonstrates a statistically significant difference in Telomerase 

detected, depending on whether the patient has a metabolic condition, such as diabetes 

or fatty liver disease. The Allred score also finds more Telomerase in non-

metabolically-derived tumours (mean rank 57.6) compared with metabolically-derived 

tumours (mean rank 40.6), U= 794, p= 0.002. Implying that tumours arising in patients 

with metabolic risk factors/associated conditions do not preferentially deploy 

Telomerase as a method of tumour cell immortalisation.  

Comparing the effect gender has on tumour Telomerase is set out in figure 81. 

 

Figure 81. Higher tumour Telomerase levels may be found in malignant tumours from female patients. 

When comparing mean ranks of Telomerase across all malignant tumours, there is 

preponderance for female patients to preferentially express Telomerase. This data, albeit 

non-significant, indicates that gender may play a role in Telomerase expression across 

liver cancers, (mean ranks: F 56.7, M 45.3, U= 885, p= 0.073). 
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5.1.4.2 Survival and Telomerase expression 

Table 62 has already demonstrated that Telomerase quantification is not a useful tool in 

highlighting patients who go on to die, p= 0.809. When assessing any relationship 

between high tumour Telomerase and cumulative survival, Kaplan Meier survival 

curves can be seen in figure 82. There was no significant difference in cumulative 

survival observed when comparing high and low Telomerase malignancies. 

 

Figure 82. Telomerase levels in malignancies does not correlate with cumulative survival. 

Using the more stringent cut off for designating TelomeraseHigh expression (Allred 6-8), 

there is a non-significant effect on cumulative survival, ꭓ² (1) = 0.695, p= 0.404. 

Median survival 32.0 +/- 9.9 months (95% CI 12.5 – 51.5) in TelomeraseHigh tumours 

compared to a median survival of 42.0 +/- 21.6 (95% CI 0.0 – 84.4) in TelomeraseLow 

expressing tumours.  

Correlating high tumour Telomerase and clinical characteristics highlighted two 

significant relationships as shown in table 66. There was a non-significant difference in 

high Telomerase expressing tumours based on patient gender with 48.6% (17/35) of 

women and 29.7% (19/64) of men expressing high levels of Telomerase protein, p= 

0.081. 
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All Malignancies: Telomerase N TERTLow 

% (n) 

TERTHigh 

% (n) 

P-Value 

Gender Female 35 51.4 (18) 48.6 (17) 0.081 

Male 64 69.2 (45) 30.8 (20) 

Outcome Alive 40 70.0 (28) 30.0 (12) 0.297 

Dead 59 59.3 (35) 40.7 (24) 

Metabolic Risk 
Factors 

- 55 49.1 (27) 50.9 (28) 0.001 

+ 44 81.8 (36 18.2 (8) 

pTERT Mutant WT 80 60.0 (48) 40.0 (32) 0.184 

Mut 19 78.9 (15) 21.1 (4) 

Tumour HCC 50 78.0 (39) 22.0 (11) 0.011 

FL-HCC 6 66.7 (4) 33.3 (2) 

CCA 36 44.4 (16) 55.6 (20) 

Mixed 7 57.1 (4) 42.9 (3) 

Table 66. High tumour Telomerase and clinic-pathological correlates. 

TelomeraseHigh levels are found in 50.9% (28/55) of the non-metabolically driven 

malignancies compared to those 18.2% (8/44) from metabolic patients, p= 0.001. When 

comparing malignant tumour sub-types, TelomeraseHigh was found in 55.6% (20/36) of 

CCA compared with 42.9% (3/7) of Mixed tumours and 23.2% (11/50) of HCCs and 

33.3% (2/6) FL-HCCs, ꭓ² (2) = 10.411, p= 0.011.  

5.1.4.3 HCCs  

Fibrolamellar tumours were excluded from analysis of HCCs. Comparisons of the 44 

paired tumour-background tissues are shown in table 67.  

HCC Allred Score Tumour Background Liver 

Mean +/- S.D.   3.9 +/- 1.0 3.6 +/- 1.1 

Min – Max (range) 2 – 7 (5) 2 – 7 (5) 

Median 4.0 4.0 

Test Statistic t(43) = 1.699, p= 0.096 

Table 67. Average Telomerase levels in HCCs and paired background liver tissues. 
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In the HCC only cohort there remains no significant difference between tumour and 

background telomerase levels. The Allred score for HCC tumour (3.9 +/- 1.0) was 

marginally greater than that found in background liver (3.6 +/- 1.1) meaning there is a 

non-significant difference between Telomerase protein in liver and tumour samples 

tested, t(43) = 1.699, p= 0.096. This is the first evidence of a universal tumour antigen 

not being differentially expressed by tumour and background liver, perhaps indicating it 

is not a useful tool for assessing HCCs. If the FL-HCCs and classical HCCs are 

included together in a single cohort there remains a non-significant difference between 

tumour and background liver Telomerase-expression, further emphasising this finding, 

t(50) = 1.997, p= 0.051. 

The pTERTMuts status and Telomerase protein levels in tumour and background tissues 

were non-significantly different, as shown in figure 83. 

 

Figure 83. Telomerase promoter mutations do not result in increased Telomerase protein expression in HCCs. 

HCCs containing Telomerase promoter mutants expressed less Telomerase protein 

(mean rank 24.35) compared to WT HCCs (mean rank 26.09) when comparing Allred 

scores, but this difference was not statistically significant, U= 261, p= 0.670.  

There was no significant distribution in the Telomerase expression between any clinical 

parameter. Furthermore, there was no significant correlations between Telomerase 

protein and patient age (rho= 0.082, p= 0.572) or tumour size (rho= 0.062, p= 0.669).  
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No difference in cumulative survival for high and low Telomerase expressing HCC 

tumours was found, as shown in figure 84. 

 

Figure 84. HCCs expression of Telomerase does not correlate with cumulative survival. 

Stratifying TelomeraseHigh/Low expression did not demonstrate a difference in cumulative 

survival, ꭓ² (1) = 0.180, p= 0.671. Median of 42.0 +/- 21.7 (95% CI 0.0 – 84.5) in 

tumours with high nuclear Telomerase compared to a median 62.0 +/- 19.6 (95% CI 

22.9 – 101.1) in low-expressing tumours did not reach statistical significance. In 

addition to this, there were no clinical correlations differentially expressed between 

TelomeraseHigh/Low expressing tumour.  

5.1.4.4 All CCA 

There is more Telomerase in CCA tumours when comparing to paired background liver 

samples, as shown in table 68. 

CCA Allred Score Tumour Background Liver 

Mean +/- S.D.  4.2 +/- 1.1 3.3 +/- 0.8 

Min – Max (range) 2 – 6 (4) 2 – 5 (3) 

Median 5.0 3.0 

Test Statistic t(27) = 4.076, p= 0.000362 

Table 68. Average Telomerase in CCA and paired background liver tissues. 

Average Telomerase protein expression was greater in CCA tumours (4.18 +/- 1.06) 

compared to paired background liver tissues (3.32 +/- 0.77), t(27) = 4.076, p< 0.0004. 
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When assessing the distribution of telomerase staining across clinically distinct groups, 

there are a few significant differences that have been highlighted in table 69. 

Clinical measures: CCA Significance of Allred Score 
Differences Between Groups 

Metabolic Risk Factors P= 0.001 

Perineural Invasion P= 0.481 

iCCA vs pCCA P= 0.016 

Table 69. Telomerase expression is differentially expressed based on clinico-pathological properties. 

Telomerase appears to be differentially expressed when patients have metabolic 

diseases, and is also significantly different between pCCA and iCCA.  

The metabolically related tumours and the levels of Telomerase are shown in figure 85. 

 

Figure 85. Higher tumour Telomerase levels are found in CCAs in patients that do not have metabolic risk factors. 

Higher telomerase is found in the non-metabolically derived tumours when quantified 

with the Allred score (mean ranks 23.21 vs 11.90, U= 58.5, p= 0.001) registering these 

highly significant results. 

The difference in Telomerase between perihilar (pCCA) and intrahepatic CCA (iCCA) 

is shown in figure 86. 
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Figure 86. Higher tumour Telomerase levels are associated perihilar CCA compared to intrahepatic CCA. 

Allred score (mean ranks iCCA 16.63, pCCA 27.83) demonstrates higher levels of 

tumour Telomerase expressed by pCCAs, based on this small study cohort, U= 146, p= 

0.016.  

When correlating Telomerase expression with age and tumour size, a couple of 

interesting results are highlighted. The levels of Telomerase in the background liver are 

negatively correlated with patient age. The negative correlation coefficients (Allred 

score rho= -0.417, p= 0.027) indicate that younger patients with CCA express more 

Telomerase compared to their older counterparts. No correlations between tumour 

Telomerase and the clinical characteristics (including tumour size) were found.  

There is no significant difference between TelomeraseHigh/Low expression and 

cumulative survival, as outlined in figure 87. 

 

Figure 87. CCA Telomerase expression is not correlated with cumulative survival. 
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There is no difference in survival between high and low Telomerase expressing 

tumours, ꭓ² (1) = 0.030, p= 0.862. Average survival for TelomeraseHigh expressing CCA 

tumours with a median survival of 24.0 +/- 3.5 months (95% CI 17.1 – 30.9) compared 

with low expressing tumours that have median survival of 27.0 +/- 11.3 (95% CI 4.8 – 

49.2).  

Tumours that express high levels of Telomerase are shown in table 70, with significant 

differences in clinical measures highlighted.  

All CCA: Telomerase N TERTLow 

% (n) 

TERTHigh 

% (n) 

P-Value 

Gender Female 20 45.0 (9) 55.0 (11) 1.000 

Male 16 43.8 (7) 56.3 (9) 

Outcome Alive 12 50.0 (6 ) 50.0 (6) 0.729 

Dead 24 41.7 (10  58.3 (14) 

Metabolic Risk 
Factors 

- 21 19.0 (4) 81.0 (17) 0.001 

+ 15 80.0 (12) 20.0 (3) 

Perineural 
Invasion 

- 18 50.0 (9) 50.0 (9) 0.738 

+ 18 38.9 (16) 61.1 (20) 

CCA Location iCCA 30 53.3 (16) 46.7 (14) 0.024 

pCCA 6 0.0 (0) 100.0 (6) 

Table 70. High CCA Telomerase and clinico-pathological properties.  

More of the non-metabolically related tumours (81.0%) have TelomeraseHigh compared 

to just 20% of metabolically related tumours, p= 0.001. Interestingly tumour location 

and TelomeraseHigh are related with 100% of the pCCA expressing increased levels of 

telomerase compared to 46.7% of iCCA, p= 0.024.  

5.1.4.5 iCCA 

Differentiating between CCAs based on anatomical location will help to highlight 

potential differences in their telomerase expression profiles. Table 71 shows that iCCA 
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continue to express significantly more telomerase in tumour, compared to paired liver 

samples. 

iCCA Allred Score Tumour Background Liver 

Mean +/- S.D.  4.0 +/- 1.0 3.3 +/- 0.8 

Min – Max (range) 2 – 6 (4) 2 – 5 (3) 

Median 4.0 3.0 

Test Statistic t(23) = 3.093, p= 0.005 

Table 71. Average Telomerase expression in iCCA and paired background liver tissues. 

Intrahepatic CCAs express more Telomerase in tumour (4.0 +/- 1.0) than background 

liver (3.3 +/- 0.8) of paired samples are compared, t (23) = 3.3093, p= 0.005. The role 

metabolic risk factors play in telomerase expression is further explored in figure 88. 

 

Figure 88. Higher iCCA Telomerase levels are associated with patients that do not have metabolic risk factors. 

Allred scores (mean rank – 20.31, + 10.00, U = 35, p= 0.001) indicate that non-

metabolically derived iCCAs express more Telomerase compared to their metabolically 

driven counterparts. No significant correlation coefficients were found when compared 

Telomerase protein levels with patient age (rho= -0.302, p= 0.104) or tumour size (rho= 

0.116, p= 0.543).  

Stratifying iCCA into TelomeraseHigh/Low expression demonstrated no difference on 

cumulative survival, as shown in figure 89, ꭓ² (1) = 0.050, p= 0.823. 
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Figure 89. High Telomerase expression does not correlate with cumulative survival in iCCA. 

Median survival for TelomeraseHigh is 24.0 +/- 16.7 months (95% CI 0.0 – 56.8) 

compared to a non-significantly increased survival in TelomeraseLow tumours: median 

survival 27.0 +/- 11.3 months (95% CI 4.8 – 49.2).  

As shown in table 70 above, non-metabolically driven iCCAs expressed more 

Telomerase compared to metabolically driven tumours. With 75.0 % (12/16) of the non-

metabolic iCCA expressing TelomeraseHigh levels compared to 14.3% (2/14) of the 

metabolically-associated iCCAs, p= 0.001. No other significant relationships between 

TelomeraseHigh/Low expression and clinical characteristics was found. 

5.1.4.6 Mixed 

The small number of mixed tumours included in the cohort were assessed for their 

Telomerase-related characteristics. There was no significant difference in Telomerase 

expression between tumour and background liver, as shown in table 72. 

Mixed Allred Score Tumour Background Liver 

Mean +/- S.D.  4.1 +/- 0.9 3.6 +/- 0.8 

Min – Max (range) 3 – 5 (2) 3 – 5 (2) 

Median 4.0 3.0 

Test Statistic Z= -1.633, p= 0.102 

Table 72 Average mixed tumour and paired background liver Telomerase expression. 

There is no significant difference in the distribution of telomerase protein across various 

clinical parameters, including pTERTMut status, p= 0.857.  When considering if 
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Telomerase correlates with age and tumour size, there may be a positive correlation 

between older patients with mixed tumours, as shown in table 73. 

Allred Score: Mixed Tumours Correlation Coefficient (rho) P-Value 

Patient Age 0.794 0.033 

Tumour Size -0.019 0.968 

Table 73. Patient age and Telomerase expression positively correlate in Mixed tumours. 

The Allred score correlates positively with patient age (coefficient 0.794, p= 0.033). It 

is hard to interpret this data in such a small cohort size, so further work is warranted, but 

it appears to show that there may be a significant correlation between patient age and 

Telomerase expression in mixed HCC-CCA tumours.  

High expression of Telomerase may be protective in the mixed tumour cohort, as shown 

in the cumulative survival Kaplan Meier survival plots in figure 90. 

 

Figure 90. High levels of Telomerase in mixed tumours does not correlate with cumulative survival. 

Average survival for these low expressing tumours includes a median survival of 8.0 +/- 

4.0 months (95% CI 0.2 – 15.8) compared to a median survival 32.0 +/- 10.6 (95% CI 

11.2 – 52.8) for the TelomeraseHigh tumours, ꭓ² (1) = 0.781, p= 0.377. 

5.1.4.7 Adenomas 

The benign neoplasms are assessed for completeness, with irrelevant malignant 

characteristics excluded from analysis. There is no difference between tumour and 

background Telomerase, as shown in table 74. 
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Adenomas Allred 
Score 

Tumour Background Liver 

Mean +/- S.D.  4.1 +/- 1.0 3.8 +/- 1.0 

Min – Max (range) 3 – 6 (3) 2 – 6 (4) 

Median 4.0 4.0 

Test Statistic Z= -0.749, p= 0.454 

Table 74. Average Adenoma and paired background liver Telomerase expression. 

On average tumours expressed a non-significantly higher quantity of Telomerase 

protein compared to their paired liver samples. The Allred score gave a higher value for 

tumour (4.1 +/- 1.0) compared to liver tissue (3.8 +/- 1.0) but this also failed to reach 

statistical significance, Z= -0.749, p= 0.454. Correlations between Telomerase protein 

and age/tumour size are shown in table 75.  

Allred Score: Adenomas Correlation Coefficient (rho) P-Value 

Patient Age 0.750 0.012 

Tumour Size -0.489 0.151 

Table 75. Patient age and Telomerase expression positively correlate in Adenomas. 

A positive correlation exists between the age of the patient and Telomerase expression, 

correlation coefficient = 0.750, p= 0.012. There was no significant difference in the 

distribution of high Telomerase-expressing tumours between relevant clinical or 

pathological characteristics. 

5.1.5 Discussion 

The findings from my Telomerase protein detection, and correlations with clinical 

parameters, has not reflected previously published data. This is potentially due to 

technical issues surrounding the IHC protocol, or data interpretation processing on 

QuPath. However, it is also plausible that these findings are an accurate representation 

of Telomerase expression in liver tumours, but proving this would require further 

conformational work.  
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5.1.5.1 Major Findings 

When assessing all neoplasms, Telomerase protein is more prevalent in tumour, 

compared to background liver, when using both the H-score (p= 0.000046) and Allred 

score (p= 0.000306) similar to previously published results (Zhou, Lu and Zhu, 2016). 

Quantifying using mRNA levels has previously found a 15-fold increase in expression 

between HCC and background liver (Choi et al., 2020). Patient age, gender and tumour 

size not been associated with Telomerase expression in this cohort, as previously 

reported in primary liver cancer (Zhou, Lu and Zhu, 2016).  

Across the entire cohort, higher levels of tumour Telomerase has been consistently 

detected in patients without metabolic risk factors, (Allred, p= 0.007; H-score p= 

0.004). This implies obesogenic states result in a metabolic disturbance do not utilise 

Telomerase in tumour tissues to the same extent as non-metabolically driven tumours.   

When comparing all malignancies, tumours expressed more Telomerase than their 

paired background liver tissues, p<0.00006. There is evidence of CCAs preferentially 

expressing more Telomerase compared to HCCs (pairwise comparison p= 0.016). The 

correlation between Telomerase and non-metabolically associated tumours continues 

(p= 0.002) as well as a potential female gender related increase in protein expression 

(Allred score, p = 0.073). This gender bias was not reflected in tumour specific 

analyses, and has not been reported in the published literature. There was no difference 

in Telomerase expression when malignancies were grouped based on their promoter 

mutational/WT status, p= 0.306, consistent with previously published data from PLCs 

(Huang et al., 2015).  

Malignancies with TelomeraseHigh protein levels tended to be non-metabolic-related 

tumours (50.9%, 28/55) compared to just 18.2% (8/44) of patients with a metabolic risk 

factor, p= 0.001. Cholangiocarcinomas expressed higher levels of Telomerase (55.6%, 
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20/36) compared with mixed tumours (42.9%, 3/7) and HCCs (23.2%, 13/56), p= 0.005. 

There was a non-significant association between gender and high-expression of 

Telomerase which occurred in 48.6% (17/35) of women and only 29.7% (19/64) of 

men, p= 0.081. 

The tumour-specific expression of Telomerase is also seen when CCAs are directly 

compared to HCCs (pairwise comparison, p= 0.032). However, only the CCA tumour 

subgroup expressed more Telomerase than their paired background liver using both the 

H-score, p< 0.0005, and Allred score, p< 0.0004. As supported by previous evidence of 

Telomerase activity in CCAs, with mRNA present in exfoliated needle biopsies (Itoi et 

al., 2000).  

High Telomerase-expressing CCAs were more often non-metabolically derived than 

metabolically driven, p= 0.001. Perhaps this is a cholangiocyte-specific example similar 

to previously published data, which used RNA sequencing to demonstrate that 

metabolic genes are downregulated in TelomeraseHigh expressing hepatocytes (Lin et al., 

2018).   

There was anatomical variation in Telomerase expression, with more Telomerase in 

perihilar CCAs compared to their intrahepatic counterparts, p = 0.016. The mechanisms 

behind this site-specific increase in protein expression are unclear, but perhaps result 

from earlier biliary stasis and obstruction, which occurs earlier in the disease process for 

more proximal tumours. This would support data from Ozaki et al who studied 

Telomerase expression in 19 iCCA, five of these tumours which were due to 

hepatolithiases, and their control samples being benign hepatolithiasis-associated biliary 

tissues which occasionally expressed Telomerase (Ozaki et al., 1999). Adding further 

weight to this is the fact that I have also found CCAs with TelomeraseHigh expression 

tend to be pCCA (100%, 6/6 in my study) compared to iCCA (only 14/30, 46.7%), p= 

0.024.  
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Intrahepatic CCAs expressed more Telomerase than their paired background liver, p= 

0.005. Intrahepatic CCA that developed in the absence of metabolic disease expressed 

more Telomerase than metabolically-associated iCCAs, regardless of the quantification 

method used in assessing staining (p= 0.001). This was confirmed when iCCAs were 

stratified into TelomeraseHigh/Low expressers. TelomeraseHigh expressing tumours 

occurred in 75% (12/16) of the non-metabolic tumours, compared with just 14.3% 

(2/14) of the metabolic-associated iCCAs, p= 0.001. 

When assessing my data in the whole cohort and tumour subgroups, I also did not detect 

any increase in Telomerase protein in pTERTMuts. This implies my findings reflect what 

has already been reported in hepatocellular tumours, (Huang et al., 2015).   

5.1.5.2 Minor Findings 

Two thirds of R1 CCA tumours expressed high levels of Telomerase, compared with 

one third of R0 tumours, p= 0.081. In this small study sample, this is perhaps early 

evidence of more malignant behaviour in Telomerase-expressing CCAs. 

Further interesting data from the background liver tissues of CCA tumours has found a 

negative correlation between protein expression and patient age. Correlation 

coefficients between Allred score and patient age (coefficient = -0.417, p= 0.027) 

suggests younger patients who develop hepatic CCAs express more significantly more 

Telomerase in their native, non-malignant livers.  

Surprisingly, when considering all HCCs, there was not preferential express tumour 

expression of Telomerase compared to background liver tissues (p= 0.051) which 

remained when FL-HCCs were excluded, p= 0.096. There was no difference in 

Telomerase expression in the promoter mutants, compared with WT, p= 0.820. There 

was no Survival benefit in TelomeraseLow expressing HCCs and no correlations with 

patient age, or tumour size.  
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Across all HCC subtypes, the well differentiated HCCs expressed higher Telomerase 

levels (4/9, 44.5%) compared with mild/moderately differentiated (8/37, 21.6%) and 

poorly differentiated tumours (0/6, 0.0%), but this was not a significant finding, p= 

0.093. Only one third (10/30) of non-metabolic-driven HCCs expressed high 

Telomerase levels, compared to 11.5% (3/26) of metabolic related tumours, but this was 

also a non-significant finding, p= 0.065. 

When fibrolamellar HCCs were excluded from analysis there was little change in the 

Telomerase expression findings. These HCCs failed to express significantly more 

Telomerase than their paired background liver tissues, H-score p= 0.438, Allred p= 

0.096. There was also no difference in Telomerase expression between WT and 

promoter mutants, Allred p= 0.670, H-score p= 0.992.  

High Telomerase expression in HCCs was not associated with adverse survival, patient 

age or tumour size. A potential difference finding higher Telomerase expression in one 

third (8/24) of non-metabolic, compared with 11.5% (3/26) of metabolic, tumours also 

failed to reach significance, p= 0.091. 

Mixed CCA-HCC tumours shared more characteristics with HCCs than CCAs when 

Telomerase protein expression was considered. There was no difference in protein 

levels between tumour and background liver tissues, similar to the HCC group. There 

was also a positive correlation between patient age and Telomerase expression, again 

similar to the HCC cohort.  

The positive correlation between patient age and Telomerase levels (Allred score: rho = 

0.794, p= 0.033) in both mixed tumours and benign Adenomas (correlation coefficient 

= 0.750, p= 0.012) indicates that both of these tumour types preferentially express more 

Telomerase protein in older patients.   
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5.2 Discussion of Results 

When attempting to put my findings within the current body of scientific knowledge, it 

is difficult to know how accurate my results are. Previously published works have found 

limited relationships between Telomerase expression and adverse clinical outcomes, or 

tumour characteristics (il Yu et al., 2017). Reassuringly, my work assessing Telomerase 

in liver tumours has not yielded many meaningful findings.  

In addition to this: cumulative survival was not affected by Telomerase levels, similar to 

results from hepatocellular carcinoma, renal cancer, oral squamous carcinoma and 

cervical carcinoma (Carkic et al., 2016; il Yu et al., 2017; Yang et al., 2017; Trifunovic 

et al., 2018). The Kaplan Meier survival curves for the main tumour subtypes failed to 

demonstrate a difference in cumulative survival when tumours were stratified based on 

TelomeraseHigh/Low expression. 

It has been previously reported that epithelial cells with a high rate of self-renewal, such 

as those found in the GI tract, tend to express Telomerase protein and enzyme activity, 

albeit to a lesser extent than compared to tumour samples (Tahara et al., 1999). The 

epithelial cells’ ability to express Telomerase protein might confound my findings in 

this relatively small study. Cholangiocarcinoma can also express Telomerase mRNA in 

85% of iCCA, as detected by in-situ hybridisation, indicating my findings replicate an 

alternative technique previously utilised on fresh tissue samples (Ozaki et al., 1999). 

Transcriptional evidence of Telomerase activation is present in serum blood samples 

with hTERT mRNA detected in 84.5% of CCAs indicating that Telomerase activity is 

expected to be detected in the majority of CCAs (Leelawat et al., 2006). 

Telomerase promoter mutants are hepatocellular, not cholangiocellular, lineage specific 

genetic alterations (Quaas et al., 2014). Elevated transcriptional activity due to 

pTERTMuts does not always correlate with promoter status. Previous multi-tumour 
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studies that found pTERTMuts result in elevated Telomerase levels in both adult gliomas 

and thyroid cancers, but not HCCs, despite these tumours harbouring similar rates of 

promoter mutation (Huang et al., 2015; il Yu et al., 2017). 

However, chronic inflammatory conditions within the liver, such as fibrosis and 

cirrhosis, have been reported to be associated with elevated Telomerase activity (Nault 

et al., 2013; Lin et al., 2018). My data failed to find similar increases (at least by protein 

expression) across the study cohort as a whole, or during the individual tumour 

analyses. Similarly, previously published work has found elevated Telomerase activity 

to correlate with advanced stage disease and poorer tumour differentiation in HCCs that 

was not reflected in my data (Zhou, Lu and Zhu, 2016).  

When assessing Telomerase levels in both HCC and background liver samples, Choi et 

al used RT-PCR from curative resection specimens and reported a fifteen-fold increase 

in Telomerase expression in tumour tissues (Choi et al., 2020). Early research found 

significant enzymatic activity, when quantified using the TRAP assay, in HCCs 

(Shimada et al., 2000). My results, albeit using an alternative method of quantification, 

have failed to find any significant difference in Telomerase levels between HCCs (+/- 

FL-HCCs) and background liver tissues. This is perhaps due to differences in genomic 

and transcriptomic alterations that are not translated to altered proteomic expression, or 

perhaps as a result of a flawed scientific approach.   

A key step in Telomerase-related carcinogenesis for HCCs is the nuclear translocation 

of the enzyme, which was the basis of using only nuclear positivity as a method for 

detection by the QuPath software package (Chen and Kong, 2010). I have been unable 

to reflect any of the previously published data by using IHC on archived FFPE samples 

as a proxy for either the TRAP assay or comparing with transcriptomic data quantified 

with PCR. However, evidence from the literature stating that the presence of 

Telomerase protein, as measured by Western blot, does not always correlate with 
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enzymatic activity detected by the TRAP assay (Tahara et al., 1999). Clearly simple 

comparisons between quantification methods is an overly simplified approach, requiring 

further work to clarify this.  

More recent work has also found varying rates of Telomerase protein and 

transcriptional material in HCCs. Using IHC to detect and quantify hTERT positive 

cells in 84.6% of HCCs with 78.2% of cases having detectable Telomerase mRNA, 

(Zhou, Lu and Zhu, 2016). These findings are of a similar magnitude, and as such, the 

differences between my findings and the published data are difficult to explain.  Given 

that the only resource material available for this project is FFPE, meaning further work 

in fresh/frozen tumour samples would be required in a validation cohort.  

Previous reports have demonstrated elevated levels of protein correlating with 

worsening differentiation in HCCs as well Telomerase being present in biliary epithelial 

cells (Kawakami et al., 2000). Perhaps the reasons for lower detection of tumour 

Telomerase is due to QuPath’s inability to characterise cytoplasmic staining. Notably, 

Zhou et al have stated that cytoplasmic Telomerase is more much more prominent in 

HCCs, whereas Huang et al feel it is detectable in both nuclear and cytoplasmic cellular 

compartments (Zhou, Lu and Zhu, 2016; Huang et al., 2017). Whilst the nuclear 

staining appears to be very robust, there are many non-specific light shades of brown 

that – upon review of their figures - both Zhou and Huang feel should be regarded as 

positive staining.  

More recently published works, albeit in renal cell cancer research, have acknowledged 

there is some cytoplasmic staining but have focussed on nuclear positivity when 

assessing hTERT expression in Renal cancers (Saeednejad Zanjani et al., 2019). Indeed, 

Zanjani published an example of their four staining intensities (negative -, weak +, 

moderate ++ and strong +++) for hTERT protein detected during IHC in renal cell 
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cancer, as shown in figure 91, (Saeednejad Zanjani et al., 2019). These are very similar 

to our staining intensities observed in the process of IHC optimisation. 

 

Figure 91. Assessing hTERT in renal cell cancer (RCC): negative staining (A), weak positive staining (+ B), 
moderate positivity (++, C) and strong positive staining (+++, D). 

Whilst it is known that malignant cholangiocytes and hepatocytes express Telomerase 

activity, protein levels have not previously been compared between the two tumour 

types (Itoi et al., 2000; Zhou, Lu and Zhu, 2016).  However, Telomerase protein has 

been reported in both normal cholangiocytes and hepatocellular tumours (using IHC) so 

further work clarifying this expression is required (Kawakami et al., 2000).  

Given the reservations associated with IHC quantification of Telomerase protein 

mentioned in the literature, it would be very reassuring to have secondary-confirmation 

of my IHC-quantification findings, (Kim et al., 2013).  

5.2.1 Further Work 

The most consistent finding from my work is increase in Telomerase expression in 

tumours that are not associated with metabolic conditions. Further exploration of 

exactly what happens to Telomerase expression in metabolic conditions (diabetes 
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mellitus, etc) may help to understand why these tumours express lower levels of 

Telomerase. Indeed, it may be a significant oversimplification to lump together all fat-

related conditions, especially as fatty change in the liver is a common alteration due to 

hepatotoxic insults.  

By greatly increasing the number of cases under study would be another way of 

confirming my putative correlations. The role of patient age has on Telomerase 

expression (as highlighted in the mixed and benign cohort) is one such example where 

greatly increasing these numbers could confirm this initial results. Another relatively 

simple, if not labour intensive, method would be to compare relative Telomerase 

expression in this dataset, with a secondary technique. This would give greater 

confidence in the validity of my findings. Repeating IHC using an alternative antibody, 

or using an alternative method (such as ISH) seems like a sensible place to start.  

As mentioned above, there are a number of methods of inducing alterations in 

Telomerase expression – including promoter hypermethylation status studies using 

DNA bisulfite conversion and pyrosequencing, (Fotouhi et al., 2019). Epigenetic 

changes (not promoter mutation) have been shown to result in increased Telomerase 

expression in small bowel neuroendocrine tumours. This approach used fresh/frozen 

samples but it could be attempted with FFPE-extracted DNA – as has been undertaken 

elsewhere, (Doyle, O’Riain and Appleton, 2011).  

In addition to the epigenetic alterations, assessing viral DNA insertion as well as TERT 

amplification/ translocation events could help increase the understanding of Telomerase 

in PLCs. More recent work has also assessed the role of telomere length in aggressive 

liver tumours, with the exciting possibility of targeting these with anti-TERT antisense 

oligonucleotides as a targeted therapy, which has worked in cell culture and mouse 

models of HCC (Ningarhari et al., 2020).  
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6 Ongoing and Future Work 

Owing to time constraints and a global pandemic this section will outline my ongoing 

and planned future work for the haematological detection of universal tumour antigens.  

6.1 ELISA Results 

There ELISA results stalled at the optimisation stage and therefore failed to offer 

meaningful results for the whole cohort. The data is separately analysed for Survivin 

and Telomerase, as outlined below. 

6.2 Survivin 

As outlined in section 2.7.13 the calibration curves for Survivin ELISA were 

satisfactory, with a high R2 giving confidence when estimating the results.  

Diluting standards and samples with the manufacturers provided diluent gave the results 

shown in table 76. This includes samples at 1X and 0.1X (i.e., diluted 1:10 in diluent) to 

explore the accuracy of the assay. These results were somewhat disappointing as 

measurements could not be reliably made, given that the majority of samples lay in off 

scale concentrations (between the low standard [31.3pg/ml] and the zero-standard 

diluent) meaning these results were not within the reference range. Furthermore, there is 

also a paradoxical increase in OD when the serum is diluted - see 4E& 4F - between 

sample 45 (neat) and its 1:100 dilution (5A & 5B), table 76.  

 

Table 76. Plate outline shown on the left panel with standards highlighted: yellow background, zero-standard shown 
with purple. Known High (red background), medium (orange) and low (green) concentrations of Survivin are also 
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present. Respective study numbers, and dilutions from 3G onwards. All reagents diluted with the provided diluent 
buffer. Right panel shows corrected results (OD 450-570nm) with red highlighting measurements that are between 
the low standard (31.3 pg/ml) and the zero standard, i.e., not on the scale for measurement.  

Taken in combination, these results imply the ELISA kit is not able to detect human 

Survivin from serum samples with any confidence. The Survivin immunoassay control 

was only used in the first experiment as the recombinant protein, present in diluted 

porcine serum, was of limited value once we had established the assay was working. 

To explore the serum-effect on this commercially available kit the experiment was 

repeated using 10% (v/v) healthy volunteer (HV) serum, using the provided diluent. 

These results can be seen in table 77.  

 

Table 77. Left panel shows standards highlighted on a yellow background with a zero standard on a purple 
background, and healthy volunteer (HV) compared with cancer patients’ (numerical values) serum. Right panel: 
results highlighted with red font are between the low standard (31.3pg/ml, OD: 0.055) and the zero standard 
(0pg/ml, OD: 0.016). 

Once the serum-effect was accounted for there were no detectable of Survivin in any of 

the samples tested. This is a somewhat disappointing result given that the ELISA kit 

used up precious biological samples and cost ~£500 for one plate. It is for these reasons, 

as well as time pressure, that an alternative direction was pursued.  

6.3 Telomerase 

The sandwich ELISA for Telomerase gave mixed results, as outlined below. The high 

standard (10ng/ml) Telomerase reading dipped compared to the 5ng/ml sample and was 

therefore excluded from the equation to estimate concentration from observed OD – 
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demonstrated by the lack of yellow-highlight in table 78. The provided diluent was used 

and giving the results from the ELISA are shown in table 78.  

 

Table 78. Standard are highlighted (yellow background, zero-standard with purple. Plate layout is shown on the left 
sided table.  The results (table on the right) appear to indicate an increase in the detected Telomerase with a 1:10 
dilution – compare results from 4A&B with 5A&B. 

There appears to be an increase in Telomerase detected in the 1:10 diluted samples, 

compared to physiological serum, similar to the Survivin ELISA results. This casts 

further doubt on the usefulness of this assay, and therefore severely limits the 

implications of these results.  

Further to this, when attempting to explore the role human serum has on this assay, as 

show in table 79, data from the calibration standards run in 10% HV diluting serum was 

of exceedingly poor quality.  

 

Table 79. Using the same layout, and samples, as shown in table 78 – the effect 10% HV Serum has on the ELISA is 
shown here. Standard are highlighted on a yellow background with a purple background demonstrating the results 
from the zero-standard. The highest detected level in this ELISA was in the zero standard, meaning that further 
analysis was futile. 

As shown in table 79, the highest values recorded were in the zero standard, making all 

of the corrected readings at 450nm negative values (standard OD (ng/ml) – diluent OD 

1 2 3 4 5
A 1.268 1.519 0.384 0.325 1.103
B 1.511 1.406 0.368 0.347 1.135
C 1.464 1.204 0.472 0.209 0.853
D 1.331 1.245 0.716 0.24 0.719
E 1.138 1.287 1.214 0.248 0.841
F 1.096 1.206 1.618 0.273 0.846
G 1.153 1.445 1.510 0.241 0.784
H 1.618 1.799 1.627 0.358 0.872

OD's for 10% HV Serum used as diluent: Telomerase
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(0ng/ml) = negative number). As a result of this, and the wide ranges seen in the 

calibration curve (figure 7) no further interpretation of these ELISA results were 

undertaken. 

6.4 Discussion 

For separate reasons both the Survivin and Telomerase ELISAs failed to yield any 

meaningful data. The Survivin assay failed to give any results above the low-standard’s 

OD, making the interpretation of the respective concentration speculative, inaccurate 

and below the level of detection. Previously published work has used the same assay to 

successfully detect Survivin in serum from pancreatic cancer patients, so perhaps all of 

these HCC serum samples were negative for Survivin (Moazeni-Roodi et al., 2019). 

However, Jia et al, used an alternative ELISA kit and feel that Survivin is not a 

promising serological marker for HCC, which would agree with the findings from the 

limited sample of HCC patients that have been studied here (Moazeni-Roodi et al., 

2019). 

There were a couple of issues from the Telomerase assay. The inexplicable lowering of 

the detected OD from the 5ng/ml to the 10ng/ml standards and the increase in OD when 

detecting 0.1X compared to 1X sera make the interpretation of this assay troublesome. 

As a result, this measurement was excluded from the standard curve that may make 

higher Telomerase levels difficult to interpret. As the Survivin ELISA data was so poor, 

optimisation with the Telomerase ELISA experiments were undertaken using non-PLC 

serum samples. Serum from patients undergoing liver resection for metastatic colorectal 

cancer was used as these cases are more common than PLC resections, making the 

biological samples a slightly less precious research resource.  

Colorectal cancer does indeed express Telomerase, so serum from these cases was 

deemed an appropriate substitute (Moazeni-Roodi et al., 2019). However, as serum 
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from PLC patients was not used, we are unable to comment on the role of circulating 

Telomerase levels as a potential biomarker, more that the Abexxa ELISA kit gave some 

unexpected results that should be repeated before any firm conclusions can be stated. 

Antibody and contaminant molecule interactions (the so called ‘matrix effect’) can be 

ameliorated by a dilution step, as shown elsewhere in the published literature (Moazeni-

Roodi et al., 2019). A 1:10 dilution of was undertaken in an attempt to reduce this error, 

as shown in table 78. To further investigate this would require more reagents and 

‘spiking’ samples with a known concentration of Telomerase to fully understand 

whether or not these interactions are real or not (Moazeni-Roodi et al., 2019). This 

would, of course, require more reagents and use up precious samples but remains an 

avenue for future research to pursue.  A repeat assay would also clarify the decrease in 

OD from 5ng/ml to 10ng/ml, but would require further reagents. As a result, this 

approach was not pursued further.  

Diluting the Telomerase standards and samples in 10% HV serum was attempting to 

clarify whether or not there was a serum-effect in the sandwich ELISA. Sadly, this used 

up the last few wells, and did not yield any useful information.  

To further research this, repeat experiments could be undertaken as a first step to ensure 

the results are reproducible. However, the ELISA results gathered to date have been of 

very limited use, and at quite a significant cost. It was therefore felt that the detection of 

circulating UTAAs would be better explored using an alternative method. 

6.5 Exosome Results 

An initial run failed to yield any results and was no immediately repeated because of the 

COVID-19 pandemic and subsequent societal lockdown. As can be seen from figure 92, 

the experiment appears to work with the calibrators (TERT and BIRC5) from cell line 

Huh7.5 being readily detected, and the exosomal housekeeping RNA (HPRT1) is also 
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detected. Regrettably, all of the samples processed failed to register a single positive 

result, all samples were run in duplicate.  

 

Figure 92. Quantitative PCR data from amplified Exosomal RNA. The calibrators (TERT and BIRC5) demonstrate 
the presence of this RNA from the Huh7.5 cell line and highlights that the reaction works. The internal control, 
HPRT1, is also detected.  

This data comes from CRC serum samples, and is optimised, so could be repeated in 

blood from PLC patients. 

6.6 Discussion 

The internal control, HPRT1, and the calibrator, Huh7.5, have both worked very well 

indeed. It is very exciting to have a completely optimised protocol, with proof of 

principal for an assay to work. The next steps would include undertaking RNA 

extraction from exosomes derived from liver cancer, stable cirrhotics, and healthy 

volunteers to explore and describe these cohorts.  

7 Discussion 

7.1 Introduction 

The aim of this project was to assess the role universal tumour antigens play in primary 

liver neoplasms, and how greater understanding of UTAAs and their role in tumour 

biology could be described in a UK cohort. Extensive work was been undertaken 

TERT

BIRC5

HPRT1
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internationally assessing these immortalising proteins, as well as alterations in the 

promoter regions, in both fresh/frozen and FFPE tumour samples.  

Telomerase was hoped to be a druggable target for personalised therapies, yet initial 

results in this field have been disappointing. However, promoter mutants have been 

considered as a potential biomarker for a wide range of cancers, (Moazeni-Roodi et al., 

2019).  Similarly, Survivin’s role in tumour biology has made it an attractive target for a 

wide range of anticancer-therapies (small molecule inhibitors, targeted RNA-

degradation, inhibition of homodimerization and immunotherapies) regrettably with 

limited clinical effects, (in der Stroth et al., 2020). However, Survivin’s role as a 

candidate biomarker requires ongoing research in a broad tumour population.  

7.2 Challenges 

Logistical challenges of commencing human-tumour research in a new site have limited 

the scope of this research project. Ethical approval took nine months, and as there was 

only formalin fixed tissues available for research, a more comprehensive analysis was 

not possible, as fresh/frozen tissues would have been required. However, usable DNA 

from archived tissues was able to be extracted and amplified to give promoter 

sequences. This labour-intensive approach required significant optimisation for both the 

pSurv and pTERT sequences, and is comparable with other reported data.  

Protein expression of UTAA in FFPE tissues was also achieved, and quantified, for 

both the UTAA under study. The Survivin data appears robust, as crisp nuclear 

positivity was detected when a well-published primary antibody was used. Regrettably, 

the Telomerase antibody required additional significant optimisation, with extra 

blocking steps, and also required extra calibration for protein detection using the digital 

software package, QuPath. Interestingly, the Telomerase primary antibody has not been 

as extensively used in the literature as its Survivin counterpart.  
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When using digital pathology techniques to detect protein expression, true whole-

tumour assessment was possible, giving highly detailed data on the whole-slide image 

and therefore a more accurate representation of protein expression by the liver tumours.  

Significant challenges were met when the blood-work was undertaken to detect UTAA 

protein, and RNA levels. The commercially available ELISAs for both Survivin and 

Telomerase were not sensitive enough to detect any protein in the serum samples 

assessed. However, the exosomal work, whilst not yielding any results per se, includes 

both a calibrator and a positive control, and is an exciting prospect for future work as it 

appears to be fully optimised.  

The clinical archive, and clinically-relevant data included in this study has some 

potential for improvement, which could alter the interpretation of my data. Gradations 

of fibrotic indices have not been used, as they are absent in the older material, meaning 

the binary presence/ absence has been used in its place. The same is true the survival 

data. Clinical timelines have simply not been recorded in a centralised database, 

meaning measures such as time to recurrence, disease-specific survival, overall survival, 

progression-free survival have not been compared, instead the somewhat clinically 

clumsy measure of overall survival was used. This has obvious implications on the 

validity of my correlations with the outcome data, given that the assumption has been 

made that the patient died of primary liver cancer, and not a secondary disease process.  

The only way to avoid all of these biases would be to utilise a formal biobank where 

time has been taken to individually record this data. Regrettably this was beyond the 

scope of this research project, but is certainly achievable if more research resources 

were available locally.  

However, the lessons I have learned as a principal investigator have proved to be 

invaluable, and will doubtless be of use in future research projects.  
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7.3 Promoter Mutations 

Firstly, it is possible to use archived FFPE tissues for research purposes, and to 

sequence promoter regions (a known difficult target) which gives meaningful results 

that can be correlated with clinical parameters. The Survivin promoter SNP rs9904341 

has been proven to be a germline characteristic as there is concordance between 

background liver and tumour samples. Given that Survivin is re-expressed in 

malignancies, further qualifying the mechanisms behind this would be of scientific, and 

potentially clinical, benefit. 

Across all neoplasms the GG promoter homozygotes tended to occur in patients who do 

not have liver cirrhosis, p= 0.042. When data from the pSurv and IHC results is 

combined in the CCA group, GG homozygotes express more Survivin protein than CC 

homozygotes, p= 0.048. Whilst C-dominance of the rs9904341 SNP has been linked to 

increased cancer risk in studies based in Asia, there is no such link in Caucasian 

populations that have been studied (Moazeni-Roodi et al., 2019). In this British cohort 

of patients, I have early evidence that there may be a link between this GG genotype 

and adverse clinical outcomes, which warrants further research for clarification.  

In all liver tumours, Telomerase promoter mutants have been shown to be associated 

with male gender (p= 0.001), liver fibrosis (p= 0.009), liver cirrhosis (p= 0.004) and 

HCCs, with 32.7% possessing a pTERTMut (p= 0.002). In tumour sub-group analysis, 

there is a male preponderance (p= 0.005), an association with vascular invasion (p= 

0.031), and possible evidence of shortened overall survival as pTERTMut are associated 

with all-cause mortality (p= 0.043) as well as poorer cumulative survival, p= 0.083.  

Globally, pTERTMuts have been reported to occur in 43.9% (1831/4170) of HCCs, (in 

der Stroth et al., 2020). My data has achieved comparable rates, but not recreated these 
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findings, which have been quoted as being present in over 60% of HCCs in a European 

cohort, (Nault & Zucman-Rossi, 2016).  

There is also evidence of both intra-tumoural and inter-tumoural heterogeneity in the 

pTERTMuts in HCCs, which may benefit from further work using either FFPE or 

fresh/frozen materials. Whether these specific driver mutations result in clonal 

expansion within a particular tumour has not been proven in my results, assuming the 

methods I have used are completely accurate. Cross-validation with a second technique 

(ddPCR, or a KASP assay) could confirm these results (Hubáček et al., 2015; McEvoy 

et al., 2017).  

The HCC tumour-specificity of pTERTMuts has previously been reported, with only 

1.9% of all iCCAs sequenced possessing this genetic alteration, (Quaas et al., 2014; in 

der Stroth et al., 2020). Of the 362 iCCAs that have been sequenced (and published) 

only 7 have contained a pTERTMut (in der Stroth et al., 2020). My work in sequencing 

DNA from 30 iCCAs has contributed to this field, and also confirmed previous results 

that more distal tumours (pCCA, n= 6 in my study with n= 86 in Nakamura et al) also 

do not harbour pTERTMuts (Nakamura et al., 2015). 

7.4 Survivin Expression 

Using digital pathology methods to detect Survivin immunohistochemical expression in 

liver tumours has been successfully demonstrated. Each of the main tumour subtypes 

under study have given subtly different results which, should they be validated in a 

larger cohort, could be used as a clinically-relevant adjunct in routine patient care. 

Survivin has demonstrated greater expression in liver tumours (both benign and 

malignant) highlighting its role in tumourigenesis.  

Larger malignancies have been shown to express more Survivin (p= 0.046) and there is 

an association with death (p= 0.016), advanced tumour stage (p= 0.047) and vascular 
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invasion (p= 0.008). Tumours that highly express Survivin are associated with death (p= 

0.007), are of a more advanced stage (p= 0.007), and have invaded the vasculature (p= 

0.001) despite being more most expressed in FL-HCCs (p= 0.018). Cumulative survival 

is also reduced in malignancies that express high levels of Survivin protein, p= 0.001.  

Liver tumour subtypes behave differently, with advanced HCC tumour grades 

expressing more Survivin (p= 0.007) as well as correlating with vascular invasion (p= 

0.013). Even assessing the background liver in HCC patients could be of benefit, with 

differential Survivin expression depending on the tumour grade that subsequently grow, 

p= 0.042. The Survivin promoter SNPs studied showed those homozygous for GG 

express more Survivin in Cholangiocarcinoma, p= 0.048. There are also clinical 

correlations between CCA and death (p= 0.005), advanced stage disease (p= 0.024) and 

perineurally invasive tumours (p= 0.045). Cumulative survival in CCA reduced in 

tumours that express high levels of Survivin (p= 0.002), as is tumour stage (p= 0.021) 

and GG homozygosity (p= 0.021).  

These results could be translated to clinical medicine and used as an aide when 

assessing higher-risk liver tumours.  

7.5 Telomerase Expression 

Telomerase expression in liver tumours has brought mixed results, and raised more 

questions than providing answers. Background liver Telomerase expression is present in 

all liver tissues, meaning using this method to differentiate tumour from background 

liver is not appropriate. In the malignant tumours, pairwise comparisons between 

tumours types was able to demonstrate differences in Telomerase expression between 

HCCs and CCAs, p= 0.032. Tumours with Telomerase promoter mutations do not 

express more Telomerase in any cohort, or subgroup analysed.  
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Somewhat oddly, non-metabolically driven malignancies expressed more Telomerase, 

p= 0.004. The reasons behind this require further work as they may be an artefactual 

finding in an overly simplified model of liver tumour aetiology. Non-metabolically 

derived CCA express more Telomerase (p= 0.001) as do perihilar CCAs (p= 0.016). 

Cumulative survival did not differ between patients whose tumours expressed high or 

low Telomerase levels, meaning this would be a poor method of stratifying high-risk 

patients.   

Both the mixed tumours (p= 0.033), and the benign adenomas (p= 0.012) have an 

apparent correlation between patient age and Telomerase expression. Further work to 

ascertain why these particular tumours behave like this is required, especially as 

pTERTMuts status is clearly not involved. This could include assessment of the role of 

TERT amplification/ translocation or (less relevant in this study population) genetic 

insertion events in the context of HBV, (Nault et al., 2019). 

Overall assessing Telomerase protein expression has not yielded many meaningful 

results in this study, especially given the concerns previously raised as to the validity of 

Telomerase quantification by IHC, (Kim et al., 2013).  

7.6 Haematological Detection 

Haematological expression of UTA has not proven helpful in assessing patients with 

hepatic neoplasms. The ELISA experiments have failed to produce data of a quantity 

required to comment on the role of Survivin or Telomerase in liver neoplasms, as has 

previously been reported when using Telomerase quantification in lung cancer 

(Targowski et al., 2010). Of note previous research in HCCs failed to find a role for 

serological detection of Survivin, (Jia et al., 2015).  

The scientific approach has yielded some very promising early results in the 

optimisation of the exosomal quantification work, but not yet enough to correlate with 
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clinical or research parameters, including tissue expression or promoter variants that 

have been assessed in this project.  

7.7 Bias and Statistics 

During this research project every effort has been made to reduce any inherent bias that 

may alter the results. However, the specimens that have been studied are all from 

patients who were medically fit enough to undergo major abdominal surgery, meaning 

an inherent selection bias that is out with my control. The only way to ensure the results 

demonstrated above are accurate in all liver tumours would be to include biopsy 

specimens, thereby representing the patient cohort more accurately. The volume of 

tumour tissue from needle-biopsy specimens is sometimes so limited that this is deemed 

insufficient for a formal medical diagnosis, meaning inclusion into research projects 

would not be possible. A potential way around this issue would include second-pass 

biopsies (which further increase the risk of morbidity and mortality to the patient) for 

future research projects.  

Numerous analyses have been made on the same data presented above with some 

corrections for repeated statistical tests, i.e., Bonferroni correction. However, a formal 

assessment of possible false-discovery rates has not been undertaken when assessing the 

neoplastic/malignant/ tumour subgroup analyses. This means these results and possible 

inferences on clinical practice should be interpreted/ acted upon with caution.  

7.8 Conclusion 

In conclusion, I have used a variety of techniques to explore the role of UTAA in 

primary liver neoplasms. Noteworthy highlights include the successful Sanger 

sequencing of promoter regions from DNA extracted from FFPE tissues, and the use of 

a digital pathology platform to quantify protein expression of UTAA in PLCs – which 

correlated with clinical parameters. As my sequencing results provided evidence of 
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pTERTMuts being an HCC-lineage specific genetic alteration, sadly the IHC for 

Telomerase was quite disappointing. Whilst the Survivin sequencing data failed to yield 

any meaningful results, the IHC results demonstrated significant correlations, some of 

which are novel.  

However, the lack of progress on my biobanked blood samples is a source of 

frustration, despite numerous attempts at protein quantification using an ELISA. The 

Exosomal work is very promising and may yield meaningful results if fully pursued.  

Being the first researcher in the South West of England to explore a new cohort of 

patients has been a real privilege. Progress through the original ethics application has 

provided me with an invaluable set of transferable skills for my future research 

activities. Being involved in the embryonic stages of biobank recruitment has also been 

of significant benefit, and has given me a new perspective on the effort involved in 

patient identification and recruitment.  

8 Future Work 

Immediate future work will include using an optimised protocol on serum samples 

taken from patients with primary liver diseases, including cirrhosis and cancer, using 

the real time quantitative PCR method. Assessing the RNA content in the exosomal 

fraction of blood from these patients will help clarify whether the role of UTAA in 

PLC.  

However, alternative methods could also be used such as the relative quantification of 

serum protein using mass spectrometry. Recent work has used liquid chromatography 

mass spectroscopy (LC/MS) in a cell culture model of HCC, using hTERT knockdown 

(siRNA) methods (Choi et al., 2020). Similar approaches have described the role of 

Survivin in CD4+ T cells play in patients with HIV (Kuo et al., 2018). One of the many 

benefits of using LC/MS over individual protein detection methods is the sheer volume 
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of data that could be generated from a few samples. Not only would I be able to 

ascertain whether Survivin and/or Telomerase are detected in blood samples, but I 

would be able to study numerous targets simultaneously, including other enzymes/ 

proteins involved in their respective signalling pathways.  

The Telomerase enzymatic action has only been determined by using the TRAP assay, 

which requires fresh/frozen tissue samples. Given unlimited resources, it would have 

been beneficial to attempt this assay in tumour samples from patients to better 

understand the role of Telomerase in primary liver cancers. Further work on 

understanding the role of Telomerase in PLCs could also assess the other methods 

(currently known) that can result in Telomerase activation: TERT amplification, TERT 

translocation and viral insertion into the TERT gene, (Nault et al., 2019). Epigenetic 

changes (such as promoter methylation) could also be explored in my research cohort, 

as has been demonstrated in neuroendocrine tumours of the small bowel, (Fotouhi et al., 

2019).  

My data has shown Survivin to be a potentially useful biomarker in PLCs. Stratifying 

tumours by Survivin protein expression may be a useful method of identifying higher-

risk cases, but this would need to be supported by a larger study cohort. Whether liver 

tumours shed peripherally detectable Survivin, to act as a haematological biomarker, 

also warrants further assessment.  

The methylation status of the Survivin promoter, and correlations with Survivin 

expression (both transcribed and proteomic) has given mixed results in a variety of 

cancers (Lyu et al., 2018). Assessing the methylation of the Survivin promoter in liver 

cancers, and correlating this with the results presented here would be a first for liver 

cancer. Alternative methods of assessing the epigenetic control of Survivin expression 

could also include the quantification of microRNAs, and how these compare with 

proteomic Survivin (Rahban et al., 2019).  
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In summary there are many possible avenues to pursue when considering how to expand 

on the work presented in this thesis, when considering the role of UTAA in liver 

tumours.  

  



 259 

9 References 

AACR Cancer Progress Report Writing Committee, C. L., Sawyers, C. L., Abate-Shen, 

C., Anderson, K. C., Barker, A., Baselga, J., Berger, N. A., Foti, M., Jemal, A., 

Lawrence, T. S., Li, C. I., Mardis, E. R., Neumann, P. J., Pardoll, D. M., Prendergast, G. 

C., Reed, J. C. and Weiner, G. J. (2013) “AACR Cancer Progress Report 2013.,” 

Clinical cancer research : an official journal of the American Association for Cancer 

Research, 19(20 Suppl), pp. S4-98. doi: 10.1158/1078-0432.CCR-13-2107. 

Akincilar, S. C., Unal, B. and Tergaonkar, V. (2016) “Reactivation of telomerase in 

cancer.,” Cellular and molecular life sciences : CMLS. Springer, 73(8), pp. 1659–70. 

doi: 10.1007/s00018-016-2146-9. 

Allele Frequency rs9904341 - SNP - NCBI (2020). Available at: 

https://www.ncbi.nlm.nih.gov/snp/?term=rs9904341 (Accessed: February 26, 2020). 

ALLEN, R. A. and LISA, J. R. (1949) “Combined liver cell and bile duct carcinoma.,” 

The American journal of pathology, 25(4), pp. 647–655. 

Allred, D. C., Harvey, J. M., Berardo, M. and Clark, G. M. (1998) “Prognostic and 

predictive factors in breast cancer by immunohistochemical analysis.,” Modern 

pathology : an official journal of the United States and Canadian Academy of 

Pathology, Inc, 11(2), pp. 155–68. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/9504686 (Accessed: May 20, 2019). 

Ally, A., Balasundaram, M., Carlsen, R., Chuah, E., Clarke, A., Dhalla, N., Holt, R. A., 

Jones, S. J. M., Lee, D., Ma, Y., Marra, M. A., Mayo, M., Moore, R. A., Mungall, A. J., 

Schein, J. E., Sipahimalani, P., Tam, A., Thiessen, N., Cheung, D., Wong, T., Brooks, 

D., Robertson, A. G., Bowlby, R., Mungall, K., Sadeghi, S., Xi, L., Covington, K., 

Shinbrot, E., Wheeler, D. A., Gibbs, R. A., Donehower, L. A., Wang, L., Bowen, J., 

Gastier-Foster, J. M., Gerken, M., Helsel, C., Leraas, K. M., Lichtenberg, T. M., 



 260 

Ramirez, N. C., Wise, L., Zmuda, E., Gabriel, S. B., Meyerson, M., Cibulskis, C., 

Murray, B. A., Shih, J., Beroukhim, R., Cherniack, A. D., Schumacher, S. E., Saksena, 

G., Pedamallu, C. S., Chin, L., Getz, G., Noble, M., Zhang, Hailei, Heiman, D., Cho, J., 

Gehlenborg, N., Saksena, G., Voet, D., Lin, P., Frazer, S., Defreitas, T., Meier, S., 

Lawrence, M., Kim, J., Creighton, C. J., Muzny, D., Doddapaneni, H., Hu, J., Wang, 

M., Morton, D., Korchina, V., Han, Y., Dinh, H., Lewis, L., Bellair, M., Liu, X., 

Santibanez, J., Glenn, R., Lee, S., Hale, W., Parker, J. S., Wilkerson, M. D., Hayes, D. 

N., Reynolds, S. M., Shmulevich, I., Zhang, W., Liu, Y., Iype, L., Makhlouf, H., 

Torbenson, M. S., Kakar, S., Yeh, M. M., Jain, D., Kleiner, D. E., Jain, D., 

Dhanasekaran, R., El-Serag, H. B., Yim, S. Y., Weinstein, J. N., Mishra, L., Zhang, 

Jianping, Akbani, R., Ling, S., Ju, Z., Su, X., Hegde, A. M., Mills, G. B., Lu, Y., Chen, 

J., Lee, J.-S., Sohn, B. H., Shim, J. J., Tong, P., Aburatani, H., Yamamoto, S., Tatsuno, 

K., Li, W., Xia, Z., Stransky, N., Seiser, E., Innocenti, F., Gao, J., Kundra, R., Zhang, 

Hongxin, Heins, Z., Ochoa, A., Sander, C., Ladanyi, M., Shen, R., Arora, A., Sanchez-

Vega, F., Schultz, N., Kasaian, K., Radenbaugh, A., Bissig, K.-D., Moore, D. D., 

Totoki, Y., Nakamura, H., Shibata, T., Yau, C., Graim, K., Stuart, J., Haussler, D., 

Slagle, B. L., Ojesina, A. I., Katsonis, P., Koire, A., Lichtarge, O., Hsu, T.-K., 

Ferguson, M. L., Demchok, J. A., Felau, I., Sheth, M., Tarnuzzer, R., Wang, Z., Yang, 

L., Zenklusen, J. C., Zhang, Jiashan, Hutter, C. M., Sofia, H. J., Verhaak, R. G. W., 

Zheng, S., Lang, F., Chudamani, S., Liu, J., Lolla, L., Wu, Y., Naresh, R., Pihl, T., Sun, 

C., Wan, Y., Benz, C., Perou, A. H., Thorne, L. B., Boice, L., Huang, M., Rathmell, W. 

K., Noushmehr, H., Saggioro, F. P., Tirapelli, D. P. da C., Junior, C. G. C., Mente, E. 

D., Silva, O. de C., Trevisan, F. A., Kang, K. J., Ahn, K. S., Giama, N. H., Moser, C. 

D., Giordano, T. J., Vinco, M., Welling, T. H., Crain, D., Curley, E., Gardner, J., 

Mallery, D., Morris, S., Paulauskis, J., Penny, R., Shelton, C., Shelton, T., Kelley, R., 

Park, J.-W., Chandan, V. S., Roberts, L. R., Bathe, O. F., Hagedorn, C. H., Auman, J. 



 261 

T., O’Brien, D. R., Kocher, J.-P. A., Jones, C. D., Mieczkowski, P. A., Perou, C. M., 

Skelly, T., Tan, D., Veluvolu, U., Balu, S., Bodenheimer, T., Hoyle, A. P., Jefferys, S. 

R., Meng, S., Mose, L. E., Shi, Y., Simons, J. v., Soloway, M. G., Roach, J., Hoadley, 

K. A., Baylin, S. B., Shen, H., Hinoue, T., Bootwalla, M. S., van den Berg, D. J., 

Weisenberger, D. J., Lai, P. H., Holbrook, A., Berrios, M. and Laird, P. W. (2017) 

“Comprehensive and Integrative Genomic Characterization of Hepatocellular 

Carcinoma,” Cell. Cell Press, 169(7), pp. 1327-1341.e23. doi: 

10.1016/J.CELL.2017.05.046. 

Altieri, D. C. (2008) “New wirings in the survivin networks.,” Oncogene, 27(48), pp. 

6276–84. doi: 10.1038/onc.2008.303. 

Altieri, D. C. (2010) “Survivin and IAP proteins in cell-death mechanisms,” 

Biochemical Journal. Portland Press Ltd, pp. 199–205. doi: 10.1042/BJ20100814. 

Ambrosini, G., Adida, C. and Altieri, D. C. (1997) “A novel anti-apoptosis gene, 

survivin, expressed in cancer and lymphoma.,” Nature medicine, 3(8), pp. 917–21. 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/9256286 (Accessed: October 5, 

2017). 

Athanasoula, K. Ch., Gogas, H., Polonifi, K., Vaiopoulos, A. G., Polyzos, A. and 

Mantzourani, M. (2014) “Survivin beyond physiology: Orchestration of multistep 

carcinogenesis and therapeutic potentials,” Cancer Letters. Elsevier, 347(2), pp. 175–

182. doi: 10.1016/J.CANLET.2014.02.014. 

Aynaci, E., Coskunpinar, E., Eren, A., Kum, O., Oltulu, Y. M., Akkaya, N., Turna, A., 

Yaylim, I. and Yildiz, P. (2013) “Association between survivin gene promoter -31G/C 

and -644C/T polymorphisms and non-small cell lung cancer,” Genetics and Molecular 

Research, 12(3), pp. 3975–3982. doi: 10.4238/2013.February.28.9. 



 262 

Banales, J. M., Cardinale, V., Carpino, G., Marzioni, M., Andersen, J. B., Invernizzi, P., 

Lind, G. E., Folseraas, T., Forbes, S. J., Fouassier, L., Geier, A., Calvisi, D. F., Mertens, 

J. C., Trauner, M., Benedetti, A., Maroni, L., Vaquero, J., Macias, R. I. R., Raggi, C., 

Perugorria, M. J., Gaudio, E., Boberg, K. M., Marin, J. J. G. and Alvaro, D. (2016) 

“Expert consensus document: Cholangiocarcinoma: current knowledge and future 

perspectives consensus statement from the European Network for the Study of 

Cholangiocarcinoma (ENS-CCA).,” Nature reviews. Gastroenterology & hepatology, 

13(5), pp. 261–80. doi: 10.1038/nrgastro.2016.51. 

Bankhead, P. (2018) Introduction to QuPath for IHC analysis - YouTube, YouTube. 

Available at: 

https://www.youtube.com/watch?v=aTVfJk6yNKs&list=PL4ta8RxZklWk_O_Z7K0bZl

hmHtaH73vlh (Accessed: February 10, 2020). 

Bankhead, P., Loughrey, M. B., Fernández, J. A., Dombrowski, Y., McArt, D. G., 

Dunne, P. D., McQuaid, S., Gray, R. T., Murray, L. J., Coleman, H. G., James, J. A., 

Salto-Tellez, M. and Hamilton, P. W. (2017) “QuPath: Open source software for digital 

pathology image analysis,” Scientific Reports. Nature Publishing Group, 7(1), p. 16878. 

doi: 10.1038/s41598-017-17204-5. 

Barthel, F. P., Wei, W., Tang, M., Martinez-Ledesma, E., Hu, X., Amin, S. B., 

Akdemir, K. C., Seth, S., Song, X., Wang, Q., Lichtenberg, T., Hu, J., Zhang, J., Zheng, 

S. and Verhaak, R. G. W. (2017) “Systematic analysis of telomere length and somatic 

alterations in 31 cancer types,” Nature Genetics. Nature Publishing Group, 49(3), pp. 

349–357. doi: 10.1038/ng.3781. 

Bayram, S., Akkız, H., Bekar, A. and Akgöllü, E. (2011) “The association between the 

survivin -31G/C promoter polymorphism and hepatocellular carcinoma risk in a Turkish 



 263 

population.,” Cancer epidemiology, 35(6), pp. 555–9. doi: 

10.1016/j.canep.2011.01.004. 

Baytekin, F., Tuna, B., Mungan, U., Aslan, G. and Yorukoglu, K. (2011) “Significance 

of P-glycoprotein, p53, and survivin expression in renal cell carcinoma,” Urologic 

Oncology: Seminars and Original Investigations, 29(5), pp. 502–507. doi: 

10.1016/j.urolonc.2009.09.001. 

Beghein, E., van Audenhove, I., Zwaenepoel, O., Verhelle, A., de Ganck, A. and 

Gettemans, J. (2016) “A new survivin tracer tracks, delocalizes and captures 

endogenous survivin at different subcellular locations and in distinct organelles,” 

Scientific Reports, 6(1), p. 31177. doi: 10.1038/srep31177. 

Bell, R. J. A., Rube, H. T., Xavier-Magalhaes, A., Costa, B. M., Mancini, A., Song, J. S. 

and Costello, J. F. (2016) “Understanding TERT Promoter Mutations: A Common Path 

to Immortality,” Molecular Cancer Research, 14(4). doi: 10.1158/1541-7786.MCR-16-

0003. 

Bergquist, A. and von Seth, E. (2015) “Epidemiology of cholangiocarcinoma,” Best 

Practice & Research Clinical Gastroenterology, 29(2), pp. 221–232. doi: 

10.1016/j.bpg.2015.02.003. 

Bergquist, J. R., Groeschl, R. T., Ivanics, T., Shubert, C. R., Habermann, E. B., 

Kendrick, M. L., Farnell, M. B., Nagorney, D. M., Truty, M. J. and Smoot, R. L. (2016) 

“Mixed hepatocellular and cholangiocarcinoma: a rare tumor with a mix of parent 

phenotypic characteristics.,” HPB : the official journal of the International Hepato 

Pancreato Biliary Association. Elsevier, 18(11), pp. 886–892. doi: 

10.1016/j.hpb.2016.07.006. 



 264 

Bertuccio, P., Turati, F., Carioli, G., Rodriguez, T., la Vecchia, C., Malvezzi, M. and 

Negri, E. (2017) “Global trends and predictions in hepatocellular carcinoma mortality,” 

Journal of Hepatology. Elsevier, 67(2), pp. 302–309. doi: 10.1016/J.JHEP.2017.03.011. 

Bethune, G., Bethune, D., Ridgway, N. and Xu, Z. (2010) “Epidermal growth factor 

receptor (EGFR) in lung cancer: An overview and update,” Journal of Thoracic 

Disease. AME Publications, pp. 48–51. 

Biron-Shental, T., Liberman, M., Elbaz, M., Laish, I., Sharony, R. and Amiel, A. (2016) 

“Telomere homeostasis in placentas from pregnancies with uncontrolled diabetes,” 

Placenta, 44, pp. 13–18. doi: 10.1016/j.placenta.2016.05.009. 

Borkowska, E. M., Traczyk-Borszyńska, M., Kutwin, P., Pietrusiński, M., Jabłonowski, 

Z. and Borowiec, M. (2019) “Usefulness of droplet digital PCR and Sanger sequencing 

for detection of FGFR3 mutation in bladder cancer,” Urologic Oncology: Seminars and 

Original Investigations. Elsevier Inc., 37(12), pp. 907–915. doi: 

10.1016/j.urolonc.2019.06.010. 

Bouattour, M., Mehta, N., He, A. R., Cohen, E. I. and Nault, J. C. (2019) “Systemic 

Treatment for Advanced Hepatocellular Carcinoma,” Liver Cancer. S. Karger AG, 8(5), 

pp. 341–358. doi: 10.1159/000496439. 

Boulter, L., Guest, R. v., Kendall, T. J., Wilson, D. H., Wojtacha, D., Robson, A. J., 

Ridgway, R. A., Samuel, K., van Rooijen, N., Barry, S. T., Wigmore, S. J., Sansom, O. 

J. and Forbes, S. J. (2015) “WNT signaling drives cholangiocarcinoma growth and can 

be pharmacologically inhibited,” Journal of Clinical Investigation. American Society 

for Clinical Investigation, 125(3), pp. 1269–1285. doi: 10.1172/JCI76452. 

Bratthauer, G. L. (2010) “The Avidin–Biotin Complex (ABC) Method and Other 

Avidin–Biotin Binding Methods,” in Methods in molecular biology (Clifton, N.J.), pp. 

257–270. doi: 10.1007/978-1-59745-324-0_26. 



 265 

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. and Jemal, A. (2018) 

“Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality 

worldwide for 36 cancers in 185 countries,” CA: A Cancer Journal for Clinicians. 

American Cancer Society, 68(6), pp. 394–424. doi: 10.3322/caac.21492. 

Bridgewater, J., Galle, P. R., Khan, S. A., Llovet, J. M., Park, J. W., Patel, T., Pawlik, 

T. M. and Gores, G. J. (2014) “Guidelines for the diagnosis and management of 

intrahepatic cholangiocarcinoma,” Journal of Hepatology. doi: 

10.1016/j.jhep.2014.01.021. 

Bryce, K. and Tsochatzis, E. A. (2017) “Downstaging for hepatocellular cancer: Harm 

or benefit?” Translational Gastroenterology and Hepatology. AME Publishing 

Company. doi: 10.21037/tgh.2017.11.18. 

Burrel, M., Reig, M., Forner, A., Barrufet, M., Lope, C. R. de, Tremosini, S., Ayuso, C., 

Llovet, J. M., Real, M. I. and Bruix, J. (2012) “Survival of patients with hepatocellular 

carcinoma treated by transarterial chemoembolisation (TACE) using Drug Eluting 

Beads. Implications for clinical practice and trial design,” Journal of Hepatology, 56(6), 

pp. 1330–1335. doi: 10.1016/j.jhep.2012.01.008. 

Campbell, E. J., Tesson, M., Doogan, F., Mohammed, Z. M. A., Mallon, E. and 

Edwards, J. (2016) “The combined endocrine receptor in breast cancer, a novel 

approach to traditional hormone receptor interpretation and a better discriminator of 

outcome than ER and PR alone,” British Journal of Cancer. Nature Publishing Group, 

115(8), pp. 967–973. doi: 10.1038/bjc.2016.206. 

Cancer Research UK (2017) Liver cancer incidence statistics | Cancer Research UK. 

Available at: http://www.cancerresearchuk.org/health-professional/cancer-

statistics/statistics-by-cancer-type/liver-cancer/incidence#heading-Four (Accessed: June 

5, 2018). 



 266 

Carkic, J., Nikolic, N., Radojevic-Skodric, S., Kuzmanovic-Pficer, J., Brajovic, G., 

Antunovic, M., Milasin, J. and Popovic, B. (2016) “The role of TERT-CLPTM1L 

SNPs, hTERT expression and telomere length in the pathogenesis of oral squamous cell 

carcinoma,” Journal of Oral Science, 58(4), pp. 449–458. doi: 10.2334/josnusd.16-

0108. 

Cell Signalling Technology (2020) CST - Survivin (71G4B7) Rabbit mAb. Available at: 

https://www.cellsignal.co.uk/products/primary-antibodies/survivin-71g4b7-rabbit-

mab/2808 (Accessed: April 2, 2020). 

Cesare, A. J. and Reddel, R. R. (2010) “Alternative lengthening of telomeres: Models, 

mechanisms and implications,” Nature Reviews Genetics, pp. 319–330. doi: 

10.1038/nrg2763. 

Cevik, D., Yildiz, G. and Ozturk, M. (2015) “Common telomerase reverse transcriptase 

promoter mutations in hepatocellular carcinomas from different geographical 

locations,” World Journal of Gastroenterology. doi: 10.3748/wjg.v21.i1.311. 

Chan, A. K.-Y., Yao, Y., Zhang, Z., Chung, N. Y.-F., Liu, J. S.-M., Li, K. K.-W., Shi, 

Z., Chan, D. T.-M., Poon, W. S., Zhou, L. and Ng, H.-K. (2015) “TERT promoter 

mutations contribute to subset prognostication of lower-grade gliomas,” Modern 

Pathology, 28(2), pp. 177–186. doi: 10.1038/modpathol.2014.94. 

Chan, H., Wang, Y. and Feigon, J. (2017) “Progress in Human and Tetrahymena 

Telomerase Structure Determination,” Annual Review of Biophysics, 46(1), pp. 199–

225. doi: 10.1146/annurev-biophys-062215-011140. 

Chang, Q., Liu, Z. R., Wang, D. Y., Kumar, M., Chen, Y. B. and Qin, R. Y. (2004) 

“Survivin expression induced by doxorubicin in cholangiocarcinoma,” World Journal of 

Gastroenterology. WJG Press, 10(3), pp. 415–418. doi: 10.3748/wjg.v10.i3.415. 



 267 

Chen, R., Xu, X., Tao, Y., Qian, Z. and Yu, Y. (2019) “Exosomes in hepatocellular 

carcinoma: a new horizon,” Cell Communication and Signaling. BioMed Central, 17(1), 

p. 1. doi: 10.1186/s12964-018-0315-1. 

Chen, Y. and Kong, Q. (2010) “Nuclear translocation of telomerase reverse 

transcriptase: A critical process in chemical induced hepatocellular carcinogenesis,” 

Neoplasma. SAP - Slovak Academic Press, spol. s.r.o., 57(3), pp. 222–227. doi: 

10.4149/neo_2010_03_222. 

Cheng, N., Du, D., Wang, X., Liu, D., Xu, W., Luo, Y. and Lin, Y. (2019) “Recent 

Advances in Biosensors for Detecting Cancer-Derived Exosomes,” Trends in 

Biotechnology. Elsevier Current Trends. doi: 10.1016/J.TIBTECH.2019.04.008. 

Chiodi, I. and Mondello, C. (2012) “Telomere-independent functions of telomerase in 

nuclei, cytoplasm, and mitochondria,” Frontiers in Oncology, 2. doi: 

10.3389/fonc.2012.00133. 

Choi, S. H., Cho, K. J., Yun, S. H., Jin, B., Lee, H. Y., Ro, S. W., Kim, D. Y., Ahn, S. 

H., Han, K. H. and Park, J. Y. (2020) “HKR3 regulates cell cycle through the inhibition 

of hTERT in hepatocellular carcinoma cell lines,” Journal of Cancer. Ivyspring 

International Publisher, 11(9), pp. 2442–2452. doi: 10.7150/jca.39380. 

Choo, S. P., Tan, W. L., Goh, B. K. P., Tai, W. M. and Zhu, A. X. (2016) “Comparison 

of hepatocellular carcinoma in Eastern versus Western populations,” Cancer, 122(22), 

pp. 3430–3446. doi: 10.1002/cncr.30237. 

Cooke, G. S., Andrieux-Meyer, I., Applegate, T. L., Atun, R., Burry, J. R., Cheinquer, 

H., Dusheiko, G., Feld, J. J., Gore, C., Griswold, M. G., Hamid, S., Hellard, M. E., Hou, 

J. L., Howell, J., Jia, J., Kravchenko, N., Lazarus, J. v., Lemoine, M., Lesi, O. A., 

Maistat, L., McMahon, B. J., Razavi, H., Roberts, T. R., Simmons, B., Sonderup, M. 

W., Spearman, C. W., Taylor, B. E., Thomas, D. L., Waked, I., Ward, J. W., Wiktor, S. 



 268 

Z., Abdo, A., Aggarwal, R., Aghemo, A., Al-Judaibi, B., al Mahtab, M., Altaf, A., 

Ameen, Z., Asselah, T., Baatarkkhuu, O., Barber, E., Barnes, E., Boulet, P., Burrows, 

L., Butsashvili, M., Chan, E., Chow, C., Cowie, B., Cunningham, C., de Araujo, A., 

Diap, G., Dore, G., Doyle, J., Elsayed, M., Fajardo, E., Gane, E., Getehun, A., 

Goldberg, D., Got, T., Hickman, M., Hill, A., Hutchinson, S., Jones, C., Kamili, S., 

Khan, A., Lee, A., Lee, T. Y., Malani, J., Morris, T. M., Nayagam, S., Njouom, R., 

Ocama, P., Pedrana, A., Peeling, R., Reddy, A., Roberts, T., Sacks, J., Sarin, S., 

Shimakawa, Y., Silva, M., Skala, P., Taylor-Robinson, S., Thompson, A., Thursz, M., 

Tonganibeia, A., Wallace, J., Ward, J., Wolff, F., Vickerman, P. and Yau, J. (2019) 

“Accelerating the elimination of viral hepatitis: a Lancet Gastroenterology & 

Hepatology Commission,” The Lancet Gastroenterology and Hepatology. Elsevier Ltd, 

pp. 135–184. doi: 10.1016/S2468-1253(18)30270-X. 

Cornish, T. C., Chakravarti, A., Kapoor, A. and Halushka, M. K. (2015) “HPASubC: A 

suite of tools for user subclassification of human protein atlas tissue images.,” Journal 

of pathology informatics. Wolters Kluwer -- Medknow Publications, 6, p. 36. doi: 

10.4103/2153-3539.159213. 

Crisino, R. M., Luo, L., Geist, B., Zoghbi, J. and Spriggs, F. (2014) “Matrix effect in 

ligand-binding assay: the importance of evaluating emerging technologies,” 

Bioanalysis. Future Science Ltd, pp. 1033–1036. doi: 10.4155/bio.14.39. 

Dallaglio, K., Petrachi, T., Marconi, A., Truzzi, F., Lotti, R., Saltari, A., Morandi, P., 

Puviani, M., Maiorana, A. and Pincelli, C. (2014) “Expression of nuclear survivin in 

normal skin and squamous cell carcinoma: a possible role in tumour invasion.,” British 

journal of cancer. Nature Publishing Group, 110(1), pp. 199–207. doi: 

10.1038/bjc.2013.697. 



 269 

Dedhia, P., Tarale, S., Dhongde, G., Khadapkar, R. and Das, B. (2007) “Evaluation of 

DNA extraction methods and real time PCR optimization on formalin-fixed paraffin-

embedded tissues.,” Asian Pacific journal of cancer prevention : APJCP, 8(1), pp. 55–

9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17477772 (Accessed: June 5, 

2018). 

Dohi, T., Beltrami, E., Wall, N. R., Plescia, J. and Altieri, D. C. (2004) “Mitochondrial 

survivin inhibits apoptosis and promotes tumorigenesis.,” The Journal of clinical 

investigation. American Society for Clinical Investigation, 114(8), pp. 1117–27. doi: 

10.1172/JCI22222. 

Donati, B., Pietrelli, A., Pingitore, P., Dongiovanni, P., Caddeo, A., Walker, L., Baselli, 

G., Pelusi, S., Rosso, C., Vanni, E., Daly, A., Mancina, R. M., Grieco, A., Miele, L., 

Grimaudo, S., Craxi, A., Petta, S., de Luca, L., Maier, S., Soardo, G., Bugianesi, E., 

Colli, F., Romagnoli, R., Anstee, Q. M., Reeves, H. L., Fracanzani, A. L., Fargion, S., 

Romeo, S. and Valenti, L. (2017) “Telomerase reverse transcriptase germline mutations 

and hepatocellular carcinoma in patients with nonalcoholic fatty liver disease,” Cancer 

Medicine, 6(8), pp. 1930–1940. doi: 10.1002/cam4.1078. 

Dong, H., Qian, D., Wang, Y., Meng, L., Chen, D., Ji, X. and Feng, W. (2015) 

“Survivin expression and serum levels in pancreatic cancer,” World Journal of Surgical 

Oncology, 13(1), p. 189. doi: 10.1186/s12957-015-0605-7. 

Doyle, B., O’Riain, C. and Appleton, K. (2011) “Pyrosequencing of DNA extracted 

from formalin-fixed paraffin-embedded tissue.,” Methods in molecular biology (Clifton, 

N.J.). Methods Mol Biol, 724, pp. 181–190. doi: 10.1007/978-1-61779-055-3_12. 

Ecker, C., Ertl, A., Pulverer, W., Nemes, A., Szekely, P., Petrasch, A., Linsberger-

Martin, G. and Cichna-Markl, M. (2013) “Validation and comparison of a sandwich 

ELISA, two competitive ELISAs and a real-time PCR method for the detection of 



 270 

lupine in food,” Food Chemistry. Elsevier Ltd, 141(1), pp. 407–418. doi: 

10.1016/j.foodchem.2013.02.091. 

Edmondson, H. A. and Steiner, P. E. (1954) “Primary carcinoma of the liver. A study of 

100 cases among 48,900 necropsies,” Cancer, 7(3), pp. 462–503. doi: 10.1002/1097-

0142(195405)7:3<462:AID-CNCR2820070308>3.0.CO;2-E. 

Ellis, M. J., Babiera, G., Unzeitig, G. W., Marcom, P. K., Guenther, J. M., Deshryver, 

F. K., Allred, D. C., Suman, V., Hunt, K. and Olson, J. A. (2010) “ACOSOG Z1031: A 

randomized phase II trial comparing exemestane, letrozole, and anastrozole in 

postmenopausal women with clinical stage II/III estrogen receptor-positive breast 

cancer.,” Journal of Clinical Oncology. American Society of Clinical Oncology 

(ASCO), 28(18_suppl), pp. LBA513–LBA513. doi: 

10.1200/jco.2010.28.18_suppl.lba513. 

El-Mazny, A., Sayed, M. and Sharaf, S. (2014) “Human telomerase reverse 

transcriptase messenger RNA (TERT mRNA) as a tumour marker for early detection of 

hepatocellular carcinoma,” Arab Journal of Gastroenterology. Elsevier Ltd, 15(2), pp. 

68–71. doi: 10.1016/j.ajg.2014.04.001. 

El-Serag, H. B. (2011) “Hepatocellular carcinoma,” The Lancet, 380(9840), p. 469. doi: 

10.1016/S0140-6736(12)61282-3. 

Espinosa, W., Liu, Y.-W., Wang, C.-C., Lin, C.-C., Wang, J.-H., Lu, S.-N. and Hung, 

C.-H. (2018) “Combined resection and radiofrequency ablation versus transarterial 

embolization for intermediate-stage hepatocellular carcinoma: A propensity score 

matching study,” Journal of the Formosan Medical Association. Elsevier, 117(3), pp. 

197–203. doi: 10.1016/J.JFMA.2017.03.014. 

Fangusaro, J. R., Jiang, Y., Holloway, M. P., Caldas, H., Singh, V., Boué, D. R., Hayes, 

J. and Altura, R. A. (2005) “Survivin, Survivin-2B, and Survivin-deItaEx3 expression 



 271 

in medulloblastoma: biologic markers of tumour morphology and clinical outcome.,” 

British journal of cancer, 92(2), pp. 359–65. doi: 10.1038/sj.bjc.6602317. 

Fattovich, G., Stroffolini, T., Zagni, I. and Donato, F. (2004) “Hepatocellular carcinoma 

in cirrhosis: Incidence and risk factors,” Gastroenterology. W.B. Saunders, 127(5), pp. 

S35–S50. doi: 10.1053/J.GASTRO.2004.09.014. 

Fields, A. C., Cotsonis, G., Sexton, D., Santoianni, R. and Cohen, C. (2004) “Survivin 

expression in hepatocellular carcinoma: correlation with proliferation, prognostic 

parameters, and outcome,” Modern Pathology. Nature Publishing Group, 17(11), pp. 

1378–1385. doi: 10.1038/modpathol.3800203. 

Foerster, F. and Galle, P. R. (2019) “Comparison of the current international guidelines 

on the management of HCC,” JHEP Reports. Elsevier BV, 1(2), pp. 114–119. doi: 

10.1016/j.jhepr.2019.04.005. 

Forner, A., Llovet, J. M. and Bruix, J. (2012) “Hepatocellular carcinoma,” The Lancet, 

379(9822), pp. 1245–1255. doi: 10.1016/S0140-6736(11)61347-0. 

Forner, A., Reig, M. and Bruix, J. (2018) “Hepatocellular carcinoma.,” Lancet (London, 

England). Elsevier, 391(10127), pp. 1301–1314. doi: 10.1016/S0140-6736(18)30010-2. 

Fortugno, P., Wall, N. R., Giodini, A., O’Connor, D. S., Plescia, J., Padgett, K. M., 

Tognin, S., Marchisio, P. C. and Altieri, D. C. (2002) “Survivin exists in 

immunochemically distinct subcellular pools and is involved in spindle microtubule 

function.,” Journal of cell science, 115(Pt 3), pp. 575–85. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/11861764 (Accessed: August 6, 2019). 

Fotouhi, O., Ghaderi, M., Wang, N., Zedenius, J., Kjellman, M., Xu, D., Juhlin, C. C. 

and Larsson, C. (2019) “Telomerase activation in small intestinal neuroendocrine 

tumours is associated with aberrant TERT promoter methylation, but not hot-spot 



 272 

mutations,” Epigenetics. Taylor and Francis Inc., 14(12), pp. 1224–1233. doi: 

10.1080/15592294.2019.1634987. 

Fujimoto, R., Kamata, N., Yokoyama, K., Ueda, N., Satomura, K., Hayashi, E. and 

Nagayama, M. (2001) “Expression of telomerase components in oral keratinocytes and 

squamous cell carcinomas,” Oral Oncology. Pergamon, 37(2), pp. 132–140. doi: 

10.1016/S1368-8375(00)00073-7. 

Fujiwara, N., Friedman, S. L., Goossens, N. and Hoshida, Y. (2017) “Risk factors and 

prevention of hepatocellular carcinoma in the era of precision medicine,” Journal of 

Hepatology. Elsevier. doi: 10.1016/J.JHEP.2017.09.016. 

Galle, P. R., Forner, A., Llovet, J. M., Mazzaferro, V., Piscaglia, F., Raoul, J.-L., 

Schirmacher, P. and Vilgrain, V. (2018) “EASL Clinical Practice Guidelines: 

Management of hepatocellular carcinoma,” Journal of Hepatology. Elsevier, 69(1), pp. 

182–236. doi: 10.1016/J.JHEP.2018.03.019. 

Ganne-Carrié, N. and Nahon, P. (2019) “Hepatocellular carcinoma in the setting of 

alcohol-related liver disease,” Journal of Hepatology. Elsevier, 70(2), pp. 284–293. doi: 

10.1016/J.JHEP.2018.10.008. 

Gardner, F. P., Serie, D. J., Salomao, D. R., Wu, K. J., Markovic, S. N., Pulido, J. S. 

and Joseph, R. W. (2014) “C-MET expression in primary and liver metastases in uveal 

melanoma,” Melanoma Research. Lippincott Williams and Wilkins, 24(6), pp. 617–

620. doi: 10.1097/CMR.0000000000000118. 

GLOBOSCAN 2012 (IARC) (2015) GLOBOCAN Cancer Fact Sheets: liver Cancers, 

Liver Cancer Estimated Incidence, Mortality and Prevalence Worldwide in 2012. 

Available at: http://globocan.iarc.fr/old/FactSheets/cancers/liver-new.asp (Accessed: 

January 24, 2018). 



 273 

Goldvaser, H., Gutkin, A., Beery, E., Edel, Y., Nordenberg, J., Wolach, O., Rabizadeh, 

E., Uziel, O. and Lahav, M. (2017) “Characterisation of blood-derived exosomal 

hTERT mRNA secretion in cancer patients: a potential pan-cancer marker,” British 

Journal of Cancer, 117(3), pp. 353–357. doi: 10.1038/bjc.2017.166. 

Gonda, A., Kabagwira, J., Senthil, G. N., Bennit, H. R. F., Neidigh, J. W., Khan, S. and 

Wall, N. R. (2018) “Exosomal survivin facilitates vesicle internalization,” Oncotarget, 

9(79), pp. 34919–34934. doi: 10.18632/oncotarget.26182. 

Goodman, Z. D., Ishak, K. G., Langloss, J. M., Sesterhenn, I. A. and Rabin, L. (1985) 

“Combined hepatocellular‐cholangiocarcinoma. A histologic and immunohistochemical 

study,” Cancer. John Wiley & Sons, Ltd, 55(1), pp. 124–135. doi: 10.1002/1097-

0142(19850101)55:1<124:AID-CNCR2820550120>3.0.CO;2-Z. 

Gordan, J. D. and Vonderheide, R. H. (2002) “Universal tumor antigens as targets for 

immunotherapy.,” Cytotherapy. Elsevier, 4(4), pp. 317–27. doi: 

10.1080/146532402760271091. 

Gouas, D., Shi, H. and Hainaut, P. (2009) “The aflatoxin-induced TP53 mutation at 

codon 249 (R249S): Biomarker of exposure, early detection and target for therapy,” 

Cancer Letters, 286(1), pp. 29–37. doi: 10.1016/j.canlet.2009.02.057. 

Goutté, N., Sogni, P., Bendersky, N., Barbare, J. C., Falissard, B. and Farges, O. (2017) 

“Geographical variations in incidence, management and survival of hepatocellular 

carcinoma in a Western country,” Journal of Hepatology. Elsevier, 66(3), pp. 537–544. 

doi: 10.1016/J.JHEP.2016.10.015. 

de Graaff, M. A., Malu, S., Guardiola, I., Kruisselbrink, A. B., de Jong, Y., Corver, W. 

E., Gelderblom, H., Hwu, P., Nielsen, T. O., Lazar, A. J., Somaiah, N. and Bovée, J. V. 

M. G. (2017) “High-Throughput Screening of Myxoid Liposarcoma Cell Lines: 



 274 

Survivin Is Essential for Tumor Growth,” Translational Oncology, 10(4), pp. 546–554. 

doi: 10.1016/j.tranon.2017.05.007. 

Grabowski, P., Kühnel, T., Mühr-Wilkenshoff, F., Heine, B., Stein, H., Höpfner, M., 

Germer, C. T. and Scherübl, H. (2003) “Prognostic value of nuclear survivin expression 

in oesophageal squamous cell carcinoma.,” British journal of cancer. Nature Publishing 

Group, 88(1), pp. 115–9. doi: 10.1038/sj.bjc.6600696. 

Graham, R. P., Yeh, M. M., Lam-Himlin, D., Roberts, L. R., Terracciano, L., Cruise, M. 

W., Greipp, P. T., Zreik, R. T., Jain, D., Zaid, N., Salaria, S. N., Jin, L., Wang, X., 

Rustin, J. G., Kerr, S. E., Sukov, W. R., Solomon, D. A., Kakar, S., Waterhouse, E., 

Gill, R. M., Ferrell, L., Alves, V. A., Nart, D., Yilmaz, F., Roessler, S., Longerich, T., 

Schirmacher, P. and Torbenson, M. S. (2018) “Molecular testing for the clinical 

diagnosis of fibrolamellar carcinoma,” Modern Pathology. Nature Publishing Group, 

31(1), pp. 141–149. doi: 10.1038/modpathol.2017.103. 

Greider, C. W. and Blackburn, E. H. (1985) “Identification of a specific telomere 

terminal transferase activity in tetrahymena extracts,” Cell, 43(2), pp. 405–413. doi: 

10.1016/0092-8674(85)90170-9. 

Greten, T. F., Mauda-Havakuk, M., Heinrich, B., Korangy, F. and Wood, B. J. (2019) 

“Combined locoregional-immunotherapy for liver cancer,” Journal of Hepatology. 

Elsevier B.V., pp. 999–1007. doi: 10.1016/j.jhep.2019.01.027. 

Griewank, K. G., Murali, R., Puig-Butille, J. A., Schilling, B., Livingstone, E., Potrony, 

M., Carrera, C., Schimming, T., Möller, I., Schwamborn, M., Sucker, A., Hillen, U., 

Badenas, C., Malvehy, J., Zimmer, L., Scherag, A., Puig, S. and Schadendorf, D. (2014) 

“TERT promoter mutation status as an independent prognostic factor in cutaneous 

melanoma.,” Journal of the National Cancer Institute. Oxford University Press, 106(9). 

doi: 10.1093/jnci/dju246. 



 275 

Gu, Y., Jin, S., Wang, F., Hua, Y., Yang, L., Shu, Y., Zhang, Z. and Guo, R. (2014) 

“Clinicopathological significance of PI3K, Akt and survivin expression in gastric 

cancer,” Biomedicine and Pharmacotherapy. Elsevier Masson SAS, 68(4), pp. 471–

475. doi: 10.1016/j.biopha.2014.03.010. 

Gutkin, A., Uziel, O., Beery, E., Nordenberg, J., Pinchasi, M., Goldvaser, H., Henick, 

S., Goldberg, M. and Lahav, M. (2016) “Tumor cells derived exosomes contain hTERT 

mRNA and transform nonmalignant fibroblasts into telomerase positive cells.,” 

Oncotarget. Impact Journals, LLC, 7(37), pp. 59173–59188. doi: 

10.18632/oncotarget.10384. 

Hamilton, S. R. and Aaltonen, L. A. (2000) World Health Organization Classification 

of Tumours Pathology and Genetics of Tumours of the Digestive System. Lyon, France.: 

IARC Press, International Agency for Research on Cancer, 150 cours Albert Thomas, 

F-69372 Lyon, France. Available at: https://www.iarc.fr/en/publications/pdfs-

online/pat-gen/bb2/BB2.pdf (Accessed: June 20, 2018). 

Han, C. H., Wei, Q., Lu, K. K., Liu, Z., Mills, G. B. and Wang, L.-E. (2009) 

“Polymorphisms in the survivin promoter are associated with age of onset of ovarian 

cancer.,” International journal of clinical and experimental medicine. e-Century 

Publishing Corporation, 2(4), pp. 289–99. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/20057973 (Accessed: October 9, 2017). 

Hanahan, D. and Weinberg, R. A. (2000) “The Hallmarks of Cancer,” Cell. Cell Press, 

100(1), pp. 57–70. doi: 10.1016/S0092-8674(00)81683-9. 

Hanahan, D. and Weinberg, R. A. (2011) “Hallmarks of Cancer: The Next Generation,” 

Cell. Cell Press, 144(5), pp. 646–674. doi: 10.1016/J.CELL.2011.02.013. 

Hang, H., Jeong, S., Sha, M., Kong, D., Xi, Z., Tong, Y. and Xia, Q. (2019) 

“Cholangiocarcinoma: anatomical location-dependent clinical, prognostic, and genetic 



 276 

disparities,” Annals of Translational Medicine. AME Publishing Company, 7(23), pp. 

744–744. doi: 10.21037/atm.2019.12.37. 

Harding, C., Heuser, J. and Stahl, P. (1983) “Receptor-mediated endocytosis of 

transferrin and recycling of the transferrin receptor in rat reticulocytes.,” The Journal of 

cell biology. The Rockefeller University Press, 97(2), pp. 329–339. doi: 

10.1083/jcb.97.2.329. 

Harding, C. v, Heuser, J. E. and Stahl, P. D. (2013) “Exosomes: looking back three 

decades and into the future.,” The Journal of cell biology. Rockefeller University Press, 

200(4), pp. 367–71. doi: 10.1083/jcb.201212113. 

Hartke, J., Johnson, M. and Ghabril, M. (2017) “The diagnosis and treatment of 

hepatocellular carcinoma,” Seminars in Diagnostic Pathology, 34(2), pp. 153–159. doi: 

10.1053/j.semdp.2016.12.011. 

Hasby, E. A. and Mokhtar, M. A. (2010) “Survivin immunohistochemical expression in 

hepatocellular carcinoma: Correlation with tumour differentiation and proliferation,” 

Arab Journal of Gastroenterology. Elsevier, 11(3), pp. 141–148. doi: 

10.1016/J.AJG.2010.07.001. 

He, X., Yang, K., Wang, H., Chen, X., Wu, H., Yao, L. and Ma, S. (2018) “Expression 

and clinical significance of survivin in ovarian cancer: A meta-analysis,” PLOS ONE. 

Edited by R. Samant. Public Library of Science, 13(5), p. e0194463. doi: 

10.1371/journal.pone.0194463. 

Hemming, A. W. (2019) “Biliary Tract and Primary Liver Tumors: Who, What, and 

Why?” Surgical Oncology Clinics of North America. W.B. Saunders, pp. 519–538. doi: 

10.1016/j.soc.2019.06.012. 



 277 

Hiyama, E., Hiyama, K., Yokoyama, T. and Shay, J. W. (2001) “Immunohistochemical 

Detection of Telomerase (hTERT) Protein in Human Cancer Tissues and a Subset of 

Cells in Normal Tissues,” Neoplasia. Elsevier, 3(1), pp. 17–26. doi: 

10.1038/SJ.NEO.7900134. 

Hoffmann, K., Ganten, T., Gotthardtp, D., Radeleff, B., Settmacher, U., Kollmar, O., 

Nadalin, S., Karapanagiotou-Schenkel, I., von Kalle, C., Jäger, D., Büchler, M. W. and 

Schemmer, P. (2015) “Impact of neo-adjuvant Sorafenib treatment on liver 

transplantation in HCC patients - a prospective, randomized, double-blind, phase III 

trial,” BMC Cancer. BioMed Central Ltd., 15(1). doi: 10.1186/s12885-015-1373-z. 

Horn, S., Figl, A., Rachakonda, P. S., Fischer, C., Sucker, A., Gast, A., Kadel, S., Moll, 

I., Nagore, E., Hemminki, K., Schadendorf, D. and Kumar, R. (2013) “TERT Promoter 

Mutations in Familial and Sporadic Melanoma,” Science, 339(6122), pp. 959–961. doi: 

10.1126/science.1230062. 

Huang, D. S., Wang, Z., He, X. J., Diplas, B. H., Yang, R., Killela, P. J., Meng, Q., Ye, 

Z. Y., Wang, W., Jiang, X. T., Xu, L., He, X. L., Zhao, Z. S., Xu, W. J., Wang, H. J., 

Ma, Y. Y., Xia, Y. J., Li, L., Zhang, R. X., Jin, T., Zhao, Z. K., Xu, J., Yu, S., Wu, F., 

Liang, J., Wang, S., Jiao, Y., Yan, H. and Tao, H. Q. (2015) “Recurrent TERT promoter 

mutations identified in a large-scale study of multiple tumour types are associated with 

increased TERT expression and telomerase activation,” European Journal of Cancer. 

Elsevier Ltd, 51(8), pp. 969–976. doi: 10.1016/j.ejca.2015.03.010. 

Huang, F. W., Hodis, E., Xu, M. J., Kryukov, G. v., Chin, L. and Garraway, L. A. 

(2013) “Highly Recurrent TERT Promoter Mutations in Human Melanoma,” Science, 

339(6122), pp. 957–959. doi: 10.1126/science.1229259. 

Huang, W., Zhou, W., Li, C., Yang, Y., Shang, Y. K., Chen, C., Zhang, J., Yao, R., 

Wang, P., Wen, W., Liu, H. Q., Wang, L., Li, X., Bian, H. and Chen, Z. N. (2017) 



 278 

“Promoter mutations and cellular distribution of telomerase in non-clear cell and clear 

cell hepatocellular carcinoma,” Oncotarget. Impact Journals LLC, 8(16), pp. 26288–

26297. doi: 10.18632/oncotarget.15458. 

Hubáček, J. A., Pikhart, H., Peasey, A., Kubínová, R. and Bobák, M. (2015) “Nobody Is 

Perfect: Comparison of the Accuracy of PCR-RFLP and KASPTM Method for 

Genotyping. ADH1B and FTO Polymorphisms as Examples.,” Folia biologica, 61(4), 

pp. 156–60. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26441205 (Accessed: 

June 18, 2018). 

in der Stroth, L., Tharehalli, U., Günes, C. and Lechel, A. (2020) “Telomeres and 

telomerase in the development of liver cancer,” Cancers. MDPI AG, pp. 1–24. doi: 

10.3390/cancers12082048. 

International Classification of Diseases for Oncology (2019). Available at: 

https://codes.iarc.fr/home (Accessed: May 7, 2019). 

Ito, T., Shiraki, K., Sugimoto, K., Yamanaka, T., Fujikawa, K., Ito, M., Takase, K., 

Moriyama, M., Kawano, H., Hayashida, M., Nakano, T. and Suzuki, A. (2000) 

“Survivin promotes cell proliferation in human hepatocellular carcinoma,” Hepatology. 

W.B. Saunders, 31(5), pp. 1080–1085. doi: 10.1053/he.2000.6496. 

Itoi, T., Shinohara, Y., Takeda, K., Takei, K., Ohno, H., Ohyashiki, K., Yahata, N., 

Ebihara, Y. and Saito, T. (2000) “Detection of telomerase activity in biopsy specimens 

for diagnosis of biliary tract cancers,” Gastrointestinal Endoscopy. Mosby Inc., 52(3), 

pp. 380–386. doi: 10.1067/mge.2000.108303. 

Jabbour, T. el, Lagana, S. M. and Lee, H. (2019) “Update on hepatocellular carcinoma: 

Pathologists’ review,” World Journal of Gastroenterology. Baishideng Publishing 

Group Co., Limited, 25(14), pp. 1653–1665. doi: 10.3748/wjg.v25.i14.1653. 



 279 

Jacquot, S., Chartoire, N., Piguet, F., Hérault, Y. and Pavlovic, G. (2019) “Optimizing 

PCR for Mouse Genotyping: Recommendations for Reliable, Rapid, Cost Effective, 

Robust and Adaptable to High-Throughput Genotyping Protocol for Any Type of 

Mutation,” Current protocols in mouse biology. NLM (Medline), 9(4), p. e65. doi: 

10.1002/cpmo.65. 

Jain, D., Nayak, N. C., Kumaran, V. and Saigal, S. (2013) “Steatohepatitic 

Hepatocellular Carcinoma, a Morphologic Indicator of Associated Metabolic Risk 

Factors: A Study From India,” Archives of Pathology & Laboratory Medicine, 137(7), 

pp. 961–966. doi: 10.5858/arpa.2012-0048-OA. 

Jakubowska, K., Pryczynicz, A., Dymicka-Piekarska, V., Famulski, W. and Guzińska-

Ustymowicz, K. (2016) “Immunohistochemical expression and serum level of survivin 

protein in colorectal cancer patients,” Oncology Letters, 12(5), pp. 3591–3597. doi: 

10.3892/ol.2016.5075. 

Jarnagin, W. R., Weber, S., Tickoo, S. K., Koea, J. B., Obiekwe, S., Fong, Y., 

DeMatteo, R. P., Blumgart, L. H. and Klimstra, D. (2002) “Combined hepatocellular 

and cholangiocarcinoma: Demographic, clinical, and prognostic factors,” Cancer, 94(7), 

pp. 2040–2046. doi: 10.1002/cncr.10392. 

Javle, M. M., Tan, D., Yu, J., LeVea, C. M., Li, F., Kuvshinoff, B. W. and Gibbs, J. F. 

(2004) “Nuclear survivin expression predicts poor outcome in cholangiocarcinoma,” 

Hepato-Gastroenterology, 51(60), pp. 1653–1657. 

Jeyaprakash, A. A., Klein, U. R., Lindner, D., Ebert, J., Nigg, E. A. and Conti, E. 

(2007) “Structure of a Survivin–Borealin–INCENP Core Complex Reveals How 

Chromosomal Passengers Travel Together,” Cell. Elsevier, 131(2), pp. 271–285. doi: 

10.1016/j.cell.2007.07.045. 



 280 

Jia, X., Gao, Y., Zhai, D., Liu, J., Wang, Y., Jing, L. and Du, Z. (2015) “Survivin is not 

a promising serological maker for the diagnosis of hepatocellular carcinoma,” Oncology 

Letters, 9(5), pp. 2347–2352. doi: 10.3892/ol.2015.3050. 

Jiang, K., Al-Diffalha, S. and Centeno, B. A. (2018) “Primary Liver Cancers—Part 1,” 

Cancer Control. SAGE PublicationsSage CA: Los Angeles, CA, 25(1), p. 

107327481774462. doi: 10.1177/1073274817744625. 

Jiao, J., Watt, G. P., Stevenson, H. L., Calderone, T. L., Fisher-Hoch, S. P., Ye, Y., Wu, 

X., Vierling, J. M. and Beretta, L. (2018) “Telomerase reverse transcriptase mutations 

in plasma DNA in patients with hepatocellular carcinoma or cirrhosis: Prevalence and 

risk factors,” Hepatology Communications. Wiley-Blackwell, 2(6), pp. 718–731. doi: 

10.1002/hep4.1187. 

Jindal, A., Thadi, A. and Shailubhai, K. (2019) “Hepatocellular Carcinoma: Etiology 

and Current and Future Drugs,” Journal of Clinical and Experimental Hepatology. 

Elsevier, 9(2), pp. 221–232. doi: 10.1016/J.JCEH.2019.01.004. 

Jo, J. H., Kang, H., Lee, H. S., Chung, M. J., Park, J. Y., Bang, S., Park, S. W. and 

Song, S. Y. (2019) “KML001, an arsenic compound, as salvage chemotherapy in 

refractory biliary tract cancers: A prospective study,” Hepatobiliary and Pancreatic 

Diseases International. Elsevier (Singapore) Pte Ltd, 18(1), pp. 62–66. doi: 

10.1016/j.hbpd.2018.12.009. 

Joseph, N. M., Tsokos, C. G., Umetsu, S. E., Shain, A. H., Kelley, R. K., Onodera, C., 

Bowman, S., Talevich, E., Ferrell, L. D., Kakar, S. and Krings, G. (2019) “Genomic 

profiling of combined hepatocellular-cholangiocarcinoma reveals similar genetics to 

hepatocellular carcinoma,” Journal of Pathology. John Wiley and Sons Ltd, 248(2), pp. 

164–178. doi: 10.1002/path.5243. 



 281 

Jung, Y. K. and Yim, H. J. (2017) “Reversal of liver cirrhosis: Current evidence and 

expectations,” Korean Journal of Internal Medicine. Korean Association of Internal 

Medicine, pp. 213–228. doi: 10.3904/kjim.2016.268. 

Kafadar, D., Yaylim, I., Kafadar, A. M., Cacina, C., Ergen, A., Kaynar, M. Y. and Isbir, 

T. (2018) “Investigation of survivin gene polymorphism and serum survivin levels in 

patients with brain tumors,” Anticancer Research. International Institute of Anticancer 

Research, 38(10), pp. 5991–5998. doi: 10.21873/anticanres.12947. 

Kamarajah, S., Giovinazzo, F., Roberts, K. J., Punia, P., Sutcliffe, R. P., 

Marudanayagam, R., Chatzizacharias, N., Isaac, J., Mirza, D. F., Muiesan, P. and 

Dasari, B. V. (2020) “The role of down staging treatment in the management of locally 

advanced intrahepatic cholangiocarcinoma: Review of literature and pooled analysis,” 

Annals of Hepato-Biliary-Pancreatic Surgery. The Korean Association of Hepato-

Biliary-Pancreatic Surgery, 24(1), p. 6. doi: 10.14701/ahbps.2020.24.1.6. 

Kapiris, I., Nastos, K., Karakatsanis, A., Theodosopoulos, T., Karandrea, D., Kondi-

Pafiti, A. and Contis, J. (2019) “Survivin expression in hepatocellular carcinoma. 

Correlation with clinicopathological characteristics and overall survival,” JBUON, 

24(5), pp. 1934–1942. Available at: https://www.jbuon.com/archive/24-5-1934.pdf 

(Accessed: April 28, 2020). 

Kastenhuber, E. R., Lalazar, G., Houlihan, S. L., Tschaharganeh, D. F., Baslan, T., 

Chen, C. C., Requena, D., Tian, S., Bosbach, B., Wilkinson, J. E., Simon, S. M. and 

Lowe, S. W. (2017) “DNAJB1–PRKACA fusion kinase interacts with β-catenin and the 

liver regenerative response to drive fibrolamellar hepatocellular carcinoma,” 

Proceedings of the National Academy of Sciences of the United States of America. 

National Academy of Sciences, 114(50), pp. 13076–13084. doi: 

10.1073/pnas.1716483114. 



 282 

Kawakami, Y., Kitamoto, M., Nakanishi, T., Yasui, W., Tahara, E., Nakayama, J. I., 

Ishikawa, F., Tahara, H., Ide, T. and Kajiyama, G. (2000) “Immuno-histochemical 

detection of human telomerase reverse transcriptase in human liver tissues,” Oncogene. 

Nature Publishing Group, 19(34), pp. 3888–3893. doi: 10.1038/sj.onc.1203733. 

Kelley, J. M. and Quackenbush, J. (1999) “Sequencing PCR Products,” in PCR 

Applications. Elsevier, pp. 127–139. doi: 10.1016/B978-012372185-3/50010-9. 

Kelley, R. K., Bridgewater, J., Gores, G. J. and Zhu, A. X. (2020) “Systemic therapies 

for intrahepatic cholangiocarcinoma,” Journal of Hepatology. Elsevier B.V., pp. 353–

363. doi: 10.1016/j.jhep.2019.10.009. 

Kelly, A. E., Ghenoiu, C., Xue, J. Z., Zierhut, C., Kimura, H. and Funabiki, H. (2010) 

“Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase 

Aurora B.,” Science (New York, N.Y.), 330(6001), pp. 235–9. doi: 

10.1126/science.1189505. 

Khan, A. S. and Dageforde, L. A. (2019) “Cholangiocarcinoma,” Surgical Clinics of 

North America. W.B. Saunders, pp. 315–335. doi: 10.1016/j.suc.2018.12.004. 

Khan, S. A., Davidson, B. R., Goldin, R. D., Heaton, N., Karani, J., Pereira, S. P., 

Rosenberg, W. M. C., Tait, P., Taylor-Robinson, S. D., Thillainayagam, A. v, Thomas, 

H. C., Wasan, H. and British Society of Gastroenterology (2012) “Guidelines for the 

diagnosis and treatment of cholangiocarcinoma: an update,” Gut, 61(12), pp. 1657–

1669. doi: 10.1136/gutjnl-2011-301748. 

Khan, S., Bennit, H. F. and Wall, N. R. (2015) “The emerging role of exosomes in 

survivin secretion.,” Histology and histopathology, 30(1), pp. 43–50. doi: 

10.14670/HH-30.43. 



 283 

Kim, H., Yoo, J. E., Cho, J. Y., Oh, B. K., Yoon, Y. S., Han, H. S., Lee, H. S., Jang, J. 

J., Jeong, S. H., Kim, J. W. and Park, Y. N. (2013) “Telomere length, TERT and 

shelterin complex proteins in hepatocellular carcinomas expressing ‘stemness’-related 

markers,” Journal of Hepatology, 59(4), pp. 746–752. doi: 10.1016/j.jhep.2013.05.011. 

Kirstein, M. M. and Vogel, A. (2016) “Epidemiology and Risk Factors of 

Cholangiocarcinoma.,” Visceral medicine. Karger Publishers, 32(6), pp. 395–400. doi: 

10.1159/000453013. 

Knauer, S. K., Krämer, O. H., Knösel, T., Engels, K., Rödel, F., Kovács, A. F., 

Dietmaier, W., Klein-Hitpass, L., Habtemichael, N., Schweitzer, A., Brieger, J., Rödel, 

C., Mann, W., Petersen, I., Heinzel, T. and Stauber, R. H. (2007) “Nuclear export is 

essential for the tumor-promoting activity of survivin,” The FASEB Journal. Federation 

of American Societies for Experimental Biology, 21(1), pp. 207–216. doi: 

10.1096/fj.06-5741com. 

Kobayashi, T., Kubota, K., Takayama, T. and Makuuchi, M. (2001) “Telomerase 

activity as a predictive marker for recurrence of hepatocellular carcinoma after 

hepatectomy,” American Journal of Surgery, 181(3), pp. 284–288. doi: 10.1016/S0002-

9610(01)00566-9. 

Kongpetch, S., Jusakul, A., Ong, C. K., Lim, W. K., Rozen, S. G., Tan, P. and Teh, B. 

T. (2015) “Pathogenesis of cholangiocarcinoma: From genetics to signalling pathways,” 

Best Practice & Research Clinical Gastroenterology, 29(2), pp. 233–244. doi: 

10.1016/j.bpg.2015.02.002. 

Koprowski, S., Sokolowski, K., Kunnimalaiyaan, S., Clark Gamblin, T. and 

Kunnimalaiyaan, M. (2015) “Curcumin-mediated regulation of Notch1/hairy and 

enhancer of split-1/survivin: Molecular targeting in cholangiocarcinoma,” Journal of 

Surgical Research. Academic Press Inc., pp. 434–440. doi: 10.1016/j.jss.2015.03.029. 



 284 

Krasinskas, A. M. (2018) “Cholangiocarcinoma,” Surgical Pathology Clinics. W.B. 

Saunders, 11(2), pp. 403–429. doi: 10.1016/J.PATH.2018.02.005. 

Krings, G., Ramachandran, R., Jain, D., Wu, T. T., Yeh, M. M., Torbenson, M. and 

Kakar, S. (2013) “Immunohistochemical pitfalls and the importance of glypican 3 and 

arginase in the diagnosis of scirrhous hepatocellular carcinoma,” Modern Pathology, 

26(6), pp. 782–791. doi: 10.1038/modpathol.2012.243. 

Krishnamurthy, N. and Kurzrock, R. (2018) “Targeting the Wnt/beta-catenin pathway 

in cancer: Update on effectors and inhibitors,” Cancer Treatment Reviews. W.B. 

Saunders Ltd, pp. 50–60. doi: 10.1016/j.ctrv.2017.11.002. 

Kulik, L. and El-Serag, H. B. (2019) “Epidemiology and Management of Hepatocellular 

Carcinoma,” Gastroenterology, 156(2), pp. 477-491.e1. doi: 

10.1053/j.gastro.2018.08.065. 

Kuo, H.-H., Ahmad, R., Lee, G. Q., Gao, C., Chen, H.-R., Ouyang, Z., Szucs, M. J., 

Kim, D., Tsibris, A., Chun, T.-W., Battivelli, E., Verdin, E., Rosenberg, E. S., Carr, S. 

A., Yu, X. G. and Lichterfeld, M. (2018) “Anti-apoptotic Protein BIRC5 Maintains 

Survival of HIV-1-Infected CD4+ T Cells,” Immunity. Cell Press. doi: 

10.1016/J.IMMUNI.2018.04.004. 

Lalazar, G. and Simon, S. M. (2018) “Fibrolamellar Carcinoma: Recent Advances and 

Unresolved Questions on the Molecular Mechanisms,” Seminars in Liver Disease. 

Thieme Medical Publishers, Inc., 38(1), pp. 51–59. doi: 10.1055/s-0037-1621710. 

Leão, R., Apolónio, J. D., Lee, D., Figueiredo, A., Tabori, U. and Castelo-Branco, P. 

(2018) “Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: 

clinical impacts in cancer,” Journal of Biomedical Science, 25(1), p. 22. doi: 

10.1186/s12929-018-0422-8. 



 285 

Lee, H. W., Park, T. I., Jang, S. Y., Park, S. Y., Park, W.-J., Jung, S.-J. and Lee, J.-H. 

(2017) “Clinicopathological characteristics of TERT promoter mutation and telomere 

length in hepatocellular carcinoma,” Medicine, 96(5), p. e5766. doi: 

10.1097/MD.0000000000005766. 

Lee, J. H., Shin, D. H., Park, W. Y., Shin, N., Kim, A., Lee, H. J., Kim, Y. K., Choi, K. 

U., Kim, J. Y., Yang, Y. il, Lee, C. H. and Sol, M. Y. (2017) “IDH1 R132C mutation is 

detected in clear cell hepatocellular carcinoma by pyrosequencing,” World Journal of 

Surgical Oncology. BioMed Central Ltd., 15(1), p. 82. doi: 10.1186/s12957-017-1144-

1. 

Leelawat, K., Leelawat, S., Ratanachu-Ek, T., Trubwongchareon, S., Wannaprasert, J., 

Tripongkaruna, S., Chantawibul, S. and Tepaksorn, P. (2006) “Circulating hTERT 

mRNA as a tumor marker in cholangiocarcinoma patients,” World Journal of 

Gastroenterology. WJG Press, 12(26), pp. 4195–4198. doi: 10.3748/wjg.v12.i26.4195. 

Lencioni, R., Llovet, J. M., Han, G., Tak, W. Y., Yang, J., Guglielmi, A., Paik, S. W., 

Reig, M., Kim, D. Y., Chau, G. Y., Luca, A., del Arbol, L. R., Leberre, M. A., Niu, W., 

Nicholson, K., Meinhardt, G. and Bruix, J. (2016) “Sorafenib or placebo plus TACE 

with doxorubicin-eluting beads for intermediate stage HCC: The SPACE trial,” Journal 

of Hepatology. Elsevier B.V., 64(5), pp. 1090–1098. doi: 10.1016/j.jhep.2016.01.012. 

Levy, C., Lymp, J., Angulo, P., Gores, G. J., Larusso, N. and Lindor, K. D. (2005) “The 

Value of Serum CA 19-9 in Predicting Cholangiocarcinomas in Patients with Primary 

Sclerosing Cholangitis,” Digestive Diseases and Sciences, 50(9), pp. 1734–1740. doi: 

10.1007/s10620-005-2927-8. 

Li, F., Aljahdali, I. and Ling, X. (2019) “Cancer therapeutics using survivin BIRC5 as a 

target: What can we do after over two decades of study?” Journal of Experimental and 



 286 

Clinical Cancer Research. BioMed Central Ltd., pp. 1–22. doi: 10.1186/s13046-019-

1362-1. 

Li, F., Ambrosini, G., Chu, E. Y., Plescia, J., Tognin, S., Marchisio, P. C. and Altieri, 

D. C. (1998) “Control of apoptosis and mitotic spindle checkpoint by survivin,” Nature, 

396(6711), pp. 580–584. doi: 10.1038/25141. 

Li, P., Kaslan, M., Lee, S. H., Yao, J. and Gao, Z. (2017) “Progress in Exosome 

Isolation Techniques.,” Theranostics. Ivyspring International Publisher, 7(3), pp. 789–

804. doi: 10.7150/thno.18133. 

Li, Z., Wu, X., Bi, X., Zhang, Y., Huang, Z., Lu, H., Zhao, H., Zhao, J., Zhou, J., Li, 

M., Ying, J. and Cai, J. (2018) “Clinicopathological features and surgical outcomes of 

four rare subtypes of primary liver carcinoma.,” Chinese journal of cancer research = 

Chung-kuo yen cheng yen chiu. Beijing Institute for Cancer Research, 30(3), pp. 364–

372. doi: 10.21147/j.issn.1000-9604.2018.03.08. 

Liao, S.-H., Su, T.-H., Jeng, Y.-M., Liang, P.-C., Chen, D.-S., Chen, C.-H. and Kao, J.-

H. (2019) “Clinical Manifestations and Outcomes of Patients with Sarcomatoid 

Hepatocellular Carcinoma,” Hepatology, 69(1), pp. 209–221. doi: 10.1002/hep.30162. 

Lie-A-Ling, M., Bakker, C. T., Deurholt, T., Hoekstra, R., Wesseling, J. G., Afford, S. 

C. and Bosma, P. J. (2006) “Selection of tumour specific promoters for adenoviral gene 

therapy of cholangiocarcinoma,” Journal of Hepatology. J Hepatol, 44(1), pp. 126–133. 

doi: 10.1016/j.jhep.2005.06.007. 

Lin, S., Nascimento, E. M., Gajera, C. R., Chen, L., Neuhöfer, P., Garbuzov, A., Wang, 

S. and Artandi, S. E. (2018) “Distributed hepatocytes expressing telomerase repopulate 

the liver in homeostasis and injury,” Nature. Nature Publishing Group, 556(7700), pp. 

244–248. doi: 10.1038/s41586-018-0004-7. 



 287 

Liu, C.-Y., Chen, K.-F. and Chen, P.-J. (2015) “Treatment of Liver Cancer,” Cold 

Spring Harbor Perspectives in Medicine, 5(9), p. a021535. doi: 

10.1101/cshperspect.a021535. 

Liu, H. Q., Wang, Y. H., Wang, L. L. and Hao, M. (2015) “P16INK4A and survivin: 

Diagnostic and prognostic markers in cervical intraepithelial neoplasia and cervical 

squamous cell carcinoma,” Experimental and Molecular Pathology. Academic Press 

Inc., 99(1), pp. 44–49. doi: 10.1016/j.yexmp.2015.04.004. 

Liu, K., Xia, W., Qiang, M., Chen, X., Liu, J., Guo, X. and Lv, X. (2019) “Deep 

learning pathological microscopic features in endemic nasopharyngeal cancer: 

Prognostic value and protentional role for individual induction chemotherapy,” Cancer 

Medicine. Blackwell Publishing Ltd, p. cam4.2802. doi: 10.1002/cam4.2802. 

Liu, Y., Sun, J., Zhang, Q., Jin, B., Zhu, M. and Zhang, Z. (2017) “Identification of bile 

survivin and carbohydrate antigen 199 in distinguishing cholangiocarcinoma from 

benign obstructive jaundice,” Biomarkers in Medicine, 11(1), pp. 11–18. doi: 

10.2217/bmm-2016-0178. 

Liu, Z., Jiang, Y., Yuan, H., Fang, Q., Cai, N., Suo, C., Jin, L., Zhang, T. and Chen, X. 

(2019) “The trends in incidence of primary liver cancer caused by specific etiologies: 

Results from the Global Burden of Disease Study 2016 and implications for liver cancer 

prevention,” Journal of Hepatology. Elsevier, 70(4), pp. 674–683. doi: 

10.1016/J.JHEP.2018.12.001. 

Llovet, J., Brú, C. and Bruix, J. (1999) “Prognosis of Hepatocellular Carcinoma: The 

BCLC Staging Classification,” Seminars in Liver Disease. © 1999 by Thieme Medical 

Publishers, Inc., 19(03), pp. 329–338. doi: 10.1055/s-2007-1007122. 

Lorenzetti, M. A., Mosna, M. J., de Matteo, E. N., García Lombardi, M., Colli, S. L. 

and Preciado, M. V. (2019) “Overexpression of survivin in pediatric Hodgkin 



 288 

lymphoma tumor cells: Characterization of protein expression and splice-variants 

transcription profile,” Experimental and Molecular Pathology. Academic Press, 108, 

pp. 24–31. doi: 10.1016/J.YEXMP.2019.03.005. 

Lotfi, R. A., el Zawahry, K. M., Kamar, Z. A. and Hashem, Z. (2014) “Effects of 

smoking on human telomerase reverse transcriptase expression in the skin,” 

International Journal of Dermatology, 53(10), pp. 1205–1212. doi: 10.1111/ijd.12467. 

Loughrey, M. B., Bankhead, P., Coleman, H. G., Hagan, R. S., Craig, S., McCorry, A. 

M. B., Gray, R. T., McQuaid, S., Dunne, P. D., Hamilton, P. W., James, J. A. and Salto-

Tellez, M. (2018) “Validation of the systematic scoring of immunohistochemically 

stained tumour tissue microarrays using QuPath digital image analysis.,” 

Histopathology, 73(2), pp. 327–338. doi: 10.1111/his.13516. 

Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Abraham, J., 

Adair, T., Aggarwal, R., Ahn, S. Y., Alvarado, M., Anderson, H. R., Anderson, L. M., 

Andrews, K. G., Atkinson, C., Baddour, L. M., Barker-Collo, S., Bartels, D. H., Bell, 

M. L., Benjamin, E. J., Bennett, D., Bhalla, K., Bikbov, B., bin Abdulhak, A., Birbeck, 

G., Blyth, F., Bolliger, I., Boufous, S., Bucello, C., Burch, M., Burney, P., Carapetis, J., 

Chen, H., Chou, D., Chugh, S. S., Coffeng, L. E., Colan, S. D., Colquhoun, S., Colson, 

K. E., Condon, J., Connor, M. D., Cooper, L. T., Corriere, M., Cortinovis, M., de 

Vaccaro, K. C., Couser, W., Cowie, B. C., Criqui, M. H., Cross, M., Dabhadkar, K. C., 

Dahodwala, N., de Leo, D., Degenhardt, L., Delossantos, A., Denenberg, J., des Jarlais, 

D. C., Dharmaratne, S. D., Dorsey, E. R., Driscoll, T., Duber, H., Ebel, B., Erwin, P. J., 

Espindola, P., Ezzati, M., Feigin, V., Flaxman, A. D., Forouzanfar, M. H., Fowkes, F. 

G. R., Franklin, R., Fransen, M., Freeman, M. K., Gabriel, S. E., Gakidou, E., Gaspari, 

F., Gillum, R. F., Gonzalez-Medina, D., Halasa, Y. A., Haring, D., Harrison, J. E., 

Havmoeller, R., Hay, R. J., Hoen, B., Hotez, P. J., Hoy, D., Jacobsen, K. H., James, S. 

L., Jasrasaria, R., Jayaraman, S., Johns, N., Karthikeyan, G., Kassebaum, N., Keren, A., 



 289 

Khoo, J.-P., Knowlton, L. M., Kobusingye, O., Koranteng, A., Krishnamurthi, R., 

Lipnick, M., Lipshultz, S. E., Ohno, S. L., Mabweijano, J., MacIntyre, M. F., Mallinger, 

L., March, L., Marks, G. B., Marks, R., Matsumori, A., Matzopoulos, R., Mayosi, B. 

M., McAnulty, J. H., McDermott, M. M., McGrath, J., Mensah, G. A., Merriman, T. R., 

Michaud, C., Miller, M., Miller, T. R., Mock, C., Mocumbi, A. O., Mokdad, A. A., 

Moran, A., Mulholland, K., Nair, M. N., Naldi, L., Narayan, K. M. V., Nasseri, K., 

Norman, P., O’Donnell, M., Omer, S. B., Ortblad, K., Osborne, R., Ozgediz, D., Pahari, 

B., Pandian, J. D., Rivero, A. P., Padilla, R. P., Perez-Ruiz, F., Perico, N., Phillips, D., 

Pierce, K., Pope, C. A., Porrini, E., Pourmalek, F., Raju, M., Ranganathan, D., Rehm, J. 

T., Rein, D. B., Remuzzi, G., Rivara, F. P., Roberts, T., de León, F. R., Rosenfeld, L. 

C., Rushton, L., Sacco, R. L., Salomon, J. A., Sampson, U., Sanman, E., Schwebel, D. 

C., Segui-Gomez, M., Shepard, D. S., Singh, D., Singleton, J., Sliwa, K., Smith, E., 

Steer, A., Taylor, J. A., Thomas, B., Tleyjeh, I. M., Towbin, J. A., Truelsen, T., 

Undurraga, E. A., Venketasubramanian, N., Vijayakumar, L., Vos, T., Wagner, G. R., 

Wang, M., Wang, W., Watt, K., Weinstock, M. A., Weintraub, R., Wilkinson, J. D., 

Woolf, A. D., Wulf, S., Yeh, P.-H., Yip, P., Zabetian, A., Zheng, Z.-J., Lopez, A. D., 

Murray, C. J. L., AlMazroa, M. A. and Memish, Z. A. (2012) “Global and regional 

mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic 

analysis for the Global Burden of Disease Study 2010.,” Lancet (London, England). 

Elsevier, 380(9859), pp. 2095–128. doi: 10.1016/S0140-6736(12)61728-0. 

Lunsford, K. E., Javle, M., Heyne, K., Shroff, R. T., Abdel-Wahab, R., Gupta, N., 

Mobley, C. M., Saharia, A., Victor, D. W., Nguyen, D. T., Graviss, E. A., Kaseb, A. O., 

McFadden, R. S., Aloia, T. A., Conrad, C., Li, X. C., Monsour, H. P., Gaber, A. O., 

Vauthey, J. N. and Ghobrial, R. M. (2018) “Liver transplantation for locally advanced 

intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: a prospective case-



 290 

series,” The Lancet Gastroenterology and Hepatology. Elsevier Ltd, 3(5), pp. 337–348. 

doi: 10.1016/S2468-1253(18)30045-1. 

Lyu, H., Huang, J., He, Z. and Liu, B. (2018) “Epigenetic mechanism of survivin 

dysregulation in human cancer,” Science China Life Sciences. Science in China Press, 

pp. 808–814. doi: 10.1007/s11427-017-9230-2. 

Ma, K., Dong, B., Wang, L., Zhao, C., Fu, Z., Che, C., Liu, W., Yang, Z. and Liang, R. 

(2019) “Nomograms for predicting overall survival and cancer-specific survival in 

patients with surgically resected intrahepatic cholangiocarcinoma,” Cancer 

Management and Research. Dove Medical Press Ltd, 11, pp. 6907–6929. doi: 

10.2147/CMAR.S212149. 

Madduru, D., Ijaq, J., Dhar, S., Sarkar, S., Poondla, N., Das, P. S., Vasquez, S. and 

Suravajhala, P. (2019) “Systems Challenges of Hepatic Carcinomas: A Review,” 

Journal of Clinical and Experimental Hepatology. Elsevier B.V., pp. 233–244. doi: 

10.1016/j.jceh.2018.05.002. 

Martin, S. P., Drake, J., Wach, M. M., Ruff, S. M., Diggs, L. P., Wan, J. Y., Good, M. 

L., Dominguez, D. A., Ayabe, R. I., Glazer, E. S., Dickson, P. v., Davis, J. L., Deneve, 

J. L. and Hernandez, J. M. (2020) “Resection and chemotherapy is the optimal 

treatment approach for patients with clinically node positive intrahepatic 

cholangiocarcinoma,” HPB. Elsevier B.V., 22(1), pp. 129–135. doi: 

10.1016/j.hpb.2019.06.007. 

Martin, S. P., Ruff, S., Diggs, L. P., Drake, J., Ayabe, R. I., Brown, Z. J., Wach, M. M., 

Steinberg, S. M., Davis, J. L. and Hernandez, J. M. (2019) “Tumor grade and sex 

should influence the utilization of portal lymphadenectomy for early stage intrahepatic 

cholangiocarcinoma,” HPB. Elsevier B.V., 21(4), pp. 419–424. doi: 

10.1016/j.hpb.2018.07.026. 



 291 

Massironi, S., Pilla, L., Elvevi, A., Longarini, R., Rossi, R. E., Bidoli, P. and Invernizzi, 

P. (2020) “New and Emerging Systemic Therapeutic Options for Advanced 

Cholangiocarcinoma,” Cells. MDPI AG, 9(3), p. 688. doi: 10.3390/cells9030688. 

Massoud, O. and Charlton, M. (2018) “Nonalcoholic Fatty Liver Disease/Nonalcoholic 

Steatohepatitis and Hepatocellular Carcinoma,” Clinics in Liver Disease, 22(1), pp. 

201–211. doi: 10.1016/j.cld.2017.08.014. 

Matchimakul, P., Rinaldi, G., Suttiprapa, S., Mann, V. H., Popratiloff, A., Laha, T., 

Pimenta, R. N., Cochran, C. J., Kaewkes, S., Sripa, B. and Brindley, P. J. (2015) 

“Apoptosis of cholangiocytes modulated by thioredoxin of carcinogenic liver fluke,” 

International Journal of Biochemistry and Cell Biology. Elsevier Ltd, 65, pp. 72–80. 

doi: 10.1016/j.biocel.2015.05.014. 

Mazzaferro, V., Gorgen, A., Roayaie, S., Droz dit Busset, M. and Sapisochin, G. (2020) 

“Liver resection and transplantation for intrahepatic cholangiocarcinoma,” Journal of 

Hepatology. Elsevier B.V., pp. 364–377. doi: 10.1016/j.jhep.2019.11.020. 

Mazzaferro, V., Regalia, E., Doci, R., Andreola, S., Pulvirenti, A., Bozzetti, F., 

Montalto, F., Ammatuna, M., Morabito, A. and Gennari, L. (1996) “Liver 

transplantation for the treatment of small hepatocellular carcinomas in patients with 

cirrhosis,” New England Journal of Medicine, 334(11), pp. 693–699. doi: 

10.1056/NEJM199603143341104. 

McCarty, K. S., Szabo, E., Flowers, J. L., Cox, E. B., Leight, G. S., Miller, L., Konrath, 

J., Soper, J. T., Budwit, D. A. and Creasman, W. T. (1986) “Use of a monoclonal anti-

estrogen receptor antibody in the immunohistochemical evaluation of human tumors,” 

Cancer Research, 46(8 SUPPL.). 

McEvoy, A. C., Calapre, L., Pereira, M. R., Giardina, T., Robinson, C., Khattak, M. A., 

Meniawy, T. M., Pritchard, A. L., Hayward, N. K., Amanuel, B., Millward, M., Ziman, 



 292 

M. and Gray, E. S. (2017) “Sensitive droplet digital PCR method for detection of TERT 

promoter mutations in cell free DNA from patients with metastatic melanoma,” 

Oncotarget. Impact Journals LLC, 8(45), pp. 78890–78900. doi: 

10.18632/oncotarget.20354. 

Mehta, N., Dodge, J. L., Grab, J. D. and Yao, F. Y. (2020) “National Experience on 

Down-Staging of Hepatocellular Carcinoma Before Liver Transplant: Influence of 

Tumor Burden, Alpha-Fetoprotein, and Wait Time,” Hepatology. John Wiley and Sons 

Inc., 71(3), pp. 943–954. doi: 10.1002/hep.30879. 

Mender, I. and Shay, J. W. (2015) “Telomerase Repeated Amplification Protocol 

(TRAP).,” Bio-protocol. NIH Public Access, 5(22). Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/27182535 (Accessed: September 19, 2019). 

Mishra, R., Palve, V., Kannan, S., Pawar, S. and Teni, T. (2015) “High expression of 

survivin and its splice variants survivin ΔEx3 and survivin 2 B in oral cancers,” Oral 

Surgery, Oral Medicine, Oral Pathology and Oral Radiology. Mosby, 120(4), pp. 497–

507. doi: 10.1016/J.OOOO.2015.06.027. 

Mittal, S. and El-Serag, H. B. (2013) “Epidemiology of hepatocellular carcinoma: 

consider the population.,” Journal of clinical gastroenterology. NIH Public Access, 47 

Suppl(0), pp. S2-6. doi: 10.1097/MCG.0b013e3182872f29. 

Moazeni-Roodi, A., Ghavami, S. and Hashemi, M. (2019) “Survivin rs9904341 

polymorphism significantly increased the risk of cancer: evidence from an updated 

meta-analysis of case–control studies,” International Journal of Clinical Oncology, 

24(4), pp. 335–349. doi: 10.1007/s10147-019-01408-y. 

Moeini, A., Sia, D., Zhang, Z., Camprecios, G., Stueck, A., Dong, H., Montal, R., 

Torrens, L., Martinez-Quetglas, I., Fiel, M. I., Hao, K., Villanueva, A., Thung, S. N., 

Schwartz, M. E. and Llovet, J. M. (2017) “Mixed hepatocellular cholangiocarcinoma 



 293 

tumors: Cholangiocellular carcinoma is a distinct molecular entity,” Journal of 

Hepatology, 66(5), pp. 952–961. doi: 10.1016/j.jhep.2017.01.010. 

Mok, S. R. S., Mohan, S., Grewal, N., Elfant, A. B. and Judge, T. A. (2016) “A genetic 

database can be utilized to identify potential biomarkers for biphenotypic hepatocellular 

carcinoma-cholangiocarcinoma,” Journal of Gastrointestinal Oncology. AME 

Publishing Company, 7(4), pp. 570–579. doi: 10.21037/jgo.2016.04.01. 

Montorsi, M., Maggioni, M., Falleni, M., Pellegrini, C., Donadon, M., Torzilli, G., 

Santambrogio, R., Spinelli, A., Coggi, G. and Bosari, S. (2007) “Survivin gene 

expression in chronic liver disease and hepatocellular carcinoma.,” Hepato-

gastroenterology, 54(79), pp. 2040–4. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/18251156 (Accessed: April 9, 2020). 

Moon, W. S. and Tarnawski, A. S. (2003) “Nuclear Translocation of Survivin in 

Hepatocellular Carcinoma: A Key to Cancer Cell Growth?” Human Pathology. W.B. 

Saunders, 34(11), pp. 1119–1126. doi: 10.1053/j.humpath.2003.07.016. 

Morgan, T. R., Mandayam, S. and Jamal, M. M. (2004) “Alcohol and hepatocellular 

carcinoma.,” Gastroenterology, 127(5 Suppl 1), pp. S87-96. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/15508108 (Accessed: April 25, 2019). 

Morriss, N. J., Conley, G. M., Ospina, S. M., Meehan, W. P., Qiu, J. and Mannix, R. 

(2020) “Automated Quantification of Immunohistochemical Staining of Large Animal 

Brain Tissue Using QuPath Software,” Neuroscience. Elsevier Ltd, 429, pp. 235–244. 

doi: 10.1016/j.neuroscience.2020.01.006. 

Mosconi, S., Beretta, G. D., Labianca, R., Zampino, M. G., Gatta, G. and Heinemann, 

V. (2009) “Cholangiocarcinoma,” Critical Reviews in Oncology/Hematology. Elsevier, 

69(3), pp. 259–270. doi: 10.1016/J.CRITREVONC.2008.09.008. 



 294 

Motawi, T. M. K., Zakhary, N. I., Darwish, H. A., Abdalla, H. M. and Tadros, S. A. 

(2019) “Significance of Serum Survivin and -31G/C Gene Polymorphism in the Early 

Diagnosis of Breast Cancer in Egypt,” Clinical Breast Cancer, 19(2), pp. e276–e282. 

doi: 10.1016/j.clbc.2019.01.002. 

Musgrove, C., Jansson, L. I. and Stone, M. D. (2018) “New perspectives on telomerase 

RNA structure and function,” Wiley Interdisciplinary Reviews: RNA, 9(2), p. e1456. 

doi: 10.1002/wrna.1456. 

Muzza, M., Colombo, C., Rossi, S., Tosi, D., Cirello, V., Perrino, M., de Leo, S., 

Magnani, E., Pignatti, E., Vigo, B., Simoni, M., Bulfamante, G., Vicentini, L. and 

Fugazzola, L. (2015) “Telomerase in differentiated thyroid cancer: Promoter mutations, 

expression and localization,” Molecular and Cellular Endocrinology. Elsevier, 399, pp. 

288–295. doi: 10.1016/J.MCE.2014.10.019. 

Najafov, A., Hoxhaj, G., Najafov, A. and Hoxhaj, G. (2017) “Optimization and 

Troubleshooting,” in PCR Guru. Elsevier, pp. 31–43. doi: 10.1016/B978-0-12-804231-

1.00004-3. 

Nakamura, H., Arai, Y., Totoki, Y., Shirota, T., Elzawahry, A., Kato, M., Hama, N., 

Hosoda, F., Urushidate, T., Ohashi, S., Hiraoka, N., Ojima, H., Shimada, K., Okusaka, 

T., Kosuge, T., Miyagawa, S. and Shibata, T. (2015) “Genomic spectra of biliary tract 

cancer,” Nature Genetics. Nature Publishing Group, 47(9), pp. 1003–1010. doi: 

10.1038/ng.3375. 

Nakashima, T., Kojiro, M., Nakashima, T. and Kojiro, M. (1987) “Histological Features 

and Classification of Hepatocellular Carcinoma,” in Hepatocellular Carcinoma. 

Springer Japan, pp. 41–65. doi: 10.1007/978-4-431-68334-6_3. 

Nam W. Kim, Mieczyslaw A. Piatyszek, K. R. P., Calvin B. Harley, Michael D. West, 

P. L. C. H., Gina M. Coviello, Woodring E. Wright, S. L. W. and Jerry W. Shay (1994) 



 295 

“Specific Association of Human Telomerase Activity with Immortal Cells and Cancer,” 

Science, 266(5193), pp. 2011–2015. doi: 10.1126/science.7605428. 

National Centre for Biotechnology Information (2017) RefSNP Report Help. Available 

at: https://www.ncbi.nlm.nih.gov/snp/docs/refsnp_report/helpdoc/ (Accessed: July 4, 

2019). 

Nault, J. C., Cheng, A. L., Sangro, B. and Llovet, J. M. (2020) “Milestones in the 

pathogenesis and management of primary liver cancer,” Journal of Hepatology. 

Elsevier B.V., pp. 209–214. doi: 10.1016/j.jhep.2019.11.006. 

Nault, J. C., Mallet, M., Pilati, C., Calderaro, J., Bioulac-Sage, P., Laurent, C., Laurent, 

A., Cherqui, D., Balabaud, C. and Rossi, J. Z. (2013) “High frequency of telomerase 

reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and 

preneoplastic lesions,” Nature Communications, 4. doi: 10.1038/ncomms3218. 

Nault, J. C., Ningarhari, M., Rebouissou, S. and Zucman-Rossi, J. (2019) “The role of 

telomeres and telomerase in cirrhosis and liver cancer,” Nature Reviews 

Gastroenterology and Hepatology. Nature Publishing Group, pp. 544–558. doi: 

10.1038/s41575-019-0165-3. 

Nault, J.-C., Couchy, G., Balabaud, C., Morcrette, G., Caruso, S., Blanc, J.-F., Bacq, Y., 

Calderaro, J., Paradis, V., Ramos, J., Scoazec, J.-Y., Gnemmi, V., Sturm, N., Guettier, 

C., Fabre, M., Savier, E., Chiche, L., Labrune, P., Selves, J., Wendum, D., Pilati, C., 

Laurent, A., de Muret, A., le Bail, B., Rebouissou, S., Imbeaud, S., Bioulac-Sage, P., 

Letouzé, E., Zucman-Rossi, J., Laurent, C., Saric, J., Frulio, N., Castain, C., Dujardin, 

F., Benchellal, Z., Bourlier, P., Azoulay, D., Luciani, A., Pageaux, G.-P., Fabre, J.-M., 

Vilgrain, V., Belghiti, J., Bancel, B., Boleslawski, E., Letoublon, C., Vaillant, J. C., 

Prévôt, S., Castaing, D., Jacquemin, E., Peron, J. M., Quaglia, A., Paye, F., Terraciano, 

L., Mazzaferro, V., saint Paul, M. C. and Terris, B. (2017) “Molecular Classification of 



 296 

Hepatocellular Adenoma Associates With Risk Factors, Bleeding, and Malignant 

Transformation,” Gastroenterology, 152(4), pp. 880-894.e6. doi: 

10.1053/j.gastro.2016.11.042. 

Nault, J.-C. and Zucman-Rossi, J. (2016) “TERT promoter mutations in primary liver 

tumors,” Clinics and Research in Hepatology and Gastroenterology. Elsevier Masson, 

40(1), pp. 9–14. doi: 10.1016/J.CLINRE.2015.07.006. 

Nguyen, T. H. D., Collins, K. and Nogales, E. (2019) “Telomerase structures and 

regulation: shedding light on the chromosome end,” Current Opinion in Structural 

Biology. Elsevier Current Trends, 55, pp. 185–193. doi: 10.1016/J.SBI.2019.04.009. 

Nguyen, T. H. D., Tam, J., Wu, R. A., Greber, B. J., Toso, D., Nogales, E. and Collins, 

K. (2018) “Cryo-EM structure of substrate-bound human telomerase holoenzyme,” 

Nature, 557(7704), pp. 190–195. doi: 10.1038/s41586-018-0062-x. 

Nigam, J., Chandra, A., Kazmi, H. R., Singh, A., Gupta, V., Parmar, D. and Srivastava, 

M. K. (2014) “Expression of serum survivin protein in diagnosis and prognosis of 

gallbladder cancer: a comparative study,” Medical Oncology, 31(9), p. 167. doi: 

10.1007/s12032-014-0167-5. 

Ningarhari, M., Caruso, S., Hirsch, T. Z., Bayard, Q., Franconi, A., Védie, A.-L., 

Noblet, B., Blanc, J.-F., Amaddeo, G., Ganne, N., Ziol, M., Paradis, V., Guettier, C., 

Calderaro, J., Morcrette, G., Kim, Y., MacLeod, A. R., Nault, J.-C., Rebouissou, S. and 

Zucman-Rossi, J. (2020) “Telomere length is key to hepatocellular carcinoma diversity 

and telomerase addiction is an actionable therapeutic target,” Journal of Hepatology. 

Elsevier BV, 0(0). doi: 10.1016/j.jhep.2020.11.052. 

Njei, B., Rotman, Y., Ditah, I. and Lim, J. K. (2015) “Emerging trends in hepatocellular 

carcinoma incidence and mortality,” Hepatology, 61(1), pp. 191–199. doi: 

10.1002/hep.27388. 



 297 

Noel, J. P., Verdecia, M. A., Huang, H., Dutil, E., Kaiser, D. A. and Hunter, T. (2000) 

“Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement,” 

Nature Structural Biology. Nature Publishing Group, 7(7), pp. 602–608. doi: 

10.1038/76838. 

Noton, E. A., Colnaghi, R., Tate, S., Starck, C., Carvalho, A., Ko Ferrigno, P. and 

Wheatley, S. P. (2006) “Molecular analysis of survivin isoforms: evidence that 

alternatively spliced variants do not play a role in mitosis.,” The Journal of biological 

chemistry. American Society for Biochemistry and Molecular Biology, 281(2), pp. 

1286–95. doi: 10.1074/jbc.M508773200. 

Onuma, A. E., Zhang, H., Huang, H., Williams, T. M., Noonan, A. and Tsung, A. 

(2020) “Immune Checkpoint Inhibitors in Hepatocellular Cancer: Current 

Understanding on Mechanisms of Resistance and Biomarkers of Response to 

Treatment,” Gene Expression The Journal of Liver Research. Cognizant 

Communication Corporation, pp. 53–65. doi: 10.3727/105221620X15880179864121. 

Ozaki, S., Harada, K., Sanzen, T., Watanabe, K., Tsui, W. and Nakanuma, Y. (1999) 

“In situ nucleic acid detection of human telomerase in intrahepatic cholangiocarcinoma 

and its preneoplastic lesion,” Hepatology, 30(4), pp. 914–919. doi: 

10.1002/hep.510300419. 

Palmer, D. H., Malagari, K. and Kulik, L. M. (2020) “Role of locoregional therapies in 

the wake of systemic therapy,” Journal of Hepatology. Elsevier B.V., pp. 277–287. doi: 

10.1016/j.jhep.2019.09.023. 

Pan, B. T. and Johnstone, R. M. (1983) “Fate of the transferrin receptor during 

maturation of sheep reticulocytes in vitro: Selective externalization of the receptor,” 

Cell. Elsevier, 33(3), pp. 967–978. doi: 10.1016/0092-8674(83)90040-5. 



 298 

Parikh, N. D., Waljee, A. K. and Singal, A. G. (2015) “Downstaging hepatocellular 

carcinoma: A systematic review and pooled analysis,” Liver Transplantation. John 

Wiley and Sons Ltd, 21(9), pp. 1142–1152. doi: 10.1002/lt.24169. 

Park, Y.-H., Hwang, S., Ahn, C.-S., Kim, K.-H., Moon, D.-B., Ha, T.-Y., Song, G.-W., 

Jung, D.-H., Park, G.-C., Namgoong, J.-M., Park, C.-S., Park, H.-W., Kang, S.-H., 

Jung, B.-H. and Lee, S.-G. (2013) “Long-Term Outcome of Liver Transplantation for 

Combined Hepatocellular Carcinoma and Cholangiocarcinoma,” Transplantation 

Proceedings. Elsevier, 45(8), pp. 3038–3040. doi: 

10.1016/J.TRANSPROCEED.2013.08.056. 

Parola, M. and Pinzani, M. (2019) “Liver fibrosis: Pathophysiology, pathogenetic 

targets and clinical issues,” Molecular Aspects of Medicine, 65, pp. 37–55. doi: 

10.1016/j.mam.2018.09.002. 

Parrales, A. and Iwakuma, T. (2015) “Targeting oncogenic mutant p53 for cancer 

therapy,” Frontiers in Oncology. Frontiers Media S.A., p. 288. doi: 

10.3389/fonc.2015.00288. 

Paschen, A. (2009) “T Cell Antigens in Cancer,” Tumor-Associated Antigens. 

Patel, G. K., Khan, M. A., Zubair, H., Srivastava, S. K., Khushman, M., Singh, S. and 

Singh, A. P. (2019) “Comparative analysis of exosome isolation methods using culture 

supernatant for optimum yield, purity and downstream applications,” Scientific Reports. 

Nature Publishing Group, 9(1), pp. 1–10. doi: 10.1038/s41598-019-41800-2. 

Paterlini-Bréchot, P., Saigo, K., Murakami, Y., Chami, M., Gozuacik, D., Mugnier, C., 

Lagorce, D. and Bréchot, C. (2003) “Hepatitis B virus-related insertional mutagenesis 

occurs frequently in human liver cancers and recurrently targets human telomerase 

gene,” Oncogene, 22(25), pp. 3911–3916. doi: 10.1038/sj.onc.1206492. 



 299 

Pawlik, T. M., Gleisner, A. L., Anders, R. A., Assumpcao, L., Maley, W. and Choti, M. 

A. (2007) “Preoperative assessment of hepatocellular carcinoma tumor grade using 

needle biopsy: Implications for transplant eligibility,” Annals of Surgery. Lippincott, 

Williams, and Wilkins, 245(3), pp. 435–442. doi: 10.1097/01.sla.0000250420.73854.ad. 

Peck-Radosavljevic, M. and Singal, A. K. (2019) “DAAs prevent HCC – the plot 

thickens,” Digestive and Liver Disease. W.B. Saunders, 51(4), pp. 460–461. doi: 

10.1016/J.DLD.2019.01.027. 

Peery, R. C., Liu, J.-Y. and Zhang, J.-T. (2017) “Targeting survivin for therapeutic 

discovery: past, present, and future promises,” Drug Discovery Today, 22(10), pp. 

1466–1477. doi: 10.1016/j.drudis.2017.05.009. 

Pezzuto, F., Buonaguro, L., Buonaguro, F. M. and Tornesello, M. L. (2017) “Frequency 

and geographic distribution of TERT promoter mutations in primary hepatocellular 

carcinoma.,” Infectious agents and cancer. BioMed Central, 12, p. 27. doi: 

10.1186/s13027-017-0138-5. 

Pivovarcikova, K., Pitra, T., Vanecek, T., Alaghehbandan, R., Gomolcakova, B., Ondic, 

O., Peckova, K., Rotterova, P., Hora, M., Dusek, M., Michal, M. and Hes, O. (2016) 

“Comparative study of TERT gene mutation analysis on voided liquid-based urine 

cytology and paraffin-embedded tumorous tissue,” Annals of Diagnostic Pathology. 

W.B. Saunders, 24, pp. 7–10. doi: 10.1016/J.ANNDIAGPATH.2016.06.002. 

Purkait, S., Mallick, S., Sharma, V., Kumar, A., Pathak, P., Jha, P., Biswas, A., Julka, P. 

K., Gupta, D., Suri, A., Datt Upadhyay, A., Suri, V., Sharma, M. C. and Sarkar, C. 

(2016) “Prognostic Stratification of GBMs Using Combinatorial Assessment of IDH1 

Mutation, MGMT Promoter Methylation, and TERT Mutation Status: Experience from 

a Tertiary Care Center in India.,” Translational oncology, 9(4), pp. 371–6. doi: 

10.1016/j.tranon.2016.06.005. 



 300 

QIAGEN (2020) Confidence in Your PCR Results — The Certainty of Internal Controls 

- QIAGEN. Available at: https://www.qiagen.com/gb/spotlight-pages/newsletters-and-

magazines/articles/correct-interpretation-negative-results/ (Accessed: February 28, 

2020). 

Qin, Jian, Wang, M., Qin, Jun, Cai, Q. and Peng, Z. (2018) “High promoter activity of 

cytokeratin-19 gene in cholangiocarcinoma,” Molecular and Clinical Oncology. 

Spandidos Publications, 9(4), pp. 467–471. doi: 10.3892/mco.2018.1700. 

Quaas, A., Oldopp, T., Tharun, L., Klingenfeld, C., Krech, T., Sauter, G. and Grob, T. J. 

(2014) “Frequency of TERT promoter mutations in primary tumors of the liver,” 

Virchows Archiv. Springer Berlin Heidelberg, 465(6), pp. 673–677. doi: 

10.1007/s00428-014-1658-7. 

Radojevic-Skodric, S., Basta-Jovanovic, G., Brasanac, D., Nikolic, N., Bogdanovic, L., 

Milicic, B. and Milasin, J. (2012) “Survivin Gene Promoter −31 G/C Polymorphism Is 

Associated With Wilms Tumor Susceptibility in Serbian Children,” Journal of 

Pediatric Hematology / Oncology, 34(8), pp. e310–e314. doi: 

10.1097/MPH.0b013e31825d3076. 

Rahban, D., Mohammadi, F., Alidadi, M., Ghantabpour, T., Kheyli, P. A. G. and 

Ahmadi, M. (2019) “Genetic polymorphisms and epigenetic regulation of survivin 

encoding gene, BIRC5, in multiple sclerosis patients,” BMC Immunology. BioMed 

Central Ltd., 20(1). doi: 10.1186/s12865-019-0312-1. 

Ramos-Vara, J. A. (2005) “Technical Aspects of Immunohistochemistry,” Veterinary 

Pathology. SAGE PublicationsSage CA: Los Angeles, CA, 42(4), pp. 405–426. doi: 

10.1354/vp.42-4-405. 

Raoof, M., Dumitra, S., Ituarte, P. H. G., Melstrom, L., Warner, S. G., Fong, Y. and 

Singh, G. (2017) “Development and Validation of a Prognostic Score for Intrahepatic 



 301 

Cholangiocarcinoma,” JAMA Surgery, 152(5), p. e170117. doi: 

10.1001/jamasurg.2017.0117. 

Raoul, J. L., Forner, A., Bolondi, L., Cheung, T. T., Kloeckner, R. and de Baere, T. 

(2019) “Updated use of TACE for hepatocellular carcinoma treatment: How and when 

to use it based on clinical evidence,” Cancer Treatment Reviews. W.B. Saunders Ltd, 

pp. 28–36. doi: 10.1016/j.ctrv.2018.11.002. 

Raposo, G. and Stoorvogel, W. (2013) “Extracellular vesicles: exosomes, microvesicles, 

and friends.,” The Journal of cell biology. Rockefeller University Press, 200(4), pp. 

373–83. doi: 10.1083/jcb.201211138. 

Rasool, I., Afroze, D., Wani, K. A., Yousuf, A., Bhat, I. A., Rah, B., Nazir, S. U., 

Hussain, S. and Dubey, S. (2017) “Role of the Functional Polymorphism of Survivin 

Gene (-31G/C) and Risk of Breast Cancer in a North Indian Population,” Clinical 

Breast Cancer. Elsevier. doi: 10.1016/J.CLBC.2017.11.011. 

Rastogi, A. (2018) “Changing role of histopathology in the diagnosis and management 

of hepatocellular carcinoma,” World Journal of Gastroenterology. Baishideng 

Publishing Group Co., Limited, pp. 4000–4013. doi: 10.3748/wjg.v24.i35.4000. 

Reichling, C., Taieb, J., Derangere, V., Klopfenstein, Q., le Malicot, K., Gornet, J.-M., 

Becheur, H., Fein, F., Cojocarasu, O., Kaminsky, M. C., Lagasse, J. P., Luet, D., 

Nguyen, S., Etienne, P.-L., Gasmi, M., Vanoli, A., Perrier, H., Puig, P.-L., Emile, J.-F., 

Lepage, C. and Ghiringhelli, F. (2019) “Artificial intelligence-guided tissue analysis 

combined with immune infiltrate assessment predicts stage III colon cancer outcomes in 

PETACC08 study,” Gut, p. gutjnl-2019-319292. doi: 10.1136/gutjnl-2019-319292. 

Rhodes, A., Teoh, K. H., See, M. H., Ganesan, K. and Looi, L. M. (2020) “Breast 

cancer hormone receptor testing in Asia: is it time to think again on expected positivity 



 302 

rates and methods of scoring?,” Pathology. Elsevier B.V., pp. 385–387. doi: 

10.1016/j.pathol.2019.12.006. 

Rimassa, L., Pressiani, T. and Merle, P. (2019) “Systemic Treatment Options in 

Hepatocellular Carcinoma,” Liver Cancer. S. Karger AG, pp. 427–446. doi: 

10.1159/000499765. 

Rizvi, S. and Gores, G. J. (2017) “Emerging molecular therapeutic targets for 

cholangiocarcinoma,” Journal of Hepatology. Elsevier B.V., pp. 632–644. doi: 

10.1016/j.jhep.2017.03.026. 

Rokita, M., Stec, R., Bodnar, L., Charkiewicz, R., Korniluk, J., Smoter, M., Cichowicz, 

M., Chyczewski, L., Nikliński, J., Kozłowski, W. and Szczylik, C. (2013) 

“Overexpression of epidermal growth factor receptor as a prognostic factor in colorectal 

cancer on the basis of the Allred scoring system,” OncoTargets and Therapy. Dove 

Press, 6, pp. 967–976. doi: 10.2147/OTT.S42446. 

Rosa, J., Canovas, P., Islam, A., Altieri, D. C. and Doxsey, S. J. (2006) “Survivin 

modulates microtubule dynamics and nucleation throughout the cell cycle.,” Molecular 

biology of the cell. American Society for Cell Biology, 17(3), pp. 1483–93. doi: 

10.1091/mbc.e05-08-0723. 

Roux, K. H. (2009) “Optimization and Troubleshooting in PCR,” Cold Spring Harbor 

Protocols, 2009(4), p. pdb.ip66-pdb.ip66. doi: 10.1101/pdb.ip66. 

Ruggieri, A., Gagliardi, M. C. and Anticoli, S. (2018) “Sex-dependent outcome of 

hepatitis B and C Viruses infections: Synergy of sex hormones and immune responses?” 

Frontiers in Immunology. Frontiers Media S.A. doi: 10.3389/fimmu.2018.02302. 

Saeednejad Zanjani, L., Madjd, Z., Abolhasani, M., Rasti, A., Shariftabrizi, A., 

Mehrazma, M., Fodstad, Ø. and Asgari, M. (2019) “Human telomerase reverse 



 303 

transcriptase protein expression predicts tumour aggressiveness and survival in patients 

with clear cell renal cell carcinoma,” Pathology. Elsevier B.V., 51(1), pp. 21–31. doi: 

10.1016/j.pathol.2018.08.019. 

Sah, N. K. and Seniya, C. (2015) “Survivin splice variants and their diagnostic 

significance,” Tumor Biology, 36(9), pp. 6623–6631. doi: 10.1007/s13277-015-3865-5. 

Salomao, M., Yu, W. M., Brown, R. S., Emond, J. C. and Lefkowitch, J. H. (2010) 

“Steatohepatitic hepatocellular carcinoma (SH-HCC): A distinctive histological variant 

of HCC in hepatitis C virus-related cirrhosis with associated NAFLD/NASH,” 

American Journal of Surgical Pathology, 34(11), pp. 1630–1636. doi: 

10.1097/PAS.0b013e3181f31caa. 

Saraswati, A. P., Relitti, N., Brindisi, M., Gemma, S., Zisterer, D., Butini, S. and 

Campiani, G. (2019) “Raising the bar in anticancer therapy: recent advances in, and 

perspectives on, telomerase inhibitors,” Drug Discovery Today. Elsevier Ltd, pp. 1370–

1388. doi: 10.1016/j.drudis.2019.05.015. 

Sartorius, K., Sartorius, B., Aldous, C., Govender, P. S. and Madiba, T. E. (2015) 

“Global and country underestimation of hepatocellular carcinoma (HCC) in 2012 and its 

implications,” Cancer Epidemiology, 39(3), pp. 284–290. doi: 

10.1016/j.canep.2015.04.006. 

Scheuermann, U., Kaths, J. M., Heise, M., Pitton, M. B., Weinmann, A., Hoppe-

Lotichius, M. and Otto, G. (2013) “Comparison of resection and transarterial 

chemoembolisation in the treatment of advanced intrahepatic cholangiocarcinoma - A 

single-center experience,” European Journal of Surgical Oncology, 39(6), pp. 593–600. 

doi: 10.1016/j.ejso.2013.03.010. 

Schulze, K., Imbeaud, S., Letouzé, E., Alexandrov, L. B., Calderaro, J., Rebouissou, S., 

Couchy, G., Meiller, C., Shinde, J., Soysouvanh, F., Calatayud, A.-L., Pinyol, R., 



 304 

Pelletier, L., Balabaud, C., Laurent, A., Blanc, J.-F., Mazzaferro, V., Calvo, F., 

Villanueva, A., Nault, J.-C., Bioulac-Sage, P., Stratton, M. R., Llovet, J. M. and 

Zucman-Rossi, J. (2015) “Exome sequencing of hepatocellular carcinomas identifies 

new mutational signatures and potential therapeutic targets.,” Nature genetics, 47(5), 

pp. 505–511. doi: 10.1038/ng.3252. 

Schulze, K., Nault, J.-C. and Villanueva, A. (2016) “Genetic profiling of hepatocellular 

carcinoma using next-generation sequencing,” Journal of Hepatology, 65(5), pp. 1031–

1042. doi: 10.1016/j.jhep.2016.05.035. 

Schuppan, D. and Afdhal, N. H. (2008) “Liver cirrhosis,” The Lancet. NIH Public 

Access, pp. 838–851. doi: 10.1016/S0140-6736(08)60383-9. 

Sciarra, A., Park, Y. N. and Sempoux, C. (2020) “Updates in the diagnosis of combined 

hepatocellular-cholangiocarcinoma,” Human Pathology. W.B. Saunders, 96, pp. 48–55. 

doi: 10.1016/j.humpath.2019.11.001. 

Shafizadeh, N. and Kakar, S. (2013) “Hepatocellular Carcinoma: Histologic Subtypes,” 

Surgical Pathology Clinics. W.B. Saunders, 6(2), pp. 367–384. doi: 

10.1016/J.PATH.2013.03.007. 

Shay, J. W. and Wright, W. E. (2011) “Role of telomeres and telomerase in cancer,” 

Seminars in Cancer Biology, 21(6), pp. 349–353. doi: 

10.1016/j.semcancer.2011.10.001. 

Shay, J. W. and Wright, W. E. (2019) “Telomeres and telomerase: three decades of 

progress,” Nature Reviews Genetics. Nature Publishing Group, 20(5), pp. 299–309. doi: 

10.1038/s41576-019-0099-1. 

Shimada, M., Hasegawa, H., Gion, T., Utsunomiya, T., Shirabe, K., Takenaka, K., 

Otsuka, T., Maehara, Y. and Sugimachi, K. (2000) “The role of telomerase activity in 



 305 

hepatocellular carcinoma,” The American Journal of Gastroenterology. Ovid 

Technologies (Wolters Kluwer Health), 95(3), pp. 748–752. doi: 10.1111/j.1572-

0241.2000.01855.x. 

Shimamoto, G., Tuncel, H., Aoki, E., Tanaka, S., Oka, S., Kaneko, I., Okamoto, M., 

Tatsuka, M., Nakai, S. and Shimamoto, F. (2009) “Intracellular localization of survivin 

determines biological behavior in colorectal cancer,” Oncology Reports, 22(03), pp. 

557–62. doi: 10.3892/or_00000471. 

Sia, D., Villanueva, A., Friedman, S. L. and Llovet, J. M. (2017) “Liver Cancer Cell of 

Origin, Molecular Class, and Effects on Patient Prognosis,” Gastroenterology. W.B. 

Saunders, 152(4), pp. 745–761. doi: 10.1053/J.GASTRO.2016.11.048. 

Simon, E. P., Freije, C. A., Farber, B. A., Lalazar, G., Darcy, D. G., Honeyman, J. N., 

Chiaroni-Clarke, R., Dill, B. D., Molina, H., Bhanot, U. K., la Quaglia, M. P., 

Rosenberg, B. R. and Simon, S. M. (2015) “Transcriptomic characterization of 

fibrolamellar hepatocellular carcinoma,” Proceedings of the National Academy of 

Sciences of the United States of America. National Academy of Sciences, 112(44), pp. 

E5916–E5925. doi: 10.1073/pnas.1424894112. 

Singh, D. K., Mattoo, A. R. and Pandita, T. K. (2015) “Telomeres and Telomerase,” 

Reference Module in Biomedical Sciences. Elsevier. doi: 10.1016/B978-0-12-801238-

3.98751-8. 

Smittenaar, C. R., Petersen, K. A., Stewart, K. and Moitt, N. (2016) “Cancer incidence 

and mortality projections in the UK until 2035,” British Journal of Cancer. Nature 

Publishing Group, 115(9), pp. 1147–1155. doi: 10.1038/bjc.2016.304. 

Stålhammar, G., See, T. R. O., Phillips, S. S. and Grossniklaus, H. E. (2019) “Density 

of PAS positive patterns in uveal melanoma: Correlation with vasculogenic mimicry, 

gene expression class, BAP-1 expression, macrophage infiltration, and risk for 



 306 

metastasis.,” Molecular vision, 25, pp. 502–516. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/31588174 (Accessed: October 28, 2019). 

Stavraka, C., Rush, H. and Ross, P. (2019) “Combined hepatocellular 

cholangiocarcinoma (cHCC-CC): an update of genetics, molecular biology, and 

therapeutic interventions.,” Journal of hepatocellular carcinoma. Dove Press, 6, pp. 11–

21. doi: 10.2147/JHC.S159805. 

Stern, J. L., Theodorescu, D., Vogelstein, B., Papadopoulos, N. and Cech, T. R. (2015) 

“Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT 

expression in multiple cancers.,” Genes & development. Cold Spring Harbor Laboratory 

Press, 29(21), pp. 2219–24. doi: 10.1101/gad.269498.115. 

Stoetzer, O. J., Fersching, D. M. I., Salat, C., Steinkohl, O., Gabka, C. J., Hamann, U., 

Braun, M., Feller, A.-M., Heinemann, V., Siegele, B., Nagel, D. and Holdenrieder, S. 

(2013) “Prediction of response to neoadjuvant chemotherapy in breast cancer patients 

by circulating apoptotic biomarkers nucleosomes, DNAse, cytokeratin-18 fragments 

and survivin,” Cancer Letters, 336(1), pp. 140–148. doi: 10.1016/j.canlet.2013.04.013. 

Stratton, M. R. (2011) “Exploring the Genomes of Cancer Cells: Progress and 

Promise,” Science. American Association for the Advancement of Science, 331(6024), 

pp. 1553–1558. doi: 10.1126/science.1204040. 

Sturzeneker, M. C. S., Noronha, L. de, Olandoski, M., Wendling, L. U. and Precoma, D. 

B. (2019) “Ramipril significantly attenuates the development of non-alcoholic 

steatohepatitis in hyperlipidaemic rabbits,” American Journal of Cardiovascular 

Disease. e-Century Publishing Corporation, 9(2), p. 8. 

Szostak, J. W. and Blackburn, E. H. (1982) “Cloning yeast telomeres on linear plasmid 

vectors.,” Cell, 29(1), pp. 245–55. doi: 10.1016/0092-8674(82)90109-x. 



 307 

Tahara, H., Yasui, W., Tahara, Eiji, Fujimoto, J., Ito, K., Tamai, K., Nakayama, J. I., 

Ishikawa, F., Tahara, Eiichi and Ide, T. (1999) “Immuno-histochemical detection of 

human telomerase catalytic component, hTERT, in human colorectal tumor and non-

tumor tissue sections,” Oncogene. Nature Publishing Group, 18(8), pp. 1561–1567. doi: 

10.1038/sj.onc.1202458. 

Tahtouh, R., Azzi, A. S., Alaaeddine, N., Chamat, S., Bouharoun-Tayoun, H., Wardi, 

L., Raad, I., Sarkis, R., Antoun, N. A. and Hilal, G. (2015) “Telomerase inhibition 

decreases alpha-fetoprotein expression and secretion by hepatocellular carcinoma cell 

lines: In vitro and in vivo study,” PLoS ONE. Public Library of Science, 10(3). doi: 

10.1371/journal.pone.0119512. 

Tamagawa, H., Oshima, T., Numata, M., Yamamoto, N., Shiozawa, M., Morinaga, S., 

Nakamura, Y., Yoshihara, M., Sakuma, Y., Kameda, Y., Akaike, M., Yukawa, N., 

Rino, Y., Masuda, M. and Miyagi, Y. (2013) “Global histone modification of H3K27 

correlates with the outcomes in patients with metachronous liver metastasis of 

colorectal cancer,” European Journal of Surgical Oncology, 39(6), pp. 655–661. doi: 

10.1016/j.ejso.2013.02.023. 

Tamura, S., Kato, T., Berho, M., Misiakos, E. P., O’Brien, C., Reddy, K. R., Nery, J. R., 

Burke, G. W., Schiff, E. R., Miller, J. and Tzakis, A. G. (2001) “Impact of histological 

grade of hepatocellular carcinoma on the outcome of liver transplantation,” Archives of 

Surgery. American Medical Association, 136(1), pp. 25–31. doi: 

10.1001/archsurg.136.1.25. 

Targowski, T., Jahnz-Rozyk, K., Owczarek, W., Raczka, A., Janda, P., Szkoda, T. and 

Płusa, T. (2010) “Telomerase activity and serum levels of p53 protein as prognostic 

factors of survival in patients with advanced non-small cell lung cancer,” Respiratory 

Medicine, 104(9), pp. 1356–1361. doi: 10.1016/j.rmed.2010.03.006. 



 308 

Thon, N., Kreth, S. and Kreth, F. W. (2013) “Personalized treatment strategies in 

glioblastoma: MGMT promoter methylation status,” OncoTargets and Therapy. Dove 

Press, pp. 1363–1372. doi: 10.2147/OTT.S50208. 

Thul, P. J., Akesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., Alm, 

T., Asplund, A., Björk, L., Breckels, L. M., Bäckström, A., Danielsson, F., Fagerberg, 

L., Fall, J., Gatto, L., Gnann, C., Hober, S., Hjelmare, M., Johansson, F., Lee, S., 

Lindskog, C., Mulder, J., Mulvey, C. M., Nilsson, P., Oksvold, P., Rockberg, J., 

Schutten, R., Schwenk, J. M., Sivertsson, A., Sjöstedt, E., Skogs, M., Stadler, C., 

Sullivan, D. P., Tegel, H., Winsnes, C., Zhang, C., Zwahlen, M., Mardinoglu, A., 

Pontén, F., von Feilitzen, K., Lilley, K. S., Uhlén, M. and Lundberg, E. (2017) “A 

subcellular map of the human proteome,” Science. American Association for the 

Advancement of Science, 356(6340). doi: 10.1126/science.aal3321. 

Ting, C.-F., Huang, W.-H., Feng, C.-L., Yu, C.-J., Peng, C.-Y., Su, W.-P., Lai, H.-C., 

Cheng, K.-S., Chuang, P.-H. and Kao, J.-T. (2016) “Clinical factors associated with the 

survival of patients with intrahepatic cholangiocarcinoma,” Advances in Digestive 

Medicine. No longer published by Elsevier, 3(1), pp. 11–17. doi: 

10.1016/J.AIDM.2014.12.004. 

Torbenson, M. S. (2017) “Morphologic Subtypes of Hepatocellular Carcinoma,” 

Gastroenterology Clinics of North America. Elsevier, 46(2), pp. 365–391. doi: 

10.1016/J.GTC.2017.01.009. 

Torlakovic, E. E., Nielsen, S., Francis, G., Garratt, J., Gilks, B., Goldsmith, J. D., 

Hornick, J. L., Hyjek, E., Ibrahim, M., Miller, K., Petcu, E., Swanson, P. E., Zhou, X., 

Taylor, C. R. and Vyberg, M. (2015) “Standardization of Positive Controls in 

Diagnostic Immunohistochemistry,” Applied Immunohistochemistry & Molecular 

Morphology, 23(1), pp. 1–18. doi: 10.1097/PAI.0000000000000163. 



 309 

Totoki, Y., Tatsuno, K., Covington, K. R., Ueda, H., Creighton, C. J., Kato, M., Tsuji, 

S., Donehower, L. A., Slagle, B. L., Nakamura, H., Yamamoto, S., Shinbrot, E., Hama, 

N., Lehmkuhl, M., Hosoda, F., Arai, Y., Walker, K., Dahdouli, M., Gotoh, K., Nagae, 

G., Gingras, M.-C., Muzny, D. M., Ojima, H., Shimada, K., Midorikawa, Y., Goss, J. 

A., Cotton, R., Hayashi, A., Shibahara, J., Ishikawa, S., Guiteau, J., Tanaka, M., 

Urushidate, T., Ohashi, S., Okada, N., Doddapaneni, H., Wang, M., Zhu, Y., Dinh, H., 

Okusaka, T., Kokudo, N., Kosuge, T., Takayama, T., Fukayama, M., Gibbs, R. A., 

Wheeler, D. A., Aburatani, H. and Shibata, T. (2014) “Trans-ancestry mutational 

landscape of hepatocellular carcinoma genomes,” Nat Genet. Nature Publishing Group, 

a division of Macmillan Publishers Limited. All Rights Reserved., 46(12), pp. 1267–

1273. Available at: http://dx.doi.org/10.1038/ng.3126. 

Trifunovic, J., Prvanovic, M., Jovanovic, A., Dzamic, Z., Lazic, M., Ristanovic, M., 

Radojevic-Skodric, S. and Basta-Jovanovic, G. (2018) “Immunohistochemical 

expression of proliferative markers in renal cell carcinoma,” Journal of B.U.ON., 23(4), 

pp. 1103–1110. Available at: http://www.ncbi.nlm.nih.gov/pubmed/30358218 

(Accessed: April 28, 2020). 

Tsochatzis, E. A., Bosch, J. and Burroughs, A. K. (2014) “Liver cirrhosis,” in The 

Lancet. Lancet Publishing Group, pp. 1749–1761. doi: 10.1016/S0140-6736(14)60121-

5. 

Tsuchida, T. and Friedman, S. L. (2017) “Mechanisms of hepatic stellate cell 

activation,” Nature Reviews Gastroenterology & Hepatology. Nature Publishing Group, 

14(7), pp. 397–411. doi: 10.1038/nrgastro.2017.38. 

Tyson, G. L. and El-Serag, H. B. (2011) “Risk factors for cholangiocarcinoma,” 

Hepatology. Wiley-Blackwell, 54(1), pp. 173–184. doi: 10.1002/hep.24351. 



 310 

Udomchaiprasertkul, W., Narong, S., Kongsema, M. and Leelawat, K. (2008) 

“Detection of hTERT mRNA in gastrointestinal tract cancer specimens.,” The Southeast 

Asian Journal of Tropical Medicine and Public Health, 39(2), pp. 324–327. 

Valenzuela, M. M. A., Ferguson Bennit, H. R., Gonda, A., Diaz Osterman, C. J., 

Hibma, A., Khan, S. and Wall, N. R. (2015) “Exosomes Secreted from Human Cancer 

Cell Lines Contain Inhibitors of Apoptosis (IAP),” Cancer Microenvironment, 8(2), pp. 

65–73. doi: 10.1007/s12307-015-0167-9. 

Valle, J., Wasan, H., Palmer, D. H., Cunningham, D., Anthoney, A., Maraveyas, A., 

Madhusudan, S., Iveson, T., Hughes, S., Pereira, S. P., Roughton, M. and Bridgewater, 

J. (2010) “Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer,” New 

England Journal of Medicine. Massachussetts Medical Society, 362(14), pp. 1273–

1281. doi: 10.1056/NEJMoa0908721. 

Varughese, R. K., Skjulsvik, A. J. and Torp, S. H. (2017) “Prognostic value of survivin 

and DNA topoisomerase IIα in diffuse and anaplastic astrocytomas,” Pathology - 

Research and Practice, 213(4), pp. 339–347. doi: 10.1016/j.prp.2017.01.013. 

Vaziri, A., Gimson, A., Agarwal, K., Aldersley, M., Bathgate, A., MacDonald, D., 

McPherson, S., Mutimer, D. and Gelson, W. (2018) “Liver transplant listing for 

hepatitis C-associated cirrhosis and hepatocellular carcinoma has fallen in the United 

Kingdom since the introduction of direct-acting antiviral therapy,” Journal of Viral 

Hepatitis. doi: 10.1111/jvh.13022. 

Velculescu, V. E., Madden, S. L., Zhang, L., Lash, A. E., Yu, J., Rago, C., Lal, A., 

Wang, C. J., Beaudry, G. A., Ciriello, K. M., Cook, B. P., Dufault, M. R., Ferguson, A. 

T., Gao, Y., He, T.-C., Hermeking, H., Hiraldo, S. K., Hwang, P. M., Lopez, M. A., 

Luderer, H. F., Mathews, B., Petroziello, J. M., Polyak, K., Zawel, L., Zhang, W., 

Zhang, X., Zhou, W., Haluska, F. G., Jen, J., Sukumar, S., Landes, G. M., Riggins, G. 



 311 

J., Vogelstein, B. and Kinzler, K. W. (1999) “Analysis of human transcriptomes,” 

Nature Genetics, 23(4), pp. 387–388. doi: 10.1038/70487. 

Vinagre, J., Almeida, A., Pópulo, H., Batista, R., Lyra, J., Pinto, V., Coelho, R., 

Celestino, R., Prazeres, H., Lima, L., Melo, M., Rocha, A. G. da, Preto, A., Castro, P., 

Castro, L., Pardal, F., Lopes, J. M., Santos, L. L., Reis, R. M., Cameselle-Teijeiro, J., 

Sobrinho-Simões, M., Lima, J., Máximo, V. and Soares, P. (2013) “Frequency of TERT 

promoter mutations in human cancers,” Nature Communications, 4(1), p. 2185. doi: 

10.1038/ncomms3185. 

Vitale, A., Trevisani, F., Farinati, F. and Cillo, U. (2020) “Treatment of hepatocellular 

carcinoma in the Precision Medicine era: from treatment stage migration to therapeutic 

hierarchy,” Hepatology. Wiley. doi: 10.1002/hep.31187. 

Vogel, A. and Saborowski, A. (2017) “Cholangiocellular Carcinoma,” Digestion, 95(3), 

pp. 181–185. doi: 10.1159/000454763. 

Vogl, T. J., Naguib, N. N. N., Nour-Eldin, N. E. A., Bechstein, W. O., Zeuzem, S., 

Trojan, J. and Gruber-Rouh, T. (2012) “Transarterial chemoembolization in the 

treatment of patients with unresectable cholangiocarcinoma: Results and prognostic 

factors governing treatment success,” International Journal of Cancer, 131(3), pp. 733–

740. doi: 10.1002/ijc.26407. 

de Vooght, K. M. K., van Wijk, R. and van Solinge, W. W. (2009) “Management of 

gene promoter mutations in molecular diagnostics.,” Clinical chemistry. Clinical 

Chemistry, 55(4), pp. 698–708. doi: 10.1373/clinchem.2008.120931. 

Wachtel, M. S., Zhang, Y., Xu, T., Chiriva-Internati, M. and Frezza, E. E. (2008) 

“Combined Hepatocellular Cholangiocarcinomas; Analysis of a Large Database,” 

Clinical medicine. Pathology. SAGE Publications, 1, p. CPath.S500. doi: 

10.4137/cpath.s500. 



 312 

Wang, A. Q., Zheng, Y. C., Du, J., Zhu, C. P., Huang, H. C., Wang, S. S., Wu, L. C., 

Wan, X. S., Zhang, H. H., Miao, R. Y., Sang, X. T. and Zhao, H. T. (2016) “Combined 

hepatocellular cholangiocarcinoma: Controversies to be addressed,” World Journal of 

Gastroenterology. doi: 10.3748/wjg.v22.i18.4459. 

Wang, Y., Li, J., Xia, Y., Gong, R., Wang, K., Yan, Z., Wan, X., Liu, G., Wu, D., Shi, 

L., Lau, W., Wu, M. and Shen, F. (2013) “Prognostic nomogram for intrahepatic 

cholangiocarcinoma after partial hepatectomy,” Journal of Clinical Oncology. J Clin 

Oncol, 31(9), pp. 1188–1195. doi: 10.1200/JCO.2012.41.5984. 

Wang, Y.-H., Chiou, H.-Y., Lin, C.-T., Hsieh, H.-Y., Wu, C.-C., Hsu, C.-D. and Shen, 

C.-H. (2009) “Association Between Survivin Gene Promoter −31 C/G Polymorphism 

and Urothelial Carcinoma Risk in Taiwanese Population,” Urology. Elsevier, 73(3), pp. 

670–674. doi: 10.1016/j.urology.2008.09.048. 

Wei, R. and Younes, M. (2002) “Immunohistochemical detection of telomerase reverse 

transcriptase in colorectal adenocarcinoma and benign colonic mucosa.,” Human 

pathology, 33(7), pp. 693–6. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/12196919 (Accessed: June 26, 2018). 

Welzel, T. M., Graubard, B. I., El–Serag, H. B., Shaib, Y. H., Hsing, A. W., Davila, J. 

A. and McGlynn, K. A. (2007) “Risk Factors for Intrahepatic and Extrahepatic 

Cholangiocarcinoma in the United States: A Population-Based Case-Control Study,” 

Clinical Gastroenterology and Hepatology, 5(10), pp. 1221–1228. doi: 

10.1016/j.cgh.2007.05.020. 

Weng, C. J., Hsieh, Y. H., Chen, M. K., Tsai, C. M., Lin, C. W. and Yang, S. F. (2012) 

“Survivin SNP-carcinogen Interactions in Oral Cancer,” Journal of Dental Research. 

SAGE PublicationsSage CA: Los Angeles, CA, 91(4), pp. 358–363. doi: 

10.1177/0022034512438402. 



 313 

Wheatley, S. P. and Altieri, D. C. (2019) “Survivin at a glance,” Journal of Cell 

Science, 132(7), p. jcs223826. doi: 10.1242/jcs.223826. 

Wirth, T. C. and Vogel, A. (2016) “Surveillance in cholangiocellular carcinoma,” Best 

Practice & Research Clinical Gastroenterology. Baillière Tindall, 30(6), pp. 987–999. 

doi: 10.1016/J.BPG.2016.11.001. 

Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W. and Shay, J. W. (1996) 

“Telomerase activity in human germline and embryonic tissues and cells,” 

Developmental Genetics, 18(2), pp. 173–179. doi: 10.1002/(SICI)1520-

6408(1996)18:2<173::AID-DVG10>3.0.CO;2-3. 

Wu, R. A., Upton, H. E., Vogan, J. M. and Collins, K. (2017) “Telomerase Mechanism 

of Telomere Synthesis,” Annual Review of Biochemistry, 86(1), pp. 439–460. doi: 

10.1146/annurev-biochem-061516-045019. 

Wu, Y. L., Dudognon, C., Nguyen, E., Hillion, J., Pendino, F., Tarkanyi, I., Aradi, J., 

Lanotte, M., Tong, J. H., Chen, G. Q. and Ségal-Bendirdjian, E. (2006) 

“Immunodetection of human telomerase reverse-transcriptase (hTERT) re-appraised: 

Nucleolin and telomerase cross paths,” Journal of Cell Science. The Company of 

Biologists Ltd, 119(13), pp. 2797–2806. doi: 10.1242/jcs.03001. 

Xie, D., Ren, Z., Fan, J. and Gao, Q. (2016) “Genetic profiling of intrahepatic 

cholangiocarcinoma and its clinical implication in targeted therapy.,” American journal 

of cancer research. e-Century Publishing Corporation, 6(3), pp. 577–86. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/27152236 (Accessed: September 1, 2017). 

Xie, Y., An, L., Jiang, H. and Wang, J. (2012) “Nuclear survivin expression is 

associated with a poor prognosis in Caucasian non-small cell lung cancer patients,” 

Clinica Chimica Acta, 414, pp. 41–43. doi: 10.1016/j.cca.2012.08.012. 



 314 

Xu, Y., Fang, F., Ludewig, G., Jones, G. and Jones, D. (2004) “A Mutation Found in 

the Promoter Region of the Human Survivin Gene is Correlated to Overexpression of 

Survivin in Cancer Cells,” DNA and Cell Biology, 23(7), pp. 419–429. doi: 

10.1089/1044549041474788. 

Yamak, N., Yaykasli, K. O., Yilmaz, U., Eroz, R., Uzunlar, A. K., Ankarali, H., 

Sahiner, C. and Baltaci, D. (2014) “Association between survivin gene polymorphisms 

and the susceptibility to colon cancer development in the Turkish population.,” Asian 

Pacific journal of cancer prevention : APJCP, 15(20), pp. 8963–7. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/25374237 (Accessed: September 12, 2017). 

Yang, H., Zhang, H., Zhong, Y., Wang, Q., Yang, L., Kang, H., Gao, X., Yu, H., Xie, 

C., Zhou, F. and Zhou, Y. (2017) “Concomitant underexpression of TGFBR2 and 

overexpression of hTERT are associated with poor prognosis in cervical cancer,” 

Scientific Reports. Nature Publishing Group, 7(1), p. 41670. doi: 10.1038/srep41670. 

Yang, J., Gong, Y., Yan, S., Chen, H., Qin, S. and Gong, R. (2020) “Association 

between TERT promoter mutations and clinical behaviors in differentiated thyroid 

carcinoma: a systematic review and meta-analysis,” Endocrine. Springer, pp. 44–57. 

doi: 10.1007/s12020-019-02117-2. 

Yang, L., Zhu, H., Zhou, B., Gu, H., Yan, H., Tang, N., Dong, H., Sun, Q., Cong, R., 

Chen, G. and Wang, B. (2009) “The association between the survivin C-31G 

polymorphism and gastric cancer risk in a Chinese population.,” Digestive diseases and 

sciences, 54(5), pp. 1021–8. doi: 10.1007/s10620-008-0441-5. 

Yang, S. H., Watanabe, J., Nakashima, O. and Kojiro, M. (1996) “Clinicopathologic 

study on clear cell hepatocellular carcinoma.,” Pathology international, 46(7), pp. 503–

9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8870006 (Accessed: May 9, 

2019). 



 315 

Yang, Y., Chen, Y., Zhang, C., Huang, H. and Weissman, S. M. (2002) “Nucleolar 

localization of hTERT protein is associated with telomerase function.,” Experimental 

cell research, 277(2), pp. 201–9. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/12083802 (Accessed: May 10, 2019). 

Yoon, Y. I., Hwang, S., Lee, Y. J., Kim, K. H., Ahn, C. S., Moon, D. B., Ha, T. Y., 

Song, G. W., Jung, D. H., Lee, J. W., Hong, S. M., Yu, E. S. and Lee, S. G. (2016) 

“Postresection Outcomes of Combined Hepatocellular Carcinoma-Cholangiocarcinoma, 

Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma,” Journal of 

Gastrointestinal Surgery. Springer New York LLC, 20(2), pp. 411–420. doi: 

10.1007/s11605-015-3045-3. 

il Yu, J., Choi, C., Ha, S. Y., Park, C. K., Kang, S. Y., Joh, J. W., Paik, S. W., Kim, S., 

Kim, M., Jung, S. H. and Park, H. C. (2017) “Clinical importance of TERT 

overexpression in hepatocellular carcinoma treated with curative surgical resection in 

HBV endemic area,” Scientific Reports. Nature Publishing Group, 7(1), pp. 1–12. doi: 

10.1038/s41598-017-12469-2. 

Zanconati, F., Falconieri, G., Lamovec, J. and Zidar, A. (1996) “Small cell carcinoma of 

the liver: a hitherto unreported variant of hepatocellular carcinoma.,” Histopathology, 

29(5), pp. 449–53. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8951490 

(Accessed: May 9, 2019). 

Zannoni, G. F., Petrillo, M., Vellone, V. G., Martinelli, E., Chiarello, G., Ferrandina, G. 

and Scambia, G. (2014) “Survivin protein as predictor of pathologic response in patients 

with locally advanced cervical cancer treated with chemoradiation followed by radical 

surgery.,” Human pathology, 45(9), pp. 1872–8. doi: 10.1016/j.humpath.2014.03.022. 



 316 

Zhang, J. M., Yadav, T., Ouyang, J., Lan, L. and Zou, L. (2019) “Alternative 

Lengthening of Telomeres through Two Distinct Break-Induced Replication Pathways,” 

Cell Reports. Elsevier B.V., 26(4), pp. 955-968.e3. doi: 10.1016/j.celrep.2018.12.102. 

Zhong, F., Yang, J., Tong, Z. T., Chen, L. L., Fan, L. L., Wang, F., Zha, X. L. and Li, J. 

(2015) “Guggulsterone inhibits human cholangiocarcinoma Sk-ChA-1 and Mz-ChA-1 

cell growth by inducing caspase-dependent apoptosis and downregulation of survivin 

and Bcl-2 expression,” Oncology Letters. Spandidos Publications, 10(3), pp. 1416–

1422. doi: 10.3892/ol.2015.3391. 

Zhou, W. C., Zhang, Q. B. and Qiao, L. (2014) “Pathogenesis of liver cirrhosis,” World 

Journal of Gastroenterology. WJG Press, 20(23), pp. 7312–7324. doi: 

10.3748/wjg.v20.i23.7312. 

Zhou, X., Lu, J. and Zhu, H. (2016) “Correlation between the expression of hTERT 

gene and the clinicopathological characteristics of hepatocellular carcinoma,” Oncology 

Letters. Spandidos Publications, 11(1), pp. 111–115. doi: 10.3892/ol.2015.3892. 

Zou, M.-X., Lv, G.-H., Li, J., She, X.-L. and Jiang, Y. (2016) “Upregulated human 

telomerase reverse transcriptase (hTERT) expression is associated with spinal chordoma 

growth, invasion and poor prognosis.,” American journal of translational research, 

8(2), pp. 516–29. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27158344 

(Accessed: July 1, 2019). 

Zucman-Rossi, J., Villanueva, A., Nault, J.-C. and Llovet, J. M. (2015) “Genetic 

Landscape and Biomarkers of Hepatocellular Carcinoma,” Gastroenterology, 149(5), 

pp. 1226-1239.e4. doi: 10.1053/j.gastro.2015.05.061. 

  

 


