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“Your assumptions are your windows on the world. Scrub them off every once
in a while, or the light won’t come in.”

– Isaac Asimov
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Lay Summary

Much of the observed Universe is made up of gas, mostly hydrogen and helium.
This gas is the material from which stars are formed. Stars, in turn, produce
much of the light used to observe the Universe. The behaviour of the gas, the
way it moves and evolves, can be described mathematically, but the exact solution
cannot be found by hand. The motion and interaction of the gas is simply too
complex to be found by solving the equations exactly, except in the most simple
scenarios. Instead, we find approximate solutions to these problems by solving the
equations numerically. To put it simply, the region of gas that we want to model is
broken down into a grid of cells. The flow of material through each face of a given
cell, for a set amount of time, is calculated. That amount of material is moved
through the face, and the amount of gas in each cell is updated. This process
is repeated for every cell, and for many time steps. Alternatively, the evolution
of the gas is tracked by calculating the motion of a set of tracer particles, each
representing a certain mass of gas. In this work, I present the implementation of
a new method for modelling the behaviour of this gas. Built around triangular
cells, this approach solves the flow of the gas in every dimension at once, instead
of breaking the problem down into a series of flows through the faces of a cell,
which effectively only solves the problem in one dimension at a time. This new
approach captures the complex interplay of flows that have component flows in
multiple directions at once. I show extensive testing of this new scheme, which
is not widely used in astrophysical simulations. In addition, I cover my own
derivation and implementation of a number of vital extensions to this approach,
including going from two to three dimensions.

I also discuss my research into the behaviour of a region of gas as an object
with a large amount of mass passes through it. The gravity from the travelling
object pulls the gas into a wake behind it. The gravity from this wake produces
a force that slows the object down, a process known as dynamical friction. This
is a simplified version of a scenario found in many astrophysical systems, from
merging galaxies, down to newly forming planets. I compare the theoretical
predictions, for the formation and structure of this wake, to results found using
a state-of-the-art numerical solver to calculate the evolution of the gas. I found
that there were significant differences between the expected structure and the
numerical results. The drag forces, that I found from the numerical results, were
systematically lower than predicted, suggesting that current simulations may not
be capturing the full effects of dynamical friction.
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Abstract

Numerical simulations are key to our understanding the complex physical
processes present in the formation and evolution of galaxies. The vast majority
of the baryonic component is in a gaseous state, modelled by solving the fluid
equations, using a variety of methods. I present a new implementation of the
2D residual distribution (RD) family of hydrodynamics solvers. Built around
an unstructured mesh, RD solvers produce truly multi-dimensional solutions to
the underlying fluid equations, with second order accuracy in both time and
space. The implementation accurately reproduces the solutions to many standard
hydrodynamics tests. I compare the RD results to solutions from state-of-the-art
meshless finite mass (MFM) and meshless finite volume (MFV) solvers. I present
extensions to the RD method, deriving an adaptive time stepping regime, and
the 3D version of the solver. I also show a numerical study of idealised gaseous
dynamical friction (DF) using the MFM solver, for both supersonic and subsonic
flows, highlighting the need for accurate solvers. This solver produces a wake that
systematically under-produces the expected retarding force in supersonic cases.
The over-dense wake it forms does not replicate the expected sharp density profile
and produces a bow shock where none is predicted. I compare this regime to that
found in cosmological simulations, demonstrating that much of the dark matter
substructure in the early universe will experience these conditions, suggesting
DF driven mergers may be underestimated in current simulations. I propose a
new standard gravo-hydrodynamical test based on the idealised DF setup. I add
simulations that include molecular chemistry, showing how DF at early times can
stimulate the formation of molecular hydrogen, critical to the formation of the
first stars and structures.
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Chapter 1

Introduction

In this work, I present simulations using a variety of numerical hydrodynamics

modelling techniques. This includes results from a suite of idealised dynamical

friction simulations, investigating the characteristics and effects of this process

in simulations of early galaxy formation, and the comprehensive derivation,

testing and extension of a new, truly-multidimensional, residual distribution

hydrodynamics solver. The detail of the work revolves around the implementation

and use of advanced methods for modelling the behaviour of baryonic gas, with

some reference to the broader context of galaxy formation and evolution. In this

chapter, I will first describe the observed characteristics of the galaxies that these

techniques are used to model. Following this, I summarise the processes that

impact the state of the baryonic gas, which require the development and use of

these complex numerical tools. The final section of the chapter is a description of

the fundamental equations which describe the physical behaviour of the baryonic

gas that we seek to model, and the derivation of the underlying numerical methods

upon which these tools are based.

1.1 Galaxy Formation and Evolution

Galaxies, gravitationally bound systems of stars, gas, and dust, are objects of

great interest to astrophysicists. Since their identification as objects beyond

the Milky Way (Hubble, 1929), they have been studied with both observations

and numerical simulations (Somerville & Davé, 2015). They host the stars that
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produce the light by which we study the universe. There is great complexity in

the variety of their properties, and in the physics that governs their formation

and evolution. Observations reveal a huge range in morphologies, colours,

and luminosities, with more detailed analyses showing wide variation in mass,

environment and stellar composition. If we are to understand these complex

objects, including the Milky Way itself, we must first understand the physics of

galaxy formation and evolution. This requires us to understand all the governing

physical processes, from their origins within the large scale structure of the

Universe, down to the details of gas dynamics and star formation.

Numerical simulations form a vital part of our current tools for investigating

and understanding the universe. Under the standard model of cosmology, the

cold dark matter model with a cosmological constant (ΛCDM), rapid progress

has been made in our ability to simulate structure formation (White & Rees,

1978; Vogelsberger et al., 2014a; Schaye et al., 2015). To do this, several mass

components must be considered: collisionless cold dark matter (DM), which

experiences only gravitational interactions, stars, which can also be modelled

as collisionless particles, and baryonic gas, which behaves as a collisional fluid.

The components are set within a comoving coordinate scheme that encodes the

expansion of the Universe dictated by the ΛCDM model. These simulations

seek to predict observational properties of galaxies by accurately modeling the

gravitational response of the dark matter, and the gravo-hydrodynamic response

of gaseous baryons. All processes important in shaping the evolution of structure

need to be considered. These include the fundamental forces, such as gravity

on the dark and baryonic matter, and the hydrodynamics of the baryonic

gas. Other forces and processes can also play an important role, such as

electromagnetic radiation, which can be modelled using radiative transfer, and

magnetic fields, which require the equations of hydrodynamics to be converted to

handle magneto-hydrodynamics. Secondary processes, such as star formation,

and the corresponding feedback mechanisms, must also be included to fully

capture the evolution of galaxies. In this section, I describe the properties

and features of observed galaxies (Section 1.1.1), particularly those that require

advanced hydrodynamics solvers to model. I cover the basics of the standard

cosmology, within which the baryonic gas, of these simulations, is modelled

(Section 1.1.2). Finally, I focus on the processes affecting the baryonic gas in

particular, most notably how the gas is cooled (Section 1.1.3), and how star

formation impacts the state and distribution of the gas (Section 1.1.4).
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Figure 1.1 Hubble tuning fork, showing ellipticals (E0 - E7), lenticulars (S0),
spirals (Sa-Sc), and barred spirals (SBa - SBc). Image credit: ESA
and NASA (https://www.spacetelescope.org/images/heic9902o/)

1.1.1 Observed Characteristics

To understand the formation and evolution of galaxies, we must first understand

the properties of those that we can observe. Galaxies can be divided by

morphology into spirals, ellipticals, lenticulars, and dwarfs. These morphologies

can be represented on the Hubble tuning fork, shown in Figure 1.1. Ellipticals

from E0 to E7 become less spherical and more elongated, while the increasing

letter classification of the spiral galaxies refers to how tightly wound the spiral

arms are. Lenticulars (S0) share characteristics from both spirals and ellipticals.

Galaxies can also be classified by their colour, mass, age, star formation history,

and more. Here I briefly discuss these characteristics, and their relevance to the

modelling techniques used in this work.
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Classification

Spiral galaxies, also known as disk galaxies, are dominated by two structural

features. The first is the rotationally supported disk of stars, neutral and

molecular gas, and dust. They have mass from 109M� to 1012M�. The mass

fraction of gas varies significantly across the observed spiral population, from as

little as 5% in the most massive spirals, to as much as 80% in the least massive

(McGaugh & de Blok, 1997). The stars found here are typically young, metal-

rich, with approximately circular orbits, and ongoing star formation within the

disk (Martinsson et al., 2013). There is also a structurally separate thick disk

component, where the gas has an exponential density profile away from the disk,

with a characteristic scale height typically a factor three larger than the thin disk

(Yoachim & Dalcanton, 2006). There are also spiral arm structures within the

disk, most obvious when observing the young stars and the neutral and molecular

gas (Nishiyama & Nakai, 2001). Second is the bulge of the galaxy, made of

older, lower metallicity stars with randomised orbits. Within the bulge there can

be stellar streams falling into the centre (Ferguson et al., 2002). The bulge is

dispersion supported. Some spirals also have a bar structure that connects the

bulge to the spiral arms (Erwin, 2019). The young population in the disk makes

them appear blue, with more luminous galaxies appearing less blue. Lenticular

galaxies have the disc structure of spiral galaxy, but with little or no star formation

(van den Bergh, 2009).

Elliptical galaxies are completely bulge dominated, with smooth brightness

profiles (Chitre & Jog, 2002). They contain very little cold gas or dust, and have

star formation rates 2-5 time below that of spiral galaxies (Martig et al., 2013).

There is evidence for significant amounts of hot gas (107 K), which is observed

through the emission of x-ray radiation (Roberts et al., 1991; Mathews et al.,

2003). Their populations are old and metal-rich. There is also an observable red

sequence, with brighter elliptical galaxies appearing more red. Colour, here, is

defined by the difference in magnitude between two photometric bands (Johnson,

1966). It was initially believed that these galaxies did not show significant

rotational velocities, with the stars moving on random orbits. However, more

recent observations have shown there to be populations of both fast and slow

rotating ellipticals (Emsellem et al., 2011), and some exhibit rotational flattening

(Mo et al., 2010). The most massive galaxies are ellipticals, with masses up to

1013M�.
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Dwarf galaxies do not fit well into these categories. Some show ongoing star

formation, so called dwarf irregulars (Parodi & Binggeli, 2003), and some entirely

quenched, the dwarf ellipticals (Geha et al., 2012). They also show significant

variation, across several orders of magnitude, in both mass and luminosity (Begum

et al., 2008). Dwarf irregulars have highly asymmetric structures, and can have

very high gas fractions, with regions of gas extending far beyond their stellar

population. Dwarf ellipticals have more regular structure, with metallicities lower

than standard ellipticals. They are usually found in galaxy clusters (Mistani et al.,

2015).

Modern cosmological simulations can reproduce this wide range of galaxy types,

in some cases producing images that are almost indistinguishable from genuine

observations (Vogelsberger et al., 2014b; Bottrell et al., 2017). The variety in

galaxy properties points towards complex formation and evolution processes.

These simulations allow us to probe the history and environment, that create the

various types of galaxy, in ways that are impossible to do with observations. All

the observed characteristics described above come from observations of baryonic

matter, be it in the form of gas, stars, or dust. Reproducing the different

classifications of galaxy in self-consistent simulations requires accurate modelling

of their varied evolutions. This is only possible if the behaviour of the baryonic

gas, which is the progenitor of the stars and dust, is modelled with great accuracy.

Large Scale Structure

The three dimensional distribution of galaxies reveals an overall ordered structure,

on large scales. This structure is found by galaxy redshift surveys, such as

the 2dF Galaxy Redshift survey (Colless et al., 2001), the Sloan Digital Sky

Survey (Doroshkevich et al., 2004), the future observations with the Dark Energy

Spectroscopic Instrument (DESI, 2016) or the upcoming Euclid survey (Racca

et al., 2016). As we see in Figure 1.2, there are nodes where large numbers

of galaxies are clustered, joined to one another by narrow filaments of galaxies.

Between these filaments are sparse voids with few galaxies.

Within this large scale structure, many galaxies are found in distinct galaxy

clusters. These are gravitationally bound groups of galaxies, with a number

density several orders of magnitude greater than the universal average. The

clusters are on the scale of a few megaparsecs, and contain tens of bright galaxies,

with many smaller, less luminous companions. The high density of bright galaxies
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Figure 1.2 Distribution of galaxies from 2dFGRS (Peacock et al., 2001)

makes them observable at great distance, allowing them to be used to observe

very high redshift. The strong ability of ΛCDM simulations to reproduce the

observations of large scale structure is key evidence that this cosmology accurately

describes our Universe (White & Rees, 1978).

Within this structure, gas exists across a huge range of densities. This is one of

the most challenging aspects of simulating the behaviour of gas in this context.

A simulation that encompasses a large segment of the structure at this scale must

include a numerical approach capable of handling gas across this large dynamic

range. This can be handled in a number of ways, some of which will be discussed

in Section 1.2, but however it is done, accuracy must be maintained throughout

the box.

1.1.2 Initial Conditions

The initial conditions, for galaxy formation, are derived from high precision

observations of the cosmic microwave background (CMB), performed by space

based telescopes such as WMAP (Spergel et al., 2003) and Planck (Planck

Collaboration et al., 2016). The CMB is broadly isotropic, with a black

body temperature of 3K, but also with fine anisotropies across different scales.

Surveys look at temperature fluctuations in this light, which was emitted at
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Figure 1.3 Angular power spectrum of temperature fluctuations in the cosmic
microwave background from WMAP (Hinshaw et al., 2007).
Observations in black, best fit to ΛCDM cosmology in red.

recombination, the point where the universe had expanded and cooled enough

for ionized nuclei to combine with electrons, forming neutral atoms, creating a

domain in which photons could travel large distances. Before this point, the

physical conditions are such that photons could not travel far, before being

absorbed. These temperature fluctuations in this surface are interpreted as

fluctuations in the density of the universe at this time. The angular power

spectrum of these fluctuations can be compared to theoretical predictions from

cosmological models. Figure 1.3 shows the results from the WMAP satellite,

with the best fit predictions from the standard ΛCDM cosmology. This provides

strong evidence in favour of this cosmology.

The CMB power spectrum provides the distribution of the density perturbations

to the cosmic average. These perturbations are the source of all structure

formation within the Universe. Over-dense regions will attract the material

around them slightly more than the average, and material will flow away

from under-dense regions. This initial variation from the underlying isotropic

distribution grows to form the large scale structure that we observe.
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The density contrast δ = (ρ− ρ̄)/ρ̄ of any region is used to characterise its nature

as an under- or over-density. The over-dense regions will increase in density over

time, drawing material from their surroundings. As the universe expands, over-

dense regions become more massive. The density of these regions is falling more

slowly than the background thanks to the increased gravitational attraction, so

the density contrast increases. The growth of the contrast takes the form of a

power law, δ ∝ tα, where α > 0 (Peebles, 1980). The exact form of the growth

is dictated by the specific cosmology. Eventually the perturbation will have a

density contrast of approximately unity. At this point, the turn around time,

the over-dense region decouples from the universal expansion, stops expanding,

and continues collapsing under gravity. Until this point, the growth in the over-

density has been approximately linear, and the gas and DM density evolution does

not differ significantly, because the DM potential dominates over the potential

produced by the baryonic component.

Once a region has decoupled from the expansion of the universe, the dark matter

component continues to collapse under gravity, forming a gravitationally bound

structure known as a halo. The growth in the density becomes extremely non-

linear. This collisionless material will eventually virialise through two body

interactions, and the DM halo relaxes into an equilibrium state (Peebles, 1980).

The DM collapse effectively halts once the random motion of the cold dark matter

particles produces a distribution that is effectively supported by its own velocity

dispersion.

The baryonic gas initially collapses along with the dark matter, as the pressure

is negligible. As the density increases and the gas accelerates, the presence of

these additional pressure forces leads to shocking, which significantly raises the

temperature of the gas. This increased temperature produces pressure support,

opposing the gravitational collapse. If the gas cannot cool efficiently, the gas

will reach hydro-static equilibrium, with the DM component. However, if cooling

is possible on suitably short timescales, then further collapse can occur. The

instabilities in the gas structure that drive this early stage of galaxy formation

require detailed modelling, reinforcing the need for advanced numerical techniques

that can handle complex multi-dimensional flows.
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1.1.3 Gas Cooling

A number of cooling mechanisms exist, with the physical conditions and chemical

makeup of the gas dictating which mechanism dominates the cooling that the

medium can experience. In order to cool, the gas must be able to lose energy.

For cosmic gas, this is only achievable if it can radiate energy away. So, if a gas

is to cool, it must be able to produce photons, and those photons must be able

to escape the local environment.

Radiative Cooling

The process of energy escaping a region in the form of electromagnetic radiation

is known as radiative cooling. In the context of galaxy formation, two-body

interactions are the most relevant. After the first galaxies form, much of the

gas in the Universe heats to the virial temperature of the halos into which they

are collapsing. If this virial temperature is between 104K and 107K, atomic

cooling allows the gas to cool to the 104K threshold (Somerville & Davé, 2015).

This is where collisionally ionised and excited atoms release photons through

recombination and decay. The cascade of transitions from ionised or excited

state, to the ground level, release photons at wavelength for which the gas is

optically thin. The collisional excitation and ionisation of these atoms occurs

through two-body interactions.

For the gas to cool below the T = 104K threshold, cooling is only efficient

if there are molecules, metals, or dust present. Atomic cooling alone is no

longer efficient in this regime. There are not enough collisional excitations and

ionisations to produce a significant number of escaping photons. As the first stars

and galaxies form, the primordial metallicity does not provide enough metals

for metal line cooling to be efficient. Metals provide many electron transitions,

which can be excited and de-excited collisionally, to radiate energy from the

gas. In their absence, the gas must instead cool by the collisional excitation

and de-excitation of molecules of the primordial species, most notably hydrogen

H2. However, without any metals, which can catalyse the formation of molecular

hydrogen, these molecules can only form through two-body interactions. The rate

of formation is proportional to the square of the density, which can only increase

if the gas cools, which can only happen with more molecules. Enough molecular

hydrogen must form to allow the gas to cool to form the first stars, before z ≈ 6,
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when almost all the gas in the Universe is observed to have been reionised, most

likely in part by the first stars. To solve this complex puzzle, the correct cooling

physics must be combined with an accurate modelling of the gas. No matter

which cooling channel is used, as the gas cools it will become unstable, and the

accuracy with which the gravo-hydrodynamics of the resultant instability can be

modelled, determines the accuracy of the end product, the galaxies we seek to

understand.

Cooling Function

The cooling rate from each process can be calculated separately. However, it is

useful to know the total cooling rate for some region of gas at a given temperature,

independent of the density. This is expressed as a cooling function,

Λ(T) =
r

n2H
, (1.1)

with the volume averaged cooling rate r, and the number density of hydrogen

atoms nH . This cooling function can be calculated for both primordial gas and

gas that has been enriched with metals. The metallicity of the gas changes the

form of the cooling function. Metal cooling can enhance the ability of a cloud to

cool below 104K.

For primordial gas, the cooling function drops off rapidly below 104K if we only

consider neutral and ionised hydrogen and helium. At this temperature the

medium is almost entirely neutral, and the internal energy is not high enough to

allow efficient cooling by collisional excitation. Molecular hydrogen H2 is required

to efficiently cool below this temperature (Anninos & Norman, 1996). For this

to form, in the early universe, there must be interactions between neutral and

negatively ionised hydrogen H− (Abel et al., 1997). H2 production therefore

depends on the density and temperature of the gas, but also the ionisation

fraction.

When the dynamical time is longer than the sound speed crossing time of the

halo, any collapse will be halted as pressure equilibrium is reached throughout the

cloud (O’Shea & Norman, 2007). If the opposite is true, then the new equilibrium

conditions cannot be reached fast enough, and the gas collapses further, eventually

becoming self gravitating. It can then collapse independently of the underlying

dark matter distribution, eventually forming dense clouds of gas. These clouds

10



are the location of eventual star formation.

1.1.4 Star Formation and Feedback

As the gas in the early Universe cools by the processes described above, clouds

of gas collapse under gravitational instabilities, eventually forming stars. Stars

provide the majority of the light by which we observe the Universe. They reside

within, and are a key component of, the galaxies which we seek to understand.

A wide range of stellar types have been observed, with varying mass, metallicity

and age. The details of star formation form an entire field of study by themselves,

with individual star formation happening on a scale far below that which can be

resolved in large scale galaxy formation simulations. However, the impact of star

formation on the evolution of its host galaxy is significant. The formation of

stars removes material from the ISM, and then produces the metals that drive

further cooling and star formation. Outflows from stars shape the gas around

them, resulting in a clumpy, turbulent medium. At the end of their lifetimes,

massive stars explode as supernovae, injecting huge amounts of energy into the

surrounding medium. While large scale galaxy formation simulations cannot

resolve the details of the formation, and lifetimes, of individual stars, the wider

impact of the stars can be included.

A number of process exist whereby the stellar population of a galaxy can

radically transform the interstellar and circumgalactic medium (ISM and CGM

respectively). There are three formats that this feedback takes: mass loading,

electromagnetic radiation, and neutrino emission. Over the course of a star’s

lifetime, it emits a certain amount of energy as electromagnetic radiation. The

amount is dependent primarily on the mass of the star. The mass dictates

the amount of fuel available for fusion, the source of a star’s energy. It is the

most massive stars that dominate this energetic feedback. Some fraction of this

radiation can be absorbed by the surrounding medium, depositing energy and

momentum into the ISM. The radiation propagation within a star can also eject

material from the star itself in the form of a stellar wind. This adds mass,

alongside momentum and energy, to the medium.

At the end of their lifetimes, the most massive stars (> 8M�) collapse into

a supernova. These are extremely short lived events that emit huge amounts

of energy. They have been shown to emit of order 1051ergs , equivalent to

approximately the total energy output of a solar mass star over its main-sequence
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lifetime (Woltjer, 1972). A large fraction of this emission is in the form of a burst

of neutrinos. The explosion also ejects a large fraction of the sources mass. This

scenario includes Type Ib, Type Ic and Type II supernovae (Filippenko, 2005;

Woosley & Janka, 2005). Supernovae can also be caused by the accretion of mass

from a binary companion onto a white dwarf, a Type Ia supernova (Hillebrandt

& Niemeyer, 2000).

Without the energy provided by these stars, simulations predict that the gas

within halos cools rapidly, collapsing under gravity to form stars at rates far

greater than those observed (Zamora-Aviles et al., 2012). The Kennicutt-Schmidt

relation gives us a relationship between gas surface density and star formation

rate. Together these show that the star formation efficiency is very low, of the

order of a few percent. These same simulations show that, without feedback, the

cold gas fraction in spiral galaxies is too high, so that even if stars are prevented

from forming, there is too much gas resting in the galaxy. The collapse of cold

gas on the scale of individual clouds requires an additional process to disrupt it,

and material must be ejected from the galaxy itself.

Stellar Winds

In the context of galaxy evolution, only the winds from the most massive stars

need be considered. While many classes of star produce winds, massive stars

produce the most energetic, and so dominate the feedback effects (Crowther,

2001). The energy contribution from a stellar wind can be characterised by its

mechanical luminosity

LW =
1

2

dMW

dt
v2W, (1.2)

using the mass loss rate of the star dMW/dt, and the velocity of the wind vW .

Winds sweep up material around the source, creating hot diffuse bubbles, with

dense shells surrounding them. The shape of these shells is highly dependent

on the medium into which they are blown. The highly clumpy nature of GMCs

and the ISM in general mean these wind blown bubbles follow the low density

channels, with less significant disruption of the dense clumps. These winds can

act to reduce and destroy star forming regions in the vicinity of their source.

Conversely, they can also have a smaller positive feedback effect on the star

formation rate, as the material that is swept into the dense shell can become

unstable to collapse.
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Supernovae

Supernovae are among the most intense events that have ever been observed,

emitting extremely brightly for a very short period of time, of the order of a few

weeks (Riess et al., 1999). There are a number of formation mechanisms that

lead to the supernova explosion, but they share similar final stages and products.

Current models suggest a supernova can be caused by either the collapse in the

final stages of a massive star’s life, or by the accretion of material onto a lower

mass white dwarf from a binary companion. In either case, supernovae dump

vast amounts of energy very rapidly into the ISM.

Other than the dramatic effect they have in disrupting the material around them,

supernovae can also act to drive galactic winds. Simulations have shown these

winds drive the outflows that are required to either remove material from the

galactic disk, or to prevent it from accreting in the first place (Hopkins et al.,

2012). Supernovae are a primary source of these galactic outflows.

Radiative Feedback

Stars are obvious sources of electromagnetic radiation. This radiation interacts

with the surrounding medium, with the key effect in the context of galaxy

evolution coming from ionising radiation. Massive stars produce high levels of

radiation energetic enough to ionise the surrounding hydrogen. The material

between galaxies, the intergalactic medium (IGM), is neutral at the time of

recombination, but is completely ionised by z ≈ 6 (Fan et al., 2006). Since

star formation, and so galaxy evolution, is inextricably linked to the amount of

neutral and molecular hydrogen, our models require sources of ionising radiation

that can effectively ionise a huge volume of space. Massive stars are obvious

candidates (Simon-Diaz & Stasinska, 2008).

Photons with high enough energies ionise neutral atoms when they are absorbed.

The freed electron has kinetic energy equal to the excess energy photon, after the

ionisation energy has been used up. This is how the ionising radiation both ionises

and heats the surrounding medium. The increase in temperature and reduction

of the neutral fraction can suppress the ability of the surrounding gas to cool,

shutting down potential star formation.

The effects of this ionising radiation, and the other processes described above,
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contribute to a medium, within and around galaxies, that has huge variation

in density and temperature, with complex interactions between flows in chaotic

orientations. These complex flows contain many unstable structures, which must

be accurately captured by the numerical methods used to model them.

1.2 Numerical Modeling of Galaxy Formation

As we have seen above, galaxies are highly complex systems, that are embedded

within larger cosmological structures, with a wide range of masses, morphologies,

and compositions. The physics that governs their formation and evolution is

equally complex, with different processes dominating across the large variation

in scale. Our understanding of how these processes combine to produce

the observed properties of galaxies have been greatly informed by numerical

simulations. Instead of trying to solve the underlying physical equations

analytically, which is an impossible task for all but the simplest, most idealised,

scenarios, numerical approximations of the solutions to these equations are used

to test our understanding of the observed galaxy properties, and to make testable

predictions for future observations.

Numerical solutions, to astrophysical problems, have been utilised for many

decades (Efstathiou et al., 1985; Springel, 2005; Bryan et al., 2014). The

requirements of ever more detailed physics simulations have been one of the

driving forces behind the development of larger and larger computational

machines. When one sets out to produce a numerical approximation of the

solution to a physical solution, there are several competing factors that must

be considered in choosing an appropriate method. First of all, the method must

be accurate. If the numerical solution does not come close to reproducing the

true solution, then it is obviously of no use. Different numerical methods will

often recover different facets of a solution with varying accuracy, so choice of

method is often dictated by what behaviours are being investigated. This is often

in conflict with the second factor: the computational cost of the method. If a

method is extremely accurate, but also extremely expensive, it is potentially of

much less use than a less accurate method that can be run at a fraction of the

computational cost. The trade off between these two factors is at the heart of the

choice of numerical method.

A third factor follows somewhat from the first two. Based on the choice
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of numerical method, and the computational resources available, a choice of

resolution is effectively made, be this resolution in space, mass, frequency,

temperature, etc. The resolution dictates the detail with which the solution

can be recovered. A finer resolution allows for more detailed structure to be

recovered, but can significantly increase computational cost. The increase comes

from both having more fluid elements to track and update, and from the time-

step required by the numerical method being smaller (see Sections 1.2.3 and 1.2.4

for details of time-step limitations). Any increase in cost with resolution is most

acute with 3D models, since where increasing the number of cube cells on an edge

will increase the total number by the same factor cubed. For this reason, it is

critical to consider the computational efficiency of any method one is considering

using.

Alongside more complex structure recovery, increasing resolution can also change

what physical processes must be modelled. Assumptions made about the internal

structure and properties of a gas, that are acceptable when the resolution is at

kilo-parsec scale, may no longer produce accurate results when used with single

digit parsec resolution. Turbulent flows are a good example. On large scales

the turbulence could simply be smoothed out into a contribution to internal

energy, but a finer resolution might need to be able reproduce the turbulence itself.

This idea also brings us to what processes are modelled by sub-grid algorithms.

These are models that emulate processes not handled self consistently by solving

the fundamental physical equations. Star formation is an obvious example. No

cosmological or galaxy formation simulation can hope to follow all the complex

physics of star formation. Instead a star formation sub-grid model is applied,

which uses the information provided by the base solver to estimate how star

formation would occur. This is just one example of many, but they all share the

idea of smoothing over complex physics that cannot realistically be included, and

instead provide estimates of the major effects of the desired process.

All of these ideas play a role in the development and implementation of the various

numerical methods required for running accurate galaxy formation simulations.

In this section, I describe the fundamental equations that must be understood if

one is to model the core physics of dark matter and gas dynamics. I cover the

initial conditions used in galaxy formation simulations, and the approach used

to generate them. This is followed by a description of a number of numerical

methods for solving the physical equations, particularly those widely used in

computational astrophysics, which includes both hydrodynamics and gravity
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solvers. Finally I outline some of the approaches used to include sub-grid physics

in these simulations.

1.2.1 Fluid Equations

Here I derive and discuss the fundamental equations that describe the behaviour

of the different media. This includes the Boltzmann equation, the moments of

the Boltzmann equation, which form the fluid equations, and the equations of

motion. I briefly cover the equivalent equations in comoving coordinates, as

these coordinates can be used to encode the expansion of the Universe, within

which simulations of large scale galaxy formation are run.

Boltzmann Equation

One key component of most astrophysical systems is baryonic gas, made up of

many billions of moles of particles. It is inconceivable that we could calculate

the motion and state of each particle individually. Instead, we use fluid elements,

which track the statistical properties of the gas, with each element representing

an ensemble of physical particles. For this method to work, the size of each fluid

element l should be significantly larger than the mean distance between particle

collisions λ, or l � λ. To find the overall statistical behaviour, one defines

the particles in phase space, taking a three dimensional body of N identical gas

particles of mass m, with positions xi and velocities ui, splitting by dimensions

i = (0, 1, 2). This defines the conditions of a particle in six dimensional phase

space (x1, x2, x3, u1, u2, u3). One also takes the specific force Fi acting upon each

particle. These give us the evolution of the particle positions, where the change

in the position dxi of particle i, over time dt, is simply

dxi

dt
= ui, (1.3)

and velocities

dui

dt
= Fi(xi, ui, t), (1.4)

with time t. The particles have momentum qi = mui, and bulk velocity v, where

the bulk velocity refers to any general motion that all particles share. We define a

distribution function that describes this body of gas in phase space such that the
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number of particles dN, in the volume of phase space, within x + dx and u + du

is given by

dN = f (x, u, t)dxdu. (1.5)

If this volume element contains many particles, effectively required by the mean

distance condition, then a statistical approach is viable. If this is not the case,

then a larger fluid element must be used. Having too few particles in the element

results in the conditions within being distorted by extreme outliers. The change

in this distribution function over time dt is simply the change in the positions

x+udt and velocities u+Fdt of these particles. These changes are the trajectories

of the particles in phase space.

From Liouville’s theorem, we know that for a Hamiltonian system, such as this

one, the phase space volume occupied by a set of particles does not change as

they move along their phase space trajectories (Taylor, 2005; Bodenheimer et al.,

2006). This assumes that no particles are are created or destroyed, and that there

are no collisions between particles. While the volume that they occupy does not

change, the shape of the volume can deform. The number of particles in the

distribution function at time t and t + dt is constant. We can put a corollary on

this statement; that collisions between particles can create discontinuous changes

in phase space, as a particle might change velocity without changing position.

If one considers the exact moment two particles collide, both will move to new

velocity coordinates as they deflect one another, but no time has passed. The

effect of collisions is not captured by the continuous trajectories of the particles,

so the effects of these collisions are included as ∆ fcoll. We can summarise these

statements as

f (x + udt, u + Fdt, t + dt) − f (x, u, t) = ∆ fcoll, (1.6)

which can be written in partial derivative form as the Boltzmann Equation

∆F
∆t
=
∂ f
∂t
+
∂xi

∂t
∂ f
∂xi
+
∂ui

∂t
∂ f
∂ui
=
∂ f
∂t
+ ui

∂ f
∂xi
+ Fi

∂ f
∂ui
=

[
∂ f
∂t

]
coll

, (1.7)

with implied summation over indices i. This effectively describes the evolution,

with time, of this distribution function, in phase space. We can define a number

of physical quantities from this distribution function. The number density of
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particles

n(x, t) =
∫

f (x, u, t)du (1.8)

and mass density

ρ(x, t) = m
∫

f (x, u, t)du = mn (1.9)

at position x, naturally follow by integrating over all velocities u, as does the bulk

velocity

v(x, t) =
m
ρ

∫
u f (x, u, t)du. (1.10)

We also define the random peculiar velocity, relative to the bulk velocity, as

ũ = u − v. (1.11)

These peculiar motions contribute to the internal energy of the gas, and are used

to define the specific internal energy ε

ε(x, t) =
m
2ρ

∫
ũ2 f (x, u, t)du. (1.12)

If we assume the particles are at equilibrium, then the time derivative terms

disappear. We can then use the Maxwellian velocity distribution (Landau et al.,

1980)

f (x, u, t)du = n(x, t)
(

m
2πkBT(x, t)

)3/2
exp

(
−

m(u − v)2

2kBT(x, t)

)
(1.13)

as the suitable distribution function, where kB is the Boltzmann constant and T

is temperature. This describes the particles per unit volume at position x with

velocities from u to u + du. This statistical description of the set of identical gas

particles provides the framework from which we can derive the equations that

describe the conservation of mass, momentum and energy as the gas evolves.

Fluid Equations - Eulerian Form

We can use the above formulation to consider the state of a fluid at a fixed

position x. The fluid equations, for this case, are derived by taking the first three

18



velocity moments k = (0, 1, 2) of the Boltzmann equation. In other words, we

are finding out how the Boltzmann equation dictates the motion of an ensemble

of fluid elements, by expanding it about the motion of the fluid. The motion is

described by the dependence on the velocity terms of various orders. The kth

moment is found by multiplying Equation (1.7) with the appropriate velocity

term Uk = (1, u, u2), and integrating over all velocities u∫
Uk

[
∂ f
∂t
+ ui

∂ f
∂xi
+ Fi

∂ f
∂ui

]
du =

∫
Uk

[
∂ f
∂t

]
coll

du. (1.14)

The integration over all velocities, at a fixed position, is the key factor that

dictates the Eulerian nature of the equations that will result from this approach.

One can first consider the collisional part of the Boltzmann Equation, to observe

some important relationships. If one assumes that the particles are neither

destroyed nor created in collisions, then the integral of the collisional term alone

(i.e. the 0th order term of Equation (1.14)), over all velocities, must be zero.

Collisions have not changed the total number of particles, just their velocities. If

one also assumes that the total momentum vector of the particles is conserved,

then the first moment in each dimension is also zero, and the same goes for the

second moment, if total energy conservation is assumed. The right hand side

(RHS) of Equation (1.14) therefore vanishes for all moments. It can also be

shown that (Bodenheimer et al., 2006)∫
∂ f
∂ui

du = 0,

∫
u j
∂ f
∂ui

du = −δi j
ρ

m
and

1

2

∫
u2
∂ f
∂ui

du = 0. (1.15)

The first conservation equation is found by multiplying both sides of the 0th

velocity moment of (1.14) by the particle mass m, to give

m
∫

∂ f
∂t

du + m
∫

ui
∂ f
∂xi

du + mFi

∫
∂ f
∂u

du = 0. (1.16)

We can see from (1.15) that the third term vanishes. The partial derivatives

with respect to t and xi are independent of u, so they can be moved outside the

integral. This allows us to substitute in (1.9) and (1.10). Together (1.16) reduces

to

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0, (1.17)

which describes the conservation of mass in some volume element dV . This
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conservation can be seen qualitatively by observing that the change in density at a

given position, over time, is equal to the net flux of material at that position. Any

material that flows away reduces the density, and incoming material increases it.

The change with time, combined with the flux of material, balance out, so mass

is conserved across some volume. Explicitly, by integrating over a volume V , and

using the divergence theorem, the equation becomes∫
V

∂ρ

∂t
dV = −

∫
V

∂

∂x
(ρvi)dV =

∫
S
ρvin̂idA = 0, (1.18)

where S is the surface of the volume V , the infinitesimal area element of this

surface is dA, and n̂ = (n̂1, n̂2, n̂3) is the unit normal of the area element. The

surface is closed, hence the integral of the flow through it producing zero. This is

true for a suitably small volume. The integral over the temporal part is all that

is left, with∫
V

∂ρ

∂t
dV =

∂

∂t

∫
V
ρdV =

∂M
∂t
= 0. (1.19)

The mass enclosed within the volume does not change with time, so mass is

conserved. This does not preclude the shape of the volume element changing

with time, so the density can still change, but mass is still conserved.

The same procedure is applied for k = 1, 2, multiplying Equation (1.14) by m for

both. In the k = 1 case, this becomes

∂

∂t
(ρvi) +

∂

∂xi

∫
muiu j f du − ρFi = 0, (1.20)

with the third term transformed using the second equation of (1.15). We can

substitute the peculiar velocity for the velocity in the second term using (1.11).

We also need to use∫
ũ f du =

∫
u f du −

∫
v f du =

ρ

m
v − nv = 0, (1.21)

so any term with this as part of it will vanish. This is used to transform the

second term of (1.20) into∫
muiu j f du = ρviv j + Pi j, (1.22)

where we introduce the pressure tensor. In the case of interstellar or circum/in-

tergalactic gas, as in many other astrophysical scenarios, the pressure can be
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assumed to be isotropic, i.e. acting equally in all directions. This is true for an

ideal gas, where the energy that contributes to the pressure, the internal energy,

is equally distributed across velocities in each dimension. The pressure tensor

then reduces to

Pi j =

∫
mũiũ j f du = Pδi j . (1.23)

This pressure P is then given by

P =
1

3

∫
mũ2 f du =

2

3
ρε . (1.24)

This leaves us with

∂

∂t
(ρvi) +

∂

∂x j
(ρviv j + P) = ρFi, (1.25)

which describes the conservation of momentum in each dimension i=(0,1,2).

Finally, we can solve for the second. We restart from (1.14), multiplying the k = 2

case by mass m. Combined with the third equation from (1.15), we end up with

∂

∂t

∫
1

2
mu2 f du +

∂

∂xi

∫
1

2
mu2ui f du − ρviFi = 0. (1.26)

Once again we substitute the velocity with the peculiar velocity (1.11), and use

(1.21) to eliminate the terms that depend linearly on ũ. This gives us

∂

∂t

∫
1

2
mũ2 f du+

∂

∂t

∫
1

2
mv2 f du+

∂

∂xi

∫
1

2
m (ũ + v)2 (ũi − vi) f du− ρviFi = 0.

(1.27)

We can substitute (1.12) into the first term, and (1.9) into the second. The third

term can be expanded to

∂

∂xi

∫
1

2
m

(
ũ2ũi + 2ũvũi + ũ2vi + v

2vi

)
f du, (1.28)

again using (1.21) to discard terms. This reduces to

∂

∂xi

[∫
m
2

ũ2ũi f du + v

∫
mũũi f du +

∫
m
2

ũ2vi f du +

∫
m
2
v2vi f du

]
, (1.29)

where the first term in the bracket is defined as the conduction heat flux hi,
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the second term can be substituted with (1.23) to be Pvi, the third term is ρviε

using (1.12), and the fourth becomes v2ρvi/2 using (1.10). Heat conduction is

negligible for astrophysical problems, since we are modelling diffuse gases where

the speed of individual particles within the gas is not large when compared to the

size characteristic length scale of the gas. The rate at which particles can carry

energy around is therefore negligible, so this term can be ignored. A notable

exception is heat transport within some stars, such as white dwarfs (Bodenheimer

et al., 2006), but this does not need to be considered in the context of gases on

galaxy evolution scales.

We reintroduce this reduced form into (1.26), giving

∂

∂t

[
ρ

(
v2

2
+ ε

)]
+

∂

∂xi

[
ρvi

(
v2

2
+ ε

)]
= −

∂

∂xi
(Pvi) − ρviFi, (1.30)

which can be simplified using the total specific energy

E =
1

2
v2 + ε, (1.31)

leaving us with

∂

∂t
(ρE) +

∂

∂xi
(ρE + P)vi = ρviFi . (1.32)

This describes the conservation of total energy, and forms a key part of the

equations governing the behaviour of a fluid. It can be used to derive equivalent

equations that describe the evolution of the kinetic and potential components.

The evolution of the kinetic energy can be found by subtracting the conservation

equation, multiplied by component wise velocity vi, from the momentum equation

∂

∂t
(ρvi) +

∂

∂xi
(ρviv j + P) − vi

∂ρ

∂t
− v j

∂

∂xi
(ρvi) = ρFi, (1.33)

where the expansion of the various terms produces

ρ
∂vi

∂t
+vi

∂ρ

∂t
+ρvi

∂v j

∂xi
+ρv j

∂vi

∂xi
+viv j

∂ρ

∂xi
+
∂P
∂xi
−vi

∂ρ

∂t
−ρv j

∂vi

∂xi
−viv j

∂ρ

∂xi
= ρFi, (1.34)

which in turn cancels to

ρ
∂vi

∂t
+ ρvi

∂v j

∂xi
= ρFi −

∂P
∂xi

. (1.35)
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This is essentially a rearrangement of the momentum conservation equation,

but can be multiplied again by vi, and combined with the continuity equation

multiplied by the specific kinetic energy v2/2, which has the form

ρvi
∂vi

∂t
+ ρv2

∂v j

∂xi
+

1

2
v2
∂ρ

∂t
+

1

2
v2

∂

∂xi
(ρvi) = ρviFi − vi

∂P
∂xi

(1.36)

Expanding this via the product rule for the third term, and then grouping terms

by their derivative dependence, allows these terms to be combined, producing a

form that describes the evolution of kinetic energy only

∂

∂t
(ρv2) +

∂

∂xi
(
1

2
ρv2vi) = ρviFi − vi

∂P
∂xi

. (1.37)

The above equation is known as the bulk energy equation, as it describes the

kinetic terms, or the energy in the macroscopic motion of the gas. The evolution

of the internal motion of the gas, which produces the internal energy, is found

by subtracting the bulk energy equation from the total energy equation. This

is effectively removing the kinetic components to leave only those related to the

internal energy. The combined equations take the form

∂

∂t
(ρE) +

∂

∂xi
(ρE + P)vi −

∂

∂t
(ρv2) −

∂

∂xi
(
1

2
ρv2vi) − vi

∂P
∂xi
= 0. (1.38)

Substituting Equation (1.31), for the total specific energy e, allows us to cancel

out the kinetic terms of each derivative, leaving only

∂

∂t
(ρε) +

∂

∂x j
(ρv jε) = −P

∂v j

∂x j
, (1.39)

which is clearly analogous to the continuity equation, with the addition of a

source term. Together with the bulk energy and total energy equations, these

three equations describe the evolution of the energy of a fluid.

To summarise the above derivations, we now have equations that describe the

conservation of mass, momentum and energy for a fluid that can be broken

down into fluid elements, where each element is made of an ensemble of physical

particles. Specifically, the equations trace the Eulerian evolution of the fluid,

keeping the tracer position fixed and following the flow of fluid past these

positions. These equations can be rewritten compactly as

∂Q

∂t
+ ∇ · F(Q) = S, (1.40)
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where

Q =
©«

ρ

ρv

ρE

ª®®®¬ , F =
©«

ρv

ρv2 + P

(ρE + P)v

ª®®®¬ , S =
©«

0

ρF

ρvF

ª®®®¬ . (1.41)

This set of partial differential equations describe the evolution of the fluid, but are

dependent on a specific relationship between the pressure and the state variables

of the system, via the equation of state. For an ideal gas, with adiabatic gas

constant γ, this can be written as

E =
1

2
(v · v) +

P
ρ (γ − 1)

. (1.42)

The RHS of the fluid equations are often described as source and sink terms, as

they represent the change in momentum and energy created by additional forces.

In the astrophysical context, this will often include gravity, as well as various

sub-grid physical processes, such as star formation feedback. Many numerical

hydrodynamics solvers are built out of these equations, some of which I describe

in more detail in Section 1.2.3. These methods are used to model a wide variety

of astrophysical scenarios, and have seen extensive development across several

decades.

Fluid Equations - Lagrangian Form

The above formulation of the conservation equations describes the evolution of the

fluid state at a fixed point in space. A number of numerical methods instead follow

the motion of a fluid element as it moves with the flow. In this approach, the fluid

equations are recast with comoving coordinates. For this we use the instantaneous

position, using components of the radius vector r = (r1, r2, r3). The Lagrangian

time derivative defines the change with time of any representative variable of the

fluid element, as it moves within the simulated region. The definition of this

derivative is given as

dQ
dt
= lim

δt→0

Q(x + vδt, t + δt) −Q(x, t)
δt

. (1.43)

The rate of change in the instantaneous position r is equivalent to the velocity

of the gas at that position. The first order Taylor expansion of the change in the
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fluid quantity Q is simply Q(x + vδt, t + δt) = Q(x, t) + (∂Q/∂t)δt + v j(∂Q/∂x j)δt,

where, as before, the index j includes the implied summation over all dimensions.

Thus the Lagrangian derivative can be written in terms of the Eulerian derivatives

dQ
dt
=
∂Q
∂t
+ v j

∂Q
∂x j

. (1.44)

Going through the fluid variable vector Q, we can derive the Lagrangian form of

Equation (1.40). The Lagrangian derivative of the density is

d
dt
ρ(r, t) =

∂ρ

∂t
+ v j

∂ρ

∂x j
. (1.45)

The product rule gives

∂

∂x j
(ρv j) = v j

∂ρ

∂x j
+ ρ

∂v j

∂x j
. (1.46)

Combining these we get

dρ
dt
=
∂ρ

∂t
+

∂

∂x j
(ρv j) − ρ

∂v j

∂x j
, (1.47)

where the first and second terms of the RHS are shown to be zero by Equation

(1.17). Thus we have

dρ
dt
+ ρ

∂v j

∂x j
= 0, (1.48)

which is the Lagrangian form of the continuity equation. It can be shown to

represent the conservation of mass by integrating over a finite volume region V ,

which gives∫
V

dρ
dt

dV +
∫

V
ρ
∂v j

∂x j
dV = 0. (1.49)

The density is constant across the whole volume, so this is equivalent to

d
dt
(ρV) +

∫
V
ρ
∂v j

∂x j
dV = 0, (1.50)
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where the second term can be broken down using integration by parts∫
V
ρ
∂v j

∂x j
dV = ρ

∫
V

∂v j

∂x j
dV −

∫
V

dρ
dV

(
∂v j

∂x j
dV

)
dV . (1.51)

We can assume that the velocity of the gas is non-zero, but that there is a finite

extent of this moving region, at the surface of which the velocity is zero. From

the divergence theorem we know that∫
V

∂v j

∂x j
dV =

∫
S
v j n̂ j dA = 0, (1.52)

where n̂ j is the outward facing normal to the surface. It is clear form this that

d(ρV)/dt = 0. The above is equal to zero because we required that the velocity at

the surface S of the volume is zero, so the integral becomes zero. This effectively

states that the mass of a fluid element is constant with time.

The next term, the momentum of the fluid state vector, gives

d
dt
(ρvi) =

∂

∂t
(ρvi) + v j

∂

∂x j
(ρvi), (1.53)

which, again, can be expanded using the product rule. This leaves

ρ
dvi

dt
+ vi

dρ
dt
= ρ

∂vi

∂t
+ vi

∂ρ

∂t
+ v j

(
ρ
∂vi

∂x j
+ vi

∂ρ

∂x j

)
. (1.54)

The Lagrangian continuity equation shows that the second term of the LHS is

zero. Rearranging the above equation produces

dvi

dt
=
∂vi

∂t
+ v j

∂vi

∂x j
+
vi

ρ

(
∂ρ

∂t
+ v j

∂ρ

∂x j

)
. (1.55)

The terms in the brackets are clearly zero, based on Equation (1.17), leaving us

with

dvi

dt
=
∂vi

∂t
+ v j

∂vi

∂x j
= −

1

ρ

∂P
∂xi
+ Fi, (1.56)

with the right most part comes from the Eulerian momentum equation (see

Equation (1.25)). The rate of change in the velocity, or acceleration, is simply

shown to be equal to the net force acting upon it. This equation is the Lagrangian

form of the momentum equation, and gives the acceleration of the fluid element.
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The final equation is found by the same process, this time using the energy term

of the fluid state vector. As before, we substitute it into Equation (1.44), and

expand as before, giving

d
dt
(ρE) =

∂

∂t
(ρE) + vi

∂

∂xi
(ρe) (1.57)

The Eulerian energy equation can be substituted in for the first term on the RHS

of this equation, producing

d
dt
(ρE) +

∂

∂xi
(ρE + P)vi − vi

∂

∂xi
(ρE) = ρviFi (1.58)

which in turn gives

d
dt
(ρE) + (ρE + P)

∂vi

∂xi
+ vi

∂

∂xi
(ρE + P) − vi

∂

∂xi
(ρE) = ρviFi . (1.59)

The expansion of the third term on the LHS cancels with the forth term, leaving

d
dt
(ρE) + (ρE + P)

∂vi

∂xi
+ v j

∂P
∂x j
= ρv j Fi, (1.60)

which describes the Lagrangian conservation of energy.

As before, we can summarise the Lagrangian fluid equations that describe the

evolution of the mass, momentum and energy of a fluid element, this time with

a tracer that moves with the fluid flow. We also therefore include the change in

position, which is equal to the Eulerian velocity. Together these are

dri

dt
= vi, (1.61)

dρ
dt
= −ρ

∂v j

∂x j
, [continuity equation] (1.62)

dvi

dt
= −

1

ρ

∂P
∂xi
+ Fi, [momentum conservation] (1.63)
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d
dt
(ρE) = ρv j Fi − (ρE + P)

∂vi

∂xi
− v j

∂P
∂x j

. [energy conservation] (1.64)

The fluid elements have fixed mass, and so mass is conserved by construction.

These equations form the basis of a number of widely used numerical methods

for solving the evolution of fluids, most notable smoothed particle hydrodynamics

(Gingold & Monaghan, 1977; Monaghan, 1992; Springel & Hernquist, 2003).

These approaches have been applied extensively to astrophysical problems. I

will discuss the specifics of these implementations in Section 1.2.3.

Fluid Equations - Viscosity

Up to this point we have assumed that no physical particles are moving between

fluid elements. This assumption is not always applicable, so it is important to

be able to include this possibility by introducing viscosity in our fluid equations.

This effectively models the microscopic transport of momentum caused by friction

between fluid elements. This is done by adding the viscous stress tensor Π,

which captures these microscopic friction effects where adjacent fluid elements

are moving in different directions. Unlike the pressure term, this is not isotropic.

As such the viscous stress tensor must depend on the variation of velocity across

space, the so called shear viscosity, but should also fall to zero when neighbouring

elements are rotating together (with the same angular velocity about a common

centre). It should also include the effects of bulk viscosity, which comes from the

time required for injected to energy to be distributed across different energetic

degrees of freedom. The viscous stress tensor therefore takes the form

Πi j = η

(
∂vi

∂x j
+
∂v j

∂xi
−

2

3

∂vk

∂xk
δi j

)
+ ζ

∂vk

∂xk
δi j, (1.65)

where η is the shear viscosity coefficient and ζ the bulk viscosity coefficient. In

most scenarios, the bulk velocity is negligible, and only the shear viscosity needs

to be taken into account.

The Eulerian momentum and energy equations become

∂

∂t
(ρvi) +

∂

∂x j
(ρviv j) = −

∂P
∂xi
+

∂

∂x j
Πi j + ρFi (1.66)
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and

∂

∂t

(
1

2
ρv2

)
+

∂

∂x j

(
1

2
ρv2v j − Πi jvi

)
= −v j

∂P
∂x j
+ ρv j Fj − Πi j

∂vi

∂x j
. (1.67)

These, together with the unchanged continuity equation, are collectively known as

the Navier-Stokes equations, and are used in place of the inviscid fluid equations

in scenarios where viscosity is significant, such as proto-planetary disks (Rafikov,

2017), where viscosity of the gas provides a mechanism to transport angular

momentum across the disk.

Gravity

The fundamental long range force that drives much of the motion of all mass in the

Universe is gravity. For simplicity, I will only discuss non-relativistic, Newtonian

gravity, as this describes the vast majority of astrophysical scenarios. The motion

of collisionless objects, such as dark matter or stars, can be described by the

solution to a set of partial differential equations, analogous to the Lagrangian

fluid equations, with

dr

dt
= v, (1.68)

dr2

d2t
=

dv

dt
= g, (1.69)

where r = (x, y, z) is position, v = (vx, vy, vz) is velocity, and g is the acceleration

due to gravity, or specific force. This acceleration is found from the gradient of

the gravitational potential g = −∇Φ. For a density distribution ρ(r, t), with mean

density ρ̄, the Poisson equation gives

∇ · g = −4πG (ρ(r, t) − ρ̄) . (1.70)

This effectively says that the acceleration is created by over and under densities

in the density field. These equations can be solved numerically to calculate the

evolution of an ensemble of dark matter particles that represent the underlying

dark matter density distribution.

In practice, gravitational force, and so acceleration, is often calculated directly
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between particles. The absolute value of the Newtonian force Fi j between two

point masses, labelled i and j, with masses mi and m j is defined as

Fi j =
Gmim j

r2i j

, (1.71)

where ri j is the distance between the two objects. However, this only describes

the size of force exerted on each body by the other. To calculate the change in

motion of the massive objects, one needs to know the acceleration ai = dvi/dt.

As before, the velocity is simply the change in position ri with time vi = dri/dt,

where position, velocity and acceleration have x, y and z components, such that

r = (x, y, z), v = (vx, vy, vz) and a = (ax, ay, az). Newton’s second law relates the

acceleration of i to the net force acting on i, from all sources, via

Fi = miai = mi
dvi

dt
= mi

dr2i
d2t

. (1.72)

The force vector is given generally as F = Fr/|r|, where r, in this case, is the

direction of the force, and |r| the length of r. The distance between two positions

is given by ri j = r j − ri. The gravitational force on i, from j, in component form,

can be written as

Fi j =
Gmim j

r2i j

ri j

|ri j |
= Gmim j

r j − ri

|r j − ri |
3
. (1.73)

The acceleration caused by this force is then simply

ai j = Gm j
r j − ri

|r j − ri |
3
. (1.74)

The motion of a massive object can thus be updated based on its direct

gravitational interaction with another object. The equivalent action on the other

object is, of course, equal and opposite. Alternatively, the acceleration from a

gravitational potential can be calculated using the same component approach.

The force is the gradient of the potential, and the components are found in the

same way as before.

The effect of gravity on the fluid equations is handled by introducing source terms

like those described in the derivation of the Euler equations. These source terms
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act on the momentum and energy conservation equations, with

S =
©«

0

ρg

ρvg

ª®®®¬ . (1.75)

Comoving Coordinates

In our current standard cosmological model of dark matter, baryonic matter,

and an expanding Universe, the evolution of the various components are tracked

using comoving coordinates. The comoving frame handles the expansion of the

Universe, and is included in the fundamental equations in the following ways.

The fluid equations are modified with the cosmological expansion scale factor

a = 1/(1 + z), where z is redshift, and the Hubble parameter H = d ln a/dt. They

become (Bertschinger, 1998)

∂ρ

∂t
+

1

a
∇ · (ρ̄v) = 0, (1.76)

ρ
∂v

∂t
+

1

a
ρv · ∇v + Hρv +

1

a
∇P = 0, (1.77)

and

ρ
∂

∂t
P

(γ − 1)ρ
+

1

a
ρv +

P
a
∇ · v = 0. (1.78)

The velocity v is now the peculiar velocity, or the velocity relative to the

cosmological expansion. For clarity, t is still proper time. The density is from

the baryonic gas only, since the collisionless components do not contribute. For

collisionless matter, the set of partial differential equations that describe the

evolution of the initial conditions become (Bertschinger, 1998)

dr

dt
=

1

a
v, (1.79)

dv

dt
+ Hv = g, (1.80)
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and

∇ · g = −4πGa (ρ(r, t) − ρ̄) . (1.81)

1.2.2 Initial Conditions

In the standard ΛCDM cosmological paradigm, simulations of cosmological scale

systems are performed in boxes with comoving coordinate schemes that captures

the expansion of the Universe. Within this box, a distribution of dark matter

and gas is set up to replicate the conditions inferred from the CMB. Setting

up this distribution is not entirely simple. The non-linear nature of gravity

means any initial perturbations to the uniform background, be they intentional

or caused by the discreet sampling of the underlying density, can grow rapidly.

Initial conditions must model both the background uniform density, and the

perturbation to this background.

A regular grid of particles can be used for the uniform component, but this

introduces preferential directions and spurious periodicities on small scales (Bode

et al., 2001). It also cannot easily reproduce the perturbations to the uniformity.

A solution is to create what is known as a glass (White, 1994). Particles are

distributed randomly within the box, and then the gravitational force on each

particle is calculated. There are a variety of ways to calculate this force, discussed

in more detail in Section 1.2.4. The direction of this force is reversed, effectively

making the gravitational force repulsive, and the evolution is applied. This system

is run for a sufficiently long period of time that the particles reach a quasi-

equilibrium state where the net force on each particle falls to near zero. This

method produces a distribution that has no regular structure, so no preferential

directions, and so significant perturbations on scales larger than the mean particle

separation. Evolving this distribution under gravity produces no small scale

structure.

The desired distribution, however, is not uniform. The initial perturbations grow

with time as the over dense perturbations contract. Eventually the gravitational

contraction becomes non-linear, but before this point, the fluctuation in the back-

ground density can be produced using the Zel’dovich approximation (Zel’Dovich,

1970; White, 2014). One starts by describing the underlying density distribution,

both dark matter and gas components, with a set of Lagrangian fluid elements.

The fluid element at comoving position x0, at time t0, has a position at some later
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time that is the initial position plus a displacement s, or explicitly

x(x0, t) = x0 + s(x0, t). (1.82)

By construction, the displacement fully describes the evolution of the cosmo-

logical fluid. The Zel’dovich approximation is the linear approximation of this

displacement, from Lagrangian perturbation theory (White, 2014). Once over-

dense regions decouple from the expansion, the trajectories of their component

particles are no longer described by a linear perturbation. Before this point,

however, the Zel’dovich approximation can accurately reproduce the desired

perturbations (White, 1994). The perturbed gravitational potential, taken from

the approximation, is applied to the uniform glass, moving the particles in

a similar manner to before, but this time to reproduce the desired density.

The elements also require peculiar velocities consistent with their perturbed

trajectories, which are supplied by the gravity solver used to produce the glass.

This can be used to recreate distributions with the mean cosmological density, or

to sample regions of over or under density.

The above approach produces a distribution of matter that accurately reproduces

the observed conditions at extreme redshift, close to the surface of last scattering.

The evolution of this distribution can then be calculated by solving the equations

that govern the critical physical processes that describe the behaviour of the key

components. In the standard cosmological model, these are baryonic gas, and

cold dark matter.

1.2.3 Gas Dynamics

Modelling the behaviour of the baryonic gas component of the universe is

a complex problem. As discussed above, the gas is described by the fluid

equations, a set of partial differential equations, that represent the conservation

of mass, momentum, and energy, for a compressible, inviscid fluid. In their

one dimensional Eulerian form, with no source or sink terms, they are written

compactly as

∂Q

∂t
+ ∇ · F(Q) = 0, (1.83)
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where Q is the conserved fluid variables, and F(Q) their corresponding fluxes,

given by

Q =
©«

ρ

ρv

ρE

ª®®®¬ , F =
©«

ρv

ρv2 + P

(ρE + P)v

ª®®®¬ .
[mass conservation]

[momentum conservation]

[energy conservation]

(1.84)

Here the symbols have their usual physical meanings: ρ is mass density, v is

velocity, E is specific energy, and P is pressure. For an ideal gas, we use the

polytropic equation of state, with the adiabatic index γ,

P = ρ(γ − 1)
(
E −

v · v

2

)
. (1.85)

The corresponding sound speed cs of this gas is

cs =

√
γP
ρ
. (1.86)

Solving these equations analytically, for all but simplest of cases, is effectively

impossible. Modeling the behavior of a fluid numerically has been a field of

study for many years, but the advent, in recent decades, of increasingly powerful

computers has allowed new techniques to be implemented. The available methods

are highly varied, but can be divided into broad categories, based on their

fundamental approach. One way to separate them is by the nature of their

measurement tool. Modeling schemes are either Eulerian, meaning the positions

where the state of the fluid is measured (i.e. where we track these values) are

stationary in space, or Lagrangian, meaning the measurement positions move

with the fluid. Techniques can also be divided by how they formulate the fluid,

broadly, either as a mesh of cells or as a set of particles. Mesh methods break the

domain down into a series of finite volume cells, with the fluid variable stored in

these cells. Particle methods, such as smoothed particle hydrodynamics (SPH),

use a set of particles to represent the fluid elements. The condition of the fluid

is modeled using smoothing kernels around each of the particles. These are then

used as the variables in the Euler equations. The methods are discussed in more

detail in Section 1.2.3, followed by a brief discussion of the solver schemes that

are used in mesh based methods.
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Eulerian Schemes

A fundamentally simple approach is to break the space up into a series of finite

volume cells. This can be done in a wide range of ways, from a uniform Cartesian

grid, to an unstructured mesh. The fluid variable values, such as density, are

held within these cells. The initial conditions are known across the space, so

the problem becomes an initial value problem (IVP), discretised into a finite

volume scheme. The solution to the numerical approximation of fluid equations

is found at the boundaries of the cells, effectively breaking the problem down

into a series of one dimensional Riemann problems, the specifics of which will

be addressed shortly. The discretised form of Equation (1.40) is found from the

Taylor expansion of the solution, over time-step ∆t, with

Q(x, t + ∆t) = Q(x, t) + ∆t
∂Q

∂t
+ O(∆t2). (1.87)

Substituting the initial differential equations, this can also be written as

Q(x, t + ∆t) = Q(x, t) − ∆t
∂Q

∂x
+ O(∆t2). (1.88)

The order of expansion effect the temporal order of the method, and can vary

with scheme. The basic methods take only the linear and lower terms, leaving

the approximation of the solution, for time-step n to n + 1, as

Qn+1
i = Qn

i +
∆t
∆x
∆Qi, (1.89)

where ∆Qi is the change across the cell. This change in the fluid state ∆Q for a

given cell i, at position l, is

∆Qi = −
∆t
∆x

D∑
j=1

[F j(l j+1/2, t) − F j(l j−1/2, t)]. (1.90)

The flux is calculated at the cell boundaries at l j ±1/2 from the centre of the cell.

Here, D denotes number of dimensions. In 1D, each cell only has one pair of faces,

one on either side of the cell centre, but in 2D and 3D, the flows through the other

faces must also contribute to the change in state. The update effectively sums

the one dimensional fluxes perpendicular to each face. At these faces, a variety

of schemes can be used to approximate the condition of the fluid on either side.

These range from simple piece-wise linear reconstructions to more complicated

parabolic up-winding schemes.
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Riemann solvers are commonly used in this context. An initial value problem,

with one discontinuity and two uniform regions either side, is known as a Riemann

problem, and a wide array of exact and approximate Riemann solvers have been

developed to solve it (Godunov & Bohachevsky, 1959; Glimm, 1965; Harten,

1983; Leer, 1984). As mentioned before, each cell interface is effectively a 1D

Riemann problem, even when the number of dimensions is greater than one. The

Riemann problem is simply aligned to the normal of the face. The solution is

the combination of the solutions to the whole set of Riemann problems. The net

result is a relatively versatile approach, which scales easily, by simply adding more

cells, and handles aspects such as periodic boundary conditions well (Berger &

Oliger, 1984). These are often handled by creating a set of ghost cells around the

edge. These ghosts act as surrogates for the cells at the other side of the mesh.

Any change made to the ghost is copied to this other cell.

There are some significant downsides to using this approach. These include a

lack of Galilean invariance, their tendency for over-mixing, and the flows only

occurring in the directions normal to the faces (Springel, 2010). In the uniform

grid example, this means any flow that should be spherically symmetric will have

significant anomalous fringe effects at small radii. Unstructured meshes are much

less susceptible to this problem. This will be discussed in greater detail, along

with other topics mentioned here, such as periodic boundaries, in Chapter 3.

Adaptive Mesh Refinement

To combat the poor resolution in areas with high density, which are usually the

areas of interest, a method known as adaptive mesh refinement (AMR) has been

developed (Berger & Oliger, 1984). This is a method for solving partial differential

equations (PDE), such as the fluid equations, where a coarse grid is overlaid by

a finer grid that covers a smaller area which requires higher resolution. This

could be a region where there is a rapid change in the solution to the PDE. The

refinement can be done a large number of times, producing a highly versatile

algorithm. The meshes are independent, so it is possible to have a stationary

coarse grid with a moving fine grid overlaid to track a moving feature, such as

a shock. Some additional error is introduced at the boundary between grids

(Berger & Oliger, 1984). This approach improves resolutions in places, but is

computationally intensive and does not improve the overall accuracy order of the

simulation, as it does not refine everywhere. AMR has been utilised by several
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cosmological simulation codes, including RAMSES (Teyssier, 2002), and ENZO

(Bryan et al., 2014).

MUSCL-Hancock

The Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL-

Hancock) (van Leer, 1979; Leer, 1984; van Leer, 2006) is a commonly used

approach for solving hydrodynamics in schemes with moving meshes. This

method builds on the simple one dimensional Godunov problem with a linear

reconstruction concept for solving the hydrodynamics at a boundary, to produce

a fast and accurate solver (Springel, 2010; Bryan et al., 2014; Hopkins, 2015).

For situations with a grid in more than one dimension, the same approach can

be used, with some additions. In the basic setup, there are a series of cells that

have a set of variables attached to them that represent the state of the fluid in

that region. These variables are assumed to be constant throughout the cell.

Linear reconstruction replaces these piece-wise constant variables throughout each

cell by introducing a linear slope passing through the center of two neighboring

cells. Using this scheme a value for each variable is interpolated on either side of

the boundary. Extending into three dimensions converts this to a surface integral

to calculate the flux through the face.

A slope limiter is added to prevent spurious oscillations from appearing in the

linear reconstruction where there are shocks in the simulated system. This limiter

applies a limiting function to the slope of the linear reconstruction, used in the

interpolation of the left and right states at the boundary (Sweby, 1984). It is used

to force the piece-wise reconstruction to be total variation diminishing (TVD),

preventing the before mentioned oscillations. There are a variety of slope limiter

functions available, some of which are not TVD, but which are still used for as they

are computationally cheaper (Springel, 2010). The fundamentals are described

by Sweby (Sweby, 1984). It is also possible to produce a parabolic, rather than

linear, reconstruction scheme using a similar method, which adds spatial accuracy,

but obviously this is more computationally expensive. Hancock’s addition to this

method was to include a predictor-corrector step (van Leer, 2006).

The fundamental mathematics of the MUSCL scheme can be laid out in the

following way (Sohn, 2005). For a constant space step (∆x), such that xi = i∆x

and xi+1/2 = (1/2)(xi + xi+1), we get cell i defined as (xi−1/2, xi+1/2). Qi is the
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Figure 1.4 Fundamental waves from the boundary between two 1D cells. The
Riemann problem at the boundary between cells i − 1 and i, with
the boundary shown as the dashed line, produces two waves that
propagate into the cells either side of the boundary, shown by the
solid lines. The initial states either side of the boundary are QL and
QR, with the intermediate state between the waves denoted by Q∗.

average value of Q over cell i at time tn. We can use Equation (1.90), where

Fi+1/2 is is the flux at the face at xi+1/2, given as (van Leer, 1979)

Fi+1/2 = F(Qn
i+1/2) +

∆t
2

(
∂

∂t
F(Q)

)n

i+1/2
. (1.91)

The right hand side of this equation can be solved in variety of ways, often

requiring the solving of a generalized Reimann problem, which involves resolving

the discontinuity with some kind of piece-wise reconstruction (van Leer, 1979;

Sohn, 2005).

Harten-Lax-van Leer-Contact Method

The Harten-Lax-van Leer-Contact (HLLC) method of solving the hydrodynamics

of a problem is another commonly used approach (Toro et al., 1994). It solves the

Riemann problem at the boundary between two cells by assuming the solution

can be approximated as two waves moving away from the face of the cell. These

waves are assumed to be moving at constant speed. In this context, the waves

are the flow of material from either side of the face, without reference to the

opposing side. A third, middle wave is added to fully capture the effects of contact

discontinuities. The precursor Harten-Lax-van Leer (HLL) method (Harten,

1983), uses the same approach, but does not contain the central third wave, so
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does not resolve contact discontinuities well. The base method has three regions:

QL, Q∗, and QR. This setup is shown in Figure 1.4, where time increases in the

y-direction. The dashed line gives the positions of the boundary, and the solid

lines the position of the two waves. The state between the two waves, which move

with speed SL and SR, for the boundary i − 1/2, is defined as

Q∗i−1/2 =
SRQR − SLQL − (FR − FL)

SR − SL
, (1.92)

where FR and FL are the fluxes evaluated for the left and right states. The flux

for this region is given by

F∗i−1/2 =
SRFR − SLFL − SRSL(QR −QL)

SR − SL
. (1.93)

The flux at the boundary is then

FHLL
i−1/2 =


FL if SL ≥ 0

F∗ if SL ≤ 0 ≤ SR

FR if SR ≤ 0

. (1.94)

The determination of the wave speed is now all that is left. There are several

approximations that are used, but a common one is to assume the solution is

isentropic and that the two waves are rarefaction waves. These assumptions lead

the velocity v∗ and sound speed c∗ in the central region to be

v∗ =
1

2
(vL − vR) +

cL − cR

γ − 1
, (1.95)

c∗ =
1

2
(cL + cR) +

1

4
(γ − 1)(vL − vR). (1.96)

The wave speeds are then set as

SL = min(uL − cL, u∗ − c∗)

SR = max(uR + cR, u∗ + c∗)
(1.97)

The introduction of the contact wave splits the central region in two. This

produces four constant states separated by these three waves. There are four

regions: QL, Q∗L, Q∗R and QR. The wave fronts that define these regions have

speeds SR, S∗ and SR. The speeds are found in the same manner as before. The
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flux is then calculated for the central two regions (Q∗L and Q∗R) based on the

fluxes created by the left and right moving waves. The integral over these regions

gives the final estimate of the flux at the cell boundary.

Lagrangian Schemes

An alternative approach is to allow the tracers to move with the gas flow. The

Lagrangian form of the adiabatic fluid equations, with no gravity, are given by

dρ
dt
+ ρ∇ · v = 0, (1.98)

dv

dt
= −

1

ρ
∇P, (1.99)

de
dt
= −

P
ρ
∇ · v. (1.100)

With this approach, we discretise the numerical domain by mass, instead of space.

The material in the box is represented by a set of N particles of given mass, which

are tracers of the underlying fluid. This method is analogous to N-body particle

approach to modelling the gravitational interaction of cold dark matter. The

motion of these particles describes the evolution of the gas. The fluid nature of

the gas is captured by the presence of a pressure term in the acceleration of the

particles. Gradients in the pressure accelerate the particles, an effect not present

with collisionless media.

Smoothed Particle Hydrodynamics

A well established Lagrangian approach is smoothed particle hydrodynamics

(SPH) (Gingold & Monaghan, 1977). This approach uses a sampling of the mass

elements of a numerical region to reconstruct the physical conditions. A region

of gas is discretised in to N particles of mass m. The basic SPH formulation

calculates the motion of the ith particle using

dri

dt
= vi, (1.101)
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dvi

dt
= −

1

ρi
∇Pi (1.102)

where ri is the position of the particle, vi the velocity of the particle, ρi the

density, and Pi is the pressure. The density and pressure at an arbitrary position

r are found by summing contributions from a set number Nk of nearest particles

ρ(r) =

Nk∑
j=1

m jW(r − r j, h), (1.103)

P(r) =
Nk∑
j=1

m j
Pj

ρ j
W(r − r j, h), (1.104)

using a smoothing kernel W(r, h) of scale length h, similar to that used in the

PM gravity method. This kernel is chosen such that it goes to zero at its edge

2h. The scale length h is chosen to contain Nk particles, and so varies with the

distribution. The more particles in a region the greater the spatial resolution. A

typical kernel used in SPH codes is the cubic spline (Monaghan, 1992)

W(p) =


σ

[
1 − 3

2q2
(
1 − q

2

) ]
if 0 ≤ q ≤ 1

σ
4 (2 − q)3 if 1 < q ≤ 2

0 if q > 2

, (1.105)

where q = r/h, and σ is dependent on the dimensionality of the problem. In

three dimensions σ = 1/πh3.

The Lagrangian nature of this method allows for natural resolution adaptation,

with more particles providing greater spatial resolution in areas of greater density.

This is a powerful advantage, but there are drawbacks to using this approach.

Sparse regions are not well resolved as there are few particles left there. Particles

in crossing streams can move through one another, leading to spurious oscillations

in these circumstances, such as in shocks. This can be counteracted by introducing

artificial viscosity, which essentially allows the SPH particles to dissipate kinetic

energy into thermal energy. A number of state-of-the-art multiphysics simulation

codes (Hernquist & Katz, 1989; Springel, 2005) use SPH implementations to great

effect.
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Moving Mesh Schemes

In recent years, a number of moving mesh methods have been developed and

implemented. These seek to combine the advantages of the two classical methods,

while removing the disadvantages. The fluid is represented by a set of cells that

move and deform with the bulk motion of the gas they are modelling. This

approach takes the resolution adaptation of the SPH methods, and combines it

with the stability and shock handling capabilities of the grid based methods.

Solvers such as MUSCL-Hancock can be converted for use on a moving mesh.

Fluid can move between cells, and the cells themselves can move and deform.

The flux problem is often transformed into the rest frame of the boundary (i.e.

the cell wall). This only requires an adjustment of the relevant variables, such as

velocity, and has little effect on the construction of this solver. It does, however,

simplify the formulation of the conservation equations. In this way, the method

is ideally suited to a moving mesh scheme, such as AREPO (Springel, 2010).

The GIZMO (Hopkins et al., 2014) code uses this method (Lanson & Vila,

2008; Gaburov & Nitadori, 2011), in a slightly different way to AREPO, by

implementing it over a so called ‘mesh-less’ scheme. In GIZMO the step function

at the boundaries is not used. Instead the boundaries are effectively smoothed by

the implementation of a weighting kernel that changes the contribution from the

particle/cell. The whole volume of these cells is then integrated over to get the

appropriate value for the conserved quantity (e.g. mass). This value is then used

in the Euler equations, using the solver to solve for the flux, but the cell face is

replaced by an ‘effective face’ that is defined by the volume integral.

The HLLC method is used in codes that solve purely advective problems. These

are problems where there is constant pressure and velocity, but different densities,

such as with the relativistic TESS code (Duffell & MacFadyen, 2011). It is also

possible to use the contact (central) wave to introduce the effects of a moving

face. This is again useful in relativistic problems where converting to the rest

frame of the face does not simplify the problem. The concentric cylindrical cell

code DISCO (Duffell, 2016) uses the method for this reason, as well as the well

resolved contact discontinuities.
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Time Step Limitations

No matter which discretisation of the fluid is used, be it in space or mass, the

numerical solution to the fluid equations is found by numerical integration over

time. This requires a discretisation of time into a set of time-steps of size ∆T , over

which the numerical integration is incrementally performed. The choice of time-

step is limited by the discretisation of the fluid, defined by the Courant-Friedrichs-

Lewy (CFL) condition, which states that the numerical domain of dependence

of the method must enclose the physical domain of dependence (Holmes, 2007).

In other words, when calculating the change in the fluid at a given position, the

numerical method must include information from every part of the fluid that can

physically influence that position. This physical region is defined by how fast

information about the fluid can travel, which is the sound speed.

In the case of a structured grid based solver, including those using AMR, this

manifests itself as an upper limit on the time-step, found using the time taken

for information to cross the cells of size ∆x, with

∆t < CCFL
∆x

cs + |v |
, (1.106)

where cs is the sound speed and |v | is the speed of the gas. The CCFL coefficient

is applied to guarantee that the time-step is consistent with the condition, with

CCFL < 1. An equivalent calculation can be performed in particle based methods,

where the kernel radius is used in place of cell size, to estimate distance. Methods

built on unstructured meshes use a similar approximation, calculating the radius

of a sphere of volume equal to the volume of the cell. These approximations each

provide a time-step limitation for a given cell or particle.

The sound speed and velocity will inevitably vary across the domain, as can the

size of the cells, and smoothing lengths. In their basic formulations, the various

methods take the smallest time-step required by any element. This inevitably

means that many elements are evolved at time-steps shorter than is required. The

computational expense is therefore larger than strictly required. Many modern

codes implement varied time-step mechanisms, typically by binning elements into

groups by the required time-steps, with bin limits increasing as powers of two of

the minimum (Katz et al., 1996; Springel, 2010). These improve the efficiency of

the method, particularly in scenarios with extreme variation in time-step across

the domain, such as in cosmological simulations, where the conditions in galaxies
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and voids require very different time-steps.

1.2.4 Gravity

All bodies with mass must experience, and produce, the gravitational forces that

influence the evolution of the universe. In the case of cold dark matter, this is

the only effect that needs to be accounted for, since the dark matter particles

are assumed to be collisionless. There are several, widely used, methods for

performing this calculation. Some of the most common are outlined below. First

it is important to clarify where the gravity modelling of gravity starts.

Particle-Particle Algorithms

The gravity calculation can be done with a direct summation of particle-particle

interactions (Mo et al., 2010), using a particle-particle (PP) algorithm, where the

gravitational force on particle i is given by

Fi = −
∑
j,i

Gmim j
ri − r j

|ri − r j |
3
. (1.107)

The gravitational force on any particle i, at position ri, can be calculated, based

on N point masses at positions r0,1,··· ,i,··· ,N . Integrating the resultant force over a

given time step produces the gravitational evolution of the particles. This is a

very intuitive approach that can be made very accurate when large numbers of

particles and small time steps are used. However, it is computationally intensive,

scaling for N particles as O(N2), especially for systems where distant contributions

are negligible, so more efficient schemes have been developed.

Tree Algorithm

In modern simulations, the number of particles being simulated makes calculation

of the forces between every particle pair prohibitively expensive, while many of

the particles are at such high spatial separation that they have little effect on one

another. This requires approximation methods to be used for particles beyond a

certain distance. Each particle must be able to efficiently find all its neighbors

within this distance. A common approach to solve this problem is to use a
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tree algorithm. The algorithm decomposes the domain into a tree that divides

particles into smaller and smaller groups, known as hierarchical grouping. A

number of solutions to this problem have been found, starting in the 1980s (Barnes

& Hut, 1986), with other more recent examples from GADGET-2 (Springel, 2005)

and PKDGRAV (Potter et al., 2017), all based around the same principle.

A simple method is to first enclose all particles in a cube. This cube is then

divided into eight regions. Each of these boxes has an edge 1/2 the length of the

original box. This is known as an octree. The division is done repeatedly for all

the sub-regions, until every sub-region has, at most, one particle in it. These are

the leaves of the constructed tree. A visual representation of the 2D quadtree

equivalent of this is shown in Figure 1.5. The gravitational force of the particle

in each node is replaced by the multipole expansion of the force. A relatively

small number of the expansion terms can be used to create an accurate force

calculation (Mo et al., 2010). The further away a node is from the target particle,

the fewer terms can be used. A tree-walk can then be used to calculate the total

force on any particle. This is done by summing up the contributions from tree

nodes. Only particles within a certain distance are inside this sum, and those are

innately identified by the tree-walk. The center of mass of each cell is tested to

see if it is within the required distance of the particle of interest. If it is then

the moment is included in the sum. If it is not then the walk opens the node

and continues down to the next layer. These methods can reduce the scaling to

O(N log N) (Barnes & Hut, 1986).

Particle-Mesh Algorithms

Another option for gravitational scheme is the particle-mesh (PM) method

(Hockney & Eastwood, 1988). The gravitational potential is represented on a

Cartesian grid of M3 points with position Xq = ql, q = (q1, q2, q3). Here l is

the side length of grid cell, set by the size of the box L, through l = L/M. The

mass at each grid point is calculated by assigning contributions from the particle

distribution. This is found via the density at the position of each grid cell, such

that

ρ(q) =
m
L3

N∑
i=1

W(ri −Xq). (1.108)
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Figure 1.5 Visual representation of a tree algorithm constructing a gravity tree,
in this case showing a quadtree, the 2D equivalent to the 3D octree.
Black dots represent particles, with the tree dividing up the domain
such that each leaf contains, at most, one particle.

The weighting kernel W introduced here has an integral normalised to unity. For

periodic boxes, such as those used in cosmological scale simulations, the force from

this grid of masses can then be efficiently found by solving the Poisson equation

using fast Fourier transforms (FFT). The force at the position of a particle is

then found by interpolating the force at that position from the grid

F(ri) =
∑

q

W(ri −Xq)F(q). (1.109)

Here the force is found by summing over the grid points that have a non-zero

kernel value. The kernel used in the density and force calculations does not

have to be the same one, and there are a variety to choose from. The resultant

algorithm scales as O(N log N), with spatial accuracy limited by the size of the

grid cells.

Particle-Particle-Particle-Mesh

The above two methods can be combined into a Particle-Particle-Particle-Mesh

(P3M) algorithm (Hockney & Eastwood, 1988). Such a scheme uses direct

summation to calculate contributions from particles closer than two grid cell

lengths. The contribution from particles beyond this limit are found using the

PM method. This approach combines accuracy with computational efficiency.
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Gravitational Softening

A separate problem arises at small distances. The particles used in these

simulations are typically treated as point masses. If the distance between two

particles becomes very close to zero, in the internal units of the simulation, then

the gravitational force behaves asymptotically, since force is inversely proportional

to the square of the radius F ∝ r−2. The point masses therefore create diverging

gravitational potentials within the simulation. A softening length is employed to

prevent this (Aarseth, 1963). In the PP algorithm, this transforms the normal

Newtonian force, on i from j, into

Fi = −
∑
j,i

Gmim j
ri − r j(

|ri − r j |
2 + ε2

) 3
2

, (1.110)

where ε is the softening length. This no longer behaves asymptotically as r→0,

removing the divergence problem. This softening length creates an effective

maximum spatial resolution for the simulation. Interactions that happen at scales

close to the softening length will not be physically correct, so structure formed by

gravity on these scales will not be recovered. At distances much greater than the

softening length |ri − r j | � ε , the softened force is essentially identical to the full

force, so it is only interactions within or close to this length that are significantly

effected.

Time-Step Limitations

When numerically calculating the acceleration of a particle due to gravity, the

numerical solver is effectively assuming that acceleration is acting constantly for

some amount of time. The numerical scheme will only remain accurate if the

time step is suitably small, such that the numerical error does not introduce

catastrophic inaccuracies. In other words, the time-step must be small enough

that the change in the acceleration is much smaller than both the velocity and

the acceleration. This leads to a time step criterion that sets a tolerance α, with

the time-step given by

∆t = α
σ

|a|
, (1.111)

where σ is the velocity dispersion of the massive particles, and |a| is the net

acceleration. The choice of tolerance, along with the chose numerical scheme,
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effectively controls the accuracy of the simulation.

1.3 Summary

I introduce the wide variety of observed galaxy characteristics and properties,

focusing on how we require advanced hydrodynamics modelling techniques, if

we are to simulate their formation and evolution accurately. This includes

the observations of epoch from which we draw the initial conditions for the

simulations, and our understanding of the physics by which the gas can cool.

I derive the fundamental equations that describe the behaviour of the baryonic

gas, for which numerical solutions are required. This is followed by an overview

of these numerical methods, with detailed examples for the most widely used

approaches. In subsequent chapters, I present my idealised study of gaseous

dynamical friction (Chapter 2), and show the derivation and extensive testing of

my implementation of the residual distribution family of hydro solvers (Chapter

3). I then cover the extensions to the basic residual distribution method that

I have designed and implemented, including a variable time step mechanism,

and full 3D flow modelling (4). Finally I show dynamical friction work, built

on that described earlier, with the addition of advanced cooling and chemistry

models (Chapter 5), designed to study how the inclusion of the additional physics

changes the dynamical friction results.
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Chapter 2

Dynamical Friction of Satellites in

Early Galaxy Evolution

2.1 Introduction

As a massive body moves through a region of lower mass bodies, gravitational

interaction builds an over-density in the wake of the massive traveller. Momentum

and energy are transferred from this massive perturber to the surrounding

medium. This process is known as dynamical friction (DF) (Chandrasekhar,

1943), and is key to our understanding of the evolution of a number of

astronomical systems at very different mass and length scales. It drives processes

within structures from galaxy clusters (El-Zant et al., 2004; Kim et al., 2005;

Adhikari et al., 2016), to satellite galaxies orbiting within their host halo (Zhao,

2004; Fujii et al., 2006; Ogiya & Burkert, 2016), super-massive black hole

formation (Beckmann et al., 2018), compact object binaries and mergers (Just

et al., 2010; Dosopoulou & Antonini, 2017; Tagawa et al., 2018), and planets

within disks (Teyssandier et al., 2012).

In the case of galaxy clusters, DF plays a key role in driving the accretion of

dark matter substructure. Hierarchical collapse, within the standard ΛCDM

cosmological model, predicts the presence of extreme numbers of low mass sub-

halos within higher mass hosts (van den Bosch et al., 2005). The number

density of satellites found in simulations follows a power law, with a slope of

approximately -2, giving a large number of low mass satellites (Moore et al., 1999).
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These structures will experience both collisionless and gaseous DF, as they move

within extended dark matter (DM) and circumgalactic medium (CGM) structure

of the host. DF provides a mechanism by which they can shed angular momentum,

allowing them to merge with the central structure (Boylan-Kolchin et al., 2008).

In this way, DF drives the build-up of structure in a CDM cosmology. With no

DF, galaxy mergers are strongly limited, only occurring from chance collisions.

These mergers, in turn, are a key driver of the evolution of galaxies, providing

fuel for star formation and disrupting galactic structures (Beckman et al., 2008;

Khochfar & Silk, 2009; Khochfar & Silk, 2010; Robaina et al., 2010; Somerville

& Davé, 2015). Gaseous DF is particularly pronounced at high redshifts, where

halo gas mass fractions are highest (Daddi et al., 2010; Tacconi et al., 2010).

The structure of the wake behind a perturber can be separated into two distinct

contributions, one from a collisionless medium, such as background stars or a

region of dark matter, and one from a collisional medium, typically baryonic gas.

The additional pressure forces present in collisional media result in significant

differences in the retarding drag force, when compared to the collisionless case.

This is most pronounced for Mach numbers close to M = 1, but only when the

scenario remains linear. As the scenario becomes increasingly non-linear, the

gaseous DF drag force decreases (Kim & Kim, 2009). Here the linear regime

refers to wakes where the over-density α = ρ/ρ̄ − 1 is α � 1, throughout the

wake. The complex structure of the gravitationally induced wake has been studied

extensively using both analytic (Just & Kegel, 1990; Ostriker, 1999; Namouni,

2010) and numerical techniques (Sánchez-Salcedo & Brandenburg, 1999; Sánchez-

Salcedo & Brandenburg, 2001; Kim & Kim, 2007; Kim & Kim, 2009; Bernal &

Sánchez-Salcedo, 2013).

The collisionless solution is found by calculating a sum of two body interactions,

integrated over all time, between the perturber and particles that make up an

infinite background medium (Chandrasekhar, 1943). The analytical solution to

the collisional case can be obtained using linear perturbation theory (Just &

Kegel, 1990; Ostriker, 1999). This solution applies in the linear regime, producing

an approximation of the structure of the wake. The linear approximation is valid

if the perturbing potential does not diverge, as this can be used to construct

a scenario where no part of the wake will have over-densities greater than one.

Within this linear approximation, the collisional drag force is significantly higher

for perturbers moving with Mach numbersM = 0.7−2. This dramatic difference is

shown in Figure 2.1, (taken from Figure 3 of Ostriker, 1999), where the collisional
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Figure 2.1 Dynamical friction force from a gaseous medium (solid lines) for
varied Mach number M = v/cs (Ostriker, 1999). The equivalent
forces from a collisionless medium are shown as dashed lines. The
different lines show results for constant ln (cst/rmin). See Section 2.2
for more details on the origin of this relationship.

results (solid lines) are compared to force from the wake in a collisionless medium.

This has been confirmed numerically for low mass, extended, perturbers (Sánchez-

Salcedo & Brandenburg, 1999; Kim & Kim, 2009; Bernal & Sánchez-Salcedo,

2013). The analytic prescription can be extended numerically for more extreme

mass perturbers, where large regions of the wake are no longer described by the

linear wake. Kim & Kim, 2009, referred to as KK09 from here, run a set of

2D idealised setups with a moving Plummer potential embedded in an adiabatic

gas. They assume cylindrical symmetry, running with (R, z) coordinates, with the

perturber moving along the z-axis. The gas is modelled using a static, uniform

grid of 3072 × 12, 288 cells, requiring 5 cells per Plummer softening scale rs to
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converge with resolution, run for t = 600tc. This timescale tc = cs/rs is the sound

speed crossing time of the Plummer sphere’s softening scale. They recover the

Ostriker, 1999 result for perturbers in the linear regime, but find that the drag

force decreases in the non-linear regime due to the development of a detached

bow shock. The increased density ahead of the perturber partially counteracts

the over-dense wake. At early times, a transient ring vortex also develops behind

the shock, which moves downstream from the perturber. The authors present an

empirical fit for the drag force from a non-linear wake that shows a continuous

decrease as perturber mass increases, or softening scale decreases (see Section

2.2.4). The decrease in the force becomes dramatic in the highly non-linear

regime, suggesting high mass compact objects, such as black holes, may not

experience any gaseous dynamical friction. Bernal & Sánchez-Salcedo, 2013, BS13

from here on, run a similar numerical investigation, running with M = 1.5 − 4.

They use 5000 × 10000 cells, with 6 cells per rs, testing both isothermal and

adiabatic equations of state. They find that the drag force is independent of the

equation of state, and that the KK09 solution underestimates the non-linear force

at large times. A major difference between the results of these studies is in the

lower bound of the force integration, with KK09 using a significantly lower value.

I discuss this difference in more detail in Section 2.2.3.

More complex scenarios, including more physical processes, have also been

studied, such as rigid perturbers that experience both gravitational drag, and the

drag from physical collisions with the surrounding medium (Thun et al., 2016), as

well as perturbers on orbital trajectories (Sánchez-Salcedo & Brandenburg, 2001;

Kim & Kim, 2007), and the effect of radiative feedback from an accreting black

hole on the drag force (Toyouchi et al., 2020).

The ability of modern cosmological simulation codes to accurately capture the

effects of gaseous DF, in its full cosmological context, has not been studied

in detail. Capturing the effects of DF in simulations requires modelling the

hydrodynamic response, as well as the purely gravitational effects. The features of

the hydrodynamic problem, such sharp density transitions in the supersonic case,

make it difficult for traditional hydro solvers to model accurately (Tittley et al.,

2001). The extended gaseous structure is highly unstructured, a challenge for

Eulerian grid-based methods. Lagrangian particle-based methods, such as SPH,

can better handle irregular density structures, but are less accurate at handling

hydrodynamic instabilities (Agertz et al., 2007). These features are discussed in

more detail in Section 2.2.2. In the last decade, a new hybrid class of methods have
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been developed, utilizing moving unstructured mesh approaches, which attempt

to merge the advantages of the two. They aim to provide the instability and

shock capturing efficiency of the grid-based methods with the natural resolution

adaptation of the particle methods. Within astrophysics, these methods are still

relatively new, although a number of established codes have emerged (Springel,

2010; Duffell & MacFadyen, 2011; Hopkins, 2015; Duffell, 2016). They are ideal

for studying the effects of DF, but little work has been done on this with these

modern codes.

In this chapter, I will present results from a set of idealised numerical simulations I

have run using the gravo-hydrodynamic code GIZMO. I summarise the derivation

of the analytic solution for the gravitationally induced wake, with the net force

on the perturber, in Section 2.2, and include a brief description of previous

numerical results. In Section 2.3, I describe the setup of my idealised simulations,

the parameter space that I explore, and how I produce the appropriate initial

conditions. After this, in Section 2.4, I present the results for the numerical

wake, comparing the drag force from the numerical results to those predicted by

the analytic solution, for a range of Mach numbers and perturbers, showing a

significant difference for Mach numbers close to unity. I discuss the implications

of these results in Section 2.5, which includes comparison of our results to the

conditions we would expect in typical cosmological simulations.

2.2 Analytic Solution

2.2.1 Collisionless Case

The dynamical friction force in a purely collisionless medium, such as stars or

dark matter, was first estimated analytically by Chandrasekhar, 1943. This

analytic solution is calculated for a set of two-body encounters between a massive

perturber moving through a uniform background of less massive point mass

particles. The trajectories of the particles are calculated for all time. Integrating

along these trajectories provides the drag force on the perturber, which effectively

transfer momentum and energy from the massive perturber to the background

medium.

For a massive perturber of mass Mp, moving at constant velocity V0 through

a uniform density ρ0 medium, with no gravitational self interaction within the

53



medium, the dynamical friction force is (Ostriker, 1999)

FDF = −
4π(GMp)

2ρ0

V2
0

I, (2.1)

where, for a collisionless background medium (Binney & Tremaine, 1987),

Icoll = ln

(
rmax

rmin

) (
erf(X) −

2X
√
π

e−X2

)
. (2.2)

Here, X = V0/(σ
√

2), with σ as the velocity dispersion of the background particles,

rmin is the physical extent of the perturbing object, and the maximum radius, rmax,

is the size of the surrounding medium. The function erf(X) is the Gauss error

function. This solution describes a perturber moving through a region of stars

or dark matter, where there is little gas. A typical example would be a globular

cluster, where only stars are present, with little to no dark matter or gas.

2.2.2 Collisional Case

The collisionless solution does not capture the behaviour of a collisional back-

ground medium, such as the gaseous circumgalactic medium (CGM). Pressure

gradients, not present in a collisionless medium, introduce additional forces on

the evolving gas. In the original approach for a collisionless background medium,

Chandrasekhar, 1943 set the problem up as a sum of uncorrelated two body

interactions. As no particle can ’see’ any of the other background particles, this

approach cannot capture these pressure forces.

Using linear perturbation theory, Ostriker, 1999 produced an analytic prediction

for the DF force felt by a point mass perturber Mp, moving at constant velocity

V0 in the z-direction through an infinite uniform density ρ0 gaseous medium,

where the gas has no self gravity. This medium has sound speed cs, so the

perturber moves with Mach number M = V0/cs. Applying linear perturbation

theory for an adiabatic gas, and an external gravitational potential Φext, the

Eulerian conservation equations that describe the perturbed density ρ = ρ0(1+α)

and velocity v = csβ at any position x are (Ostriker, 1999)

1

cs

∂α

∂t
+ ∇ · β = 0, (2.3)
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and

1

cs

∂β

∂t
+ ∇α = −

1

c2s
∇Φext. (2.4)

These capture the conservation of mass and momentum. The α parameter

represents the over-density produced in the gas. The divergence of Equation

(2.4) is given by

1

cs

∂

∂t
∇ · β + ∇2α = −

1

c2s
∇2Φ, (2.5)

which can be combined with the time derivative of Equation (2.3) to give

∇2α −
1

c2s

∂2α

∂t2
= −

1

c2s
∇2Φ. (2.6)

Using Poisson’s equation, ∇2Φ = 4πGρ, with gravitational constant G, one can

substitute out the potential for the density of the perturber ρext, which leaves

∇2α −
1

c2s

∂2α

∂t2
= −4π f (x, t) (2.7)

where f (x, t) = Gρext/c2s . This is solved using the retarded Greens function for

a three dimensional wave, giving (Ostriker, 1999)

α(x, t) =
∬

d3x′dt′
δ[t′ − (t − |x − x′|/cs)] f (v′, t′)

|x − x′|
. (2.8)

Here, δ is the Dirac δ-function. This approach models the perturbation as the

propagation of a sound wave in the adiabatic medium. The point perturber is

moving at V0 along the z-axis, and is at the origin at t = 0, so the function f (x, t)

becomes

f (x, t) =
GMp

c2s
δ(z − V0t)δ(x)δ(y)H(t), (2.9)

where H(t) defines the times when the perturber is acting on the gas. Three

additional coordinates are defined as s ≡ z − V0t, w ≡ z′ − z, and the cylindrical

radius R = (x2 + y2)1/2. Ostriker, 1999 shows that the integral becomes

α(x, t) =
GMp

c2s

∫ ∞

−∞

dw
δ[w + s +M(R2 + w2)1/2]H((w + z)/V0)

(R2 + w2)1/2
. (2.10)
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Expanding the δ-function about its roots

w + s +M(R2 + w2)1/2 = 0, (2.11)

to give

w± =
s ±M[s2 + R2(1 −M2)]1/2

M2 − 1
, (2.12)

allows the integral to be solved. The component within the square root must be

zero or positive for a solution to be defined. The solution is therefore divided

into subsonic and supersonic cases, while M = 1 scenarios are undefined. The

negative root is undefined for subsonic cases, while both are defined for supersonic

cases, as long as s < 0 and |s |/R > (M2 − 1)1/2.

The solution to the integral is given by

α =
GMpc2s

[s2 + R2(1 −M2)]1/2

∑
H

(
z + w±

V0

)
, (2.13)

with the H term defining the time over which the perturber is acting on the

medium. To model a perturber that starts to perturb the medium at t = 0, a

Heaviside step function is used, defined here as H(t < 0) = 0 and H(t ≥ 0) = 1.

The summation is introduced to handle both possible roots of the δ-function. In

some scenarios both roots are non-zero, while in others, only one contributes.

The summation will produce either 0,1, or 2. As mentioned above, the result is

divided into subsonic and supersonic cases. For M < 1 and t > 0, the solution is

only defined for R2 + z2 < (cst)2, which describes a sphere centered on the origin,

where the perturber starts. The wave created by the perturber has not reached

the region beyond this sphere, so the density remains unperturbed. For the above

Heaviside function, only the positive root w+ produces a non zero result, as the

negative root gives z + w− < 0. To show when H=0 for the negative root, one

starts with −z > w−, which expands to

−z >
s −M

(
s2 + R2

(
1 −M2

) ) 1
2

M2 − 1
. (2.14)

Multiplying through by the denominator of the left hand side (LHS), gathering all

terms other than the square root on the right hand side (RHS), and multiplying
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everything by −1, leaves

M

(
s2 + R2

(
1 −M2

)) 1
2
> z(M2 − 1) + s. (2.15)

One can then simply substitute in s = z − V0t, square both sides, and expand all

terms. The results neatly cancel out most of the terms. The final substitution

is to replace V0 =Mcs, which allows the Mach dependence to be removed. The

above condition therefore reduces to R2 + z2 < (cst)2, which means H=0 inside

the spherical zone, which is the only part of the wake for the sub-sonic cases.

Conversely, this also means that in the super-sonic cases, both negative and

positive roots produce H = 1. The sum of the H factors for the sub-sonic case

becomes
∑

H(t > 0) = 1. For M > 1, the same sphere exists, where only w+ is

defined, but there is an additional Mach cone structure, defined by the conditions

provided by Equation (2.12). This again limits the wake to regions reached by

the sound wave triggered by activating the perturber at t = 0. The cone region

is therefore defined for s/R < −(M − 1)1/2. The left hand edge of the cone is set

by the sphere. Within the cone region, both components of w± are defined, so∑
H(t > 0) = 2. The prediction for the over-density α(s, R, t) therefore becomes

α =
GMp/c2s

[s2 + R2(1 −M2)]1/2
×


1 if R2 + z2 < (cst)2

2
if M > 1, R2 + z2 > (cst)2, s/R <

−(M2 − 1)1/2, or z > (cst)2

0 otherwise

. (2.16)

Plots of this over-dense wake, in the subsonic case, are shown in Figure 2.2

for several Mach numbers. The plus symbols show the initial positions of the

perturbers, which are moving in the positive z-direction. The cylindrical radius

R and z-axis are scaled by ct, or the distance information has travelled in a

static medium. For these subsonic cases, this distance from the perturber’s initial

position is also the maximum extent of the wake. The closed contours, those that

do not intersect the edge of the wake, are symmetric about the current position

of the perturber, which is at the position of the highest density. This symmetry

means that those regions will not produce a net force on the perturber, since the

force comes from the over-density, and these regions produce the same force in

all directions. The open contours produce the entirety of the force. The fraction

of the wake covered by these contours increases with Mach number, and so does

the net force. The equivalent wakes for supersonic perturbers are shown in

Figure 2.3. The similar spherical component, centered on the original position
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Figure 2.2 The over-dense wake produced by linear perturbation theory for
subsonic perturbers. The plus symbol indicates the initial position of
the perturber, and the contours represent over-density α. The thick
black line represents the edge of the perturbation. Only open contours
contribute to the net force. (Taken from Figure 1 of Ostriker, 1999)
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Figure 2.3 The over-dense wake produced by linear perturbation theory for
supersonic perturbers. The plus symbol indicates the initial position
of the perturber, and the contours represent over-density α. The
thick black line represents the edge of the perturbation. (Taken from
Figure 2 of Ostriker, 1999)
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of the perturber as before, is clear. This region does not have the symmetric

contours previously found in the subsonic case, as the perturber is always outside

the sphere. The additional cone structure, mentioned previously, forms behind

the perturber. The cone becomes more elongated as the Mach number increases.

The front edge of the cone is a density discontinuity, with density decreasing

backwards along the line of travel.

This distribution diverges as the spherical radius r → 0. The assumptions of

linearity used to derive this prediction mean that only parts of the wake where

α � 1 are valid. To produce an estimate of the gaseous DF drag force, a minimum

radius rmin is assumed, and an integral performed over the over-density. This is

done in the spherical polar coordinates, and results in

FDF = −F0I, (2.17)

with

F0 =
4π(GMp)

2ρ0

V2
0

, (2.18)

where the I parameter represents the integral over the over-density, and depends

on the Mach number of the case, with

Isub =
1

2
ln

(
1 +M

1 −M

)
−M (2.19)

for the subsonic perturbers. The density profile is scale free, with no dependence

on the lower limit of the integral. This scale free nature of the solution to the

integral holds for rmin < (cs − V0)t, which requires the wake is larger than the

effective size of the perturber, and that the entire wake z2 + R2 < (cst)2 beyond

this inner edge is included in the analysis. This is effectively saying that one can

take any section of the wake, within these limits, and it will give the same force,

no matter the time that has passed. This is because the only contribution comes

from open contours in the over-density (see Figure 2.2).

For supersonic perturbers, the I parameter is

Isuper =
1

2
ln

(
1 −

1

M2

)
+ ln

(
V0t
rmin

)
. (2.20)

The time dependence here comes from the fact that the wake only grows

downstream of the perturber, and does not fill the space around it, as is the
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case for subsonic scenarios. There are no analogous closed contours around the

perturbers current position, so all parts contribute a force that changes with time.

When this prediction is tested numerically, the requirement that α � 1 can be

parameterised using the global dimensionless parameter, A, with

A =
GMp

c2s r
. (2.21)

This estimates the over-density at a radius r from the perturber by looking

back along the path that the perturber has taken, achieved by taking R = 0

in Equation (2.16), which effectively leaves r = s. It is therefore required that

A � 1 for the linear assumption to strictly hold. This parameter estimates the

density perturbation at radius r. It effectively places a constraint on the physical

scenarios that can be described by this prediction, since cases with very high mass

perturbers, perturber with small physical extents, or very large sound speeds, will

have large A values. This is discussed further in Section 2.2.4.

Any scenario can be completely described by two parameters: this A parameter,

and the Mach number M of the perturber moving through the gaseous back-

ground medium. The Ostriker, 1999 prediction has been tested numerically, and

was found to hold in the linear regime (Sánchez-Salcedo & Brandenburg, 1999;

Kim & Kim, 2009; Bernal & Sánchez-Salcedo, 2013).

2.2.3 Choice of rmin

The net drag force is computed by integrating over the over-dense wake. An

equivalent integration can be made over the output from a numerical simulation

to produce the numerical drag force. The choice of rmin for these calculations is

not clear cut. In the analytic case it is constrained by the conditions described

above, when only considering the linear regime.

For the numerical integration of the simulated wake, different authors have settled

upon various strategies to set rmin. Assuming a potential with gravitational

softening rs is used for the perturbing potential (see Section 2.3.1), the minimum

radius can be parameterised based on this softening. A scale free time can also be

defined based on this scale. The sound speed crossing time tc of the softening scale

allows for comparison between different setups. Sánchez-Salcedo & Brandenburg,

1999 empirically find that rmin = 2.25rs accurately produces the predicted forces,
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which they show is analogous to the minimum stellar radius found for a Plummer

potential. BS13 estimate the value of rmin using the position of the maximum

density in the wake produced by a Plummer sphere, as opposed to a point mass,

finding a value consistent with the Sánchez-Salcedo & Brandenburg, 1999 result.

They confirm this value empirically with their numerical results. KK09, on the

other hand, develop a Mach dependent prescription, with rmin = 0.35M0.6rs
providing the best fit for the force at A = 0.01, and argue that the difference

between their result and previous ones is caused by differences in resolution and

equation of state. BS13 address this suggestion, and find no difference in results

between isothermal and adiabatic equations of state, nor with resolution. They

find an equivalent Mach dependent fit with rmin = 1.5M0.6rs, but conclude that

it is only applicable at later times t > 130tc. Both fits discussed by BS13 use a

value significantly larger than that found by KK09, which has a dramatic effect

on absolute value of the drag force from the wake. BS13 note that the KK09

fit can produce a force as much as a factor of two larger than their own. The

choice of rmin is extremely important when considering the drag force in more

complex scenarios, where the wake may be disrupted at large distances. The best

fit value for rmin effectively shows us the radius from which the wake matches the

analytic result, and so also shows us where differences in the wake may reside. It

is not obvious how the minimum radius should be chosen to ensure a physically

consistent result.

It should be noted that the softening scale rs discussed here still refers to the

scale length of the Plummer sphere used to represent the perturber, not some

underlying gravitational softening of the simulation, which does not apply to this

gas, since there is no self-gravity. I systematically investigate what radius can

provide the equivalent fit for our numerical results, and discuss how the detailed

structure of the numerical wake brings this about, in Section 2.4.2.

2.2.4 Non-Linear Regime

The linear regime does not adequately describe many important astrophysical

systems, where A � 1, particularly compact perturbers such as proto-planets in

proto-planetary disks (Muto et al., 2011, Bromley & Kenyon, 2016) or black holes

(Beckmann et al., 2018; Dosopoulou & Antonini, 2017). For such perturbers, the

condition that the over-density is small everywhere in the wake is not maintained.

The perturbing potential creates regions where this assumption breaks down,
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leading to the formation of structures not covered by the analytic prediction. A

detached bow shock is found to develop upstream of the perturber, and a ring

vortex is observed to detach and move downstream (Kim & Kim, 2009; Bernal

& Sánchez-Salcedo, 2013). In isolation, the bow shock would actually accelerate

the perturber, so when the bow shock structure is combined with the over-dense

wake that sill develops, the net effect of the non-linear wake is a reduced drag

force on the perturbing mass. The vortex structure KK09 find at early times will

exacerbate this effect early on, as the low density in the vortex further reduces

the drag force. The most dramatic differences are observed where the gaseous

DF is predicted to diverge most from the collisionless case, withM = 1 − 2. The

key difference between the linear and non-linear cases comes in the development

of this bow shock. It sits just upstream of the perturber, and disrupts the flow in

the near wake. The presence of such structure will therefore be found in the inner

most radii, close to the perturber. One therefore expects that the analytic wake

will not be reproduced in the innermost regions for A > 1, where the non-linear

structures will dominate. These features should not be present in cases with

M ≤ 1, where the smoothed potential should produce an over-density α � 1 at

all positions (see Equation (2.16)).

Numerical experiments have been used to find empirical fits for the force from

a perturber in the non-linear regime. KK09 produce a parameterisation of the

reduced force in the non-linear regime using

F = Flin

(η
2

)−0.45
, (2.22)

when 2 < η < 100, where Flin is the Ostriker linear force and

η =
A

M2 − 1
. (2.23)

BS13, on the other hand, find that the time dependence in the supersonic solution

has the non-linear force converging to the linear solution at large times. The non-

linear structures, by definition, form close to the perturber where the gravitational

field is strongest. The far-field part of the supersonic wake contributes the time

dependence, and is undisturbed by the non-linear formations. As the wake

grows continuously with time, the relative contribution to the net force from the

undisturbed part of the wake increases, and the relative non-linear contributions

shrink. KK09 present their results for large times (t = 600tc), so should also find

this evolution. No analytic solution exits for the non-linear case, so it is not clear
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exactly what solution should look like, in this case.

2.3 Numerical Method

In this section, I cover my numerical approximation of the idealised case, and the

key parameters that describe the initial state. I run a set of idealised, gravo-

hydrodynamic simulations using the multiphysics astrophysical code GIZMO

(Springel, 2005; Hopkins, 2015). I cover the specific setup that I use, the details of

the main simulations that I am showing results for, and the process of producing

the initial conditions. These were run on medium to large scale high performance

computing (HPC) clusters, requiring significant computing time.

2.3.1 Setup

The numerical setup is designed to closely replicate the assumptions made in the

derivation of the analytic solution. The initial conditions have a uniform density

ρ0 adiabatic gas, moving with bulk velocity V0, in a box with a fixed gravitational

potential Φ from a massive perturber Mp. The bulk velocity has Mach number

M = V0/cs. The gas does not experience self gravity, and the boundaries of

this box are periodic. The massive perturber has the form of a Plummer sphere

(Plummer, 1911), with potential

Φ(r) = −
GMp(

r2 + r2s
) 1
2

, (2.24)

with mass Mp and softening rs. This softening is analogous to the extent of the

perturbing object. The simulation time is characterised by sound speed crossing

time of this length tc = rs/cs.

To reproduce the initial uniform density, I generate glass-like initial conditions

(ICs) using WVTICs (Donnert et al., 2017; Arth et al., 2019), which combines a

weighted Voronoi mesh with a particle shuffling method to reproduce arbitrary

density distributions with a set of SPH particles. The ICs created with this

method were found to be superior to simple initial grids and random particle

placements, minimising periodic oscillations in the net force on the perturber,

and reducing initial variation in the local density distribution. This is discussed

further in Section 2.3.3.
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The idealised setup is effectively scale free, characterised by A (Equation (2.21))

and the Mach number M. The A parameter sets the relationship between

the perturber, from its mass and extent, and the medium, through the sound

speed. The Lagrangian nature of the methods used here mean spatial resolution

comparisons are not straight forward. The kernel lengths in a typical run

were chosen to be of order 0.1rs, compared to 1 cell per rs (Sánchez-Salcedo

& Brandenburg, 1999), 5 cells per rs (Kim & Kim, 2009) and 6 cells per rs
(Bernal & Sánchez-Salcedo, 2013) in previous 2D grid works. Our estimated

spatial resolution is therefore on a similar level to these previous works. I use

rmin = rs as the default choice, but I also explore radial break downs of the net

force that show what rmin would produce a good fit, for different cases, in Section

2.4.3.

The relative motion is captured by the Mach number. I run setups for a range

of Mach numbers, exploring the regime where collisional DF differs most from

collisionless DF, fromM = 0.7 toM = 2.0. A range of A values was also explored,

from far inside the linear regime (A = 0.01) through the transition regime (A = 1)

and beyond, into the highly non-linear regime (A = 10). A number of different

box sizes and resolutions were used. The different setups are summarised in Table

2.1.

Each box was run until the wake reached close to the edge of the periodic box.

If it were run longer, the edge of the over-dense wake would rap around. Larger

boxes allow for longer runs, but at the cost of reduced mass resolution, critical

to recovering the small over-densities in the wake structure. Our setup allows us

to reach t = 15tc in the standard runs, and up to t = 150tc in the largest boxes,

while still retaining acceptable mass resolution.

2.3.2 Solvers

I investigate the differences in the numerical results for the Lagrangian meshless

finite mass (MFM) (Hopkins, 2015) and pressure-entropy smoothed particle

hydrodynamics (P-SPH) (Hopkins, 2013) hydro-solvers. The MFM solver uses

a state-of-the-art method that discretises the volume with a kernel function and

solves the Riemann problem between the neighbouring particles, utilising a high

order gradient estimator. The P-SPH solver is an extension to the standard

SPH formulation (Gingold & Monaghan, 1977). It estimates pressure gradients

using entropy rather than density, reducing inaccuracies at fluid interfaces. The
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Table 2.1 Details of select the simulation runs, listing the hydro solver, the
box size L, the number of particles N, the Mach number M, the A
parameter, and the initial temperature T of the background gas.

ID Solver L(kpc) N M A T (K)
ML10N8MA07A01 MFM 10 5123 0.7 0.1 T0
ML10N8MA09A01 MFM 10 5123 0.9 0.1 T0
ML10N8MA101A01 MFM 10 5123 1.01 0.1 T0
ML10N8MA11A01 MFM 10 5123 1.1 0.1 T0
ML10N8MA13A01 MFM 10 5123 1.3 0.1 T0
ML10N8MA15A01 MFM 10 5123 1.5 0.1 T0
ML10N8MA2A01 MFM 10 5123 2 0.1 T0
ML10N8MA07A1 MFM 10 5123 0.7 1 T0
ML10N8MA09A1 MFM 10 5123 0.9 1 T0
ML10N8MA101A1 MFM 10 5123 1.01 1 T0
ML10N8MA11A1 MFM 10 5123 1.1 1 T0
ML10N8MA13A1 MFM 10 5123 1.3 1 T0
ML10N8MA15A1 MFM 10 5123 1.5 1 T0
ML10N8MA2A1 MFM 10 5123 2 1 T0
ML10N8MA13A01 MFM 10 5123 1.3 0.01 T0
ML10N8MA13A10 MFM 10 5123 1.3 10 T0
PL10N8MA13A01 PSPH 10 5123 1.3 0.1 T0
PL10N8MA13A1 PSPH 10 5123 1.3 1 T0
ML100N9MA13A01 MFM 100 10243 1.3 0.1 T0
ML100N9MA13A1 MFM 100 10243 1.3 1 T0
ML10N8MA13A01LT MFM 10 5123 1.3 0.1 0.1T0
ML10N8MA13A1LT MFM 10 5123 1.3 1 0.1T0
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idealised DF problem has not been investigated in detail using these modern

Lagrangian solvers, so our understanding of their detailed behaviour in this

context is currently limited. DF provides a further test for the numerical accuracy

of these schemes.

2.3.3 Initial Conditions

The highly idealised setup requires initial conditions (ICs) with a uniform density

ρ0 gas, moving with some bulk velocity V0, at MachM = v/cs. This setup needed

to be replicated with a distribution of SPH particles, each with fixed mass. To

reproduce the initial uniform density across the whole box, a number of methods

were used.

Random Sampling

The most straight forward approach is to randomly sample N positions within

the limits of the box, placing the fixed mass particles at these positions. This

approach produces a box which, by definition, has an average density of the

desired value. A first set of simulations were run using ICs created with this

method. The random sampling inevitably produces local variation in the density

structure, with some particle positions having very high initial densities and

pressures, where particles have been randomly placed very close together. In

Figure 2.4, I show the initial density PDFs for the different IC setups. The blue

histogram shows the long tail of particles with high density for the random ICs

discussed here. While these high density particles are relatively few in number, I

decided they could be responsible for a mismatch between the analytic prediction

and the numerical results (see Section 2.4). To combat this, I explored other

possible initial particle distributions.

Grid

To avoid the large initial range in local densities, I also run a number of

simulations using an alternative, grid based, initial setup. Although the

density distribution in the random setup gradually relaxes toward the desired

uniform background, it was possible this difference from the analytic problem is

responsible for the discrepancies in the results (see Section 2.4). Allowing the ICs
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Figure 2.4 Distribution of initial densities of all particles for the different IC
setups. The densities at the location of each particle are calculated
using the cubic weighting kernel used by the hydro solvers. The
random case is shown in blue, the grid based ICs in orange, and
the glass-like setup in green. The vertical dashed line shows the
desired value for the uniform background density. Unsurprisingly,
the random approach shows the largest variation in local density,
while the grid perfectly reproduces the exact density. The glass ICs
represent a compromise, as they have significantly less variation than
the random case, without the periodic oscillation in the force found
with the grid ICs.
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to relax before applying the perturber is a possibility, but this will be discussed

later. To guarantee that the initial density was the same everywhere, I moved

to a setup where the particles were placed on the vertices of a Cartesian grid.

Since all particles now have identical distances to their neighbours, the density

is the same at every particle position (orange histogram in Figure 2.4). This

worked effectively for some scenarios, but it became clear that for cases with

low perturber masses (for testing A numbers far into the linear regime), there

was a periodic oscillation in the force that washes out the signal from the wake

completely.

Any initial particle distribution will introduce an underlying variation in the net

force exerted on the central massive perturber as it flows past. In the grid-

based case, as the distribution moves with its initial velocity, one face of particles

moves away, while the other moves towards the perturber. The distribution is

asymmetric about the centre of the box, producing a spurious net force. This

force will vary periodically as the faces of the initial grid move past the centre.

In Figure 2.5, I show this periodic variation over a short time in blue, with

the vertical black dashed lines indicating the times at which the distribution

recreates its initial state. This force is normalised to a dimensionless form using

Equation (2.18), dividing the force by M2F0. This is the scale free DF force,

independent of the specific conditions of the scenario. In this case I have created

the initial distribution to have the maximum variation at the start, as a test

of this variation. The standard grid setup would start with the distribution

symmetrically arranged about the centre, giving zero initial force. The oscillation

of the force with time would be the same. The amplitude of this variation in the

force is inversely proportional to the perturber mass. This relationship comes

from the combination of Newtonian gravitational force between a particle and

the perturber, proportional to the mass of perturber Mp, and the normalisation,

which is proportional to M2
p . Dividing the gravitational force by the normalisation

leaves the dimensionless force dependent on M−1p . The variation in blue is for the

A = 0.01 case, while the A = 0.1 case is shown in orange. The A = 0.1 case is

obtained by increasing the perturber mass by an order of magnitude, for which the

force oscillation will be an order of magnitude less. If one aimed to probe smaller

A numbers, while avoiding the force variation increase, one could also increase

the sound speed of the gas. The wake would expand faster in this case, and so to

reach the same time without the wake wrapping around the periodic boundary

conditions, the box would have to be made larger. This, in turn, would mean the

particles would have greater mass, to achieve the uniform density with the same
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number of particles, and so the force variation would once again increase. This

variation will be discussed again later in this section.

A similar oscillation in the force is present with the random initial conditions,

but the grid ICs produce the maximum possible variation for a given perturber

mass - particle number setup. I found that the grid based initial conditions are

viable for A ≥ 1, but not for those with A < 1, where the perturber mass is lower,

and the variation proportionally higher.

Glass

A compromise between achieving the perfect uniform density and avoiding

the overwhelming periodic oscillation in the force is found by using glass-like

ICs, generated with the WVTICs algorithm (Arth et al., 2019). This uses a

combination of a weighed Voronoi tessellation (WVT) with a particle shuffling

algorithm to reproduce any arbitrary density distribution with a set of fluid

tracer particles. The WVT algorithm creates a low energy, relaxed, glass-like

particle distribution, without explicitly identifying the exact form of the Voronoi

tessellation. To achieve this, a standard SPH wrapper is used to calculate the

densities and kernel lengths of each SPH particle. Other standard SPH quantities,

such as internal energy, are not used in any part of the algorithm. The desired

density ρm(®r), or model density, is used to calculate how far a given particle i

should be moved ∆®ri, based on the SPH kernel function W(|®ri j |, hm
i j ), the distance

between the particles i and j, and an averaged weighted kernel length hm
i j , such

that

∆®ri = hm
i j ·W

(
|®ri j |, hm

i j

)
·
®ri j

|®ri j |
. (2.25)

The weighted smoothing length hm
i for a given particle is an estimate of the

smoothing length that should be present at that position, if the desired density

distribution was in place. This is calculated using

hm
i =

(
1
4
3π

ρm
i∑

j ρ
m
j

)1/3
, (2.26)

and the averaged value, used in the calculation of the displacement ∆®ri from

particle j, is the arithmetic mean of the modified lengths hm
i and hm

j . This shifting

of the particles will create the desired relaxed, low energy state. The shifting
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Figure 2.5 Oscillation in the force from the grid based initial conditions on the
A = 0.01 case perturber (blue), and the A = 0.1 perturber (orange).
The grey dashed lines show the times when the distribution will be in
the same position as the start. The evolution is calculated without
any gravity from the perturber acting on the background gas, so all
variation in the force is caused by the unperturbed bulk motion of the
initial particle distribution moving past the position of the non-acting
perturber.
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Figure 2.6 Left: Initial distribution of particles with positions randomly drawn
by the WVTICs algorithm. Right: Distribution of particles after 256
iterations of the WVTICs algorithm.

process is repeated until most particles have moved a set fraction of the desired

particle separation. The pushing of the particles acts only locally, as SPH forces

are fundamentally local, so an additional redistribution step is used. This moves

particles from regions where there are too many particles to parts where there

are too few.

The whole process of relaxation and redistribution is repeated a set number

of times, converging on an optimal solution. In this case 256 iterations were

used. An example of the improved distribution is shown in Figure 2.6, with a

2D slice through the initial distribution of particles on the left, and the final

distribution after 256 iterations of the WVTICs on the right. The improvement

in uniformity is clear by eye, without the presence of any periodic grid-like

structures. This approach is equivalent to allowing the random IC case to relax,

before applying the gravitational perturber. Performing this action with GIZMO,

instead, could produce a similar effect, but would be less computationally efficient,

as GIZMO is not tailored towards producing specific distributions, and so does

not include the redistribution step. This improvement is also clear in Figure 2.4,

with the difference in distribution of densities between the purely random spatial

distribution (blue), and the glass-like ICs (green). The glass ICs show a much

smaller range of densities, minimising any spurious effects these may have on the

flow.
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Intrinsic Force Variation

The A parameter, which effectively sets the linearity of the numerical setup,

can be varied by changing any of its dependent variables: the perturber mass,

the sound speed of the background gas, and the gravitational softening scale of

the perturber. Setups with the same A parameter constructed with different

combinations of these parameters should produce the same results. However,

there is an intrinsic error in the force produced by a given setup, effectively

dictated by the inner radius, which forms the lower limit of the force integral,

given in Equation (2.1), the mass of the perturber Mp, and the mass of the

gas particles Mpart. If we consider a scenario where the perturber does not

act on the medium, then as the initial distribution of particles moves past the

perturber position, the configuration of finite masses will produce variation in

the net force on the perturber. This force from the unperturbed medium should

be zero, but the sampling of the medium by finite mass particles leads to some

variation from this value. The lower limit of the integral sets the distance of

the nearest particle included in the force summation. Small lower limits lead

to large contributions from the particles very close to the perturber, where the

small volumes are sampled by few particles. Large rmin leads to smaller variation.

For a given background density and integral lower limit, the ratio of the particle

mass to perturber mass Mpart/Mp has a significant role in determining the level

of intrinsic variation. The larger this ratio is, the more severe the impact of the

closest particles to the perturber.

The improvement in the net force on the perturber from the initial distribution

of particles is shown in Figure 2.7 for the different setups. The normalised force

is calculated by direct summation of the Newtonian gravitational force between

the central mass and the gas particles, excluding particles within rmin of the

centre. The normalisation is applied to the net force. This effectively shows

the uncertainty in the force for different choices of initial condition setup. One

hundred random shifts are drawn, and the force calculated for a range of inner

radii rmin. The dots show the mean of these forces for each setup, with the

standard deviation marked by the error bars. This gives an estimate of the

maximum underlying variation in the force that a given IC setup will produce.

The glass-like ICs show a significant improvement over the random and grid ICs,

demonstrating they will be able to probe the lowest A cases. These results are

for the A = 0.01 case, but the same pattern is observed for other A values, simply

shifted along the y-axis by a constant force.
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Both the random and glass ICs show the net force on the perturber decreasing

as the minimum radius of the force integral increases. The force offset, in these

two cases, is dominated by the particle closest to the perturber, but outside this

minimum radius. As the radius is increased, this closest particle will be further

away. Gravitational force obeys an inverse square law, so the offset in the force will

decrease with 1/r2. In the grid based IC case, the force does not decrease in this

way. There is a constant offset to the net force. This is caused by the systematic

asymmetry in the particle distribution. It is constant, because the asymmetry

comes from the whole grid of particles. Simply removing the innermost particles

does not change the fact that the asymmetry is still present at large radii.

If one considers the increase in the inner radius of the integral as removing a

shell of particles from the integration, then the net force will remain the same

if one removes the same number of particles in each direction, which is the case

when the particle spacing is very small. This is the case here. Increasing rmin,

in the grid IC case, removes approximately the same number of particles from

all directions, because of the small particle separation. These particles originally

effectively cancelled one another out, so the removing them does not change the

net force. In this way, it is clear that the net force on the perturber in the grid

case in fact comes from the outermost part of the grid.

Figure 2.8 shows the force on the central massive perturber from the glass like

initial conditions. The specific cases shown here are for the Mp = 2.5x103M�
perturber and N = 5123 particles, with L = 1, 10, 100 kpc. This corresponds to

the A = 0.1 scenario. The ratios of particle mass to perturber mass are 6 × 10−11

(blue), 6 × 10−8 (orange), and 6 × 10−5 (green) respectively.

The numerical dimensionless force increases linearly with the ratio of particle

mass to perturber mass, for a given background density. We can estimate the

underlying uncertainty in the force from the output of a given setup. This intrinsic

variation effectively limits the setups that will produce useful results, because

the error can be too large to say anything meaningful about the force from the

resultant wake. We must balance the need for a large box to reach large numbers

of crossing times with the need to keep the number density high.
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Figure 2.7 Dimensionless force on the perturber from the random (blue), grid
(orange), and glass (green) ICs. Setups are randomly repositioned
about the perturber, effectively creating 50 different realisations of
the same approach. The force is then calculated for different value
of minimum radius rmin. This shows the underlying variation in the
force that would be expected from the discretisation of the background
medium. The glass ICs show the smallest underlying oscillation,
while the random ICs show significantly more. Both show a decrease
in the force with increasing rmin. The grid based ICs do not show
this decrease.
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Figure 2.8 Force on a Mp = 2.5x103M� perturber from the initial particle
distribution for setups with mass ratios of Mparticle/Mperturber =

6 × 10−11 (blue dots), 6 × 10−8 (orange dots), 6 × 10−5 (green dots).
ICs are randomly shifted 50 times for each tested rmin. The coloured
dots show the net dimensionless force on the perturber at the centre
of the box, excluding all particles within rmin of the perturber. The
black dots show the mean force at that rmin, with error bars showing
the standard deviation in the forces. The variation rises significantly
with particle-perturber mass ratio, and falls as rmin is increased. The
variation shown here effectively limits the scenarios that can be run
with these solvers.
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2.4 Results

In this section, I compare the numerical results from these idealised simulations

to the analytic predictions for the force produced by this wake on the perturber.

I show the time evolution of this force, as well as the force broken down into

contributions from spherical shells, and compare the results from the two solvers.

Results are from runs using the MFM solver, unless otherwise stated. The analytic

solution strictly holds for A � 1, but previous works have shown the predicted

force can be recovered for A ≤ 1 (Kim & Kim, 2009). I therefore compare results

for this regime to the analytic solution. I also include one result from a highly

non-linear case, to test the behaviour beyond the linear cases.

To test the behaviour of the numerically modelled gas under different conditions,

it is necessary to explore the scale free parameter space of A and Mach number.

The setup is constrained by the periodic boundary conditions, setting an upper

limit on how long the scenario can be run before the wake effects reach the edge

of the box and wrap around. This time is defined by the edge length of the box

and the initial velocity of the gaseous background. A range of Mach numbers

were probed, exploring the regime around the strongest gaseous signal atM = 1.

The majority of the boxes are run for t = 15tc, with the larger boxes pushed to

t = 150tc.

2.4.1 Force

The analytic prediction for the net force from the wake on the perturber is given

by Equation (2.1). In the subsonic case, this solution to the integral holds for

rmin < (cs − V0)t, which requires the wake is larger than the effective size of

the perturber. For supersonic cases, the solution is found by assuming rmin <

(V0 − cs)t, which means that the lower limit of the integral is inside the cone

section of the wake. These limits only restrict the use of the analytic integral

for the net force. The prediction for the over-density α is valid, even when these

restrictions are not met. Therefore, a numerical integration of the analytic over-

density α was used at times when these conditions were not satisfied. To achieve

this, the wake is broken down into cone and sphere sections, and the solution

calculated separately for each. This allows us to produce an accurate force for

the analytic solution no matter the limits of the integration. The equivalent
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force from the simulation outputs is calculated by direct force summation. The

Newtonian gravitational force is calculated between each particle of mass Mpart,

and the massive perturber Mp. All particles within r < rmin of the perturber are

excluded from the calculation.

The force is dependent on the Mach number and time. In Figure 2.9, I show the

variation in the numerical and analytic forces with Mach number for two sets of

runs at t = 15tc, one with A = 0.1 and the other with A = 1. This is the largest

time reached by the standard box. After this point, the wake will reach the edge

of the simulation box and wrap around ahead of the perturber. I see that both

A = 0.1 and A = 1 show numerical forces less than the analytic prediction for

supersonic cases, with up to half the force missing close to M = 1 for A = 1.

The maximum missing force for A = 0.1 is also substantial, with up to a quarter

of the predicted force not recovered in the numerical solution, and in the same

Mach regime. The subsonic setups, on the other hand, show good agreement at

M = 0.7, with some divergence at M = 0.9. The A = 0.1 case shows a smaller

residual (Figure 2.9, lower panel), while the A = 1 case is worse at Mach numbers

0.7 < M < 1.5. The difference is most extreme in the supersonic regime close

to M = 1. This shows that the agreement gets worse as the setups become less

linear.

The trend with linearity is also shown in Figure 2.10, where I show the evolution of

the force with time, whereM = 1.3, for A = 0.01, A = 0.1, A = 1 and A = 10. The

most non-linear case A = 10 shows extreme deviation from the linear prediction.

This plot also demonstrates the increase in variation of the force as the ratio

of particle mass to perturber mass increases (see Section 2.3.3). This effectively

limits the A values that can be tested. The A parameter is reduced in these

scenarios by reducing the mass of the perturber, so the perturber for A = 0.01

has a tenth the mass of the A = 0.1 perturber. The time evolution of the force

in each case shows that the solution diverges from the analytic prediction at all

times. I also see that the A = 0.01 and A = 0.1 cases follow the same trend.

Decreasing the A number further, therefore, would not improve the match.

When comparing to the analytic prediction, the choice of rmin is limited by the

requirement that the prediction only holds for wakes where the over-density is

linear. I chose first to calculate results for rmin = rs, where our choice of A means

the wake should remain in the linear regime for all parts included in the integration

(A ≤ 1). It is clear that parts of this numerical wake are not well described by

the analytic prediction. I find that the force from rmin = 4rs matches the analytic
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Figure 2.9 Upper Panel: Dimensionless force from numerically induced wakes
across a range of Mach numbers, at t = 15tc. I show the numerical
results (dots) and the corresponding analytic prediction (lines).
The error bars show an estimate of the in intrinsic error in the
force for each case. The force is well recovered in the subsonic
regime, but diverges significantly for supersonic cases. The A = 0.1
setup provides a better match than the A = 1.0 case, providing
systematically better matches to the predicted force. Lower Panel:
Residual between the numerical and analytic results φ = (Fnum −

Fana)/Fana.
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Figure 2.10 Upper Panel: Time evolution of the dimensionless force for A =
0.01, A = 0.1, A = 1 and A = 10. The highly nonlinear case diverges
early, while the transition case (A = 1) is a better match, but
still differs from the strictly linear cases. Lower Panel: Residual
between the numerical and analytic results φ = (Fnum − Fana)/Fana.
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prediction in the A = 0.1 case, and from rmin = 8rs with A = 1. In Figure 2.11, I

show the analytic and numerical forces for rmin = 4rs. The force in the A = 0.1

case shows good agreement at all Mach numbers for this lower limit, with the

numerical force within 5% of the predicted value. The A = 1 results for this inner

radius are also improved but still show disagreement of 10%. Figure 2.12 shows

the equivalent forces for rmin = 8rs, where both cases are now within 5%. It is

not clear, from the force calculation alone, what is causing the mismatch in force

within 4rs (A = 0.1), or 8rs (A = 1). There is also still some residual difference

between the nuemrical and analytic results. In the next sub-section, I show that

the far-field density beyond this radius matches the analytic prediction well, but

the structure within this radius diverges significantly from the prediction.

2.4.2 Wake

To understand the differences between the analytic and numerical results, I

directly compare the numerical density distribution to the analytic prediction for

the form of the wake, given by α in Equation (2.16). The numerical over-density

is found by binning the particles into (s, R) cylindrical bins, then dividing the

density in that bin by the initial background density and subtracting one. Here

s is the distance from the perturber along the direction of travel, and R is the

cylindrical radius away from this axis. Along the s-axis, the negative s-direction

is ‘behind’ perturber. In Figure 2.13, I show the numerical over-density in the

DF wake at t = 15tc. The upper part of each panel shows the numerical over-

density αnum, with the analytic prediction αana overlaid as white contours. The

lower part shows the difference between the numerical and analytic over-densities

φ = (αnum −αana). The uniform density material ahead of the perturber has been

excluded from the plot. The difference between the numerical and analytic wakes

must produce the difference in forces. The broadest structure is recovered, in that

there is an over-dense wake formed behind the perturber, which becomes more

elongated as the Mach number increases. The lower parts of each panel show

that the largest differences between the numerical and predicted wakes are found

close to the perturber. This region is more clearly shown in a zoomed in view.

In Figure 2.14, I show a zoomed in view of the structure of the numerical over-

density, with, as before, contours showing the analytic prediction (white dashed

lines), for three Mach numbers, with both A = 0.1 (left column) and A = 1

(right column). The residual (here the difference between numerical and analytic
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Figure 2.11 Upper Panel: Dimensionless force from numerically induced wakes
across a range of Mach numbers, at t = 15tc. I show the numerical
results (dots) and the corresponding analytic prediction (lines) for
rmin = 4rs. Error bars are not shown for these results, as the
intrinsic errors are negligible compared to the absolute forces for
this rmin. The A = 0.1 results now show fairly good agreement at
all mach numbers, with residuals at the few percent level. The
A = 1 results still show significant divergence, of order 10%.
Lower Panel: Residual between the numerical and analytic results
φ = (Fnum − Fana)/Fana.
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Figure 2.12 Upper Panel: Dimensionless force from numerically induced wakes
across a range of Mach numbers, at t = 15tc. I show the numerical
results (dots) and the corresponding analytic prediction (lines) for
rmin = 8rs. Once again the intrinsic error is negligible. Both
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Figure 2.13 Over-density α for A = 0.1 (left column), and A = 1 (right column),
across M = 1.01, 1.3, 1.5. The upper part of each panel showing
the numerical over-density αnum in the colour, and the analytic
prediction for the over-density αana as white dashed contours. The
difference between these distributions φ = αnum −αana are shown in
the lower part of each panel.
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results) is presented in the lower part of each panel, and shows us that the Mach

cone structure is the main source of error. The sharpness of the density peak in

the cone has been softened, with the density smeared out into a wider profile.

The peak in the cone over-density is too small, and extends too far forward.

This is reminiscent of the bow shock structure shown to form for non-linear cases

(KK09), but now in the linear regime.

The bow shock is most pronounced for M = 1.01, for both A = 0.1 and A = 1,

and gradually diminishes as Mach number increases. The smearing out of the

density profile across the cone front is present at all Mach numbers with A = 1,

although it does seem to reduce in width. The A = 0.1 profile has the smearing

out all but vanishing atM = 2. The structure is generally well matched at large

radii from the perturber, where the over-density is very small, but the cone is

poorly recovered out to s = 8rs. For all cases, the less linear setup shows a higher

value in its over-density, as expected for a higher mass perturber. The bow shock

also extends further forward of the predicted structure for the less linear case.

In the A = 1, M = 1.3 case (middle right), we see that the over-density in the

part of the wake within the cone is lower than the predicted value, while the

over-density on the spherical part of the wake is well recovered. No equivalent

pattern is seen for A = 0.1. This shows again that it is not just the cone front

that is not replicated, but also the profile behind the edge of the cone. At A = 1,

M = 2, the profile is evenly spread either side of the predicted front, while the

over-density further within the cone is well recovered.

These observations fit with the net forces that I calculate for the different Mach

numbers. The largest divergence in force is close toM = 1, where I see the largest

over-density ahead of the perturber and the poor recovery if the shock front itself,

while at large Mach the force is a better match, with the small difference likely

explained by the smearing out of the cone profile. In the intermediate case, we

also see significant divergence, once again explained by both the bow shock and

the smearing of the cone profile. The spherical parts of the wakes are in general

well recovered, which fits with the subsonic cases giving a better match to the

force.

We can break down the contribution to the force into spherical shells to better

understand how the different parts of the structure are contributing to the force.

This is simply done by performing the direct force summation for particles within

a given radius range of the perturber. The results for the A = 0.1 scenario
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Figure 2.14 Zoomed view of over-density for A = 0.1 (left column), and A = 1
(right column), across M = 1.01, 1.3, 1.5. The upper part of each
panel showing the numerical over-density αnum, with the analytic
prediction for the over-density αana as contours. We see the
development of a bow shock like structure ahead of the perturber.
This structure extends further forward in the A = 1 case, and is
denser. In the A = 0.1 case, the effect is much smaller, though
still present. The structure shrinks at higher mach numbers, with
the biggest divergence close to M = 1 in both cases. The difference
between these distributions φ = αnum − αana are shown in the lower
part of each panel.86



are shown in Figure 2.15 (top plot). This shows the numerical and analytic

contributions to the force, as a fraction of the analytic force from the whole wake.

We see that the force matches well at radii beyond r=4rs, but within this distance

the force is poorly recovered at all times, with the majority of the difference

coming from r = rs to r = 2rs. This fits with what we see in the numerical wake,

with the bow shock structure and shallower cone profile at the tip of the cone

producing the mismatch, while as we move out in spherical shells, the contribution

from the softened cone profile continues to have an effect, but this diminishes as

more of the force comes from the well resolves interior of the cone.

The corresponding result for the A = 1 case (Figure 2.15, second plot) shows

a similar pattern, although in this case the force is only a good match beyond

r = 8rs. The contribution to the difference increases as I move inward from

this radius. The fraction missing from each radial bin is larger than its A = 0.1

counterpart, showing us that the wake diverges more across the whole range,

instead of in a single region. Once again this fits with the numerical wake. The

more extended bow structure has an effect at greater radii, since it extends further

forward, and the interior of the cone is less well recovered, making the mismatch

even larger. The far-field wake, at larger radii than before, is still well recovered,

and I see this in the matching of the force for these larger radii.

In both cases, the force shows strong disagreement at very early times, but

converges to a quasi-steady value by t = 10tc. At the very early times, the whole

force comes from the inner most bin, since the wake has not extended very far.

As time increases, the total force mismatch will diminish, as the inner regions,

that make up most of the difference, contribute less and less of the total force. A

higher fraction of the force comes from the far-field wake at larger times, which is

well matched, even at these early times. The mismatch in the inner regions does

not improve, however, even if the total force match does get better.

The results presented here show that we have a deficit in the expected force, and

that this comes from the innermost radii, close to the perturber. The deficit is also

present from the very start, and does not converge on the predicted solution within

large times. If this deficit were present in a wider physical context, the reduced

force would act for a significant amount of time, and would not be disrupted by

larger scale differences to the analytic setup. By this, we mean that even if the

medium is not isotropic, the force from an induced wake from the local density

will still be reduced, since the error comes from these inner parts which will not be

changed by large scale variations in the background, or other effects that disrupt
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Figure 2.15 Top: Upper Panel: Time evolution of the analytic (lines) and
numerical (dashed lines) drag force contribution from radial bins
for A = 0.1. The force is shown as a fraction of the total analytic
force from the whole wake. The numerical and analytic forces
match well outside r = 4rs. The force deficit comes from inside
this radius for this case. Lower Panel: Residual between numerical
and analytic forces in that radial bin, as a fraction of the force
from the whole wake at that time φ = (Fnum − Fana)/Fana,tot. The
residual has converged to a steady solution by t = 15tc, showing
the total force deficit of roughly 25% will remain for large times.
Bottom: Upper Panel: Time evolution of drag force contribution
from radial bins for A = 1. The numerical and analytic forces
match well outside r = 8rs, so a larger region is producing the force
deficit, when compared to the A = 0.1 case.
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the extended parts of the wake.

2.4.3 Long Term Evolution

So far I have shown results for only the first 15tc of the evolution of the

gravitationally induced wake. Some of the previous works (Sánchez-Salcedo &

Brandenburg, 1999; Kim & Kim, 2009), that have shown the analytic force can

be reproduced in the linear regime, do so only for many hundreds of crossing times.

At these times the wake has reached scales hundreds of times the gravitational

softening scale of the perturber. The results from the larger box are shown in

Figure 2.16. The intrinsic variation in the force is larger for these larger boxes,

where Mpart/Mp = 8 × 10−7 for A = 0.1 and Mpart/Mp = 8 × 10−8 for A = 1.

The increased variation makes drawing conclusions about this later time more

difficult. The A = 0.1 case is close to being in approximate agreement, within

its intrinsic variation, but still remains systematically offset below the analytic

solution. There is still a deficit in the numerical force at these late times, when

the wake is much larger, amounting to approximately 5% − 10% missing in the

A = 0.1 case, and approximately 25% with A = 1. We do not see a significant

change in the pattern observed for the results at t = 15tc. While there is some

suggestion that the difference in the A = 0.1 case may be reducing, it has not

converged on the predicted force even at this late time.

2.4.4 Regions of the Wake

The results presented so far show the force calculated from either the whole

wake, or radially selected parts of it. For the numerical results, this is done

by calculating the force from all particles within the relevant radial limits. In

an unperturbed medium, the particles ahead of the perturber cancel out the

force from those behind. Once a wake starts to form, the force from the over-

density creates an in-balance that produces the net drag force, anti-parallel to

the direction of travel. To better understand the effect of the differences in the

wake on the net force, I break the wake down into different regions. To cancel

out the force from the unperturbed medium in these regions, I simply subtract

out the force from particles in these regions in the initial conditions. I compare

the evolution of the force from these regions to one another, to further identify

what is causing the mismatch in the force.
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Figure 2.16 Upper Panel: Time evolution of the dimensionless force for A = 0.1
and A = 1 in the larger box. The A = 0.1 case does not converge
to the analytic solution in this longer time. Lower Panel: Residual
between analytic and numerical results φ = (Fnum − Fana)/Fana.
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Figure 2.17 Ratio of numerical and analytic forces from radial bins rmin to
rmax, calculated using all particles (blue), only particles behind the
perturber (orange), and only particles in the region predicted by
the analytic wake (green). The results are shown for three radial
bins, with the evolution of both the A = 0.1 (left column) and
A = 1 cases (right column). The lower part of each panel shows the
residual between each numerical force and the analytic prediction
φ = (Fnum − Fana)/Fana.
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In Figure 2.17, we show the force from all particles (blue), only particles behind

the perturber (orange), and only particles within the zone predicted to be over-

dense by the analytic solution. The left hand column shows results from the

A = 0.1 cases, with A = 1 on the right. The top row show the force from 1rs to

2rs, the middle row from 2rs to 4rs, and the bottom row from 4rs to 8rs. The

lower part of each panel shows the residual between the appropriate force and

the corresponding analytic prediction. We would expect that using only particles

behind the perturber will give the largest force, since there will be no reduction

in force from the over-densities ahead of the perturber, and all other particles

will be included. The inner most radii, for both A = 0.1 and A = 1, show the

expected pattern. The residual shows that while some of the missing force comes

from the over-density ahead of the perturber, there is still force missing when

only considering the region behind it.

Interestingly, the difference caused by particles ahead of the perturber is slightly

larger in the A = 0.1 case, for this inner radial bin, which seems to be at odds

with the smaller size of the forward over-density in this case. The difference is

very small, and is explained by this comparison being performed with the force

normalised to the total from the whole wake. The absolute forward force is larger

in the A = 1 case, but is smaller as a fraction of the total force. As radial bin moves

outwards, the force from behind the perturber matches that from the whole box.

The mismatch continues to larger distances for the A = 1 run, which fits with the

greater forward extent of the ‘bow wave’ in that case. By rmin = 4rs to rmin = 8rs,

the forces from these two regions match well in both cases. The force only from

particles in the region predicted by the analytic solution is significantly lower

than the force from both all particles, and all particles behind the perturber.

This is not unexpected, given this region excludes a number of particles. The

difference is present in both cases, and in all radial bins. It effectively shows,

together with the ‘behind’ force, how much is contributed from the region behind

the perturber, but ahead of the predicted cone edge. For the larger radial bins,

the residual starts off close to zero, before dropping to a steady value. The initial

match is simply because the force from these regions at early times should be

zero, since the wake has not reached that position.

If the wake had the predicted structure, the force from the wake region would

give the best match. In the inner regions, the difference in the force is created by

the conditions described above. However, it should be noted that the structure

of the wake in the outer regions is still not correctly recovered, since the force
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from just the analytic wake region under-produces the expected force. There is

enough mass in the whole wake at this distance, but the structure is not correct.

These results conclusionsively show that the force deficit that we observe for both

A = 0.1 and A = 1 is caused by a combination of the ‘bow wave’ structure and the

smearing out of the density profile about the cone. Neither one alone is capable

of explaining the reduced force that is observed, and while the force is recovered,

beyond a certain radius, the structure still does not match.

2.4.5 Solver Comparison

It is clear from the above results that the gravitationally induced wake, produced

by the MFM solver, does not match the analytic prediction. To investigate the

cause of the mismatch, we can compare the force from wakes produced using

both the MFM and PSPH solvers. In Figure 2.18 I show the results from runs

with A = 0.1 (MFM in blue and PSPH in orange) and A = 1 (MFM in green

and PSPH in red). Results between solvers are essentially identical for the same

setups, with the PSPH results lying very slightly below the MFM results in both

cases. While both methods sample the underlying density and temperature in

a similar manner, they solve the equations of hydrodynamics in different ways.

Whatever is causing the differences between these results and the analytic solution

is present in both methods.

2.4.6 Varying Conditions

It is possible that the missing force result, that we have found above, is somehow

caused by the specific physical and numerical conditions that we have used,

despite the scale free nature of the problem. In order to check if this is the

case, we have run a number of setups with different background temperatures

and perturber masses, adjusted to keep the same A = GMp/c2s rs numbers. The

variation in temperature manifests itself in the initial internal energy of the

uniform gas, and so in the sound speed of this gas. Sound speed is proportional

to the square root of the temperature, and so reducing the temperature by an

order of magnitude changes the sound speed by 1/
√

10. In Figure 2.19, I show

the results from these runs, where the temperature has been reduced by an order

of magnitude, and the sound speed is now cs = c0/
√

10. These are shown in

comparison to the standard runs, where cs = c0. The perturber masses have
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Figure 2.18 Upper panel: Comparison of the time evolution of the dimen-
sionless force from wakes produced with different hydrodynamics
solvers, MFM and PSPH, for A = 0.1 and A = 1. Lower
panel: Residual between numerical force and the analytic prediction
φ = (Fnum − Fana)/Fana.
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Figure 2.19 Upper panel: Comparison of the time evolution of the dimension-
less force from wakes produced with different sound speeds, for
A = 0.1 and A = 1. Perturber masses are adjusted appropriately
to keep the A value the same between cases with different sound
speeds. Lower panel: Residual between numerical force and the
analytic prediction φ = (Fnum − Fana)/Fana.

been adjusted to maintain the same A value between the compared cases. I see

that the evolution of the force is identical for the same A value, despite the order

of magnitude change in the temperature/internal energy of the background gas.

This is strong evidence that the specific conditions are not responsible for the

difference between the analytic and numerical results, and that the scale free

paradigm is a fair way to test the problem.

The other condition that I vary is the softening scale of perturbing potential rs.

Once again I adjust the perturber mass to keep the A parameter the same. By

increasing the softening scale, but keeping the sound speed the same, I effectively

reduce the number of crossing times that the simulation can be run for, before

the wake wraps around through the periodic boundary. To compromise between
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varying the softening scale by a significant amount, and keeping a reasonable

number of crossing times, I have only doubled the softening scale, from rs =

0.125kpc to 0.25kpc. The results are shown in Figure 2.20, where it is clear that

the evolution is the same in both cases. The force is calculated for equivalent

parts of the different wakes, using rmin = rs for both. When the evolution is

scaled by the different crossing times tc = rs/cs, to best compare the evolution

in the scale free parameter space, the analytic force is also the same in both

cases. This makes sense since the dimensionless force shown here is independent

of perturber mass, and depends only on the A parameter, the Mach number, and

the proportion of the wake that is being integrated. When re-scaled by crossing

time, which is obviously dependent on softening scale, it is clear how the two

cases will produce the same dimensionless force. At any given number of crossing

times, the wake will have extended the same number of softening scales from the

perturber, and so will produce the same dimensionless force.

Varying either temperature/internal energy/sound speed, or softening scale, has

no tangible effect on the force deficit between the numerical and analytic results.

The above results are in complete agreement with our previous findings, showing

the difference is not a fluke of the specific conditions or setup, but instead is a

significant feature of the numerical methods.

2.5 Discussion

I have shown that the MFM Lagrangian hydro solver produces an over-dense

wake from a massive perturber that does not match the wake predicted by linear

perturbation theory. The numerical wake produces a force that is between 10%

and 25% below that predicted by the analytic treatment. The difference is present

across M ∼ 1 − 2 to at least 15tc, and tested to 150tc for M = 1.3. The largest

difference is found close to M = 1, with cases at M = 0.7 and M = 2 showing

good agreement with the predicted force. The deficit is present well within the

linear regime for which the linear prediction has been shown to hold well. We see

that the wake in the innermost regions does not match the predicted over-dense

structure. A bow-shock like structure builds up in front of, and to either side

of, the perturber, while the sharp profile in the over-density of the Mach cone is

softened. The front is smeared out and the peak in the over-density is lowered.

This smearing extends along the cone front, but the largest impact on the force

comes from differences in the innermost 4rs (for A = 0.1) or 8rs (for A = 1). The
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Figure 2.20 Upper panel: Comparison of the time evolution of the dimension-
less force from wakes produced with different softening scales rs, for
A = 0.1. Perturber masses are adjusted appropriately to keep the A
value the same between the different cases. The force is calculated
for rmin = rs, and are compared in terms of crossing times,
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numerical force and the analytic prediction φ = (Fnum − Fana)/Fana.
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evolution of the force in the innermost regions shows extreme divergence early on,

when the wake barely extend beyond the softening scale, but soon converges to

a quasi-steady form. Spherical shells further from the perturber show a different

trend, where the force matches at all times, but the structure of the wake at these

large radii is still incorrect. The evolution of the force is identical for tests with

the alternative PSPH solver.

There are a number of possible numerical causes for the mismatch between these

results and the linear predictions. Since both the Lagrangian solvers used here are

run using the same gravity backbone, it is possible the gravitational force felt by

the gas particles is not replicating the assumptions made in the derivation of the

liner solution. I have added the Plummer potential as a fixed external potential,

and disabled the self gravity of the gas. The Plummer potential is used to soften

the gravitational force felt by particles that pass very close to the origin of the

potential, as the potential for a point mass diverges. This can create extreme

accelerations, where particles are flung off at great speeds, when particles move

unphysically close to the perturber. The analytic prediction assumes that the

perturber is a point mass, but Ostriker states that the solution for an extended

perturber (whose extent is rmin) should be identical to their solution beyond rmin.

Previous numerical studies have also used Plummer potentials, and have recovered

the analytic prediction. It is possible that the use of this gravitational softening

means that particles that pass close to the perturber are feeling the incorrect force.

Their trajectories, even once they have moved beyond the softening length, will

not be completely physically correct. This does not explain the bow structure,

however, which extend more than rs ahead of the perturber, nor the lower density

peak in the cone profile at a few rs from the perturber, where the vast majority

of the particles will not have passed close to the perturber.

The problem may lie with recovering the hydrodynamics itself, rather than the

gravitational force. Both solvers used here are Lagrangian in nature, while

the major numerical studies I refer to are performed using Eulerian grid based

methods. Particle based methods have traditionally struggled to capture sharp

changes in density, which I see in the density profile of the cone front. It is possible

that the smearing of this profile leads to the development of the density ahead of

the perturber, as the over-density spreads ahead of its predicted position. The

combination of the smeared out profile and bow structure produce the difference

in the net force on the perturber.
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2.5.1 Implications for Cosmological Simulations

I have shown that there is a significant DF force deficit, across many crossing

times, when idealised dynamical friction tests are run using Lagrangian hydro-

dynamics methods. This force deficit is caused by the over-dense wake being

improperly formed. These Lagrangian solvers do not reproduce the sharp edge of

Mach cone predicted by the analytic work, and these conditions continue for at

least tens to hundreds of crossing times. Here I discuss the implications this has

for DM substructure in cosmological simulations.

The typical conditions in which we find sub-halos in cosmological simulations can

be mapped onto this idealised setup by estimating the appropriate Mach number

and A parameter. I use halos and sub-halos from the IllustrisTNG-300 simulation

box (Nelson et al., 2018) to assess the conditions in which simulated sub-halos are

found. We select all host halos in the mass range 1011M� to 1015M�. For each

host in this range, we then assign a sound speed. This sound speed is calculated

from the virial temperature of that host halo

cs =

√
γkBTvir
µmp

, (2.27)

where µ is the mean molecular weight of the gas, mp is the mass of a proton. The

virial temperature Tvir is found by assuming that the gas falling onto the virial

radius is shock heated, and transforms its kinetic energy into thermal energy. If

we assume this produces an isothermal sphere, the virial temperature is given by

Tvir =
1

3

µmp

kB

GM200

r200
. (2.28)

The virial mass is taken as the mass M200 enclosed within the radius r200. This is

the radius at which the average density of the enclosed material is two hundred

times the critical density ρcrit. The sub-halos associated with these hosts are then

binned by their mass and this sound speed. The most massive sub-halo in each

host is excluded, as it is assumed to be the central object of that halo.

These sub-halos are taken as the perturbing massive objects, as they move

through the extended gaseous medium of their host. The peculiar velocity of the

sub-halo, relative to the peculiar velocity of the host halo, defines the velocity for

the calculation of the sub-halo’s Mach number. The radial extent of the sub-halo
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is the equivalent to the softening scale of the Plummer potential. This is taken

as the radius at which the density profile of the sub-halo produces the maximum

circular velocity Vmax. The mass of the sub-halo, which is the equivalent quantity

to the mass of the perturber, is simply the total baryonic and dark matter mass

associated to that sub-halo by the halo identification algorithm.

The distribution of masses and sound speeds are shown in Figure 2.21. The top

plot shows the conditional probability of a sound speed, given a sub-halo mass.

The sound speed is only dependent on the mass of the host, which leads to the

bands at the high sound speed/host mass end, where there are the fewest samples.

We effectively see the negative slope in the mass function of the halo/sub-halo

population, as there are many more sub-halos associated with low mass halos

(low sound speeds), even though the most massive halos individually contain

many more sub-halos than any given lower mass halo. The middle plot shows

the mean Mach number for each pixel. The distribution is fairly uniform across

both mass and sound speed. The mean Mach number is aroundM = 1− 2. This

is also shown in the top panel of Figure 2.22 with the conditional probability of

a Mach number, given a sub-halo mass. The bottom plot of Figure 2.21 shows

the mean A parameter for each pixel. The distribution at the high sub-halo mass

end is dominated by small numbers of very high A parameter values in each cell.

The overall distribution of A parameters is shown in the middle panel of Figure

2.22. The distribution has been truncated at A = 10, but continues to values

in the thousands. These extreme A numbers largely come from sub-halos with

small numbers of particles, some of which have very small radii, which may be

numerical artifacts of the halo finder. I show the conditional probability of finding

an A number, given a sub-halo mass. The sub-halos below 1010M� in mass exist

well within the linear regime (A << 1). Those between 1010M� and 1011M� show

a wider range of masses, but still mostly reside in the linear or quasi linear regime

(A ≤ 1). Above this mass, the distribution spreads significantly, with a range of

A numbers, a significant fraction in the non-linear regime (A > 1). The more

massive sub-halos having larger A numbers is simply a factor of them having

higher masses. The increase in size is not enough to counteract this increased

mass, when it comes to their A parameter value.

The IllustrisTNG-300 sub-halos show that a large fraction of sub-halos in a typical

state-of-the-art cosmological simulation exist within the linear DF regime, with

A < 1, and with Mach numbers in the range M = 1 − 2. This is the regime in

which we have found a discrepancy between the analytic prediction, previously
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Figure 2.21 Sub-halos from the IllustrisTNG-300 simulation box. All panels
show the sub-halos with masses between Mp = 1011M� and 1015M�,
with sub-halo mass against sound speed. Top panel: Conditional
probability of a sound speed, given a sub-halo mass. Middle panel:
Average Mach number of the sub-halos in each (Mp, cs) pixel.
Bottom panel: Average A value.

101



0.5

1.0

1.5

2.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

lo
g(

A)

10 12 14
log(Mp) [M ]

0

20

40

60

80

t c
[M

yr
s]

0.00

0.02

0.04

0.06

0.08

P(
|lo

g(
M

p)
)

0.00

0.02

0.04

0.06

0.08

P(
lo

g(
A)

|lo
g(

M
p)

)

0.00

0.02

0.04

0.06

0.08

P(
t c

|lo
g(

M
p)

)

Figure 2.22 Top panel: Conditional probability of finding a Mach number, given
a sub-halo mass. Middle panel: Conditional probability of finding
an A number, given a sub-halo mass. Bottom panel: Conditional
probability of finding a crossing time, given a sub-halo mass.
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confirmed by high resolution Eulerian, grid based, simulations, and the numerical

results from the Lagrangian solvers. The bottom panel of Figure 2.22 shows the

distribution of sound speed crossing times for the radial extents of these sub-halos.

We see that these values are of order 10 − 100 Myrs. The period for which we

have found significant divergence from the analytic solution is at a minimum 15tc,

with some results extending up to 150tc. This corresponds to between hundreds of

mega-years to several giga-years. Numerical results from Eulerian solvers require

a time until the solution have converged to the predicted result (Kim & Kim,

2009), so this problem may exist across hydro methods. The reduced force for

extended periods of time will lead to significantly slower infall of sub-halos into

their host structure. The energy and angular momentum transferred from the

perturbing sub-halo to the CGM will be equally reduced.

A number of factors make DF in a system with more complete physical processes

diverge from the analytic solution. The gas will obviously experience self

gravity, leading to the further growth of the over-dense wake. Radiative cooling

mechanisms move the gas away from the adiabatic scenario considered in the

analytic solution. Feedback mechanisms from star formation, such as supernova

driven winds, will also have complex effects. These will all be present in the full

cosmological context of cosmological simulations. The effect of these processes will

be to significantly change the structure of the wake in complex ways. However, the

fundamental mechanism of the problem will still be present, since any structure

that physically should remain will likely under estimate the DF force in the

same way as found in the simplified case. The numerical DF force will then

still undershoot the physically correct DF force. I will run a set of simulations

that probe the effects of self gravity and radiative cooling in the development of

the wake.

The simulated medium through which the sub-halos move will be far from

uniform. The CGM is highly variable, made up of gas with a huge range of

sound speeds. The wake will not build up smoothly as shown in the idealised

scenario, where it can grow for an unlimited time through an infinite uniform

background medium. Instead, at any given time, the wake will be built from the

medium that the perturber (sub-halo) is moving through at that time. In the

context of results, however, this is not that significant, since the DF force deficit

that I find comes from the inner most radii, and starts from the earliest time.

The wake further from the perturber does not contribute to the missing force, so

whether it is present, or disrupted by the more complex physical conditions of the

103



medium, the force deficit will still be present. Thus this result has implications

far beyond the highly idealised scenario studied directly here, into the cases that

include more varied and complex physical processes.

2.5.2 DF Hydro Test

It is clear that DF is a complex problem, and a significant challenge, for modern

hydro solvers to treat. I have shown that state-of-art solvers can struggle to

replicate the analytic solution. DF as a process is present in astrophysical systems

across a host of mass and length scales, and is crucial to our understanding of

the evolution of these systems. This makes DF an ideal candidate for inclusion

as a standard test when developing numerical hydrodynamics methods and

algorithms. It has a well defined solution for comparison, and includes both

a shock with complex geometry and regions with simpler advective flows. The

scale free nature of its formulation allows for straight forward comparison between

numerical tests. I therefore suggest using DF as a new standard test, where the

test case is set up with a linear A parameter, with Mach number in the range

1 < M ≤ 1.6. The scale free nature allows any choice of density, temperature,

sound speed, perturber mass, and so on, as long as it produces the desired A

parameter and Mach number. This provides an effective diagnostic test of the

hydro solver, that includes the effects of gravity, while maintaining a very well

defined analytic solution.

2.6 Conclusion

I have run a suite of idealised dynamical friction tests, spanning a wide range of

the A - Mach number parameter space. While the setup for the dynamical friction

study presented here is idealised, it serves the purpose of testing the capability

of modern hydro-dynamical solvers to recover long studied analytic solutions for

a well defined test problem. The problem tests both hydrodynamics and gravity.

These results show that the MFM and PSPH numerical wakes under-produce the

net force on the perturbing object, with the difference coming from the structure

of the wake close to the perturber. This difference does not decrease significantly

over large times, and is present for two independent Lagrangian methods of

modelling the hydrodynamics. This net reduction in the force will act for long
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periods of time in cosmological simulations, with the potential for significantly

underestimating the physical merger rates of dark matter substructure. It is

clear that dynamical friction is a key process that must be captured accurately

if we are to simulate this, and other, astrophysical processes. I suggest that the

idealised dynamical friction ‘wind tunnel’ should be introduced as a standard test

for gravo-hydrodynamics codes.
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Chapter 3

The Residual Distribution Solver

3.1 Introduction

The vast majority of the observed baryonic matter in the Universe is in the

form of baryonic gas. The behaviour of this gas can be modelled by solving the

Euler equations for an inviscid fluid, which describe the conservation of mass,

momentum and energy. These equations must be solved as a set of simultaneous

partial differential equations (PDEs). For all but the simplest problems, this

must be done numerically. The Navier-Stokes equations, which include the

transformation between kinetic and internal energy via viscosity, can also be

used. However the length scales over which this viscosity acts are much smaller

than the resolution elements of galaxy formation simulations, allowing the simpler

Euler equations to be sufficient. On a fundamental level, the equations must be

discretised in some manner, to allow the numerical solution to be found. Typically

this leads to a choice between discretising the problem in space, tracing the

fluid evolution using a set of static cells, and discretising the problem by mass

(Agertz et al., 2007). In the latter case, the gas is modelled as set of massive

particles. Astrophysical simulations have been performed with a variety of both

these approaches, broadly divided into Eulerian grid based methods (Teyssier,

2002; Bryan et al., 2014) and Lagrangian particle methods (Lucy, 1977; Gingold

& Monaghan, 1977; Springel, 2005), alongside more recent hybrid moving mesh

approaches that combine the Lagrangian nature of the particle methods with the

various advantages of the Eulerian grids (Springel, 2010; Hopkins, 2015; Duffell,

2016). The implementation that I will discuss here is for an Eulerian method built
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around an unstructured mesh, but the underlying method is naturally suited for

future adaptation into such a moving mesh scheme. Solving for the evolution

of this baryonic gas has been crucial in the development of our understanding

of many astrophysical scenarios, from the creation of reionisation and the first

galaxies (Feng et al., 2015; Ma et al., 2018), to the evolution of star forming

regions (Clark et al., 2005), proto-planetary disks (Kuffmeier et al., 2017), and

so on.

Some of the most successful astrophysical simulation codes solve the evolution

of the baryonic gas using Eulerian grids, mentioned above and in Section 1.2.3.

The majority of these divide the computational domain into a large number of

identical cube shaped cells forming a structured mesh (see Section 3.3.1). Modern

codes often take advantage of mesh refinement algorithms. These allow for some

cells within the mesh to be subdivided into multiple smaller cells, usually dividing

each edge length in half (Bryan et al., 2014). This can be used to refine the mesh

in regions of increased density, which are usually of the most interest. This

process is known as adaptive mesh refinement (AMR) (Berger & Oliger, 1984,

Bryan et al., 2014). The fluid state is traced by these cells, with the evolution

found by calculating the flux of gas between finite volume cells. This flux is

found by solving the Riemann problem at the cell face (Fryxell et al., 2000; Stone

et al., 2008), again described in more detail in Section 1.2.3. These approaches

innately break the problem down into a set of one dimensional problems across cell

faces, which inevitably ignores the information of flows in orthogonal dimensions.

This is sometimes referred to as dimensional splitting. Flows can only travel

across faces, which in structured meshes can lead to preferential flow directions.

These can produce numerical artifacts, such as carbuncles, and can suppress

flows in other directions. An example of the carbuncle effect can be seen with

the Noh problem (see Section 3.5.2), produced using a Roe solver (Paardekooper,

2017). This is shown in Figure 3.1. The Roe solver, shown in the top row

of results, shows spurious flows along the cardinal directions, where the radial

flows are aligned exactly with the faces of the Cartesian grid. This results in

aberrations in evolution of blast wave, which should be rotationally symmetric.

The effect becomes more extreme as the resolution increases. The RD solver

results, produced using a unstructured mesh of triangles, does not show these

aberrations.

Since material cannot flow across the corner of cube cell, some methods have

implemented corrections to attempt to account for these flows (LeVeque, 2002).
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Figure 3.1 Results for the Noh problem test, from the Roe solver (top row), and
the RD solver (Bottom row), taken from Figure 21 of Paardekooper,
2017. The Roe solver results show the carbuncle numerical artifacts
in directions where the flow is precisely aligned with the flow. The
effect gets more extreme as the resolution increases. The equivalent
RD results do not show this effect.
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Over the years, an alternative strategy has emerged, one in which dimensional

splitting is not required. These solvers aim to produce truly multi-dimensional

hydro-solvers that calculate the evolution of fluids across some mesh of volume

elements by calculating the flow across elements in all dimensions at once (Abgrall

& Roe, 2003; Abgrall, 2006; Deconinck & Ricchiuto, 2007).

3.2 Residual Distribution Theory

In this section, I will lay out the background and derivation of the residual

distribution (RD) partial differential equation solver (Abgrall, 2006; Deconinck

& Ricchiuto, 2007; Ricchiuto & Abgrall, 2010). I will cover the precursor to the

method, the Roe solver (Roe, 1981; Stone et al., 2008), the important notation

definitions, and the fundamental assumptions made in producing its form. The

term residual distribution covers a whole family of solver, all built around the

same idea (Ricchiuto & Abgrall, 2010). The various different approaches that

have been developed within this method will also be discussed, including the

choices I have made for the implementation that I am presenting here.

3.2.1 Roe Solver

In order to understand the derivation of the residual distribution method, it is

useful to understand the work that came before their development. This can

be done by considering the Roe Riemann solver (Roe, 1981; Stone et al., 2008;

Paardekooper, 2017), which is formulated in a way that is directly analogous

to the residual distribution approach, effectively making it a one dimensional

predecessor of the residual distribution family. Riemann solvers produce solutions

to the Riemann problem for sets of conservative equations. The problem consists

of initial conditions with one discontinuity, and uniform states either side of this

boundary. Roe laid out an approach by which a non-linear system of partial

differential equations can be reformulated in a linear form, and how this can be

used to solve the system. The method relies on the fact that the solution to any

linear system of hyperbolic partial differential equations (PDEs), such as those

given in Equations 3.1 and 3.2, can be written as the sum of waves (see Section

1.2.3). Between these waves there are intermediate states, with wave strengths

that are the size of the discontinuity about each wave front. These waves are
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the eigenvectors of the Jacobian matrix A in the set of PDEs, with the wave

speeds given by the eigenvalues of this same matrix. Figure 3.2 shows a graphical

representation of these fundamental waves. The initial states, either side of the

boundary, are Qi−1 and Qi, with the boundary itself shown by the dashed line, and

time is increasing in the y-direction. The position of the wave-fronts, from these

states, are shown by the outermost solid black lines. They propagate outwards

from boundary, with the remnant of the initial contact discontinuity maintained

by the third, central, wave. Between the waves, the intermediate states are Q∗i−1
and Q∗i . The key contribution from Roe was the mechanism by which non-linear

systems could be reformulated to use this property. This linearisation will be

discussed later in Section 3.4. If one assumes for now that one has a hyperbolic

conservation law, or system of laws, of the form

∂Q

∂t
+

∂

∂x
F(Q) = 0, (3.1)

where Q is the state, and F(Q) is a flux that is a function of the state, then it is

possible to reformulate this with the Jacobian A ≡ ∂F/∂Q. The current equation

is a non-linear PDE, since the flux term is not independent of the state. The new

version with the substitution is now quasi-linear, as a suitably chosen Jacobian

A will be only linearly dependent on the state. The quasi-linear form appears as

∂Q

∂t
+A

∂Q

∂x
= 0. (3.2)

This new form can be said to be quasi-linear if the matrix Jacobian is at most

linearly dependent on Q. The matrix A holds all the necessary information to

find the solution, as it contains the waves and wave speeds of the fundamental

waves of the problem. The aim of the solver is to numerically find the solution

to this system of equations Q(x, t), in both time and space.

To solve this numerically, one can divide the computational domain of size L into

uniformly distributed N cells, with cell centres at positions x = (x1, x2, ..., xN ).

The width of these cells is δx = L/N, with cell boundaries half way between

each cell centre. The initial state Q = (Q1,Q2, ...,QN ) is known for each cell. At

the boundary, between cells xi−1 and xi, there is a Riemann problem, which is

used to solve for the evolution of the state. These Riemann problems have well

known exact solutions (Lax, 1957), which produce the flux at the cell boundary.

A number of exact and approximate Riemann solvers have been developed to

solve them (Godunov & Bohachevsky, 1959; Glimm, 1965; Harten, 1983; Leer,
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Figure 3.2 The fundamental waves from a Riemann problem, between cells i−1
and i. The initial states of the discontinuity are Qi−1 and Qi, with
intermediate states Q∗i−1 and Q∗i between the waves. These waves are
given by the eigenvectors of the Jacobian A, and their speed by the
corresponding eigenvectors.

1984). The Roe solver is an example of an approximate Riemann solver. The

approximation comes in the linearisation of the equations, for which the solver

finds an exact solution (Roe, 1981). The set of Riemann problems within the

whole domain can be solved separately, as long as the time step over which they

are solved are small enough that the signal from one face has not interacted with

another.

To find the solution to the discontinuity at the cell boundary, Roe uses an

approximation of the Jacobian from the linearised form of the specific equations

being solved. This approximates the Jacobian at the boundary between the two

cells. The boundary Jacobian Ā must satisfy a set of conditions (Roe, 1981). It

is required that it be a linear mapping from Q to F, that it converge on the exact

Jacobian as the discontinuity decreases, that the eigenvectors of the boundary

Jacobian matrix must be linearly independent, and that the net flux through the

face can be written as

Ā(Qi−1 −Qi) = Fi−1 − Fi . (3.3)

It is useful here to introduce the decomposition of the boundary Jacobian, which

reformulates it as a function of it eigenvalues and eigenvectors

Ā = R−1ΛR, (3.4)
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where R is the matrix constructed by using the eigenvectors of Ā as columns, and

Λ is the a diagonal matrix of the corresponding eigenvalues. This is only possible

if the matrix is diagonisable, which is an implicit condition on the matrix. To

find the solution, the discontinuity that forms the Riemann problem at the cell

boundary must be decomposed into the sum of contribution from its fundamental

waves (Roe, 1981)

Qi−1 −Qi =

q∑
p=1

αi−1/2,pei−1/2,p, (3.5)

where αi−1/2 is the unknown wave strength of each wave. The eigenvectors

are denoted by ei−1/2, where the p denotes the pth eigenvector. The total

discontinuity at the boundary is given by the sum of these wave strengths,

which are individually found by projecting the original discontinuity onto the

eigenvectors of the Jacobian, such that

αi−1/2 = R−1i−1/2(Qi−1 −Qi), (3.6)

where p represents the element of Q, of which there are q. It is not necessary

to calculate the intermediate states explicitly, since all the information that is

required to get the solution to the problem is held in the wave strengths.

The above results combine to give all the information required to calculate the

solution. Going back to the original set of equations that this approach is solving,

it is simple to discretise the equations in time, using the Taylor expansion of the

state. To first order accuracy, the state at time t + ∆t is given by the state at t,

and the change in the state, with

Q(x, t + ∆t) = Q(x, t) + ∆t
∂Q

∂t
+ O(∆t2). (3.7)

Equation 3.1 can be substituted in for the temporal derivative, resulting in

Q(x, t + ∆t) = Q(x, t) − ∆t
∂F

∂x
+ O(∆t2). (3.8)

Removing higher order terms, and introducing the spatial discretisation imposed

by the grid, the numerical update to the state at vertex i, from the boundary

between i − 1 and i, and for time step number from n to n + 1, is given by

Qn+1
i = Qn

i +
∆t
∆x
(Fi−1 − Fi) = Qn

i +
∆t
∆x

Fi−1/2, (3.9)

113



which can be rewritten using the condition on the Jacobian and the formulation

of the flux, given in Equations (3.3) and (3.5). Based on the boundary Jacobian,

this becomes

Qn+1
i = Qn

i −
∆t
∆x

q∑
p=1

(λp)+αpep, (3.10)

where (λp)+ is the positive eigenvalue only. Negative eigenvalues are replaced by

zero. Since these eigenvalues represent the propagation speed of the wave from

the discontinuity, excluding negative values effectively upwinds the solution. The

equivalent update, to the state in the xi−1 cell, from this boundary, would use

only the negative eigenvalues to achieve the same thing. For completeness, the

total update to the state of cell i would be given by

Qn+1
i = Qn

i +
∆t
∆x

(
Fi−1/2 + Fi+1/2

)
(3.11)

which becomes

Qn+1
i = Qn

i −
∆t
∆x

©«
[ q∑

p=1

(λp)+αpep

]
i−1/2

+

[ q∑
p=1

(λp)−αpep

]
i+1/2

ª®¬ . (3.12)

The condition on the flux results in a conservative method, since the flow of the

difference in the state v(Qi−1−Qi), moving with velocity v, should be equal to the

flux of material through the boundary (Fi−1 − Fi). This is only true for a linear

set of equations. The construction of the Roe method centres around finding the

suitable approximation of the Jacobian. This and the other conditions combine

to guarantee that the method is conservative, can cope with shocks, and that it

can smoothly recover the linearised version from the non-linear form. Identifying

this matrix for an arbitrary set of equations is not necessarily trivial, since the

flux condition given in Equation (3.3) is difficult to satisfy, but for our purposes

the non-linear set of equations are the Euler equations, for which such a matrix

has been found (Roe, 1981).

For the Euler equations, Roe produced a parameter vector that satisfies these

requirements. For the standard fluid variables Q = (ρ, ρv, ρe)T , the Roe parameter

vector is Z = (
√
ρ,
√
ρv,
√
ρH)T . The Eulerian flux vector has a quadratic

dependence on these variables, which means that the Jacobian A = ∂F/∂Z is

now linearly dependent on the state variables. This partial differential produces

a 3 × 3 square matrix, which satisfies the requirements to produce a conservative

114



scheme.

In summary, if the equation, or system of equations, that one is dealing with is

linear, such that the highest order term, with respect to state Q, has rank one,

then it is possible to rewrite the boundary Riemann problem as a set of waves

moving with velocities found from the eigenvalues λ of the Jacobian. These waves

are moving discontinuities, with the difference in the state either side of the wave

front found by projecting the initial difference in state at the boundary onto the

eigenvectors e of the Jacobian.

1D Residual Distribution

It is possible to recast this method by redefining the net flux at a given boundary

as the residual material that is left when the flow from one side is combined with

material from the other. This residual φT is therefore defined as

φT = Fi−1 − Fi = Ā(Qi−1 −Qi). (3.13)

The residual is split between the cells either side of the boundary, in such a way

that the distribution still sums to the original total. Similar to before, the split is

achieved by using the positive and negative eigenvalues. Considering the matrix

form of the discontinuity, given in Equation (3.5), one can see how this residual

distribution comes about. The element residual is given by

φT = Ā(Qi−1 −Qi) = RΛR−1(Qi−1 −Qi) =

q∑
p=1

λpαpep. (3.14)

As mentioned above, these are distributed by selecting only positive and negative

eigenvalues respectively. Thus the residual distributed to cell i is given by

φi = φ
+
i = Ā+(Qi−1 −Qi) = Ā+Ā−1φ, (3.15)

and similarly the residual sent to the i − 1 cell is

φi−1 = φ
−
i−1 = Ā−(Qi−1 −Qi) = Ā−Ā−1φ. (3.16)

Together these two residuals sum to the total φT = φi + φi−1, as required. In

this formulation, originally known as fluctuation splitting, they are identical to

the flux through the boundary of the cell. The important part of this solver, in
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this setup, is its ability to be extended to more dimensions. To complete the

formulation of this method that uses these residuals, the final form of the update

to the state in cell i is given by the sum of residuals that are distributed to it

from its boundaries. Explicitly, this is calculated using

Qn+1
i = Qn

i −
∆t
∆x

(
φ+i + φ

−
i
)
, (3.17)

or in other words, the update comes from the summation of the residuals sent

from the boundaries.

3.2.2 Residual Distribution in Higher Dimensions

Since the original formulation of this method, a significant amount of work has

gone in to extending it to higher dimensions (Deconinck et al., 1993; Paillere

et al., 1995; Abgrall & Roe, 2003; Abgrall & Marpeau, 2007; Ricchiuto & Abgrall,

2010). To achieve this, the key step is producing a consistent definition for the

residual. In one dimension this is trivial, since the net flux through a cell boundary

naturally fits with the idea of the residual flow, and the whole system is easily

modelled using the set of waves described above. In the 2D case, it is not obvious

how to define this variable. In this section, I will derive the basic form of the

residual itself, in dimensions greater than one, and cover how this is transformed

for use in the numerical method.

Notation

Before I go into the specifics of the derivation, there are a number of important

terms to define with respect to the domain discretisation and geometry. The 2D

space Ω is completely divided into a set of triangular elements T , with vertices (i,

j, k), labeled counterclockwise. To continue the analogy to the 1D Roe method,

in this discretisation the cells in the 1D case are now equivalent to the nodes

of the triangulation, with the triangular elements taking the place of the cell

boundaries when it comes to the calculation of the residuals. The significance

of this transformation/comparison will be discussed in more detail later. The

inner normals of the triangle edges are defined such that ni is the inner normal

to the edge between vertices j and k (see Figure 3.3). The labelling order of

the vertices is only important in making sure the normals are orientated inwards.
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Figure 3.3 Element vertices and associated normals

These normals are found using

ni = (y j − yk)x̂ − (x j − xk)ŷ, (3.18)

where x̂ and ŷ are the x and y unit vectors respectively, with equivalent forms for

the other vertices. It is also important to define the parameter |Si |, representing

the area of the dual cell of a vertex in a unstructured triangulation, shown in

Figure 3.4, given by

|Si | =
∑

T |i∈T

1

3
|T |, (3.19)

for the dual cell of vertex i, summing over every triangle T with which i is

associated. This dual cell is a Voronoi cell, part of the Voronoi tessellation that

is the dual of the Delaunay triangulation. |T | is the area of the triangle, given by

|T | =
1

2
|ni × n j |, (3.20)

where i and j are any two vertices of T . It is also important to define the

specifics of the problem that is being solved. The system of partial differential

equations depend on some set of continuous variables. For such a continuous

variable θ(x, y, t), the equivalent discrete approximation is referred to as θh. The

parameter h represents some characteristic length scale of an element, typically

taken as the length of the longest edge, although this choice is somewhat free.

117



Figure 3.4 Dual cell (red shaded area) of a vertex in an unstructured triangular
mesh

Residual - 1st Order in Time

As before, in Section 3.2.1, if one considers a set of linear partial differential

equations, but now in more than one dimension, then the problem is formulated

as

∂Q

∂t
+ ∇ · F (Q) =

∂Q

∂t
+

∂

∂x
Fx(Q) +

∂

∂y
Fy(Q) = 0, (3.21)

where F (Q) = (Fx(Q),Fy(Q)), or in its quasi-linear form as

∂Q

∂t
+Ax

∂Q

∂x
+Ay

∂Q

∂y
= 0. (3.22)

Here, as before, A = (Ax, Ay) represent the Jacobian matrices for the

state variable Q. The additional term obviously follows from the additional

dimension. This form is quasi-linear because the Jacobian matrices are only

linearly dependent on the PDE unknown Q. This linear dependence is a condition

placed on the Jacobian. I will only describe the 2D case here, but will expand

on the extension to 3D in Section 4.3. The fundamental aim here, is to solve

this system of equations without breaking the problem down with dimensional

splitting.

The element residual, in this context, is now defined as the integral of the

divergence of the numerical approximation of the flux (Deconinck et al., 1993;

Ricchiuto & Abgrall, 2010). This follows naturally from the 1D definition, but
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the integral is now over the triangular element, rather that across the boundary

between two cells. This is given as

φT (Qh) =

∫
T
∇ · Fh(Qh)dxdy, (3.23)

which, via the divergence theorem, is equivalent to

φT (Qh) =

∮
δT
Fh(Qh) · ndl, (3.24)

where n is the inward pointing normal to the triangle, with the integral performed

around the edge of the triangle. This second form can aid in visualising what is

being calculated.

The solution to this problem is assumed to be piece-wise linear across the

triangular elements T of the triangulation T of the computational domain Ω,

with the initial state known at the nodes, or vertices, of the triangulation. The

approximate solution can be found by applying a P1 Lagrange basis function ψi.

This function is one at the node in question, and zero at every other node. In other

words, for a given state variable, the solution is a flat plane that passes through

the three vertices of the triangle. The analogous one dimensional equivalent would

be a straight line between the two nodes of an element, which in this case would

be a line. Using the notation described above, the approximation of the solution

across the triangulation is given by

Qh =
∑
i∈T

Qiψi, (3.25)

or that the solution consists of the sum of the approximate solutions at every

vertex i in the whole triangulation T . These assumptions are basically just saying

that the solution to the initial value problem is found over a triangulation of

the computational domain, built around a set of vertices, where the solution

is calculated. The solution is assumed to vary linearly between vertices. This

allows one to formally define the discretised residual, or local Galerkin residual,

for vertex i, as

φG
i (Qh) =

∫
T
ψi∇ · Fh(Qh)dxdy. (3.26)

The residual for each triangular element is split between its vertices, with the

sum of these residual from all the triangles of which a given node is a vertex, is
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the update to the state at the position of that node.

In order to solve this numerically, a discreet mechanism of calculating this residual

is required. First, the element residual can be rewritten as a function of the

Jacobians in Equation (3.22), which becomes

φT (Qh) =

∫
T

Ax
∂Q

∂x
+Ay

∂Q

∂y
dxdy. (3.27)

A discreet method of finding the approximation of the change with space, and the

Jacobian, are simply defined. Since we have broken the state up into a piece-wise

linear reconstruction of the state, the spatial differential can be written in its

discretised form as

∂Q

∂x
=

1

2|T |

(
3∑

i=1

Qini

)
· x̂, (3.28)

where the sum is over the three vertices of the element, Qi is the state at each

vertex, and ni is the inward pointing normal to the edge opposite the vertex

i. The unit vector in the x-direction is x̂. This amounts to finding the linear

interpolation of the state in the element from the state at the three vertices.

The y-direction equivalent is the same, but replacing all occurrences of x with y.

These partial differentials are now constant across the element. The Jacobian is a

little harder to define. Substituting in the above equation, the residual becomes

φT =
1

2|T |

[(
3∑

i=1

Qini

)
· x̂

∫
T

Axdxdy +

(
3∑

i=1

Qini

)
· ŷ

∫
T

Aydxdy

]
. (3.29)

Analogous to the Roe solver, it is possible to define an average Jacobian. In

the 1D case, this was the average at the boundary, and in this 2D case it is the

average over the element. This is therefore defined as the integral of Ax and Ay

over the area of the element, divided by that area

Āx =
1

|T |

∫
T

Axdxdy, (3.30)

which leaves the residual as

φT =
1

2

[(
3∑

i=1

Qini

)
· x̂Āx +

(
3∑

i=1

Qini

)
· ŷĀy

]
. (3.31)

The dot product of the normal with the unit vectors mean only that component
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is included in each sum. Using this, combining the summations, and bringing the

Jacobian inside the sum gives

φT =
1

2

3∑
i=1

(
QiĀxnx,i +QiĀyny,i

)
. (3.32)

Finally, it is possible to combine the Jacobians into a single term Ki = (Āxnx,i +

Āyny,i)/2, with the dependence on vertex i coming from the normal of the opposite

edge. This simplifies the calculation of the element residual to the sum of the

product of matrix Ki and state Qi

φT =

3∑
i=1

KiQi . (3.33)

Now all that remains is a method to calculate the discreet form of the element

Jacobian Ā. Since it has been required that the system of equations is linear, then

the Jacobian Ax = ∂F/∂Q will vary linearly. This means the element Jacobian can

simply be computed as the Jacobian as a function of the average state of vertices

of that element Āx = Ax
(
Q̄

)
, where the average state is simply Q̄ = 1

3

∑3
i=1 Qi.

The combining of the Jacobian into Ki is the key step that makes this a

truly multi-dimensional method. A similar method that considers the x and

y Jacobians separately would effectively be splitting the problem by dimension,

which is what this method avoids. While this is the cornerstone of how these

methods work, a lot of the work that has gone into these methods has centered

around how to use this residual to calculate the update to the state, and so evolve

the solution.

I now have the discreet method for the calculation of the residual, for any

triangular element. The key question now is how to distribute these to the

vertices of the element. I will cover this in more detail shortly, but first let us

assume we have some method for distributing the residual in a way that maintains

conservation, and achieves upwinding. The residual is therefore split into three

values, one sent to each vertex, such that φT = φi + φ j + φk . Once again, the

discreet update to the state is found using the discretised form of the Taylor

expansion of the solution. To derive this form, the expansion starts off as before,

with Equation (3.7), but with the additional dependence on y. The discreet
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update formula becomes

Qn
i = Qn+1

i −
∆t
|Si |

∑
T |i∈T

φi (3.34)

where the summation is over all triangles for which node i is a vertex. The area

|Si | is the area associated with the updated vertex, defined by assigning one third

of the area of each connected triangle. This area is also the area of the cell that

is formed by the dual of the triangulation.

Distribution - 1st Order in Time

When designing the distribution schemes, which are the next integral part of the

method, it is desirable that the scheme exhibit certain properties. Typically these

include being conservative, obviously very important for our consideration of the

fluid equations, and preserving linearity and positivity (Deconinck et al., 1993;

Ricchiuto & Abgrall, 2010; Abgrall, 2012). A linearity preserving scheme will

recover the exact solution for a linear set of equations, and a positive scheme

will be total variation diminishing (TVD). A method is TVD if the sum of

the differences between the numerical approximation of the solution, and the

exact solution, decreases from one time step to the next. For some set of

initial conditions, a scheme is positive if it does not introduce new maxima

or minima to the solution. For this to be true, any variation from the exact

solution that is introduced by the approximation must get smaller over time,

and so the scheme is TVD. This positive characteristic is also known as being

monotone. It is impossible to construct a linear scheme that is both positive

and linearity preserving (Ricchiuto & Abgrall, 2010), so non-linear approaches

must be formulated to achieve both desired properties at once. To be clear, a

linear scheme mentioned here is one in which the solution can be expressed as a

sum of the initial state, weighted by coefficients that do not depend on the state

itself. This is not the same as the problem itself being linear. I will describe three

examples of widely used schemes:

• LDA Scheme - Linear, low diffusion

• N Scheme - Linear, positive

• B Scheme - Non-linear, blending of the two other schemes
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A widely used example of a relatively simple scheme is the low diffusion A (LDA)

scheme (Struijs et al., 1991; Caraeni & Fuchs, 2002; Deconinck & Ricchiuto, 2007).

It achieves second order accuracy in space, but in achieving this it sacrifices its

total variation diminishing capability. This results in spurious oscillations in the

presence of discontinuities, but as the name suggests, it is constructed to have

low numerical diffusion, making it viable for smooth flows. The nodal residual,

the part of the element residual sent to each vertex, is found using (Csik et al.,

2002)

φLDA
i = βiφ

T =
K−i∑3
i K−i

φT . (3.35)

To guarantee that this is conservative, it is only required that the distribution

coefficients sum to unity, which ensures the distributed residual sum to element

residual.

Another simple scheme is the N scheme, which is designed to be positivity

preserving, so is TVD, and so does not experience the oscillations around

discontinuities. The scheme is only first order accurate in space (Ricchiuto &

Abgrall, 2010), so has significantly greater numerical diffusion, compared to the

LDA scheme. Such a scheme is obviously most well suited to problems with

shocks. In this case, the nodal residual is given by (Struijs et al., 1991)

φN
i = K+i

(
Qi −

∑3
j=1 K−j Q j∑3

j=1 K−j

)
. (3.36)

Both the above schemes are linear, and so cannot be both positivity and linearity

preserving. As mentioned above, this leads to schemes that, in general, have

either strong numerical diffusion, or weak shock handling capabilities. A number

of non-linear schemes have been developed (Csik et al., 2002; Abgrall & Roe,

2003; Dobes & Deconinck, 2008), which build on these two linear schemes by

combining them. The result preserves the advantages of each scheme, and reduces

the disadvantages, by introducing a blending coefficient that can be designed

to detect when the conditions are best suited to each method. A number of

possible blendings have been developed, but they are built around the same idea

of constructing the distribution around

φB
i = Θφ

N
i + (I − Θ)φ

LDA
i (3.37)
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where I is the identity matrix, and Θ is the diagonal blending matrix. This matrix

is constructed by setting

Θii =
|φT

i |∑3
j=1 |φ

N
j,i |
, (3.38)

where the sum is over every vertex of element T , and the i index refers to the ith

equation of the system. In this way, the change in each equation of the set is tested

separately for the blending. The matrix effectively compares the full element

residual to the sum of nodal residuals. If there is a rapid flow at the vertices,

then there will likely be very positive and very negative nodal residuals. When

summed in absolute form this will produce a larger number than the absolute

value of the total, and so make the contribution from the N solver small, with its

higher diffusion, and instead prioritise the result from the LDA solver.

Different applications of this blending matrix put different conditions on the

matrix values. The Bmax and Bmin schemes (Csik et al., 2002; Paardekooper,

2017) simply replace every diagonal value of the blending matrix with either the

maximum or minimum value of the blending matrix. Using Bmax will default

towards the N scheme, while Bmin defaults to LDA. The so called Bx (Dobes &

Deconinck, 2008) scheme replaces the diagonal values with ones calculated with

a shock sensor. This sensor detects when there are two colliding flows, where a

shock will develop. Where these flows are detected, the N scheme will be more

heavily weighted. In all other conditions, the solution will use the LDA scheme.

Residual - 2nd Order in Time

The first order RD methods were largely developed to treat steady problems (i.e.

ones where the solution converges on some steady state) (Paillere et al., 1995;

Hubbard & Baines, 1997; Dobes & Deconinck, 2008). For these methods, having

only first order accuracy in time is acceptable, but for problems with significant

time variation, it is important to achieve second order accuracy in time. The

order in time refers to the highest order of term included in the approximation of

the solution. The solution can be written as a Taylor expansion

Q(x, t + ∆t) = Q(x, t) + ∆t
∂Q

∂t
+

1

2
∆t2

∂2Q

∂t2
+ O(∆t3). (3.39)
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A method that is first order in time if it only uses the term linearly dependent

on ∆t. The second order schemes include the terms dependent on ∆t2. A

number of systems that achieve this have been developed (Abgrall & Roe, 2003;

Palma et al., 2005; Rossiello et al., 2009; Ricchiuto & Abgrall, 2010). This

work includes extending the schemes described above to allow for second order

temporal accuracy, and perform extensive studies of the various properties of the

new system. Below I will summarise the extension to second order temporal

accuracy, as well as the potential options that have been developed to implement

this extension.

When dealing with a time dependent problem, there is clearly going to be a

time dependence in the residual itself. In the first order formulation, the element

residual was defined as the integral of the divergence of the flux over the element.

To include the time dependence in the residual, it is necessary to define a new

residual, the total residual ΦT , which is the integral over the whole set of equations

Φ
T (Qh) =

∫
T

[
∂Qh

∂t
+ ∇ · Fh(Qh)

]
dxdy =

∫
T

∂Qh

∂t
dxdy + φT (Qh). (3.40)

This residual now contains a way to take into account the change in the state

over the time step. There is some inconsistency in the notation and naming

conventions within the residual distribution field, but here I will use the above

naming scheme, where the element residual φT is the area integral of the

divergence, and the total residual ΦT is the integral of the whole equation. The

integral over the time derivative simply becomes the mean of the time derivatives

of the solution at each node of the element multiplied by the area

Φ
T =

3∑
j=1

|T |
3

dQ j

dt
+ φT . (3.41)

This still contains the time derivative of the state, which is simply taken as the

absolute change in the state at vertex j for time step ∆Q/∆t. The distribution

of this new residual requires a way to distribute the time dependent part. This

is achieved by applying a mass matrix m (Caraeni & Fuchs, 2002; Palma et al.,

2005; Ricchiuto & Abgrall, 2010), which sets a fraction of the contribution from

the temporal part of the total residual to be sent to each vertex. This is used to
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find the nodal total residual with

Φ
T
i =

3∑
j=1

mi j
dQ j

dt
+ φT

i . (3.42)

There are a number of choices for the mass matrix that offer different dissipative

properties (Ricchiuto & Abgrall, 2010). Naturally these also depend on the chosen

distribution scheme. The first, and simplest, of these is found by replacing the

element residual in the first order method with the total residual (Caraeni &

Fuchs, 2002). If we take the LDA scheme, the mass matrix then simply becomes

the

mF1
i j =

|T |
3
β j, (3.43)

where β j is the LDA distribution matrix for the jth vertex of that element. This

splits the total residual in exactly the same way as the first order LDA scheme,

with the addition of the temporal part to the distributed residual. The second

formulation of the mass matrix is derived by writing the discreet equations in a

way that is analogous to a stabilised Galerkin finite element scheme (Cohen et al.,

2001). These schemes apply a test function to the problem equations, where the

test function is a polynomial of order equal to desired reconstruction order. The

resultant conditions produced for the test function produce the solution to the set

of equations. By applying the same idea to the total Galerkin residual (Ricchiuto

& Abgrall, 2010), and using a test function dependent on β j , the end result of

this approach is to produce a mass matrix of the form

mF2
i j =

|T |
36
(3δi j + 12βi − 1), (3.44)

where the delta function δi j is zero except when i = j. Another option (Palma

et al., 2005) is to assume that the mass matrix - time derivative term must be

equal to the integral of the time derivative of the state, at a given vertex, over

the fraction of the element associated with that vertex. This method results in

two possibilities (Ricchiuto & Abgrall, 2010)

mF3
i j =

|T |
3
βi(δi j + 1 − β j), (3.45)

and

mF4
i j =

|T |
3
βi(1 − δi j + β j). (3.46)
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These methods all produce consistent mass matrices, i.e. ones where the sum of

the total nodal residuals is equal to the total residual. This is required to ensure

conservation is maintained.

The RD method can now be recast as as the distribution of this new total residual.

To achieve the second order accuracy in time, a Runge-Kutta time stepping

scheme is applied. These methods function by constructing an intermediate

state, and then finding the final state, for a given time step, as function of the

original and intermediate states. Second (RK2), third (RK3), and fourth (RK4)

order Runge-Kutta methods have been developed for the RD approach, but the

additional computational costs of the RK3 and RK4 methods do not show a

significant improvement in the accuracy of the numerical results (Ricchiuto &

Abgrall, 2010), so I have only considered the RK2 approach here. For a generic

problem of the form

dq
dt
+ e(q) = 0, (3.47)

where e(q) represents the evolution operator. For the time step n to n + 1, the

intermediate q∗ and final qn+1 states are found by

q∗ − qn

∆t
+ e∗ = 0

qn+1 − q∗

∆t
+

1

2

(
en+1 + e∗

)
= 0.

For the RD problem, for the time step n to n + 1, the intermediate state is

constructed using the first order solver

Q∗i = Qn
i −
∆t
|Si |

∑
T |i∈T

φi (3.48)

and the final state is found using the distribution of the total residual with

Qn+1
i = Q∗i −

∆t
|Si |

∑
T |i∈T

Φi (3.49)

where the total residual is calculated based on both the initial and intermediate

element residuals, in the standard RK2 form (Ricchiuto & Abgrall, 2010). The
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second sub-step update becomes

Qn+1
i = Q∗i −

∆t
|Si |

∑
T |i∈T

(
3∑

j=1

mi j
Q∗i −Qn

i

∆t
+

1

2

(
φi(Q

∗
i ) + φi(Q

n
i )

))
. (3.50)

This provides all the information needed to construct a second order RD solver.

the new total residual is only dependent on the initial state, the intermediate state,

the time step, and the element residual for both the initial and intermediate states.

As such there is no need to define specific second order forms for the different

distribution schemes.

3.2.3 Choice of Method

In the previous section, I describe a number of different approaches that all come

under the umbrella of RD methods. When implementing a RD hydro-solver, a

number of choices have to be made. These can be made sequentially, based on

the type of problem that is being attacked, and the computational resources that

are available. The first choice is which distribution scheme to use. As discussed

above, the various schemes have implicit advantages and disadvantages, with the

N scheme best suited to problems with strong shocks, and the LDA better suited

to problems with strong flows. If one of the blending schemes is chosen, then

one has to decide on the blending mechanism, once again deciding which of the

blended schemes should be favoured.

The second choice comes down to the desired temporal accuracy order. First

order solvers were largely designed to solve problems that converge on steady

solutions, which is the case for certain tests, but in astrophysical contexts such

situations are rare. When choosing to use a second order solver, however, one

must then decide which mass matrix formulation to use. This decision is less

clear cut, as the stability of the various options are not well understood at this

time.

3.3 Mesh

The approaches described above are built around an arbitrary set of static

tracer positions r, or vertices, which require a set of simplices that fill the
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periodic domain, without gaps, and without overlapping edges/faces. These

simplices effectively tell one the neighbours of any given vertex. Producing

such a set of simplices has been studied in detail for a variety of uses, from

astrophysical simulations such as these (Springel, 2010; Duffell & MacFadyen,

2011; Paardekooper, 2017), to graphical modelling and animation. In two

dimensions, these simplices are triangles, hence the description as a triangulation.

A given distribution of vertices can have a large number of possible meshes that

fulfill the above criteria, but many of these will have undesirable characteristics.

3.3.1 Structured Mesh

For certain sets of vertices, it is possible to setup meshes, where the neighbours

can be perfectly predicted by an arithmetic algorithm. An example of this would

be a uniform grid of points in a Cartesian grid, with Nx × Ny vertices, across

a domain of sides Lx × Ly. With such a set, the neighbours of a given vertex

can be found by simply moving by displacing by ±Lx/Nx in the x-direction, or

±Ly/Ny in the y-direction. This produces a mesh made of pairs of right angle

triangles. Alternatively, a similar distribution, but with the vertices of the odd

rows offset by half Lx/Nx in the x-direction. A set of interlocking equilateral

triangles are created by these vertices. The left and middle panels of Figure

3.5 show these structured meshes. Equivalent triangulations can be built around

circular coordinates. Structured meshes are simple to construct, but they severely

limit the point distributions that can be used. A potential disadvantage of

structured meshes comes from the inevitable alignment of edges. When used for

fluid calculation, this can lead to preferential directions in the calculated flow. If

the edges of cells are aligned, spurious structures can form, and flows not aligned

with these directions can be suppressed.

3.3.2 Unstructured Mesh

If the vertex distribution has no simple pattern, such as those described above,

then an unstructured mesh must be built instead. The ability to construct such

a mesh allows one to use any arbitrary set of vertices, opening up the possibility

to describe many complex geometries, and allow for resolution variation at any

position. These unstructured meshes avoid the problems, mentioned previously,

of preferential flow directions, as there is no pattern in the alignment of edges.
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Figure 3.5 Left panel: Structured triangular mesh based on vertices in a
Cartesian grid. The periodic boundaries of the cells are indicated by
the red lines, and green triangles show those identified as boundary
triangles. Middle panel: Structured triangular mesh based on
vertices in a Cartesian grid, but with odd rows offset by half the
grid scale. Right panel: Unstructured Delaunay mesh built around
an random distribution of vertices

Since there are often a large number of possible meshes that cover the domain, it

is useful to define conditions that prioritise features which, in the case of a hydro-

solver, improve the accuracy of the method. One important feature to consider is

the elongation of the triangles in a mesh. Triangles that are extremely stretched

end up linking vertices that are relatively far apart, potentially leading to spurious

local flows (Springel, 2010). This can be minimised by maximising the minimum

opening angle of the triangles in the mesh. Highly elongated triangles have one

large angle and two very small angles, so by maximising the minimum angle of a

given triangle, one can minimise elongation. The optimal solution to satisfy this

effort is obviously created by equilateral triangles, but for an arbitrary distribution

of vertices, equilateral triangles will not be possible in the vast majority of cases.

It is worth, at this point, briefly discussing periodic boundaries. A mesh can

simply be built around the vertices in an infinite domain, with no reference to any

boundaries beyond those dictated by the vertices. However, many test problems,

as well as astrophysical scenarios, utilise periodic boundary conditions, where

the edges of the domain wrap around from one side to the edge on the opposite

side of the domain. This can prevent spurious results propagating from either an

open or closed boundary at the edge of the domain. To achieve this, the typical

approach is to add a set of ghost vertices beyond the boundary of the domain.

These replicate the positions of vertices on the other side of the domain, shifted

by the edge length of the domain, providing the correct geometry for calculating

the flow through the boundary. For the hydro-solvers, any update that is passed
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to these vertices is copied to the real vertex that the ghost represents, completing

the loop and allowing material to flow out one edge and in the other, as if there

was an identical copy of the domain on either side. These ghost particles are

constructed in all directions from the domain, effectively leading to nine copies

of the original mesh, with the original in the middle, and eight surrounding it

forming a 3× 3 square. Examples of these ghost particles are shown in the panels

of Figure 3.5 as green vertices, where the boundaries are shown in red.

3.3.3 Delaunay Mesh Construction

In this project, the discretisation of the gas will be done using a Delaunay

triangulation, built around a set of tracer vertices. This triangulation, by

definition, maximises the minimum opening angle. There are several well

documented methods of constructing the Delaunay triangulation, and here I will

describe several of the most well used. These methods, and the corresponding

numerical algorithms, have been extensively tested (Springel, 2010; Cheng

et al., 2016; Duffell, 2016). It is important to understand the mathematical

underpinnings of what a triangulation is, and how it is chosen and built. The

rigorous definition of a two dimensional triangulation of a point set is given in

the following definition (Cheng et al., 2016)

Definition 1 Let S be a finite set of points in a plane. A triangulation of S is a

simplicial complex J such that S is the set of vertices in J , and the union of all

simplices in J is the convex hull of S.

This leads us to three important terms, convex hull, simplex, and simplicial

complex, which are defined as follows

Definition 2 (Convex Hull) A convex combination of points in X is a point

that can be written as an affine combination with all weights non-negative. The

convex hull of X is the set of all convex combinations of points in X. (An affine

combination of points in X is a point p that can be written p =
∑k

i=1 wi xi for a set

of scalar weights that sum to 1.)

Definition 3 (Simplex) A k-simplex τ is the convex hull of a set of k+1 affinely

independent points (i.e. if none of the points are affine combinations of the
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Figure 3.6 Edge flip process. Moving edge i j to lk changes the two non-empty
circumdisks of triangles i j k and il j into two triangles (ilk and l j k)
with empty circumdisks.

others). Specifically, a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex

is a triangle, and a 3-simplex is a tetrahedron.

Definition 4 (Simplicial Complex) A simplicial complex J , also known as a

triangulation, is a set containing a finite number of simplices that satisfy the

following restrictions

• J contains every simplex in J

• For any two simplices σ, τ ∈ J , their intersection σ ∩ τ is either empty or

a face of both σ and τ

These four definitions give us the basic language behind formally discretising a

space, about a set of points, into a set of cells. In other words, the simplex is

the ‘simplest’ shape in a given number of dimensions, one in which all vertices

are connected by edges to all other vertices, and a simplicial complex is a set of

these simplices where no edges cross, and the elements completely fill the domain.

Another key concept is the idea of a circumdisk, or circumshpere, defined here for

d-dimensions.
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Definition 5 (Circumball) Let τ be a simplex embedded in Rd. A circumball, or

circumscribing ball, of τ is a d-ball whose boundary passes through every vertex

of τ. Its boundary, a (d-1)-sphere, is called a circumsphere, or circumscribing

sphere, of τ.

In the left hand side of Figure 3.6 shows an example of a circumdisk for triangle

i j k as the thick red line. We now have the important properties required to

define our tessellation. This is known as the Delaunay Triangulation, where the

important property is whether it can be defined as Delaunay.

Definition 6 (Delaunay property) In the context of a finite point set S is

characterized by the empty circumdisk property: no point in S lies in the interior

of any triangle’s open circumscribing sphere (see definition 5).

An example of a non-empty circumdisk is shown on the left hand side of Figure

3.6. The red circles show the circumdisks for i j k and il j, both of which enclose

vertices that are not part of that triangle. On the right hand side, I show two

examples of triangles with empty circumdisks. The circumdisks of triangles ilk

and l j k do not contain any external vertices, and so these triangles satisfy the

Delaunay condition. The Delaunay triangulation will exist uniquely for any set

of points, except in a small set of scenarios where the open circumdisk is not

empty because of an additional vertex just on the edge of the disk (Cheng et al.,

2016). In these cases the Delaunay condition can be relaxes to only require the

closed circumdisk to be empty. An example of this is in the case of the Cartesian

grid of points. The open circumdisk for three of the four vertices of a square

will always enclose the fourth vertex of the square, as the edge will just touch it.

Changing to the closed circumdisk excludes interloper that are right on the edge,

and so the condition is satisfied. For such structured sets of points, the Delaunay

triangulation is not unique. In these cases, algorithms that construct the mesh

will be set to always pick one option, as the specific choice between possibilities

is not important. Otherwise the algorithm could get stuck in an endless loop.

There are several characteristics of the Delaunay triangulation that make it

appealing for fluid discretisation. The Delaunay condition of requiring an empty

circumdisk innately maximises the minimum opening angle, and also minimizes

largest circumdisk. This has a similar effect on minimizing distortion, but

specifically for cells with obtuse angles. Such angles may still exist in an arbitrary
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point distribution. To further reduce distortion, methods for shifting the vertices

of the tessellation, without reducing the physical accuracy of the simulation, have

been proposed (Springel, 2010). Such an approach attempts to regularise the

distribution of vertices, shifting the vertices in ways that would make distribution

more uniform.

In this way, the Delaunay triangulation is formally defined, allowing the

development of algorithms that can construct meshes with this property. There

are a variety of methods and approaches that can be used. The most fundamental

of these are laid out below. I also briefly describes the corresponding dual

tessellation that is commonly used in hydrodynamics solver on unstructured

meshes.

Flip Algorithm

This method is very simple to implement, and is more of a tool used by other

methods than a method in its own right. A random triangulation is applied to

the set of points. Each edge is flipped until the associated simplices are Delaunay

(i.e. their open circumspheres are empty of other vertices). This process is

shown in Figure 3.6, where flipping one edge (i j to lk) converts two non-Delaunay

triangles into Delaunay triangles. While simple, this method can be inefficient if

the initial triangulation is far removed from the Delaunay triangulation (Cheng

et al., 2016). However, the fundamental technique of flipping edges can be used in

other methods, and this method is considered robust, scaling with O(N2). It can

be shown (Cheng et al., 2016), that this method will always recover the Delaunay

triangulation, eventually, no matter the starting tessellation.

Gift Wrapping

The Gift Wrapping method builds a Delaunay triangulation around a predeter-

mined Delaunay triangulation. The new simplices crystallize around the known

triangulation through a gift wrapping step (Cheng et al., 2016). The step takes

an edge, creates a shrinking circumsphere for the d − 1 vertices of the edge that

keeps shrinking until it contains no other vertices. The last vertex to lie within

the disk becomes the additional vertex of the new simplex. If it never contains

another vertex then the edge is part of the boundary of the domain.
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Since this has to be done with every edge in turn it can be slow. In three

dimensions, the worst case scenario is scaling with N-points as N3 (Cheng et al.,

2016). The main use of this method is often to fill a cavity that has been cleared,

for instance when some set of points has moved, making the original triangulation

non-Delaunay.

Divide and Conquer

This algorithm takes the whole set of particles, then divides them into two halves,

with a line down the middle. The Delaunay triangulation of each half is then

calculated, after which the two halves are stitched back together, merging the

triangulations into a single structure. This method works extremely well in two

dimensions, and has been demonstrated to have a O(NlogN) dependence, in the

worst case scenario (Cheng et al., 2016). It is not fast when extended into three

dimensions.

Incremental Insertion

The Incremental Insertion method adds vertices one by one. The vertex to be

inserted can be chosen entirely randomly, but a weight is often applied to insert

vertices close to the existing edges. The Delaunay nature is then restored to the

triangulation, before another point is inserted. After point insertion, all parts of

the triangulation that the new point disrupts must be removed, creating a cavity

within the triangulation. This cavity is then filled with the new triangulation

about the new vertex. The worst case scenario for this method is scaling with

N2, and in practice these methods produce the fastest 3D Delaunay construction

algorithms (Cheng et al., 2016).

Voronoi Tessellation

There is a second tessellation that can be built from the initial Delaunay

triangulation. This is the Voronoi tessellation. Simply put, it is built by bisecting

all the edges of the Delaunay triangulation with a new set of edges. These then

form the edges of the new cells, with the old vertices forming a central point of

each new cell. A visualization of a Delaunay triangulation, and its corresponding

Voronoi tessellation is shown in Figure 3.7. Constructing such a tessellation
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Figure 3.7 Delaunay triangulation (center) and corresponding Voronoi tessella-
tion (left) of a set of points, with an one overlaid on the other (right)
(Duffell, 2016)

from the Delaunay counterpart will scale linearly, since it is a relatively simple

arithmetic operation, and increasing the number of vertices does not, on average,

increase the number of neighbours that to which a vertex is connected.

It is the Voronoi tessellation that is currently used by most hydrodynamics

schemes that use unstructured meshes, often as part of a moving mesh (Springel,

2010; Hopkins, 2015; Duffell, 2016). For these schemes, the shape of the Voronoi

cells, with their many faces, is ideal for modeling complex hydrodynamical flows.

In those methods, the fluid equations are effectively solved through the faces of

the cells. For our purposes however, with the residual distribution method, we

only require the construction of the initial Delaunay mesh. This is because the

residual distribution method does not require the faces of the cells to calculate

flux, but instead only requires the vertices of the tessellation, which means the

method requires one less step. The Voronoi tessellation is built on top of the

Delaunay triangulation, so avoiding having to build it will inevitably save time,

and so increase computational efficiency.

CGAL

In practice, the various construction mechanisms are often used in combination to

produce the most efficient algorithm. A number of extensive libraries have been

developed to produce periodic Delaunay triangulations in both 2D and 3D. I have

integrated triangulation construction from the QHULL (http://www.qhull.org)

and CGAL (https://www.cgal.org/) libraries, with the focus on CGAL, due to

its inclusion of 3D periodic triangulations, which will be required in Chapter 4.
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3.3.4 Moving Meshes

As mentioned before, some hydro-solvers are built into so-called ‘moving mesh’

systems. In this approach, the underlying grid can move with the flow of the

fluid. If the mesh is allowed to move freely, it must by definition be unstructured,

as any initial structure cannot inhibit the motion of the cells. In this context, a

method that is explicitly built for unstructured meshes, such as the RD family of

solvers, is naturally suited for adaptation onto a moving mesh. This provides a

significant possibility for future development of these solvers.

3.4 Euler Equations and Residuals

The specific set of partial differential equations we will be solving are the 2D

Euler equations, which model the behavior of inviscid, compressible fluids. For

this situation, the components of Equation (3.21) are given by

Q =

©«
ρ

ρvx

ρvy

ρE

ª®®®®®¬
, Fx(Q) =

©«
ρvx

ρv2x + P

ρvxvy

ρvxH

ª®®®®®¬
, Fy(Q) =

©«
ρvy

ρvxvy

ρv2y + P

ρvyH

ª®®®®®¬
, (3.51)

where the pressure P is defined by the chosen equation of state. These equation

describe the conservation of mass momentum and energy. The polytropic ideal

gas case is often used, where

P = ρ(γ − 1)
(
E −

v · v

2

)
. (3.52)

The other variable are defined as normal, where ρ is mass density, v = (vx, vy)

are the velocity components, and E is the specific energy have, with enthalpy H

given by

H = E +
P
ρ
. (3.53)

The adiabatic speed of sound cs is defined as

cs =

√
γP
ρ
. (3.54)
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By definition these equations assume the fluid has no viscosity. As mentioned

before, this assumption is applicable to many astrophysical scenarios, where

viscosity appears to be negligible. Equivalent RD methods have been developed

for the viscous Navier-Stokes equations (Abgrall & Santis, 2015).

Linearisation

The RD method is only applicable to linear sets of PDEs. The Euler equations are

non-linear, as the Flux term is dependent on the state vector. The equations must

be recast in a quasi-linear form. In order to produce the desired linearisation, a

new parameter vector is defined, such that the Jacobian is only linearly dependent

on the unknown of the PDE. The Roe parameter vector Z is suitable for this

purpose, defined for the two dimensional case as

Z =

©«

√
ρ

√
ρvx
√
ρvy
√
ρH

ª®®®®®¬
. (3.55)

Starting with the original inviscid 2D Euler equations, written now as a

summation across dimensions, the initial equations look like

∂Q

∂t
+

2∑
j=1

∂F j

∂x j
= 0, (3.56)

where x = (x, y) in 2D. This can be converted into a PDE of Z by introducing the

partial derivatives with respect to the new vector, ∂Q/∂Z and ∂F j/∂Z, using the

chain rule. The Euler equations now appear as

∂Q

∂Z

∂Z

∂t
+

2∑
j=1

∂F j

∂Z

∂Z

∂x j
= 0. (3.57)

The state vector can be rewritten in terms of the new parameter vector as

Q =

©«
Z2
1

Z1Z2

Z1Z3
Z1Z4
γ +

γ−1
2γ (Z

2
2 + Z2

3 )

ª®®®®®¬
, (3.58)
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with the flux vectors as

Fx =

©«
Z1Z2

γ−1
γ Z1Z4 +

γ+1
2γ Z2

2 −
γ−1
2γ Z2

3

Z2Z3

Z2Z4

ª®®®®®¬
, (3.59)

and

Fy =

©«
Z1Z3

Z2Z3
γ−1
γ Z1Z4 +

γ+1
2γ Z2

3 −
γ−1
2γ Z2

2

Z3Z4

ª®®®®®¬
. (3.60)

From these forms, it is clear that the state and flux vectors depend quadratically

on the Roe vector. The partial derivatives of these vectors, with respect to the

Roe parameter vector, are therefore linearly dependent on the new parameters.

This means that Z can be used to linearise the Euler equations using the form

given in equation (3.57).

With the Roe parameter vector, the Jacobian in Equation (3.57) satisfies the

requirements given in Section 3.2.1 for the Roe solver. The Jacobian in this case

is the derivative of the flux with respect to Z. The Jacobian at the boundary Ā,

or in the element in the 2D case, is simply the Jacobian of the mean state of the

vertices

Āx = Ax(Z̄) = Ax

(
Z1 + Z2 + Z3

3

)
. (3.61)

The element residual for this set of PDEs is now defined with respect to the new

unknown Z, such that Equation (3.32) is equivalent to

φT =
1

2

3∑
i=1

Zi
∂

∂Z
F (Z̄i) · ni . (3.62)

However, in this formulation, the residual will calculate the update to the Roe

parameter vector, rather than fluid state vector Q. In order to make use of

this Roe parameter vector to update the fluid state, the fluid state must be
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reintroduced into the residual

φT =
1

2

3∑
i=1

Zi
∂

∂Z
F (Z̄)

∂

∂Q
Z(Z̄) · ni

∂

∂Z
Q(Z̄). (3.63)

These two equations are equal, but the second form allows us to write the residual

for the original Euler equations, but calculated as a function of the mean state

Z̄, rather than the fluid state. The residual is therefore given by

φT =

3∑
j=1

Ki(Z̄)Q̂i(Z̄), (3.64)

which is directly comparable to the generic discreet form of the element residual

from Equation (3.33). The variables Ki and Q̂i of this specific discreet form are

Q̂i(Z̄) =
∂

∂Z
Q(Z̄)Zi =

©«
2Z̄1Z1

Z̄2Z1 + Z̄1Z2

Z̄3Z1 + Z̄1Z3

1
γ

(
Z̄4Z1 + γ1 Z̄2Z2 + γ1 Z̄3Z3 + Z̄1Z4

)
ª®®®®®¬
, (3.65)

and

Ki(Z̄) =
1

2

∂

∂Z
F (Z̄)

∂

∂Q
Z(Z̄) · ni =

1

2

∂

∂Q
F (Z̄) · ni =

1

2
A(Z̄) · ni . (3.66)

This Ki matrix is sometimes referred to as the inflow matrix, as it can be used

to encode the nature of the flow at each vertex since it projects the Jacobian

onto the normal of the face opposite that vertex. The Ki matrix is now defined

as the average of Jacobian matrices of the original form of the Euler equations,

projected onto the edge normals of the element, where

A(Z̄) =
(
Āx(Z̄), Āy(Z̄)

)
=

(
∂

∂Q
Fx(Z̄),

∂

∂Q
Fy(Z̄)

)
. (3.67)

This may seem like we have come full circle, as the Jacobian is back to being

defined as the differential with respect to the fluid state, but it is important to

note that it is being calculated for the average Roe parameter, which produces

a subtly different result to using the average fluid state. The introduction of Q̂i,

which has the same units as the fluid state but clearly differs from it in detail,

and the fact that the Jacobian is evaluated at the average Roe state, together

encode the effect of the linearisation.
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To summarise, the RD method is only applicable to linear sets of PDEs, so a

suitable linearisation of the Euler equations is required. Roe produced such a

linearisation, initially for the Roe solver, but it is usable in this context as well.

To calculate the residual for use in the update of the fluid state, the K matrix is

based on the Jacobians evaluated at the average Roe parameter for the spatial

element. This is combined with a variable that is analogous to the state variable,

but defined with the chosen linearisation. These produce a consistent definition

of the residual for that can be used to update the fluid state, without losing the

effects of the linearisation and invalidating the scheme.

3.4.1 K-Matrix

The above definition of the inflow matrix gives all the physical information that

is needed to calculate it for use in the solver, but the exact form must still be

derived. In this case I do so for the 2D Euler equations. The partial differential

of a four element vector by another four element vector produces a square matrix,

where the elements are found individually by A j k = ∂F j/∂Qk . The simplest way

to perform this calculation is to first substitute in the Roe parameters to both

flux and state. These substituted forms are given in Equations (3.58), (3.59), and

(3.60). The inflow matrix is the arithmetic average of the projections of the mean

Jacobian matrices onto the component, in that dimension, of the opposite edge

normal. This is written as

Ki = (Axnx,i +Ayny,i)/2. (3.68)

The evaluation of the derivative terms in each element of the matrix is straight

forward. For example, the first row of the Ax matrix is found using

Ax,11 =
∂Fx,1

∂Q1
=

∂

∂(Z2
1 )

Z1Z2 = 0,

Ax,12 =
∂Fx,1

∂Q2
=

∂

∂(Z1Z2)
Z1Z2 = 1,

Ax,13 =
∂Fx,1

∂Q3
=

∂

∂(Z1Z3)
Z1Z2 = 0,

Ax,14 =
∂Fx,1

∂Q5
= 0.
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The final form of the matrix is

Ki =
1

2

©«
0 nx ny 0

αnx − vxω ω − γ2vxnx vxny − γ1vynx γ1nx

αny − vyω vynx − γ1vxny ω − γ2vyny γ1ny

(α − H)ω Hnx − γ1vxω Hny − γ1vyω γω

ª®®®®®¬
, (3.69)

where α = γ1(v
2
x + v

2
y )/2 and ω = vxnx + vyny. The RD methods described above

require the construction of K+ and K−, the matrices built from only the positive

and negative eigenvalues respectively. To calculate these additional matrices, I

need the decomposition of the inflow matrix, such that Ki = R−1ΛR, where Λ is

the diagonal matrix composed of the eigenvalues of Ki. The right hand matrix R

is made up of columns consisting of the eigenvectors of the inflow matrix. Solving

the product of these matrices gives the inflow matrix in the form that I need. For

the Euler equations, the eigenvalues are given by λ1 = ω + c, λ2 = ω − c, and

λ3 = λ4 = ω, while the K-matrix becomes (Paardekooper, 2017)

K11 =
αc

c
λ123 −

ω

c
λ12 + λ3,

K12 = −
γ1vxc

c
λ123 +

nx

c
λ12,

K13 = −
γ1vyc

c
λ123 +

ny

c
λ12,

K14 =
γ1

c2
λ123,

K21 = (αcvxc − ωnx)λ123 + (αcnx − vxcω)λ12,

K22 = (n2x − γ1v
2
xc)λ123 − γ2vxcnxλ12 + λ3,

K23 = (nxny − γ1vxcvyc)λ123 + (vxcny − γ1vycnx)λ12,

K24 =
γ1vxc

c
λ123 +

γ1nx

c
λ12,
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K31 = (αcvyc − ωny)λ123 + (αcny − vycω)λ12,

K32 = (nxny − γ1vxcvyc)λ123 + (vycnx − γ1vxcny)λ12,

K33 = (n2y − γ1v
2
yc)λ123 − γ2vycnyλ12 + λ3,

K34 =
γ1vyc

c
λ123 +

γ1ny

c
λ12,

K41 = (αcHc − ω
2)λ123 + ω(αc − Hc)λ12,

K42 = (ωnx − vx − αcvxc)λ123 + (Hcnx − γ1vxcω)λ12,

K43 = (ωny − vy − αcvyc)λ123 + (Hcny − γ1vycω)λ12,

K44 =
γ1Hc

c
λ123 +

γ1ω

c
λ12 + λ3,

where the terms with the form Xc = X/c. The factor of a half has been left

out from each element for simplicity of notation. The new terms correspond to

λ123 = (λ1 + λ2 − 2λ3)/2 and λ12 = (λ1 − λ2)/2. The elements reduce to the

original form of Ki when the eigenvalue are plugged in. For a given fluid state,

substituting in only those eigenvalues that are either positive or negative for that

state will produce K+i or K−i . This specific form of the inflow matrix is only valid

for the Euler equations. Other sets of equations, such as the viscous Navier-Stokes

equations, produce a different matrix (Villedieu et al., 2011; Abgrall & Santis,

2015).

3.4.2 Time Step

All the ingredients required to calculate the residual, and distribute it in a

conservative manner, have now been defined, as has the dual cell area |Si |. To

calculate the update using Equation (3.34), a mechanism to calculate a suitable

time step is required. As has been discussed previously, the time step choice is not

arbitrary. The CFL condition, that the numerical domain of dependence should

enclose the physical domain of dependence, fundamentally limits the time steps

that will produce a physically accurate result. Such a condition can be achieved
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(Ricchiuto & Abgrall, 2010) by requiring that the time step ∆t is limited by

∆t ≤ min
i∈T

2|Si |∑
T |i∈T lT

maxλ
T
max

, (3.70)

where lT
max is the longest edge of triangular element T , and λT

max is a measure of

the maximum speed at which information can move across the element. This is

done by setting

λT
max = max

j∈T
(|v j | + c j). (3.71)

This is the maximum of the combination of the fluid speed and sound speed at the

vertices of the triangle, which is equivalent to the maximum signal speed in that

element. Together, the product of this length and signal speed, multiplied by a

factor of a half, produce an estimate of the area per time of an imaginary triangle

swept out by the material in this element. Summing up the contributions from

all the element associated with a vertex i, and dividing the actual area associated

with that vertex by this value, produces an estimate of the time it will take a signal

to propagate across the dual cell. Keeping the time step below the minimum such

value required by any vertex in the mesh T produces a limit within which the

CFL condition will always be met. In practice, some fraction of this value will be

usually be used, as an additional guarantee that the condition is not breached.

This fraction typically varies between 0.1 and 0.5, depending on the complexity

of the problem.

3.4.3 Summary of Equations

In the previous sections I have covered the theoretical background to the RD

solvers development and extension. I have also described the precise formulation

required to construct an RD solver for the 2D Euler equations. I will now briefly

summarise the most important results, namely the final forms of the equations

required to implement the solver in practice. The update to the fluid state Qi at

vertex i , from time step n to n + 1, is given by

Q∗i = Qn
i −
∆t
|Si |

∑
T |i∈T

φi, (3.72)
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and

Qn+1
i = Q∗i −

∆t
|Si |

∑
T |i∈T

Φi, (3.73)

where the time step is given by Equation 3.70, and the dual area is

|Si | =
∑

T |i∈T

1

3
|T |. (3.74)

The nodal residual is calculated from the element residual, based on the chosen

scheme, and the element residual

φT =

3∑
j=1

KiQ̂i . (3.75)

The exact form of Ki is given in Section 3.4.1. The equivalent total residual is

calculated using the element residual

Φ
T =

∑
j∈T

mi j

Q∗j −Qn
j

∆t
+

1

2
(φi(Q

∗) + φi(Q
n)) . (3.76)

The mass matrix form varies with the scheme, as does the distribution itself. The

linearised state Q̂i is calculated with

Q̂i =

©«
2Z̄1Z1

Z̄2Z1 + Z̄1Z2

Z̄3Z1 + Z̄1Z3

1
γ

(
Z̄4Z1 + γ1 Z̄2Z2 + γ1 Z̄3Z3 + Z̄1Z4

)
ª®®®®®¬
. (3.77)

Together these equations describe all the key variables and functions needed to

construct the 2D RD hydro-solver. Combining these with the distribution schemes

described in the previous section, and making the choice of temporal order, one

can produce a fully functioning RD solver.

3.5 Hydrodynamics Tests

I run a number of standard hydrodynamic tests to assess the abilities and

characteristics of my implementation of the 2D residual distribution hydro-solver.
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Many of these have well understood analytic solution to which the results can be

compared, but others, often those with complex multi-dimensional flows, do not

have explicitly defined solutions. Instead the tests generally look for the formation

of expected structures. In these tests, I will be comparing results from the LDA,

N, and B schemes, as well as the Roe solver. The comparisons will include the

methods that are either first or second order accurate in time. When I refer to the

first order LDA scheme (LDA1) the order refers only to the temporal accuracy.

3.5.1 1D Tests

There are a number of simple tests that measure the effectiveness of capturing

fundamental flow, from simple advection of material to shocks fronts (discontinu-

ities in density and pressure). I run these initial tests in pseudo one dimension,

where the second dimension is still included in the calculation, but there is no

variation in the fluid conditions in that direction.

Gaussian Pulse

I first test the capabilities of the code to handle simple advection by modelling the

propagation of a Gaussian density pulse, in one dimension. The initial conditions

consist of a uniform density background with ρ = 10, with an additional Gaussian

density pulse centered at x = 0.3. The initial density distribution is

ρ(x) = ρpe−
s2

w2 + ρ0(1 − e−
s2

w2 ); (3.78)

where s = xc − x is the distance from the centre of the Gaussian distribution,

and w the width of the pulse. In this case, the peak density is set to ρp = 50.

The x-velocity is the same at every position, with vx = 1. In this case, the

Gaussian distribution should simply move with the bulk velocity of the initial flow,

maintaining its shape exactly. However, as shown in Figure 3.8, the Gaussian

profile widens as it moves across the grid, with the peak density in the pulse

gradually decreasing. The evolution is identical for all but the second order LDA

scheme, where the effect is even more pronounced. The position of the maximum

is in the expected place, and mass, energy and momentum are conserved to

machine precision. These plots only show a column of vertices through the centre

of the mesh, but there is no variation in the orthogonal direction, so this evolution
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Figure 3.8 Advection of a Gaussian density pulse moving in the positive x-
direction for the first (top row) and second (second row) order
LDA (left column) and N-scheme (right column) solvers. There is
significant numerical diffusion, which is largely constant across the
different methods, with the exception of the second order LDA solver.

is found at all y-positions. The slumping effect is caused by numerical dissipation,

which can be pictured in the following manner. One can take a uniform density

box, with one cell that has a larger density, with the whole box moving at some

velocity v, and consider only the first cell at the background level ahead of the

high density cell. The CFL limitation on the time step size means that, over

this time step, only a fraction of the high density cell will move to this new cell.

The single high density cell is now spread across two cells. In this next time

step more material will move from the original cell, possibly all the remaining

over-density, but some of the over-density in the new cell will also move onwards.

The increased diffusion in the LDA2 scheme is likely caused by the choice of

mass matrix, since the currently used one having the highest diffusivity, but this

requires further study to determine. The second order N scheme does not suffer

from this additional numerical dissipation because the mass matrix falls out of

the formulation.
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Figure 3.9 Comparison of the advection of a Gaussian density pulse at different
resolutions for N = 32 (top row) and N = 128 cells (bottom row).
The left column shows results for the LDA1 solver, and the right
for LDA2. The higher resolution shows significantly less numerical
diffusion.

Over time this effect compounds, leading to the slumping smoothing out of the

density profile that is seen in these results. It is fundamentally caused by the

discretisation of space, and is most pronounced for profiles that change a lot over

a small number of cells. For this reason, greater resolution, achieved with more

cells in the same physical space, reduces the dissipation of the profile. The same

improvement has previously been observed for other solvers (Robertson et al.,

2010). In Figure 3.9, I demonstrate this by comparing results for N = 322 (top

row) and N = 1282 (bottom row) cells, for both the LDA1 (left column) and

LDA2 (right column) solvers. The resolution given here describe both the x and

y directions, but the ICs only vary in the x-direction, so the effective resolutions

along a given direction are N = 32 and N = 128. Both the higher resolution cases

show significantly less numerical diffusion than their low resolution counterparts.
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Sod Shock Tube

Shocks are a common feature of many astrophysical systems, found in cosmic

filaments, gas falling into dark matter halos, the formation of stars, and the

supernovae at the end of stellar lifetimes. The Sod shock tube (Sod, 1978) sets

up a simple 1D shock, with a well defined solution to the evolution of the density,

velocity, and pressure.

The initial conditions consist of two regions, each that fill half of the box. The

velocity is zero everywhere. The left hand side of the tube has density ρL = 1 and

pressure pL = 1, with the right hand side of the tube at ρR = 0.125 and pR = 0.1.

These are run using adiabatic constant of γ = 5/3, and CFL coefficient of 0.4,

meaning the time step is two fifths of the value strictly required by the time step

condition. The adiabatic gas constant is the ratio of the specific heat capacity at

constant pressure CP, of the gas, to the specific heat capacity at constant volume

CV , or γ = CP/CV . Figure 3.10 shows the results from both the first order LDA

and N schemes, compared to the exact solution for the Sod shock tube. I have

also included results from the 1D Roe solver. The LDA results are shown as dots,

with N = 64 vertices in the x-direction in blue, and N = 128 in red. The N-scheme

results are represented by crosses, in green (N = 64) and cyan (N = 128). The

black solid lines give the exact solution, while the dashed lines show the results

for the first order Roe solver, for N = 64 and N = 128 respectively. Below each

panel, I show the difference between the numerical and analytic solutions. The

results from the Roe solver largely match the results from the RD solvers, with

slightly less softening of the sharp profiles. This difference is caused by the Roe

solver being applied to truly 1D grid, whereas the RD solvers are run on a pseudo

1D mesh, where there is no variation in the y-direction. There is a small amount

of numerical dissipation from material flowing in the y-direction, even though the

resultant variation in that dimension is zero.

There is clear evidence of spurious oscillations at x = 0.5 for the LDA1 solver,

as predicted, but it decreases with better spatial resolution. The N-scheme does

not show these structures, as expected, but the profiles at the transitions between

solution phases do show smoothing. This is present in both LDA and N-scheme

solvers, as well as in the Roe solver solution. The smoothing is improved in

all cases by the increase in resolution, and is caused by the numerical diffusion

discussed in with the Gaussian pulse test. Further increasing the resolution could

improve the sharpness of these profiles. The systematic differences discussed here

149



0.2

0.4

0.6

0.8

1.0

Exact
Roe1, 64
Roe1, 128
LDA1, 64
LDA1, 128
N1, 64
N1, 128

0.1
0.0
0.1

0.0

0.2

0.4

0.6

0.8

1.0

v x

0.0

0.5

v

0.2

0.4

0.6

0.8

1.0

P

0.0 0.2 0.4 0.6 0.8 1.0
x

0.1
0.0
0.1

P

Figure 3.10 Sod shock tube for the first order LDA and N schemes (in pseudo
1D), and the Roe solver (in true 1D). N = 64 and N = 128 vertices
in the x-direction. Dots show LDA results (blue for N = 64 and
red for N = 128), and crosses N-scheme results (green N = 64 and
cyan N = 128). Solid black line is the exact solution. From top to
bottom, major panels show density, x-velocity and pressure, with
the minor panels showing the difference between the numerical and
exact solutions φX = Xnum − Xexe, for each property.
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do not change significantly with time.

In Figure 3.11, I show a comparison of results from the first and second order

solvers. Even at this low resolution, the LDA2 solver does not show the spurious

oscillations found with LDA1, demonstrating a key advantage of the second order

formulation. Once again LDA2 shows more diffusion, as discussed with the

Gaussian pulse test. This manifests as the smoother transitions at the region

interfaces. The N1 and N2 results are essentially identical, showing no significant

improvement in recovering the profiles at the interfaces. Overall, the RD solvers

can reproduce the fundamentals of the physical shock, with only small spurious

features in schemes known to not handle shocks well. Therefore, in more complex

situations, it should be able to handle shocks well.

3.5.2 2D Tests

The tests discussed so far demonstrate how well it recovers solutions that are well

known for 1D flows, where the exact solution can be known. The key difference

that this RD approach has, compared to the standard mesh based methods of

most approaches currently used in the field, is the truly multi-dimensional way

in which the equations are solved. With the 2D tests discussed in this section,

it is possible to demonstrate the ability of this solver to handle complex multi-

dimensional flows.

Kelvin Helmholtz Instability

Kelvin-Helmholtz instabilities form at the interface between shear flows. These

occur in terrestrial and astrophysical contexts, such as between cloud layers in

our atmosphere, or, at the other end of the size scale, in jets from AGN. This

test sets up such a scenario, with two regions of gas moving alongside each other

in opposite directions. The periodic box of side length Lx = Ly = 1 has a central

region, with boundaries 0.25 < y < 0.75, with density ρ0 = 2, moving in the

x-direction with velocity vx0 = 1. The outer region is moving with velocity

vx1 = −1, and has density ρ1 = 1. The difference in density is not important for

the instability itself, but is useful in observing the mixing of the two flow. To

generate the instability in a systematic way, a very small transverse velocity is

introduced, with sinusoidal variation in the direction of the flow. The instability

is expected to develop into a spiral like structure, as the two flow mix at the
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Figure 3.11 Results from the the Sod shock tube for the second order LDA and
N schemes, with comparison to the first order counterparts.
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boundary. The main quantitative test of the results is to compare the growth

of transverse kinetic energy. This can only be done while the instability remains

linear. Other than that, qualitative comparisons are limited to the sharpness

of the boundary between density components, as a measure again of numerical

diffusion.

The results of evolving this shear flow setup for the various solvers are shown in

Figure 3.12 for N = 64 × 64, with LDA1 (top left), LDA2 (bottom left), N1 (top

right), and N2 (bottom right). The expected structures form very clearly in the

LDA cases, with the winding structure recovered down to a few cells across. The

N scheme results show much less structure, with only the broad curling of the flow

being recovered. This is caused by the numerical diffusion of the scheme, which

the second order formulation does not significantly change. The LDA results can

resolve the structure in the greatest detail, and so are favourable for problems

that involve complicated flows, without any shocks. Running the same test with

a blended scheme largely reproduces the LDA results, as the blending favours

those residuals in these conditions.

The total kinetic transverse energy, found simply by summing the y-direction

kinetic energy of each vertex, should grow exponentially (McNally et al., 2012).

Figure 3.13, which plots the total transverse kinetic energy Ktot for different

resolutions, shows this growth between t ≈ 0.3 and t ≈ 1.2. The exponential

growth appears linear in this log scale. Before this time, the kinetic energy is

dominated by the initial sinusoidal perturbation. After this point, the growth

becomes non-linear, as the initial turnover of the instability forms the more

complex spiral structures. This time is earlier for higher resolutions, as finer

structures are recovered.

An extensive resolution test of the LDA1 solver is shown in Figure 3.14, with

resolutions N = 32 × 32 (top left), N = 64 × 64 (top right), N = 96 × 96 (bottom

left), and N = 128 × 128 (bottom right). The results appear consistent across

the increasing resolutions, with the instability developing in the same place in

each case. Even in the lowest resolution case, the spiral structure forms. The

density contrast is present until the spiral is less than 2-3 vertices across, when

the structure diffuses into the background. The higher resolution cases can

resolve more detail within the instability, but even at low resolution the numerical

solution retains a strong level of fine structure. However, in the N = 96 × 96 and

N = 128×128 cases, secondary instabilities can be seen to develop. These develop

from the small variation in the boundary, created by the positions of the vertices.
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Figure 3.12 Kelvin-Helmholtz instability for the first (top row) and second
(bottom row) order LDA (left column) and N-scheme (right
column) solvers. The color scale shows variation in density.
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Figure 3.13 Total transverse kinetic energy for resolutions N = 32 (blue), N =
64 (orange), N = 96 (green), and N = 128 (red). The growth
converges with resolution, while the non-linearity sets in earlier for
higher resolution.

The variations create high frequency instability modes, which grow in these higher

resolution cases. In the low resolution cases, the same variations are present, but

the higher numerical diffusion means that they dissipate into the background flow.

The LDA results across the board show erroneous stripe like structure forming

at the knee of the instability. These striped spurious oscillations in the solution

similar to those seen in Sod test. They become more pronounced the higher the

resolution. In the test cases shown so far, the structured mesh has been used to

make the boundary between flows as clean as possible. A random distribution of

vertices would lead to a ragged edge, which has the potential to trigger instabilities

at shorter wavelength modes, as discussed above, which make analysis of the

results more difficult. A common technique to avoid this problem is to smooth

the boundary layer with an exponential density and velocity profile. This smooths

out any ragged edge of the two flows, and ensures the stimulated instability mode

will dominate the evolution.

The smoothed boundary is achieved by defining two new functions, f (θ) and g(θ).
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Figure 3.14 Kelvin-Helmholtz instability for the first order LDA solver, for
different spatial resolutions, with N = 32×32 (top left), N = 64×64
(top right), N = 96 × 96 (bottom left), and N = 128 × 128 (bottom
right). The color scale shows variation in density.
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The first of these has the form

f (θ) = e−1/θ, (3.79)

where theta is limited to 0 ≤ θ ≤ 1. The second function is given by

g(θ) =
f (θ)

f (θ) + f (1 − θ)
. (3.80)

Together these are used to smooth the density and velocity boundary between

the sheer flows by setting the density and velocity respectively as

ρ(y) = (ρ0 − ρ1)g

(
1

2
+

4y − 1

4d

)
g

(
1

2
−

4y − 3

4d

)
+ ρ1 (3.81)

and

vx(y) = 2vx0g

(
1

2
+

4y − 1

4d

)
g

(
1

2
−

4y − 3

4d

)
− vx0. (3.82)

The width of the boundary layer is dictated by d. Results using this smoothed

boundary are shown in Figure 3.15. A clear effect of the smoothed boundary is

the equivalent smoothing of the boundary between the spiral structures. As the

width of the boundary layer d is decreased, the results converge on the original

solution. The higher frequency modes, which grow in the higher resolution cases

above, are completely absent with these smooth ICs. The spurious oscillations

at the knee of the instability are also suppressed, thanks again to the smooth

transition removing the density discontinuity.

So far I have shown how well the different RD schemes perform with the KH

test. In Figure 3.16 I show a comparison to the Meshless Finite Mass (MFM)

solver described in Section 2.3.2. These all show density contours based on the

underlying distribution of vertices, or the free moving particles in the MFM

cases, instead of the previous Voronoi tessellations. While the tessellations better

represent the discretisation used by the RD solvers, they do not work as well for

the particle based results. I have switched to this approach to provide the best

comparison between the results. The left hand column shows results from the

LDA1 solver using N = 642 and N = 1282 vertices. The right hand column shows

results from the MFM solver. These runs were produced by a collaborator using

identical ICs, except for the third dimension. The results from the non-RD solvers

use a 3D box, with five layers of particles. Each layer has the same setup in the
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Figure 3.15 KH instability from smooth initial conditions at different resolu-
tions. These are N = 32 × 32 (top left), N = 64 × 64 (top right),
N = 96 × 96 (bottom left), and N = 128 × 128 (bottom right).
The higher mode instabilities are completely gone, and the stripe
structures are significantly reduced.
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x and y dimensions, so effectively recreate a 2D problem, since the conditions do

not vary in the z-direction. During the tests, very few particles moved between

layers, so these setups still provide an effective comparison to the truly 2D RD

solver results.

The MFM results show significant disruption of the spiral instability structures by

secondary modes. The MFM does not experience the numerical dissipation found

in the RD methods, due to its Lagrangian nature, and so any small variation

in the initial state will grow into these shorter wavelength instabilities. Small

differences can also be introduced by the method itself, since it is a numerical

approximation, and these can also contribute secondary instability modes. These

dissipate in the LDA1 runs, due to the numerical dissipation. This dissipation is

an important property, of the method, to keep in mind. The RD solver results

do not produce these undesired modes in this case, but they would also suppress

such modes even if they were introduced on purpose, so the choice of which solver

handles the situation ‘better’ depends on the specific conditions that one wants

to model. For this test, the RD solver arguably resolves more of the fine structure

of the main instability, even though the Lagrangian MFM solver naturally refines

resolution. The strength of the multi-dimensionality of the RD solver is therefore

clearly on display in these results. It is able to resolve the spiral structure down

to the point where each density component is only a 3-5 elements across.

Sedov Blast

The Sedov blast (Sedov, 1959) replicates an explosion in a zero pressure

environment. It reproduces conditions similar to the explosion from a highly

idealised supernova. This is achieved with a static, uniform density and pressure,

background medium at all positions. The explosion is triggered by injecting a

large amount of energy into the centre of the domain. In this case, I do this

by setting the pressure to an extreme value. Ideally the pressure would only be

injected into one vertex, to replicate a point explosion, but when this is done the

initial propagation of the explosion can only follow the connections to the nearest

vertices, leading to highly asymmetric wave. To avoid this, a circular region is

defined, within which the energy is injected. The region is large enough that the

outward flow is approximately radial, but small enough that the analytic solution

is still applicable.

The explosion is expected to create a spherically expanding wave with a shock at
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Figure 3.16 KH instability from the smooth initial conditions, comparing the
LDA1 solver (left column), to the MFM solver (right column). Top
row shows results for N = 642, bottom row for N = 1282.

160



the expansion front. The velocity at which the front move is set by the density of

the background medium and the initial energy of the explosion, with the radius

of the blast wave given by

r(t) = λ
(

Et2

ρ0

) 1
5

. (3.83)

Here I denote the total energy of the explosion by E , and the background density

with ρ0. The coefficient λ depends on adiabatic gas constant γ, at λ ≈ 1.12 for

the γ = 5/3 used here. Behind the shock front is an exponential density profile,

falling to close to zero at the centre of the explosion.

In Figure 3.17, I show a comparison of the propagation of the explosion for

three spatial resolutions, N = 642 (left column), N = 1282 (middle column),

and N = 2562 (right column), for the N1 solver. The results from the N2 scheme

are effectively identical in this comparison, so are not shown. The LDA1 and

LDA2 schemes do not produce stable results, due to their poor handling of strong

discontinuities. The blended schemes heavily favour the N-schemes in this test,

and so produce results identical those shown for N1. The structure of the blast

wave is recovered at all resolutions, with the dense wave sweeping up material as

it moves radially outwards. As resolution is increased, the basic structure does

not change, but the density profile does narrow. The narrower profile also shows

a higher peak density. This is shown in more detail in Figure 3.18. The key result

from this comparison, however, is the consistency between resolutions. The blast

wave is in essentially the same position at a given time, though the extent of the

profile differs.

The solution is azimuthaly symmetric, so I can simply compare the radial density

profile to the predicted solution. This is shown in Figure 3.18, with the analytic

prediction (solid black line), and results for the different resolutions as dash-dot

lines, with N = 64×64 (blue), N = 128×128 (orange), and N = 256×256 (green).

The basic structure of the solution is recovered at all resolutions, but the profile

of the front is significantly smoothed at N = 64 × 64. At that resolution the

peak is at the correct position, but at higher resolutions the peak lags behind

the predicted position by a small amount. The density peak is higher at higher

resolutions, and the width of the profile approaches the predicted shape. The

profile behind the front roughly follows the predicted profile in all cases, but with

a very small offset. The total energy of the initial injection is exactly equal in all

cases, but the exact shape of the region it is inserted into will be slightly different.
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Figure 3.17 Sedov blast density results with increasing resolution, N = 64 × 64
(left column), N = 1282 (middle column), and N = 2562 (right
column). Time increase downwards, with snapshots at t = 0.0002,
t = 0.005, and t = 0.01.
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Figure 3.18 Radial density profile, compared to the analytic prediction (solid
black line). Results are shown for the three resolutions, N = 642

(blue), N = 1282 (orange), and N = 2562 (green).

This, and the fact that the initial region is not a point, as the solution assumes,

likely cause the differences between resolutions.

I compare the RD results to the MFM solver, and the related Meshless Finite

Volume (MFV) solver (Hopkins, 2015), using tests run by a collaborator. In

Figure 3.19, I show results for the different solvers at three resolutions. Overall,

the MFM and MFV solvers reproduce a sharper discontinuity at the blast front,

particularly at lower resolutions, with slightly more variation within the density

structures. Both of these features can be explained by the Lagrangian nature of

these solvers. The motion of the underlying particles allows for natural resolution

adaptation, such that the high density shock front is resolved by a greater number

of elements. At the lowest resolution, the Lagrangian solvers show more variation

from the spherical shape of the blast, while the N1 solver produces a regular

shape, even with a relatively small number of elements.

Figure 3.20 shows a comparison of the radial profiles for the different solvers. From

left to right, I show results for N = 642, N = 1282, and N = 2562 vertices/particles.

At low resolution, we see that that the MFM results lag behind the predicted

solution, while the MFV and N1 results more closely replicate the expected result.
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Figure 3.19 Sedov blast for the N1, MFM and MFV solvers, using N = 642

(top row), N = 1282 (middle row), and N = 2562 (bottom row)
vertices/particles.
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Figure 3.20 Radial density profile, compared to the analytic prediction (solid
black line). Results are shown for the three resolutions, N = 642

(left column), N = 1282 (middle column), and N = 2562 (right
column).

As mentioned above, the MFM and MFV solvers produce narrower peak profiles.

This is most clearly seen at the higher resolutions, where the MFM results, in

particular, produce a very sharp blast front profile. At this high resolution, the

results shown only minimal differences between methods. While the RD solver

produces a slightly more smeared out profile, for the reasons discussed above, it

still produces results that can compete with state-of-the-art solvers such as these.

With further optimisation, and the potential for conversion to a moving mesh

method, this RD approach could become even more effective.

Noh Problem

The Noh problem (Noh, 1987; Paardekooper, 2017) tests the ability of a solver

to model the conversion of kinetic energy into internal energy. This is similar to

the Sedov test, which features the conversion of internal energy to kinetic energy

in the injection of energy through pressure. It consists of a uniform density box,

where the initial velocity at every position points radially inwards towards the

centre of the box. The ideal initial conditions have zero pressure throughout the

box. I use a cube box of side length l = 2, with initial density ρ0 = 1. When

the pressure is exactly zero, the K-matrix becomes singular, and so cannot be

inverted. Instead, I initialise the problem with a negligible, but non-zero, pressure

of P = 10−6. The adiabatic gas constant is taken to be γ = 5/3. With these initial

conditions, the cylindrically symmetric exact solution (Paardekooper, 2017) is as

follows. At time t after the start of the problem, the density at radius r from the
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centre of the box is

ρ(r, t) =


16 if r < t/3

1 + t/r if r ≥ t/3
, (3.84)

the velocity magnitude is

|v(r, t)| =


0 if r < t/3

1 if r ≥ t/3
, (3.85)

and the pressure is

P(r, t) =


16/3 if r < t/3

0 if r ≥ t/3
. (3.86)

These equations describe the build up of a uniform density cylinder in pressure

equilibrium. The cylinder expands as material flows towards the centre, with a

shock at its surface. Material outside the cylinder continues to flow inwards at

its initial rate.

I show the difference in the density and pressure results with increasing resolution,

for the first order N scheme, in Figure 3.21, with N = 322, N = 642, N = 1282

vertices, at t = 0.8. I only show the N1 solver here, because the LDA solver

struggles with the extreme conditions at the very centre of the box, when the

shock first forms. The N2 results are not significantly different, for this test.

The density inside the shock increases with resolution, suggesting this density is

somehow dependent on the formation formation of the shock at the centre of the

box. At lower resolution, this initial radius will be larger, since the elements are

larger and the central shock will form over a wider physical area. The shock front

at the surface sharpens with the increasing resolution. The shock is resolved by

a approximately 3-5 mesh vertices, represented here by their dual Voronoi cells.

There is some variation in density within the cylinder, particularly in the centre,

where there is a small low density cavity. This region gets smaller with increased

resolution. This is likely an artifact of the finite resolution. When the initial

flow builds up material in the innermost region, material can only flow in a small

number of directions, limited by the exact structure of the mesh. The inward

radial flow is therefore not well resolved, leading to this less exact solution. The

position of the shock is not well defined when the circular shape is only resolved

by a few vertices. The pressure, on the other hand, is significantly more uniform
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Figure 3.21 Density (top row) and pressure (bottom row) distributions from the
Noh problem at t = 0.8s, using the N1 solver, for resolutions using
N = 322 (left), N = 642 (middle), and N = 1282 (right) vertices.

across the whole cylinder, demonstrating the expected pressure equilibrium. The

lower density and equal pressure show that the temperature in the inner region

must be higher. This heating phenomenon is known as ‘wall heating’, and has

been previously identified in a number of Riemann-type hydro-solvers (Noh, 1987;

Rider, 2000; Stone et al., 2008).

As mentioned before, the solution is radially symmetric about the centre of

the box. I compare radially averaged profiles of the numerical solution to the

analytic solution in Figure 3.22. The top panel shows the radial average of the

density, the middle shows the magnitude of the velocity, and the bottom shows

the pressure. Below each panel, I show the difference between the numerical and

exact solutions φ = Xnum − Xexe for each property. I show the absolute difference,

instead of the fractional difference, because large parts of the exact solutions

are zero, which produce an undefined fractional difference. These show several

important features, most notably how the density within the shock increases as

the resolution increases. Some of this can be explained by the decreasing width of

the transition zone. As discussed above, the shock at the surface of the cylinder

is resolved by several vertices, instead of the sharp transition of the physical

shock. This means that the numerical solution has some material spread out
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beyond the expected position of the shock, which is caused by a combination of

numerical dissipation and the requirement that space be discretised into finite

regions. This alone cannot contribute enough material to explain the difference.

The velocity, shown in the middle panel, matches the expected values very well,

with the exception of the transition zone, where the change from static to inwardly

moving is once again spread out.

The position of the shock is replicated reasonably well, although its exact position

in the numerical results is complicated by the widening of the shock’s profile.

As the resolution increases, however, the shock narrows, pulling in towards the

predicted position. The inner edge of the shock remains in the same place,

suggesting the numerical solution will converge on the analytic prediction with

further increases in resolution. This pattern is the same for the density, velocity

and pressure profiles. Beyond the shock, the density profile matches well until the

outermost radii, where the numerical density drops below the exact solution. This

becomes more pronounced at later times, as the cylinder expands further, and is

likely caused by interference from the boundary conditions. I set the boundary

vertices to constantly hold the initial conditions, whereas previous works have

force the boundaries to the exact solution (Paardekooper, 2017).

Blob Test

The blob test combines both Kevin-Helmholtz instabilities and Rayleigh-Taylor

instabilities by embedding a cold cloud within a hot flow (Agertz et al., 2007).

This test consists of a high density, static, spherical cloud ρH , placed within a

low density background ρL which moves with a bulk velocity v0. In 2D this cloud

is represented by a disk. The high density region is an order of magnitude more

dense than the background medium. The whole region is in pressure equilibrium,

with the low density wind much hotter than the cold cloud. The background

medium is given a supersonic initial velocity, with Mach numberM = v0/cs, where

cs is the sound speed of the gas. Astrophysically, this corresponds to high density

clouds moving relatively supersonically through a lower density background, such

as a region of cold ISM close to a supernova.

The initial linear stages of the evolution of this set up can be predicted with

some degree of confidence (Agertz et al., 2007). The collision of the supersonic

flow with the static density front will produce a bow shock upwind of the cloud,

with a subsonic region behind the front. The cloud itself will be accelerated
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Figure 3.22 Radial profiles from the Noh problem, showing the density (top),
velocity magnitude (middle), and pressure (bottom). The blue dots
show the results for N = 322, the orange show N = 642, the green
show N = 1282, and the red N = 2562. The black line shows the
exact solution. Below each profile is the residual φ = Xnum − Xexe

for each property. 169



by its interaction with the flow. Kelvin-Helmholtz (KH) instabilities, discussed

in isolation in Section 3.5.2, build at the boundaries between shear flows, such

as the boundary between the cloud and the background medium, where the

radial vector is orthogonal to the flow. At the same time, Rayleigh-Taylor (RT)

instabilities evolve where the cloud is pushed into the downwind low density

medium (Chandrasekhar, 1961). Together these instabilities lead to the breakup

of the original cloud. Tendrils of high density are pushed downwind, and the

original sphere is crushed by the incoming flow, and is eventually destroyed. The

lower limit of the time for this to happen is predicted by the crushing time (Agertz

et al., 2007)

τcr =
2rclχ1/2

v0
, (3.87)

where r is the radius of the cloud, χ is the initial density contrast, and v is the

relative velocity of the cloud and the background flow. The crushing time comes

from the time it takes for the wind to cross the extent of the cloud, scaled by the

ratio of cloud density to wind density. A greater difference will result in a longer

time to disrupt. This can be used as a reasonable gauge of time scale for the cloud

to be disrupted. The full physical evolution of the cloud is highly non-linear, and

so cannot be easily predicted.

In Figure 3.23, I show the results for the blob test, using the N1 solver at three

resolutions, with N = 322, N = 642, and N = 1282. These are shown in columns

from left to right. Time increases as we go down the panels, with the top row

showing the initial conditions, the middle showing the state at t = 1τcr, and

the bottom row at t = 2τcr. I use periodic boundaries to produce the results

shown here. Inflow/outflow boundaries are currently in the process of being

implemented and tested. The lowest resolution case inevitably starts with a very

irregular cloud, rather than the desired spherical cloud. The higher resolution

cases have much more regular initial shapes. It moves out from the initial density

discontinuity at the windward cloud surface, eventually overlapping the edges of

the box. By t = 1τcr (middle row), the initial irregularities have largely been

smoothed out, with only small remnants such as the high density prominence at

about (2.5, 4) in the central panel.

At this time, Rayleigh-Taylor instabilities are starting to develop in the medium

and high resolution cases. Two tails can be seen forming behind the main cloud,

as some material flow downstream from the cold cloud. Something similar is

170



Figure 3.23 Disruption of cold gas cloud by hot flow using the N1 solver. Time
increases downwards, with the top row at t = 0, the middle at
t = 1τcr, and the bottom at t = 2τcr. Each column has a different
resolution, with, from left to right, N = 322, N = 642, and N = 1282.
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happening in the lower resolution case, although the effect is less clearly defined.

The bulk of the cloud remains intact at this point. In the highest resolution case,

the cloud is being flattened, more so than at the lower resolutions. We see that

the front is being forces downstream by the oncoming hot wind, and that this

process is changing the shape of the cloud, to produce this more elongated shape.

The lower resolution cases do not have enough elements in the cloud to resolve

this effect well.

The cloud is significantly more disrupted in the last snapshot, at t = 2τcr.

The lowest resolution case shows the cloud almost completely dissipated into its

surroundings, while the medium and high resolution cases show more structured

remnants. The differences are likely caused by the small number of resolution

elements in the low resolution case being less able to shield the material behind

them from the wind. The tails in the higher resolution cases are clearer at this

later time, as more material is stripped from the cloud. Even in the high resolution

case, the density of the cloud itself is much diminished, dropping from the initial

ρ = 100 to ρ = 60. The point of cloud destruction is not well defined, but it is

clear the process is well on it way to completion by t = 2τcr, which fits reasonably

well with the estimation of tcr as a crushing time.

These runs are close to the limit of the abilities of the code, in terms of number

of time steps and resolution. Higher resolutions can be run, but the time to

complete this test becomes prohibitively high. The problem has not converged

with resolution, so further tests are required to understand the results in full, once

greater resolutions can be reached through optimisations of the code. However,

with the results presented here, we can see that the solver performs well at

resolving the bow shock and tails, even at very low resolution.

Dynamical Friction

Here I show the first results for the dynamical friction (DF) test. In Chapter 2, I

propose using this setup as a standard test of hydrodynamics and gravity. I place

a Plummer potential for a mass Mp in a uniform density ρ0 tube, at pressure

P0, and with sounds speed cs. The gas is given an initial bulk velocity V0, such

that it has Mach number M = V0/cs. There is no fully tested implementation of

gravity in the code at this point. Instead, I apply the appropriate acceleration to

the gas at the position of each vertex in the mesh. This is simply the acceleration

from the Newtonian force created by the Plummer potential. For example, the
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acceleration in the x-direction takes the form

ax = −(x − x0)
GMp

(r2 + ε2)3/2
, (3.88)

where G is the gravitational constant and epsilon is the softening length of the

potential. The gas does not interact with itself gravitationally, so this alone can

handle the gravity part of the DF test. As discussed in detail in Chapter 2, the

problem is effectively scale free, being completely described by the Mach number

M, and the A parameter, which link the perturber mass to the gas state and the

softening of the potential. It is calculated from

A =
GMp

c2s rs
. (3.89)

Any setup with the same Mach number and A value should produce the same

over-dense wake. The results shown here are for cases run using A = 0.1, at

M = 1.3. As this is within the linear regime (A � 1), these can be compared

directly to the analytic solution (Ostriker, 1999), both for the structure of the

wake. The structure of the wake is recovered well, shown in Figure 3.24, although

there is some evidence of the smeared density profile discussed in the previous

chapter. The Mach cone and spherical parts of the wake are clearly present.

The resolutions used here are far below those used in the previous chapter, here

using N = 642 and N = 1282. The resolution equivalent to that previous work

would be N = 5122, beyond what the code is currently capable of in a reasonable

time frame. The fact that this spurious effect is of the same order at this lower

resolution demonstrates the potential advantages of this truly multi-dimensional

solver.

The low density trough in front of the leading edge of the cone is a new feature,

and it is not yet clear what is causing it to form. The gravity implementation used

here creates the expected gravitational accelerations, when checked with simple

setups, and correctly reproduces a spherical density profile when there is no initial

bulk flow. The trough is therefore a numerical artifact created by the scheme.

The formation of the trough is independent of the underlying grid, forming no

matter the structure of the grid. Further work is required to understand the

differences between the RD solver results and the previous results from the MFM

solver, as well as the differences between the RD numerical results and the analytic

prediction.
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Figure 3.24 Gravitationally induced wakes from the N1 solver, with N = 642

(left) and N = 1282 vertices. Upper Panels: Colours show the
over-density α, with the analytic prediction shown as white dashed
contours. Lower Panels: Difference between the numerical and
analytic wakes φ = αnum − αana.

In Figure 3.25, I show the force from the gravitationally induced wakes, for both

N = 642 and N = 1282. The force is found using the following process. The net

force from mass at the position of every vertex is calculated by direct Newtonian

force summation. The mass is the density at that position, multiplied by the

dual volume of that vertex in the Voronoi mesh. As a reminder, the Voronoi

mesh is simply the dual of the Delaunay triangulation used in the RD method.

All vertices inside the softening scale rs are excluded. In these cases, the force

from the N = 1282 case has the expected net zero force in the initial conditions,

but the N = 642 case shows a large offset from zero. This is caused by a single

vertex that is coincidentally very close to the edge of the excluded region. At

this low resolution, a single close value will have a dramatic effect on the net

force. A symmetric vertex distribution would remove this problem, but could

also introduce spurious numerical artefacts, such as the carbuncles mentioned

earlier. Instead, I show the force with the initial value subtracted from it. Since

the mesh is static, the asymmetric contribution from the background density

will be exactly constant. In my previous Lagrangian work, the set of particles

move, so the exact background level varied with time. The force is given in its

dimensionless form, normalised by

F0 =
4πρ0

(
GMp

)2
c2s

. (3.90)

The N = 642 force is shown in red, and the N = 1282 in blue. Both resolutions

systematically over-produce the net force on the perturber, except at very early
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Figure 3.25 Upper panel: Net force on the massive perturber. Results for N =
642 (red) and N = 1282 (blue) vertices using all particles, or for the
same resolutions, but using just those behind the perturber (orange
and green respectively). Lower panel: Residual between numerical
and analytic results φ = (Fnum − Fana)/Fana.

times (t < 3tc), where they briefly under-produce the force. The force at very

early times is unreliable, because the wake is either within, or will not have

extended much beyond, the softening scale of the potential. At later times, the

force is clearly too high, and gets slightly higher with increased resolution. The

fractional residual φ = (φnum − φana)/φana between the numerical and analytic

results increases with time, showing that the result gets proportionally worse

with time. However, the trajectory of the residual, while still increasing, does

appears to be leveling off in all cases.

The second set of forces, this time with N = 642 in orange, and N = 1282 in green,

have the force calculated using only those vertices behind the perturber. This

excludes all particles with s > 0, as well as those inside the softening scale. This

excludes much of the low density trough in front of the cone, and does improve

the match between the forces somewhat. However, there is still a significant offset

between the results, which must be caused by inconsistencies in the structures of

the numerical and analytic wakes. Once again, the higher resolution results are

a slightly worse match.

The early results for DF with the RD solver are very promising, but further
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work is need to understand why the numerical solution does not fully match the

analytic prediction. It could simply be a matter of resolution, in which case future

runs, produced once the code is optimised for larger problems, should produce a

better match. On the other hand there is little difference, in the actual shape of

the wake, between the two resolutions shown here. There is also the curious low

density trough, that was not found in my previous DF work. This also remains

largely unchanged between resolutions.

3.6 Conclusion

In this chapter, I introduce the fundamental concepts behind the development of

the residual distribution hydrodynamics solvers, including the one dimensional

equivalent and the two dimensional form. This solver is truly multi-dimensional,

as it avoids all dimensional splitting, and contains a whole family of methods

that are all built around the same base: calculating a residual over a triangular

element, in a single calculation, and then distributing this to the vertices of the

element, to update the solution to the set of PDEs that are being solved. I cover

the various choices that can be made when designing a specific implementation

of such a solver, which define the resultant characteristics and abilities of the

code. This includes the required linearisation of the Euler fluid equations, first

laid out by Roe. I also introduce Delaunay triangulation, with a brief description

of its definition, properties and construction. I discuss the extensive testing I

performed on my RD solver implementation, covering one and two dimensional

test cases. These tests demonstrate the strengths of the solver in recovering

multi-dimensional flows, while also handling shocks and other extreme situations

well. The RD implementation that I describe and test in this chapter represents

what the solver can do without significant optimisation and tailoring to a given

problem. It performs well when compared to current stat-of-art solvers, and it

can resolve complex structures at low resolution. There is still significant scope to

optimise the RD solvers to any desired problem, with a straightforward framework

for implementing different distribution and blending schemes. The fact that it is

built around an unstructured mesh makes it the perfect candidate for conversion

into a moving-mesh scheme. It thus has great potential for further improvement.

Overall, the RD solvers presented in this implementation are well on their way

to being powerful new tools for running astrophysical simulations of a range of

scenarios.
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Chapter 4

Extensions to RD Approach

4.1 Introduction

In the previous chapter, I introduced the residual distribution family of solvers,

and derived the specific form of solution for the 2D Euler equations, alongside a

large number of aggressive tests that demonstrate it strengths and weaknesses. In

this chapter, I describe the extensions that I have derived for, and implemented

into, the basic form of the solver. This includes the investigation of variable time

stepping mechanisms, to improve the computational efficiency of the approach,

and the derivation and implementation of the 3D form of the solver. I also briefly

discuss the most effective strategies for introducing the effects of gravity.

4.2 Variable Time Stepping

As discussed before, the time step is defined by the CFL condition, requiring

that the numerical domain of dependence encloses the entire physical domain

of dependence. In the standard formulation, the time step at which the fluid

state at every vertex is updated, is dictated by the smallest time step required

by any vertex in the mesh. In scenarios with regularised meshes, or with only

small variations in density and velocity across the grid, this implementation is not

particularly significant, as all vertices will require similar time steps. However,

scenarios with extreme density and velocity contrasts will be computationally

inefficient to run. If only a few cells require a time step that is orders of magnitude
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shorter than the rest of the mesh, then the residuals will be recalculated far more

often than is numerically required for many triangles. This problem is encountered

in all numerical methods for solving fluid dynamics problems. There is always

some limit on the time step at which the cells or particles can be updated, and

large variations in this number lead to inevitable inefficiencies. To combat this

problem, and produce methods that can utilise the available computational power

more efficiently, many numerical methods have introduced mechanisms that allow

different fluid elements to be updated with different time steps.

Typically, these approaches divide elements into groups based on their required

time step, and then recalculate the evolution of the state based on these time

step bins. For simplicity I will only discuss grid based approaches from here,

but equivalent particle methods are widely used. As discussed in detail in the

introduction, in a standard cell based approach (for either a structured static

mesh, or an unstructured or even moving mesh), the fluid state is updated by

calculating the flux of material through the faces of cells. A simple way to

implement a varied time step in such methods is outlined in Springel, 2010.

You first bin each cell by the required time step, then to recalculate the flux

through faces based on the smallest value either side of that face. The fluid state

is still updated at the smallest time step of the whole mesh, but the flux is not

recalculated for every face at every small time step. The flux through faces whose

required time step is longer than this is simply kept the same, until it is necessary

to update it. Using old updates is known as drifting, as the state continues on

the same trajectory for multiple small time steps.

To produce the equivalent effect with the RD solver, it is the residual that

is calculated at different steps for different triangles, as this is the analogous

calculation to the flux in the standard grid approach. I have implemented two

novel strategies to achieve this outcome. While both achieve the same end result,

they do so in different ways, and have slightly different properties. Both methods

start in the same way. The minimum time step for every vertex is calculated

using the limit described in the previous chapter. Each triangle is then binned

based on the smallest time step required by any of its vertices. The time step

bins have limits based on powers of two times the overall minimum time step

∆tmin, such that the smallest bin has limits ∆tmin < ∆treq < 2∆tmin, the next bin

has 2∆tmin < ∆treq < 4∆tmin, and so on. Now when the simulation is evolved,

residuals are only recalculated after the lower limit of their time step bin has

elapsed since last calculation. Every triangle is checked, but only some have
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Figure 4.1 The time step bin of the triangle ∆tT is the minimum of the bins
assigned to the vertices of the triangle (∆t1,∆t2,∆t3).

their residual recalculated, which are referred to as active triangles. This saves

significant computational time by not recalculating residuals more frequently than

required. Over the course of the large time step, which is defined as the lower

limit of whichever is the largest time step bin, the following will happen. Taking

the simplest example of only two time step bins, there will be two small time steps

modelled for the one large time step. At the beginning of the large time step,

the residual of every triangle is calculated, but one small time step later, only the

triangles in the smallest bin will recalculate their residual. Another small time

step later, we have completed a full top level time step, and so start the process

over. The way that the residual is passed to the vertices is different for the two

methods I have implemented, which I describe in more detail below. Once the

top level time step has been completed, the binning process is repeated.

4.2.1 Drift Method

The first adaptive time step method effectively ‘drifts’ the states of vertices

associated with triangles in bins above the bottom level. The update is passed

based on the current residual of that triangle, even if that residual has not been

recently recalculated. The updates from long time step bins can be said to drift

the state of the associated vertices because the changes continue along constant

trajectories, as if they are drifting in some direction, without being deflected

by additional forces, hence the approach’s label as the DRIFT method. A 1D

179



representation of the concept of this method is shown in Figure 4.2. The red

discs represent vertices that are in the bottom level, shortest time step bin, while

the blue discs represent those in the top level bin (assuming a two bin system).

The spaces between each disc represents the element for which the residual is

calculated. Time increases in the y-direction, with each row representing the

vertices at a given time. The arrow represents the passing of an update, based

on the element’s residual, to each associated vertex. Solid arrows show the

distribution of residual calculated that time step, while dashed arrows show the

passing of residual calculated at a previous time. For the first small time step

dt, the residual passed to each triangle is exactly the same as it would be in the

original system, but for the second small time step, the residual from the left two

elements are based on an old fluid state. They have not been updated, as the

fluid states at the vertices of these elements do not require the short time steps.

I found that this approach provides a significant boost to performance (see Section

4.2.4), but also that there is a loss of exact conservation. The total mass and

energy of the box change over time, while for the basic universal time step

method preserves conservation to machine precision. The loss of conservation

is caused by the peculiarities of the residual method itself. In typical grid based

methods, where the change in the fluid state of a cell is calculated by estimating

fluxes through the surface of the cell, conservation is trivial to maintain for most

situations. Any material that flows from one cell is added to its neighbour.

Conservation is explicitly maintained across every cell boundary. The residual

method, however, does not maintain conservation across the equivalent structures:

the triangular elements. For a given element the net change in the states of all

vertices, produced by the residual, is not zero. It is zero in the special case of

a steady flow, when the element residual is also zero. Conservation is ensured

between a vertex, and all of its neighbours, but only once all residuals have been

distributed. In the normal, global time step, setup, this is perfectly adequate, as

all residual are recalculated every time step, and so consistent updates are present

everywhere.

However, when I use the DRIFT approach, some updates are based on outdated

residuals. These updates assume vertex states that no longer exist. In the

standard flux approach, this is not a problem for conservation, because even if

the current flux is not exactly physically correct, it is the same incorrect value on

either side of the face. In the RD case, neighbouring triangles are using residuals

from inconsistent states, effectively breaking the guarantee of conservation, that
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Figure 4.2 Stencil for the DRIFT adaptive showing distribution of residual in 1D,
with time increasing in the y-direction. Dots represent the vertices
where the fluid state is held, while the spaces between them in the x-
direction are the elements for which the residuals are calculated. Red
vertices require time steps of dt, and the blue dots 2dt. The arrows
show where residuals are distributed. The solid arrows represents
residuals that have been recalculated that turn, while the dashed line
represents residuals that have not been updated.
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relies on neighbouring triangles calculating residuals from the same states at the

shared vertices. The total change in mass and energy across standard hydro tests

is very small, and does not preclude using this variable time step approach, but

it does add a potential complication to using these RD methods. I discuss the

conservation loss, in more detail, in Section 4.2.3, showing the time evolution of

mass and energy at different resolutions.

4.2.2 Jump Method

The second method, which I refer to as the JUMP method, attempts to avoid

the conservation problem by passing updates for the whole required time step

of the given triangle. Instead of drifting the state of vertices attached to long

time step triangles, the states are only updated by active triangles. Vertices at

the borders between time bins receive updates from triangles at different rates,

sometimes being updated by all associated triangles, and sometimes from a sub-

set of them. This is illustrated in Figure 4.3. The vertex in the central column

is such a boundary vertex. This tests whether conservation can be maintained if

the residuals that are passed are all based on a consistent residual at the time

that they are calculated. Effectively, the main difference is that the boundary

vertices do not receive some of their update until the end of the large time step.

Unfortunately, this is not enough to fully solve the problem, and the conservation

loss persists.

4.2.3 Conservation

I test the effect of the loss of conservation present in the two potential methods.

To do this, and to test how it varies with both the number of time step bins used,

and the resolution of the simulation, I run a set Kelvin-Helmholtz instability

cases. These use the setup described in the previous chapter (Section 3.5.2), but

this time using the DRIFT and JUMP adaptive time step approaches.

Figure 4.4 shows the fractional change in total mass and total energy in the top

part and bottom part of each panel respectively. These results are for the DRIFT

method. The blue line show the change for only one time bin Nbin = 1, orange

for Nbin = 2, green for Nbin = 4, and red for Nbin = 8. The different panels show

results for different resolutions, with the top showing results for N = 322, the
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Figure 4.3 Stencil for the JUMP adaptive time stepping approach. The blue
vertices do not receive updates from the 2dt triangles until the end
of the long time step.
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Figure 4.4 Variation in total mass (upper part of each panel) and energy (lower
part of each panel) using the DRIFT method, for N = 322 (top panel),
N = 642 (middle panel), and N = 1282 (bottom panel). These show
the fractional change from the initial total mass and energy. The
lines show the results for different numbers of time step bins, where
we have Nbin = 1 (blue), Nbin = 2 (orange), Nbin = 4 green), and
Nbin = 8 (red).
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middle for N = 642, and the bottom for N = 1282. Across all resolutions, we

see that the greater the number of time bins, the greater the change in mass and

energy. This fits with the previously discussed reason for the change, as more

bins means more places where there are neighbouring triangles in different bins.

The change is reduced with increased resolution, which is a positive sign. The

variable time stepping is of most use with large vertex numbers, so this reduction

is welcome. The exact change will vary from case to case, depending on the

specific distribution of bins, but in this example, where the total change is shown

over tens of thousands of time steps, the absolute change is very small. It is a

tiny fraction of one percent, and so should not pose a major problem, especially

when high resolution is used. The trend in the absolute change of mass or energy

also varies, seemingly randomly across resolution. For instance the energy in the

N = 642 case oscillates significantly, while the mass simply increases. This is

likely again dictated by the specifics of both the mesh and the problem.

The equivalent JUMP results are shown in Figure 4.5. The same pattern observed

in the DRIFT results is seen here, except for the N = 322 results in the top panel.

For some reason the Nbin = 4 is much worse than all the others. It is not clear

why this is happening in this case, as the other resolutions show the same pattern

as before. Possibly some specific combination of time bins is causing a constant

mass and energy loss that is dominating the change, but at the higher bin number

the higher level bins are counteracting this effect, leading to a much smaller net

change. The results for this method, as a whole, are worse than those for the

DRIFT approach. We see net changes approximately two orders of magnitude

worse in this case. Clearly drifting the vertex states is the better option.

This systematic difference can be seen clearly in Figure 4.6, where I show the

root-mean-square change from one output to the next for the different runs. Each

point represents a different simulation setup. The dots represent the runs with

Nbin = 2, the pluses are Nbin = 4, and the crosses Nbin = 8. The blue points show

results from the DRIFT approach, and red the JUMP method. The improvement

with resolution is clear in all cases. The blue points are all below their red

counterparts, so the superiority of DRIFT is clear.

In the vast majority of the cases shown here, the deviation from the conserved

value is several orders of magnitude below the percent level, even over tens of

thousands of time steps. This shows that, while the approach is not perfect, it

can be used effectively without endangering the accuracy of a simulation. The

underlying method is itself a numerical approximation, so this mechanism can
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Figure 4.5 Variation in total mass (upper part of each panel) and energy (lower
part of each panel) using the JUMP method, for N = 322 (top panel),
N = 642 (middle panel), and N = 1282 (bottom panel). These show
the fractional change from the initial total mass and energy. The
lines show the results for different numbers of time step bins, where
we have Nbin = 1 (blue), Nbin = 2 (orange), Nbin = 4 green), and
Nbin = 8 (red).

186



1e-08

1e-05

M

Drift
Jump
Nbin = 2
Nbin = 4
Nbin = 8

20 40 60 80 100 120 140 160
N

1e-08

1e-05

E

Figure 4.6 Comparison of the root-mean-squared change in total mass for each
simulation. The changes ∆M and ∆E are the change in total mass
and energy from one snapshot to the next, and the RMS is calculated
for all these changes in a given run. Each run has a method, DRIFT
(blue) or JUMP (red), and a number of time step bins, Nbin = 2 (dots),
Nbin = 4 (pluses), and Nbin = 8 (crosses).

simply considered an additional approximation that also contributes a significant

resource advantage. When using this approach, it is important that one always

remembers that this new approximation is present, and monitor its behaviour

when using it on a new problem. If this is done, then the variable time step

approaches described here can be used effectively in future work.

4.2.4 Performance

The main aim of implementing the variable time stepping is to improve the

computational efficiency of the code. This can be simply measured by comparing

the run time for different numbers of time step bins. The precise change in

computational time will depend on the specific problem, as different situations

will produce different time bin distributions. Here I show an example of the

improvement in run time that can be achieved using these methods. In Figure

4.7, I show the time taken to run the same KH problem, against number of time

step bins. Both methods perform very similarly, which is expected, since the

primary speed up comes from the binning mechanism, which is the same in both

cases. Both show a significant decrease in run time from Nbin = 1 to Nbin = 2,

with the time almost halving in this step. The further increases in bin number
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Figure 4.7 Time take to run a Kelvin-Helmholtz (N = 642) test case, with
varying numbers of time step bins, using DRIFT (blue) and JUMP

(orange). There is strong improvement in the run time, as the
number of time bins is increased.

also show improvements in run time, although the effect is less stark.

I show the time step bin of each triangle in the mesh, in Figure 4.8, for the

N = 642 KH test. Blue triangles, of which there are very few, represent tbin = 1,

while orange triangles are for tbin = 2, red for tbin = 4, and grey for tbin = 8.

This distribution is also clearly seen in Figure 4.9, with the bar chart showing

the number of triangles in each time step bin, for the same snapshot. The jump

in performance from Nbin = 1 to Nbin = 2 can be explained by this result, since

all those bins in red and grey will be in the tbin = 2 bin, when there are only

two available. Therefore almost all bins require residual calculations at half

the previous frequency, accounting for the majority of the performance boost.

Another improvement of about a third is found when allowing four bins, which

is explained in the same way, with a slightly lower proportional effect because of

the larger number of orange triangles.

The new time stepping formalism shows a lot of potential for improving the

computational efficiency of this RD implementation. The complex question of

maintaining the exact conservation of mass and energy requires some careful

consideration, but, at this stage, the effect is very small, and the improvement in

performance large enough to justify continued use of the mechanism. A potential

avenue to consider in the future would be the development of a distribution scheme

that can conserve the properties over a single triangle. It is not clear, at this time,

if this is possible within the RD framework.
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Figure 4.8 Left Panel: Triangle time bin, with blue showing the smallest time
step bin tbin = 1, orange tbin = 2, red tbin = 4, and grey tbin = 8.
From this particular time, we can see that only a very small number
of triangles are in the smallest time bin, with the most being in the
top two levels. Going from Nbin = 1 to Nbin = 2, therefore, doubles
the time step for almost all triangles, resulting in the greatest speed
up. Right Panel: Density distribution from the same output, showing
the highest level bins are mostly found in the high density regions.
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Figure 4.9 Bars show the number of triangles in each time step bin, using the
same color coding as the plot of the whole mesh.
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4.3 3D Extension

The solver presented in the previous chapter demonstrates the abilities of the

residual distribution method to solve the fluid equations in a truly multidimen-

sional manner, but only in 2D. Some astrophysical systems can be effectively

modelled using only two dimensions, such as thin discs, where useful results

can be found without calculating flows in the third direction. However, many

more systems, from the cosmic web down to giant molecular clouds, are more

accurately described by the full three dimensional flows. The RD approach

naturally extends to extra dimensions, since the basic form is generalised to any

number of dimensions. The key problem that must be solved is for the form of

the K matrix (see Section 4.3.2).

Since I am now working with 3D flows, the fluid equations must be extended to

include conservation of z-momentum, and z-velocities in the kinetic energy. The

3D form of the Euler equations is given by the fluid variable vector Q, and flux

vectors F (Q) = (Fx(Q),Fy(Q),Fz(Q)), which take forms clearly analogous to the

1D and 2D cases, with additional terms for the new dimension. The fluid variable

and flux vectors are given by

Q =

©«

ρ

ρvx

ρvy

ρvz

ρE

ª®®®®®®®®¬
, Fx(Q) =

©«

ρvx

ρv2x + p

ρvxvy

ρvxvz

ρvxH

ª®®®®®®®®¬
, Fy(Q) =

©«

ρvy

ρvyvx

ρv2y + p

ρvyvz

ρvyH

ª®®®®®®®®¬
, Fz(Q) =

©«

ρvz

ρvzvx

ρvzvy

ρv2z + p

ρvzH

ª®®®®®®®®¬
, (4.1)

where all terms have their usual meanings. Together these describe the conserva-

tion of mass momentum and energy in three dimensions. The corresponding Roe

parameter becomes Z =
√
ρ(1, vx, vy, vz,H). This parameter is used to linearise

the Euler equations, as before. To recap the various terms, which are defined

similarly to their 2D equivalents, but with the addition of the new direction. The

pressure is defined the ideal gas equation of state, as

P = ρ(γ − 1)
(
E −

v · v

2

)
, (4.2)

where the velocity is now v = (vx, vy, vz), and the enthalpy H is

H = E +
P
ρ
. (4.3)
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The sound speed cs of the gas is

cs =

√
γP
ρ
. (4.4)

These describe all physical variables required to model the evolution of an inviscid

fluid. The equation that is being solved is still written compactly as

∂Q

∂t
+ ∇ · F (Q) = 0. (4.5)

In this section, I will derive the formulation of the 3D residual distribution

solver. To the best of my knowledge, this has not been explicitly shown in the

literature to date. This will include the changes to the discrete form of the

fundamental equations, including the calculation of the element residual, and the

various geometric parameters that must be constructed. This is followed by a

description of the steps required to formulate the 3D form of the inflow matrix.

I also present initial tests of the 3D RD solver, comparing results to both the

analytic predictions and the 2D formulation results.

4.3.1 Discrete Update

The 2D formulation of the RD method, laid out in Section 3.2, is easily extended

to three dimensions. The definition of the domain and mesh remain the same,

but now the domain has three dimensions, and mesh is made of simplices that are

now tetrahedrons, rather than triangles. As before the simplices are defined by

the Delaunay condition, which now requires an empty circumsphere, in place of

the empty circumdisk in 2D. The corresponding dual tessellation, once again the

Voronoi tessellation, but in 3D, has dual volumes |Vi |. Construction of this mesh,

still sometimes referred to as a triangulation, is performed using 3D version of

the same techniques as before.

The spatial part of the differential equation is now solved by integrating over

volume, not area. The element residual is effectively unchanged, in that it is

the integral over an element, it is simply that the element has an additional

dimension. When it comes to the form of the update, therefore, the piece-wise

constant integral over the temporal part of the PDE introduces the dual volume,

where before it produced the dual area |Si |. Following exactly the same reasoning

as in the 2D case, it is clear that the intermediate state update, to the fluid state
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at vertex i, is now given by

Q∗i = Qn
i −
∆t
|Vi |

∑
T |i∈T

φi, (4.6)

and the final update by

Qn+1
i = Q∗i −

∆t
|Vi |

∑
T |i∈T

Φi . (4.7)

The dual volume of a given vertex is found by assigning one quarter of the volume

of each associated element to the vertex

|Vi | =
∑

T |i∈T

|T |
4
. (4.8)

The residual is calculated as the sum of contributions from all vertices. The

contribution is defined by the inflow matrix Ki, which combines the Jacobians of

each dimensions, and linearised average state Q̂, which together define

φT =

4∑
i=1

KiQ̂. (4.9)

The summation is now over four vertices, and the total residual is defined as

before. The inflow matrix will be addressed in Section 4.3.2. As for the linearised

average state, this has the same definition as before (see Equation 3.77), but now

with the additional terms from the conservation of z-momentum. This produces

Q̂i =

©«

2Z̄1Z1

Z̄2Z1 + Z̄1Z2

Z̄3Z1 + Z̄1Z3

Z̄4Z1 + Z̄1Z4

1
γ

(
Z̄5Z1 + γ1

(
Z̄2Z2 + Z̄3Z3 + Z̄4Z4

)
+ Z̄1Z5

)
ª®®®®®®®®¬
. (4.10)

The various distribution schemes are defined identically to before. Together these

allow one to construct the three dimensional version of an the RD solver. The

key part of the extension, however, is the formualtion of the inflow matrix.
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4.3.2 K-Matrix

The flow at any given vertex is parameterised by the inflow matrix Ki, which

can be seen as representing the flow of material into the element at vertex i. It

does this by multiplying the Jacobians in each dimension with the component of

the normal of the opposite face to that vertex. The formulation of the matrix is

directly analogous to the 2D solvers K-matrix, where the Jacobian is combined

with the opposite edge normal. The inflow matrix is generalised by

Ki =
1

d

(
d∑

j=1

A j x̂ j

)
· ni, (4.11)

where d is the number of dimensions, A j = ∂F j/∂Q is the Jacobian matrix in

dimension j, and x̂ = (x̂, ŷ, ẑ) is the unit vector, where j denotes the appropriate

dimension. The Jacobian is evaluated with the average Roe parameter for the

element. The ni = (nx, ny, nz) parameter is the component of the opposite face

area in the i-direction. For the 3D case, this becomes

Ki =
1

3

(
Axnx +Ayny +Aznz

)
. (4.12)

The partial derivative of each force vector by the Roe parameter vector produces

a fifth order square matrix, which combine to give the K matrix. To find the

exact form of each Jacobian, I first take the flux and state terms as functions of

the Roe parameters, where, for example, the state and x-component of the flux

are

Q =

©«

Z2
1

Z1Z2

Z1Z3

Z1Z4
Z1Z4
γ +

γ−1
2γ (Z

2
2 + Z2

3 + Z2
4 )

ª®®®®®®®®¬
, Fx =

©«

Z1Z2
γ−1
γ Z1Z4 −

γ−1
2γ

(
Z2
2 + Z2

3 + Z2
4

)
Z2Z3

Z2Z4

Z2Z5

ª®®®®®®®®¬
. (4.13)

The y and z flux vectors have equivalent forms, with the more complex momentum

term moved appropriately. The elements of each Jacobian are found individually

by solving the appropriate differential. For instance, the first row of elements of
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the x-Jacobian is

Ax,11 =
∂Fx,1

∂Q1
=

∂

∂(Z2
1 )

Z1Z2 = 0

Ax,12 =
∂Fx,1

∂Q2
=

∂

∂(Z1Z2)
Z1Z2 = 1

Ax,13 =
∂Fx,1

∂Q3
=

∂

∂(Z1Z3)
Z1Z2 = 0

Ax,14 =
∂Fx,1

∂Q4
=

∂

∂(Z1Z4)
Z1Z2 = 0

Ax,15 =
∂Fx,1

∂Q5
= 0

The other elements of the x-Jacobian are found in a similar manner, and again

for the y and z Jacobians. Combined with the components of the normal, the

matrix takes the form

Ki =

©«

0 nx ny nz 0

αnx − vxΩ Ω − γ2vxnx vxny − γ1vynx vxnz − γ1vznx γ1nx

αny − vyΩ vynx − γ1vynx Ω − γ2vyny vynz − γ1vzny γ1ny

αnz − vzΩ vznx − γ1vznx vzny − γ1vzny Ω − γ2vznz γ1nz

(α − H)Ω Hnx − γ1vxΩ Hny − γ1vyΩ Hnz − γ1vzΩ γΩ

ª®®®®®®®®¬
, (4.14)

where α = γ1(v
2
x+v

2
y+v

2
z )/2 andΩ = vxnx+vyny+vznz. As with the two dimensional

case, this matrix must be decomposed into its eigenvalues and eigenvectors to

produce the Schur decomposition, such that Ki = R−1ΛR. The product of these

matrices provides the final form of Ki. The form must include the eigenvalues

as variables, otherwise, it is not possible to calculate the positive and negative

inflow parameters, K+i and K−i , which are found by using only positive or negative

eigenvalues.

Decomposing this 5 × 5 matrix into its eigenvalues and eigenvectors is a complex

task, with the multiple terms in each element magnifying the problem. All that

is required, however, is the final form of the K-matrix. The exact form of the

eigenvectors is not required. It is therefore possible to extrapolate the 3D form

from its 2D counterpart. It is possible to then simply check this is consistent

with the derived form of base K-matrix, which is not explicitly dependent on its

eigenvalues.
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There is a clear pattern in the final form of the 2D K-matrix. Since the matrix is

found by differentiating the flux by the fluid variables themselves, the rows and

columns effectively represent the interaction of the equations with one another.

Each row corresponds to the flux of a given conserved variable. The first row is

the mass flux, with each column representing the effect of each fluid parameter

on this flux. Similarly, the second and third rows represent the effect of each

conserved quantity on the flux of x and y momentum, and the fourth on energy.

The importance of this is that the middle two rows and columns represent the

interaction of the momentum terms with each other. In 2D, K22 is the x-

momentum working on the flux of the x-momentum, K23 is the flux of the x-

momentum, and so on. From this, it is clear that element is only ever going

to represent the interaction of one dimension with one other dimension (or the

dimension with itself). A single element does not need to represent the interaction

of one dimension with two others. Extrapolating the 2D form to 3D is trivial for

the mass flux and energy flux rows, as the terms follow an obvious pattern.

Therefore, in 3D, K23 is the interaction of the x-momentum flux and the z-

momentum, K33 is the interaction of the y-momentum flux and the z-momentum,

etc. It is therefore possible to follow the pattern of velocities and normals in the

2D form to predict a form for z-momentum row and column.

I extrapolated this final form of Ki to be

K11 =
αc

c
λ123 −

Ω

c
λ12 + λ3,

K12 = −
γ1vxc

c
λ123 +

nx

c
λ12,

K13 = −
γ1vyc

c
λ123 +

ny

c
λ12,

K14 = −
γ1vzc

c
λ123 +

nz

c
λ12,

K15 =
γ1

c2
λ123,
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K21 = (αcvxc −Ωnx)λ123 + (αcnx − vxcΩ)λ12,

K22 = (n2x − γ1v
2
xc)λ123 − γ2vxcnxλ12 + λ3,

K23 = (nxny − γ1vxcvyc)λ123 + (vxcny − γ1vycnx)λ12,

K24 = (nxnz − γ1vxcvzc)λ123 + (vxcnz − γ1vzcnx)λ12,

K25 =
γ1vxc

c
λ123 +

γ1nx

c
λ12,

K31 = (αcvyc −Ωny)λ123 + (αcny − vycΩ)λ12,

K32 = (nxny − γ1vxcvyc)λ123 + (vycnx − γ1vxcny)λ12,

K33 = (n2y − γ1v
2
yc)λ123 − γ2vycnyλ12 + λ3,

K34 = (nynz − γ1vycvzc)λ123 + (vycnz − γ1vzcny)λ12,

K35 =
γ1vyc

c
λ123 +

γ1ny

c
λ12,

K41 = (αcvzc −Ωnz)λ123 + (αcnz − vzcΩ)λ12,

K42 = (nxnz − γ1vxcvzc)λ123 + (vzcnx − γ1vxcnz)λ12,

K43 = (nynz − γ1vycvzc)λ123 + (vzcny − γ1vycnz)λ12,

K44 = (n2z − γ1v
2
zc)λ123 − γ2vzcnzλ12 + λ3,

K45 =
γ1vzc

c
λ123 +

γ1nz

c
λ12,

K51 = (αcHc −Ω
2)λ123 +Ω(αc − Hc)λ12,

K52 = (Ωnx − vx − αcvxc)λ123 + (Hcnx − γ1vxcΩ)λ12,

K53 = (Ωny − vy − αcvyc)λ123 + (Hcny − γ1vycΩ)λ12,

K54 = (Ωnz − vz − αcvzc)λ123 + (Hcnz − γ1vzcΩ)λ12,

K55 =
γ1Hc

c
λ123 +

γ1Ω

c
λ12 + λ3,

where Xc ≡ X/c. The new λ terms have the same meaning as in the 2D case,

with λ123 = (λ1+λ2−2λ3)/2 and λ12 = (λ1−λ2)/2. To find the corresponding K+i
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and K−i , one simply uses only the positive λ+ or negative λ− eigenvalues, where

λ+i = max(0, λi) and λ−i = min(0, λi). (4.15)

The validity of this prediction for the form can be determined by two checks.

First, it must be consistent with the derived form of the 3D K-matrix, shown

in Equation (4.14), when the substitutions for the eigenvalues are made. The

eigenvalues are analogous to those in the 2D case, with λ1 = Ω + c, λ2 = Ω − c

and λ3 = λ4 = λ5 = Ω. This is straight forward for all terms. For instance, the

first row becomes

K11 =
αc

c
λ123 −

Ω

c
λ12 + λ3 =

α

2c2
(0) −

Ω

2c
(2c) +Ω = −Ω +Ω = 0,

K12 = −
γ1vxc

c
λ123 +

nx

c
λ12 = −

γ1vxc

2c
(0) +

nx

2c
(2c) = nx,

K13 = −
γ1vyc

c
λ123 +

ny

c
λ12 = −

γ1vyc

2c
(0) +

ny

2c
(2c) = ny,

K14 = −
γ1vzc

c
λ123 +

nz

c
λ12 = −

γ1vzc

2c
(0) +

nz

2c
(2c) = nz,

K15 =
γ1

c2
λ123 =

γ1

2c2
(0) = 0.

These match the derived form, and so the predicted form is consistent with the

original. The same can be shown for all terms. The second condition is that the

3D form return the 2D form when all effects from flows in the z-direction are

disallowed. When one sets all terms in the fourth row and column to zero, then

there is no longer any signal from the z-velocity and component of the normal.

When the matrix multiplication is made, the z-momentum residual will always

be zero, and so resultant updates will be identical to the result from the 2D case.

Together these two conditions show that the extrapolated form of the K-matrix

is acceptable. The details of the implementation are given in Appendix A.

4.3.3 Time Step Limitation

The calculation of the required time step proceeds largely as before, except now

the estimate is of the time taken for information to travel across a volume, rather
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than an area. It therefore takes the form

∆t ≤ min
i∈T

3|Vi |∑
T |i∈T AT

maxλ
T
max

, (4.16)

where AT
max is the largest face of the tetrahedral element, and |Vi | is the dual

volume of the vertex i. The maximum information speed λT
max has the same

definition as before. Once again this is an estimate of the numerical physical

domain of dependence, so a fraction of the derived time step will be used in

practice.

4.3.4 1D Tests

I show here a small number of the basic 1D tests, where there is no variation in the

additional dimensions, in the initial conditions. These will show the consistency

between new 3D implementation and the results from the 2D version. The results

can be directly compared when using equivalent uniform particle distributions,

such as the Cartesian grid, where the 3D grid will simply be multiple layers of

the same underlying 2D grid.

Gaussian Pulse

As before, I test the ability of the solvers to handle advection by modelling the

propagation of a Gaussian density profile in one dimension. The initial conditions

are, in essence, identical to those described for the equivalent test in Section 3.5.1,

as there is no variation in either the y or z directions. In Figure 4.10, I show the

results form this setup for three times, the initial conditions (blue), t = 0.1s

(orange), and t = 0.2s (green). The top left panel shows results for the LDA1

solver, the top right N1, bottom left LDA2, and bottom right N2. A key take away

from all solvers is the close match between the results from the 2D (crosses) and

3D solvers (dots), demonstrating that the 3D extension can recover results from

the original. The only real difference is in the LDA1 and LDA2 results, where

the 2D results appear to have slightly more numerical diffusion. The addition of

the third dimension, has reduced the numerical diffusion for these solvers. It is

not particularly clear why this is the case, and the difference is small.
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Figure 4.10 Propagation of a one dimensional Gaussian density pulse for LDA1
(top left), N1 (top right), LDA2 (bottom left), and N2 (bottom
right). The dots show results for the 3D solver, while the crosses
represent results from the 2D solver. Blue points show the initial
conditions, orange show the results at t = 0.1s, and green at t =
0.2s. The grey line shows the peak in the LDA1 3D results at the
final time. The other solvers have significantly more numerical
dissipation, particularly the LDA2 solver.
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Sod Shock Tube

Again, I am essentially checking that the 3D extension produces results consistent

with its 2D counterpart. This time I test shock handling with the classic

hydrodynamics test of the Sod shock tube, with identical initial conditions to the

2D version (see Section 3.5.1). I compare the results from the 3D solver directly to

the 2D equivalent in Figure 4.11. These results are found using N = 128 vertices

in the x-direction. The density, velocity and pressure results all match very closely

between the two possible number of dimension. With the only slight difference

coming in the 3D LDA1 solver producing an ever so much steeper gradient in the

velocity front. The difference is tiny, and likely caused by the small reduction in

numerical diffusion observed in the previous section. As before, we see that the

LDA solver is less diffusive than the N-scheme, producing slightly less smoothing

of the transitions.

Together the Gaussian pulse and Sod shock tube show that the 3D extension is

the correct extension of its 2D base, and that it will recover the same results when

additional dimensions are suppressed. This behaviour is present for both simple

advection and shocks, covering the basic behaviours of hydrodynamics flows.

4.3.5 3D Tests

Here I show results for full 3D tests. Many have 2D counterparts, such as the

Sedov blast, and the Blob test, but are separate from them due to their flows

in all three dimensions, even if there are symmetries that mean they are very

similar, such as the spherical Sedov blast. These tests go beyond showing that

the 3D solver can recreate the results from the 2D solver, demonstrating how it

handles flows in all three dimensions. Plots, such as those of density distribution,

that show distributions in two dimensions as heat maps, will now be done using

contour plots. The 2D solver results were shown using the dual cells that form

a fundamental part of the RD method. Constructing a 2D Voronoi tessellation

from a plane within a 3D distribution could lead to misleading cell shapes, and

potentially cause confusion about the underlying triangulation used to calculate

the evolution of the fluid. Instead, the colour contour plots will approximate the

field, without this downside.
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Figure 4.11 Sod shock tube results, using N = 128 in the x-direction, for 2D and
3D solvers. From top to bottom density, x-velocity, and pressure.
Difference between numerical and exact results shown below each
panel. Blue dots show results for the 3D LDA1 solver, red dots for
2D. For the N1 solver, green crosses show 3D solver, cyan show
2D results. The black line is the exact solution.
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Sedov Blast

The Sedov blast, previously introduced in Section 3.5.2, models the evolution

of a point like explosion. As before, the initial condition for this test include

a uniform density static background medium, into which energy is injected by

setting the pressure of a small region extremely high. This energy is injected at

the centre of the box, in this case within r = 0.2m, where r is the spherical radius.

The box is a cube of size lbox = 10m. Below I show results for three resolutions,

with slices through the centre of the box in all three dimensions. These results

are produced using the LDA1, N1, and B1 solvers. Here, B1 refers to the first

order blended scheme, here using the blending described in Section 3.2.2. This

mechanism combines the residuals from both LDA1 and N1 methods, weighting

the contribution by the fluid state across the triangle. In situations where the N1

solver is generally better suited, that residual is weighted more heavily, and the

LDA1 residual less heavily, and vice versa. The weighting is calculated as

φB
i = Θφ

N
i + (I − Θ)φ

LDA
i , (4.17)

where I is the identity matrix, and Θ is the blending matrix. The nodal residuals

φN
i and φLDA

i are calculated using the N and LDA schemes respectively. This

blending matrix is diagonal, and in this case is calculated with

Θii =
|φT

i |∑
j = 14 |φN

j,i |
. (4.18)

The summation in the denominator is performed over all vertices of the element,

and i refers to the ith equation of the system.

In Figure 4.12, I show the N = 323 results, with the left column showing the

LDA1 results, the middle column the results for N1, and the right for the blended

method B1. The top row is the X-Y plane through the centre of the box, while the

middle row is the X-Z plane, and the bottom the Y-Z plane. Even at this very low

resolution, the blast wave is very regular, with only small local aberrations, such

as at (2, 6) in the middle LDA1 plot. Since the initial injection only encompasses

seven vertices, this regularity is a strong result. The low resolution produces a

low peak in the blast profile, as the wave is smoothed over several large cells.

There is some variation between the solvers, with the LDA1 solver producing

more variation within the swept out region, as well as in the front itself. The N1

and B1 results are almost identical. The conditions around the shock front favour
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the N scheme over the LDA, in the blending, since there is strong variation across

short distances, which explains the similarities.

Increasing the resolution to N = 643, shown in Figure 4.13, demonstrates the

improvement in recovering the results at higher resolution. Higher resolutions

still will only be available once further optimisation and parallelisation work has

been performed. At present they would require excessive computational walltimes

to complete. As before in the 2D case, the peak density increases as the width

of the blast front decreases at higher resolution. The shape of the blast becomes

increasingly regular as the space is sampled by many more vertices. Once again

the LDA1 solver has more internal structure in the blast front and swept region,

but the effect is reduced. N1 and B1 are also very similar, for the same reason as

before. Recovering the predicted result seems to be most strongly dependent on

resolution, with solver choice playing a secondary roll.

These results are best compared to the exact solution with the radial density

profile, for results from the various solvers, seen in Figure 4.14. The results are

largely identical, with the peak in the LDA1 result being slightly higher than the

other solvers. This is likely a result of the lower numerical diffusion for this solver,

discussed in Chapter 3. Again, resolution plays a much larger role in recovering

the exact solution, than choice of solver. It is also clear, however, that the 3D

solver is performing as expected, when compared to both its 2D counterpart, and

to the exact solution. The full dimensionality of the problem is well recovered,

even at the relatively low resolutions shown here.

Blob Test

As discussed in the previous chapter, the so called ‘blob’ test (Agertz et al., 2007)

characterises the ability of a solver to model the disruption of a spherical cloud

of cold gas sitting in a hot flow. To set up this test, a high density static sphere

is placed within a low density background, with the high density region being an

order of magnitude more dense than the low density medium. The pressure is

equalised everywhere, to produce an initial equilibrium, which requires the low

density region to be much hotter than the cold cloud. The background medium is

given a supersonic initial velocity. I describe the predicted evolution, in detail, in

Section 3.5.2. To summarise, Kelvin-Helmholtz instabilities are expected to form

where the hot flow is tangential to the cloud, with Rayleigh-Taylor instabilities

forming behind the cold cloud, created by the high density material being forced

203



Figure 4.12 Sedov blast results, with N = 323 randomly distributed vertices,
from the LDA1 (left column), N1 (middle column), and B1 (right
column). Each row shows the slice through the centre of the box,
with the X-Y plane in the top row, the X-Z plane in the middle row,
and Y-Z in the bottom row. The blast wave is remarkably spherical,
with an even shape in every dimension, given that the high pressure
region used to inject the explosion only included seven vertices.
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Figure 4.13 Sedov blast results, with N = 643 randomly distributed vertices,
from the LDA1 (left column), N1 (middle column), and B1 (right
column). Each row shows the slice through the centre of the box,
with the X-Y plane in the top row, the X-Z plane in the middle
row, and Y-Z in the bottom row.
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Figure 4.14 Radial density profile for the Sedov blast, compared to the analytic
prediction. The solid black line shows the exact solution, while the
dot-dashed line show the results from the LDA1 solver, the dashed
from the N1 solver, and the dotted from B1. The blue lines show
results from the very low density N = 323 runs, and orange from
N = 643. The position of the front is recovered reasonably well,
though the low resolution smooths the profiles considerably.
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backwards into the lower density material by momentum transfer from the wind.

I choose values of ρcl = 100kg/m3, for the cloud, and ρ0 = 100kg/m3 for the

background. The cloud extend r = 1m from its centre. The box dimensions are

10m × 10m × 10m, and the initial velocity has Mach number M = 1.5, which

corresponds to v0 = 6.2m/s. This produces a crushing time scale of τcr 1s. The

crushing time estimates the time for the cold dense cloud to be destroyed by the

flow (see Section 3.5.2). I have run a number of such setups, varying resolution

and solver type. I compare the predicted evolution to the results from these runs.

In Figure 4.15, I show results for the density distribution, with N = 323 the N1

(left column), N2 (middle column), and B1 (right column) solvers, at t = 1s =

τcr. As with the Sedov results, each row shows a different plane, through the

centre of the cloud. From top to bottom, these are X-Y, X-Z and Y-Z. Unlike

the Sedov case, the evolution is not spherically symmetric. The bottom row of

panels show the head on view of the cloud, showing the symmetry in the other

dimensions. Even at the low resolution, we see the development of the bow wave,

and some disruption of the cloud itself. The edges of the cloud being shredded by

instabilities, and material from the cloud is accelerated by the wind, as expected.

Each solver has very similar results, with the B1 solver showing a slightly more

structured bow wave, with lower density cavities behind the wings of the wave.

Increasing the resolution to N = 643, shown in Figure 4.16, we see a more finely

structured bow shock. The head on view shows this clearly. The RT instabilities

behind the cloud are more clearly seen here as well, with the greater number of

resolution elements recovering the effect in more detail. The higher resolution

is also able to recover the low density regions behind the bow wave with much

greater detail. However, the resolution is still too low to really compare the

evolution to previous blob test results, with the test typically presented with

results at N = 1283 and N = 2563. The 3D solver is not currently optimised to

cope with these resolutions, but this is planned for the near future.

Instead of increasing resolution, I instead show the time evolution of the results

I can produce. In Figure 4.17 I compare the evolution of the density distribution

for N = 323 (left column) and N = 643 (right column) blob tests. Time increases

downwards, with the first row showing the initial conditions at t = 0, the second

at t = 0.5τcr, the third at t = τcr, and the fourth at t = 1.5τcr. The progressive

build up of the bow wave is clear, as is the acceleration of the cloud by the

hot flow. The low resolution case shows a greater amount of mixing, between
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Figure 4.15 Blob test results, with N = 323 randomly distributed vertices, from
the N1 (left column), N2 (middle column), and B1 (right column)
solver. Each row shows the slice through the centre of the blob, with
the X-Y plane in the top row, the X-Z plane in the middle row, and
Y-Z in the bottom row.
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Figure 4.16 Blob test results, with N = 643 randomly distributed vertices, from
the N1 (left column), N2 (middle column), and B1 (right column)
solver. Each row shows the slice through the centre of the blob, with
the X-Y plane in the top row, the X-Z plane in the middle row, and
Y-Z in the bottom row.
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the cloud and the background, by t = 1.5τcr, while the higher resolution cloud

retains some of its integrity. This is likely a direct effect of the small number of

resolution elements that make up the N = 323 cloud. Once again, it is clear we

have not converged with resolution. The fundamental evolution is still present in

both cases, showing the solver performs well with these highly multi-dimensional

flows, even when only given a small number of vertices with which to work.

This test is fundamentally different from the Sedov blast, in that it is truly three

dimensional. While the Sedov blast has flows in all three cardinal directions, it

remains spherically symmetric. Therefore the 3D test is not significantly different

from its 2D counterpart. The blob test, on the other hand, contains both KH

and RT instabilities. A given mode of the KH instability can characterised by

only one wave number, and as the vortices form between the shear flows, they

rotate on a plane. In 2D, there is only one plane in which they can form, but

in 3D there is an additional degree of freedom, complicating the growth of this

instability. The RT instabilities are fundamentally 3D, and requiring two wave

numbers to characterise a given mode (Agertz et al., 2007). The effect of these

differences is that the disruption of the blob will proceed in an inherently different

manner in 3D, as opposed to 2D. The complex behaviour and interaction of these

instabilities mean the detailed evolution of the blob will be different for the 2D

and 3D cases, making it an important case study for the 3D solvers. It is also a

structurally complex evolution that is a strong test of solvers in general.

4.4 Gravity

The gravitational interaction of massive objects is clearly a fundamental part of

almost all astrophysical systems. In particular, the effect of gravity on baryonic

gas drives processes from the formation of the large scale structure of galaxy

clusters, filaments and voids, down to the formation of planets. Any method of

modelling the hydrodynamics of this gas must be capable of including the effects

of gravity, if it is be used to solve astrophysical problems. In Section1.2.4, I

covered a number of numerical techniques for efficiently modelling gravitational

interaction. These can be used to calculate the force of gravity from a distribution

of mass, be it baryonic or otherwise, acting on a given region of gas. However,

there remains the question of how exactly this force is combined with residual

distribution hydro solver.

210



Figure 4.17 Evolution of the cold gas cloud using the N2 solver, for N = 323

(left column) and N = 643 (right column) vertices. The bow wave
builds as the hot flow collides with the cloud, with wings extending
to the edge of the box. The extent of the disruption depends on the
resolution, with the low resolution case struggling to resist breakup
and diffusion into the surroundings, while the higher resolution case
survives longer. 211



In the case of the RD solver, there are two closely linked possibilities, assuming

the underlying gravitational potential has already been calculated in a suitable

manner. The first option is to embed the effect of gravity in the fluid equations

themselves, and then reformulate the calculation of the residual around the new

equation. Taking the 2D Euler equations for simplicity, gravity can be included

as source terms for momentum and energy. For some gravitational potential Ψ,

the gravitational Euler equations can be written in their compact form as

∂Q

∂t
+ ∇ · F (Q) = S(Q), (4.19)

where F (Q) = (Fx(Q),Fy(Q)), and S(Q) is the source term vector. The explicit

forms of the original vectors are

Q =

©«
ρ

ρvx

ρvy

ρE

ª®®®®®¬
, Fx(Q) =

©«
ρvx

ρv2x + P

ρvxvy

ρvxH

ª®®®®®¬
, Fy(Q) =

©«
ρvy

ρvxvy

ρv2y + P

ρvyH

ª®®®®®¬
, (4.20)

with the gravity source terms given by

S(Q) =

©«
0

−ρ∇xΨ

−ρ∇yΨ

−ρv∇Ψ

ª®®®®®¬
. (4.21)

Here, v = (vx, vy) is the full velocity vector. The additional terms can then be

included in the residual calculation, such that the residual is now strictly defined

as

φT (Qh) =

∫
T
∇ · Fh(Qh) − Sh(Qh)dxdy. (4.22)

Following from this, the numerical approximation of the residual would have

to be reformatted to include the source terms. This could possibly involve

reconstructing the K-matrix, and decomposing it to find the new eigenvalues,

and corresponding eigenvectors. Even if one assumes that the new matrix has

a simple set of eigenvalues and eigenvectors, this process is non-trivial algebraic

exercise, one which would need to be performed for both the 2D and 3D forms. I

am not aware of this being achieved, for gravity, yet.

The second approach follows closely from the first. Instead of reformulating the
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whole K-matrix structure, one can simply break the integral of Equation 4.22 in

two, leaving the residual as

φT (Qh) = φ
T
f + φ

T
g =

∫
T
∇ · Fh(Qh)dxdy −

∫
T
Sh(Qh)dxdy. (4.23)

The residual for the basic fluid equations φT
f is then calculated in the same manner

as before, and the contribution to the complete residual from the gravitational

source terms φT
g is computed separately. I have not determined the exact form

the discrete approximation of this residual would take, at this time. This second

approach requires significantly less reworking, and provides a framework for the

inclusion of other source terms in the future, such as cooling terms, or other

sub-grid physics. These can be added as new contributions to the complete

residual φT , without changing the fundamentals of the rest of the method. In

the literature, there is only limited discussion of the inclusion of source terms,

in general, most notably in Csik et al., 2002, who use a source term in their

magneto-hydrodynamics work to maintain the divergence of the magnetic field

as zero. Deconinck & Ricchiuto, 2007 also discuss the inclusion of source terms,

and utilise this second approach. They state that including source terms in this

manner may not maintain the stability of the method.

It is currently unclear whether or not the two methods are in fact exactly math-

ematically equivalent. At the stage of splitting the integral into two calculations,

they are the same, but once the appropriate numerical approximation is applied

to both parts, it is possible that the combined version produces systematically

different flow. At the moment, I would argue that they are in fact equivalent,

and that the second approach is an adequate solution to the inclusion of gravity

and other source terms. However, a more thorough investigation is still required.

Dynamical Friction

I have replicated the idealised dynamical friction test, which I proposed in Chapter

2. I recreate the setup used in Section 3.5.2, but now in 3D. As before, I apply

an external Plummer potential, to model the gravitational effect of a perturbing

mass. The gravitational acceleration is applied using effectively using the second

approach described above, with the gravitational effect added independently of

the basic residual. This implementation is still being tested, hence the preliminary

nature of these results. The test is set up to have A = 0.1, at M = 1.3, with
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Figure 4.18 Gravitationally induced wakes from the 2D N1 solver, with N =
642 vertices (left) and the 3D solver (right), using N = 643

vertices. Upper panel: Colours show the over-density α, with
the analytic prediction shown as white dashed contours. Lower
panel: Difference between the numerical and analytic wakes φ =

αnum − αana is shown below.

N = 643 vertices. As a reminder, the A-parameter links the perturber to the fluid

state with A = GMp/c2s rs. The simulation is run for approximately 15tc, where

tc is the sound speed cs crossing time of the softening scale rs of the Plummer

potential.

I show preliminary results for the DF test, using the N1 RD solver, in Figure 4.18.

I compare the results from the 2D solver (left) to those from the 3D solver. There

are clear disparities between the produced structures. The 2D result has the edge

of the cone fitting better with the analytic prediction (shown in both cases as the

white contours). In contrast, the 3D case has a wake that is much closer to being

spherical, with a less well defined cone structure. It does not contain the trough

in front of the cone, seen in the 2D results. These runs are at a low resolution,

compared to the full DF analysis I performed in Chapter 2, but this does not

explain the significant difference between the two cases, since they share effective

resolutions. The initial conditions are identical, except for the obvious change to

add the state in the third dimension.
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Chapter 5

Dynamical Friction with Cooling

5.1 Introduction

The dynamical friction work, presented in Chapter 2, shows that certain state-

of-the-art Lagrangian hydro solvers systematically under-produce the dynamical

friction retarding force, when compared to analytic predictions. The situation

modelled in these tests is highly idealised, designed to closely replicate the

assumptions made in deriving the linear approximation of the solution. Of the

assumptions, two critical conditions are that the gas is adiabatic, and that the

gas does not experience self gravity (Ostriker, 1999). In other words, there are

no additional heating or cooling terms that allow the gas to change temperature,

other than the adiabatic contraction caused by the gravity of the perturber, and

the only gravitational force that the gas experiences comes from the perturbing

body. These assumptions make the derivation of the simplified physical solution

possible, but exclude significant physical processes from the model.

Baryonic gas, in many astrophysical environments, is subject to several sources of

radiative cooling, whereby the gas radiates energy as photons. If the surrounding

gas is transparent to the frequency of these photons, which is true if they have

low interaction cross sections in that regime, then the energy can be carried

from the region of gas. To understand the temperature evolution of a region of

gas, therefore, one must be able to accurately include the appropriate cooling

processes. As discussed in Chapter 1.1.3, atomic cooling, metal line cooling and

molecular cooling dominate sources of cooling in different conditions. Broadly,
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above temperatures of T = 104K, atomic cooling dominates. In this regime,

collisional excitation and ionisation produces a very high ionisation fraction in

the gas. Recombination, and spontaneous decay of from excited energy levels

to lower ones, produce the photons that can escape, cooling the gas. Collisional

excitation can also remove energy from the gas by transferring energy from the

kinetic energy of one particle to the excitation of another.

Below this temperature threshold, atomic cooling is not efficient. The excitation

energy of hydrogen is greater than the average kinetic energy of collisions. With

fewer excitations, atoms cannot radiate energy efficiently, making molecular and

metal line cooling the dominant processes. The formation of these molecules is

catalysed by the metals present in the gas, as dust formed from these metals

provide sites for molecular hydrogen formation (Hollenbach & McKee, 1979;

Perets & Biham, 2006). In primordial environments, which are almost entirely

metal free, molecules must instead form by direct gas-phase collisions (McDowell,

1961). The formation rate is significantly reduced in such environments, where

molecule formation is then strongly dependent on the density of the gas. In the

pristine primordial gas, molecules provide the only efficient cooling mechanism

below T = 104K (Omukai et al., 2005), and so are crucial in producing the first

stars and galaxies (Abel et al., 2002; Bromm et al., 2009). Molecules cool the

gas through the radiative decay of the rotational and vibrational transitions of

the molecule. For cooling to occur by this process, the rate of de-excitation of

these roto-vibrational modes by collisions, which do not result in cooling, must

be lower than the rate of radiative decay (Galli & Palla, 1998).

When there are metal atoms present in the gas, they provide an additional cooling

mechanism (Omukai, 2000; Omukai et al., 2005; Smith et al., 2008). Metal

line cooling occurs when electrons in excited states in metal atoms radiatively

decay to lower energy states. Excitation comes from both absorption of photons

and collisions with other components of the gas. These excited states decay

spontaneously, or in some specific cases through further collisions, releasing

photons, and removing energy from the gas (Omukai, 2000). Metals have complex

fine structure in their lines, resulting in a greater range of possible photon

wavelengths, and so have many more channels through which cooling can proceed.

It takes less energy to excite an electron through a fine line structure transition, as

the energy levels are close together. This makes excitation, and so cooling, easier

to achieve at low temperatures, when compared to similar excitation transitions

in atomic hydrogen.
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A massive perturber moving through some low density background will produce

an over-dense wake. In the early Universe, as the first stars begin to form, there

is already significant amounts of dark matter substructure that can act as such

a perturber. These sub-halos move through the extended gaseous structure of

their host halo. At this early time, molecular cooling is the only way to remove

energy from the gas, and so is the only process that can produce clouds that

collapse to form the first stars. The formation of these molecules, in turn, is

strongly dependent on the density of the gas. The wakes created by the perturbing

substructure, as part of the dynamical friction process, are potential candidates

for stimulating the production of molecular hydrogen.

In this chapter, I extend the idealised study of dynamical friction, conducted

in Chapter 2, to include cooling effects from molecules and metals. To do

this I run a new set of idealised DF simulations, with initial conditions similar

to those described previously. On top of the gravitational potential of the

perturber, I will now include cooling and molecule formation using the chemical

network library Grackle (Smith et al., 2016). I run scenarios with a variety of

background densities, and with a range of metallicities, while also exploring the

same parameter space in Mach number, and A parameter, as before. In Section

5.2, I briefly describe the reactions that Grackle models, and how it produces the

cooling rates for the simulation. Then, in Section 5.3, I cover the specifics of the

simulation setups that include the effects of the various cooling processes. Section

5.4 contains the detailed results from these runs, and Section 5.5 a discussion of

the implications to the formation of stars in the early universe, and the evolution

of galaxies in that epoch.

5.2 Grackle

The chemistry and cooling library Grackle is a well established simulation tool,

which provides models for primordial chemistry, radiative heating and cooling,

and UV radiation backgrounds (Smith et al., 2016). Primordial chemistry is

almost entirely metal free, so it largely consists of hydrogen, helium, and the

ionised species of the elements, H+, He+, and He++. Alongside these components,

the corresponding species associated with molecular hydrogen and deuterium can

be included. Each species has a set of reactions that either create that species, or

use it as an ingredient to form some other species. For example, Table 5.1 shows

the reactions modelled from the Grackle nine species mode, where hydrogen,
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helium, their ions, molecular hydrogen and electrons are used. For each reaction,

a temperature dependent fit is used to set a reaction rate k. The change, with

time, in the number density ni, of the ith species is taken as (Smith et al., 2016)

∂ni

∂t
=

∑
j

∑
l

k jln jnl +
∑

j

I jn j, (5.1)

where k jl is the reaction rate between species j and l. The last term, I j , is the

radiative rate of the jth species. All reactions can be lumped into formation and

destruction terms

∂ni

∂t
= Ci(T, n j) − Di(T, n j)ni, (5.2)

where Ci and Di are the total creation and destruction rates, with respect to all

reactions with species n j , at a given temperature T and number density of that

other species n j . A backwards difference formula is applied (Anninos & Norman,

1996) to produce the numerical approximation of the solution to this set of partial

differential equations. This takes the form

nt+∆t =
∆tCt+∆t + nt

1 + ∆tDt+∆t . (5.3)

This provides the change in the number density of species i over the time t to

t + ∆t. The time step, ∆t, is a sub-step within the time step passed by the

simulation. It is limited such that the hydrogen and electron abundances change

by, at most, ten percent, over one sub-step. The sum of the changes over all

sub-steps gives the total change for the global time step. Typically, the global

time step is significantly shorter than the time it would take for the reactions to

reach equilibrium, so this non-equilibrium approach is valid.

Alongside the calculation of these species abundances, Grackle calculates the

temperature change from heating and cooling processes within the gas. In a

primordial gas, this involves tracking the energy lost due to the state transitions

for the various ionic species, including collisional excitation and ionisation,

recombination, and free-free emission, but does not include the effects of metal

line cooling. Heating processes include Compton scattering and photo-ionisation

heating, usually from some UV background radiation field. In cases where

the equilibrium solution is required, a simpler method, which interpolates from

tabulated cooling rates, is used. This takes a redshift, density and temperature

value, and returns cooling/heating rates, which is then converted into a change
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Table 5.1 Grackle nine species reaction network which models primordial
chemistry (Smith et al., 2016), showing the reactions of neutral
hydrogen H and helium He, molecular hydrogen H2, ionised hydrogen
H+ and helium He+, the negative ion of hydrogen H−, doubly ionised
helium He++, electrons e−, and photons γ (Tables 3 and 4 of Smith
et al., 2016).

Reaction
H + e− → H+ + e− + e−

H+ + e− → H + γ
He + e− → He+ + e− + e−

He+ + e− → He + γ
He+ + e− → He++ + e− + e−

He++ + e− → He+ + γ
H + H → H+ + e− + H
H + He → H+ + e− + He
H + γ → H+ + e−

He + γ → He+ + e−

He+ + γ → He++ + e−

H + e− → H− + γ
H− + H → H2 + e−

H + H+ → H+2 + γ
H+2 + H → H2 + H+

H2 + H+ → H+2 + H
H2 + e− → H + H + e−

H2 + H → H + H + H
H− + e− → H + e− + e−

H− + H → H + e− + H
H− + H+ → H + H
H− + H+ → H+2 + e−

H+2 + e− → H + H
H+2 + H− → H2 + H
H + H + H → H2 + H
H + H + H2 → H2 + H2

H− + γ → H + e−

H+2 + γ → H + H+

H2 + γ → H+2 + e−

H+2 + γ → H+ + H+ + e−

H2 + γ → H + H
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in internal energy.

When metals are present in the gas, a similar tabulated approach is used, as

a full reaction network would be computationally prohibitive (Smith et al.,

2008). The code takes a single metallicity value, in units of solar metallicity,

and assumes solar relative abundances. It can handle situations with or without

an assumed UV background. The cooling tables are constructed from photo-

ionisation simulations using Cloudy (Ferland et al., 2013). Once again, a redshift,

density, and temperature, are supplied, and a cooling rate is interpolated from

the table of values. The redshift variable allows for the different options in UV

background model. The change in temperature of the gas, from metal line cooling,

is handled independently of the effects from the chosen chemical network. In other

words, the change in temperature from the presence of metal is calculated from

the same conditions as the cooling from primordial chemicals, and so, in a given

time step, the two processes run in parallel, not directly interacting with each

other. The effect of both is only combined in the net change in temperature. The

cooling from metal line emission is applied on top of the change found from the

chosen reaction network.

5.3 Setup

The idealised setup used in Chapter 2 is replicated closely here. I start with a

uniform density gas, moving at a bulk velocity, with a massive perturber at its

centre. The mass is modelled with a fixed Plummer potential with total mass Mp.

This velocity corresponds to a Mach number M = V0/cs, where cs =
√
γkbT0/µ0

is the sound speed of the gas, T0 is the initial temperatures, and µ0 is the initial

mean molecular mass of the gas. In these new runs, the gas is not pure hydrogen,

as previously assumed. Instead, the gas consists of a combination of hydrogen,

helium, and metals. The initial abundances of these components vary across the

set of simulations, with some runs using primordial compositions, and others using

solar metallicity, and a number with compositions in between these limits. These

differences in composition produce different mean molecular masses in the gas.

In Table 5.2, I give the initial conditions and other parameters that define each

run. All simulations are run using N = 5123 particles, with initial temperatures

T0 = 104K, in boxes of edge length L = 1kpc. All simulations are runs for A ≈ 0.1

andM = 1.3, using rs = 0.055kpc. The background density is set to one of three

densities, with particle number densities n = 0.01cm−3, n = 1cm−3, or n = 10cm−3.
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Table 5.2 Parameters of each simulation, showing what cooling processes are
modelled, the Mach number, number density, hydrogen, helium and
metal fractions, and the resulting mean molecular mass. These setups
all use Mp = 1 × 105M�, and rs = 0.055kpc.

Cooling M n (cm−3) H He Z Metallicity
None 1.3 0.01 0.76 0.24 0 NA
None 1.3 1 0.76 0.24 0 NA
None 1.3 10 0.76 0.24 0 NA
Metals+Mol 1.3 0.01 0.7381 0.2485 0.0134 Solar
Metals+Mol 1.3 1 0.7381 0.2485 0.0134 Solar
Metals+Mol 1.3 10 0.7381 0.2485 0.0134 Solar
Metals+Mol 1.3 0.01 0.76 0.24 1 × 10−6 Primordial
Metals+Mol 1.3 1 0.76 0.24 1 × 10−6 Primordial
Metals+Mol 1.3 10 0.76 0.24 1 × 10−6 Primordial

Using these three densities, I run three process setups. The first is a benchmark

set, where no additional cooling or chemistry processes are used. The second set

use the Grackle 9-species chemical network to model the additional effects of

metal cooling, as well as the formation and effects of molecular hydrogen. These

use a gas with solar metallicity. The third set of runs use the same setup as the

second, but with a primordial metallicity gas.

5.4 Results

The results presented here are direct equivalents of those presented in the previous

chapter on DF. I show the detailed structure of the wake, using the same over-

density α as before. I also show the evolution of the net force on the massive

perturber as a function of time. Direct comparison to the analytic solution is not

as useful here, since we are explicitly including additional physics. Instead, the

comparison to the results with no additional chemistry can disentangle what

comes from the gravity of the perturber, and what is added by the cooling

processes, and how important cooling is for DF. The gravitational evolution of

the wake, outside the softening scale, would remain linear in the pure gravity

case, but this may no longer hold with the addition of cooling.
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5.4.1 Solar Metallicity

Let us first consider the solar metallicity case. I first compare the evolution in the

over-density α = ρ/ρ0 − 1 for the three densities. In Figure 5.1, I show the over-

density in cylindrical coordinates (s, R), where s is the distance along the direction

of travel, and R is the cylindrical radius. The perturber is fixed at s = 0, with the

wake behind the perturber with s < 0. The first column shows the results for the

benchmark ‘no cooling’ runs. From left to right, the other columns show the low

(n = 0.01cm−3), medium (n = 1cm−3), and high (n = 10cm−3) density cases. Time

increases from top to bottom, with the first row showing results for t = 4tc, the

second for t = 8tc, and the third for t = 12tc. The sound speed crossing time of the

softening scale tc, is approximately t = 5Myrs, for this setup. In the first column,

the white contours show the analytic solution, and the lower part of each panel

shows the difference between the numerical and analytic results φ = αnum − αana.

In the other columns, the lower part of each panel shows the difference between

that result and the corresponding ‘no cooling’ result. The simulations are run far

beyond the time when the wake reaches the edge of the box, so in the medium

and high density cases we clearly see the wake has wrapped around, through

the periodic boundaries. This gives us insight into the long term evolution of

the temperature, while still maintaining very high mass resolution. A larger box

would reduce this resolution.

The ‘no cooling’ result is essentially identical to the previous DF results for A = 0.1

and M = 1.3. Since the problem, in that setup, is essentially scale free, this is

to be expected. When we move to the low density results, we see that there is a

small deviation from the previous result. The wake in the cone is contained more

closely to the expected cone region, demonstrated by the lower alpha beyond the

cone edge. This is most clearly seen in the bottom panel of each plot, at this

density. The dark region ahead of the cone edge shows α values lower than the

‘no cooling’ case. The over-density inside the cone region is also slightly higher.

This shows that the collapse of material into the over-density is more pronounced

when cooling is allowed. The effect is only small in this case. Looking now at

the medium density case, the increased concentration of material is much more

pronounced. The wake has lost almost all of its detailed structure, with no obvious

cone or sphere structures. Instead, the wake forms a dense tail directly behind

the perturber, with only small lateral extent.

To understand what is happening to the density, in the different scenarios, it
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is useful to look at the distribution of temperatures. In Figure 5.2, I show the

temperature across the simulated region, using the same cylindrical coordinate

scheme. Each panel show results from the same snapshot as the previous figure.

The ‘no cooling’ results in the first column show the difference between the initial

temperature and the final temperature in the lower part. The other runs show the

difference between the result for that density/time, and the ‘no cooling’ result.

The temperature change in the first column is entirely positive, as material is

heated by its adiabatic collapse. We see from the time evolution that this heating

happens before the first snapshot, as the dense tip of the cone is forming. Since

cooling is explicitly ignored in this case, this is expected. In the low density case

we see a more complex picture. The unperturbed regions, outside the over-dense

wake, cool by a consistent amount, producing a uniform background temperature.

However, the same heating, created by the collapse of the gas, is still present. The

densest part of the wake is hotter, by several hundred Kelvin. This trend continues

at later times, with the dense cone edge retaining a temperature higher than the

background. It can also be seen, in the lower part of the later time plots, that the

spherical part of the wake maintains its shape, with a slightly higher temperature

than the background.

Moving to the medium density case, the cooling effect is much greater. The

temperature of the background drops to close T = 12K by the first snapshot, and

by the final time, has dropped to T = 4K. While the dense part of the wake is still

slightly warmer than the background, the difference is now small. It is clear that

the increased density produces a much greater loss of heat. As material forms

the wake, it would previously have become pressure supported, heated by its

collapse. In this case, the pressure support is almost entirely removed, with much

of the heat generated by the collapse radiated away. The heating is overcome by

the extreme cooling, and so material collapses to much greater densities. This

combination is also seen in the high density case, where cooling is even more

extreme. The background temperature has dropped to T = 2.7K by the end of

the run. This is a hard limit placed on the simulation, set to current temperature

of the cosmic microwave background. The dense wake shows only a tiny deviation

from the background temperature. Effectively all of the heat generated by the

collapse has bee radiated away. This shows the difference between the medium

and high density cases. In the over-density plots, the alpha value was limited

to provide the easiest comparison between runs. The temperature range is not

limited in this way. While the temperature is lower in the high density case, the

structure of the wake does not appear to differ, at least in overall shape.
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In both medium and high density cases, the wake has approximately the same

extent. The form of the wake suggests that almost all pressure support has been

removed, with the lateral extent of the wake likely caused by the conservation of

momentum in the particle trajectories.

The detail of the differences, in over-density and temperature, between the two

higher density cases, can be seen in the phase diagrams from the different runs.

These are shown in Figure 5.3, alongside the phase-diagrams for the ‘no cooling’

and low density cases. The particles of the simulation are binned by number

density n and temperature T . The colour bar indicates the number of particles

in each bin, and the red dots show the initial background conditions, when they

can be reasonably shown in the same axes. The lack of cooling is obvious in

the first column, where the heating from the collapse of the gas is clear in the

particles that lie around the linear tail. This extends from the initial conditions,

with a density increasing proportionally to temperature. The spread is present

in the initial conditions, and is simply caused by the glass like initial conditions

not exactly replicating the desired uniformity. This tail is a clear representation

of the adiabatic heating. In the low density case, the spread of particles is

largely unchanged, with the whole ensemble decreasing in temperature at an

approximately constant rate. The medium density case starts with the cluster of

particles close to its initial density. In the first snapshot, the tail is less linear

than the previous cases. It has a slight turnover, as we move to higher densities.

This reflects the increased cooling that we expect at higher densities. In the lower

density case, this cooling is outmatched by the heating from collapse.

As we move to the later snapshots in the medium density run, the tail becomes

increasingly extended, even as the whole ensemble continues to cool. The turnover

in the tail is clear, with no high density particles able to maintain any gains in

temperature. We do not see these particles drop far below the temperature of

the background particles. This is likely because the whole ensemble is already

cooling so rapidly that the relatively small increases in density does not increase

the cooling rate by a proportionally large amount. When I refer to the small

density increase, this is still to an over-density of α = 5. This is significant, when

compared to the standard over-density that would be produced by dynamical

friction, which should be α � 1, assuming the scenario is within the linear

regime of A < 1. While the high density case reaches higher densities, and

lower temperatures, the bulk of over-densities it produces are still α ≤ 5, since

the initial background density is higher. The spread in temperatures is smaller,
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and the bulk temperature lower, showing the increased efficiency from cooling.

By the final snapshot, the bulk of the gas has cooled to the imposed floor, but

even before this the shape is flatter than the medium run. There is almost no

signal of the increased temperature from collapse. The high density tail extend

to greater over-density in the medium and high cases, but the number of particles

beyond this point is not significant.

Overall, these solar metallicity results show that the addition of advanced cooling

and chemical networks, can have a profound impact on the evolution of a gaseous,

gravitationally induced, wake. The cooling of the gas produces greater over-

densities, with the effect being most pronounced at the highest densities, where

cooling is most efficient. In the low density case, while the gas does cool somewhat,

the difference in the evolution of the wake is small. I will discuss the wider

implications of these results in Section 5.5, but it should be noted that the setup

used here is still highly idealised. Regions of uniform gas at these densities, and

temperatures, are not to be expected in a cosmological setting. However, these

results can still show how cooling can change the impact of dynamical friction.

5.4.2 Primordial Metallicity

I now show the equivalent results for the primordial metallicity runs. These

runs use the same densities as their solar metallicity counterparts, but now with

much smaller metal abundances. The figures are arranged in the same manner

as before, with columns for each density, and the ‘no cooling’ benchmark. Time

increases downwards. Looking first at Figure 5.4, we see that the wake is largely

unchanged in the low and medium density cases. As there is no longer much

metal line cooling, the medium density case cannot shed enough internal energy

to overcome the pressure support that we see in the original adiabatic case, and

the low density case. The medium density case does show some evidence of cooling

however. There is an unexpected over-density forming a tail directly downwind of

the perturber, which is not seen in the low density run. The cone is also slightly

sharper, as seen in residual plot for the final snapshot. This snapshot also shows

the over-dense tail clearly wrapping around. The high density run shows a similar

extreme collapse to the solar run. The increased density provides enough cooling

to overcome the pressure support, even without significant metal line cooling.

In the first snapshot, however, there is also a peculiar break in the over-density,

suggesting the presence of some kind of instability within the wake. This structure
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has disappeared in the later snapshots. Otherwise, it would appear that the high

density case can still cool efficiently, and so, once again, loses pressure support

for the extended wake structure.

Moving to the temperature distributions, shown in Figure 5.5, we see the

difference between the low and medium density runs more clearly. The low

density case is still almost identical to the benchmark run, with the temperature

varying from it by only a few Kelvin. The medium density case shows the bulk

cooling of all particles, caused by the higher density. It also shows a cooler region

behind the position of the perturber. This material has cooled more than the

background, because it has passed through the densest part of the wake. In the

solar metallicity runs, the cool region closely mapped to the dense region, but

in this case there seems to be some disparity, with the cool region extending to

parts that are not particularly over-dense. Material that was previously in the

dense region has cooled enough to be distinct from the background. This is the

material that will go on to form the over-dense tail directly behind the perturber.

Its lower temperature seems to allow it to collapse further, even though it is not

currently particularly dense. Something similar has likely happened in the high

density run, where the low density break is also cooler than the surrounding high

density wake. As density increases, more molecular hydrogen will form, and this

will also contribute to the increased cooling in the high density regions. The

molecular hydrogen fraction is discussed in greater detail in Section 5.4.4.

The phase diagrams for these runs can be used to better understand these new

structures. Shown in Figure 5.6, these demonstrate that the low density run

is essentially unaffected by the additional physics. The medium density case,

however, has a wing of particles that decreases in temperature, as the density

increases. These are the particles that form the over-dense tail directly behind

the perturber. They have cooled as they pass through the dense front of the cone,

but some of them are now in the lower density part behind the cone. They do not

gain temperature again, so remain in this separate wing of the phase structure.

The high density case has a similar evolution to the solar counterpart, just with

significantly less cooling. The high density tail does not increase in temperature,

as it does in the benchmark, since the particles are losing heat through the cooling

processes, which are once again more efficient at higher density. Since the cone

structure does not form at all, the wing observed in the medium case does not

form. There are no particles that move from a high density cone front, to the

lower density region behind the front.
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Taking this all together, the lack of significant metal content shifts the density

at which cooling dominates the formation of the wake. In these primordial cases,

only the very high density of n = 10cm−3 can cool efficiently, while in the solar

metallicity case, n = 1cm−3 gas can also cool rapidly, leading to a much more over-

dense wake. Even in the cases where the formation of the wake is not dominated

by cooling, the additional physics has some effect on the detail of the wake,

in general producing more over-dense structures than are seen in the idealised

analytic prediction.

5.4.3 Drag Force

To see the impact of these new features, we can consider the net drag force, on

the perturber, from the over-dense wake. This is calculated by direct Newtonian

force summation. The summation is performed between all particles in the box

and the perturber. In Figure 5.7, I show this force, in its dimensionless form. The

plot on the left shows the results for the solar metallicity runs, with the primordial

metallicity results on the right. The black line gives the analytic prediction, with

the lower panels showing the residual between the numerical results, and this

analytic solution, such that φ = (Fnum − Fana)/Fana. The blue dashed line shows

the drag force from the ‘no cooling’ benchmark case, the orange the results from

the low density run, green the medium density, and red the high density. In both

cases we see a smooth increase in force, until about t = 6tc. After this point in

the solar case, the medium and high density runs, which have essentially identical

forces, show a sharp turnover, with the force dropping to zero, before rebounding.

The same is found in the high density run for the primordial case. This is the

time when the wrapping around of the perturbation shows its effect. In the higher

density cases, a large over-density wraps around.

Since the force effectively comes from any over-density against the background,

the wrapping around of the dense wake creates a forward force that counteracts

the drag. In the lower density cases, the effect is much less pronounced, but still

present. This turnover makes analysis at the later times difficult, so they have

been excluded from the plot. To check for any force variation from changes to the

background wrapping around, I calculate the force using only those particles that

are behind the perturber. This will also exclude any structures that protrude

ahead of the perturber, but from the over-density plots in Figure 5.1, it is clear

that such structures are very limited, in all cases. To remove the force from
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Figure 5.7 Upper panel: Net dimensionless drag force from all particles, for
the benchmark case (blue), and the low (orange), medium (green),
and high (red) density cases. Black line shows analytic prediction.
Lower panel: Residual between the numerical and analytic forces
φ = (Fnum − Fana)/Fana.

the background density, I subtract the force calculated for the initial particle

distribution behind the perturber, from the force calculated at each snapshot.

For the times shown in Figure 5.7, the force is unchanged from the previous

result.

We see a trend in the force with increasing density. As we move from the low

density to high density runs, the net drag force increases. In the solar metallicity

case, the low density force is only slightly higher than the benchmark run, while

the medium and high density runs shows much greater forces. In the primordial

metallicity case, the same pattern is seen, except the medium density case is

much closer to the low density and benchmark runs. Both of these observations

fit well with the distributions of material that we see in the over-density plots.

It is noticeable that the higher density cases come close to matching the analytic

solution. This is largely coincidental, as we already know that the numerical

results do no replicate their analytic counterparts. It is of more use to compare

the chemistry runs to the run with no cooling, as this will disentangle the effects

of adding cooling. This comparison will be performed later. The ‘no cooling’

run uses assumptions that best match the analytic solution, and so should be the

closest to that result.

The analytic solution is largely included as a guide, but it does bring us to a

peculiar result from these runs. The benchmark run, shown in blue, produces a

force that is significantly below both the analytic solution, as previously found,
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and the equivalent result from Chapter 2. The force for A = 0.1 andM = 1.3 was

previously found to have an offset of approximately 10%, when compared to the

analytic prediction, but it now sits at about 40% (see Section 2.4.1 for previous

results). This is very odd, since one of the previous tests included varying the

specifics of the initial conditions, to see if the result was genuinely scale free.

While the test did not specifically cover the regime used here, they did show that

previous offset did not change with different combinations of initial conditions.

Why this would change for the new case is not clear. As mentioned before, the

resolution of these runs is higher than the work presented in the previous DF

chapter. For simple comparison, both use the same number of particles, but

the original runs have a box that has edges of length L = 80rs, wheres these

runs use L = 18rs. This means that the average particle separation, in terms of

gravitational softening scale, is about four times smaller in these new chemistry

runs.

In Figure 5.8, I show the force from two setups designed to check how the ratio of

box size to softening scale might effect the recovered force. The blue line shows

the standard setup for the chemistry runs, the green line the effective ratio of

the previous runs, and orange a ratio in between the other results. The change

is achieved by decreasing the softening scale. The perturber mass is decreased

alongside the softening scale, to keep the same A value. The simulation is run

for the same physical time, so the number of crossing times increases as the
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softening scale decreases. The results that use all particles (left) all follow the

same trajectory, until the point where the wake wraps around through the box

boundary. This is at a different number of crossing times for each case, but

the trajectory after this point is very similar, with the force decreasing. This

effect is somewhat missing in the right plot, where only the particles behind

the perturber are used, but the signal can still be seen. This is likely caused

by rarefaction of the wrapped around background, as some material has been

retained in the over-dense wake. The peak in this distribution seems to increase

with the number of crossing times that can realistically be reached. I noted a

similar potential convergence in Chapter 2, although it is unclear if the numerical

result will converge on a force that is below the analytic prediction, or if it will

eventually match it. My previous result showed convergence was not achieved,

even at t > 100tc. Other numerical results (Kim & Kim, 2009) found a match at

t > 300tc, but do not discuss the results before that time, and this lead time for

convergence was not found by other numerical works (Bernal & Sánchez-Salcedo,

2013). Either way, it would seem that the increased discrepancy is simply caused

by a combination of the relatively early time, and the later wrapping around of

material. This is interesting, but since the focus of this work is on the change in

the numerical result when additional physics is added, a comparison between the

numerical results alone is adequate, for our purposes.

I now compare the results from the new chemistry runs to their benchmark,
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shown in Figure 5.9. Here, we clearly see that the increased over-density in the

wake, caused by the addition of cooling and the 9-species chemical network, has

a strong effect on the net force. In the solar case, as noted before, the medium

and high density runs show effectively the same force evolution, producing a force

that is almost half as great again, when compared to the benchmark case. The

low density run shows a smaller increase, rising to a value around 10% higher

than the benchmark. This clearly corresponds well to the observations made

about the over-density in the wake. Both the medium and high density cases

cool so rapidly that their wakes lose all pressure support. The wakes collapse to

much greater over-densities, with more material in the inner wake, close to the

perturber. It is interesting that small additional collapse allowed by the slower

cooling in the low density case, is still enough to provide a notable increase in

force. Taking the primordial metallicity case, in comparison, we see that the high

density result follows an almost identical path. Even in the absence of significant

metal content, material at this density and initial temperature is able to cool

rapidly, presumably through a combination of atomic and molecular cooling. The

low and medium density forces, at this metallicity, show very little impact from

the cooling processes. In these cases, cooling is too inefficient, without more

metals, to counteract the heating from the collapsing material.

5.4.4 Molecular Hydrogen

As has been discussed previously, linking dynamical friction to the formation

of molecular hydrogen (H2) could have strong implications for the evolution of

early galaxies. In summary, molecular hydrogen is an important component in

the evolution of galaxies. It is found in star forming regions, and is thought

to be a key driver of star formation itself. At early times, when the metal

fraction is extremely low, before the formation of the first stars, it provides a

possible channel to cool gas. This could be a mechanism by which the first stars

form (Bromm, 2013), as the cooling reduces pressure support, and regions of gas

can collapse under self-gravity. However, without the presence of metals, the

formation of molecular hydrogen can only proceed via two-body, or three-body,

interactions. The formation rate is therefore dependent on the square of the

number density of the gas, or the cube, in the three-body case. The cooling itself

will also increase with density. It is possible that DF from, for instance, dark

matter substructure, could trigger the initial increase in density, and so drive the

formation of more molecular hydrogen. The advanced chemical networks used
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here provide information on the fraction of the gas that is made up of molecular

hydrogen. I use the evolution of this fraction to speculate on the possibility of

DF stimulating the formation of molecular hydrogen.

In Figure 5.10, I show the phase diagrams for the solar metallicity runs. Where

before the colour bar showed the number of particles in each bin, it now shows

the mean fraction of molecular hydrogen for the particles in that bin. Starting

with the low density n = 0.01cm−3 run, the gas is initialised with a very small

molecular hydrogen fraction. Even at the final temperature reached by this run,

the temperature is to high to allow much H2 to survive. Collisions disassociate

hydrogen molecules, and the small increase in density caused by the perturber

is not enough to counteract this. At medium density n = 1cm−3, in the first

snapshot, we see that the tip of the material at lowest density shows a small

increase in molecular hydrogen fraction, but this increase is washed out by the

bulk changes in the fluid state. Even as it cools, it largely retains its molecular

hydrogen fraction, but does not show any promotion of H2 formation, even in the

high density tail. A very similar pattern is seen in the high density n = 10cm−3

case, but with a higher equilibrium H2 fraction, caused by the higher overall

density. These results suggest that at solar metallicity, presence of a perturber

does not change the formation of H2. With metals present in the gas, molecular

hydrogen formation can proceed on the surface of dust grains, so the increases in

density will have less impact.

The primordial results, on the other hand, show a more complex picture. Shown

in Figure 5.11, the results for the low density case show the same trend as the

solar results, but with at an even smaller H2 fraction. With even less cooling,

and no metals to promote formation via dust, very little H2 can survive. The

medium density case shows strong evidence for the stimulation of H2 formation

by gravitational perturbation. In the final snapshot, we see that the high density,

low temperature wing has an increasing fraction of molecular hydrogen. The

increase in density, combined with the decrease in temperature, has allowed H2

to form, and survive. The increased H2 fraction will also have increased the

cooling rate, allowing further collapse. This structure is distinct from the bulk

cooling of the background medium, and the standard linear structure produced

in the benchmark run. When we compare the medium density to the high density

run, the same strong effect is not present. There is some gradient in the fraction,

in the first snapshot, but the relative change is less pronounced. This gradient is

largely gone at the later times.
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The overall fraction is also much higher, driven by the higher initial density.

From these results, it is clear that dynamical friction can drive the formation of

molecular hydrogen, in the absence of metals. The scenarios in which than can

happen are still determined by the combination of density and temperature of

the gas, and there appears to be a narrow set of circumstances where the effect

is most pronounced.

When we compare the fraction formed in these solar metallicity runs, to those

found in the primordial runs, we see that the fraction is several orders of

magnitude lower for the solar runs. Even at high density, where we see the

highest molecular fractions, the solar runs produce fmol = 4.5 × 10−7, while the

equivalent primordial runs show fmol = 6 × 10−4. This suggests that the very

low temperatures and high densities reached in the solar run is somehow either

disrupting the formation of molecular hydrogen, or destroying it. Alternatively,

the high metallicity is not producing more molecular hydrogen, as would be

expected, but is instead somehow suppressing its formation. Exactly what is

causing this unexpected difference is not clear at this moment, and requires

further study. It must, however, be somehow dependent on the detail of the

collapse dynamics in the different cases.

5.5 Discussion and Summary

I have shown the impact of cooling processes on the development of a gravita-

tionally induced over-dense wake. For solar metallicities, scenarios with densities

n ≥ 1cm−3 show a complete loss of pressure support over timescales of tens of

mega-years. The resultant wake is much more dense, and produces a much greater

drag force, larger by as much as 50% of the force from a wake with no cooling.

At this metallicity, across all densities, the formation of molecular hydrogen is

dominated by the background conditions, and not driven by the perturbation

of the density. This is likely caused by the high metal content, which provides

a channel for molecular hydrogen formation on the surface of dust grains. The

primordial metallicity results show less extreme cooling, as is expected when

there are less metals. Only at n = 10cm−3 do these results produce a significantly

different wake structure. This case produces a force that is roughly 30% above

the previous value. In the low and high density cases, molecular hydrogen levels

are largely constant across the box, showing the abundance is once again driven

by the background conditions. In the medium density case, where n = 1cm−3,
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we see strong evidence for DF driven molecular hydrogen production. The high

density, low temperature wing that builds from the bulk of the particles, show

an increasing H2 fraction. This suggests that, under the right circumstances, DF

can stimulate H2 production, and so potentially trigger, or help to trigger, very

early star formation.

It should be noted that the setups used in this chapter, while including more

physical processes than my other DF work, are still highly idealised. Encountering

a 1kpc3 region of uniform temperature and density gas, at any of these densities,

is highly unlikely. Observations of the ISM and CGM show they have much more

complex, turbulent, structures, with gas existing in multiple phases throughout

a given region. These results do, however, show the significant difference that

cooling can have on the gravitationally induces wake. The structure and net drag

force are both strongly effected by the reduction or even loss of pressure support.

These changes would likely still manifest in a more complex environment, and

the potential for increasing the production of molecular hydrogen in a primordial

environment still has wide reaching implications. If DF, from the previously

discussed dark matter substructure, can trigger even relatively small increases in

H2 formation, it could dramatically influence our understanding of the formation

of the first galaxies.

The scenarios described here are motivated by changing as little as possible

between runs, to isolate the cause of any differences in the gravitationally induced

wakes. However, this leads to initial conditions that are initialised far from

thermal equilibrium. The medium and high density runs in the solar metallicity

case, and the high density run on the primordial case, all cool rapidly from the

start of the simulation. The cooling time scales are much shorter than the time

scales associated with the formation of the wake structure. This leads to an

evolution of that is entirely dominated by the extreme cooling of the gas. A

different set of initial conditions, using the same density, but where the initial

temperature is chosen such that the background density is in thermal equilibrium,

would add new information on the formation of the wake in more physically

likely conditions. For the solar metallicity case, this would have the medium

density case start at T ≈ 10K, and the high density case at T = 2.7K. The

latter temperature is the value of a temperature floor in the code that keeps

the temperature at or above the current observed temperature of the CMB. The

high density primordial case would be initialised at T ≈ 300K. These scenarios

would allow us to observe the development of the wake, in the presence of strong
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cooling mechanisms, without the extreme changes introduced by starting so far

from thermal equilibrium. The changes in background temperature also change

the sound speed of the gas. This could complicate elements of the comparison,

as the physical times are no longer the same between setups. However, if the

Mach number of the initial bulk flow is kept constant, direct comparison can still

be achieved, thanks to the scale free nature of the original problem. The cooling

processes are not scale free, since they depend on density, but it should still be

possible to compare the different scenarios by using the sound speed crossing

time to normalise the different physical times. These hypothetical runs require

a careful consideration of the different time scales, in order to produce accurate

comparisons to the work presented in this chapter.
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Chapter 6

Conclusion and Future Work

6.1 Dynamical Friction

I have shown, through a set of idealised gravo-hydrodynamic simulations of

gaseous dynamical friction, that state-of-the-art hydro solvers, used for a

variety of astrophysical simulations, systematically under-produce the expected

gravitational drag force. This retarding force, acting in opposition to the direction

of travel of a perturbing mass, is generated by the over-dense wake, which is

produced by the gravitational perturbation of the gaseous medium. The mismatch

is found for supersonic perturbers, with Mach number 1 ≤ M < 2. The detail of

the structure of the wake does not match that predicted by linear perturbation

theory, with the largest differences found close to the perturber. Most notably,

the sharp edge of the Mach cone is not recovered well, and parts of the wake

extend forward of the position of the perturber. The difference was found for

different levels of linearity, defined by the A = GMp/c2s rs parameter, with the

force mismatch present down to A = 0.01. To understand how these conditions

correspond to those found in cosmological simulations, I show the distribution

of dark matter sub-halos in the coordinates that define the scale free idealised

DF runs. A large fraction of the sub-halos identified in the IllustrisTNG-300

simulation box exist in conditions that produce a mismatch in my idealised

setups. This suggests that these structures are not experiencing enough DF, in

these simulations, as opposed to their physical counterparts, which has important

implications for the merger histories of galaxies. I proposed a standard gravo-

hydrodynamics test, based on this idealised setup, that could be applied to the
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many simulations codes used in the field.

These highly idealised runs were followed by runs that include additional cooling

physics, with the associated calculation of molecular chemistry. The new runs

use much of the same idealised setup, with the core difference being the addition

of the new physics. They show the profound impact that cooling, from atoms,

metals, and molecules, has on the evolution of a gravitational perturbation of a

uniform gaseous medium. At high metallicity, cooling from metal line emission

removes much or all of the pressure support for the structure of the gravitationally

induced wake. Much greater densities are reached, and the drag force is greatly

increased. This effect is greater at higher densities, where cooling is more efficient.

At primordial metallicity, metal line cooling is largely gone, but cooling from

atoms and molecules is still present. In these runs, we saw that only the highest

density case could cool enough to lose all of its pressure support, showing that

it is still possible for this to happen, even without metals. At n = 1cm−3, in

the medium density case, I also show that parts of the gravitationally induced

wake can stimulate the production of molecular hydrogen, which could potentially

provide an avenue for DF induced cooling to produce the first stars.

6.1.1 Self Gravity

The idealised runs used in this work, and those that include the cooling processes,

ignore the self gravity of the gaseous medium. The only gravitational force

that the gas experiences comes from the massive perturber. This is one of the

assumptions made in calculating the analytic solution. If the self-gravity of the

gas were included in the modelling of dynamical friction, the over-densities created

by the gravitational perturbation of the massive object would continue to grow

under their own gravity. A wake that was previously stable may become unstable

to its own gravity, producing higher density regions in the wake. This would lead

to greater drag forces on the perturber. Since the numerical results show that the

numerical wake does not reach the expected high densities in the cone front, the

growth of these densities due to self-gravity would also be suppressed, assuming

the collapse under self-gravity becomes non-linear. Smaller initial over-densities

produce less collapse, and so further undershoot the physically correct wakes.

The numerical wake would therefore produce force that is proportionally lower

than the idealised scenario produces without self-gravity. This could point to an

even greater deficit in the DF force felt by structures in numerical simulations,
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further distorting the rates of processes, such as mergers.

6.1.2 DF in Cosmological Context

The ability of modern cosmological simulation codes to accurately capture the

effects of both collisionless and gaseous classes of DF, in their full cosmological

context, has not been studied in detail. Capturing the effects of DF in simulations

requires modelling the hydrodynamic response, as well as the purely gravitational

effects. As has been discussed, the nature of the hydrodynamic problem makes it

difficult for traditional hydro solvers to model accurately. The extended gaseous

structure is highly unstructured. Based on the results presented in this work, it

is clear that the key next steps include investigating DF in its full cosmological

context. This could be done by running a set of cosmological zoom boxes, focused

on a suitably massive DM halo. The simulations can end at z=10, before the onset

of significant star formation or reionisation, to avoid the complicating the results

with additional heating and feedback. The effects of low mass DM substructure

will be most pronounced in this epoch, when gas fractions are higher than at

later times. This setup would allow one to study the CGM, in the vicinity of

substructure within a halo, in great detail. It would be possible to examine the

density perturbations and heating, as well as the promotion of molecular hydrogen

formation by this perturbation. These results could be used to make predictions

about the evolution of proto-galaxies. The CDM model predicts the build-up

of structure through the collapse of regions of increasing size, and DF driven

mergers. On top of this, there is the potential contribution to the chemo-thermo

evolution of the gas of the host. The detail of this crucial process, in the full

cosmological context and looking for the possible signature of DM substructure,

is not yet well understood.

6.2 RD Solver

I have presented my implementation of the truly multi-dimensional residual

distribution family of hydro solvers. These solvers produce the numerical solution

to the Euler equations, to second order accuracy in both time and space. They

utilise a mesh of triangles, the Delaunay triangulation, of an arbitrary distribution

of vertices. I have shown that with little targeted optimisation, it can compete
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with other modern hydro solvers, for problems directly related to those found in

astrophysical scenarios. This included extensive use of standard hydrodynamics

tests, such as the multi-dimensional flows in the Kelvin-Helmholtz instability,

and the taxing Sedov blast, for which the RD solver produced accurate results.

I demonstrated the different advantages of the various RD schemes, and noted

that the solver could resolve structures at remarkably low resolution. The LDA

scheme shows its superior ability to resolve smooth flows, while N scheme produces

accurate and stable results for problems involving extreme shocks. This improved

shock handling is demonstrated by the removal of spurious oscillations in the

shock profile, when going from the LDA to the N scheme, in the Sod shock tube

test. The differences in capturing smooth flows is seen most clearly in the KH

test, where the LDA scheme is able to resolve considerably more structure than

its N scheme counterpart. The potential for blending these schemes, through

the use of a blending coefficient, provides an excellent balance between the two,

allowing the possibility of highly accurate results for scenarios that include a wide

variety of physical conditions.

I covered the extensions I have implemented to the basic scheme, including the

introduction of the adaptive time-stepping mechanism, and the conversion to

full 3D. I showed, in detail, the complications of applying the time-stepping

optimisation, discussing the implications for conservation of mass and energy.

Although I found a small loss in conservation, the difference remained very small

for most setups, and the mechanism offered an excellent boost to performance.

I have demonstrated the abilities of the various RD schemes using tests with

up to 3D. Finally, I discussed the possible ways that gravity can be included in

the solution, and showed preliminary results from the first gravity based test,

using the setup proposed from my dynamical friction work. Once again, even

at low resolution, much of the expected structure in the wake was recovered,

demonstrating the accuracy of the solver.

6.2.1 Optimisation and Extension

The results and discussion, presented in this work, are based on my current

implementation of the RD approach. As with many numerical methods, there

are many options for further improving this new family of methods. Much of

what I have discussed here are the results from the RD solver ‘straight out the

box’, with little specific tailoring or optimisation. These results are strong, and
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produce a solver that is already able to compete with others used in the field, but

there are always going to be further improvements available. For instance, many

of the results are produced on entirely random vertex distributions. Replacing

these with distributions designed to match the expected flows could produce

even better results, such as starting the Sedov blast with more vertices close

to the centre, so that the initial blast shape is more regular. As it stands, the

solver produces excellent results, but the underlying methods have even more to

offer. There are a number of computational improvements and optimisations that

are clear next steps. Improvements to the modularity of the code, making even

greater use of the object orientated nature of C++ to make the code more readable

and more efficient, should be implemented next. For instance, the function that

currently calculates the residual is unnecessarily large, and can be broken up.

This will reduce code repetition, and make future adaptation easier. Memory

usage could also be slimmed down by adding more explicit memory allocation

and de-allocation routines, among other simple changes, such as reducing the

number of tracked variables.

As it currently stands, I have reached the practical limits of the tests that I can

run with the current implementation. Further testing and analysis requires more

detailed results, which currently require very long compute times to achieve.

Some work in extension and optimisation is still required to produce a solver

that can compete with the current state-of-the-art gravo-hydrodynamics codes.

Distributed memory parallelism, using MPI, is an obvious potential avenue for

further development, as most large scale simulation work now requires high

performance computing capabilities, which are mostly run on distributed memory

systems. To speed this process, it would be optimal to take advantage of the

bookkeeping provided by an established multi-physics code, such as GIZMO, as

a numerical backbone for future development of the solver. I will discuss this

further in Section 6.2.2.

Alongside this work, there is still a lot to learn about the possibilities of alternative

distributions schemes. Those that I have covered here are the most widely

used, but a number of other formulations exist. The possibilities for different

blending schemes, from different bending coefficient calculators to blending

different distributions schemes, present a host of opportunities. The mass matrix,

present in the second order formulations of some schemes, presents another

element to investigate further. A number of mass matrices have been developed

for these solvers, and those not discussed here could shape the implementation
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in positive ways. Most importantly, they could provide a mechanism to reduce

numerical diffusion. Building on the discussion of gravity, one could develop a

simple mechanism by which new source and sink terms can be easily added to

method. This would open the door to including a multitude of processes, from

radiative cooling, to star formation itself, to star formation feedback, and more.

The work I have presented, in the two chapters covering the RD solver, represents

a comprehensive framework onto which I can implement any number of additional

features.

6.2.2 Moving Mesh

The implementation, in its current form, is built around a static unstructured

mesh of triangles. The residual distribution approach is fundamentally built

around such an unstructured mesh, but can be applied to structured meshes, such

as that built from a Cartesian grid of points. While other solvers, which utilise

dimensional splitting, can be transformed to work with unstructured meshes,

the RD approach does so innately. This makes it ideal for conversion into a

moving mesh method. With a moving mesh, the vertices of the mesh move

with the flow, making structured meshes impractical. Unstructured meshes,

often using the dual of the Delaunay triangulation, the Voronoi tessellation,

can be used instead. Since the mesh is assumed to be unstructured with the

RD approach, the conversion of the current formulation to its moving mesh

counterpart only requires that the Eulerian fluid equations be reformulated into

their arbitrary Lagrangian Eulerian (ALE) formulation (Michler et al., 2003).

With the moving mesh providing natural resolution refinement in regions of high

density, and the truly multi-dimensional modelling of the fluid flows that the RD

approach achieves, the combination could provide a powerful new tool for running

astrophysical simulations.

As mentioned before, one could implement the RD hydro solver as a new module

for an established code, such as GIZMO, allowing the RD solver to handle the

hydrodynamics of a given simulation, while the rest of the physics is modelled

using the advanced processes, already present in the other code. A state-of-

the-art multi-physics code can provide key bookkeeping mechanisms, such as

tree construction, that will allow the new formulation to function efficiently.

The advanced gravity calculations, utilised by such codes, could be used as an

optimised and more accurate gravity model for the RD solver. Once this is done,
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the effects of various additional physical processes, can be applied. Using the

example of GIZMO, advanced models for a wide range of processes and feedback

mechanisms are already implemented, and so their contribution to the state of

the gas can be easily applied. These can be included as source and sink terms,

much like gravity.
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Appendix A

RD Implementation

In this appendix, I will describe how I have implemented the underlying numerical

method, into a functioning program to solve the evolution of any set of initial

conditions (ICs). This will cover the 2D form of the solver, which finds the

numerical approximation for the solution to the 2D Eulerian inviscid fluid

equations. This solution is found in a domain discretised by a set of vertices,

around which an unstructured Delaunay mesh is constructed. The code is written

in C++, with extensive use of the languages object-oriented nature allowing for

significant modularity. The core of the implementation is built around two classes:

one for the vertices of the mesh, and one for the triangular elements of the mesh.

These are supplemented by a number of bookkeeping and linear algebra functions.

The code is publicly available at via GitHub (https://github.com/bpfm/rdsolver),

but is not packaged for easy distribution. There are only very limited installation

and user instructions available at this time.

A.1 Vertex

The VERTEX class stores the position of the vertex, and the fluid state at that

position, including both primitive and conserved variable forms. It can be found

in the vertex2D.h file. To handle the second order in time extensions, each vertex

also has information about the intermediate state used by the RK2 time stepping

mechanism. This class also consists of various member functions that update

the state and intermediate state, when passed the appropriate updates from the
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triangles for with they are vertices. In the current setup, the vertices do not hold

information about which triangles these are, or how many triangles with which

they are associated. Finally, this class has a member function for checking that

the fluid state is viable, namely that it does not have negative density or pressure.

This is an error handling function for nonphysical solutions. In the event that

such a state is reached, the code will exit. The set of vertices, around which the

mesh will be constructed, are held in a std::vector RAND_POINTS structure, which

allows for simple insertion and deletion of new vertices.

The class contains four key member functions that handle the updating of the

fluid state. These are divided in two , with two functions that keep track of the

contributions the update for a given time step, and two that update the state once

all contributions have been made. There are two of each because one is designed

for creating the intermediate state needed by the RK2 time-stepping regime, and

one is required for constructing the final state at the end of the update. The

update_du_half function is passed updates by the pass_update_half member

function of the TRIANGLE class. It keeps a running total of the updates passed

to it during a time-step. Once updates have been passed by all the triangles in

the mesh, the update_u_half member function updates the initial state with the

total change, generating the intermediate state. Assuming a second order scheme

is being used, then the updates from the intermediate to final states are passed

from the triangles to the update_du function, which again keep a running total

for a given time-step. After all elements have does this, the update is performed

by the update_u_variables function. If a first order scheme is being used, then

the update passed from each element to update_du is forced to zero. This means

that the update from initial to final state is entirely found by the update to

the intermediate state, which is exactly equivalent to the formulation of the first

order update. Once the fluid state has been updated at a given vertex, the update

trackers for that vertex are reset to zero, ready for the next time-step.

A.2 Triangle

The second class, which handles the elements of the mesh, is the TRIANGLE

class. The key information that this class is initialised with, are the pointers

to the three vertices that define it. These are pointers to entries in the vector

of VERTEX objects. Alongside the basic functions for importing the positions

and states of the component vertices, the TRIANGLE class contains the member
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functions for calculating and distributing the element residual. The element

residual is calculated by member function calculate_first_half, which imports

the current state, constructs the Roe parameter vector and subsequent K-matrix

and element residual. This residual is distributed by the pass_update_half

member function, which calculates the update to the fluid state at each vertex

of the element based on the time step ∆t passed to the function, and the chosen

distribution scheme. The distribution of the update is handled by calling the

update_du_half function, described in the previous subsection, for each vertex

of the triangle. Again assuming a second order solver is being used, the total

residual is calculated by calculate_second_half. This performs the same task

as the first function, but now for the total residual, rather than the element

residual. Once again this is used to calculate the update distributed to the

vertices, this time calculating the change from the intermediate state to the final

state. The update is passed to the vertices by calling update_du for each vertex.

As mentioned above, the first order schemes simply force the update passed to

update_du to be zero.

A.3 Additional Functions

Alongside these fundamental structures are a number of supplementary functions

that perform the standard bookkeeping tasks such as I/O, scenario setup, some

linear algebra functions, and the actual running of the program. These are

included in the io.cpp, setup2D.cpp, inverse.cpp, and main.cpp files. With

the main code is a sub-module, in cgal_periodic2D.cpp, that can construct the

required triangulation for the main RD solver code. The desired scenario, and

various constants such as domain size and CFL factor, are stored in the parameter

file constants.h, and included at compile time in the main program.

A.3.1 Input/Output Functions

The code includes basic functions for reading in sets of vertices, and the

corresponding Delaunay triangulation, in ASCII format. When the vertices are

read in, the setup function is called to set the appropriate fluid state, and then to

setup the triangles of the mesh. Once the evolution of the fluid is started, snapshot

files that contain all the information about the fluid state at each vertex, at that
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time, are created. These are produced by the write_snap function, which creates

an ASCII snapshot file, which are then used to analyse the results.

A.3.2 Setup

The setup functions are called when a mesh of triangles and vertices are read in

from the input file. Based on the conditions set out in the parameter file (see

below), the primitive variables are set for each vertex, and the functions that

convert these to their conserved counterparts are called. Once all states have

been setup, the mesh of triangles is read in, and the triangle setup function is

called for each element. As the vertices associated to each element are set, the

corresponding geometric properties of that element are calculated, namely the

area, the contribution to the dual area of the associated vertices, and the inward

pointing normals of each edge.

A.3.3 Matrix Inversion

Part of the construction of both the LDA and N schemes is the inversion of

the sum of negative inflow matrices. The inversion of a square matrix is only

possible if the matrix is not singular, which is when the determinant is zero.

Numerically calculating the inverse of a square matrix of arbitrary size is not

straight forward, and is a computationally intense task. There are a number of

well established linear algebra C++ libraries which can handle this calculation.

I use OpenBLAS library (https://www.openblas.net/), which provides a highly

optimised implementation of the BLAS linear algebra libraries, with an extensive

manual, and many examples. The OpenBLAS functions are called from the

mat_inv function, which, in turn, is called by the residual calculation member

functions of the TRIANGLE class.

A.3.4 Evolution Bookkeeping

The main function, as usual, ties everything else together. It handles the vectors

that contain the triangles (RAND_MESH) and vertices (RAND_POINTS), and calling

the input and setup functions to build the ICs for the current scenario. Once this

is done, main runs through the evolution of the fluid, looping over time steps until
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the final time is reached. Within this loop are nested loops that call the residual

cacluation functions for the first and second order updates for every element, and

for updating the states based on these residuals.

A.3.5 Delaunay Triangulation

In its current state, the code includes a module that can construct 2D and

3D Delaunay periodic triangulations for arbitrary distributions of vertices, a

Cartesian grid of vertices, and an offset grid of vertices. In the triangulation

directory, there are a number of options for constructing the various setups.

The key code is built around functions provided by the CGAL library, in

cgal_periodic2D.cpp. This program sets up the desired distribution of vertices,

creates the CGAL mesh constructor, and pass the set of vertices to the

constructor. This produces a list of triangles, where each triangle is defined by

three integers. These integers are the indices that refer to vertices in the original

set. All of this information is output to an ASCII file, Delaunay2D.txt, which is

used is read in when the main code is run. This program will be eventually

integrated into the main code, to allow for on the fly mesh refinement, and

eventually for the possibility of a moving mesh.

A.3.6 Global Parameters

A number of global parameters and scenario definitions are declared in the

constants.h header file. This includes defining the test case that is being

used, the number of dimensions (see Chapter 4 for 3D extension), the number of

snapshots files, the type of boundaries, the choice of distribution scheme, and the

temporal accuracy order. Depending on the choice of test case, global parameters

for box size, CFL coefficient, adiabatic gas constant and total time of simulation,

are also defined. At the moment, these are included at compile time, but in future

I plan to allow for run time setting of some of these variables.

A.4 3D Solver Implementation

The 3D solver implementation follows closely from the 2D equivalent. The

VERTEX and TRIANGLE classes have 3D counterparts, with the addition of the
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extra dimension in coordinates, fluid state etc. Other than the updates to the

fundamental bookkeeping functions, such setter and getter functions, and the

various conversion functions, the main change is to the exact form of the inflow

matrix calculation, which is converted to the 3D form given above. The conversion

of most other parts of the calculation is simply achieved by looping over five

elements that correspond to the underlying fluid equations, where before there

were only four, and including the contribution from four vertices, rather than

three. The structure of the code was designed with this eventual extension in

mind, so the change in code structure is minimal. For instance, the same inversion

function can be passed either the 4 × 4 or 5 × 5 inflow matrix.

A.4.1 Geometry

A number of geometric extensions must be performed to construct the analogous

setup, particularly in the definition of required time step, and inward facing

normal. The former is addressed in Section 4.3.3. The main geometric change

in the calculation is moving from the normal to an edge to the normal to a face.

Calculating this normal, and guaranteeing that it is the inward facing normal

for the host tetrahedron, is more complicated than the equivalent in 2D. It is

sufficient, in 2D, to require that the vertices are ordered counter-clockwise, and

then calculate the normal with vertices ordered in this way to find the inward

facing normal. In 3D, an equivalent ordering is not obvious, so instead, I calculate

the normal based on the arbitrary order of vertices produced by the triangulation.

Taking a tetrahedron with vertices v = (v0, v1, v2, v3), the triangular face opposite

v0 has normal can be found from the cross product of two of its edges

n0 = r12 × r13 (A.1)

where r12 and r13 are the edges between v1 and v2, and v1 and v3, respectively. I

then check that it points inwards, with respect to the host, by finding the angle

θ between the normal and one of the edges between the face and the opposite

vertex. This can be done by using the dot product of the two vectors

cos(θ) =
n0 · r01
|n0 | |r01 |

. (A.2)

If this angle is obtuse θ > π/2, then the normal is pointing in the wrong direction,

and is simply flipped. This process is repeated for all faces, and guarantees the
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desired orientations. Other than normals, the dual area is replaced by the dual

volume, which is trivial to calculate.

A.4.2 Triangulation

The shift to 3D requires a mechanism to produce arbitrary Delaunay triangula-

tions of vertices in three dimensions. The definitions of a Delaunay triangulation

essentially remains the same (see Section 3.3), except now the empty circumdisk

becomes an empty circumsphere. The same strategies can be applied to construct

such a triangulation (I still refer to it as a triangulation, even though the space is

now divide into tetrahedrons). As before, I utilise the CGAL triangulation library to

construct the underlying mesh, within which I compute the residual distribution

solution.

It is obvious that 3D simulations will be significantly more computationally costly

than the same resolution simulation in 2D. Other than the typical scaling problem

encountered by all 3D simulations, whereby the number of cells/particles increases

with N3, methods built around simplex meshes also have an increased ratio of

vertices to simplices when in 3D. To visualise this, one can consider a Cartesian

grid of vertices. A square of four vertices describe one square cell, or two triangular

cells. The ratio of vertices to simplices is therefore 1 : 2. In 3D, a set of eight

vertices describe a cube cell, but contains six tetrahedrons, giving a ratio of 1 : 6.

The exact ratio only applies for the Cartesian grid, but on average the ratio is

about three times larger in 3D. Therefore not only does go from N2 to N3, we must

also contend with more volume elements per vertex, increasing the computational

cost further.

259



260



Bibliography

Aarseth S. J., 1963, MNRAS, 126, 223

Abel T., Anninos P., Zhang Y., Norman M. L., 1997, New Astron., 2, 181

Abel T., Bryan G. L., Norman M. L., 2002, Science, 295, 93

Abgrall R., 2006, Computers & Fluids, 35, 641

Abgrall R., 2012, Comm. Comput. Phys., 11, 1043

Abgrall R., Marpeau F., 2007, J. Sci. Comput., 30, 131

Abgrall R., Roe P., 2003, J. Sci. Comput., 19

Abgrall R., Santis D. D., 2015, J. Comput. Phys., 283, 329

Adhikari S., Dalal N., Clampitt J., 2016, J. Cosmology Astropart. Phys., 2016,
022

Agertz O., et al., 2007, MNRAS, 380, 963

Anninos P., Norman M. L., 1996, ApJ, 460, 556

Arth A., Donnert J., Steinwandel U., Boss L., Halbesma T., Putz M.,
Hubber D., Dolag K., 2019, WVTICs – SPH initial conditions for everyone
(arXiv:1907.11250)

Barnes J., Hut P., 1986, Nature, 324, 446

Beckman J., Carretero C., Vazdekis A., 2008, Chinese J. Astron. Astrophys., 8,
77

Beckmann R. S., Slyz A., Devriendt J., 2018, MNRAS, 478, 995

Begum A., Chengalur J. N., Karachentsev I. D., Sharina M. E., Kaisin S. S.,
2008, MNRAS, 386, 1667

Berger M. J., Oliger J., 1984, J. Comput. Phys., 53, 484

Bernal C. G., Sánchez-Salcedo F. J., 2013, ApJ, 775, 72

261

http://dx.doi.org/10.1093/mnras/126.3.223
https://ui.adsabs.harvard.edu/abs/1963MNRAS.126..223A
http://dx.doi.org/10.1016/S1384-1076(97)00010-9
https://ui.adsabs.harvard.edu/abs/1997NewA....2..181A
http://dx.doi.org/10.1126/science.295.5552.93
https://ui.adsabs.harvard.edu/abs/2002Sci...295...93A
http://dx.doi.org/10.1016/j.compfluid.2005.01.007
http://dx.doi.org/10.4208/cicp.270710.130711s
http://dx.doi.org/10.1007/s10915-005-9023-2
http://dx.doi.org/10.1023/A:1025335421202
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2014.11.031
http://dx.doi.org/10.1088/1475-7516/2016/07/022
https://ui.adsabs.harvard.edu/abs/2016JCAP...07..022A
https://ui.adsabs.harvard.edu/abs/2016JCAP...07..022A
http://dx.doi.org/10.1111/j.1365-2966.2007.12183.x
http://dx.doi.org/10.1086/176992
https://ui.adsabs.harvard.edu/abs/1996ApJ...460..556A
http://arxiv.org/abs/1907.11250
http://dx.doi.org/10.1038/324446a0
https://ui.adsabs.harvard.edu/abs/1986Natur.324..446B
http://dx.doi.org/10.1093/mnras/sty931
http://adsabs.harvard.edu/abs/2018MNRAS.478..995B
http://dx.doi.org/10.1111/j.1365-2966.2008.13150.x
http://dx.doi.org/https://doi.org/10.1016/0021-9991(84)90073-1
http://dx.doi.org/10.1088/0004-637x/775/1/72


Bertschinger E., 1998, ARA&A, 36, 599

Binney J., Tremaine S., 1987, Galactic dynamics. Princeton University Press

Bode P., Ostriker J. P., Turok N., 2001, ApJ, 556, 93

Bodenheimer P., Laughlin G., Rozyczka M., Plewa T., Yorke H., Yorke
H., 2006, Numerical Methods in Astrophysics: An Introduction. Series in
Astronomy and Astrophysics, CRC Press, https://books.google.co.uk/

books?id=qWbLBQAAQBAJ

Bottrell C., Torrey P., Simard L., Ellison S. L., 2017, MNRAS, p. stx017

Boylan-Kolchin M., Ma C.-P., Quataert E., 2008, MNRAS, 383, 93

Bromley B. C., Kenyon S. J., 2016, ApJ, 826, 64

Bromm V., 2013, Rep. Prog. Phys., 76, 112901

Bromm V., Yoshida N., Hernquist L., McKee C. F., 2009, Nature, 459, 49

Bryan G. L., et al., 2014, ApJS, 211, 19

Caraeni D., Fuchs L., 2002, Theo. Comput. Fluid Dyn., 15, 373

Chandrasekhar S., 1943, ApJ, 97, 255

Chandrasekhar S., 1961, Hydrodynamic and hydromagnetic stability. Courier
Corporation

Cheng S., Dey T., Shewchuk J., 2016, Delaunay Mesh Generation. Chapman
& Hall/CRC Computer and Information Science Series, CRC Press, https:

//books.google.co.uk/books?id=oJ3SBQAAQBAJ

Chitre A., Jog C. J., 2002, A&A, 388, 407

Clark P. C., Bonnell I. A., Zinnecker H., Bate M. R., 2005, MNRAS, 359, 809

Cohen G., Joly P., Roberts J. E., Tordjman N., 2001, SIAM J. Num. Ana., 38,
2047

Colless M., et al., 2001, MNRAS, 328, 1039

Crowther P. A., 2001, Ap&SS, pp 215–230

Csik A., Ricchiuto M., Deconinck H., 2002, J. Comput. Phys., 179, 286

DESI 2016, The DESI Experiment Part I: Science,Targeting, and Survey Design
(arXiv:1611.00036)

Daddi E., et al., 2010, ApJ, 714, L118

Deconinck H., Ricchiuto M., 2007, Encyclopedia of Computational Mechanics,
p. 1

262

http://dx.doi.org/10.1086/321541
https://books.google.co.uk/books?id=qWbLBQAAQBAJ
https://books.google.co.uk/books?id=qWbLBQAAQBAJ
http://dx.doi.org/10.1093/mnras/stx017
http://dx.doi.org/10.1111/j.1365-2966.2007.12530.x
http://dx.doi.org/10.3847/0004-637x/826/1/64
http://dx.doi.org/10.1088/0034-4885/76/11/112901
http://dx.doi.org/10.1038/nature07990
https://ui.adsabs.harvard.edu/abs/2009Natur.459...49B
http://dx.doi.org/10.1088/0067-0049/211/2/19
http://dx.doi.org/10.1007/s00162-002-0060-2
http://dx.doi.org/10.1086/144517
https://ui.adsabs.harvard.edu/abs/1943ApJ....97..255C
https://books.google.co.uk/books?id=oJ3SBQAAQBAJ
https://books.google.co.uk/books?id=oJ3SBQAAQBAJ
http://dx.doi.org/10.1051/0004-6361:20020461
http://dx.doi.org/10.1111/j.1365-2966.2005.08942.x
http://dx.doi.org/10.1137/S0036142997329554
http://dx.doi.org/10.1046/j.1365-8711.2001.04902.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.328.1039C
http://dx.doi.org/10.1007/978-94-015-9723-4_17
http://dx.doi.org/https://doi.org/10.1006/jcph.2002.7057
http://arxiv.org/abs/1611.00036
http://dx.doi.org/10.1088/2041-8205/714/1/l118
http://dx.doi.org/10.1002/0470091355.ecm054


Deconinck H., Roe P., Struijs R., 1993, Computers & Fluids, 22, 215

Dobes J., Deconinck H., 2008, J. Comput. App. Math., 215, 378

Donnert J. M. F., Beck A. M., Dolag K., Röttgering H. J. A., 2017, MNRAS,
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