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Abstract: In this paper, a gradient neural network (GNN) is presented, analyzed and discussed to solve the time-varying inverse
kinematics solution of the four-wheel mobile robotic arm, which can approximate the time varying inverse kinematics solution.
A monolithic kinematics model of mobile robotic arm is established, and the inverse kinematics solution can synchronously
coordinate the control of the mobile platform and the robotic arm to accomplish the task of the end-executor. Besides, the
computer numerical results are provided to attest validity and high exactitude of GNN model in settling the time-varying inverse
kinematics of a four-wheel mobile robotic arm.
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1 Introduction

In recent decades, due to the expansion of the operating
space of the robotic arm, and improving the ability of the
mobile platform to interact with the environment, mobile
robotic arm have aroused great interest in the fields of indus-
try, medical treatment, service, geological survey, disaster
rescue [1–3].

As one of the typical structures of mobile robots, the mo-
bile robotic arm is constituted of a mobile platform and a
robotic arm fastened on the mobile platform. In this way, the
mobile robotic arm has the dual properties of the vastness
of the working space of the mobile robot and the flexibil-
ity of the operating space of the robot [4–6]. According to
the movement form, the mobile robotic arm can be divided
into four types: wheeled mobile robotic arm, crawler mo-
bile robotic arm, leg mobile robotic arm and hybrid mobile
robotic arm. Among them, the wheeled robotic arm not only
has a flexible structure, but also is easier to be controlled
in practical applications. Owing to the different control ob-
jectives, the motion control of the mobile robotic arm is di-
vided into two types: path planning and trajectory tracking
[7]. Among them, the trajectory tracking control of the mo-
bile robotic arm is a kind of time-varying inverse kinematics
solution problem, which has been a hot and difficult prob-
lem.

Time-varying nonlinear problem is a significant branch of
nonlinear problems, which exist widely in practical appli-
cations. In terms of control theory, since the wheeled mo-
bile robotic arm is a highly coupled nonlinear system, it is
very difficult to work out the trace tracking of wheeled mo-
bile robotic arm. Due to the accuracy and flexibility of mo-
bile robotic arm, more and more algorithms for the trajec-
tory tracking of mobile robotic arm have been developed
and verified, for example, nonlinear feedback control [8],
sliding-mode control [9], robust control [10], adaptive con-
trol [11, 20, 21]. In [12], a holistic dynamic model of the mo-
bile robotic arm is instituted directly, and then taking advan-
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tage of nonlinear negative feedback to linearize and decouple
the model, and finally the coordinated control of the mobile
robotic arm is realized by an event-based control method.
In [13], aiming at the trace tracking control problem of the
wheeled mobile robotic arm, a radial basis function (RBF)
neural network is employed to realize compensation of the
unmodeled dynamics of system and external interference,
and the control law is devised by the sliding mode control
method. In [14], A robust adaptive controller is proposed
to solve dynamic system problems, which has parametric
and nonparametric uncertainties. It utilizes adaptive control
technology to compensate parameter uncertainties, and sup-
presses bounded disturbances by sliding mode control.

For the various controllers mentioned above, it is neces-
sary to establish a dynamic model of the system. Due to
the highly coupled nonlinearity of the system, the holistic
dynamic model of the mobile platform and the manipula-
tor is very complicated. Therefore, It is very difficult to
solve the time-varying inverse kinematics problem in real
time, and the requirements for hardware/circuit implemen-
tation are relatively high. Relatively speaking, it is relatively
simple to establish the overall kinematics model of the mo-
bile manipulator, and its inverse kinematics solution can syn-
chronize and coordinate the control of the mobile platform
and the manipulator to complete the trajectory tracking task.
In addition, the neural dynamics method has the characteris-
tics of parallel distribution and easy hardware/circuit imple-
mentation, and is considered to be a powerful substitute for
online matrix related problems. The traditional matrix inver-
sion scheme is optimized based on gradient descent, which is
essentially a constant matrix. Time-varying matrix problems
are also solved by gradient neural networks. In [15], gradi-
ent neural networks based on global asymptotic convergence
The network can solve non-singular matrix inversion prob-
lems online.

The article transforms the trace tracking problem of the
mobile robotic arm into a time-varying matrix solution prob-
lem. In order to obtain the time-varying matrix solution, a
gradient neural network is introduced to settle trace tracking
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problem. By integrating a robotic arm and a mobile platform
into a system, a solution obtained by the equation designed
by the GNN model simultaneously coordinate the mobile
platform and a robotic arm for accomplishing the end ef-
fecter grasping task. Then, the simulation results ulteriorly
prove the validity of the GNN model in settling the time-
varying inverse kinematics of the mobile robotic arm [15].

Fig. 1: Model of mobile robotic arm.

The rest of sections of this paper are structured into the
following sections. Section 2 establishes the kinematical
equation of mobile robotic arm, including the coordinate
transformation equation of the robotic arm and the kinemat-
ical equation of the mobile platform. In Section 3, the gradi-
ent neural network with global exponential convergence and
global stability is analyzed and studied for solving the trajec-
tory tracking problem of the mobile robotic arm. In Section
4, the mobile robotic arm controlled by the GNN model is
presented by numerical simulations, and the results are an-
alyzed to confirm the validity of the GNN model. Section
5 summarizes the full text and the outlook for future work.
The primary tasks of this article are summed up as follows:

• Establishing a monolithic kinematical equation of a
mobile platform and a robotic arm, and the solution
to synergistically control the end effecter of the mobile
robotic arm to accomplish the grasping task.

• In this paper, a GNN model is presented and analyzed
for efficiently settling time-varying inverse kinematics
problems.

• The experimental simulation demonstrates that the va-
lidity and veracity of the GNN model in the path-
tracking of a wheeled mobile robotic arm.

2 Kinematic Modeling of Mobile Robotic Arm

This section not only directly provides the positive kinemat-
ics model of the robotic arm, but also analyzes and estab-
lishes the kinematics model of the mobile platform. Inte-
grating the kinematical equation of the robotic arm and the
kinematical equation of the mobile platform into a system-
atic equation, and finally receiving the kinematical equation
of the entire mobile robotic arm. In addition, the mobile
robotic arm is made up of a mobile platform and a four-
degree-of-freedom robotic arm, as shown in Figure 1, and
top view of mobile platform is illustrated in Fig. 2 with re-
lated parameters summarized in Table 1.
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Fig. 2: Top view of mobile platform with related parameters.

2.1 Kinematics of Four-joint Maniputor
For a four degree-of-freedoms robotic arm, the end position
of the mobile robotic arm in the world coordinate frame is
generalized as below (i.e.,the transition of joint space vector
$ ∈ Rn to end effecter position and steering vector rb ∈
Rm) [16, 17]:

f($) = rb, (1)

where f(·) is a fluxionary nonlinear function of specified
robotic arm with known structure and arguments. The co-
ordinate transformation equation of the robotic arm is estab-
lished as follows:

f($) =

 l1c1c2 + l2c23c1 + l4c23c1c4 − l4s23c1s4
l1s1c2 + l2c23s1 + l4c23s1c4 − l4s23s1s4

l2s23+l1s2+l4c23s4+l4s23s4+l3

 .
(2)

where cj : =cos$j ,sj : = sin$j ,c23:=cos ($2 +$3) and
s23:= sin ($2 +$3) with j = 1, 2, . . . ,4, l1 = 0.135,l2 =
0.147, l3 = 0.103, l4 = 0.035.

2.2 Kinematics of Mobile Platform
According to the nonholonomic constraints of the mobile
platform, a mathematical model is established in this subsec-
tion [18, 19]. It should be pointed out that each part of the
two subsystems of the mobile robotic arm is rigid, and the
mobile platform only moves in the XOY plane. Moreover,
for simplicity and clarity, lateral sliding is not considered,
at the same time, the speed of four wheels is strictly verti-
cal to the drive shaft. The Eq.(3) through Eq.(5) is derived
from the relationship among the angular velocity, radius, ve-
locity and rotation angle of the four wheels on the mobile
platform. Owing to the above two points pd and p0 of the
same rigid body, the velocity projection theorem is satisfied,
i.e., which the velocity projection of the two points on the
Xd axis is equal. Note that Eq.(4) indicates the velocity con-
straints in the horizontal direction of the mobile robotic arm
(i.e., the mobile platform must satisfy the above relation.)
Moreover, the kinematic constraint on the Yd axis is that the
velocity in this direction is equivalent to zero, and it corre-
sponds to the mobile platform without side sliding. There-
fore, the kinematic equation of the mobile platform in the Yd
axis is Eq.(3):

ẋd sinα− ẏd cosα+mα̇ = 0, (3)



Table 1: The parameters of the mobile platform
Symbol Description
P0 The intersection of the diagonals of the monolithic mobile platform; The coordinates are (x0,y0,z0)
Pd The connection point of mobile platform and 4-DOF robotic arm (Xd,Yd,0)
m The length of point P0 and point Pd (equivalent to P0 to Pa)
n The space of the wheel 1 and Pd point (equivalent to the space of the wheel 2 and Pa point)
rr The radius of the four wheels
α Turning angle of mobile platform

Its time differential coefficient is the rotative velocity α̇
M The mobile platform rotates around its imaginary point
N The imaginary point around which wheels 1 and 4 of the mobile platform rotates
S The imaginary point around which wheels 2 and 3 of the mobile platform rotates
L The space of point N and wheel 1 (equivalent to the distance between point S and wheel 2)
ωr The rotational speed of a mobile platform around a point M, and it is equal to ωr=α̇
ψ̇1 ψ̇2 ψ̇3 ψ̇4 The velocity of wheel 1, wheel 2, wheel 3 and wheel 4

α̇=
rrψ̇1

L
=
ẋ0 cosα+ ẏ0 sinα

L+ n
=

rrψ̇4

L+2n
, (4)

ẋ0 cosα+ ẏ0 sinα = ẋd cosα+ ẏd sinα, (5)

Due to Eq.(3) and Eq.(4), the equation of the angular ve-
locity of the mobile robotic arm and the angular velocity of
the four wheels of the mobile platform can be calculated, and
the equation between the velocity of the mobile platform ẋd
ẏd and the four wheels ψ1, ψ2, ψ3, ψ4 are presented as:

α̇=
rr
4n

(
ψ̇4 − ψ̇1+ψ̇3 − ψ̇2

)
, (6)

ẋd =
(
3rr
4

cosα+ mrr
4n

sinα
)
ψ̇1 +

(
mrr
4n

sinα− rr
4
cosα

)
ψ̇2

+
(
rr
4
cosα− mrr

4n
sinα

)
ψ̇3 +

(
rr
4
cosα− mrr

4n
sinα

)
ψ̇4,

ẏd =
(
3rr
4

sinα− mrr
4n

cosα
)
ψ̇1 −

(
rr
4
sinα+ mrr

4n
cosα

)
ψ̇2

+
(
rr
4
sinα+ mrr

4n
cosα

)
ψ̇3 +

(
rr
4
sinα+ mrr

4n
cosα

)
ψ̇4,

(7)

For the Eq.(7), the two variables ẋd and ẏd are the deriva-
tives of xd and yd with respect to time t, the kinematical
equation is simplified as follows:

Dψ̇ = α̇

Cψ̇ = ṗd,
(8)

where
ψ̇= [ψ̇1,ψ̇2, ψ̇3, ψ̇4]

T
, (9)

ṗd = [ẋd, ẏd]
T, (10)

The matrixes D and C are defined as follows:

D =
rr
4n

[−1,−1, 1, 1], (11)

C =
rr
4

[
cosα − sinα
sinα cosα

] [
3 −1 1 1

−m
n

−m
n

m
n

m
n

]
.

(12)
Assuming that rr=0.052m, n=0.3m and m=0.1m.

2.3 The Global Kinematic Equation of the Mobile
Robotic Arm

Combining Eq.(2) with Eq.(7), the global kinematical equa-
tion of the mobile robotic arm can be obtained with kinemat-
ical equation of mobile platform and kinematical equation of
the robotic arm. By employing the transformational matrix,

the kinematical equation is transformed from the base coor-
dinate system to the world coordinate frame with the posi-
tion equation of the end-effecter of the robotic arm is also
concerned with the world coordinate frame.

The global kinematical equation of the mobile robotic arm
is the kinematical equation of the end position of the robotic
arm in the world coordinate frame.

zd =

 cosα − sinα 0 xd
sinα cosα 0 yd
0 0 1 0

[ f ($)
1

]

zd :=

 xd
yd
0

+ h($,α).

(13)

By differentiating the above formula in relation to time t,
the kinematical equation of the velocity level of the mobile
robotic arm in the world coordinate frame is received as fol-
lows:

żd =

 ẋd
ẏd
0

+ J (α,$)

[
α̇
$̇

]
, (14)

where jacobian matrix J(α,$) is defined as J(α,$)=
∂h(α,$)/∂v and v = [$T, α]T. Eliminating unimportant
variables by adopting (8), furthermore, the simplified equa-
tion of the mobile robotic arm is acquired as:

żd =

[
Cψ̇
0

]
+ J(α,$)

[
Dψ̇
$̇

]
. (15)

where q =
[
ψ,$T

]T
(i.e., the combined angle vector), rep-

resents the angle vector of the mobile robotic arm, which in-
volve the wheel angle of rotation of the mobile platform and
the rotation angle of each joint of the robotic arm. Eq.(15)
can be further reduced to a compact matrix as:

żd =

[
C 0
0 0

] [
ψ̇
$̇

]
+J(α,$)

[
D 0
0 I

] [
ψ̇
$̇

]
:= Gq̇,

(16)
where I is an identity matrix, a coefficient matrix G is de-
fined as below:

G =

[
C 0
0 0

]
+ J(α,$)

[
D 0
0 I

]
.

Kinematics equation (16) of the velocity level of the
mobile robotic arm corresponding to the world coordinate



frame. To facilitate writing, the global kinematical equation
(13) of the mobile robotic arm is transformed into a simpli-
fied form:

zd(t) = δ(q, t). (17)

3 Gradient Neural Network

It is deserved to point out that, in practical industrial appli-
cations, the kinematics equation (13) at the position level is
aimed at a time-varying system. Therefore, it is very signifi-
cant to resolve the problem of time-varying system with rel-
atively accurate solutions. A gradient neural network is pre-
sented to resolve inverse kinematics problem of time-varying
system for mobile robotic arm [22–25, 27].

First, the kind of neural network is applied to resolve in-
verse of nonsingular constant matrices. The definition of the
inverse of a matrix can be put forward and as follows:

AX − I = 0. (18)

where I represents an identity matrix, and signifies an un-
known matrix to be solved, for the inverse of the matrixA−1.

Second, the method of dynamic system is employed to
solve X(t), which needs to design a norm-based error func-
tion of scalar value ε = ‖AX(t)− I‖2F /2. When the error
function is equal to 0, X(t) is an exact solution of Eq.(18).
In the same way, the kinematics solution problem of the mo-
bile robotic arm can also be transformed into a similar prob-
lem. The energy function of scalar value based on norm is
ε = ‖zd(t)− δ(q, t)‖22. When ε = 0, the minimum point of
ε is obtained.

Third, a numerical procedure can be devised to develop
into the decline orientation of the energy function ε, up to
getting the minimum q. Generally speaking, the decline ori-
entation is the subtractive gradient of ε, i.e., −∂ε/∂q. Ac-
cording to the above processes that the differential coeffi-
cient of ε in regard to q is derived as −GT(zd(t) − δ(q, t)).
Owing design formula q̇(t) = −γ∂ε/∂q, the dynamic equa-
tion of conventional gradient neural network is developed
to settle the time-varying inverse kinematics of the mobile
robotic arm, which is presented as follows:

q̇(t) = γGT(zd(t)− δ(q, t)). (19)

where the argument γ > 0, an inductance argument or the
count backward of a capacitance argument, which can be set
to the maximum allowed by the hardware, and be chosen
properly when conducting experiments or simulations.

4 Verification of GNN Model

In this scetion, the effectiveness of the gradient neural net-
work model(19) to settle the time-varying reverse kinematics
of the mobile robotic arm is verified by simulation. Within
reasonable range, setting a desired trajectory and the end-
effecter of the robotic arm is expected to follow the tra-
jectory. Generally, the incipient status of the variables is
$(0) = [0, 0, 0, 0, π/12, π/12, π/12, π/6]T rad, α(0) =
xd(0) = yd(0) = 0 and γ = 100 [26].
In the subsection, the end position of the mobile robotic arm
is anticipated tracking a stated trajectory, the simulation time
was 70 s, and the simulation result is reported and presented
as follows:
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Fig. 3 shows the end-effector trajectory is super imposed
over the desired path, which the completion degree of the
track task is indicated, which reflects the GNN controller can
obtain a favourable control result. Fig. 4 is a top view of Fig.
3. It is perceived from Fig. 4 that the end motion trajectory
of the mobile robotic arm is awfully close to the stated path.
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Fig. 5 shows position error (ε = [εx, εy, εz]
T := zd −

h(α,$) − [xd, yd, 0]
T) of the mobile robotic arm end ef-

fecter tracking the desired trajectory. It can be surveyed from
the Fig. 5 that the incipient error is large, because the incip-



ient state of the mobile robotic arm is unreasonable. After a
period of time, the trajectory of the end effecter of the robotic
arm synchronizes with the stated trajectory, which can be
seen from the simulation image that the tracking error is less
than 4× 10−3m.
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Fig. 6 demonstrates the variation of tracking velocity er-
ror of the end effecter of the robotic arm. The convergence
speed approaches 0 in a short time, reflecting the speedabil-
ity effect of the GNN controller. The variation of velocity
error in the later period is almost 0, which reflects the stabil-
ity of the controller. It is surveyed from Fig. 6, the variation
of tracking velocity errors in the x-axis, y-axis, and z-axis,
which are also acceptable in practice. The simulation results
show that the mobile robotic arm synthesized by the GNN
model (19) can commendably complete the trajectory track-
ing task.

In addition, considering the actual industrial conditions, it
is generally necessary to concern the situation variations of
other parameters of the mobile robotic arm, for example, the
angle variation of each wheel of the mobile platform. The
mobility and stability of the mobile platform are extremely
important in terms of application. When the mobile platform
runs smoothly, it will not conflict with joint motion and re-
duce the impact on the position of the end robotic arm. Fig. 7
to Fig. 10 show the variation of the joint angle of the robotic

arm, variation in angular velocity of the joint, the rotation an-
gle of the wheels of the mobile platform, and the rotational
velocity of the wheels when the mobile robotic arm tracks
the desired trajectory.
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The solutions of the time-varying reverse kinematics prob-
lem of the mobile robotic arm position level are shown in
Fig. 7, Fig. 8, Fig. 9, Fig. 10. It can be demonstrated that



the mobile platform and the robotic arm always maintain co-
ordinated movement to complete the grasping task of the end
effecter.

Fig. 7 and Fig. 8 depict the variations in the angle and
angular velocity of each joint of the robotic arm. Fig. 9
and Fig. 10 show the variations in the angle and velocity
of the wheels of the mobile platform. The final velocity of
angular velocity and velocity of the wheels are equal to zero,
which proves that the end effecter of the mobile robotic arm
stops moving after completing the task. And each variable
variations steadily over time, there is no sudden variation,
hence, the control method is feasible in practice. Therefore,
utilizing the GNN control model to solve the time varying
inverse kinematics of the mobile robotic arm can realize the
purpose of accurate control.

5 Conclusion

In this paper, aiming at the trajectory tracking control of the
mobile robotic arm, a GNN model is proposed and studied
to settle this problem. The GNN model can be used to ac-
quire an pinpoint solution of time-varying inverse kinemat-
ics. The effectiveness of the GNN model controller can be
surveyed through simulation results, and the model can ef-
fectively achieve high-precision trajectory tracking control.
Some areas for improvement in the future: a peculiar type
of recurrent neural network, named zeroing neural network,
will be investigated, which can quickly and precisely solve
to the solution of the time-varying inverse kinematics of the
mobile robotic arm. Besides, a noise-tolerant neural network
will be considered to deal with noises.
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