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Abstract

Social media data contains rich information about one’s emotions and daily life experi-

ences. In the recent decade, researchers have found links between people’s behavior on

social media platforms and their mental health status. However, little effort has been

spent on mapping social media behaviors to the psychological processes underlying

the psychopathological symptoms. Identifying these links may allow researchers to

observe the trajectory of the illness through social media behaviors.

The psychological processes examined in this thesis include affective patterns, dis-

torted cognitive thinking and topics relevant to mental health status. In the first part of

the thesis, we conducted two studies to explore methods to extract affective patterns

from social media text. We demonstrated that mood fluctuations and mood transitions

extracted from social media text reflect an individual’s depressive symptom level. In

another study, we demonstrated that the affect from content not written by social media

users themselves, such as quotes and lyrics, also reflects depressive symptoms, but the

implications from these are different from content written by the users themselves.

In the second part of the thesis, we identified distorted thinking from social media

text. We found that these thinking patterns have a higher association with users’ self-

reported depressive symptom levels than affect extracted from users’ text. In the last

part of the thesis, we manually compiled topic dictionaries related to suicidal ideations

according to the psychopathology literature. We found that users’ suicidal risk levels

can be estimated by using these topics. The estimation can be improved by combining

these topics with results from a language model.

The data-driven empirical studies in this thesis demonstrated that we can character-

ize the social media signals in a way that impacts our understanding of mental disorder

symptoms. We blended data-driven methods such as machine learning, natural lan-

guage processing and data science with theoretical insights from psychology.
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Lay Summary

In the recent decade, researchers have started to use social media data to infer users’

mental health status. The current technology often focuses on designing algorithms

to identify whether a social media user has depression or not. However, an algorithm

cannot diagnose depression from social media data alone. The clinical assessment

uses many different information sources to diagnose, but this information is simply

missing in the social media context. Our work aims to address these limitations by

interpreting social media posts in a meaningful way to impact our understanding of

mental disorders.

We first infer a social media users’ mood pattern using the emotional words in their

posts. Mood is an experience of feeling that runs in the background. Mood pattern re-

flects symptoms of mood-related psychiatric disorders. Our work demonstrated that

we could infer one’s mood fluctuations and identify thoughts that are not true to real-

ity from social media posts. These signals can provide researchers more information

about an individual’s depressive symptom level. Nevertheless, we showed that content

not written by social media users themselves, such as quotes and lyrics, also reflects

depressive symptoms. We also demonstrated that using topics associated with risky

behaviors can estimate a social media users’ suicidal risk level.
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Chapter 1

Introduction

1.1 Overview

Depression can greatly affect one’s life if left untreated (APA et al., 2013). For exam-

ple, in the case of severe depression, one could experience mutism and stupor, be sub-

ject to cognitive impairment, or even display suicidal behavior (Sonawalla and Fava,

2001; APA et al., 2013). Understanding the psychological processes (e.g., emotion,

thinking, perception) that underline depression, especially the trajectory of these pro-

cesses, is important for early detection and developing treatment methods.

Social media is now used in almost every part of our lives. A report from Pew

Research Center pointed out that nearly 90% of the teenagers who participated in a

survey in 2018 used social media at least several times a day, of which 45% used it

almost constantly (Anderson et al., 2018). Social media data documented people’s

thoughts and emotions. Some of these thoughts are associated with unhelpful think-

ing patterns (Shickel et al., 2020; Simms et al., 2017), self-harm or suicidal ideations

(Varathan and Talib, 2014; O’Dea et al., 2015). Moreover, the data on one’s social

media account often span over long periods, perhaps decades. The longitudinal infor-

mation from social media data is valuable for researchers who study the trajectory of

depression (Reece et al., 2017; Chen et al., 2018).

Over the past decade, researchers have explored using social media data to keep

track of users’ mental health status or symptomatology (Nadeem, 2016; De Choud-

hury et al., 2013; Glen et al., 2015; Tsugawa et al., 2015). Most existing works in

this line of research are framed as an optimization towards an objective function. In

particular, many research groups constructed classifiers to predict self-reported health

status. Some researchers have established links between some social media behaviors

1



2 Chapter 1. Introduction

and mental health status, such as sentiment and depression (Deshpande and Rao, 2017;

Mustafa et al., 2020; Wang et al., 2013a), social network and depression (Wang et al.,

2013a; Saravia et al., 2016; Islam et al., 2018). Depression is a diagnosis for a clus-

ter of symptoms, and there are many underlying psychological processes that trigger

and sustain these symptoms. However, the links between social media behaviors and

the psychological processes underlying the illnesses are seldom explored. For exam-

ple, it is well known that affective style (Davidson, 1998; Akiskal and Akiskal, 2005)

and cognitive distortions (Lefebvre, 1981; Poletti et al., 2014) perpetuate various types

of affective disorders, yet few studies examine whether these psychological processes

can be observed on social media data. These psychological processes are critical for

researchers to understand the trajectory of the illnesses.

1.2 Important Concepts

Before we delve into the research question and goals, we explain the important con-

cepts in this thesis.

Cognition Cognition refers to the mental process of learning and comprehension.

Cognitive psychologists build up cognitive models to explain how perception, atten-

tion, language, memory, thinking and consciousness are involved in information pro-

cessing.

Affect, Emotion and Mood Affect in psychology refers to feelings, emotions, or

mood that we experience as part of our everyday lives. Affect can be categorized as

positive or negative. We experience affect in the form of mood and emotions. There

are fundamental differences between mood and emotions. Emotions are reactions to

stimuli. Emotions are brief, less fine-grained and more intense compared with mood.

For example, angry, sad and happy are emotions. Mood refers to the positive or nega-

tive feelings that run in the background. When we are in a good mood, we tend to have

more positive emotions.

In psychopathology, affective symptoms refers to psychiatric symptoms related to

mood or emotional responses, such as feelings of sadness, excessive or sustained feel-

ings of enthusiasm, confidence and energy.



1.3. Goals and Research Questions 3

Affective pattern The pattern of affect (affective pattern) reflects our strategies to

increase, maintain or decrease our emotions and feelings (Gross, 1999). Affective pat-

tern is closely linked to psychopathology. For example, Gross (1999) suggested that

suppressing one’s emotions is associated with poorer psychopathology. However, the

effect of emotion suppression on psychopathology is mediated by whether an individ-

ual uses cognitive strategies to interact with the situations to change their emotions

(Eftekhari et al., 2009).

Affective disorders Affective disorders (mood disorders) are psychiatric problems

that primarily affect an individual’s mood, characterized by pervasive dysregulation of

mood (Akiskal and Van Valkenburg, 1994). For example, prolonged depressed mood

is a characteristic of major depressive disorder (APA et al., 2013). The main types of

affective disorders include depression and bipolar disorder.

Feature This thesis covers theories in psychology and machine learning domains.

The two fields have overlapped terms referring to different concepts. For example,

psychological feature refers to the characteristics of the psychological life. Feature in

machine learning refers to the independent variables used in an algorithm for predicting

the dependent variable. Feature in this thesis refers to the machine learning concept.

1.3 Goals and Research Questions

Based on the existing research gaps in identifying links between psychological pro-

cesses and social media behavior, we propose the following research question: Can
we represent social media signals in a way that reflects the psychological pro-
cesses that underlie depression? This thesis shows that we can use robust statistical

approaches to extract affective patterns, cognitive distortion and thoughts related to

self-harm behaviors from social media text. We define three main goals to answer

the research question (see Figure 1.1). Below we list the three main goals and the

corresponding research questions:

• Exploring methods to extract affective patterns from social media text and ex-

amining their implications to depressive symptoms (Chapter 3 - 5).

– Do changes of affect correlate with users’ personality traits and mental

wellbeing? (Chapter 3)
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– Are mood representations associated with the severity of self-reported de-

pressive symptoms? (Chapter 4)

– Is posting quotes associated with levels of depression symptoms? (Chapter

5)

– What are the themes and emotions conveyed in the lyrics and quotes?

(Chapter 5)

• Identifying cognitive distortions from social media text and examining their as-

sociations with depressive symptoms (Chapter 6).

– Does cognitive distortion have an association with users’ depressive symp-

toms, well-being and personality dimensions?

– What are the linguistic characteristics among users who posted content

with cognitive distortion more frequently?

• Classifying suicidal risk with topics related to risky behaviors and their motiva-

tions (Chapter 7).

– Can we infer one’s suicidal risk level with their social media posts?

The three goals mainly focus on studying social media signals that reflect affective

and cognitive symptoms. Affective symptoms are a major category of symptoms for

affective disorders. Most of the literature represents the affective signals by averaging

the affect values extracted from the text over a large period. This approach provides us

with the simple information that users with more depressive symptoms use more words

with negative affect on their status updates in general (Tsugawa et al., 2015; De Choud-

hury et al., 2013). However, people’s affect changes from moment to moment. We can

obtain more insights by observing the changing pattern of affect extracted from social

media data. Psychopathology literature suggests that the intensity, variation, duration,

frequency, and mood category are all relevant to affective disorders (Akiskal, 1996).

Besides affective symptoms, the cognitive theory of psychopathology suggests that

there are common thinking patterns that expose one to greater risks of developing

psychiatric problems. These thinking patterns (cognitive distortion) perpetuate one’s

depressive symptoms but are under-explored in the social media context. Affective pat-

terns and cognitive distortion are both psychological processes underlying depression

and many other affective disorders.
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Through answering the research questions of the main goals, we show that the

following information extracted from social media text might provide us insights to

understand the trajectory of symptom development:

• the intensity, variation, duration, frequency, and category of mood

• cognitive distortions

• topics that reflect symptoms or risky behaviors

Data related to mental health is highly sensitive. Therefore, many researchers do

not publish their datasets. Mental health researchers rely on a decentralized pool of

resources. Many researchers collected and annotated their own datasets (Harrigian

et al., 2021). This thesis focuses on constructing representations using social media

data. Therefore, we used existing datasets to conduct our studies.

For studies in Chapter 3 - 6, we used a dataset from myPersonality. myPerson-

ality was a Facebook application that collected self-measurement scales from social

media users. After participants filled out the scale, they were given brief feedback of

their scores. Then they were also given the choice of sharing their Facebook data to

the application for research purposes. myPersonality collected hundreds of measure-

ment scales, such as the BIG-5 personality tests, Center for Epidemiologic Studies

Depression Scale (CES-D), Satisfaction of Life Scale and many others. There have

been more studies using social media data to study psychopathology in the recent two

years. However, most of the datasets with human annotations or self-reported measure-

ment as gold standards are not published due to the sensitive nature of mental health

data. Reddit suicide risk assessment (CLpsy, 2019) is one of the publicly available

datasets for researchers in the recent two years. In 2021, the OurDataHelp project

(UMD, 2021) started collecting large-scale longitudinal self-measurement scales from

social media users to build a benchmark dataset for mental health studies with social

media data. OurDataHelp only allows researchers to access the data on a server that

is disconnected from the internet. Participants have been fully explained the intention

of the study and how their data would be used. However, this dataset was only made

available after the completion of this thesis. Future studies can apply the techniques

proposed in this work to a more recently collected dataset.
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1.4 Contributions

Our work blends natural language processing, machine learning, information retrieval,

and data science with insights from psychology and social computing. Although the

techniques described in this thesis mainly focus on depressive symptoms, they can be

translated into symptom tracking topics. We believe our findings can provide insights

for researchers to observe the trajectory of depression. Most importantly, we have

connected the machine learning results and findings from data analysis to the theories

of depression, affective disorders and risky behaviors. Below is a list of contributions

from our work:

• We have brought novel computational techniques to identify affective patterns

(Chapter 3 and 4) and harmful ideations (Chapter 7) in social media text.

• We have found that non-user-generated content, such as lyrics and quotes, re-

flects users’ depressive symptom levels.

• We have adopted a hand-annotation analysis of social media posts to identify

cognitive distortions (Chapter 6).

• We have developed computational approaches to represent social media signals

based on the cognitive-behavioral model of depression and affect theory (Yurica

and DiTomasso, 2005; Lefebvre, 1981; Kaplan et al., 2017) (Chapter 3 and 4).

• We have contributed insights towards developing a data-driven approach to ana-

lyzing, modeling, and tracking symptoms of affective disorders.

1.5 Thesis Organisation

This thesis is organized as follows. Table 1.1 shows the publications on which each

chapter is based.

Chapter 2 This chapter reviews the background material for this thesis, explains our

subject of interest and the motivation for choosing the topic of representing psy-

chological processes with social media signals. We summarize five types of so-

cial media signals that have been found to be relevant to depressive symptoms.

Most of these signals fall into one of the three domains in modern psychology:

affect (feelings), behavior (interactions) and cognition (thought).
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We present the cognitive model of depression, affective theory and background

literature that is crucial to give perspective on what social media signals have

been widely studied and suggested as important to infer users’ depressive symp-

toms.

Chapter 3 Affective literature suggests that different aspects of affect, such as magni-

tude, alternation, and categories, reflect on a person’s tendencies for regulating

emotions. These tendencies are not only behavioral features but also perpetra-

tors for a wide range of conditions. Although researchers have found that the

category and magnitude of affect extracted from social media data are associ-

ated with social media users’ depressive symptoms, is it unknown whether the

affective alternations extracted from social media text also reflect one’s wellbe-

ing.

In this chapter we use categorical values to represent transitions from one affec-

tive state to another. We introduce a silence day token to represent days when

a user did not post any content. Our results have shown that the representations

we constructed can give us a more nuanced picture of social media users’ psy-

chological traits than simply averaging the affective values over a long time. We

have found that participants who are more extroverted tend to post positive con-

tent on consecutive days and that participants who are more agreeable tend to

avoid posting negative content.

Chapter 4 In this chapter, we explore various approaches to represent mood (a form

of affective experience) in the social media text. We use sliding window tech-

niques, combined with different methods to measure mood in constructing the

representation. To test whether these representations are associated with social

media users’ self-reported depressive symptom levels, we use Gaussian Process

regression to measure the fluctuations in the mood representation. We observe

less evidence of mood fluctuation expressed in social media text from those with

low symptom scores than others with high symptom scores. We also use Hidden

Markov Models to estimate latent variables with mood as observations. Assum-

ing the latent variables are associated with depressive symptom levels, we use

these latent variables to classify self-reported depressive symptom levels and

achieve a high precision rate. Finally, we use these mood representations to

classify users’ symptom levels. Using the mood representations extracted from

social media text, we are able to infer users’ symptom levels. These representa-
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tions also provide researchers insight into the trajectory of depression.

Chapter 5. Our experiments in Chapter 4 focus on content that is created by social

media users themselves. Content not created by the users is often ignored be-

cause it might not reflect the users’ own emotions. In Chapter3, our pilot study

examined the links between posting non-original content (e.g., lyrics, quotes)

and depressive symptoms on a small subset of sample. In this chapter, we ex-

amine whether the affect from quotes and lyrics posted on Facebook are associ-

ated with underlying symptoms of depression. We found that participants with

elevated depressive symptoms tend to post more lyrics, especially lyrics with

neutral or mixed sentiment. The lyrics center around overwhelming emotions,

self-empowerment, and retrospection of romantic relationships. Our findings

have suggested that removing quotes, especially lyrics, might eliminate content

that reflects users’ mental health conditions.

Chapter 6. The cognitive-behavioral theory states that individuals with depression

exhibit distorted modes of thinking. These thinkings perpetuate their depres-

sive symptoms. Cognitive distortion can be identified in the digital text, but

this area is still underexplored. In this chapter, we examine cognitive distortion

in the social media text. We annotate negative emotions and cognitive distor-

tion among more than 4000 Facebook posts posted by 71 Facebook users. We

have found signs of cognitive distortion presented on Facebook data. Our result

have shown that cognitive distortion presented on social media text has higher

associations with depressive symptoms than negative sentiment averaged over

one year. We further identify the language characteristics in cognitive distortion

extracted from social media text.

Chapter 7. Suicide is a significant problem globally. Most suicides are related to

psychiatric diseases; individuals with depression or substance use disorders are

the highest risk. We explore computational approaches of detecting suicidal

ideations manifested on a set of social media data annotated by clinical special-

ists. We approach the problem with three separate models: a behavior model,

a language model, and a hybrid model. For the behavioral model approach, we

model each user’s behavior and thoughts with four groups of features: posting

behavior, sentiment, motivation, and content of the user’s posting. We use these

features as input in a support vector machine (SVM). For the language model

approach, we train a language model for each risk level using all the users’ posts
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Table 1.1: Publication and chapters

paper title chapter published in

The Effect of User Psychology

on the Content of Social

Media Posts: Originality and

Transitions Matter

3 Frontiers in Psychology 11

Examining the role of mood

patterns in predicting

self-reported depressive

symptoms

4 12th ACM Conference on Web

Science

It’s Not Just About Sad Songs:

The Effect of Depression on

Posting Lyrics and Quotes

5 International Conference on

Social Informatics 2020

Examining Cognitive

Distortion in Social Media

Text

6

Similar Minds Post Alike:

Assessment of Suicide Risk

Using a Hybrid Model

7 Proceedings of the Sixth

Workshop on Computational

Linguistics and Clinical

Psychology

as the training corpora. Then, we compute each user’s posts’ perplexity to deter-

mine how likely his/her posts are to belong to each risk level. Finally, we build

a hybrid model that combines both the language and behavioral models. The

hybrid model demonstrates the best performance in detecting the suicide risk

level.

Chapter 8. This chapter is a summary of the main findings of this research. We

connect our experimental design and results to the theories of psychopathology.

We discuss the potential impacts of monitoring psychological processes using

social media data and possible approaches for addressing biases and ethical con-

cerns in this research area. Finally, we discuss the limitations of this research

and possible future directions.



Chapter 2

Background and Literature Review

This chapter provides the literature background for this thesis. Affect, cognition and

behavior are three major divisions in modern psychology. This chapter first provides

an overview of the affective, cognitive and physical symptoms manifested in depres-

sive disorders. Then we present an overview of publications that examine social media

behaviors and depression. We summarize five types of social media signals associated

with self-reported depressive symptoms. Among these signals, affective signals are

most commonly reported as important features in the classification methods, followed

by topics. Topic refers to textual content surrounding a certain theme. In addition to

affect and topics, our overview has also suggested that cognitive distortion, a psycho-

logical process that perpetuates depressive symptoms, can be partially identified in the

social media text. Finally, we identify the research gaps for mapping social media

behaviors to the psychological processes underlying depressive symptoms.

2.1 Depression

Depression is a mood disorder that affects more than 250 million people around the

world (WHO, 2020). In extreme cases, depression can lead to suicide. People with

major depressive disorder (MDD) are 21 times more likely to commit suicide than non-

depressed individuals (Arensman et al., 2015). The prevalence of depression is high

compared with other psychiatric disorders. For example, one year and lifetime preva-

lence of depression are 12.9% and 10.8%, respectively. Prevalence for schizophrenia

is 0.4% (Saha et al., 2005), bipolar is around 4% (Ketter et al., 2010). Depression

is also significantly higher in women (14.4%) and countries with a medium human

development index (29.2%) (Lim et al., 2018).

11
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Traditionally, researchers study symptoms or the course of depression by collect-

ing self-reported or interview data from the participants. The data collection process

is sometimes spanning over several generations of researchers. For example, a lon-

gitudinal study on 2,320 participants would require 10,982 assessments over a few

decades (Sutin et al., 2013). Most of the existing longitudinal studies about depression

involve observing the change of self-reported measurement of depressive symptoms

over the years. The data collection process for the longitudinal study is painstaking,

and there are also gaps ranging from a few months to a year in between each data col-

lection. These gaps need to be reduced to days or weeks if researchers want to measure

the psychological processes in a fine-grained manner. For example, as people’s mood

changes daily, conducting a longitudinal study for mood would require collecting self-

reported mood frequently over the years. Due to the constraint of data collection in

longitudinal studies, little is known about the trajectory of the psychological processes

underlying mental illnesses.

In the recent decade, social media platforms have provided researchers an alterna-

tive source to study the trajectory of people’s psychological processes. Researchers

have started to use computer algorithms to extract proxy signals that reflect depressive

symptoms from social media data. By observing how these signals change over time,

researchers can have a longitudinal, life-course view of their psychological processes.

This thesis focuses on studying psychological processes underlying depression as

an example, and we demonstrate techniques that may be adopted to observe psycholog-

ical processes of other mental disorders. We propose to represent social media signals

in a way that can impact researchers’ understanding of an individual’s affective and

cognitive processes. This chapter aims at identifying the links between social media

signals and depression based on existing literature. In the coming chapters, we will use

statistical approaches to represent the targeted social media signals.

2.2 Symptoms of depression

The Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5) de-

fines many subtypes of depressive disorders: disruptive mood dysregulation disorder,

major depressive disorder, persistent depressive disorder, and premenstrual dysphoric

disorder, substance-induced depressive disorder, etc.

Each sub-type shares some characteristics with other sub-types. Some stereotypical

depressive symptoms across different sub-types include depressed mood, irritability
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or anger, decreased interest in usual activities, and feeling of worthlessness. These

symptoms can be categorized into cognitive, affective, and physical symptoms. In this

section, we introduce these three categories of symptoms.

2.2.1 Cognitive Symptom

Cognitive symptoms of depression involve difficulty concentrating, forgetfulness, mem-

ory loss, reduced reaction time, indecisiveness and cognitive distortion. Cognitive dis-

tortion refers to the thinking pattern that leads to misinterpretations of reality. More

than half a century ago, the father of cognitive therapy, Aaron T. Beck. asked his pa-

tients to focus on their automatic thoughts. He found that the content of these thoughts

was either misinterpretations or exaggerations of a situation. They were cognitive dis-

tortion that caused people to view the reality inaccurately, often in a negative way

(Lefebvre, 1981; Norman et al., 1983). For example, “No one cares about me in this

world”. The cognitive distortion varies according to the major psychiatric problems

experienced. For example, patients with depression have a general theme of self-

criticism and regret. The more severe the disorder, the bigger portion of the stream

of consciousness that the automatic thoughts occupied (Beck, 2019).

Later on, Beck established the theory of cognitive models of psychopathology.

The cognitive model of psychopathology suggested that there were biased schemata

that influence cognitive distortion. These biased schemata influence one’s attitude and

behavioral responses and put an individual at a greater risk of developing depression

(Kovacs and Beck, 1986). Oliveira (2014) summarized 15 types of biased schemata,

see Table 2.1.

Most of the cognitive symptoms require cognitive testing. Researchers cannot sim-

ply observe these symptoms in the social media context. However, cognitive distortion

can be identified in the social media text. Simms et al. (2017); Bathina et al. (2020)

suggested cognitive distortions can be identified in Tumblr and Twitter posts. The

language markers that indicate cognitive distortion included first-person pronouns and

negations. In Chapter 3, we introduce methodologies to annotate cognitive distortion

on Facebook posts and we examine their associations with self-reported depressive

symptom level.

Table 2.1: Checklist of Cognitive Distortions (Oliveira, 2014)
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category

explanation

jumping to conclusions Draw negative conclusion without evidence to sup-

port that conclusion.

catastrophizing(what

if)

One believes the worst situation will occur

comparison One believes that he/she is worse than others because

one tends to compare himself/herself with others

dichotomous/black-

and-white thinking

The tendency to view all experiences as fitting into

one of two categories (e.g., positive or negative; good

or bad).

disqualifying the posi-

tive

Denying a situation/trait/event is positive

emotional reasoning Letting your emotions direct your conclusions about

yourself, others, or situations.

fortunetelling Assume that some event or events will end badly for

us, that we will fail at something or we will be in dan-

ger, more as an assumption rather than an educated

guess.

labeling Labeling oneself or others using derogatory names.

magnification Exaggerate the importance of your errors, fears, and

imperfections.

mind-reading Concluding that other people are reacting negatively,

or thinking negatively toward him/her, without evi-

dence to support the conclusion.

minimization Minimizing or discounting the importance of some

event, trait, or circumstance.

overgeneralization When someone overgeneralizes, they see that one

negative event in their life as a never-ending pattern.
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personalization Assume you are responsible for an external event over

which you have no control. When you personalize,

you feel guilty because you confuse influence with

control over others.

selective abstraction The process of exclusively focusing on one negative

aspect or detail of a situation, magnifying the impor-

tance of that detail, thereby casting the whole situa-

tion in a negative context.

“should” statements A pattern of having internal expectations or demands

on oneself, without whether it’s reasonable to have

these expectations or not.

2.2.2 Affective Symptoms

Affective symptoms refer to psychiatric symptoms related to mood or emotional re-

sponses. Affective symptom is reflected in one’s affective style. The “affective style”

refers to the variance of quality and intensity of mood and emotional reactions (David-

son, 1998). Davidson (1998) proposed several aspects of affective styles: the intensity

or magnitude of the response, the duration of the response, the frequency or the number

of times the response occurs within a given period and the category of the response.

Emotion-based symptoms in many DSM-5 disorders can be characterized by the as-

pects in the affective styles. For example, a major depressive episode is characterized

by depressed mood and anhedonia; A manic episode is characterized by elevated, ex-

pansive, or irritable mood; Quickness to react angrily is a behavioral feature for para-

noid personality disorder; Emotional coldness, flattened affect is the characteristics of

schizoid personality disorder; Affective instability, which refers to marked reactivity

of mood, inappropriate, intense anger, or difficulty controlling anger are markers for

borderline personality disorder (APA et al., 2013).

Affective style underlies one’s vulnerability to psychiatric disorders (Rottenberg

and Gross, 2003; Akiskal, 1996). Assessing affective style is useful for observing the

trajectory of a mental disorder. However, assessing self-reported affect in everyday life

requires a costly extended period of data collection, even with technology (Caldeira

et al., 2017). Social media data provides researchers with an alternative approach to

look at the changes of affect over time with minimal effort in data collection. Studies
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have found that people’s affective symptoms are associated with what they post on

social media. For example, participants with more self-reported depressive symptoms

used more negative affective words (e.g., sad, cry, hate) in their social media text than

those with fewer symptoms (De Choudhury et al., 2013; Park et al., 2012; Tsugawa

et al., 2015; Chen et al., 2020a).

2.2.3 Physical Symptoms

Physical symptoms often accompany depression. Minor illnesses and pain are the most

commonly presented symptoms. Sleep disturbance, fatigue and exhaustion, appetite

change, agitation, and restlessness are also commonly presented (APA et al., 2013).

A high percentage of patients with depression sought treatment for minor physical

symptoms in a primary care setting. The diagnosis of depression was often masked by

minor physical illnesses (Trivedi, 2004).

Physical symptoms can be identified in social media text using natural language

processing techniques. However, whether a social media user mentions these symp-

toms on social media text is arbitrary and heavily depends on the user’s self-disclosure

level. Sometimes, a user’s posting pattern reflects physical symptoms. For example,

posting late at night reflects sleep disturbance (De Choudhury et al., 2013; Resnik et al.,

2015; Nambisan et al., 2015). Wang et al. (2013a) also found depressed individuals

tend to have fewer interactions with the audiences. However, findings on social media

data only show a general tendency. There are always exceptions to this tendency. For

example, people may interact less with other social media users because they use social

media platforms mainly to obtain information.

2.3 A Review on Manifestation of Depressive Symptoms

on Social Media Platforms

In the previous section, we introduce depressive symptoms described in the psychology

literature. In this section, we conduct a review to understand what type of social media

signals are associated with depressive symptoms based on the existing findings. Some

of these signals may reflect the psychological processes underlying the symptoms. In

our later chapters, we will focus on these signals.

One way of testing whether social media signals are associated with depressive

symptoms is to use these signals to predict or infer a mental health status. Many re-
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views have been conducted to demonstrate the techniques of using social media data

to predict or infer mental health status. For example, Calvo et al. (2017) focused on

analyzing the types of natural language processing techniques for detecting depressive

symptoms. Guntuku et al. (2017) and Skaik and Inkpen (2020) summarized the pre-

diction methods, prediction performance, criteria to assess mental illnesses, types of

features being used, outcome types, models and evaluation metric.

Existing reviews mainly focus on the techniques being used in the classification

tasks and their performances. However, the links between social media signals and de-

pressive symptoms documented in psychopathology literature have not yet been sum-

marized. Therefore, this overview aims to map social media signals to depressive

symptoms described in psychopathology literature. By analyzing 107 publications,

this overview addresses the following questions:

1. What type of techniques are applied to infer/predict depressive symptoms?

2. What key features are reported as predictive to depressive symptoms from the

literature?

3. Are the key features reported as predictive to depressive symptoms different

across platforms and culture?

4. What types of techniques are used to construct mood and emotion features?

This overview is structured as follows: section 2.3.1 describes the methodology for

data collection, the selection criteria and the compilation process. Section 2.3.2 quan-

tify the types of techniques applied to social media data to infer or detect depressive

symptoms. Section 2.3.3 summarizes the key features reported as useful to identify

signs of depression or depressive symptoms. Section 2.3.3.1 compares the key fea-

tures across platforms. Section 2.3.4 presents the techniques of extracting mood or

emotion features from social media text to detect depressive symptoms.

It is important to note that the “gold standard” from most of the existing literature

does not represent a clinical diagnosis of depression (Guntuku et al., 2017; Chancellor

and De Choudhury, 2020) because the diagnostic process is intricate, social media

data do not contain all the necessary information to make a diagnosis. Therefore, in

this work, we have used the phrase “infer depressive symptoms” instead of “detect

depression” to refer to the task of the existing literature.
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2.3.1 The Review Methodology

We have selected publications related to inferring or detecting depressive symptoms.

These studies involved using user-generated data on social media platforms (e.g., Face-

book, Twitter, Weibo, Reddit). The selected works involve:

• inferring depressive symptoms level of individual social media user

• inferring the depressive symptoms level expressed in one single post

• examining the language characteristics from users who self-reported having de-

pression

2.3.1.1 Record Identification

The search was done on 30th December 2020. A total of 808 related papers were

identified after searching PubMed, ACM Digital Library, IEEE Explore, PsycInfo,

Web of Knowledge and Google Scholar. Articles were selected following the Boolean

search strings in title and abstract:

• PubMed: (social media[tw] OR Facebook[tw] OR Twitter[tw] OR Instagram[tw])

AND (predict[tw] OR detect[tw]) AND (depress*[tw])

• PsycInfo: (“social media” OR “Facebook” OR “Twitter” OR “Instagram”) AND

(“predict” OR “detect”) AND (“depression”)

• ACM Digital Library: (“social media” OR “Facebook” OR “Twitter” OR “In-

stagram”) AND (“predict” OR “detect”) AND (“depression”)

• IEEE Explore: (“social media” OR “Facebook” OR “Twitter” OR “Instagram”)

AND (“predict” OR “detect”) AND (“depression”)

• Google scholar: “depression” AND “social media” AND (“predict” OR “de-

tect”)

2.3.1.2 Record Selection

The search identified 808 articles in total, 158 duplicates were removed. Based on

the title and abstract manual screening, 457 studies were identified as irrelevant. 193

studies were assessed full-text for eligibility. 85 articles were excluded based on the

following eligibility criteria and exclusion criteria, resulting in 107 papers after the

full-text screening. Studies were excluded if:



2.3. A Review on Manifestation of Depressive Symptoms on Social Media Platforms19

• They use other than social media data, such as mobile sensor data;

• They are review papers or system proposals;

• They study the frequency of using social media platform and associations with

users’ depression;

• They study social media data that reflects users’ mood or emotions but not they

do not link the findings to depression;

• The study is not conducted at a population level.

We used the following inclusion criteria to select the paper for this review:

• The paper must involve using social media data to infer or predict depressive

symptoms. Social media platform refers to any web-based technology that fa-

cilitates the creation and sharing of information, including but not limited to

Facebook, Twitter, Reddit, Instagram, Weibo, etc.

• The paper examined factors reflected from social media data that contribute to

depression, including postpartum depression.

• The type of paper must be “research article” published in journals or confer-

ences.

• The paper can involve predicting or inferring multiple mental disorders, includ-

ing depression

• The full text must be written in English.

• The paper can be qualitative or quantitative analysis.

The query “social media” enables the returned results to include other social media

platforms, such as Reddit and LiveJournal (see Section 2.3.3.1 for the details). Based

on the above eligible criteria, ultimately, 107 publications were selected for the current

review. The full list of all the selected papers was provided in the Appendix (see Figure

2.1 for the selection process).
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Figure 2.1: Procedural flowchart
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2.3.1.3 Data Extraction

To assist with the systematic extraction of information from the papers, we used a data

extraction spreadsheet. The spreadsheet included columns for characterizing papers by

title, author, publication year and other columns that describe the following variables

(see Table 2.2).

Table 2.2: Information extracted from selected literature

column variables values

does the paper involve feature anal-

ysis

yes, no

types of social media features that

are found to be useful to infer de-

pressive symptoms

affect, personal pronouns, ego net-

work and social capital, topics,

posting time and posting volume,

other features

modeling methods or other methods

to identify the features

classical machine learning (ML),

deep learning, both classical ML

and deep learning, textual analysis,

statistical analysis

language of the data English, Chinese, Spanish, Thai,

Arab, Portuguese

source of the data Twitter, Reddit, Facebook, Weibo,

combing multiple sources, other

sources

Each selected paper was analyzed using this template. In Section 2.3.4, we also

analyze the feature engineering techniques for extracting social media signals that were

used in modeling depressive symptoms.

2.3.2 Techniques Applied to Infer Depressive Symptoms

Figure 2.2 shows that the number of studies on using social media signals to infer

or predict depressive symptoms has dramatically increased since 2017. Most of the

existing studies in this line of research mainly fall into two categories:

1. Identify themes and topics in the social media posts (Cheng et al., 2016; Feld-

hege et al., 2020; Bataineh et al., 2019; Resnik et al., 2015; Cavazos-Rehg et al.,
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2016) and their comments (Andalibi et al., 2017);

2. Using social media proxy signals to classify a mental health status (De Choud-

hury et al., 2013; Tsugawa et al., 2015).

There are 11 studies (10%) in the first category. These studies mainly used the

qualitative analysis or manual annotations to identify themes and content characteris-

tics that indicate certain types of symptoms, such as cognitive biases, hopelessness and

suicidal ideations (Cheng et al., 2016; Feldhege et al., 2020; Bataineh et al., 2019).

In this overview, the majority of the studies (N = 94, 88%) use social media proxy

signals to classify whether a social media user has a high level of self-reported depres-

sive symptoms. Similar to Guntuku et al. (2017)’s finding, we find that our selected

sample of papers often adopted classical machine learning (e.g., regression, SVMs,

nearest neighbor, decision trees, PCA, naive Bayes classifier), deep learning, or both

methods to classify self-reported depressive symptom levels (De Choudhury et al.,

2013; Tsugawa et al., 2015; Shen et al., 2018; Shah et al., 2020).

Figure 2.4 shows classical machine learning (e.g., decision trees, support vector

machine) is a dominant approach in our selected sample. Works adopted classical

machine learning models often involve feature analysis in the modeling process (Yang

et al., 2020; Mustafa et al., 2020; Benamara et al., 2018). However, as deep learning

techniques became more popular since 2018 (see Figure 2.4), fewer papers included

feature analysis (see figure 2.3).

The functional process of the deep learning model can be very complex, often

resulting in “blackbox”. Among the 18 papers using deep learning techniques, only

one work included feature analysis (Wu et al., 2019). We have identified nine papers

using both classical machine learning and deep learning techniques and comparing the

performances of multiple models.

Despite efforts to improve algorithm performance, inherent biases in the dataset

(e.g., population bias, content bias, see Chapter, 1, Section 1.1) and modeling processes

suggests that the classification technology was far from ready to be used by clinicians

or researchers.

2.3.3 Key Social Media Signals for Inferring Depressive Symptoms

Among the selected publications, 58 of them have reported what type of social me-

dia signals are important to infer depressive symptoms. We summarize five types of
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Figure 2.2: Number of Publications

Figure 2.3: Feature Analysis by Year

Note: with F: papers reported features analysis, without F: papers do not report feature analy-

sis
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Figure 2.4: Methods Used in Publications

Note: C ML: classical machine learning, DL: deep learning, Both: papers contain classical

machine learning models and deep learning models, Content: qualitative content analysis, Sta-

tistical: statistical analysis of term frequencies

features that are commonly found to be associated with depression (see Table 2.4 for

publications in each category). The five types of features include:

• affect or emotions (positive and negative affect, hostility, sadness, e.g., angry,

sad)

• personal pronouns (1st and 3rd personal pronouns, e.g., I, his)

• ego network (number of followers, followees, comments, likes)

• topics (a cluster of certain themes, e.g., physical symptoms)

• posting time and posting volume

The affect or emotions, personal pronouns and topics are linguistics features ex-

tracted from social media text. Section 2.3.4 explains the common approaches used to

extract each type of signal. For affective symptoms, the majority of the studies find

that users with a high level of depressive symptoms tend to use words with negative

affect (De Choudhury et al., 2013; Tsugawa et al., 2015; Fatima et al., 2018).



2.3. A Review on Manifestation of Depressive Symptoms on Social Media Platforms25

Frequent use of first-person pronouns is also an indicator for depressive symptoms

because it may indicate a tendency to focus on self. (De Choudhury et al., 2013;

Shen et al., 2018; Wu et al., 2019). An ego network refers to a network made up of a

central node (e.g., an individual) and all other nodes (e.g., social ties) connected to the

central node. Studies focused on ego networks find that social media users with more

depressive symptoms tend to have less influence in their ego network. For example,

they receive fewer comments and likes and they have fewer followers (Yang et al.,

2020; De Choudhury et al., 2014; Shen et al., 2018).

Moreover, many studies have suggested that posting time reflect users’ sleeping

pattern (Wongkoblap et al., 2018; Benamara et al., 2018; Shen et al., 2018; Li et al.,

2020). Some users may struggle with insomnia if they are awake at night, although

others may be awake at night due to work reasons. Multiple studies find that users

with a high level of depressive symptoms tend to post more often. However, people

who have extremely high symptom levels should post less due to low energy levels.

Besides papers that have adopted a classification approach to infer depressive symp-

toms, there are a total of 9 papers involved in textual analysis of the social media posts.

These papers focus on observing how social media users share their distress and daily

life experiences. For example, Lachmar et al. (2017),Tian et al. (2018) and Michikyan

(2020) identified themes from posts generated by users with depression. Ophir et al.

(2017) hand-annotated cognitive distortion in the social media text. Bathina et al.

(2020); Nambisan et al. (2015) used a lexicon-based approach to identify cognitive

distortion and rumination.

The type of proxy signals used to infer users’ depressive symptom levels are slightly

different among papers that adopted classification methods and papers that focus on

textual analysis (see Table 2.3). Studies focusing on textual analysis have identi-

fied topics related to one’s thinking process and life situations. For example, aggres-

sion and a feeling of worthlessness (Marinelarena-Dondena et al., 2017; Thorstad and

Wolff, 2019), a feeling of loneliness (Schwartz et al., 2014), suicidal thoughts (Shen

et al., 2013; Cavazos-Rehg et al., 2016; Nguyen et al., 2014; Schwartz et al., 2014) and

homesickness (Resnik et al., 2015). Table 2.5 lists the topics that have been identified

as important features in each work that involves manual textual analysis.

In contrast, machine learning algorithms are not ideal for identifying cognition-

related topics because these topics are largely context-dependent. Topics identified

with machine learning approaches are mainly related to somatic symptoms, biological

words, and medications. These topics can be easily captured by spotting the nouns in



26 Chapter 2. Background and Literature Review

the text.

Some of the signals related to one’s thinking process or life situations are important

to the onset or perpetuation of depression. For example, cognitive distortions, life

challenges, sadness, substance abuse and suicide ideation (see Table 2.3). In Table

2.3, we list the social media signals identified with manual textual analysis and the

corresponding theories from psychopathology that suggest these links.

Representing and extracting these signals from social media text has the potential

to help researchers to understand the development of the illnesses with a theoretical

background. There have been studies exploring approaches to detect of cognitive dis-

tortion (Simms et al., 2017), life events (Di Eugenio et al., 2013), support (Andalibi

et al., 2017) and suicidal ideations (Varathan and Talib, 2014) from social media text.

2.3.3.1 Important features differ across platforms

Of all the studies in this review, 22 of them use Facebook data, 35 use Twitter, 26

use Reddit, 7 use Weibo (Shen et al., 2018; Tian et al., 2018; Wang et al., 2013a; Hu

et al., 2019; Chen et al., 2020a; Hu et al., 2015; Wang et al., 2020), 4 use Instagram

(Mann et al., 2020; Reece and Danforth, 2017; Ricard et al., 2018; Chiu et al., 2020), 4

use other data sources and 7 papers trained models on multiple sources and compared

their performances (Lin et al., 2014; Tai et al., 2015; O’Dea et al., 2018; Seabrook

et al., 2018; Aldarwish and Ahmad, 2017). The majority of the studies were conducted

on datasets in English. Only 16 studies examine a foreign language, of which seven

papers studied Chinese language data. The lack of language varieties in these studies

indicates a strong representation bias presented in the existing literature.

Figure 2.5 shows the percentage of papers that reported a specific type of social

media signals as an important feature to infer depressive symptoms across various

social media platforms. Studies using Facebook and Twitter data are most likely to

report the affective words as an important feature (De Choudhury et al., 2013; Yang

et al., 2020; Tsugawa et al., 2015; Shen et al., 2017), whereas studies using Reddit data

are least likely to report affective features as important. We believe the difference is

related to the platforms’ functionalities.

Kietzmann et al. (2011) identify seven functional building blocks in multiple social

media platforms: identity (users reveal their identity), conversations, sharing, presence

(the extent to which users can know if other users are accessible), relationships, rep-

utation, and groups. Functionalities vary across platforms, and users’ motivations for

posting were influence by the functionalities. The motivations behind posting can be
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Table 2.3: Proxy signals reflect social media users’ depressive symptoms (papers focus

on textual analysis)

Social media signals psychology literature

cognitive distortion and depressive rumination (Ophir

et al., 2017; Nambisan et al., 2015; Bathina et al.,

2020).

(Beck, 1991, 2019)

explicit reference to depressive symptoms (Ophir

et al., 2019; Tian et al., 2018).

~

lifestyle challenges (e.g., no appetite), relationships,

social struggles or rejections (Michikyan, 2020; Lach-

mar et al., 2017; Ophir et al., 2019).

(Gore et al., 1993; Monroe

and Harkness, 2005; Mon-

roe et al., 2009; Slavich

et al., 2010)

apathy, sadness and negative experience (Lachmar

et al., 2017; Tian et al., 2018; Michikyan, 2020; Ophir

et al., 2019).

(Bowlby, 1998; Brown

and Siegel, 1988)

seeking positive relief (e.g., seek support) (Lachmar

et al., 2017; Tian et al., 2018).

~

seeking negative relief (e.g., substance abuse) (Lach-

mar et al., 2017).

(Levy and Deykin, 1989;

Abraham and Fava, 1999)

transitions in life (Michikyan, 2020). (Praharso et al., 2017)

suicidal ideations (Ophir et al., 2017; Lachmar et al.,

2017).

(Levy and Deykin, 1989;

Orsolini et al., 2020)

share medical information (Tian et al., 2018). ~
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categorized as image-related (e.g., “I want to be famous”) or intrinsic-related (e.g.,

“it is fun”, “I need support”) (Kankanhalli et al., 2005; Wasko and Faraj, 2005). Users

from mental health support communities focused on sharing, conversations, and foster-

ing groups (Zhang et al., 2017; De Choudhury and De, 2014). They are more likely to

discuss problems that they didn’t feel comfortable with (De Choudhury and De, 2014;

Johnson and Ambrose, 2006). However, they leave the community when they didn’t

have any experiences to share (e.g., problems are resolved) or when they were unable

to form strong connections with the community (Wasko and Faraj, 2005). Users’ re-

tention rate strongly depends on the collective identity the community fosters (Zhang

et al., 2017).

Since users’ motivations for joining mental health support communities are mainly

sharing and seeking support, most of the users tend to be less active once their problems

were resolved. Therefore, users’ posting history in a single mental health subreddit is

usually sparse. For example, (De Choudhury and De, 2014) study the posting behavior

in multiple mental health related subreddits. They find that half of the users posted less

than one post within a range of two months. On average, users post about 1.5 posts

in r/SuicideWatch since joining the subreddit (Chen et al., 2019). Researchers cannot

aggregate mood based on users’ posts in a single subreddit. Using affect extracted

from one or two posts to infer users’ mental health status, especially affective disorder,

is not ideal.

On the contrary, researchers may be able to extract the pattern of affect from users’

microblogging because microbloggers post more frequently. Microbloggers often fo-

cus on sharing information and building connections with others. Many microbloggers

post content regularly to form connections and social reputations. For example, Toubia

and Stephen (2013) find that microbloggers who started with a low initial number of

followers and gained more followers later tend to create more content. Therefore,

microbloggers are much more likely to create longitudinal social media records than

mental health support communities. Researchers can aggregate the affect extracted

from microblogging to estimate the mood of the users (Chen et al., 2020d; De Choud-

hury et al., 2013).

Other types of features also differ across platforms due to the functional charac-

teristics of the platform. For example, social network features are often examined in

platforms with social ties, and image features are often examined in microblogging

(Huang et al., 2019; Shen et al., 2018; Guntuku et al., 2019; Huang et al., 2019). Some

features, such as personal pronouns and topics, are commonly reported as important
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features to infer mental disorder symptoms across different platforms (see Figure 2.5).

Figure 2.5: Percentage of papers report certain type of social media signals as impor-

tant feature

2.3.4 Techniques for Feature Engineering

Affect and topics are most frequently reported as an important category of features to

infer depressive symptoms with a classification approach. This section analyzes the

current techniques applied to extract affect and topics in the social media text.

Affect Researchers measure mood in social media text using sentiment (feeling) as a

proxy (Reece et al., 2017; Chen et al., 2018). Sentiment analysis is a natural language

technique to extract opinions, feelings and contextual information from text. Methods

of sentiment analysis include supervised learning, in which the algorithm learns the

sentiment features from labeled datasets. Another approach is a lexicon-based method,

where researchers label the words which express opinions and feelings. The predefined

sets of words are used to assign sentiment score to text (Sharma et al., 2020).

As we mentioned in Section 1.2, mood refers to feelings that run in the background.

However, sentiment as opinion or feeling is a reaction to a situation. To construct a

variable representing a general feeling, we can aggregate the sentiment within a time
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window. A few works used aggregated sentiment in a sliding time window as a feature

in the mental status predictive techniques (De Choudhury et al., 2013). However, most

of the works have used averaged sentiment over a large time window (e.g., 1 year) as

a feature (Benton et al., 2017; Chen et al., 2018; Tsugawa et al., 2015; Wang et al.,

2013a; Leis et al., 2019; Tong et al., 2019; Saravia et al., 2016).

Extracting topics from text Topics are usually identified with clustering approaches

(e.g., Latent Dirichlet Allocation (LDA)) or lexicon-based approach, such as Linguis-

tics Word Count and Inquiry (LIWC) (Tausczik and Pennebaker, 2010) and Empath

(Fast et al., 2016). LDA topic modeling is a commonly used tool to model the latent

structure of a collection of text documents (corpus). Blei et al. (2003) propose that

each document can be represented as a mixture of a small number of topics, and dis-

tribution of words characterizes each topic. The document collection (corpus) can be

described as a distribution over the latent topics (Maier et al., 2018).

LIWC is a type of computerized text analysis that counts words in meaningful psy-

chological categories (Pennebaker et al., 2001), such as emotions and cognition. LIWC

contains a human-curated dictionary that includes more than 60 topics related to psy-

chological processes. The algorithm assigns topic scores to the document by counting

the presence of vocabularies in each document. LIWC is able to detect meaning in

a wide range of context, including the following categories described in Pennebaker

et al. (2001)’s work:

• attentional focus: pronouns and verb tense

• emotionality: positive and negative emotions

• social relationships: words provide information about who has more status,

whether a group is working well together and quality of a relationship.

• thinking styles: conjunctions, nouns, verbs and cognitive mechanisms

• individual differences: self-focus, cognition complexity, social references and

other cues that help to identify individual differences.

Empath is similar to LIWC except that it uses neural embeddings to discover new

related terms, in addition to a small set of seed words in a category. The new related

terms were validated with a crowd-powered filter. Emapth’s categories were highly

correlated with categories in LIWC (r = 0.906)(Fast et al., 2016).
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A large amount of literature has shown that topics extracted with LIWC and Em-

path were both associated with users’ self-reported depressive symptom levels (De Choud-

hury et al., 2013; Tsugawa et al., 2015; Reece et al., 2017).

2.3.5 Conclusion

This overview explains that the binary classification approach is the most commonly

applied technique to infer depressive symptoms. Fewer than 10% of the studies adopted

qualitative or textual analysis. Affect, ego-network, posting frequency and volume,

topics, and personal pronouns are the most common social media signals reported

as important to predicting users’ depressive symptom levels in classification. Topics

and themes associated with cognitive processing, such as self-worthlessness, suicidal

ideations and cognitive distortions were often identified in studies that focused on tex-

tual analysis.

These important key signals vary according to the types of social media platforms.

Affective signals extracted from microblogging are more important for inferring de-

pressive symptoms than affective signals from discussion forums. Finally, we identify

that aggregating sentiment over time was the most commonly used approach to extract

affective features from social media text. There is a potential to improve the represen-

tation of affective patterns so that their structures are more similar to mood defined in

psychology literature. For topic features, clustering methods (e.g., LDA) and lexicon-

based approach (e.g., LIWC) are often used to extract themes or topics in the social

media text. There is a potential to expand the lexicon dictionary, thus enabling it to

cover more psychological constructs or symptoms related to other types of disorders

or risky behavior.

2.4 Research Gaps

The literature review in this section summarizes five types of features that were often

used in machine learning pipelines to infer social media users’ depressive symptoms.

We identify the challenges and research gaps in the current literature: the affective

feature is most frequently reported as an important feature to infer depressive symp-

toms. This finding echoed with the psychopathology literature, which suggested mood

(a form of affective experience) is an important category of symptom for depressive

disorders. However, the representation of affective patterns in existing studies that use
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social media data does not reflect the structure of mood. To address this challenge,

Chapters 3 and 4 focus on representing mood expressed in social media text.

Another important finding is that topics are also frequently reported as an important

category of feature, especially topics that reflect somatic complaints, suicide, and med-

ications. However, the current techniques on topic extraction mainly rely on lexicon-

based algorithms such as LIWC. Lexicon-based algorithms may be good at capturing

topics that can be reflected by single keywords, such as personal pronouns and so-

matic symptoms but can hardly capture complicated psychological processes, such as

the cognitive process that reflects depressive symptoms. Therefore, in Chapter 6, we

explore methods to identify cognitive distortion from social media text.

A number of studies find that cognitive distortion can be identified in social media

text (Simms et al., 2017; Ford et al., 2019; Zogan et al., 2020). Ophir et al. (2017) sug-

gest the cognitive distortions expressed in social media text were highly correlated with

depressive symptoms in a sample currently undergoing therapy treatment. However, it

is uncertain whether this finding generalizes well in other samples.

The lexicon-based topic approach does not cover topics that are specific to a certain

type of mental disorder or risky behavior. In Chapter 7, we experiment with manually

compiling a dictionary of topic features to predict suicidal risk.

Finally, all the existing studies focused on users’ content and reposted content are

often removed because they may not reflect the users’ thoughts. There is also copy-

and-paste content in the post. This content is usually lyrics or quotations. It is unclear

whether this content also reflects users’ well-being and personalities. In chapter 5, we

explored whether lyrics and quotes also contribute to social media users’ depressive

symptoms.
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Chapter 3

Identify Affective Symptoms from

Social Media Text

Affective literature suggests that different aspects of affect, such as the magnitude,

alternation, and categories, reflect on a person’s tendencies for regulating emotions.

These tendencies are symptoms and perpetrators of depression. Existing studies ex-

amine social media signals and depression have found the variation of affect reflects

depressive symptom level (De Choudhury et al., 2013; Reece et al., 2017). However,

the alternation of different affective categories is not yet studied in the context of social

media data. In this study, we analyze the content originality and affect polarity of 4086

posts from 70 adult Facebook users contributed over two months. Social media data is

usually sparse because users do not post content everyday. Existing studies often use

zero or mean to represent the days when users did not post any content. Here we in-

troduce a silence token to represent days when the user does not post any content. Our

results show that more extrovert participants tend to post positive content continuously,

and that more agreeable participants tend to avoid posting negative content. We also

observe that participants with stronger depression symptoms posted more non-original

content. We recommend that transitions of affect pattern derived from social media

text and content originality should be considered in further studies on mental health,

personality, and social media.

3.1 Motivation

Many people express rich moods and emotions in their social media posts. Psychol-

ogists use the word “affect” to describe these experiences of feelings and emotions.

35
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Affect plays an important role in cognition (Gross et al., 1998) and wellbeing (Silvera

et al., 2008). Therefore, affective expressions on social media text have emerged as

a key variable for making inferences about users’ personality traits (Bachrach et al.,

2012; Golbeck et al., 2011; Farnadi et al., 2013) or mental health (De Choudhury et al.,

2013; Coppersmith et al., 2014; De Choudhury and De, 2014; Bazarova et al., 2015).

Existing studies formulate the associations between affect and wellbeing based on

the frequencies of affective words used in social media text (Schwartz et al., 2013;

Yarkoni, 2010; Golbeck et al., 2011; Park et al., 2015; Chen et al., 2020a). However,

patterns of affect are an important class of symptoms of affective disorders (Rotten-

berg, 2005; Frijda, 1993; Bylsma et al., 2011; Sheppes et al., 2015; Thompson et al.,

2012; Houben et al., 2015; Carlo et al., 2012). Personality may also predispose in-

dividuals to specific moods (Rusting and Larsen, 1995; Rusting, 1998). With this in

mind, we examined how patterns of affect expressed in social media text is related to

with users’ mental health and personality.

While non-original content has been extensively studied in opinion mining (Agar-

wal et al., 2011; Balahur et al., 2009), it has been comparatively neglected in the study

of psychological interpretations of social media data. However, social media users of-

ten use lyrics or quotes to communicate their emotions. Such content comes from other

media, such as literature, videos, films, or music, which can evoke strong emotional

experiences (Juslin and Laukka, 2004; Scherer et al., 2001; Scherer, 2004). Since the

affect of the non-original content may be different from the social media users’ affect

when they are post this content, we differentiated between original and non-original

content in our analysis.

This pilot study was designed to examine the following research questions:

1. Changes in Affect: To what extent do changes in the affect of social media posts

correlate with users’ personality traits and mental wellbeing?

2. Originality: To what extent does the use of non-original material in their posts

correlate with users’ personality traits and mental wellbeing?

Following best practice in sentiment analysis and opinion mining, we distinguish be-

tween positive, negative, neutral, and mixed (both positive and negative) affect (Moila-

nen and Pulman, 2007; Rosenthal et al., 2015; Agarwal et al., 2011).

We used a well known dataset, myPersonality (Bachrach et al., 2012; Youyou

et al., 2015), that enriches Facebook posts with many validated psychological mea-

sures. In MyPersonality, positive mental wellbeing is measured using the Satisfaction
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with Life Scale (Diener et al., 1985, 1999), while the presence of depressive symp-

toms is assessed using the Center for Epidemiologic Studies Depression scale (CES-

D) (Radloff, 1977). Personality traits are established following the OCEAN model

(McCrae and John., 1992), which consists of the five traits Openness to Experience,

Conscientiousness, Extroversion, Agreeableness, and Neuroticism.

We included all 70 adult users who provided sufficient, regular Facebook data for

two months before completion of the CES-D questionnaire, and corrected for multiple

comparisons in our statistical analysis. We find that the transitions from one affective

state to another expressed in social media posts give us a highly nuanced view of

personality traits. While the amount of non-original posts in ones’ social media status

updates is closely linked to depression symptoms, this link is mediated by neuroticism.

3.2 Background

Affect refers to both mood and emotion. Moods are slow-moving states that can be

influenced by people, objects or situations, whereas emotions are quick reactions to

stimuli (Rottenberg and Gross, 2003; Watson, 2000), and highly situation- or object-

specific (Bylsma et al., 2008). Mood influences the probability of having emotions

of the same valence—negative mood facilitates negative emotions, and positive mood

makes positive emotions more likely (Rottenberg, 2005; Fredrickson, 1998). Affect is

is an important predictor of mental wellbeing, including a person’s overall satisfaction

with life (Headey et al., 1993; Singh and Jha, 2008; Chen et al., 2017), and the level of

symptoms of depression (Tsugawa et al., 2015; Coppersmith et al., 2015; Resnik et al.,

2015).

Personality also predisposes people to certain affective states (Rothbart et al., 2000).

While neuroticism is associated with negative affect (Pishva et al., 2011), positive af-

fect is strongly linked to extroversion (Watson and Clark, 1997; Fujita et al., 1991).

Extroverts experience more positive affect because they engage in more social situa-

tions (Diener and Emmons, 1984; Ryan and Deci, 2001). Individuals who score high

on agreeableness have a greater ability to regulate negative affect (Meier et al., 2006;

Haas et al., 2007). This relationship between affect and personality is also reflected

in social media studies (Lin et al., 2017; Golbeck et al., 2011; Schwartz et al., 2013;

Pennebaker and King, 1999). For example, people who use negative affective words

in their social media posts tend to have lower conscientiousness, lower agreeableness

(Golbeck et al., 2011), and higher neuroticism (Pennebaker and King, 1999).
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In psychology, quantitative representations of affect are typically multidimensional

(Russell, 1980). In this study, we focus on valence, which is represented in many

classic affect models. Traditional measures, such as the Positive and Negative Affect

Schedule (PANAS) (Watson et al., 1988), report the strength of positive and negative

valence. Mixed valence can occur when people experience ‘dialectic’ emotion, which

is a mix of positive and negative emotions (Russell, 2003; Schimmack et al., 2002).

The personality trait measurements in myPersonality are based on Costa and Mc-

Crae’s well-validated OCEAN model (McCrae and John., 1992). The model consists

of five dimensions: extroversion, agreeableness, conscientiousness, neuroticism, and

openness to experience. Neuroticism refers to the degree of emotional stability. Open-

ness reflects the degree of creativity and curiosity. Conscientious individuals tend to

be careful and diligent. Extroversion refers to a tendency to be energetic and friendly.

Agreeableness reflects the tendency to be compassionate and to cooperate with others

(Digman, 1990). The five-factor structure has proved to be robust in both self and peer

ratings (McCrae and John., 1992), children and adult (Mervielde et al., 1995), across

different cultures (McCrae and Allik, 2002), and stable over time (McCrae and John.,

1992).

3.3 Data and Methodology

The myPersonality data set (Bachrach et al., 2012; Youyou et al., 2015) contains more

than 180,000 Facebook users, enriched with a variety of additional validated scales

(Bachrach et al., 2012). The collection of myPersonality data complied with the terms

of Facebook service, informed consent for research use was obtained from all users,

and researchers had to seek permission to use the dataset. Permission for the use of this

database was obtained before it closed for new studies in 2018. The study was granted

Ethical Approval by the Ethics Committee of the School of Informatics, University of

Edinburgh.

3.3.1 Choice of Scales

From the extensive data collected within myPersonality, we chose two scales for quan-

tifying mental wellbeing, the Center for Epidemiologic Studies Depression Scale (CES-

D) and the Satisfaction with Life Scale (SWL). The CES-D scale measures a key aspect

of mental health, the presence of depression symptoms (Radloff, 1977). The scale
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has high internal consistency, test-retest reliability (Radloff, 1977; Orme et al., 1986;

Roberts, 1980), and validity (Orme et al., 1986). Following previous social media stud-

ies (De Choudhury et al., 2013; Park et al., 2012), we adopt a score of 22 or higher as

a cut-off value for likely depressive disorder (maximum score: 60). The 5-item SWL

scale has been tested across different cultures and age groups (Pavot and Diener, 2009)

and has been found to have high internal consistency and temporal reliability (Diener

et al., 1985). Personality traits were measured using a 100 item scale using items from

the open source International Personality Item Pool (Goldberg et al., 2006) that were

validated against the the NEO-PI-R (Schwartz et al., 2013) instrument.

3.3.2 Selection of Participants

The data set was originally designed for a study of the effect of mental wellbeing

and values on social media disclosure. We therefore selected only those participants

who had completed the CES-D scale, the SWL scale, and the Schwartz Value sur-

vey (Schwartz, 1992) in addition to the full personality questionnaire. 301 participants

in myPersonality provided full data for all four scales.

To ensure we had enough posts to assess the frequency of affect transitions, we only

included users in our sample that regularly updated their public Facebook feed (regular

users). We defined regular users as individuals who posted on average twice a week or

more. We estimated posting frequency using the average post count per day during the

sampling frame. If an individual had a post count per day of 0.3, this individual made

around 110 posts in 365 days, which was roughly equivalent to an average of 2 posts

per week. Of the original 301 participants, 122 (40.5%) were regular users.

Since the CES-D asks about symptoms in the past week, we excluded a further 31

users who had not posted any content in the week before completing the CES-D scale.

We then focused on a 60-day span (two months) before CES-D completion, to ensure

we had sufficient data to track the development of users’ moods. We removed 14 users

who contributed less than 20 posts during that time. Finally we removed four users

who were under 18 year old and three users with more than 20% of the posts written

in a language other than English, because English was the common language of the

annotation team. The final sample consisted of 4086 posts from 70 users.
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3.3.3 Corpus Annotation

3.3.3.1 Social Media Affect

For the purpose of this study, we refer to the affect shown in social media posts as

social media affect. In this study, we operationalize valence as the post author’s attitude

towards a primary target of opinion, following (Mohammad, 2016). We refer to the

‘dialectic’ affective state as mixed valence. If there is no clear trend towards positive

or negative affect, the associated valence is neutral.

After extensive piloting, we created an annotation guideline (available as part of

the supplementary material) that was largely based on (Mohammad, 2016)’s work on

defining the valence of a social media post. Each post is assigned one of four affect

polarities: + (positive), - (negative), ± (mixed), or 0 (neutral). We used manual an-

notation since this is commonly used in computational linguistics to create a baseline

gold standard data set for further analysis (Teufel, 1999).

Out of the 4086 posts, 2698 (66%) were annotated by a team of six trained an-

notators and 1185 (29%) by the first author. 5% of all posts were annotated by all

seven annotators to establish inter-rater reliability, which was measured using Cohen’s

κ (Gamer et al., 2012). Average inter-rater reliability between the first author and the

annotators is 0.88, and 0.78 among the six annotators.

After annotation, most of the posts were of positive valence (N= 1588, 39%), fol-

lowed by negative valence (N=1164, 28%), neutral valence (N=982, 24%) and mixed

(N=312, 8%). 40 posts were excluded from analysis, since they did not contain English

text.

3.3.3.2 Originality

We define posts that consist of quotes from sources such as song lyrics, books, or

movies as non-original content; all other content was defined as original. Since non-

original content might not directly reflect the user’s moods or emotions, annotators

were instructed to annotate such posts according to the likely emotions of the author.

For example, if a post consists of an uplifting motivational quote, annotators consid-

ered the underlying valence to be positive.

In order to establish the originality of a post, we retrieved the first page of results

obtained by searching for the post text using the Google API. For each web page on the

first page of results, we computed the cosine similarity between the the post content

and the page content. Posts with a cosine similarity greater than 0.96 were labeled
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as non-original, and posts with a cosine similarity between 0.92 and 0.96, where the

website links or website names included the words ‘lyrics’ or ‘quote’ were labeled as

potentially non-original. Posts with a cosine similarity lower than 0.92 were labeled as

original. The cutoff points were determined based on a sample of 300 posts manually

annotated for originality by the first author. On these posts, the classifier yields 100%

recall, 81% precision, and an F1-score of 0.89. In our data set, 287 (7%) of all posts

were identified as non-original.

3.3.4 Modeling Affect Transitions

We examine two types of transitions:

• Post-Level versus Day-Level: Post-level transitions focus on changes in affect

between subsequent social media posts, whereas day-level transitions focus on

changes in overall dominant affect between subsequent days.

• Silence versus Non-Silence: Not all users post every day. In our default models,

these silent days are ignored, whereas in our with-silence models, days without

posts are explicitly modeled as Silence.

The post-level social media affect is likely to be influenced by underlying emotions,

which change more quickly, whereas the day-level social media affect is likely to be

influenced by underlying mood during the day. Day-level affect was calculated as

follows. If the majority of the posts pi j on day d j have the same affect a, then the

affect of day d j is set to a. If there is an equal number of positive (+) and negative (-)

posts, or if the number of mixed affect (±) posts is equal to the number of posts with

other types of affect, affect is set to ± (mixed). For transitions between original and

non-original posts, we only consider the post-level representation. Table 3.1 shows an

example of the affect and originality representations.

3.3.5 Statistical Analysis

Demographic differences between users above and below the CES-D cut-off score for

probable depression were assessed using Wilcoxon-Mann-Whitney tests (R-package

‘Stats’).

We used Pearson correlation coefficients to assess the significance of correlations

between social media data on one hand and personality traits and mental wellbeing on
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Table 3.1: Affect and originality representation for a sample week

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Affect

Post-Level + - - + - + + + S ± 0 + -

Day-Level - + + S ± 0 ±
Originality

Post-Level O N O O O N N N S O O N N

Note: ↔, negative valence: −, positive valence: +, mixed valence:±, S: silence day,

original content: O, non-original content: N

the other hand. Due to the small sample size and the number of correlations computed,

all correlation coefficients were estimated using a permutation approach (Higgins,

2003) as implemented in the R Package jmuOutlier (Garren, 2017). Correlations that

reach p < 0.01 or better are reported as significant; correlations that reach p < 0.05

are reported as trends in the data. For all correlations reported in the paper, we give

the estimated correlation coefficient, the bootstrap 95% confidence interval, and the

corresponding coefficient of determination r2.

3.4 Results

3.4.1 Demographics and Baseline Statistics

Table 3.2 shows the basic statistics of our sample. Our data predominantly comes from

single female Caucasian young adults. The average CES-D score is above the cut-off

for possible depressive disorder.

Thirty-nine (56%) participants had a CES-D score of 22 or higher (mean: 33, SD:

6.5), which means that it is possible that that they have depressive disorder, and 31

(44%) had a score of 21 or lower (mean: 12, SD: 6). Figure 3.1 Plot 1 shows the

density distributions of personality trait and SWL scores for three groups, the full

sample, people above the cut-off, people below the cut-off..

Participants with possible depressive disorder are less extroverted (Z = 375, p<0.005),

have higher levels of neuroticism (Z = 990, p<0.001), lower levels of conscientious-

ness (Z = 375, p<0.001), and lower satisfaction with life (Z = 323, p<0.001). Detailed

results are reported in Figure 3.1 Plot 2.
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1. Density Distribution of variables in high/low CES-D groups

2.Correlations between variables

3. Density Distribution of CES-D score in the whole sample 

score

scorescore

score

score score

Figure 3.1: Basic statistics for personality trait scores, SWL and CES-D scores. Plot

1 shows density plots of the distribution of of personality traits and SWL for all partic-

ipants, participants with CES-D >=22 (high CES-D), and participants with CES-D <

22 (low CES-D). The dotted line shows the median. Plot 2 is a heat map of correlations

between personality traits, SWL and CES-D scores (***: p < 0.001). Plot 3 illustrates

the distribution of the CES-score in the entire sample (N = 70). The dotted line indicates

the cutoff score of 22.
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Table 3.2: Demographics of the sample.

Variable N (%) Variable Mean (SD)

Gender Age

- Female 49 (70%) - Female 23.52 (6.56)

- Male 21 (30%) - Male 22.84 (7.13)

Ethnicity Personality

- Caucasian 54 (75%) - Openness to Experience 4.19 (0.46)

- Black 3 (4%) - Conscientiousness 3.20 (0.75)

- Asian 5 (7%) - Extraversion 3.11 (3.83)

- other 8 (14%) - Agreeableness 3.55 (0.68)

- Neuroticism 2.98 (0.89)

Living Status Mental Wellbeing

- Living with partner 8 (10%) - SWL 4.18 (1.44)

- Single 54 (77%) - CES-D 23.79 (11.86)

- Married 5 (7%)

- Unknown 3 (4%)

Note: Caucasian includes White people of American, British, and other origins; Black

includes African Americans and Black people from Europe. SWL: score for Satisfaction

with Life Scale. CES-D: Center for Epidemiologic Studies Depression Scale,
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All scales are normally distributed (Shapiro-Wilks test), except for openness to

experience (W=0.96, p < 0.05), and satisfaction with life (W=0.95, p < 0.05), which

are bimodal. Figure 3.1 Plot 2 shows the correlations between different personality

dimensions. As expected, the five personality dimensions are not orthogonal.

3.4.2 Social Media Affect: Frequencies versus Transitions

For overall frequencies of affect category, the only clear correlation is between ex-

troversion and positive content. Overall, more extroverted participants are more likely

to have days where they make predominantly positive posts (r=0.29, p < 0.01, 95%CI

= (-0.15, 0.32), r2 = 0.08). In addition, participants who score higher on agreeableness

tend to post fewer negative posts and have fewer days with predominantly negative

posts (both r=-0.26, p < 0.05, 95%CI = (-0.48, -0.04), r2 = 0.07).

When we look at transitions between affect categories, however, a more nuanced

picture emerges. Table 3.3 summarizes the correlations between personality, well be-

ing and transition types. Significant correlations are summarized in Table 3.4. Due to

the number of correlations presented, we choose a cut-off of p < 0.01, which is stricter

than the normal p < 0.05.

Several transition types are correlated positively and negatively with Extroversion

and Agreeableness. Neuroticism, conscientiousness, and SWL show interesting trends

(p < 0.05) that do not reach significance (c.f. Table 3.3

More extroverted participants are more likely to post predominantly positive con-

tent several days in a row (day-level, +↔+, r=0.30, p < 0.001, 95% CI = (0.06, 0.54),

r2=0.09). They have more transitions to or from a silence day with a positive post

(post-level with-silence, S↔+, r=0.29, p < 0.01, 95% CI = (-0.01, 0.46), r2=0.08).

This pattern fits well the overall predominance of posts with positive affect. Extroverts

are also less likely to alternate between days with neutral and days with non-neutral

content (day-level, for both 0↔+ and 0↔-, r=-0.28, p < 0.01, 95% CI = (-0.52, -0.09),

, r2=0.08).

People who score higher on agreeableness are less likely to follow a post with

negative affect with another negative affect post (-↔-, post-level with-silence: r=-0.37,

p < 0.001, 95% CI = (-0.50, -0.06) , r2=0.14); This tendency is much less pronounced

on the day-level (-↔-, r=-0.22, p < 0.1, 95% CI = (-0.44, -0.02) , r2=0.04). On top

of that, they are more likely to alternate between days with mixed valence and silence

(day-level, ±↔S, r=0.28, p < 0.01, 95% CI = (-0.01, 0.46), r2=0.08, post-level with-
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Table 3.3: Correlations between personality, SWL, and CES-D scores and affect transi-

tions. Number of participants N=70

Post-level representation (Post Plus Silence)

S↔S -↔- +↔+ ±↔± 0↔0 +↔- ±↔+ ±↔- ±↔0 0↔+ 0↔- S↔+ S↔- ±↔S S↔0

NOcc 1238 346 542 29 230 599 143 134 100 424 414 641 384 137 211

ope 0.09 -

0.17

-0.17 -

0.16

-0.05 -0.14 -

0.07

-

0.08

0.11 0.01 0.03 0.17 0.00 0.13 0.03

con -0.06 0.01 0.09 -

0.09

-0.15 0.11 0.00 -

0.01

-

0.14

-0.07 -0.08 0.16 0.00 0.15 -

0.15

ext 0.04 -

0.12

0.16 -

0.10

-0.19 -0.06 -

0.03

-

0.12

-

0.09

-0.09 -0.17 0.29** -

0.04

0.00 -

0.18

agr 0.14 -
0.37***

0.03 0.02 -0.15 -0.22* 0.08 0.04 0.04 -0.04 -0.23* 0.23* -

0.04

0.29** -

0.13

neu -0.07 0.19 0.18 0.18 -0.03 0.23* 0.11 0.04 0.02 0.05 -0.05 -0.22* -

0.03

-
0.23*

-

0.13

swl 0.04 -

0.10

-0.13 -

0.10

0.06 -0.03 0.02 -

0.05

-

0.04

0.02 -0.08 0.02 0.16 -

0.02

0.18

CESD -0.04 0.19 0.08 0.09 0.00 0.04 0.15 0.07 0.03 -0.06 0.11 -0.20· 0.00 -

0.11

-

0.03

Post-level representation (Post only), N = 70

NOcc 396 694 34 313 728 188 166 142 547 502

ope -

0.16

-0.05 -

0.06

-0.02 -0.05 0.06 -

0.01

0.14 0.09 0.13

con -

0.07

0.18 -

0.07

-0.23* 0.08 0.14 0.10 -

0.11

-0.13 -0.12

ext -

0.04

0.33*** 0.04 -0.24* 0.05 0.08 -

0.10

-

0.15

-0.16 -0.20·

agr -
0.28**

0.18 0.00 -0.16 -0.10 0.26* 0.28** 0.13 0.03 -0.26*

neu 0.14 0.00 0.11 -0.02 0.16 -

0.14

-

0.09

-

0.08

0.01 -0.12

swl 0.00 -0.12 -

0.11

0.11 0.02 0.09 0.09 -

0.02

0.08 -0.04

CESD 0.14 -0.04 0.03 0.04 -0.03 -

0.06

-

0.11

0.04 -0.11 0.13

Day-level representation, N = 70

NOcc 228 281 271 267 304 287 303 296 298 261 311 242 259 261 261

ope 0.12 -

0.17

-0.11 -

0.05

-0.02 -0.08 0.00 -

0.14

-

0.07

-0.01 -0.02 0.12 -

0.02

0.19 0.13

con -0.06 -

0.03

0.25* 0.05 -0.01 0.03 -

0.03

-

0.04

-

0.16

-0.19 -0.12 0.08 0.10 0.06 -

0.07

ext 0.06 -

0.11

0.30*** -

0.03

-0.14 0.04 0.14 -

0.13

0.01 -
0.28**

-
0.28**

0.24* -

0.08

0.02 -

0.17

agr 0.11 -

0.22

·

0.15 -

0.05

0.08 -0.12 0.16 -

0.06

0.11 -0.08 -0.17 0.15 -

0.07

0.28** -

0.09

neu -0.08 0.16 0.00 0.19 -0.17 0.21* 0.09 0.11 -

0.01

0.12 0.08 -0.14 -

0.12

-
0.26*

-

0.03

swl 0.02 -

0.08

-0.01 -

0.08

0.25* -0.03 -

0.06

-

0.10

0.03 -0.06 -0.04 -0.02 0.12 0.06 0.08

CESD -0.03 0.11 -0.10 0.08 -0.18 0.02 0.10 0.08 0.08 -0.01 0.21· -0.18 0.03 -

0.16

0.05

Note: Pearson correlation P-value (permutation testing): · < 0.1, * < .05, ** < .01, ***

< .001, bidirectional transition types: ↔, negative valence: −, positive valence: +, mixed

valence: ±, neutral: 0, silence day: S, NOcc: number of occurrences of each transition

type, ope: openness, con: conscientiousness, ext: extraversion, agr: agreeableness, neu:

neuroticism, swl: Satisfaction with Life Scale, CESD: Center for Epidemiologic Studies

Depression Scale



3.4. Results 47

Table 3.4: Summary of the significant correlations between transition states and the five

personality traits (p < 0.01)

Transitions
Post-Level

(with-silence)

Post-Level

(without-silence)
Day-Level

Extraversion S↔ + ↑ — —

0↔ + — — ↓
0↔ - — — ↓
+↔ + — ↑ ↑

Agreeablness -↔ - ↓ ↓ —

±↔ S ↑ — ↑
± ↔ - — ↑ —

Note: ↓ indicates a significant negative correlation at p < 0.01 or better, ↑ indicates a

significant positive correlation at p < 0.01 or better. — indicates that the correlation is not

significant at this level. Bidirectional transition types: ↔, negative valence: −, positive

valence: +, mixed valence:± , neutral: 0, silence day: S.

silence, ±↔S, r=0.29, p < 0.01, 95% CI = (0.08, 0.52), r2=0.08) .

Participants with higher neuroticism tend to alternate between positive and negative

content, but this is only evident when we take silence into account (+↔-, post-level

with-silence: r=0.23, p < 0.05, 95% CI = (0.00, 0.47), r2=0.04, post-level without-

silence: r=0.16, 95% CI = (-0.08, 0.41), r2=0.025, day-level: r=0.21, p < 0.05, 95%

CI = (-0.46, -0.10), r2=0.04).

There are interesting differences in transition patterns that incorporate information

about silence days and those that do not. When disregarding silence days, we observe

that people with higher conscientiousness or extroversion are slightly less likely to

follow a neutral post with another neutral post (post-level without-silence, conscien-

tiousness, 0↔0, r= -0.23, p < 0.05, 95% CI = (-0.41, -0.04), r2=0.07; extroversion,

0↔0, r = -0.24, p < 0.05, 95% CI = (-0.41, -0.04), r2=0.07).

When we take into account silence days for computing transitions, we find several

more interesting trends. People who are more satisfied with life are more likely to

follow a neutral post with another neutral post (0↔0, day-level: r=0.25, p < 0.05,

95% CI = (-0.01, 0.44), r2=0.06). In addition, people with higher neuroticism are

more likely to alternate between positive and negative posts (0↔-, day-level: r=0.21,

p < 0.05, 95% CI = (-0.01, 0.40), r2=0.04), but less likely to make a positive post after

a period of one or more silence days (S↔+, post-level with-silence: r=-0.22, p < 0.05,
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95% CI = (-0.48, 0.00), r2=0.04). We found that silence to silence transitions are not

correlated with personality or mental health.

3.4.3 Post Originality

High CES-D scores are significantly correlated with posting non-original content (r=0.29,

p < 0.01, 95% CI = (0.10, 0.46), r2=0.08). There is a similar tendency for participants

with higher neuroticism scores (r=0.25, p< 0.05, 95% CI = (0.06, 0.43), r2=0.07). Ex-

amining transitions between post originality shows that these effects stem from slightly

different posting patterns. Users with higher CES-D scores tend to follow non-original

content with non-original content (N↔N, post-level with-silence, r=0.26, p < 0.05,

95% CI = (0.07, 0.43), r2=0.07) or to alternate between original and non-original con-

tent (N↔O post-level with-silence, r=0.27, p < 0.05, 95% CI = (0.08, 0.44), r2=0.07).

Users with higher neuroticism scores tend to post sequences of non-original content

(N↔N, post-level with-silence, r=0.25, p < 0.05, 95% CI = (0.06, 0.43), r2=0.05),

and are less likely to post original content before or after a period of silence (O↔S,

post-level with-silence, r=0.28, p < 0.05, 95% CI = (0.09, 0.45), r2=0.08).

Since neuroticism is closely linked to depression symptoms, we also computed a

partial correlation between content originality and CES-D while controlling for neu-

roticism. The resulting correlation was no longer significant (r=0.14, p= 0.22, r2=0.02).

Therefore, the association between content originality and depression symptoms might

be moderated by neuroticism.

3.5 Discussion

3.5.1 Main Findings

Many studies have found associations between the frequency of affective words used

in social media text and personality. However, existing studies often see affect as

static and only focused on the strength of bipolar valence (positive/negative). Instead,

our work focuses on affect patterns. We encode posting behavior, transitions between

affect states, and content originality. From a practical point of view, our technique

can supplement experience sampling techniques (Myin-Germeys et al., 2018) to help

clinicians and patients develop a more comprehensive view of a person’s affect pat-

terns, arrive at a better substantiated diagnosis, and make improved treatment deci-

sions. However, this depends on whether the patient is willing to share information
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from their social media feed with their therapist.

Overall, the correlations seen between affect transitions and personality traits are

in line with the consensus in the early literature (Gross et al., 1998). Extroverts tend to

produce sequences of positive posts. This behavior fits well with the positive emotional

core in extroverts stipulated in (Watson and Clark, 1997). Participants with higher

agreeableness are less likely to post sequences of negative posts. This could be due to

their ability to regulate negative affect (Meier et al., 2006; Haas et al., 2007).

Although the psychology literature suggests a strong association between negative

mood states and neuroticism (Rusting and Larsen, 1995), we did not find this in our

data. Our results are in line with previous studies of verbal cues to personality traits in

social media (Schwartz et al., 2013; Yarkoni, 2010; Golbeck et al., 2011; Park et al.,

2015). (Golbeck et al., 2011) found social media users who were more likely to talk

about anxiety were on the higher end of the neuroticism scale. We speculate that

self-presentation bias may influence how social media users regulate their expression

of negative emotions in their public posts. The only relevant association we found

was that social media users on the high end of neuroticism are more likely to switch

between posting positive and negative affective content. This finding aligns well with

the fact that high neuroticism is associated with high emotional instability (Costa and

McCrae, 1992).

The link between posting non-original content and elevated depression symptoms

appears to be moderated by neuroticism. This suggests that high levels of neuroti-

cism predispose users both to depressive symptoms, and to an indirect disclosure of

emotions through quotes and lyrics.

In our sample, the prevalence of depressive symptoms is higher than what would be

expected in general population. In the original CES-D paper, Radloff (1977) proposed

three levels of depression severity: low (0-15), mild-to-moderate (16-22), and high

(23-60). They found that only 21% of the general population scored above the low

symptom level. In contrast, in our sample, nearly half of the participants exhibit a

high level of symptoms (>22). Within the context social media studies of depression,

however, our data set is not exceptional. For many studies in the area, high symptom

individuals account for nearly half of the data set (Reece et al., 2017; Tsugawa et al.,

2015; Nadeem, 2016; De Choudhury et al., 2013; Husseini Orabi et al., 2018).

Our results support the claim that affect expressed in social media data text is asso-

ciated with social media users’ affect patterns in real life. However, the data set used

in this study is from the early 2010’s, and only covers the well established social me-
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dia platform Facebook. The associations found in this study are likely to be slightly

different from those found in another social network (e.g., Instagram) or in a new data

set collected ten years later.

3.5.2 Limitations.

Due to the restrictions imposed by the need for sufficient Facebook updates to allow

analysis, our final sample is relatively small. Given the size of the significant effects

we found in the data, power calculations indicate that a well-powered study should

include data from around 200 users (Schönbrodt and Perugini, 2013). It also skews

heavily towards younger female Caucasians with relatively low satisfaction with life

and strong depression symptoms. It is possible that other groups of users (e.g., non-

Caucasians, males) are less likely to disclose personal information about mood and

emotions on their public Facebook (Dosono et al., 2017; McDonald et al., 2019).

3.6 Conclusion

In this chapter, we conducted a pilot study to demonstrated the benefits of detailed rep-

resentations of social media affect for unpacking the relationship between personality,

mental wellbeing, and the content posted on social media. Importantly, our represen-

tations include non-binary affect categories (positive, negative, mixed, neutral), and

take into account content originality. As a consequence, we were able to obtain a more

detailed picture of the link between patterns of affect and depressive symptoms.

However, this sample size of this pilot study is too small to provide powerful ef-

fect size. In the next chapter, we enrich our data set with more in-depth analyses of

original versus non-original content, extend coverage by including a larger sample of

the myPersonality data set, and construct statistical models that allow us to observe

long-term trends in posting patterns.



Chapter 4

Using Affective Patterns from Social

Media to Infer Depressive Symptoms

In the previous chapter, I demonstrated representing the transition states of social me-

dia affect is beneficial to revealing the pattern of well-being and personality dimen-

sions. We further ask the question, are these representations associated with depressive

symptoms? In this chapter, we use vector and sliding window technique to construct

mood representations. These representations capture the variation and alternations of

mood. By using these representations to classify symptom levels, we have found that

they are associated with social media users’ self-reported depressive symptom lev-

els. However, binary classification results are not very meaningful to researchers who

study depression. We further use Gaussian Process Regression to monitor users’ latent

mood based on the mood representation. We observe less evidence of mood fluctua-

tion expressed in social media text from those with low symptom measures compared

to others with high symptom scores. Next, we leverage a daily mood representation

in Hidden Markov Models to estimate binary latent states that influence the observed

mood. We find these estimated latent states are associated with self-reported depressive

symptom level. However, we also find presence of potential subgroups driving these

findings. Our findings support the claim that for some people, derived mood from so-

cial media text can be a proxy of real-life mood, in particular depressive symptoms.

Combining the mood representations with other proxy signals can potentially advance

responsibly used semi-automatic screening procedures.

51
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4.1 Introduction

Depression is the leading cause of disability worldwide. Initial efforts to detect de-

pression signals from social media posts have shown promising results (De Choudhury

et al., 2013; Coppersmith et al., 2014; Park et al., 2012; Tsugawa et al., 2015; Nguyen

et al., 2014; Nadeem, 2016; Almeida et al., 2017). Given the high internal validity

(Reece et al., 2017; De Choudhury et al., 2013), results from such analyzes are poten-

tially beneficial to clinical judgement. The existing models for automatic detection of

depressive symptoms learn proxy diagnostic signals from social media data, such as

help-seeking behavior for mental health or medication names (De Choudhury et al.,

2013; Coppersmith et al., 2014). However, in reality, individuals with depression typi-

cally experience depressed mood, loss of pleasure nearly in all the activities, feeling of

worthlessness or guilt, and diminished ability to think (APA et al., 2013). Therefore,

a lot of the proxy signals used in these models lack the theoretical underpinnings for

depressive symptoms. It is also reported that the social media posts from many patients

in the clinical setting do not contain these signals (Ernala et al., 2019). Based on this

research gap, we propose to monitor a type of signal that is well-established as a class

of symptom in affective disorders — mood. Mood is an experience of feeling that can

last for hours, days or even weeks (APA et al., 2013). In this work, we attempt to enrich

current technology for detecting symptoms of potential depression by constructing a

“mood profile” for social media users.

The variance of quality and intensity of mood and emotional reactions are referred

to as “ affective style” (Davidson, 1998), which underlies one’s risks of developing

psychological disorders (Rottenberg and Gross, 2003; Akiskal, 1996). Assessing af-

fective style in everyday life is difficult in an experimental context because it requires

a costly extended period of data collection. In contrast, social media data contains

longitudinal information that reflect one’s emotional reactions to stimuli. Therefore,

it can provide researchers with an alternative lens to examine the affective style of an

individual, based on the premise that approval is obtained from social media users, and

data privacy is well-protected.

Existing models for detecting symptoms of potential depression often include mood

as a feature variable in the modeling process. However, there are a few methodolog-

ical gaps in these models. First, most of them do not distinguish between mood and

emotions. Emotion is a brief reaction to a specific stimulus, whereas mood has longer

temporal duration (Morris, 2012). Researchers using social media data to study mood
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or emotions often see a single post as reflecting mood (Bollen et al., 2011; Thelwall

et al., 2011; Celli et al., 2016). However, a single social media post is likely to reflect

a participant’s emotions at the time rather than ongoing mood (Batson et al., 1992;

Rottenberg, 2005). In this current work, we adopted the definition of mood from The

Diagnostic and Statistical Manual of Mental Disorders (APA et al., 2013): “mood is the

pervasive and sustained ‘emotional climate’, and emotions are ‘fluctuating changes in

emotional ‘weather’ ”. We sought to determine whether temporal mood representation

derived from social media text is associated with subsequent self-reported depressive

symptoms, and if so, what are the best approaches to represent mood as a time depen-

dent variable for future work?

Furthermore, a majority of models in this line of research often ignore the fact that

affect is inherently time dependent. Only a few models have adopted temporal affec-

tive patterns (Reece et al., 2017; De Choudhury et al., 2013). Most of these models also

formulate the associations between affect and depressive symptoms based on the aver-

aged affect (Schwartz et al., 2013; Chen et al., 2020a), but the transitioning from one

affective state to another was largely ignored (Rottenberg, 2005; Frijda, 1993; Bylsma

et al., 2011; Sheppes et al., 2015). In this work, we explored and tested multiple ap-

proaches to represent the temporal affective patterns and the transitions of affective

states.

Nevertheless, social media users often post sporadically. The sparsity of social me-

dia data posits a big challenge in the modeling process. Most of the existing studies

imputed missing values with the mean or simply removed users with a lower word

count (De Choudhury et al., 2013; Wang et al., 2013a). Removing outliers is benefi-

cial to the modeling process. However, it may result in removing those with severe

symptoms from the sample, because disinterest in social contact and social withdrawal

(e.g., posting sparsely) is the core symptom of major depressive disorder (MDD) (APA

et al., 2013). Therefore, it is necessary to use some modeling techniques to include the

outliers.

Towards addressing the methodological gaps described above, we designed multi-

ple mood representations with the following characteristics: (i) Temporal features (ii)

Transitions from one mood state to another (iii) Posting behavior. Here we see all

the mood representations as a Mood Profile for social media users. We formulate the

following questions to explore the roles of mood in predicting depressive symptoms:

1. Are mood representations derived from social media text associated with the

severity of self-reported depressive symptoms?
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2. Which representation in the mood profile is most predictive of the severity of

self-reported depressive symptoms?

Our main contributions in this study are:

1. Constructing a mood profile for social media users based on their status up-

dates. The mood profile encompasses representations that encoded the variance

of mood intensity, alternations of mood states and the behavior of not posting.

2. Examining the associations between the social media mood profile and users’

depressive symptoms level.

3. Examining which representation in the mood profile is more predictive to de-

pressive symptoms level.

In our work, we analyzed a set of 93,378 posts from 781 Facebook users who had

consented to the use of their posts and answers to related questionnaires for research

reasons. For each user, a mood profile is constructed based on their social media text.

We found that people with low symptom level tend to have less fluctuations in their

mood pattern. We also modeled the mood representation with a Hidden Markov Model

and we found the hidden states estimated based on the mood representation is highly

related to depressive symptoms. Nevertheless, combining several representations in

the mood profile is more predictive to depressive symptom levels (f-score: 0.62) than

using one representation only. Our results suggest the mood profile derived from social

media text can potentially serve as a reference for an individual’s depressive symptom

level. The data-driven, evidential nature of our approach provides us with better insight

into the relationship between mood derived from social media data and depression.

4.2 Background

4.2.1 Depression and Mood

Moods are slow-moving states of feeling, influenced by others, objects or situations

(Rottenberg and Gross, 2003; Watson, 2000). The pattern of mood reflects one’s vul-

nerability to developing affective disorders (Rottenberg, 2005; Rottenberg and Gross,

2003). Depressed mood is a symptom of mood disorders, such as major depressive

disorder (characterized by a persistent feeling of sadness) and dysthymia (persistent

mild depression) (APA et al., 2013).
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It is also well established that mood fluctuation and irritability are associated with

many somatic and sensory dysfunctions in the psychology literature. Frequent alter-

nating between moods (typically a few days) and irregular cycles of mood underlie

the behavioral features of a wide variety of conditions (Akiskal, 1996). In this study,

we expect to find associations between mood derived from social media text and de-

pressive symptoms similar to the psychology literature. Some level of associations has

been found in the existing studies. For example, participants with depressive symp-

toms use more negative affective words (e.g., sad, cry, hate) in their social media text

than those who do not (De Choudhury et al., 2013; Park et al., 2012).

4.2.2 Detecting Depressive Symptoms with Sentiment

Studies which examine emotions derived from social media data often adopt sentiment

analysis. This is a computational process that categorizes affect or opinions expressed

in a piece of text. The extracted affect is called sentiment (Pang et al., 2008). Most of

the existing works use averaged sentiment over a long period of time (e.g., one year)

as a feature to predict depressive symptoms (Coppersmith et al., 2014; Tsugawa et al.,

2015; Benton et al., 2017; Park et al., 2012; Tsugawa et al., 2015; Wang et al., 2013a).

In addition to that, the change of sentiment over time is also an important aspect

to infer affective disorders. However, only a few studies have included sentiment as

a time dependent feature in the model (De Choudhury et al., 2013). For example,

(De Choudhury et al., 2013) used the momentum of the feature vector in the screen-

ing detection. (Eichstaedt et al., 2018) include temporal posting patterns, but not the

temporal affect pattern. (Chen et al., 2018) used temporal measures of fine grained

emotions to predict users’ depressive states. Recently, (Reece et al., 2017) adopted

a Hidden Markov Model (HMM) to analyze the change of language in social media

posts and users’ depressive symptom. They found that the shift of words in status up-

dates indicate depression and (expand) PTSD symptoms. The above mentioned studies

adopted a sliding window technique to define dynamic sentiment (De Choudhury et al.,

2013; Chen et al., 2018; Reece et al., 2017). However, none of them systematically ex-

plored the size of time window and the slide increment, and most studies only use a

continuous sentiment value. In this work, we aggregated the sentiment in a sliding

window based on its dominant valence (e.g., positive, negative) or average value. We

also included the changes of affective states as a feature variable.
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4.2.3 Posting Behavior and depressive symptoms

Social media users are known to communicate selectively due to self-presentation bi-

ases (Kim and Lee, 2011; Vogel et al., 2014). They are less likely to reveal events that

project negatively on themselves (Mehdizadeh, 2010) due to stigma and fear of poten-

tial repercussions. Therefore, self-presentation biases leads to fundamental differences

between real-life mood and social media mood.

In addition to that, social media behavior can be counter intuitive. For example,

people with who are more depressed would be expected to post less than people with

fewer symptoms, however, several studies found that individuals with a history of de-

pression (determined from past medical history) tended to post more often compared

with people without depression (Smith et al., 2017). There are several potential reasons

for this. A person might not be severely depressed, they might be more comfortable

with talking about their feelings, they might see their social media as a place where

they can escape stigma, or they might have a social media support network for their

mental health. In this study, we see the behavior of not posting as a variable in itself

and observe if posting frequency has any predictive capacity with regards depressive

symptoms.

4.3 Data

For this study, the myPersonality data set (Bachrach et al., 2012; Youyou et al., 2015)

was used. It contains Facebook posts of 180,000 participants collected from 2010 to

2012, enriched with a variety of additional validated scales (Bachrach et al., 2012).

The collection of myPersonality data complied with the terms of Facebook service,

and informed consent for research use was obtained from all participants. Permission

for the use of this database was obtained in 2018, and Ethical Approval for this piece

of secondary data analysis was obtained from the Ethics Committee of the School of

Informatics, University of Edinburgh. Other publications using this dataset include

(Freudenstein et al., 2019; Sun et al., 2019).

4.3.1 Screening for Depressive Symptoms

From the participants in the myPersonality data, we focused on 1047 participants who

completed the Center for Epidemiologic Studies Depression Scale (CES-D). The CES-

D is a 20 item scale that measures the presence of depressive symptoms in the general
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population (Radloff, 1977). It is one of the screening tests most widely used by health

service provider. The symptoms measured in CES-D include mood, anhedonia, the

feeling of being worried, restless, changes in sleeping pattern and physical symptoms

(such as lost of appetite) and irrational thoughts. The scale has been found to have high

internal consistency, test-retest reliability (Radloff, 1977; Orme et al., 1986; Roberts,

1980), and validity (Orme et al., 1986).

(Radloff, 1977) proposed three groups of depression severity: low (0-15), mild to

moderate (16-22), and high (23-60). For using mood profile to predict self-reported

depressive symptoms, we followed the practice from previous social media studies

(De Choudhury et al., 2013; Park et al., 2012; Reece et al., 2017; Tsugawa et al., 2015)

and adopted 22 as a cutoff point to divide participants into high symptoms and low

symptom groups. This allows us to compare our model’s performances with previous

studies. For examining the mood fluctuation, we were additionally interested in a

more nuanced picture in different symptom levels. Therefore, we further distinguish

moderate and high symptom by following the original study from (Radloff, 1977).

Participants were divided into three groups using two cutoff points: 16 and 22.

4.3.2 Summary Statistics

Among the 1047 participants who completed the CES-D scale, we removed 110 par-

ticipants who were less than 18 years old. The CES-D survey was open from 2010

to December 2012, but MyPersonality only collected participants’ status updates from

January 2009 to December 2011. Since 2012 status updates were not available, we

further removed participants who completed the scale in 2012 and who posted at least

one post in the past year. Eventually we yielded a final set of 781 participants who had

posted 93,378 posts over the past year before they took the test.

The average number of posts per user over one year was 120, this distribution was

skewed by a small number of frequent posters, as evidenced by a median value of 73

posts per user. Figure 4.1 shows participants’ count of posts up to one year before they

completed the CES-D scale. The mean age of the participant is 26 (sd = 11.7), 333

(43%) participants are male and 448 (57%) are female. Table 4.1 shows further details

of the participants, including the ethnicity, gender and marital status.

Overall, our sample has a relatively high mean CES-D score (m = 26.3, sd = 8.9),

and the proportion of high symptom class to low symptom class is 1.6:1 (cutoff 22),

see Figure 4.2. (Radloff, 1977) found only 21% of the general population scored at and
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Figure 4.1: Distribution of post count from participants

Note: Figure demonstrates the distribution of post count over one year before participants completed

the CES-D survey scale. Size of the bin is 10.

Table 4.1: Demographic Information of the 781 Participants

Ethnicity No. % Marital Status No. %

Black 38 4.3 Single 574 73.8

Asian Chinese 26 3.3 Divorced 28 3.5

Middle Eastern 13 1.7 Married 27 3.4

Native American 13 1.6 Married with Children 38 4

Other Asians 84 10.8 Partner 78 10

Not Specified 96 12.2 Not specified 36 4.5

White-American 309 39.2

White-British 71 8.9

White-Other 131 17.1
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above an arbitrary cutoff score of 16. However, we note the current dataset is not an ex-

ceptional case. For example, (Reece et al., 2017) used a dataset that contained 105 de-

pressed participants and 99 non-depressed participants, other studies have a proportion

of high symptom to low symptom class as 2:3 (De Choudhury et al., 2013; Tsugawa

et al., 2015; Nadeem, 2016), 3:5 (Husseini Orabi et al., 2018). All of these studies re-

cruited a sample biased towards potentially high symptom individuals compared with

empirical studies which selected participants in a random trail. We speculate that there

is a bias in those individuals self-selecting for this type of research.

Figure 4.2: Distribution of CES-D score

Note: Figure demonstrates the density distribution of the CES-D score, red line indicate the cutoff point

22

4.4 Constructing Mood Profile

A mood profile is constructed for each participant. Each mood profile encompasses

sets of features which represent mood, the change of mood and the transition of mood

states. Since mood is time dependent, we use a sliding window technique to construct

the temporal features. A window starts from day 0 (the day when users completed

the CES-D scale) and moves backwards for up to one year. Choosing the size of a

time window presents a challenging question, how granular should a time window be?

(De Choudhury et al., 2013) look at a user’s tweets in a single day. (Reece et al., 2017)
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use both day and week as the time window because most of the participants did not

generate enough daily content. In this paper, we define the size of the time window

as measured by day d ∈ D := {3,7,14,30}, see Table 4.2 for the notations. The size

of the slide increment determines how much information the two adjacent windows

share. The slide increment is also measured by day s ∈ S := {3,7,14}.

Another challenge is to decide how far back do social media posts indicate symp-

tom level. Earlier studies use data up to one year before participants completed the

self-reported symptom measurement (De Choudhury et al., 2013), (Reece et al., 2017)

found that symptoms can be predicted up to nine months before the official disclosure

of the illness. In the current work, each representation in the mood profile was con-

structed with posts written up to one year before the participant completed the CES-D

survey.

4.4.1 Sentiment Scores

We used the sentiment scores retrieved from SentiStrength (Thelwall et al., 2010).

SentiStrength extracts sentiment from the text based on a function that describes how

well the words and phrases of the text match a predefined set of sentiment-related

words.

4.4.2 Temporal Mood Representations

Since many social media users do not post every day, we encoded the behavior of

not posting as ”Silence” and we defined four mood states: positive, negative, neutral

and silence. We adopted two approaches to define mood within a time window: most

frequent mood state over a time window and average sentiment over a time window, see

Table 4.2. If two mood states had the same high frequency in the same time window,

we defined the mood as mixed. Since neutral mood state is relatively less frequent

in compare with the rest of the mood states, we tend to give neutral more weights.

If other mood states have the same frequencies as neutral, we defined the mood as

neutral. For the average sentiment, silence days as missing values are imputed by the

mean. We also constructed features that represent the change of mood (De Choudhury

et al., 2013), see mood momentum in Table 4.2.
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Table 4.2: Notations for Mood Profile

Variable Notation Description

Window Size d A period of time within d ∈ D days, d ∈ D :=

{3,7,14,30}
Slide Increment s A sliding window move forward by every s ∈ S days,

s ∈ S := {3,7,14}
Sentiment v Sentiment score of a single post

Day Sentiment V Arithmetic mean of sentiment in one day V =
v+ ...vi

i
Moodµ Mµ Arithmetic mean of day sentiment over a time window,

Mµ =
V + ...Vd

d
Moodω Mω Most frequent sentiment over a time window, categori-

cal

Mood Momentum ∆M Difference between Mµ in two time windows

Mood States Transition Tr The probability of a user transfer from one mood-state

to another, a mood state is defined by Mω

Mood States Transition ∆Tr Difference between Tr in two time windows

4.4.3 Temporal Mood Transition Representations

We also encoded the probability of a user transferring from one mood state to another

as a representation in the mood profile. We have in total 16 transition states (e.g., pos-

itive to negative, negative to silence) from the four classes (positive, negative, neutral

and silence). Note that if we set the slide increment as one day, we would have 365 ×
16 mood transitions features. To prevent the large dimensionality, which might led to

sparse representation, we defined d as 30 and s as 30, so that we have 12 × 16 feature

columns for Mood Transition Representations.

4.5 Association Between Mood Profile and Depressive

Symptoms

We first observed whether the pattern of the mood profile is related to symptom level.

Then we tested the mood profile’s predictive power on symptom level.
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4.5.1 Mood Fluctuations

We modeled mood fluctuations using Gaussian Process (GP) regression. GP regres-

sion is a Bayesian approach that assumes a Gaussian process prior over functions

(Quiñonero-Candela and Rasmussen, 2005). In this analysis, we see the temporal

mood representations as noisy representations of participants’ mood. We use GP re-

gression to estimate participants’ latent mood based on their mood representation. For

participants with few data points, the GP regression is modeling the mean of the sam-

ple due to the imputation approach we adopted. Thus, for this experiment, we excluded

participants who posted less than 10 posts over year before they completed the depres-

sive symptom scale. Eventually, this yielded 690 participants for the current analysis.

We used mood representations with d ∈ D := {1,3,7,14} and s ∈ S := {1,3,7} as in-

put of the GP regression model. The GP regression is best fitted on mood vector with

d = 14 and s = 3, see Figure 4.3. Each dot on the graph represents mood (averaged

sentiment) in a time window d = 14, x axis shows the count of time windows. Since

the entirety of the dataset includes posts of one year (365 days), there are 122 time

windows for each participant.

We constructed one model for each participant. Here we are not interested in mak-

ing prediction with the GP regression model, instead, our focus is on the covariance

function parameter, lengthscale. In the GP regression, the kernel (covariance func-

tion) choice determines most of the model’s generalization properties. The length-

scale, which is a parameter of the covariance function, determines the “wiggles” of

the function. We adopted the Matérn covariance function, which works better than

the standard Gaussian kernels (e.g., Squared Exponential Kernel, Rational Quadratic

Kernel) in capturing the physical processes due to its finite differentiability. It is less

“smooth” than the standard Gaussian kernel. A small lengthscale means the function

value changes quickly, while a large lengthscale means that its value changes slowly

(Chalupka et al., 2013). By fitting a GP regression model on each user, we obtain a

lengthscale of each user’s latent mood, and we compare the lengthscale among partic-

ipants with different symptom levels (low, moderate, high).

Here we used a time window of 14 days and a step size of 3 days as input for the GP

regression model. We used a nonparametric test (Mann-Whitney U test) to compare

the lengthscale differences between groups. The lengthscale of the high symptom

group (Median = 2.77) is identical to the moderate symptom (Median = 2.77) group

(U = 35424, p = 0.01). However, the low symptom group (Median = 2.98) has a
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Figure 4.3: Example of GP Regression

Note: here shows examples from two participants, each data point represents mood of every 14 days

estimated by the GP regression model. N = 690.

significantly larger lengthscale than the high symptom group (U = 17231, p = 0.01).

The moderate symptom group was also significantly different from the low symptom

group (U = 7244, p = 0.02). Our result suggest that people with high or moderate

depressive symptom level have more mood fluctuations than people with low symptom

level.

4.5.2 Classifying Symptom Levels using Daily Mood Representa-

tion

Another approach to examine whether the mood profile is associated with depressive

symptom is to see if a particular mood state is influenced by depressive symptoms

level. We assume the mood states are serially dependent and we used Hidden Markov

Model (HMM) (Beal et al., 2002) to model two unobservable states based on a daily

mood state representation. This representation comprises four mood states (positive,

negative, neutral and silence). Since the behavior of not posting (silence) is included

in the modeling process, we did not remove any less active users in this analysis (N =

781).

4.5.2.0.1 Hidden Markov Model We used a multinomial (discrete) emission Hid-

den Markov Model (HMM) to model users’ observed mood for one year (Johansson

and Olofsson, 2007). The major parameters used for the model are:

1. Observed mood Ot (time series), daily mood transition representation (d = 1, s

= 1).
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2. Transition matrix (A), gives the probability of a transition from one state to an-

other.

3. Transition state j.

4. Observation emission matrix (B), which gives the probability of observing Ot

when in state j.

An HMM model (denoted by λ) can be written as:

λ = (π,A,B) (4.1)

The idea behind this approach is to use the observed mood to estimate the param-

eter set (π,A,B), A shows us the probability of transferring from one hidden state to

another, and B tells us the probability of emitting a certain mood when a user is in a

specific symptom state.

We used hmmlearn python library (Gao et al., 2017) to fit emission, transition ma-

trices (using expectation-maximization) and hidden state sequence (using the Viterbi

path algorithm), see Section 9 for the initialized probabilities. We trained the model on

the entire set of data and observed if the emission probabilities align with our existing

knowledge of affect and depressive symptoms. Here we were not to find the optimal

model to forecast a new observation sequence, hence we did not test the training model

on a test set. Instead, we were interested to know whether the hidden states decoded

from the HMM model were associated with depressive symptom levels.

The HMM model decodes a binary hidden state for each day. We speculate that one

of the hidden states represents the user experiencing more depressive symptoms (high

symptom state), and another represents fewer symptoms (low symptom state). Al-

though the CES-D scale measures an overall symptom level in one week, it is entirely

possible for an individual to have more symptom on some days (e.g., sleep distur-

bance, loss of appetite) but less on others. To test our speculation on the hidden states,

we classify participants’ self-reported symptom level according to the count of high

symptom state. Here we use cutoff score 22 to divide participants into two groups for

comparing the results with the existing models. However, there is a challenging ques-

tions, up till when shall we count the high symptom states? Since the CES-D scale

measures an overall symptom level in the past one week (e.g less than 1, 1-2, 3-4, 5

or more), and the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition

(DSM-5) defines depressive symptom as “The individual must be experiencing five or
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more symptoms during the same 2-week period”. Therefore, we defined our classifi-

cation criteria as whether participants have at least x days experiencing high symptom

in the last y days before they completed the CES-D scale, x ∈ X := {1,2,3,4,5,6,7},
y ∈ Y := {7,14}.

4.5.2.1 Evaluation of Hidden States

4.5.2.1.1 Emission Probabilities We observed whether the hidden states’ emission

probabilities align with our existing knowledge in depressive symptom and affect. Ta-

ble 4.3 shows two hidden states and their emission probabilities to each observation.

Given an observed day, we can see both hidden states were most likely to emit silence

day because social media users posted sparsely. However, the high symptom hidden

state has lower probability to emit silence days compared with low symptom hidden

state. The high symptoms state also has a higher probability to emit negative mood

or neutral mood, but the low symptoms state has a higher probability to emit positive

mood. Therefore, results from the HMM model aligns with our existing knowledge in

depressive symptom and affect.

Table 4.3: Emission Probabilities

N = 781 Positive Negative Neutral Silence

Low Symptom 8.51 5.20 4.65 81.6

High Symptom 3.15 12.8 7.00 76.9
Note: less symptoms: hidden state that represents less symptoms on a particular day,

more symptoms: hidden state that represents more symptoms on a particular day, N:

training sample size

4.5.2.1.2 Transition Probabilities of Observations We are also interested to know

whether people are more likely to transfer from certain mood states to another. We

constructed a transition probability matrix for the observations (daily mood represen-

tation). Table 4.4 again shows us that social media users in general are more likely

to become silent after they posted any social media content, although high symptom

group is less so. High symptom individuals have higher probabilities of changing in

between any mood states other than silence. This result aligns with the findings from

the GP regression that low symptom individuals shows less fluctuations in their mood

representation.
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In general, people were more likely to have a positive mood if they had a posi-

tive mood in the previous time window. The probabilities of +→ +, − → − were

similar among the two groups, but high symptom participants are slightly more likely

to transfer from negative to negative. When low symptom participants have a neutral

mood, they have similar chances of having a neutral or negative mood in the next time

window, whereas, high symptom participants are also more likely to have a negative

mood in the next time window. Our result shows that while people, in general, are

more vocal when they have a negative mood, but high symptom participants are more

likely to vocal about the negative content for a more extended period.

Table 4.4: Transition Probabilities of Observations

High symptom Low symptom

+ - 0 S + - 0 S

+ 21.1 15.7 13.4 49.6 19.5 13.3 12.3 54.8

- 22.3 16.2 14.1 47.3 20.5 13.3 12.9 53.3

0 19.3 14.5 12.8 53.3 17.6 11.6 11.8 58.9

S 5.82 37.5 4.21 86.2 5.92 37.1 4.33 85.9

Note: +: positive, −: negative, 0 neutral, S: silent

4.5.2.1.3 Using Hidden States to Classify Symptom Level Figure 4.4 shows the

precision and recall of the high symptom class by counting the hidden states from the

HMM model. This figure is plotted based on Table 1 in Appendix .1.2. The baseline

model is formulated using a stratified dummy classifier that predicts based on the most

frequent training labels. Precision increases as the criterion of x increase. Table 4.5

shows some of the best classification results, see Table 1 in Appendix .1.2 for full

results. Assigning participants with six high symptom states within 14 days to the

high symptom class results in very low recall (10.8%) but high precision (71.2%).

Assigning participants with one high symptom state within 14 days results in a more

balanced recall (60.3%) and precision (58.1%) to high symptom class. Result from this

classifier does not surpass the baseline in f1 score but when using a higher x as criteria,

the precision rate is much higher than the baseline. Our result supports the claim that

daily mood representations inferred from social media text is highly associated with

depressive symptoms. When a social media user shows specific mood patterns, it is

highly likely that the person developed high level of depressive symptoms. However,
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only using this approach to identify high symptom individuals would result in a lot of

false negative cases.

Figure 4.4: Precision and Recall of High Symptom Class (HMM) with Various Assign-

ment Criterion

Note: window: size of the time window, x days before participants completed the CESD scale. ndays:

count of high symptom state within the time window. This figure is plotted based on the result in

Appendix .1.2 table 1

4.6 Representation Predictability of Depressive symp-

toms

The previous analysis suggests that the mood profile is highly associated with depres-

sive symptoms. Now we examine which representation in the mood profile is most

predictive of depressive symptoms. We combine the representations with sets of proxy

signals in a classification task.
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Table 4.5: Predicting depressive symptom with hidden states

Criteria P R f1

baseline 61.2 100.0 76.0

x = 1, y = 7 61.5 48.5 45.2

x = 1, y = 14 60.3 58.1 59.2

x = 6, y = 14 71.2 10.8 18.9

Note: high: high symptom class, low: low symptom class, R: recall of high symptom class,

P: precision of high symptom class, f1: average macro-f1 score of both classes, criteria:

criteria for classifying high symptom class.

4.6.1 Feature Extractionn

We extracted multiple features for the posts of each user to train multiple models for

high-symptoms prediction. Our extracted featured included: 1) n-gram word represen-

tation, where n ∈ N := {1,2,3}); 2) topic modeling from Latent Dirichlet allocation

(LDA) and 3) all the entries from Linguistic Inquiry and Word Count (LIWC) (Pen-

nebaker et al., 2001). N-gram were ordered by term frequency across the corpus, we

grid searched the number of most frequent n-gram and number of topics for LDA (see

Section 9). We found the most frequent 1500 n-grams and 30 LDA topics gave us

the optimal results. These feature variables were commonly used in detecting signs of

potential depression (De Choudhury et al., 2013; Park et al., 2012; Coppersmith et al.,

2014; Reece et al., 2017). We compare the precision and recall between models with

different representations from the mood profile.

Our dataset has an exceptionally high proportion of high symptom individuals as

discussed earlier. Given that we have only 303 low symptom participants among 781

participants, we randomly selected 303 participants in the high symptom sample to

have a dataset with a balanced class proportion that is closer to the existing literature

(1:1), N = 606, So that we can have results that are more comparable with the existing

literature. We split the data into train (80%, N = 486), and test set (20%, N = 120)

in stratified fashion. Stratified five-fold cross-validation was used to optimize the pa-

rameters in the model training. A grid search of parameters was carried out for several

candidate classification algorithms (e.g., decision trees, support vector machine, lo-

gistics regression) (Suykens and Vandewalle, 1999), see Section 9 for the grid search

parameters.
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4.6.2 Model Evaluation

A baseline model is formulated using a stratified dummy classifier that generates pre-

dictions according to the training set’s class distribution. Out of several candidate

algorithms, logistic regression demonstrated best performance. Hundreds of classi-

fication models were trained and evaluated for this task. The models with different

representations from the mood profile can be evaluated by precision and recall. We

grid searched d and s that maximizes the metrics. Figure 4.5 shows the precision and

recall of the high symptom class from models with various configurations and feature

sets. Models with configuration 4 (time window 30 days and increment slide 3 days)

yield the best scores. Table 4.6 shows the precision, recall and f1 score of the high

symptom class from configuration 4. The model with mood, mood momentum and

mood transition representations yields the highest scores, and the model with averaged

mood over a time window gives second highest scores, 0.59 precision, 0.65 recall, and

an F-score of 0.62.

Figure 4.5: Precision and Recall of logistic regression

Note: config 1: d = 7, s = 3, config 2: d = 14, s = 3, config 3: d = 14, s = 7, config 4: d = 30, s = 3,

config 5: d = 30, s = 7, B: basic features (n-gram, topic modeling, LIWC), M: B + Moodµ, MC: B +

mood momentum, MT: B + mood transition, MTM: B + mood transition momentum, All: all features

excluded MTM
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Table 4.6: Prediction result of depressive symptom (d=14, s=3

Features P R F1

RB 47.6 50.0 48.8

B 51.4 58.3 54.7

B + Mµ 55.5 58.3 56.9

B + ∆m 53.0 58.3 55.6

B + Tr 51.6 53.3 52.4

B + ∆Tr 52.3 55 53.6

B + Mµ+ ∆m + B + Tr 59.0 65 61.9
Note: R, P, F1 are recall, precision, and f1 score of high symptom classes respectively.

B: basic features (tfidf bag-of-words, topic modeling, sentiment, LIWC). RB: random

baseline, model parameters: penalty: l2, Inverse of regularization strength: 0.1

4.7 Discussion

4.7.1 The Role of Mood in Predicting Depressive symptoms

Mood is a time dependent variable, using time series approaches to model mood in-

ferred from social media text provides us with better insight about mood and depres-

sive symptoms. Participants in this study demonstrated significantly fewer mood fluc-

tuations if they reported a low symptom score. This finding aligns with the well-

established connection between emotionality and depression in the psychology liter-

ature. We also found the hidden states from the HMM model are highly relevant to

self-reported depressive symptoms, see Table 4.5. Our model suggests that an individ-

ual having one high symptom state in 14 days is highly likely to have high symptom

level. It is worth to note that the criteria we used in here is different from the criteria

in the CES-D scale, where individuals need to have experienced symptoms 1-2 days

in the past 7 days to score on a criterion. However, we cannot assume that people will

talk about their symptoms every time they experience them. This result suggests that

individuals who show specific mood pattern in social media text are highly likely hav-

ing high depressive symptoms, however, most of the individuals with high symptom

do not display this mood pattern.

Existing studies that use a sliding window technique to create dynamic sentiment

features have not yet explored which representations and configurations tend to yield a

better result in classifying symptoms. We explored various configurations of the slid-
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ing window and found that mood in a 30 days time window and move the time win-

dow every 3 days is most predictive to depressive symptom level. This result suggests

that a less granular mood representation is more beneficial in identifying symptoms.

Moreover, combining several representations in the mood profile together can dramat-

ically enhance the model performance. Our best model (f-score: 0.62) encompasses

the mood profile and a set of basic features commonly used in existing works. Other

studies using multiple sets of proxy signals to predict depressive symptoms achieved

a precision score ranging from 0.48 (Coppersmith et al., 2014) to 0.87 (Reece et al.,

2017; Guntuku et al., 2017). (Schwartz et al., 2014), using the same data set, achieved

correlation of 0.386 with continuous scores. The mood profile can potentially enhance

the current screening technology by combining it with more advanced engineered fea-

tures.

The transition probabilities of mood showed that participants, in general, were

more vocal on social media when they were in a negative mood. We speculate that

some depressed individuals react to negative mood by posting, and some by silence.

Those who are more vocal on social media when in a negative mood might be using

social media to reach out to others or use posts as a way to reflect. The associations

between negative mood and being vocal, and the association between high symptom

scores and a specific mood pattern, suggest that posters could be stratified into sev-

eral groups, those that withdraw, those that reach out, and those that do not disclose

potential signs of depression on social media.

Our results show that a temporal mood profile derived from social media text is

highly associated with users’ subsequent self reported depressive symptom level. In

order to examine the potential of mood momentum and mood transition further, ad-

vanced time series analysis techniques need to be applied. Most importantly, mood

profiles can potentially provide more information to clinicians than a classification

system with binary output.

4.7.2 Technological and Ethical Implications

Similar to the existing studies, the present finding of the derived mood pattern has

implications on symptom level but does not provide an accurate interpretation for par-

ticipants’ mental health condition. An accurate interpretation of one’s mental health

condition requires a holistic view, and any diagnosis requires a strong understanding

of an individual’s case history. The daily life information contained in social media
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data is just a tip of the iceberg of one’s life experience.

Our approaches provide a useful source of information for assessing participants’

derived mood pattern over time. However, as with all social media related research,

ethical and privacy issues need to be considered, given the potential for misusing social

media data (Fiske and Hauser, 2014; Lumb, 2016; Cadwalladr and Graham-Harrison,

2018). Using social media analysis techniques in practice requires that the user whose

data is being analyzed is comfortable with their social media timeline being used in

this way, and that they consent to it. The scope of their consent also needs to be clear,

i.e., whether it is for research or whether it is also for potential clinical use.

4.7.3 Limitations

Our sample contains participants who allowed researchers access to their Facebook

posts and to complete a symptom screening scale. Therefore, this sample may be

strongly biased towards those who were comfortable to disclose and reach out on social

media. It is still unclear about what the biases are in a sample with these tendencies

compared with a random patient sample. Of particular interest is the relatively high

depressive symptom score from most of the participants in this sample, and this bias

is prevalent in studies in this line of research (Guntuku et al., 2017). We speculate

that people who have depression are more curious about taking part in mental health

related studies.

In this work, the symptom screening test was conducted once only. There were also

no tests controlling for the presence of other disorders, such as bipolar, which greatly

affect behavior and mood variability. Those at the high end of the scale could have

other types of affective disorders but showing depressive symptoms at the time when

they carried out the self-reported measurement. Therefore, the measurement of self-

reported symptoms is not an accurate reflection of whether the person has depression.

In addition, the sentiment scores employed in this study were retrieved with Sen-

tiStrength, which is a word counting approach to identify positive and negative af-

fect. Although numerous studies have validated the word counting approach, the

ideal method to retrieve less noisy sentiment is to construct the sentiment classification

model with the examined dataset. Future studies can train their model for sentiment

annotation to retrieve more accurate sentiment.
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Figure 4.6: Impact of Mood Representation Structure on GP regression (Example 1

Note: d: timewindow size, day as unit; s: step size, day as unit.

4.8 Further Analysis

This section includes a more detailed explanation of the models and further analysis of

the HMM and GP regression models.

4.8.1 Impact of Mood Representation Structure on GP Regression

In the published work, we used a time window of 14 days and a step size of 3 days

as input for the GP regression model. In this follow up session, we test the impact

of step size and time window on the GP regression model by experimenting the input

of the model with mood representations of various step sizes and time windows (time

window d ∈ D := {7,14} and step size s ∈ S := {1,3,7}). A smaller step size (<

time window size) enabled the time window to capture information in the previous and

current time window. Therefore, we test the following combination of step size and

time window (d=7, s=1), (d=7, s=3), (d=7, s=14), (d=14, s=3), (d=14, s=7). Figure

4.6, 4.7 and 4.8 show the GP regression models from three participants as examples

to demonstrate our results, each figure contains the d and s combination mentioned

above. We can see the regression fits better in representation with a relatively bigger

time window d = 14, and a smaller step s = 3. Therefore, the parameters we selected

for our published work (d=14, s=3) is the optimal among the tested pairs.
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Figure 4.7: Impact of Mood Representation Structure on GP regression (Example 2

Note: d: timewindow size, day as unit; s: step size, day as unit.

Figure 4.8: Impact of Mood Representation Structure on GP regression (Example 3

Note: d: timewindow size, day as unit; s: step size, day as unit.



4.9. Conclusion and Future direction 75

4.8.2 Model Biases

In this section, we investigate why using the HMM hidden states to classify depressive

symptom levels can achieve a high precision but at a great cost from the recall (see

Table 4.5). In this task, high precision is important, especially if we use social media

data as extra information for a person’s mental health status. It helps to raise the red

flag for some symptoms. However, this approach also left most of the high symptom

users out. We further examined what leads to low recall. We observed that both users

with very high symptom level (CESD score > 45, N = 14) 1 and those with low symp-

tom level (CESD score < 16, N = 70), have a mean number of posts of 143 and 166

respectively, which is less than the mean number of posts in the sample (M = 194).

In the HMM model, we included silence days in the daily mood representation.

Table 4.3 shows that silence days accounted for most transition states. Therefore, the

pattern of silence days strongly influences the model. We examined the results from

the model that used the HMM hidden states to assign symptom levels. We found that

the algorithm tends to misclassify high symptom users. For example, by using the

criteria of x = 6, y = 14 2, the mean CES-D score for the misclassified cases (M =

31.2) is much higher than the mean of the sample (M = 26.3). Nevertheless, among

14 users who had very severe symptom levels (CES-D score > 45), our algorithm only

correctly assigned high symptom levels to 1 of them. We speculate that the model is

strongly influenced by the fact that users with very high or very low symptoms have

similar posting pattern – they both post sparsely.

4.9 Conclusion and Future direction

Mood is an important signal to indicate the development of a depression episode. This

chapter unpacks the opportunities and challenges of designing technologies that use

social media data to track mood patterns. We provided an outline of utilizing the sliding

window technique to construct temporal representations of mood based on sentiment

expressed in a social media text. We explored approaches to estimate users’ mood

when they did not post on a social media platform and we attempted to use a token

to represent the behavior of not posting. Our result suggests that our approaches of

representing mood inferred from social media data are highly relevant to social media

1CES-D score > 45 which means that these individuals self-reported they have had at least 15 symp-
toms most of the time in the past two weeks.

2Users who have six high symptom state in the past 14 days are assigned “high symptom level”
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users’ depressive symptom levels.

Our follow-up analysis revealed that the social media users’ irregular posting pat-

tern poses a great challenge for researchers to infer mental illness symptoms. Posting

frequency or posting pattern is often considered a manifestation of depressive symp-

toms in the existing literature (De Choudhury et al., 2013; Tsugawa et al., 2015). How-

ever, users with very high symptom levels and those with very low symptom levels

both post less. Among the 14 users who have very severe symptom levels (CES-D

score > 45), our algorithm using the hidden states from the HMM model to assign

symptom level only correctly assigned high symptom level to one user. These hidden

states were estimated using a daily mood representation as input, and silence day was

included as one of the observed states in the representation. Therefore, future work

should reduce the weight of posting frequency when using social media data to infer

depressive symptoms.

In Chapter 3-4, we focused on the affective symptoms manifested in social media

text. Existing studies using social media text to infer users mental health status, in-

cluding Chapter 3-4, only focused on content created by the account users. Reposted

and intext copy-and-paste content, such as quotes and lyrics, are not examined sepa-

rately. We raise the question: are these content noise for inferring mental health status?

Shall we include or remove them in the analysis? In the next chapter, we will examine

the content that is not created by the account users and its association with depressive

symptoms.



Chapter 5

Affect in Non-self-created Content and

Depressive Symptoms

Chapter 4 focus on examining the self-created content on Facebook. When studying

how mental illness may be reflected in people’s social media use, content not written

by the users is often ignored because it might not reflect their own emotions. Chapter 3

shows evidence that participants with stronger depression symptoms posted more non-

self-created content in pilot study involves a small subsample (N = 70). In this chapter,

we examine non-self-created content in a larger sample. We extract quotes and song

lyrics from the feeds of 781 Facebook users from the MyPersonality database who had

also completed the CES-D depression scale. We find that participants with elevated

depressive symptoms tend to post more lyrics, especially lyrics with neutral or mixed

sentiment. By analyzing the topics of those lyrics, we find they center around over-

whelming emotions, self-empowerment and retrospection of a romantic relationship.

Our findings suggest removing quotes, especially lyrics, might be eliminating content

that reflects users’ mental health conditions.

5.1 Introduction

Social media records provide psychologists with a novel way of examining mental

illness symptoms (De Choudhury et al., 2013; Glen et al., 2015; Park et al., 2012;

Chen et al., 2020d). Existing studies often focus on the emotional content written

by the social media users themselves, which we refer to as “self-created Content”

(SC)(Seabrook et al., 2018; Schneider and Carpenter, 2019). Non-self created content,

such as reposts, music and videos, are seen as reflecting indirect emotions of the user

77
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and thus receives less attention in the analysis (Wang and Zhuang, 2017) .

There are two types of non-self created content: repost (e.g., shares and retweets),

and copy-and-paste quotes (e.g., song lyrics, religious verses, and famous quotes). A

repost is easy to identify since it is a functionality on social media platforms to share

a post from another user. However, quotes are more complicated to identify, since

usually there are no quote marks or reference to the source. Furthermore, sometimes

quotes and lyrics are posted from memory, which can introduce distortions. There are

limited number of studies that examined the reposts (Tsugawa et al., 2015; Guo et al.,

2009), while, to our knowledge, quotes have not been studied yet.

There is extensive work on how affective disorders, especially depression (De Choud-

hury et al., 2013; Seabrook et al., 2018; Tsugawa et al., 2015), are reflected in social

media data (Chancellor and De Choudhury, 2020). However, existing studies in this

line of research focus on self-created content only. We are not aware of work that

analyzed the usage of lyrics and quotes in general in social media posts of users with

different levels of depressive symptoms. This is surprising, because music is associ-

ated with mood regulation process (Gladding et al., 2008; Hunter et al., 2011; Sachs

et al., 2015).

Our research questions are:

1. Is posting quotes associated with levels of depression symptoms?

2. What are the themes and emotions conveyed in the quotes posted by people with

high symptoms of depression, and how might they relate to symptoms?

This study is the first to our knowledge that examines whether quotes in social

media is associated with users’ emotional state. We analyzed a set of 93,378 posts from

781 Facebook users who consented to take part in the myPersonality study (Bachrach

et al., 2012; Youyou et al., 2015) who completed the CES-D test in addition to the

personality scales.

We constructed a classifier to automatically detect potential quotes in Facebook

posts, and distinguish song lyrics from other types of quotes. Then we used general-

ized linear modeling to examine potential links between the emotions in the quotes,

especially lyrics, and the levels of depressive symptoms reported in the CES-D scale.

Finally, we use topic modeling to examine the themes of lyrics that are posted by peo-

ple with high versus low depressive symptoms.

We found that quotes account for more than 10% of the content in 12.6% of par-
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ticipants 1. Users with higher depressive symptom levels tend to post more lyrics with

neutral sentiment. Our findings suggest that lyrics are used as an agent for users to

communicate their emotions indirectly. Therefore, not all non self-created content

should be regarded as noise.

5.2 Background

5.2.1 Social Media Behavior and Depressive Symptom Level

Experiencing negative emotions can increase the amount of social interaction and shar-

ing of emotions (Luminet IV et al., 2000), both of which are part of the mood regulation

process that leads to mood improvement (Hill, 1991). Posting patterns on social me-

dia and the mood of posts may reflect symptoms of depression (Chen et al., 2020a,d;

Seabrook et al., 2018; Tsugawa et al., 2015). To study the emotions expressed in text,

researchers often use sentiment analysis that categorizes affect or opinions expressed

in the text (Pang et al., 2008). Several studies have shown that users with the presence

of depressive symptoms use more negative affective words (e.g., sad, cry, hate) in their

text than those who do not (De Choudhury et al., 2013; Tsugawa et al., 2015).

5.2.2 Effects of lyrics and quotes on depression

A recent study by (Chen et al., 2020c) on a subset of the current data set found a po-

tential association between posting quote on Facebook and users’ depressive symptom

levels, but they did not examine the sentiment expressed in the quotes. Surprisingly, the

link between the content of quotes and symptoms of depression has not been examined

in the existing literature, even though music is strongly linked to emotions.

People often choose music that is in congruence with their mood. Listening to

songs centered around hurt, pain, and grief is part of the mood regulation process for

coping with aversive life events (Gladding et al., 2008). Retrieving nostalgic memo-

ries from music may enhance the mood, especially when these memories are related

to meaningful moments in life (Routledge et al., 2012; Taruffi and Koelsch, 2014).

Listeners may find some consolations in lyrics because when they realize they are not

alone in dealing with the painful situations (Gladding et al., 2008; Sachs et al., 2015).

Quotes, especially song lyrics, may induce congruent emotions (Gladding et al., 2008;

1for distribution details, see Figure 1 (Appendix .2.2))
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Hunter et al., 2011; Sachs et al., 2015).

5.3 Data Collection and Preparation

5.3.1 MyPersonality Dataset

We used the myPersonality data set (Bachrach et al., 2012; Youyou et al., 2015).

myPersonality collected Facebook posts from 180,000 participants from 2010 to 2012,

with the consent from Facebook users. The data collection process complied with

Facebook’s terms of service, and we obtained the required permission to use the data.

781 participants over the age of 18 also completed the Center for Epidemiologic Stud-

ies Depression Scale (CES-D) in 2011 or 2010. We extracted all 93,378 posts that

these participants posted up to one year before completing the CES-D. On average,

participants posted 120 posts during the selected time window. Most participants are

young (M = 26, SD = 11.7) female (N = 448, 57%) and white-American (N = 309,

39%). Detailed demographics are provided in Table 2.

5.3.1.0.1 Depressive Symptom Screening Test The 20-item CES-D scale is one

of the most widely used tools that measure the presence of depressive symptoms in

the general population (Radloff, 1977). It has high internal consistency, test-retest re-

liability (Radloff, 1977; Orme et al., 1986), and validity (Orme et al., 1986). Scores

range between 0 and 60. Following common practice, we adopted 22 as a cutoff point

to divide participants in our dataset into high symptom (PHS, N = 478) and low symp-

tom groups (PLS, N = 303) (De Choudhury et al., 2013; Park et al., 2012; Reece et al.,

2017; Tsugawa et al., 2015).

5.3.2 Identifying Quotes in User Timelines

For each post, we retrieved the first page of search results via the Google search API,

which included the link, title, and snippet. Since we observed that quotes often contain

misspellings or small variations, we created a rule-based classifier outlined in 1, which

assigns each post to one of three classes: 1) Lyric, 2) non-lyric quote (NL-quote), and

3) self-created content (SC).

In order to calculate the cosine similarity between post and snippet, we created

document vectors for each by converting each word to word vectors using the pre-
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Algorithm 1 Quotes identification algorithm. cos(θ) is the max cosine similarity

between post and each of the retrieved snippets. Cq and Cl are the counts of search

results that contain the word “quote” or “lyric” respectively
cos(θ) = argmax(cosine(post,snippet))

C =Cq +Cl

if (cos(θ)> X) OR (X > cosθ > Y and C > 0) OR (Y > cosθ > Z and C > N) then
label← Quote

if (Cl > Nl ) then
label← Lyric

end if
else

label← Self-create

end if

Table 5.1: Result of Quote and Lyrics Classifier shown in Algorithm 1

validation test

F1 Recall Precision F1 Recall Precision

NL-quote 87.8 88.3 87.2 89.1 85.3 94.0

Lyrics 76.6 78.0 80.3 79.6 80.0 82.2

trained word vectors from Python Package Spacy (Honnibal and Johnson, 2015), and

summing the word vectors into a single document vector.

The first author annotated a subset of posts for the quote classifier to determine the

values of the thresholds in Algorithm 1 {X , Y , Z, N, Nl} using grid search, and to test

the performance on a separate test set. 750 posts were annotated, where 523 were used

as validation for threshold optimization and 227 were used for testing. The final values

for the threshold are: X = 0.998, Y = 0.975, Z = 0.85, N = 3, and Nl = 2. Table 5.1

shows the classifier performance on the validation and test sets for detecting quotes

(NL-quotes and lyrics).

Among 93,378 Facebook status updates in our collection, we identified 3,722 posts

classified as quotes posted by 305 (39%) of our 781 participants, out of which 1,488

(40%) are song lyrics posted by 102 (13%) of the participants. Figure 1 (Appendix

.2.2) shows the percentage of posts which were quotes for all 305 participants. For

roughly a third (N = 99), 10–40% of their posts were quotes.
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Table 5.2: Sentiment distribution in identified quotes and lyrics for PHS and PLS

High symptoms (PHS) Low symptoms (PLS)

total pos neg neut/mix total pos neg neut/mix

Lyrics 1056 40% 24% 36% 432 40% 27% 33%

NL-Quotes 1597 41% 25% 34% 637 41% 22% 37%

Total Quotes 2653 40% 25% 35% 1069 40% 24% 36%

5.4 Quotes and Depressive Symptom Levels

5.4.1 Frequency and Sentiment of Quotes

When considering all 781 participants, 198 (41%) of the PHS (high symptoms) share

quotes compared to 107 (35%) of PLS (low symptoms). (PHS) also share significantly

more quotes and lyrics on their timeline (M = 5.55,SD = 14.07) than those with low

symptoms (PLS, M = 3.52, SD = 9.12) (t-test, t(2.4) = 778.61, p = 0.015).

The sentiment of quotes was analyzed based on the sentiment scores calculated by

SentiStrength (Thelwall et al., 2011). Posts that are dominated by a polarized senti-

ment score were labeled correspondingly as Positive or Negative, while posts with no

dominant polarized sentiment (neutral or equivalent magnitude of positive and negative

words) are labeled as Neutral/Mixed. Table 5.2 shows the full distribution of sentiment

in the quote posts shared by participants for each PHS and PLS.

5.4.2 Sentiment of Quotes

Since PHS are more likely to post quotes than PLS, we now examine the relationship

between the sentiment of those quotes and the level of depressive symptoms more

closely. We use logistic regression, with symptom group (low versus high) as the

dependent variable, and frequency of lyrics and quotes and sentiment of lyrics and

quotes as independent variables. Frequencies are expressed as ratios, to account for

differences in the number of posts per participant.

We consider two models, one with all independent variables (Model 1), and one

excluding variables that have high collinearity with others (Model 2). The correlations

are summarized in Figure 1. Most variables are weakly correlated (r < 0.25) with each

other. However, the magnitude of sentiment variables are moderately correlated with

the ratio of lyrics and quotes (r > 0.40); therefore, we drop them from Model 1 to
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Table 5.3: Logistics Regression Models. B: Beta coefficient, SE: standard error of the

coefficient, ∗ : p < 0.05

Model 1 Model 2

Variables B SE B SE

ratio of positive lyrics to quote 0.52 1.02 0.40 0.79

ratio of negative lyrics to quote -0.59 0.85 -0.14 0.69

ratio of neutral or mixed lyrics to quote 1.82 0.85* 1.89 0.84*

ratio of lyrics to total post count -8.75 4.15* -6.92 3.76*

ratio of positive NL-quote to quote -0.26 0.61 -0.23 0.40

ratio of negative NL-quote to quote 0.56 0.77 1.15 0.58*

ratio of neutral or mixed NL-quote to quote -0.22 0.41 -0.10 0.41

averaged sentiment magnitude of positive lyrics -0.06 0.19

averaged sentiment magnitude of negative lyrics -0.18 0.18

averaged sentiment magnitude of positive NL-quote -0.02 0.19

averaged sentiment magnitude of negative NL-quote -0.17 0.18

ratio of mixed/neutral posts to total post count 0.95 0.70

ratio of negative posts to total post count 0.90 0.73

youeld Model 2.

ANOVA show that Model 1 (AIC = 1028) and Model 2 (AIC = 1021) are not

significantly different from each other (F(2,6) = -4.86, p > 0.05). We see the strongest

association between symptom level and content variables for the ratio of lyrics to total

post count. There are no clear associations between negative mood and depression

level (see Table 5.3).

5.4.3 Themes in Quotes

We have seen that people with higher levels of depressive symptoms are more likely

to post quotes, in particular lyrics, but we did not see any clear links between quotes

with negative mood and symptom level. Therefore, we decided to use LDA topic

modeling (Newman et al., 2006; Blei et al., 2003) to extract common themes in quotes

and lyrics posted by PHS versus PLS. We used verbs, nouns, and adjectives as input for

the LDA topic model. Each input word was labeled whether it came from a post by PHS

or PLS. The best-performing model yielded 15 topics. Details of the topic modeling

are given in 9 Table .2.1.

Most of the topics in the lyrics reflect hurt and grief in romantic love. Among the
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five most prevalent topics in lyrics, nearly all of them mainly comprise of words from

PHS.

Table 3 (Appendix .2.2) shows the 10 most frequent keywords and themes of the

seven most prevalent topics. Three of the most common topics of lyrics deal with

empowerment, in particular self-empowerment. Topic 0, with keywords such as love,

want, feel, need, think, is highly emotionally charged and mainly comprised of words

from PHS, while Topic 7 comprises of lyrics that indicate introspection (e.g., feel,

know). Topics from non-lyrics quotes are less varied. Most of the non-lyrics posts

are dominated by two topics, which center around life, love, and feelings towards

various entities. The dominant words from topic 13 are mainly from high symptom

individuals, whereas those in topic 9 are from low symptom individuals.

5.5 Conclusion

In this study, we showed that people with high levels of depressive symptoms are more

likely to post quotes and lyrics on Facebook.

However, the ratio of negative sentiment posts does not appear to be associated

with depressive symptom levels (Tsugawa et al., 2015). Instead, people with more

depressive symptoms are more likely to post lyrics, and the sentiment of those lyrics

tends to be mixed or neutral.

Most of the lyrics centered around hurt, pain, and grief in a romantic relationship,

which may indicate a mood regulation process (Gladding et al., 2008). Some of the

lyrics reflect introspection and the desire for self-empowerment, which is part of the

coping process. Therefore, we argue that lyrics and quotes should not be excluded

from studies of the ways in which people with depression use social media—they may

hold important clues to coping strategies.

5.6 Further Analysis

In the published work, we used SentiStrength, a lexicon-based sentiment tool, to ex-

tract sentiment from the text. In recent years, word embeddings methods have been

widely adopted in sentiment classification tasks (Rezaeinia et al., 2019). In the follow-

up analysis, we adopted several pre-trained deep learning models to re-annotate the

sentiment in our dataset. We used human annotation to evaluate the sentiment annota-

tions using SentiStrength and deep learning approach. We re-examined our analysis of
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the published work using the sentiment annotated by the deep learning model.

SentiStrength has a predefined list of positive and negative words. The algorithm

scores the text by counting these words’ occurrences in the text. The sentiment score

of the post is the sum of two scores in the published work. Posts with the following

situations were considered as neutral:

• Posts with 0 positivity or negativity.

• Posts with an equal magnitude of positivity and negativity.

With the neural network approach, we defined posts with 0 positivity or negativity

as neutral. We compared the quality of the sentiment score from SentiStrength and

deep learning models on a set of annotated data. We randomly selected 150 posts from

a set of lyrics or quotes (N = 150) identified by our classifier. Two annotators followed

an annotation guideline adopted in Chapter 3, 2. Each post was assigned positive,

negative or neutral sentiment. The inter-rater reliability of the two annotators was 0.75

(Cronbach’s alpha). We did not annotate the magnitude of the post because we found

our annotators’ perception of the sentiment magnitude was too subjective. We found a

few challenges during our annotation process:

• Users often repost motivational quotes or religious quotes, for example, “Trust in

the Lord with all your heart, and lean not on your understanding; In all your ways

acknowledge Him, and He shall direct your paths.” These quotes are usually

positive or neutral, but users seem to be enduring some challenges and using

these posts to encourage themselves to face the challenges.

• Some lyrics do not provide contextual information to the story. Therefore, our

annotators tend to assign lyrics without context information to neutral. For ex-

ample, “All you have to do is close your eyes and just reach out your hands and

touch me. Hold me close. (More Than Words)”

We used pre-trained neural network models to predict Facebook post sentiment.

We selected a few pre-trained models that use the transformer architecture: “cardiffnlp/twitter-

roberta-base-sentiment” 3 Barbieri et al. (2020), “nlptown/bert-base-multilingual-uncased-

sentiment” 4 and “distilbert-base-uncased-finetuned-sst-2-english” 5 (huggingface, 2021).
2https://github.com/luciasalar/AnnotationTasks
3a roBERTa-base model trained on 58M tweets, it is finetuned for sentiment analysis with the

TweetEval benchmark
4bert-base-multilingual-uncased model finetuned for sentiment analysis on product reviews in six

languages: English, Dutch, German, French, Spanish and Italian.
5DistilBERT architecture model fine-tuned on a dataset called SST-2 for sentiment analysis tasks.
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Table 5.4 shows the evaluation of the machine annotations. We found that the

Cardiff NLP model generated more accurate sentiment scores than other pre-trained

models and SentiStrength. It is expected that the pre-trained embedding trained on

tweets is more suitable for our task because Facebook posts are similar to tweets in

terms of length and content type. The word-based approach SentiStrength has the

worst performance. It is not surprising that the neutral class is most difficult to be

identified since it is even difficult for a human to identify neutral sentiment.

Finally, we defined an ensemble classifier score by averaging the scores from the

three models. In the ensemble classifier, neutral was assigned to the post if both Cardiff

NLP and NLP town assigned it to neutral. Cardiff NLP tends to predict more negative

cases as neutral, resulting in a high recall and low precision rate in the neutral class but

a low recall rate in the negative class.

Our published work found that the ratio of neural or mixed lyrics to quotes, ratio of

lyrics to total post count, and ratio of negative non-lyrics quotes contribute to depres-

sive symptoms. In this follow-up work, we also used lyrics and quote ratio to predict

symptom levels in a logistics regression model. Here we replaced the SentiStrength

score with sentiment scores annotated by the ensemble model (see Table 5.5). We still

found that the ratio of neutral lyrics and number of lyrics contribute to symptom level.

5.7 Review for Follow-up Analysis and Next Steps

Our published work shows that people with more depressive symptoms are more likely

to post lyrics, and the sentiment of those lyrics tends to be mixed or neutral. In our

follow-up analysis, we re-annotated the sentiment score using a pre-trained deep learn-

ing model. We found that using pre-trained embeddings on our sentiment annotation is

better than SentiStrength. Our logistics regression model using the re-annotated data

showed a similar result as the model in our published work. The number of lyrics and

neutral lyrics was associated with users’ depressive symptom levels. From our human

annotation process, we learned that the neutral lyrics were usually lyrics that can be

interpreted positively or negatively based on the context. It is still unknown why this

type of content was associated with users’ depressive symptoms. Future studies should

investigate this issue.
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Table 5.4: Machine sentiment annotation evalution

model class precision recall f1-score

SentiStrength

negative 0.58 0.44 0.5

neutral 0.16 0.36 0.22

positive 0.36 0.28 0.31

f1 weighted average 0.44 0.38 0.40

Cardiff NLP

negative 0.91 0.42 0.57

neutral 0.28 0.86 0.41

positive 0.76 0.68 0.71

f1 weighted average 0.77 0.57 0.60

NLP town

negative 0.77 0.53 0.63

neutral 0.15 0.18 0.16

positive 0.5 0.70 0.58

f1 weighted average 0.59 0.54 0.55

Distilbert

negative 0.72 0.62 0.66

neutral 0 0 0

positive 0.49 0.80 0.61

f1 weighted average 0.53 0.59 0.55

ensemble

negative 0.74 0.60 0.66

neutral 0.27 0.14 0.18

positive 0.51 0.78 0.62

f1 weighted average 0.60 0.59 0.58

Table 5.5: Logistics regression model with sentiment annotated by ensemble classifier.

B: Beta coefficient, SE: standard error of the coefficient, ∗ : p < 0.05

B SE

ratio of positive lyrics to post count -11.88 6.73

ratio of negative lyrics to post count -8.28 7.16

ratio of neutral lyrics to post count -28.92 15.37*

number of lyrics 0.16 0.06*

number of NL-quote 0.006 0.03

ratio of positive NL-quote to post count 3.31 4.00

ratio of negative NL-quote to post count 3.83 3.62

ratio of neutral NL-quote to post count -7.54 13.99





Chapter 6

Identify Distorted thinking from Social

Media Text

This chapter aims to identify cognitive distortion expressed in social media text. Cog-

nitive distortion is irrational thought occurring at the onset or perpetuation of mental

disorders (Beck, 2019, 1991). We annotated cognitive distortion (see Chapter 1, Sec-

tion 2.2.1) among more than 4,145 Facebook posts to establish a gold standard. Al-

though cognitive distortions only accounted for 1% of the posts in our sample, they

are positively associated with users’ self-reported depressive symptom scores, and life

satisfaction score but not personality dimensions. Compared with negative affect ex-

pressed in the post, cognitive distortions showed a stronger association with users’

depressive symptom levels. Among users who posted cognitive distortion more often,

we found that they did not use more words associated with anger and negative affect,

but tended to describe their feelings in their accounts. They also used more words

related to risk but fewer terms related to reward. Our work reaffirms that cognitive

distortions can be identified in Facebook posts. Our finding suggested that cognitive

distortion extracted from social media text may be a more robust feature than affective

words to identify people who were at risk of developing depression.

6.1 Background and Prior Work

When we experience failure, rejection or trauma, we sometimes develop automatic

thoughts that lead us to think inaccurately about reality. For example, “I’m all alone

in this world, no one will help me.” These negative, irrational systematic thoughts

are “cognitive distortions” (Beck, 2019). Cognitive distortions cause an individual

89
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to perceive the reality inaccurately. Psychologists suggest that cognitive distortions

are driven by biased schemata. These schemata influence information processing by

guiding the encoding, organization and retrieval of the stimuli. Adverse events that

occur earlier in life might lead to the development of biased schemata (Zhang et al.,

2011; Poletti et al., 2014; Beasley et al., 2003).

Cognitive distortion is generally characterized by negative self-referential beliefs.

Once activated, the self-referential schemata lead to specific impairments in attention,

interpretation and memory (Clark et al., 2000; Disner et al., 2011). The activation of

these dysfunctional attitudes also increases the likelihood that a person pays more at-

tention to the mood-congruent stimuli. This process increases one’s awareness for de-

pressive stimuli in the environment, thus blocking the positive emotions from a pleas-

ing event (Smith et al., 1994; Mahoney, 2013).

The process of biasing towards negative stimuli is also closely linked to neuroti-

cism. Individuals with a high neuroticism level have consistent, unique patterns in

emotional responses (Martin, 1985), specifically when the individual recalls experi-

ence related to self. For example, multiple studies have found that the degree of

neuroticism was significantly correlated with the time an individual recalls pleasant

memories (Ruiz-Caballero and Bermúdez, 1995; Lloyd and Lishman, 1975). The sys-

tematic biases in attending negative memories give rise to related cognitive distortions.

For example, people with schema bias tend to give more negative interpretations and

self-attribution for adverse events.

Since the schema bias, depressed mood and neuroticism are inter-correlated, the

schema bias not only leads to psychiatric disorders such as anxiety and depression

(Beck, 2019, 1991, 2008), but also plays a significant role in maintaining psychiatric

disorders (Beck, 1991, 2008). One of the goals of cognitive-behavioral therapy for

anxiety and depression is to help individuals adjust these biases (Harvey, 2004). Psy-

chologists commonly use a checklist to assess cognitive distortions. Beck proposed

six categories of cognitive distortion: arbitrary inference; selective abstraction; over-

generalization; magnification and minimization; personalization; dichotomous think-

ing (Hollon and Beck, 1979) (see Table 6.1). Over the years, researchers expanded the

list based on the existing model (Oliveira, 2014; Newman, 2015).

In the last decade, researchers have extracted social media signals to infer depres-

sive symptoms (De Choudhury et al., 2013; Tsugawa et al., 2015; Chancellor and

De Choudhury, 2020). One of the most widely studied social media signals is af-

fective words in the social media text (Chen et al., 2020d; Saravia et al., 2016). In
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contrast, cognitive distortions as a major element for depressive symptoms is barely

studied in the social media context.

A few studies found that cognitive distortions can be identified in the social me-

dia context (Simms et al., 2017; Ophir et al., 2017). Ophir et al. (2017) examined the

Facebook posts from teenagers who had received psychotherapy treatment and found

that cognitive distortion express in their posts was highly associated with depressive

symptoms. However, Ophir et al. (2017)’s study only contained 190 Facebook sta-

tus updates from teenagers who received psychotherapy treatments. It is also unclear

whether the finding can be generalized to another sample. In this work, we attempted

to identify cognitive distortions in Facebook posts and examined their association with

users’ depressive symptom levels. In contrast to Ophir et al. (2017)’s work, our sample

is not exclusive to people who didn’t go through a therapy treatment. In our sample,

more than half of the users reported a low level of depressive symptoms.

Ophir et al. (2017) suggested that the annotation process of cognitive distortion

in Facebook posts largely overlapped with the process of annotating negative affect.

Therefore, we annotated cognitive distortion and negative affect in 4145 posts from

77 Facebook users according to the Cognitive Distortions Questionnaire (CD-Quest).

CD-Quest is a brief 15-item questionnaire that assesses the frequency and intensity

of cognitive distortions (Morrison et al., 2015; Oliveira, 2014). CD-Quest has been

validated in samples of various populations (Kaplan et al., 2017; De Oliveira et al.,

2015; Qian et al., 2020).

We examined the correlation between the cognitive distortions and users’ self-

reported depressive symptoms, life satisfaction and personality. To take a step further,

we also examined language characteristics of users who posted cognitive distortions

more often on their social media wall. To be specific, we designed the research ques-

tions as follows:

1. RQ 1: Do cognitive distortions reflected in social media text have associations

with users’ depressive symptoms, well-being and personality dimensions?

2. RQ 2: Is cognitive distortion expressed in social media text a better indicator of

users’ depressive symptoms than affective words?

3. RQ 3: What are the language characteristics among users who post content with

more cognitive distortions?
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6.2 Methods

This section describes our methods for annotation and statistical analysis. First, we

annotated the negativity and the positivity of the users’ affect in social media text.

Cognitive distortions are most likely to be negative, therefore, we only annotated the

cognitive distortions among posts with negative affect in this pilot study. While we are

aware that cognitive distortions may carry positive sentiments in rare situations, we

leave the analysis of those cases for future work.

Next, we adopted correlation tests to determine if affect and cognitive distortions

from social media data were associated with participants’ self-reported depressive

symptoms, satisfaction with life, and personality. Finally, we examined the language

characteristics in posts with cognitive distortion with Linguistics Inquiry and Word

Count (LIWC) (Pennebaker et al., 2001).

6.2.1 Data

This corpus consists of 4696 Facebook posts from individuals who participated in the

myPersonality project from January 2009 to December 2011. Our methods for data

analysis were carried out in accordance with the approved guidelines from myPerson-

ality. myPersonality was a Facebook-based application collecting psychometric tests

from users. Participants opt to allow myPersonality to collect their account informa-

tion and public Facebook posts. Collection of myPersonality complied with the terms

of Facebook service. All data are anonymized and gathered with opt-in consent for re-

search purposes. Our study sample contains 301 participants who have completed the

Center for Epidemiologic Studies Depression Scale (CES-D), Satisfaction with Life

Scale and Big-5 Personality Scale.

6.2.2 Sampling Approach

To ensure we have enough posts to conduct a longitudinal study, we only included

regular posters in our sample. We defined regular posters as individuals who posted

twice per week or more. We estimated this using the average post count per day during

the sampling frame. If an individual had a post count per day of 0.3, this individual

made around 109.5 posts in 365 days, roughly equivalent to an average of 2.1 posts

per week. In our sample, 122 out of 301 participants were regular posters. Since the

CES-D score provides us with a “ ground truth”, we analyze data from posts that have
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been made around the time that the score was obtained. Then we collected a sample

of 4696 posts from 91 regular users, these posts were produced two months before

the CES-D score was obtained. We further eliminated 14 posters who contributed less

than 20 posts during the two months. We also removed posts that were not written in

English. As a result, we were left with a sample of 4145 posts from 77 users.

6.2.3 Self-reported Measurement Scale

From the extensive data collected within myPersonality, we chose the Center for Epi-

demiologic Studies Depression Scale (CES-D) (Radloff, 1977) for measuring Face-

book users’ depressive symptoms. The scale was test for its internal consistency, test-

retest reliability Radloff (1977); Orme et al. (1986); Roberts (1980), and validity Orme

et al. (1986). We also adopted the Satisfaction with Life Scale (SWL) for quantify-

ing users’ mental wellbeing. The 5-item SWL scale has been found to have high

internal consistency and temporal reliability across different cultures and age groups

Diener et al. (1985); Pavot and Diener (2009). For personality and life satisfaction, we

adopted the Five Factor Model of Personality (Big-5) (McCrae and John., 1992). Per-

sonality traits were measured using a 100 item scale from the open source International

Personality Item Pool Goldberg et al. (2006).

6.2.4 Annotation Process

This section introduces our annotation process for affect and cognitive distortion. Sam-

ples cited in this work were modified via paraphrasing the original post. Our first task

was to annotate whether the post contained positive, negative, or mixed affect 1. Our

second task was to identify cognitive distortions among posts with negative or mixed

affect 2. Five student annotators and I completed the first task. The second task was

completed by me alone. A member of the supervisory team co-annotated some of the

samples.

This work is an exploratory study. The annotation for the cognitive distortion task

is yet to be validated by a second annotator because the funding for a co-annotator

could not be secured. This issue needs to be addressed in the future work.

1https://github.com/luciasalar/AnnotationTasks
2https://github.com/luciasalar/AnnotationTasks/blob/master/CognitiveDistortion.md
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6.2.4.1 Affect

We defined our annotation guideline of affect according to concepts described in (Mo-

hammad, 2016). There were two steps in this annotation task:

1. We identified the Primary Target of Opinion (PTO). PTO refers to the entity

towards which we can determine the speaker’s attitude. The entity can be a

person, situation or event.

2. We identified the positivity and negativity of the post related to the PTO accord-

ing to the valenced words (e.g., adjectives, emoji, verbs). In contrast to other

existing affect annotation task, we introduced a Mixed class to define posts con-

taining both positive and negative affect.

Here are some examples for affect annotation:

• Positive

– We made a snowman last night! :)

• Negative

– I’m so bored of quarantine.

– My cat died.

• Mixed

– I like the movie, but the conversation between Tom and Jack makes me feel

a bit sad.

Sometimes users reposted affective content, for example:

you have a sister who has made you laugh, punched you, stuck up for you,
drove you crazy, hugged you, watched you succeed , saw you fail, picked
you back up, cheered you on, made you strong, and is someone you cant
live without someone you can always count on....REPOST THIS IF YOU
HAVE A SISTER THAT YOU LOVE.

We included content such as this in our annotation task because our earlier work

showed that copy-and-paste repost content also reflects depressive symptom level (Chen

et al., 2020b).
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6.2.4.2 Cognitive distortion

We developed an annotation guideline according to the cognitive distortion checklist

(Oliveira, 2014). Below we list samples of cognitive distortion from social media con-

text (see Table 6.1). It is worthy of note that some categories of cognitive distortions

are more commonly present in the social media context. However, we did not distin-

guish the categories in our annotation task, therefore, we were not able to provide a

conclusion on which categories were more common.

6.3 Results

6.3.1 Cognitive Distortions in Social Media Text Reflect Depres-

sive Symptoms

Of 4145 posts, 804 of them were dominated by negative affect, and 36 of them con-

tained a mix of positive and negative affect. Among 840 posts that contained negative

affect, only 41 contained cognitive distortion. We found that cognitive distortion rarely

presented in the social media context, and which accounted for only 1% of the posts in

this sample.

To understand whether cognitive distortions extracted from social media text were

associated with depressive symptoms, we computed a cumulative cognitive distortion

score for each user by counting how many of their posts contained cognitive distor-

tions. We used the same approach to compute a cumulative negative affect score.

Table 6.2 shows the statistics of the two scores and their correlations with depressive

symptoms (CES-D). The p-values were adjusted by bonferroni correction. We further

normalized the negative affect score and cognitive distortion score with the total post

count. Table 6.3 shows the correlation between depressive symptoms, the negative

affect and cognitive distortion scores.

Our results show that although cognitive distortion only accounted for 1% of this

sample, it had a moderate correlation with self-reported depressive symptoms. The

cumulative score of cognitive distortion was more strongly correlated with depressive

symptoms than the normalized score. Cumulative cognitive distortion was also signif-

icantly correlated with life satisfaction. Both the cumulative and normalized negative

affect scores were not significantly correlated with users’ depressive symptom scores.
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Table 6.1: Examples of Facebook Posts with Cognitive Distortion

post cognitive distortion comments

I feel like my life is a waste.

I have no story, no influence,

no particular skills that are

useful. I suck at everything.

Minimization: Minimizing or

discounting the importance of

some event, trait, or circum-

stance. Labeling: Label-

ing oneself or others using

derogatory names.

The author generates the

global negative pattern based

on some incidents. The actual

number of such incidents is

unknown. But the author fails

to focus on life events that are

counter to this statement. The

author also labels themselves

as “a waste”.

I hate the past. I have to erase

them from memory forever.

I don’t care if the memories

were good or bad.

Discounting positives and di-

chotomous thinking: The ten-

dency to view all experiences

as fitting into one of two cate-

gories (e.g., positive or nega-

tive; good or bad).

The author hates everything

in the past, which is all-or-

nothing thinking and he/she

diminishes the positive events

or achievements in the past.

I keep breaking things in my

life and trying to put them

back together. I don’t want to

break anything anymore. :’(

Magnification: Exaggerate

the importance of your errors,

fears, and imperfections.

The author gives greater

weight to perceived failure or

weakness but fails to know

the positive side of mending

relationships.

I feel like I’m ready to fuck

things up, piss some people

off and get my way. I know

it is selfish, but I don’t care.

Emotional Reasoning: Let-

ting your emotions direct

your conclusions about your-

self, others, or situations.

The author lets his/her emo-

tions direct their behaviours

but refuse to consider the con-

sequences.
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Table 6.2: Pearson Correlations between negative affect, cognitive distortions and de-

pressive symptoms (cumulative score)

mean SD CES-D SWL

NA 10.91 11.835 0.192, CI(-0.03,

0.40)

-0.16, CI(-0.37, 0.60)

CD 0.532 0.981 0.300*, (CI 0.08,

0.49)

-0.250*, CI(-0.45, -

0.02)

Note: * p < 0.05, **p < 0.01, ***p < 0.001, NA: negative affect, CD: cognitive distortion, CES-D: correlation with depressive

symptoms. SWL: correlation with Satisfaction with Life, p− value adjusted with Bonferroni correction. CI: 90% confidence

level

Table 6.3: Correlations between negative affect, cognitive distortions and depressive

symptoms (normalized score)

mean SD CES-D SWL

NA 0.182 0.197 0.123, CI(-0.06,

0.31)

-0.108, CI(-0.29,

0.08)

CD 0.009 0.016 0.261*, CI(0.08,

0.42)

-0.208, CI(-0.41,

0.02)

Note: * p < 0.05, **p < 0.01, ***p < 0.001, CES-D: correlation with depressive symptoms. NA: negative affect, CD: cognitive

distortion, SWL: correlation with Satisfaction with Life, p−value adjusted with Bonferroni correction. CI: 90% confidence level

6.3.2 Cognitive Distortion and Personality Dimensions

To observe whether cognitive distortion reflects personality dimensions, we divided the

sample into two groups according to the mean cognitive distortion score. This study

included 26 participants at the higher end (CES-D score > 22) and 51 of them at the

lower end (CES-D score <= 22). In our previous work that used the same dataset,

we identified most of the variables were normally distributed (Chen et al., 2020c),

we compared the depressive symptoms, satisfaction with life, and personality among

the two groups with independent t-tests. Our results showed that users with different

levels of cognitive distortion did not differ in personality dimensions (see Table 6.4,

Bonferroni correction was applied to the test results).

6.3.3 Linguistic Styles of Individuals with High Cognitive Distor-

tions

Next, we use a quantitative approach (LIWC) to examine users’ linguistic style. LIWC

is software to measure the degree to which different categories of psychological pro-
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Table 6.4: Personality dimensions in users with high vs. low cognitive distortions (t-test)

All (n=77) High CD Low CD

M SD M SD M SD p d

ope 4.17 0.46 4.05 0.43 4.15 0.48 0.11 -0.37

con 3.18 0.74 3.09 0.74 3.09 0.75 0.41 -0.19

ext 3.10 0.84 2.84 0.65 3.09 0.90 0.03 -0.48

agr 3.54 0.68 3.46 0.64 3.52 0.71 0.44 -0.18

neu 3.02 0.87 3.15 0.78 2.96 0.92 0.33 0.22

Note: SD: standard deviation, M: mean, * p < 0.05, **p < 0.01, ***p < 0.001 after

Bonferroni correction. Effect size: 0.8 = large(L); 0.5= moderate(M); 0.2 = small(S), CD:

cognitive distortion, d: Cohen’s d, num. of posts: Number of posts in two months; ope:

openness; con: conscientiousness; ext: extraversion; agr: agreeableness; neu: neuroticism.

cessing related lexicons are present in the text. For each Facebook post, we extracted

scores that reflect various psychological processing with LIWC. Then we aggregated

the LIWC score for each user. This score represents the linguistic style of the user.

Table 6.5 shows the correlation between user linguistic style and cognitive distortion

score.

Similar to previous findings on depression and written language (Rude et al., 2004),

we also found that users with more cognitive distortions or negative affect in their so-

cial media text tend to use more first-person pronouns and less third-person pronouns.

Our result showed that there were differences in the language characteristics between

users who used more negative affective words and those who expressed cognitive dis-

tortions more frequently in their Facebook posts. Users who used more negative affec-

tive words in their posts tend to use more words that reflect social status and confidence,

anger and swear words across all their posts. In contrast, users who expressed cognitive

distortions more frequently in their posts tend to use more words that describe feelings,

perceptual processes, risk and prevention, but fewer words related to rewards. Unlike

users who used more negative affective words in their account, users who expressed

more cognitive distortions did not use more words associated with anger, anxiety, and

negative affect in their account.
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Table 6.5: Cognitive distortion, negative affect and depressive symptoms

variables NA CD

social status and confidence -0.518**

authentic 0.325**

1st per pronoun 0.369** 0.325**

3rd per singular -0.326* -0.249*

2nd person -0.235*

verb 0.244*

AFFECT WORDS

negative affect 0.322**

anger 0.413***

anxiety

sadness

swear 0.385***

COGNITIVE PROCESS

differentiation 0.323**

PERCEPTUAL

perceptual process 0.255*

feeling 0.301*

BIOLOGICAL

health/illness

CORE DRIVE

reward focus -0.249*

risk/prevention focus 0.312**

Note: * p < 0.05, **p < 0.01, ***p < 0.001 , NA: negative affect, CD: cognitive

distortion,
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6.4 Discussion

6.4.1 Identifying Cognitive Distortion in Social Media Text

Cognitive distortions are negative thoughts that reflect an individual perceives the re-

ality inaccurately. We found that cognitive distortion can be identified on Facebook,

but they only accounted for 1% of posts in our sample. Identifying cognitive distortion

expressed in social media text is a challenging task. A social media post may contain

unhelpful thoughts, but a single post does not reflect a thinking pattern. For example,

Ophir et al. (2017) considered the following sentence “Wow! What a bad day and

what a bad mood”, as catastrophizing (exaggerating negative affect and events). This

sentence could be a common exclamatory statement for someone who has a bad day.

If the person complains about a bad day repeatedly, this may reflect a thinking pattern

to exaggerate negative daily life events. Throughout the annotation process, we need

to consider if the thought is just a general complaint of life or shows signs of unhelpful

thinking.

Distinguishing types of cognitive distortion was an even more difficult task. Ophir

et al. (2017) found that the annotation agreement for cognitive distortion types was low.

We found that some posts contained multiple categories of cognitive distortions (see

table 6.1). Therefore, we only annotated whether the post includes cognitive distortion

in this pilot study, but we didn’t distinguish the types of cognitive distortion.

6.4.2 Cognitive Distortions and Users’ Depressive Symptom Lev-

els

Our results reaffirmed that cognitive distortion extracted from social media text is as-

sociated with users’ self-reported depressive symptom level (r = 0.30, p < 0.01). This

finding echoed with Ophir et al. (2017)’s finding (r = 0.75, p < 0.01) for clinically

depressed users. Cognitive distortion extracted from social media text was negatively

associated with satisfaction with life but it was not correlated with users’ personality

dimensions.

Existing literature suggests that users with more depressive symptoms tend to use

more words that reflect negative affect and anger on their social media wall (Ophir

et al., 2017; De Choudhury et al., 2013; Tsugawa et al., 2015). Our finding suggested

that not only users who used more negative affective words on their social media ac-

count tend to have higher depressive symptoms, but those who expressed cognitive dis-
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tortion more frequently in their posts also had the same tendency. However, those who

expressed cognitive distortion more frequently, including posting quotes and lyrics that

contain unhelpful thoughts, did not necessarily use more negative affective words on

their account. Instead, they tended to use words that describe perceptual process (e.g.,

feels, touch), reward (e.g., earn, win) and risk (Pennebaker et al., 2001), see Table

6.5. In contrast, participants who used more negative affective words in their accounts

tended to use more words reflecting anger (e.g., swearing).

6.4.3 Future Direction

Researchers recently explore the machine learning approach to annotate cognitive dis-

tortion in social media text (Simms et al., 2017). There is a potential for researchers

to develop automatic systems to detect cognitive distortions and use the detected dis-

tortions to infer depressive symptom levels. However, our findings suggested posts

that contain cognitive distortion were rare on Facebook. There are many challenges

for training models on an extremely imbalanced data set. To construct a balanced data

set, recently Shickel et al. (2020) invited MTurk workers to write a short piece of text

to describe their experience with different types of cognitive distortions. They trained

psychology students to also annotate a set of mental health therapy logs. Shickel et al.

(2020)’s dataset was more aligned with the therapy situation, whereas Simms et al.

(2017)’s dataset was in the social media context. Currently, little effort has been spent

in identifying cognitive distortion in written text. Detecting cognitive distortions in the

text is still an under-explored topic. Future studies can explore the automatic annota-

tion techniques on a larger annotated social media dataset.

6.4.4 Limitation

The myPersonality dataset was collected in 2011. Social media users are becoming

more careful about what they post on the wall over the years as they gain knowledge

that researchers are using their data to analyze their psychological traits (Schwartz

et al., 2013, 2014), political views (Trottier and Fuchs, 2014) and mental health status

(De Choudhury et al., 2014; Chancellor and De Choudhury, 2020). Therefore, our

finding of the percentage of posts that contain cognitive distortion may not generalize

well in the current Facebook data or data from other social media platforms.

We filtered out participants who do not have sufficient Facebook updates to allow

analysis, thus, our final sample is relatively small. Given the size of the significant
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effects we found in the data, power calculations indicate that a well-powered study

should include data from around 200 users (Schönbrodt and Perugini, 2013).

It is important to note that most of our participants were white, young adults. The

insights discussed here were drawn from a sample that contains only a small amount

of Facebook posts identified as cognitive distortions. Our results have not yet been

validated by large-scaled data. Therefore, our findings may not generalize well on

another sample due to biases in the dataset.

6.5 Conclusion

In this study, we explored the possibility of identifying cognitive distortions from so-

cial media text. We developed a guideline to annotate cognitive distortions expressed

in the social media text. We examined cognitive distortions expressed in social media

text and their relationship with social media users’ self-reported depressive symptoms,

life satisfaction and personality dimensions. We studied the language characteristics

of users who posted cognitive distortions more often and those who used more neg-

ative affective words. Our result suggested that although social media users rarely

express cognitive distortion in their posts, compared with the amount of negative af-

fective words they use, cognitive distortions have a stronger correlation with users’

self-reported depressive symptom levels.



Chapter 7

Detecting Suicidal Ideations

In the previous chapters, we examine approaches to extract cognitive distortions and

represent affective processes from social media text. We found these psychological

processes extracted from social media text are associated with users’ self-reported de-

pression symptoms. Literature supported that severe and long-term depression would

lead to suicidal ideations. Can we combine affective symptoms with behavioral symp-

toms to assess suicidal ideations? This chapter describes our system submission for

the CLPsych 2019 shared task B on suicide risk assessment (Zirikly et al., 2019). We

approached the problem with three separate models: a behavior model, a language

model, and a hybrid model. For the behavioral model approach (support vector ma-

chine model), we model each user’s behavior and thoughts with four groups of features:

posting behavior, sentiment, motivation, and content of the user’s posting. We used

domain expertise to compile lists of vocabularies associated with suicidal ideations.

These vocabularies turn out to be important features for the prediction model. For the

language model approach, we trained a language model for each risk level using all

the posts from the users as the training corpora. Then, we computed the perplexity

of each user’s posts to determine how likely his/her posts were to belong to each risk

level. Finally, we built a hybrid model that combines both the language model and

the behavioral model, demonstrating the best performance in detecting the suicide risk

level.

7.1 Introduction

Every year, there are over 800,000 people who die of suicide (WHO, 2019). Although

health care systems play a major role in assessing suicide risk, clinicians cannot assess

103
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all the risk factors thoroughly given limited time. One of the most important warn-

ing signs for suicide is the expression of suicidal thoughts. The standard practice of

clinicians asking people about suicidal thoughts cannot effectively predict and prevent

suicide because most patients who died of suicide did not report any suicidal thoughts

when asked by a doctor (McHugh et al., 2019; Chan et al., 2016). Therefore, many

of them were assessed to have a low or moderate risk before their suicide attempts

(Powell et al., 2000).

The CLpsych 2019 shared task B (Zirikly et al., 2019) attempts to address the

challenge of automatic suicide risk assessment using people’s forum postings. The

task aims to distinguish the levels of suicide risks among users who posted any content

in the suicide watch (SW) subreddit. The dataset includes all the posts (N = 31,553)

in any subreddit from 621 users who had posted on SW. One of the four risk levels

ranging from ”No Risk” to ”Severe Risk” was assigned to each user according to their

SW posts. The annotation process is described in (Shing et al., 2018).

We treat the task as a multi-classification problem. We approach it with three

models: a behavioral model (BM), a suicide language model (SLM) and a hybrid

model (HMBM SLM) that combines the (BM) and (SLM) models. The SLM offers good

classification accuracy, but it does not provide any human interpretable reason for its

classification decisions. Hence, we define a collection of features to better capture

users’ posting behaviors and thoughts. Then we use these features in the BM. The

overall results show that the hybrid model (HMBM SLM) performs the best in identifying

the risk level with a f1-score 38% for the CLPsych task B.

7.2 Related Work

Suicide is a complex behavior involving biological, psychological and social factors.

For psychological factors, a large amount of literature suggests that a history of psy-

chiatric disorders, especially affective disorders, is a strong predictor of suicide (Angst

et al., 2002; Brent et al., 1993; Bostwick and Pankratz, 2002). Another important pre-

cursor of suicide is self-harm or previous attempt. Biological and social factors that

contribute to suicide include: substance abuse (Vijayakumar et al., 2011; Hawton et al.,

2012; Bergen et al., 2012; Chan et al., 2016; Joiner, 2007), gender (males have a higher

suicide risk) and living alone(Joiner, 2007).

The suicidal behavior model by (Wilson et al., 2005; Cukrowicz et al., 2011)

proposed that the unmet need of belonging (e.g., relationship breakup) and the self-
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perceived burden were the major motivations for suicidal behaviors (Trout, 1980).

Other motivations include: having a negative self-image, hopelessness (Kovacs and

Garrison, 1985), and having a plan of the suicidal attempt. The duration, intensity, and

frequency of the suicidal desires also indicate the pertinacity of the attempt.

The majority of the prior work on the suicide risk detection focuses on manually

generated (BoW) features centering only around the textual cues of the user’s post

(Varathan and Talib, 2014; O’Dea et al., 2015), such as the LIWC pre-trained word

embeddings (Husseini Orabi et al., 2018) or supervised learning topics (e.g., latent

Dirichlet allocation) (Ji et al., 2018). Unlike these studies, we design a model that

leverages user’s behavioral data in combination with a suicide language model to de-

tect the suicide risk level. Our features intend to capture the language and behavioral

characteristics proposed by clinical literature as suicide risk factors. For example, we

develop a feature vector that represents suicide motivations. Examining the validity of

these features in our experimental model provides us a way to understand the preva-

lence of these characteristics in people with different suicide risk levels.

7.3 Suicide Risk Prediction Models

In this study, we propose three models to measure suicide risk levels. BM uses user’s

posting behaviors and manual selected language characteristics to predict suicidal risk

level. SLM learns the language characteristics of each risk level. The hybrid model

(HMBM SLM) combines the advantages of the BM and SLM models.

7.3.1 Behavioral Model

Most of the existing studies focus on the language used in expressing suicide thoughts,

and only a small number of them examine the behavioral and thought patterns on

social media. For instance, (Colombo et al., 2016) use Twitter followers, friends, and

number of retweets to represent the connectivity between users having suicide ideas.

Based on the clinical literature, we engineer four sets of features that capture user

behaviors and thoughts for the Behavioral model (BM), including posting behavior,

sentiment, content, and motivation for suicide. Posting behaviors consist of users’

posting patterns in SW, mental health related subreddits and all the other subreddits.

Sentiment features consist of a sentiment profile for each user and the user’s sentiment

towards selected topics (e.g., friends and family). Content features consist of Linguistic
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Inquiry and Word Count (LIWC) (Pennebaker et al., 2001), EMPATH (Fast et al.,

2016) and count vectors normalized by TF-IDF. For the motivation features, we use a

word count approach to define whether the user has suggested any motivations.

Some of these features were constructed using Suicide Watch (SW) posts only,

while others were constructed using all the Reddit posts from the users. Although many

of these posts might not be directly related to suicide thoughts, we hypothesized that

using irrelevant posts to define a user’s interaction behavior and emotional magnitude

would help identify the users’ virtual community with suicide risk.

7.3.1.1 Sentiment

Sentiment Profile. The sentiment of each user’s previous posting was used to identify

the similarity between users’ postings. This set of features is represented as a sentiment

value vector corresponding to a user’s previous posting. Then, we use the Levenshtein

Distance to compute the similarity between two such vectors (Yujian and Bo, 2007).

Topic Sentiment. We inspect the sentiment of specific topics in the SW posts. We

extract the sentences containing keywords related to family members (e.g., mom, dad),

partners (e.g., boyfriend), and self (e.g., myself). We then use SentiStrength (Thelwall

et al., 2010) to detect the sentiment values of these sentences and aggregate the topic

sentiment at a user level.

7.3.1.2 Posting Behaviors

Frequency of posting We use the number of posts, word count in each post, whether

and when a user posts more frequently as features. To check whether a user has re-

cently started posting more frequently, we define a posting frequency vector by com-

puting the average posting time interval between any two posts from a user. We use

a sliding window from the head to the tail of the frequency vector to identify which

time interval(s) is at least one standard deviation below the mean of all intervals. Users

are highly likely to post more frequently if the last window is one standard deviation

below the mean. The frequency of posting is inspected in the SW posts, all user posts,

and posts involving mental illnesses and drug use. To extract the posts involving men-

tal illnesses and drugs use, we compile a dictionary of mental illnesses’ names and

symptoms. Posts that contain words from this dictionary are selected. Meanwhile,

posts from subreddits that are associated with mental illnesses self-help groups (e.g.,

self-harm, TwoXADHD) are also extracted.
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7.3.1.3 Motivation Factors

Financial problems, drug use, mental illness history, relationship break up, hopeless-

ness, suicide tools and self-harm have been found to be predictive to suicidal behaviors

(Kessler et al., 1999). In our study, we compile dictionaries for each of the motivation

factors. Terms in drug use, mental illness and suicide tools dictionaries are extracted

from websites using the web scraping techniques.

7.3.1.4 Content Feature

We use both the open and closed BoW approaches to generate the content feature. For

the open vocabulary approach, we counted the term frequency and normalized it with

tf-idf. For the closed vocabulary approach, we used LIWC and Empath. Both tools are

used to count words from predefined psychologically meaningful categories.

7.3.1.5 Clustering

We use model-based clustering (Banfield and Raftery, 1993) to group sentiment, post-

ing behavior and motivation factors. Model-based clustering assumes that the data are

formed by multiple Gaussians. The clustering algorithm tries to recover the models

that generate the data. The best model is selected according to the Bayesian informa-

tion criterion (BIC). We adopt five clusters as our solution.

7.3.2 Suicide Language Model

The behavioral model (BM) enables us to observe the behavioral and thought differ-

ences among individuals with various suicide risk levels. However, one disadvantage

of the BM approach is that we might miss some relevant cases that do not contain

words in the manually selected dictionary or include irrelevant cases but contain the

dictionary words.

With this challenge in mind, we also tackle the suicide risk classification problem

with suicide language modeling (SLM). Language modeling is used in domains such as

machine translation, speech recognition and text classification (McCallum et al., 1998;

Brants et al., 2007; Coppersmith et al., 2014). The principle of language modeling

is to compute a probability distribution over words to determine how likely a specific

language model is to generate a given document. In our case, we train one model for
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each risk level. Then, we calculate a document’s likelihood (perplexity) for all the

models, and select the model with the best score.

7.4 Dataset and Experiment Setup

The dataset used for training the models is provided by the CLPsych shared task B

(Zirikly et al., 2019). It contains 621 Reddit users who had posted on SW with an

overall of 31,553 posts. The users are labeled as ”no risk” (class A), ”low risk” (class

B), ”moderate risk” (class C), and ”severe risk” (class D). Dataset statistics is presented

in table 7.1. The training set shows that nearly half of the posts were labeled as ”severe

risk”, class B only accounts for less than 10% of the posts. Nearly half of the posts in

both the training and testing sets did not have any contents in the post body.

Table 7.1: Distribution of posts and users in the training and test set

Training P (%) WC U P/U SW/U emP

A 10662 (34%) 52 127 84 1.28 6070

B 2715 (9%) 101 50 54 1.18 984

C 5726 (18%) 79 113 51 1.36 2556

D 12450 (39) 72 206 60 2.64 5344

Test 9610 63 125 77 1.49 4704

Note: A:no risk, B:mild risk, C: moderate risk, D: severe risk. P: number of posts. WC:

average word count in posts. U: users. P/U: posts per user. SW/U: SuicideWatch post per

user. emP: posts without content in the post body.

7.4.1 Suicide Language Model Setup

We train the (SLM) language model with the minimally processed data (raw text), and

tokenized and truncated data. For the raw text model, the data are preprocessed as

follows: Sentences are split by the NLTK sentence splitter and then spaces are inserted

around each full stop to make sure misspeled cases are parsed correctly. For example,

”tomorrow.And today” is processed as ”tomorrow . And today”. For the tokenized and

truecased model, we apply the tokenizer from the Moses machine translation toolkit

(Koehn et al., 2007).

The language model is trained with KenLM’s default settings (modified Kneser-

Nay smoothing) (Heafield et al., 2013). In each model, all the posts from a Redditor
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and annotated with a specific risk level are used as the training corpora. All the posts

from a Redditor are treated as a single document. To assign a risk level to the docu-

ment, we calculate its perplexity for each language model and assign the document’s

class based on the language model that produces the lowest perplexity score. We ex-

periment with the context windows of 3 to 6-gram and find that 4-gram works the

best.

7.5 Experiments

In the SLM, for each document, the model with the lowest perplexity is assigned to the

document. Perplexity is the inverse probability of a test set, normalized by the number

of words, a low perplexity indicates that the probability distribution is good at predict-

ing the sentence (Sennrich, 2012). Given a sample test, we calculate its likelihood for

all the models, and select the model with the best score.

In the BM, we used feature set 4 (see Table 7.4 in our final prediction model).

We validate our BM features on the multi-classification problem using support vector

machines (SVM) in scikitlearn 1. We use the 5-fold cross-validation on training data

and grid-search parameters to explore both the kernels and margin of the hyperplane

(C parameter).

Furthermore, we construct a hybrid model based on our observations on the pre-

diction results from the SLM and the BM. In the training process, we observe the BM

is weak in distinguishing classes B and C, but the SLM is better in identifying class B.

Therefore, we adopt the class B results from the SLM. We also find that some posts

in class A are suicide experiences from someone associated with the authors, but not

the authors themselves. The BM is better than the language model in identifying these

cases, so we use the BM for class A. However, if the confidence score is lower than 0.4,

the SLM can better identify class A. Therefore, we replace the results with confidence

score lower than 0.4 with those from the SLM model.

7.6 Results

Table 7.2 shows the test set results of the three models. Table 7.3 shows f1 for flagged

vs. non-flagged and urgent vs. non-urgent. Flagged vs. non-flagged distinguished class

A from the rest of the classes. Urgent vs. non-urgent distinguished classes A, B with
1https://scikit-learn.org/stable/
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classes C, D. The hybrid model had the best average f1 macro in the risk assessment

task.

Table 7.2: Results for risk assessment task

Model Risk level P R F

BM A 53 78 63

B 22 15 18

C 14 14 14

D 55 42 48

F1AV G 36

SLM A 73 25 37

B 27 23 25

C 12 7 9

D 49 83 62

F1AV G 33

HMBM SLM A 56 72 63

B 25 39 30

C 12 11 11

D 55 42 48

F1AV G 38

P: precision (%), R: recall (%), F: f1 macro average (%). F1AV G: f1 (%) macro average of

four classes.

Table 7.3: Results for flagged and urgent cases

Flagged Urgent

P R F P R F

BM 91 76 83 80 69 74

SLM 79 97 87 69 89 78

HMBM SLM 89 81 85 81 65 72

P: precision (%), R: recall (%), F: f1 macro average (%).

In our test set result, we find that SLM is over-fitting. SLM classifies most of the

posts to class D in the testing set. Whereas the BM has consistently good performances

on classes A and D, but poor performances on classes B and C.
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7.7 Conclusion

Our results demonstrate that suicide risk can be gauged by user’s posting behaviors.

Suicide risk factors identified by clinical literature are useful in the automatic detec-

tion of suicide risks. Suicide language can be modeled by statistical language model,

especially for risk level B and D, in which cases it surpasses the behavioral model.

Hence, a combination of the two models results in a more accurate user classification.

As future work, further analysis of each feature would gauge its contribution towards

identifying suicide risk levels.

7.8 Important features

In this section, we show our model performances on the training set with different

feature groups. We divided the training set into a train and validation set with a ratio of

0.3: 0.7. Table 7.4 shows the model result on the train and validation set. Our model on

the published work adopted feature set 4. We found that adding the manually defined

topics have dramatically improved the prediction results. These topics were manually

defined dictionaries that reflect certain themes, for example, financial difficulties (e.g.,

bankrupt), drug abuse, mental health, relationship problems (e.g., break up), suicide

(e.g., kill, cut) and hopelessness (e.g., no hope). The vocabularies of the dictionaries

were documented on Github 2. Existing lexicon-based topics analysis (e.g., LIWC

and Empath) and unsupervised learning topic modeling (e.g., LDA) have been widely

adopted as tools to generate features for systems that identify suicidal ideations and

mental illness symptoms. These tools were also adopted in Chapter 4. Our feature

analysis results suggested that expert knowledge is critical for feature constructions of

the machine learning system.

7.9 Review and Next Step

Suicidal behavior is a transdiagnostic outcome for many mental illnesses. It is a com-

plex but preventable health problem. A majority of the suicide decedents consult with

their physicians days to weeks before committing suicide (Juurlink et al., 2004). Early

detection of suicidal risk can be an intervention opportunity. Application of machine

learning, especially to electronic medical records, yields promising results (Sanderson

2https://github.com/luciasalar/suicideDetection/tree/master/dictionaries
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Table 7.4: Model results on training and validation set

feature group risk

level

precision recall f1-score

set 1: count vector, psy-

chological processes

A 81.4 57.8 67.8

B 100 6.7 12.5

C 20.8 14.7 17.2

D 54.6 85.5 66.7

F1AV G 41.0

set2: count vector, psy-

chological processes,

PF health, methods

A 81.4 57.8 67.8

B 100 6.7 12.5

C 20.8 14.7 17.2

D 54.6 85.5 66.7

F1AV G 41.0

set 3: count vector, psy-

chological processes,

PF health, methods, PF

SW

A 74.1 60.5 66.7

B 100 6.7 12.5

C 22.2 17.6 19.7

D 55.6 80.6 65.8

F1AV G 41.2

set 4: count vector, psy-

chological processes,

PF SW, methods,

manual topics

A 82.1 60.5 69.7

B 100 6.7 12.5

C 31.4 32.4 31.9

D 58.8 80.6 65.8

F1AV G 45.5

set 5: count vector, psy-

chological processes

, PF health, meth-

ods, manual topics,

sentiment

A 79.3 60.5 68.7

B 100 6.7 12.5

C 26.5 26.5 26.5

D 56.5 77.4 65.3

F1AV G 43.2

set 6: count vector,

psychological pro-

cesses, PF health,

methods, manual

topics, sentiment, LDA

A 71.8 60.5 65.7

B 0 0 0

C 24.1 20.6 22.2

D 56.8 80.6 66.7

F1AV G 38.6

F1: weighted average f1 score. count vector: 300 n-gram count vector (n = 1,2,3). psy-

chological processes: LIWC (Pennebaker et al., 2001), EMPATH (Fast et al., 2016). PF

health: posting frequency in health related subreddits. Method: suicidal methods or tools

mentioned in the posts. PF SW: posting frequency in r/SuicideWatch.
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et al., 2020; Zhong et al., 2018). In addition to this, detecting suicidal thoughts in

social media platforms is a potential promising screening technology because studies

found that young people are likely to disclose suicidal ideations and suicidal risk on

social media platforms (Roy et al., 2020).

In the CLpsy shared tasks, users posted on r/SuicideWatch were annotated suicidal

risk according to their thoughts, including explicit ideation of suicide, the thinking

pattern that they self-perceived as a burden to others, lack of hope for things to get

better, a sense of impulsivity, talk about methods of suicide, previous attempts, life-

changing events or isolation from friends and family. We constructed features that

matched with the risk factors suggested by suicide prevention experts. For example, we

used a keyword approach to capture motivation for suicide, the sentiment of sentences

related to family, friends and self, lexicons for drug use and suicidal tools. It turned

out that these topics are more important features than sentiment and topics learnt by

unsupervised learning approach.

Zirikly et al. (2019) summarize the models for this shared task, most of the pa-

pers use pre-trained embeddings, LIWC, n-gram features, posting time and LDA topic

modelings as features. Our work also identifies keywords linked to motivations and

suicide-related unique identifiers. The submissions of the task include traditional ma-

chine learning and deep learning models. SVM and logistics regressions are frequently

used ML models. We only submitted the behavioral model published in our work for

evaluation, and this model ranked No.4 among all the submissions. However, our hy-

brid model, combining the behavioral model with the language model yields better

performance.

For early detection and screening for suicidal risk, it is important for a model to

have high recall so that fewer high-risk cases would be missed out. Deep learning

techniques are good at achieving a high model performance. Therefore, many popular

deep learning architectures were adopted in the CLpsy share task. For example, Hevia

et al. (2019) used a GRU-based RNN. Morales et al. (2019) used CNN, LSTM, Matero

et al. (2019) purposed attentive RNN and BERT.

Among all the submissions in this task, we were the only team that attempted to

use language models to capture psychological factors across various constructs, such as

stress, loneliness, burdensomeness and hopelessness. We trained the language model

using all the Reddit users’ posts, not just the posts from r/SuicideWatch. Our language

model yields a slightly worse result than the behavioral model. Future work can con-

sider only using relevant subreddits for training. Our training sample was relatively
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small (around 100,000 lines). Considering that many language models usually involve

millions of lines as input (Devlin et al., 2019). In this work, we only explore the sta-

tistical language model due to a small training example. Future work can try the deep

learning language model on a bigger training set.

For future direction in suicidal detection technology, researchers can explore mod-

els using data from different social media platforms. The CLpsy2019 shared task mod-

els are not generalized to other social media platforms because users have different

self-disclosure levels and language characteristics in various social media platforms. It

is important to model suicidal language on other social media platforms as well. For

example, Roy et al. (2020) used ML approach to identify suicidal ideations in tweets.



Chapter 8

Conclusion

In the preceding chapters, our overall goal was to explore methods to using social

media signals to represent the psychological processes underlying depression. In this

chapter, we summarize our findings, connect our results to theories of psychopathol-

ogy, and discuss the limitations of the research, ethical concerns, and future directions.

8.1 Summary of Contribution

In order to answer our research question, we have proposed three sub-goals: monitor-

ing affective patterns, identifying cognitive distortion, and identifying topics related to

risky behavior (see Figure 1.1 in Chapter 1). In this section, we summarize the findings

for each sub-goal as below:

8.1.1 Monitoring Affective Pattern

The first goal of the research (see Figure 1.1 in Chapter 1) was to examine how af-

fective patterns manifested in the social media text. We represented the magnitude,

categories, variation and transitions of affect using signals extracted from social media

text. These dimensions of affect are documented in the affective theories in psychol-

ogy. Before we started the research on Chapter 3 and Chapter 4, we found that most

of the studies in this research line aggregated affective language over a long period.

However, such a simple representation of affective language did not align with the

structure of mood described in the psychology literature. Mood variation, magnitude

and transitions, are important for understanding the development of depression in the

clinical context (Akiskal, 1996; Davidson, 1998). Throughout our work (Chapter 3 and

115
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4), we quantified the affective patterns extracted from social media text according to

dimensions and concepts of mood defined in the literature on affect (see Section 4.2.1

in Chapter 4).

By experimenting with various structures to represent different aspects of mood,

we found that mood patterns extracted from social media text were associated with

personality and depressive symptom levels. These findings echoed with findings from

psychopathology and personality literature (Akiskal and Van Valkenburg, 1994). Our

studies connected the design of machine learning experiments and their results with

theories in affect (Akiskal, 1996; Watson, 2000). Finally, we found that not only user-

generated content reflects users’ mood, but copy-and-paste in-text lyrics and quotes

also reflect users’ depressive symptom levels (Chapter 5).

8.1.2 Cognitive Distortion

Cognitive distortion is an irrational thought pattern involved in the onset or perpetua-

tion of depression and other psychopathological states. The second goal of our research

was to identify cognitive distortion in social media text (see Figure 1.1 in Chapter 1).

In Chapter 6, using a sample of more than 4,145 Facebook posts from hundreds of

users, we identified 41 posts showing cognitive distortions.

The main contribution of Chapter 6 included an annotation guideline to identify

cognitive distortion from social media text. We reaffirmed that cognitive distortion

could be identified in a general population of Facebook users. The amount of cog-

nitive distortion in one’s social media text was slightly positively associated with so-

cial media users’ self-reported symptom levels. This finding may provide insights on

whether cognitive distortion on social media posts can be another important indicator

for depressive symptoms besides affect, social network, posting time and topics.

8.1.3 Topics specific to risky behavior

For the last goal, we aimed to use topics extracted from social media text to evalu-

ate users’ suicidal risk levels. In the study “Similar Minds Post Alike: Assessment

of Suicide Risk Using a Hybrid Model” (Chen et al., 2020b), we compiled topic dic-

tionaries that are relevant to suicidal risk according to psychopathology literature, in-

cluding the motivation (e.g., financial crisis), drug use, somatic complaints, and so on.

This work’s major contribution was that we found that these topic features are associ-

ated with users’ suicidal risk levels. They are more associated with the self-reported
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symptom levels than sentiment and topics generated with an unsupervised learning ap-

proach. We also attempted to use a statistical language model to classify risks and we

found the statistical language model captured the language characteristics of those who

had suicidal ideations.

8.2 Connecting Experiment Design and Results to The-

ories of Psychopathology

This section explains how we mapped our experimental design and the resulting im-

plications to existing theories of psychopathology.

8.2.1 Connecting Affective Patterns from Social Media Data to The-

ories of Affect

We linked the affect representation to the concept of mood. Literature defines that

mood as a form of affective experience that runs in the background (Akiskal and

Van Valkenburg, 1994). Therefore, we used averaged sentiment or the most frequent

sentiment over a short period to represent mood. Mood is also dynamic. To define

a dynamic mood, we split a large period into many small time windows. Unlike the

existing studies, we tested the effect of time window size and step size on the affect

representations.

Literature on affect also suggested that mood intensity, duration, variability (fre-

quent and extreme changes in mood or emotion over time) are important aspects for

affective disorders (Larsen, 1987; Akiskal, 1996). In Chapter 3 and Chapter 4, we

included mood magnitude and alternations in the mood representations. Chapter 4

quantified mood fluctuation using parameters in the Gaussian process regression. We

found that users who had a high level of depressive symptoms showed more instability

in their mood pattern extracted from social media data. This finding aligned with the

psychopathology literature that suggested mood instability and irritability were related

to depression, although they were not core symptoms (Balbuena et al., 2016).

Literature on personality and mood suggested a structural convergence of mood

and personality. For example, mood levels were related to extraversion and negative

affect was strongly related to neuroticism (Hepburn and Eysenck, 1989). In Chapter

3, we found that users who scored high in neuroticism tended to post content with
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negative affect continuously. They did not simply post more negative content (Chapter

3). Chapter 3 measured sentiment on consecutive days, which was more aligned with

the structure of mood. This finding is different from most of the existing findings that

suggested social media users with high depressive symptom levels tended to express

more negative sentiment in their posts on average.

8.2.2 Lyrics Indicate Mood Regulation

It is well known that music can evoke a wide range of feelings. Music is especially

charming and pleasurable when it deals with sadness (Sachs et al., 2015). People of-

ten choose music that is in congruence with their mood. Listening to songs centered

around hurt, pain, and grief is part of the mood regulation process for coping with

stressful life events (Hamilton et al., 2013; Gladding et al., 2008). Lyrics have also

been found to be associated with one’s mental state. Studies have found a relation-

ship between various music and people’s behaviors, even vulnerability to suicide. For

example, “emo” music is related to girls’ mental state (Baker and Bor, 2008).

We unveiled that social media users with more depressive symptoms tend to post

more in-text copy-and-paste lyrics, especially lyrics with negative sentiment (see follow-

up study in Chapter 5). We believe that posting song lyrics and quotes on social media

walls may indicate mood regulation behavior, especially if sad lyrics are posted.

8.2.3 Linguistics Style from Social Media Users Posted Cognitive

Distortion

This chapter found that cognitive distortions extracted from social media posts were

associated with users’ self-reported depressive symptom levels. However, compared

with Ophir et al. (2017)’s finding, our correlation result had a smaller effect size. We

speculate the difference is due to sampling differences. Ophir et al. (2017)’s sample

only contained participants who received therapy treatment.

We also found that users with more depressive symptoms tend to display more

cognitive distortions, but they did not necessarily use more negative affective language

in their account. Existing literature on mental health predictive techniques often fo-

cuses on using affect, topics and social networks as features. This approach may miss

out on high depressive symptom participants who are not using more negative affec-

tive language. Our finding on cognitive distortion suggests these participants may be

identified by the cognitive distortions expressed on their posts.
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8.2.4 Topics markers indicate suicidal risk

In the paper “Similar Minds Post Alike: Assessment of Suicide Risk Using a Hybrid

Model” (Chen et al., 2019), we attempted to use language that reflects factors that

contribute to suicidal ideations to classify suicidal risk. It is worth noting that the

clinicians’ evaluation of risk levels according to users’ Reddit posts did not reflect if

the user will commit a suicidal act. During our research, we identified multiple themes

defined in the psychology literature, for example, that severe depression was one of the

leading causes of suicide. Therefore, we identified topics related to somatic symptoms,

biological processing and medications because these were important features to infer

users’ depressive symptoms in the social media context (see Chapter 2).

We were aware that the reasons for an individual to commit suicide are complex.

Other factors such as socioeconomic status, stressful life events and low self-esteem

also expose one to a greater risk of committing suicide. We found that users who

posted in Reddit r/SuicidalWatch using keywords associated with the themes listed

above had a higher risk of committing suicide. Nevertheless, those who had a more

negative sentiment towards “self-worth” and “family and friends” were also at higher

risk. Our findings suggest that suicidal risk factors defined in psychology literature

can be detected by examining these topics in their posts using a machine learning

algorithm.

8.3 Limitations

Similar to existing studies using social media data to infer mental health status, there

are challenges of validity and sample bias.

8.3.1 Validity

Validity refers to whether we measure what it is claimed to measure. There are con-

cerns about the validity in studies using social media data to predict mental health

status.

• Construct validity Existing literature, included our studies, has often used self-

reported mental health status as the “gold standard”, however, self-reported sta-

tus does not reflect a diagnosis. When people seek help for mental health issues

in a clinical context, they should receive a detailed assessment from a special-

ist. The assessment considers the symptoms, feelings, thoughts, physical health,
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employment, financial circumstances, social and family relationships, sexuality,

drug and other issues that may affect mental health (NHS, 2020).

• External validity Effect observed on a particular social media platform may

manifest differently on other platforms due to the specific functionality of the

platform, as well as, cultural and demographic differences of the users. For

example, anonymity and social ties increase self-disclosure level and content of

negative emotions (Ma et al., 2016).

8.3.2 Data Quality

Data quality can be measured by data accessibility, the quantity of data, data believ-

ability, completeness and 12 other dimensions (Pipino et al., 2002; Immonen et al.,

2015). Data from social media platforms is characterized by its high availability. Re-

searchers can retrieve a large amount of data in a short period. However, social media

data is poor with regard to its truthfulness and its credibility. For example, it is difficult

to ascertain whether the profile information about a person’s age and gender is true.

Social media data is also full of spelling errors and culturally specific jargon, making

the interpretation of the language and symbols challenging for some of the algorithms.

Its sparsity is also a well-known shortcoming that hinders researchers from obtaining

a complete picture of the users’ lives.

8.3.3 Sample Biases

The samples used in the first part of the thesis mainly contained hundreds of partici-

pants from developed countries, and the majority of them were of white ethnicity. On

top of this, users on social media platforms are mainly young adults. For example,

around 90% of Redditors are under the age of 35, with a mean age of 25 years (Bogers

and Wernersen, 2014). Mislove et al. (2011) analyzed a set of Twitter users which

represented 1% of the U.S. population by estimating their gender and race according

to names on the profile. They found that Twitter users were predominantly male (72%)

and Caucasian (86%). Users also significantly over-represent the densely populated re-

gions of the U.S. Facebook tends to have a more age-balanced group of users. Ribeiro

et al. (2020) recently analyzed 230 million Facebook users and found that there were

16% of people range from 18 to 24, 25% from 25 to 34, 19% from 35 to 44, 15%

from 45 to 54 and 12% from 55 to 64. However, 65% of the users were Caucasian.
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Therefore, it is not possible to have a balanced sample using data sources from social

media. Older people are in general underrepresented across platforms. Moreover, stud-

ies using social media data sources only involve those who are willing to share their

data. In our study, we only involved those who completed a mental health assessment

questionnaire.

Chapter 2 summarized findings from more than 100 papers in this field, and some

findings were common across different samples. Findings supported by multiple exist-

ing studies are more applicable to other samples. In contrast, our findings in Chapter 3

and Chapter 4 were based on a single, isolated dataset and were not validated by other

studies. These findings may not be generalized well to another dataset due to different

self-disclosure levels and demographic characteristics in the new sample. To tackle

sample biases, we need more future studies to replicate our findings.

Another limitation was that our studies only focused on English language data.

Findings from our studies may be different from samples from other cultural back-

grounds. According to our overview in Chapter 2, only around 10% of the studies

examined non-English data, among which half studied Chinese language data. More

studies need to be conducted in different languages to gather clinical insights across

cultures. Nevertheless, multiple of our studies in this thesis used a Facebook dataset

collected during 2011-2013. The language on social media platforms users’ motiva-

tion to use the platform evolves over the years (Eisenstein et al., 2014; Nadkarni and

Hofmann, 2012). For example, Facebook users are motivated by two primary needs:

1) The need to belong and (2) the need for self-presentation (Nadkarni and Hofmann,

2012). In a recent study, Kuru et al. (2017) found that the use of Facebook, espe-

cially on a mobile device, is mainly driven by habitual behavior. Users tend to use the

platform to browse information nowadays rather than to maintain self-presentation.

We are aware that our “gold standard” label does not represent a diagnosis. Our

approaches in this work did not imply a screening or diagnostic technology. Our result

cannot be generalized to other social media platforms or users from different cultural

backgrounds than those in our datasets. Here we discuss these limitations in more

detail.

8.3.4 Small Sample Size

The scale of sample size posed constraints on the techniques we could try. Some of the

methods we tried require a larger sample for training. For example, we attempted to
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build language models for suicidal language in Chapter 7. We used all the Reddit posts

(N=31,553) from 621 users. This approach produced promising results, but a larger

dataset of millions of lines is needed to achieve satisfactory results using a statistical

language model. An even larger sample is required to try the state-of-art deep learning

model.

8.3.5 Sentiment Detection Techniques

In our published papers reported in Chapter 3 and Chapter 4, we used a dictionary

matching approach to detect sentiment in the text. Although the algorithm we used,

SentiStrength (Thelwall, 2017), has been validated in many studies, we found that us-

ing a pre-trained deep learning model (huggingface, 2021) to identify sentiment in the

text demonstrated more accurate results. Algorithms that used dictionary matching

approaches, such as LIWC, EMPATH, and ANEW, were popular approaches for senti-

ment extraction in mental health status detection techniques. We suggest future studies

explore deep learning approaches for extracting sentiment features.

8.3.6 Detecting Emotions in Lyrics and Quotes

In the study “It’s Not Just About Sad Songs: The Effect of Depression on Posting

Lyrics and Quotes” (Chen et al., 2020b), we identified the positive, negative and neu-

tral affect in lyrics. Literature about music and depression often found people listen-

ing to sad songs as a coping mechanism for mood regulation. Our study conducted

sentiment analysis on each post that contains lyrics, but we did not perform emotion

analysis on each lyric. Sentiment analysis only involved positive and negative valence.

Emotions are more fine-grained. For example, Ekman (1999) identified six basic emo-

tions: anger, disgust, fear, happiness, sadness and surprise. Cowen and Keltner (2017)

identified 27 emotions using self-reported methods. We manually analyzed the emo-

tion words by observing the most frequent topic keywords. This approach allowed

us to approximate the emotions in the lyrics in general, but not on a document level.

Future studies should use algorithmic approaches (e.g., Emotxt (Calefato et al., 2017))

to extract emotions from song lyrics. These emotions may be congruent with those the

user was experiencing when they posted the status updates.
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8.3.7 Annotation for Cognitive Distortions

In the study “Examining Cognitive Distortions in Social Media Text”, we annotated

whether a status update contained cognitive distortion. Different types of distortions

were not distinguished because we encountered a problem similar to Ophir et al.

(2017). We found that a status update may contain more than one type of cognitive

distortions and it may be difficult to reach an agreement between raters. On top of

this, we did not have a second-rater to annotate cognitive distortions due to funding

restraints. We plan to have a second annotator to co-annotate this task in our future

work.

8.4 Contribution to real-world intervention

The contribution of this work mainly lies in the techniques of representing the social

media signals that include various aspects of mood. Content such as lyrics and quota-

tions are also suggested to be included in the representations. We adopted a classifying

approach to establish links between the representations we constructed in self-reported

mental health status. The limitations of the dataset prevent us from using these classi-

fiers in a real-world context. All the existing studies using social media data to detect

mental health status have similar limitations. Social media data alone does not contain

all the necessary information for diagnosis. Therefore, systems providing a risk level

classification based on social media data alone are not very meaningful for clinicians to

understand a patient’s condition. Our contribution to real-world intervention is to allow

clinicians to observe fine-grained documentation of psychological processes, such as

mood and distorted thinking patterns. This information can enable clinicians to obtain

a more comprehensive picture of the trajectory of psychological processes underlying

various psychological disorders if combined with other available sources. It may also

allow patients to have a better recall of their life records during a therapy session.

Mikal et al. (2016) pointed out that some participants envision they would benefit

from a computer system that tracks their mood using social media data, especially

that it may provide extra information to therapists. However, studies about human

interaction with the system are still rare. Future research should consider conducting

surveys to understand the public’s opinion on using this technology.
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8.5 Ethical Challenges

This section highlighted our research ethics and discussed the ethical challenges of us-

ing social media data to study users’ mental health status. Our studies adopted rigorous

procedures to safeguard user privacy and followed the best practice in research ethics.

8.5.1 User Privacy

Social media users often consider themselves responsible for protecting their privacy

(Mikal et al., 2016; Golder et al., 2019). However, many social media users have

misconceptions about the social media platform’s functionality. For example, deleting

posts doesn’t mean the data is not available. Having a small number of followers does

not imply that people cannot find your account. Due to misunderstandings regarding

data reach and permanence, researchers need to safeguard users’ data.

Many studies published social media datasets to encourage reproducible exper-

iments. Zimmer raised the ethical concern of publishing Facebook data (Zimmer,

2010). Although published social media datasets are often anonymized, some posts

contain contact information, personal identifiers, and health information (Honey and

Herring, 2009; Naaman et al., 2010). Yet, datasets with personal information pose

potential privacy threats to social media users. Our studies from Chapter 3 - 6 used

the MyPersonality dataset. MyPersonality stopped sharing data with other scholars in

2018 due to the founders’ lack of resources for maintaining the database and respond-

ing to inquiries (Kosinski, 2021). I was granted to use the MyPersonality in 2017 for

studying social media users’ satisfaction with life (Chen et al., 2017) and depressive

symptoms. We were not able to publish the annotated dataset of MyPersonality, be-

cause this would have violated the terms of use of the data set.

8.5.2 Research Ethics

Our research complies with General Data Protection Regulation (GDPR)’s definition

of pseudonymization. Article 4(5) GDPR defines pseudonymization as:

Pseudonymisation The processing of personal data in such a manner that the

personal data can no longer be attributed to a specific data subject without the use

of additional information, provided that such additional information is kept separately

and is subject to technical and organisational measures to ensure that the personal

data are not attributed to an identified or identifiable natural person.
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According to GDPR’s definition of pseudonymization, the data must be modified to

prevent direct identification and be protected against re-identification (Mourby et al.,

2018). The myPersonality dataset and the CLpsy Reddit dataset used in our studies

have gone through at least one standardized anonymous procedure – a unique identi-

fier that does not reveal users’ “real world” identity was assigned to each user. There

was no direct way to identify users who wrote the posts without combining exter-

nal sources. For the myPersonality dataset, we extracted thousands of posts for the

sentiment and cognitive distortion annotation tasks. Before we distributed the sam-

ple for annotation, human names were removed from the select posts to prevent re-

identification.

Our studies using the myPersonality dataset obtained the research ethics approval

from the School of Informatics at the University of Edinburgh. The studies involv-

ing human participants were reviewed and approved by Self-Certification according to

the procedure of the School of Informatics, University of Edinburgh. The secondary

analysis of this data set was reviewed and approved by the Ethics Committee of the

School of Informatics, University of Edinburgh, Reference Number 72771. For the

CLpsy Reddit dataset, we applied to use the dataset from the Shared Task organizers

(CLpsy, 2019) and we obtained ethical approval from the Educational Testing Service.

All the datasets for our research were stored on university servers. Only I had access

to all the data. Co-authors could access data samples shared on a platform hosted on

the university server. In addition, we hosted an annotation tool on a server located in

the UK for the annotation task.

8.5.3 Social Media Users’ Opinion on Social Media Mental Data

Health Predictive Techniques

Social media users recognize that techniques to predict mental health status from so-

cial media have potential for social good, although some of them expressed concern

regarding privacy (Mikal et al., 2016; Golder et al., 2019). One primary concern was

that users were afraid that the tools used to pinpoint individuals’ mental health sta-

tus could identify and stigmatize them. For example, in Mikal et al. (2016)’s study,

some interviewees expressed that they would unfollow a user if they knew the person

had depression. Techniques for classifying depression may cause harm in terms of

misleading results and risk of stigmatization.

Although there were concerns about privacy and potential harm, many respon-
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dents had a positive opinion about tools that can accurately assess their moods. People

suggested that their social media record might be able to help them respond to their

therapists’ question (Mikal et al., 2016). Many respondents also felt that automated so-

cial media tracking could allow mental health practitioners to observe them through a

broader window. It could provide them with some objective evidence of mood swings

and duration (Mikal et al., 2016). Our thesis’s goal echoed with respondents’ positive

opinion about using social media data to monitor mood pattern Mikal et al. (2016).

We shifted our focus from the classification of mental health status to developing ap-

proaches to improve the representations of social media signals. We believe our find-

ings contribute to the understanding of psychiatric illnesses.

Future researchers of mental health predictive techniques need to think more care-

fully about the benefits of developing classification techniques. Is the benefit greater

than the risks? The potential benefit of the research is the most influential factor in

determining whether participants would give researchers consent to collect their data

(Golder et al., 2019).

Therefore, more studies need to be conducted with a broader range of samples to

understand the potential benefits of research in this field.

8.6 Future Work and Implications

Interest in using social media data to infer users’ mental health status has been growing

over the last few years. In this section, we briefly discuss the directions for future

explorations.

8.6.1 Reducing Sample Biases

The greatest limitation of using social media data to infer mental health status was that

existing findings were often based on single, separated and biased datasets. There was

no benchmark dataset to compare the performance of the algorithms. The small sample

size also limited the approaches we could explore on the optimization. For example, in

the CLpsy suicide risk assessment task, our statistical language model did not perform

very well in some classes, mainly due to the small training sample.

Moreover, most current mental health status findings using social media data did

not generalize well to different platforms and users from various cultural backgrounds.

For example, while our literature overview in Chapter 2 summarized that users with



8.6. Future Work and Implications 127

more depressive symptoms used more negative affective words, Chen et al. (2020a)

found that Chinese social media users with more depressive symptoms tend to use

fewer words that were positive affective. In the future, researchers should examine if

the existing findings can be replicated in samples of different demographic groups.

Future work should focus on collecting a high-quality dataset with participants

from a more varied demographic background to tackle the challenge of sample bias.

For example, the OurDataHelps project from the University of Maryland (UMD, 2021)

is collecting a large-scale dataset to study how language usage and language changes

may be connected to psychiatric symptoms.

8.6.2 Using Social Media Signals to Provide Insights for Psychopathol-

ogy Research

The previous section (8.5.3) explained social media users’ mixed attitudes towards

using their data to predict their mental health status. Users prefer technology that can

assist their therapy treatment (Mikal et al., 2016). However, existing research mainly

focused on framing the problem as a classification task, and the goal was to optimize

functional algorithms. Few studies explored approaches to extract social media signals

to provide insights to users or mental health practitioners.

Future studies can continue exploring approaches to extract social media signals

to allow mental health practitioners to observe more information about the patients’

lives. For example, how can we accurately retrieve adverse life events from status

updates? Do users’ emotions toward significant life events, family and friends on

social media text provide insights for researchers and mental health practitioners? Do

mood swings recorded in social media text help patients retrieve memories important to

the treatment? Future research can explore many more exciting questions with social

media data. These questions provide more meaningful insights to researchers than

optimizing classification problems.
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Appendix

.1 EXPERIMENT AND RESULT DETAILS for Chapter 4

The following supplementary material details what is required to reproduce our results

as closely as possible.

.1.1 MODEL TRAINING

Grid searches of the following pairings of parameter spaces and Scikit-Learn imple-

mentations of algorithms were carried out:

• Feature Extraction

– number of n-gram: 1000, 1500, 3000, 4000, 5000, 6000

– number of topics: 10, 20, 30

• HMM:

– Initial transition probability: [0.5, 0.5], [0.5, 0.5]

– Initial transition probability: [0.2, 0.3, 0,2, 0.3], [0.2, 0.2, 0.3, 0.3]

– Number of iteration: 10

• Support Vector Machine

– Inverse of regularization strength: 0.5, 0.7, 1.0, 1.5, 2.0, 2.5

– Kernel: linear, poly, rbf, sigmoid

– Kernel coefficient: 0.01, 0.001, 0.0005

129
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• Extra Trees

– Number of Estimators: 100, 300, 500, 1000

– Maximum Tree Depth: 20, 50, 100, 200

– Maximum number of features: sqrt, log2

• Logistic Regression:

– Penalty: l1, l2

– Inverse of regularization strength: 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 1.5, 2.0

.1.2 Using HMM hidden states to predict symptoms

Table 4.5 in this paper shows part of the results that we used HMM hidden states

to predict depressive symptom level. Table 1 in this section shows all the x (high

symptom states) and y (number of days before participants completed the CESD scale)

in our experiments. Figure 4.4 in this paper is plotted based on the result in table 1.

We can see that using the condition “counting the number of symptom states in the

past two weeks” to classifier users’ depressive symptom level yields more reasonable

precision and recall.

.2 Tables and Figures for Chapter 5

.2.1 Topic Modeling

The LDA model has three important parameters: the number of topics (n), alpha (a),

Beta (b). a represents document-topic density, and a higher alpha means the documents

are made up of more topics; b represents topic-word density, higher beta means the

topics are made up of most of the words in the corpus. We performed a grid search

n ∈ N := {5,10,15}, a ∈ A := {0.1,0.3,0.5,0.7,0.9}, b ∈ B := {0.1,0.3,0.5,0.7,0.9}
in order to optimize the coherence score. The coherence score retrieves co-occurrence

counts for the given words using a sliding window. The counts are used to calculated

the normalized pointwise mutual information of every top word to every other top word

Mimno et al. (2011); Syed and Spruit (2017). The grid search approach shows that 15

topics yield higher coherence scores than 5 or 10.
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Table 1: Predicting depressive symptom with hidden states (extension of table) 4.5

window size (y) day (x) precision recall

7 1 61.5 45.2

7 2 62.9 25.1

7 3 64.6 12.7

7 4 65.9 7.3

7 5 71.2 3.0

7 6 75.9 1.0

7 7 100 0.2

14 1 60.3 58.1

14 2 66.7 38.7

14 3 66.3 27.1

14 4 67.3 20.2

14 5 65.0 14.2

14 6 71.2 10.8

14 7 100 8.6

Note: Recall: recall of high symptom class, Precision: precision of high symptom class,

window: size of the time window, day: days before participants completed the CESD scale.

Assumption: participants assigned high symptom level if they have x high symptom states

within y days before completing the CESD scale.



132 Chapter 9. Appendix

Table 2: Demographic Information of the 781 Participants

Ethnicity No. % Marital Status No. %

White 511 65.3 Single 574 73.8

Asian 110 14.1 Divorced 28 3.5

Black 38 4.3 Married 27 3.4

Native American 13 1.6 Married with Children 38 4

Middle Eastern 13 1.7 Not specified 36 4.5

Not Specified 96 12.2

A. Variable correlations B.      Quotations and Lyrics Ratio

Figure 1: Variable statistics. graph A: p < 0.001 for all correlations, graph B: blue:NL-

quotes; red:lyrics; ratio: lyrics or quotation ratio to all post count.

.2.2 Tables and Figures
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Table 3: Quotes Topics

Lyrics

# theme docs top 10 keywords example

0 overwhel-

ming

245 loveH , gotH , wantH ,

thingH , f eelH , needH ,

makeH , comeH ,

thinkH , sayH

example 1: You traded in your wings

for everything freedom brings. You

never left me.

3 self-

empower-

ment

305 loveL, seeL, knowL,

makeL, f eelL, letL,

timeL, goL, gotL, li f eL

example 1: If you’re trying to turn me

into someone else. Its easy to see I’m

not down with that. I’m not nobody’s

fool.

5 self-

empower-

ment

129 knowH , holdH , waitH ,

wantH , tellH , dayH ,

loveH , heartH , darkH ,

liveH

example 1: So, so you think you can

tell heaven from Hell blue skies from

pain, can you tell a green field

7 introspe-

ction

130 takeH , sayH , goodH ,

f eelH , gotH , timeH ,

sleepH , seeH , knowH ,

changeH

example 1: I feel angry. I feel helpless.

Want to change the world. I feel vio-

lent. I feel alone. Don’t try to change

my mind

12 self-

empower-

ment

264 goH , knowH , letH ,

loveH , timeH , dayH ,

comeH , f allH , makeH ,

gonH

example 1: we all got holes to fill, them

holes are all that’s real some fall on you

like a storm, sometimes you dig your

own,the choice is yours to make, time

is yours to take

non-lyrics quotes

13 1432 loveH , li f eH , goH ,

knowH , dayH , makeH ,

thingH , timeH , f eelH ,

peopleH

example 1: Gratitude unlocks the full-

ness of life. It turns what we have into

enough, and more.

example 2: As a girl you see the world

as a giant candy store filled with sweet

candy and such. But one day you look

around and you see a prison and you’re

on death row.

9 343 li f eL, loveL, thingL,

dayL, goL, timeL,

comeL, seeL, thinkL,

wantL

example 1: If you can’t make it good,

at least make it look good.

example 2: Would you dare? Would

you dare to believe that you still have

a reason to sing? Cause the pain that

you’ve been feeling can’t compare to

the joy that’s coming. So hold on.

Notes: H and L indicate whether the word comes from high or low symptoms users.
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