

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/459194103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Classical secure delegation of quantum

computations

Alexandru Cojocaru
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2021

Abstract
The rapid evolution of quantum technologies is likely to cause major shifts in the

mainstream computing landscape. In order to fully reach their potential in a wide base

accessible to any user, remote access of quantum computers and manipulation of data

with strong privacy and integrity guarantees are essential.

Consider a setting where a client having a fully classical computer wants to de-

termine the result of some quantum computation, but lacks the necessary resources

to perform the computation herself. She has access to a more powerful server which

has quantum resources and can solve the problem and send the outcome back to the

client. However, the client does not trust the powerful server, so she needs to find a

way to hide her data. Therefore, the main question that arises is how can we guaran-

tee the client’s privacy of the input and even the computation itself against the server

possessing quantum computational capabilities.

In the present thesis, we study this problem, denoted here as classical secure dele-

gation of quantum computations (CSDQC) between a fully classical honest client and

a quantum untrusted server. We focus on different models of security, analyzing the

limitations and potential of each of the settings. Concretely, we first study the CSDQC

problem under information-theoretic security. We analyse two categories of quantum

computations, decision and sampling problems and in both cases we provide evidence

indicating the impossibility of achieving information-theoretic security. Subsequently,

we consider relaxing the security framework and specifically, we will analyze this task

in the computational security setting (against quantum polynomial-time adversaries).

As a result, in the second part of the thesis we put forward the remote state prepara-

tion as a key component that would allow us to achieve classical secure delegation of

universal quantum computations. We present two protocols realizing the remote state

preparation primitive assuming only a classical channel between client and server. The

first candidate is shown to be secure in the honest-but-curious model, while the second

candidate is proven secure against the server in the malicious setting. The security of

both constructions relies on the hardness of the learning with errors problem. Finally,

given the important role the remote state preparation plays not only in CSDQC, but also

in other quantum communication protocols, we analyze its composable security to de-

termine the privacy loss as a result of using remote state preparation as a sub-module

in different protocols.

ii

Acknowledgements

I would like here to show my appreciation to a part of those without whom the

development of the current thesis could not be possible.

Firstly, I would like to express my gratitude to my main supervisor, Elham Kashefi,

for the close guidance, continuous support, and for all the opportunities received through-

out the whole period of my PhD.

I am extremely thankful to my co-supervisors, Petros Wallden and Aggelos Ki-

ayias, for the entire support and scientific guidance and for the numerous discussions

and patience to advise me this entire time.

I would also like to thank my two examiners, Frédéric Dupuis and Vesselin Velichkov

for their extremely helpful feedback and for the valuable discussions during the PhD

examination. I am also thankful to Myrto Arapinis for the very useful feedback during

all my annual reviews.

During my years in Edinburgh I have gained many strong friendships that I am

highly grateful for. I would like to show my appreciation for all the beautiful moments

and for all the discussions, to my close friends from the quantum group (former and

current members): Andru, Atul, Léo, Mina, Dan, Dominik, Brian, Mahshid, Niraj, to

my close friends from the crypto group: Thomas, Hendrik, Yiannis, to my office mates

and to my friends from the football group. I would also like to thank my close friends

from Romania, Ionut, and Alexandru.

Finally, I would like to thank my family for their uninterrupted support.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

The ideas presented in the current thesis are based on the following papers:

1. Scott Aaronson, Alexandru Cojocaru, Alexandru Gheorghiu, and Elham Kashefi.

Complexity theoretic limitations on blind delegated quantum computation. In

46th International Colloquium on Automata, Languages, and Programming, ICALP

2019, pages 6:1-6:13.

2. Alexandru Cojocaru, Léo Colisson, Elham Kashefi, and Petros Wallden. On the

possibility of classical client blind quantum computing. Paper presented at 8th

International Conference on Quantum Cryptography (QCrypt) 2018.

3. Alexandru Cojocaru, Léo Colisson, Elham Kashefi, and Petros Wallden. QFac-

tory: Classically instructed remote secret qubits preparation. In Advances in

Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory

and Application of Cryptology and Information Security, pages 615-645.

4. Christian Badertscher, Alexandru Cojocaru, Léo Colisson, Elham Kashefi, Do-

minik Leichtle, Atul Mantri, Petros Wallden. Security Limitations of Classical-

Client Delegated Quantum Computing. In Advances in Cryptology - ASIACRYPT

2020 - 26th International Conference on the Theory and Application of Cryptol-

ogy and Information Security.

Additional papers, dealing with problems independent of the ones studied in the current

dissertation, are listed below, and they are not included in the current text:

1. Alexandru Cojocaru, Juan A. Garay, Aggelos Kiayias, Fang Song, and Petros

Wallden. The bitcoin backbone protocol against quantum adversaries. IACR

Cryptology ePrint Archive, 2019:1150, 2019 ([CGK+19]).

2. Michele Ciampi, Alexandru Cojocaru, Elham Kashefi, Atul Mantri. Secure

Quantum Two-Party Computation: Impossibility and Constructions. IACR Cryp-

tology ePrint Archive, 2020:1286, 2020 ([CCKM20]).

(Alexandru Cojocaru)

iv

In Memoriam
Ilie Petra

(1937 - 2017)

Cojocaru Viorel

(1960 - 2018)

Pentru familia mea

v

Table of Contents

1 Introduction 2

1.1 Secure Delegated Computing . 3

1.1.1 Semi-classical Client and Quantum Server 5

1.1.2 Fully-classical Client and Quantum Server 8

1.2 Contributions . 14

1.2.1 Information-Theoretic Secure CSDQC 14

1.2.2 Computationally Secure CDQC against honest-but-curious server 15

1.2.3 Computationally Secure CDQC against malicious server . . . 16

1.2.4 Composable Security of CDQC 16

1.3 Outline . 17

2 Preliminaries 19

2.1 Quantum Computing . 19

2.2 Complexity Theory Background . 22

2.2.1 Advice Turing Machines . 26

2.2.2 Oracle Turing Machines . 27

2.3 Cryptographic Primitives . 28

2.4 Learning-With-Errors . 31

2.5 Constructive Cryptography Framework 32

3 Complexity Limitations of Classical Client Delegated Quantum Comput-
ing 35

3.1 Classical Delegation of Decision Problems 37

3.1.1 Generalised Encryption Scheme 39

3.1.2 Oracle separation between BQP and MA/O(nd) 44

3.2 Classical Delegation of Sampling Problems 53

3.2.1 The Boson Sampling Problem 55

vi

3.2.2 GES for Exact Boson Sampling 57

3.2.3 Circuits for the Permanent 58

4 QFactory against Honest-but-Curious Server 70
4.1 Overview of the Protocol and Proof 72

4.2 CC−RSPθ Primitive . 77

4.3 The Real Protocol . 79

4.3.1 Correctness and intuition . 80

4.4 Security of HBC−QFactory . 82

4.4.1 Game-Based Security Definition 83

4.4.2 Game-Based Security of HBC−QFactory 84

4.4.3 Hardcore Function θ . 86

4.5 Function Constructions . 89

4.5.1 Obtaining two-regular, collision resistant/second preimage re-

sistant, trapdoor one-way functions 90

4.5.2 Injective, homomorphic quantum-safe trapdoor one-way func-

tion based on LWE (from [MP12]) 95

4.5.3 A suitable δ-2 regular trapdoor function 97

4.5.4 Parameter Choices . 100

4.6 Implementation of HBC−QFactory on IBM Quantum Cloud 101

4.6.1 Function Construction for Simulation 101

4.6.2 Randomness Results . 102

4.6.3 Correctness Results . 103

5 QFactory against Malicious Server 105
5.1 Overview of Protocols and Proof Techniques 107

5.1.1 Notations . 111

5.2 The Malicious 4-states QFactory Protocol 112

5.2.1 Requirements and protocol 112

5.2.2 Correctness of Malicious 4-states QFactory 113

5.2.3 Security of Malicious 4-states QFactory 116

5.3 Function Implementation . 117

5.3.1 Generic construction of 2-regular homomorphic-hardcore . . 117

5.3.2 Construction of δ-2-regular homomorphic-hardcore family F 120

5.4 The Malicious 8-states QFactory Protocol 124

5.4.1 Correctness of Malicious 8-states QFactory 125

vii

5.4.2 Security against Malicious Adversaries of Malicious 8-states

QFactory . 126

5.5 Malicious-abort 4-states QFactory: treating abort case 129

5.5.1 The Malicious-Abort 4-state QFactory Protocol 130

5.5.2 Correctness and Security Malicious-Abort 4-state QFactory . 131

6 Security Limitations of Classical Client Delegated Quantum Computing 138

6.1 Overview of Contributions and Proof Techniques 139

6.1.1 Notations . 143

6.2 Impossibility of Composable Classical RSP 143

6.2.1 Remote State Preparation and Describable Resources 144

6.2.2 Classically-Realizable RSP are Describable 150

6.2.3 RSP Resources Impossible to Realize Classically 153

6.2.4 Characterization of RSP resources 156

6.3 Impossibility of Composable Classical-Client UBQC 158

6.3.1 Impossibility of Composable UBQCCC on 1 Qubit 160

6.3.2 Impossibility of Composable General UBQCCC 168

7 Conclusions 171

A App: HBC−QFactory 172

A.1 Full proof of Theorem 4.4.4 . 172

A.2 Proof of Theorem 4.5.7 . 181

A.3 Proof of Theorem 4.5.11 . 183

A.3.1 δ-2 regularity . 184

A.3.2 Collision resistance . 187

A.3.3 One-wayness . 187

A.3.4 Trapdoor . 188

A.4 Proof of Lemma 4.5.12 . 189

B App: Malicious QFactory 192

B.1 Function Construction proofs . 192

B.1.1 Proof of Lemma 5.3.2 . 192

B.1.2 Proof of Theorem 5.3.4, homomorphicity 193

B.1.3 Proof of Theorem 5.3.4, one-wayness 193

B.2 Probability of guessing two predicates 194

viii

B.3 Proof of Malicious-Abort QFactory 195

B.4 Generalisation to pseudo-homomorphic functions 197

C App: Composable RSP 200
C.1 Distance Measures for Quantum States 200

Bibliography 202

ix

TABLE OF CONTENTS 1

Chapter 1

Introduction

The evolution of traditional computers is challenged by a series of technological limi-

tations. Since the power of these machines is proportional to the number of transistors

they have, the trend has been to construct smaller and more efficient components, until

reaching computer constituents of size no bigger than an atom. The most important

aspect that emerges is that at this scale we cannot use anymore the laws of classical

physics to describe the behaviour of these devices. Instead, we need to use the theo-

ries which govern the microscopic world. Quantum computers arose from the idea of

modelling any natural phenomena using the laws of quantum mechanics. Therefore,

in order to develop more powerful computing devices, comes the requirement to har-

ness quantum properties of atoms, which would provide the basis for the memory and

processor of the new machine.

The rapid development of quantum technologies has increased the computational

capacity of quantum servers. We can expect to see quantum devices with high vari-

ability in terms of architectures and capacities, the so-called noisy, intermediate-scale

quantum (NISQ) devices [Pre18] (e.g. superconducting such as the devices devel-

oped by IBM, Rigetti, Google, IonQ) that are currently available to users via classical

cloud platforms. Quantum computers will tackle problems in fields such as medical

research, data analytics, machine learning, where the protection of sensitive data is a

must. Therefore, in order to be able to proceed to the next milestone for the utility of

these devices in a wider industrial base, the issues of privacy and integrity of the data

manipulation must be addressed.

This raised the necessity of privacy preserving functionalities such as the research

developed around quantum computing on encrypted data. Clients, with devices as light

as mobile phones, will want to use the services offered by quantum computation and

2

1.1. Secure Delegated Computing 3

communication protocols, in a way that their privacy is guaranteed.

Importantly, the devices of clients willing to use these services may not have the

capacity to support quantum communications. This can be either because their devices

are fully classical or they are not connected to the newly developed, and still in its first

stages, quantum communications network.

This technological challenge has lead to the formation of an entirely new research

field on developing classical client - quantum server protocols for delegated computing.

1.1 Secure Delegated Computing

Secure delegated quantum computing is a two-party cryptographic primitive, where

a computationally weak client wishes to delegate an arbitrary quantum computation

to an untrusted quantum server in a privacy-preserving manner. Specifically, the two

main properties that need to be satisfied are correctness: after the interaction with the

quantum server, the weak client obtains the result of the desired quantum computation

and blindness: a malicious server learns no information about the client’s input, output

and possibly even the computation itself, irrespective of how he deviates from the

protocol specifications. For this reason the problem is also known as blind quantum

computing.

In the classical world, this task has been studied for decades. The problem of se-

cure delegation of computations was introduced by Feigenbaum in [Fei86], where we

consider that the client has an input x and would like to use the power of an untrusted

powerful server to obtain the outcome of a function f applied on his data x. To solve

this task, the client transforms x into another instance x′, while server computes f (x′)

and sends it back to client. The instance x′ must satisfy the following properties. The

client can efficiently compute f (x) from f (x′) while x′ does not reveal any informa-

tion about x to the server. It was shown that such a scheme can be constructed for the

discrete logarithm problem, but cannot be extended in a straightforward manner to a

general class of problems (for instance, the author conjectures there cannot exist this

type of encryption for the integer factoring problem). Secure delegated computation

was further studied by Abadi et al [AFK87]. The authors defined a general frame-

work for this problem called Generalised Encryption Scheme (GES), which can be

described at a high level as follows. Client and server interact for polynomially (in the

size of input) many rounds and at the end, the client applies a decryption function and

obtains the correct result f (x) with a probability which is inverse polynomially in the

4 Chapter 1. Introduction

input size better than a random guess. These family of protocols are required to be

information-theoretically secure, such that the server would learn at most the size of

the input from the interaction with the client. Using this framework, they proved that

any problem must belong to a certain advice complexity class and furthermore they

showed that no NP−Hard problem can be securely delegated, unless the polynomial

hierarchy collapses at the third level. In our work, in Chapter 3, we will use this frame-

work to study the possibility of classical information-theoretically secure delegation of

quantum computations.

A very important step in the study of delegated computation is represented by the

introduction of homomorphic encryption (initially called privacy homomorphisms) in

the seminal work of [RAD78]. This is a type of encryption allowing for function eval-

uation on top of the encrypted input, without using the secret key, which results in an

encryption of the function evaluated on the plaintext. The homomorphic terminology

comes from the fact that the encryption and decryption functions act as algebraic ho-

momorphisms between the plaintext and ciphertext domains. Then, what the client

needs to do is to generate a pair of public and secret key and encrypt using the pub-

lic key her message x and send the encryption to the server. Then server will run the

evaluation procedure for this function f on top of the encrypted input. Finally, the

server sends the evaluation outcome to the client who decrypts the message using her

secret key and obtains the desired f (x). In the first stages, partially homomorphic

encryptions that could evaluate only one type of operations (such as addition or mul-

tiplication) were constructed. Then, the first fully homomorphic encryption scheme

(FHE), which allows for the evaluation of both additions and multiplications on top of

ciphertexts, and hence for arbitrary circuits, was developed in the breakthrough result

of Gentry [Gen09]. It is important to emphasize that the approaches of GES and FHE

differ in two main aspects: i) FHE is a non-interactive protocol (after one round of

communication, the client can obtain f (x)), while the GES allows for a polynomial (in

the input size) number of messages exchanged between the 2 parties, ii) while GES re-

quires information-theoretic security most of the FHE candidates are using only com-

putational security, meaning that the privacy against the server is based on hardness

assumptions (e.g. intractability of solving certain lattice problems).

The capabilities of the emerging quantum technologies, brought a raising interest in

studying the secure delegation of computations problem when the server owns a quan-

tum computer. On one hand, this brings the possibility of evaluating complex problems

in a shorter time on the server side. On the other hand, quantum computing, which

1.1. Secure Delegated Computing 5

equips attackers with unprecedented power, is changing the landscape of cryptogra-

phy, with the known devastating consequences: Shor’s quantum algorithm [Sho97],

for example, solves factorization and discrete logarithm efficiently, and hence breaks

the popular public-key cryptosystems based on them.

1.1.1 Semi-classical Client and Quantum Server

The problem of delegating quantum computations to an untrusted quantum server is

also known as blind quantum computing, where, as explained above, the blindness

refers to the privacy of the protocol, imposing that the server cannot infer anything

about client’s input, output and the underlying computation. Apart from the blindness,

other desired properties are: universality - the protocol allows the delegation of any ar-

bitrary quantum computation, efficient interaction - the client and server must interact

for at most a polynomial (in the input size) number of messages (that can be either clas-

sical or quantum). Moreover, the blindness condition can also have different flavours:

information-theoretic (or unconditional security) - the privacy of the input and com-

putation holds irrespective of the power of the adversary, computational - the privacy

holds only against quantum polynomial-time adversaries. As an additional property on

top of either of these two blindness notions, the security can be composable - referring

to the ability to use the delegated computation protocol in a secure manner as part of

a larger context (which can be as simple as running in parallel two instances of the

protocol).

The first-generation of blind quantum computation protocols are considering that

the client is also quantum, but usually has only a small quantum device that gives her

limited quantum capabilities, while the computation burden is still on server’s side.

The first proposal of a secure delegated quantum computation protocol was intro-

duced in [Chi05]. This construction can delegate universal quantum computations and

achieves unconditional security against the quantum server, but assumes the client has

a quantum memory (the capacity to store quantum states) and can apply a specific

subset of quantum gates. Additionally, the protocol requires bidirectional quantum

communication.

After this, there has been a large body of research exploiting the client-server set-

ting defined in [Chi05], in order to relax the quantum computation and communication

complexity of the client. In a following work of [AS03], the authors present a protocol

for unconditional secure delegation for a subset of quantum computations denoted as

6 Chapter 1. Introduction

random verifiable functions (which are problems for which there exists an efficient al-

gorithm to produce random input-output pairs). This protocol also requires quite heavy

quantum abilities on client’s side: client must sent multi-qubit states to the server and

must be able to perform quantum measurements. The first proposal of a protocol that

achieved blind quantum computations for universal computations, under unconditional

security, while reducing significantly the quantum burden at a minimum for the client is

the Universal Blind Quantum Computation protocol (UBQC) [BFK09]. This protocol

is based on the measurement based quantum computation model [Joz05] and requires

no quantum memory for the client, but just assumes that she has the ability to prepare

and send single qubit states to the server in the first stage of the protocol, the rest of

the communication being classical. Using the same computational model and same

assumption for the client, the protocol proposed in [MF12] improves the efficiency of

the UBQC scheme. Subsequently, a different type of relaxation of the client’s quan-

tum requirements was considered in [MF13], where instead of preparing and sending

qubits, the client only needs to be able to measure the single qubit states sent by the

server.

The composable security of general delegated quantum computation protocols,

including the two previously mentioned protocols, was studied in [DFPR14] using

the Constructive Cryptography (also known as Abstract Cryptography) framework

[MR11], in order to analyse the security of this primitive in an arbitrary environ-

ment. The authors model the task of delegated quantum computation in a generic

fashion independent of protocol requirements, specifications and universality of com-

putations and provide a definition of blindness in the composable framework. More-

over, they show that the protocols of [BFK09] and [MF13] already satisfy the defi-

nition of composable blindness. In a following work in [MK13a], it is also studied

the composable security of the protocol of [MF13], showing that this construction

achieves a stronger notion of composable blindness. The efficiency of blind quan-

tum computation protocols in terms of quantum communication has been studied in

[MPDF13, GMMR13, PDF15], where these works also provide optimized blind quan-

tum computing schemes by using different encodings on the client side in order to

reduce the quantum communication. Delegated quantum computing has also been

analysed using different physical systems in [DKL11, Mor12, LDT+18] and using dif-

ferent quantum resources [MDK15]. Furthermore, given the relatively small quantum

requirements for the client, protocols such as the ones in [BFK09] and [MF12] re-

spectively, have also been experimentally realized in optics experiments in [BKB+12]

1.1. Secure Delegated Computing 7

and in [GRB+16] respectively. Additional different proposals towards minimising the

requirements on the client side from a quantum computation or communication per-

spective have been studied. In [Bro15a] a secure delegation quantum computing with

information-theoretic security (based on quantum one-time pad) is constructed which

requires quantum communication only for a subset of gates (non-Clifford gates) from

the quantum circuit representing the target quantum computation. Another approach

considered in [DK16], uses as a starting point the UBQC protocol [BFK09] and aims

at determining the least conditions needed to establish the required correlations be-

tween client and server in UBQC. Through a series of reductions they show using the

composable security framework [MR11], that composable blind quantum computation

can be achieved while only requiring the client to prepare and send two pure states,

with an arbitrarily high overlap. In the recent work of [Zha20], the author proposes

a construction in which the quantum communication is now independent of the size

of the computation and depends only (polynomially) on the security parameter (and

where the size of the quantum circuit the client has to perform, is also polynomial in

the security parameter). This property referred here as “succint” complexity for the

client is achieved in a protocol whose security is proven in the quantum random ora-

cle model. For more details on the topic of blind quantum computation we refer the

readers to the review of this field in [Fit17].

Given the extensive research focusing on the practicality aspect of quantum dele-

gated computation protocols (and related functionalities), another important direction

considered was reducing the required communications by exploiting classical fully-

homomorphic-encryption schemes [BJ15, DSS16], or by defining quantum fully ho-

momorphic encryptions (QFHE) as quantum analogues of the FHE [Lia15, OTF15,

TKO+16, TOR18, LC18]. In more details, [BJ15] presents a quantum homomorphic

encryption scheme with a quantum client, that is efficient for a class of quantum com-

putations (containing Clifford gates), but where the complexity of the decryption scales

with the number of non-Clifford gates. The security of this scheme is computational as

the construction relies on using as a sub-module a classical post-quantum secure FHE.

In a subsequent work of [DSS16], building on the ideas of [BJ15], the authors propose

an alternative quantum client QFHE with computational security (as it also relies on a

classical post-quantum FHE), that is efficient even for circuits with non-Clifford gates.

This comes at the cost of requiring the evaluation key (sent by client to the server) to

contain one quantum gadget per non-Clifford gate, where the size of the gadget scales

with the space complexity of the decryption function of the classical FHE primitive.

8 Chapter 1. Introduction

On the other hand, there has also been a broad research on information-theoretic se-

cure QFHE. In [OTF15], using quantum error correction codes, it is constructed an

information-theoretic QFHE scheme for quantum circuits having only a constant num-

ber of non-Clifford gates and where the computational complexity is similar to [BJ15].

Alongside these positive results, limitations towards achieving information-theoretic

QFHE for universal quantum computations have also been proven. Specifically, the

work of [YPDF14] showed that achieving deterministic QFHE with perfect security

for an arbitrary quantum computation, would imply that the size of the encryption is

exponential in the input size, hence efficient deterministic QFHE cannot exist. This im-

possibility result was further strengthen in [LC18], where it was shown that the no-go

holds also for more general information-theoretic security (even when some security

error is allowed). On the positive side, the authors propose a QHE scheme for a non-

universal class of computations (known as IQP). Independently, through a different

proof technique based on quantum error correction codes this impossibility result was

also shown in [NS18].

However, in all these approaches, the users and providers do have access to quan-

tum resources to achieve their goals, in particular to quantum channels in addition to

classical communication channels. This requirement might prove to be challenging as

it allows the access for quantum cloud services only to users with suitable quantum

devices.

1.1.2 Fully-classical Client and Quantum Server

As all the families of schemes enumerated above require a reliable long-distance quan-

tum communication network, connecting all the interested parties remains a challeng-

ing task. Communication via quantum channels is typically assumed such that the

client can establish the necessary correlations with the server to securely delegate a

quantum computation. This has the downside that all these protocols cannot be put to

work for the average user unless a reliable quantum network is deployed. This lead to

the main open problem in the field of whether classical client secure delegated quantum

computation (CSDQC) can be achieved.

1.1.2.1 Information-Theoretic Security

Roughly speaking, a protocol is information-theoretic secure when its security holds

against an adversary with unlimited computational power. The reason is that this no-

1.1. Secure Delegated Computing 9

tion of security is based on the fundamental theorems of quantum physics instead of

difficult mathematical computations, which is the case for computational security.

Answering the question of whether information-theoretic secure delegation of quan-

tum computations from a fully classical client can be achieved has very non-trivial

consequences in complexity theory.

In the information-theoretic setting (where the leakage to the adversary is at most

the input size), the problem of CSDQC was first considered in [MK14]. The authors

showed a negative result for a particular class of protocols. Namely, they show that if

the protocol contains a single round of communication, where both the encryption and

decryption are deterministic algorithms, then the existence of such a scheme achiev-

ing correctness and perfect blindness would imply that BQP is included in NP. This

question has also been posed in [DK16], where it was suggested the use of the above

described classical Generalied Encryption Sheme (GES), in order to analyse the com-

plexity theoretic implications of this task. In Chapter 3 ([ACGK19]) we show that the

existence of general protocols achieving information-theoretic classical delegation is

unlikely, by presenting an oracle separation between BQP and the class of problems

that can be solved using a GES ([AFK87]).

While these results indicate restrictions on which of the above properties are jointly

achievable for classical clients, completing the picture of CSDQC remains an open

problem. In the light of these evidences, the natural direction would be exploring

the task of classical delegation under a weaker security notion, namely computational

security.

1.1.2.2 Computational Security

The above described results indicate restrictions on the task of classical secure delega-

tion of quantum computations in the information-theoretic secure setting. Therefore,

the expected path would be to consider fully-classical client solutions ensuring more

restricted levels of security.

The first procedure exploring the possibility of CSDQC was proposed in [MDMF17].

The authors introduce a protocol in the measurement based quantum computing (MBQC)

model, where the idea is to exploit the fact that in this computational model there can

exist different computations requiring the same classical communication and having

the same outcome. This property denoted as “flow ambiguity” results in some weaker

notion of blindness (not for universal computations), allowing to partially hide the de-

scription of the computation from the server.

10 Chapter 1. Introduction

Until now the most promising solution for CSDQC is represented by protocols

offering post-quantum computational security (security against quantum polynomial-

time adversaries). These solutions can be categorized in two families: FHE-based

candidates and protocols relying on the remote state preparation primitive, and we will

describe both in details below.

1.1.2.2.1 FHE approach Following this path, classical client non-interactive blind

delegated computing can be achieved for universal quantum computations. In a recent

breakthrough of [Mah18], it was presented the first such classical client FHE proce-

dure for quantum computations achieving computational security against the remote

untrusted server. It was shown that solving this problem reduces to the server per-

forming a controlled-CNOT gate given a classical encryption of the control bit. Then,

this task can be achieved using a pair of post-quantum trapdoor claw-free functions

(pair of injective functions having the same image, which are easy to invert using some

secret key, but without this key it is hard even for a quantum computer to find a pair

of inputs - known as claw - mapped by the two functions to the same value) requir-

ing with some additional properties (e.g. the xor of the last bits of the elements of

each claw is equal to the aforementioned control bit). Additionally, in order for the

server to perform the quantum operations homomorphically, the classical encryption

(used for encrypting the control bit) is required to be “quantum capable”, meaning it

needs to be a homomorphic encryption with extra conditions (such as randomness re-

coverability and invariance of the ciphertext form). Finally, the author shows how all

these primitives can be realized, by giving a construction relying on a particular FHE

scheme. This classical FHE for quantum computations was later followed by the work

of [Bra18], where the construction achieved stronger security guarantee and relying on

more standard post-quantum cryptographic assumptions.

1.1.2.2.2 Remote State Preparation One of the central building blocks in remov-

ing the need for quantum communication in a delegated quantum computing proto-

col is secure remote state preparation (RSP). This notion was initially introduced in

[DKL11], in order to weaken the requirements on the client’s side in the UBQC pro-

tocol. More specifically, as the perfect generation of |+θ〉 := 1√
2
(|0〉+ eiθ |1〉) states

is difficult from a practical point of view, they propose a single qubit preparation pro-

cedure where the client is using the polarization of weak coherent pulses sent over a

lossy quantum channel.

1.1. Secure Delegated Computing 11

At a high level, RSP resources allow a client to remotely prepare a quantum state on

the server and consequently, they can be seen as the natural toolbox to replace quantum

communication in a modular way. Moreover, from a security point of view, the RSP

resources appear to enable a large family of composable protocols [DKL11, DFPR14,

BFK09]. The importance of the classical RSP primitive used as a sub-module of larger

protocols, due to its role in replacing quantum channels, stems from their ability to

make quantum communication and computation protocols available to classical users,

in particular clients without quantum-capable infrastructure on their end.

Motivated by this practical constrain, we introduce the first protocol mimicking

this remote state preparation resource over a purely classical channel in Chapter 4

([CCKW18]) under the assumption that the Learning-With-Errors (LWE) problem is

computationally hard for quantum servers. This is a cryptographic primitive between

a fully classical client and a server owning a quantum computer. By the end of the pro-

tocol the client has “prepared” remotely on the server’s lab, a quantum state (typically

a single qubit |+θ〉). This protocol further enjoys some important privacy guarantees

with respect to the prepared state. Similar to the QFHE approaches of [Mah18] and

[Bra18], our independent work, is also achieving post-quantum computational secu-

rity, taking a different approach, more natural to measurement-based quantum com-

puting protocols. Then, it can be observed that classical secure delegation of quantum

computations can be obtained by combining for instance the UBQC protocol with

this remote state preparation primitive, whose purpose is to eliminate all the quantum

requirements of the client in the UBQC protocol. As a result, our solution for the

CSDQC problem is an interactive protocol, while the protocols of [Mah18], [Bra18]

are non-interactive. However, the approach we take is modular, while these construc-

tions, proved the desired properties in a monolithic way. Specifically, as mentioned

above, our RSP solution replaces the quantum channel (that is used in many different

protocol implementing blind quantum computation) with a computationally (but post-

quantum) secure generation of secret and random qubits (running between a classical

client and a quantum server). This can be used by classical clients to achieve blind

quantum computing but also, because of the modularity of the functionality, can be

used in a number of other applications or functionalities (such as multi-party quantum

computation [CCKM20]).

However, in [CCKW18] the security proof was shown in a weak “honest-but-

curious” model, and the full proof of security was left as an open question. In Chapter

5 ([CCKW19]) we manage to further simplify the classical RSP in terms of the core

12 Chapter 1. Introduction

functionality (the set of produced states are the BB84 quantum states {|0〉 , |1〉 , |+〉 :=

1/
√

2(|0〉+ |1〉), |−〉 := 1/
√

2(|0〉− |1〉)}), while obtaining the security in the most

general adversarial setting (fully malicious adversary) at the module level. As before,

all our proofs are made using reductions to hardness assumptions (namely the LWE

problem), and the simplicity of the protocol indicates that it is possible to perform

an analysis of this module in a composable model such as Constructive Cryptography

(CC) [MR11]. Very importantly, in [BCC+20], it was proven that this classical RSP

called QFactory, when used as a subroutine of the UBQC protocol leads to classical

secure delegation of universal quantum computations.

Concurrently, [GV19] gave another protocol that offers the stronger notion of ver-

ifiable classical RSP (the basic primitive they derive is a verifiable version of the one

introduced in [CCKW18]) and proved the security of their primitive in the CC frame-

work. However, their security analysis relies on an assumption called “Measurement

Buffer” that forces the adversary to give the state that he is supposed to measure to the

simulator, enforcing (essentially) a trusted measurement. In more details, the Measure-

ment Buffer resource externalizes the measurement done by the distinguisher onto the

simulator. In practice, this allows the simulator to change the state on the distinguisher

side without letting him know. Intuitively, the Measurement Buffer recreates a quan-

tum channel between the simulator and the server: when the simulator is not testing

that the server is honest, the simulator replaces the state of the server with the quan-

tum state sent by the ideal resource. In addition to [GV19], in [CCKW19] we also

investigate the “abort” case of the protocol, which is related to the properties of the

functions required for the protocol implementation. Specifically, these properties can

only be achieved in a probabilistic fashion, causing the security of the protocol to fail

whenever the function properties are not satisfied. By completely avoiding the abort

scenario without changing the protocol, brings the downside of using less standard

security parameters for the LWE hardness against the server (as explained in [Bra18]).

Using the Constructive Cryptography framework [MR11] is a common approach

to analyze classical as well as quantum primitives and their composable security guar-

antees in general [DFPR14, DK16, MK13b].

Considering the importance of understanding the classical RSP primitive security

when composed in larger contexts, using the CC framework, we study in Chapter 6

([BCC+20]) the security loss incurred by using classical RSP as a sub-protocol in

quantum communication and computation protocols. One of the main results of this

work shows that any classical composable secure RSP will leak to the malicious server

1.1. Secure Delegated Computing 13

the classical description of the produced quantum state. Additionally, we also show

that some examples or RSP resources, such as verifiable RSP, are impossible to achieve

using a reduction to the no-cloning theorem. This no-go result does not contradict

the result of [GV19], but what our result shows is that it is impossible to realize this

Measurement Buffer resource with a protocol interacting purely classically.

Recently, our classical RSP [CCKW19] was also used as a sub-module by [Zha20]

to design a blind quantum computing scheme with a succinct quantum client.

In conclusion, all current solutions for classical RSP can replace the quantum chan-

nel in secure delegated quantum computing protocols (such as UBQC), but come at the

cost of going from information-theoretic security using quantum communication to

post-quantum computational security (and classical communication) via the described

modules. The ultimate vision would be to develop a hybrid network of classical and

quantum communication channels, depending on the desired security level and the

technology development of quantum devices [WEH18].

The present dissertation deals with the problem of classical secure delegation of

quantum computations (CSDQC). To briefly summarize the story of the thesis, we

take the following path:

• We first investigate the possibility of information-theoretic secure CSDQC and

provide complexity theoretic evidence that this is implausible to achieve;

• Next, we study this task under a weaker security notion, namely post-quantum

computational security. As a first step we provide a solution which is secure only

in the honest-but-curious security framework.

• Following, we present an improved solution which ensures security in the mali-

cious framework against the adversarial quantum server.

• Finally, we analyze the composability property of our solutions when used as

sub-protocols.

We expand more these contributions in the following section.

14 Chapter 1. Introduction

1.2 Contributions

1.2.1 Information-Theoretic Secure CSDQC

In the first part of the thesis we study classical delegation of quantum computations

when the security guarantees that the quantum server learns nothing apart from the

size of the computation, in an information-theoretic sense, problem denoted as ITS-

CDQC. We perform this analysis using the Generalised Encryption Scheme (GES)

framework of Abadi et al [AFK87]. This framework gives a complexity theoretic char-

acterization of the class of problems that can be securely delegated, which allows us to

investigate the possibility of ITS-CDQC by analyzing whether quantum polynomial-

time computations can belong to this complexity class. We show that, provided certain

complexity-theoretic conjectures are true, the power of ITS-CDQC is impossible to

achieve.

Firstly, by considering that the interaction between client and server is bounded by

a polynomial of fixed degree, we present an oracle relative to which a classical client is

not able to information-theoretically secure delegate universal quantum decision prob-

lems. Specifically, if the client and the server exchange O(nd) bits of communication,

this would imply that the class of problems that a quantum computer can solve in poly-

nomial time (BQP) would be included in the advice complexity class MA/O(nd). We

provide evidence that this containment is unlikely by proving that there exists an ora-

cle relative to which BQP 6⊂MA/O(nd). The construction of the oracle providing this

separation is based on the complement of Simon’s problem and uses a diagonalisation

argument. Our proof is incremental, we first show how to construct an oracle separat-

ing BQP and NP, following by a separation between BQP and MA. Next, we advance

to the advice classes setting. We initially show how to construct an oracle relative to

which BQP is not included in the class of problems that can be solved by deterministic

polynomial-time algorithms receiving a bounded polynomial of advice, P/O(nd). Fi-

nally, through a reduction to this separation, we show that for any degree d there exists

an oracle with respect to which BQP is not a subset of MA/O(nd).

Secondly, we show that if an ITS-CDQC protocol exists which allows the client to

delegate quantum sampling problems, then there would exist circuits for computing the

permanent of a matrix more efficiently than what is believed to be possible given the

state of art for the complexity of solving the matrix permanent. Specifically, we prove

that if the Boson Sampling problem can be delegated using an ITS-CDQC protocol,

then there would exist circuits of size 2n−Ω(n/log(n)) making polynomially-sized queries

1.2. Contributions 15

to an NPNP oracle that can compute the permanent of an n×n matrix whose elements

are in the set {−1,0,1}.

1.2.2 Computationally Secure CDQC against honest-but-curious

server

In the second part we introduce the classical client remote state preparation primi-

tive where a fully classical client can instruct the preparation of a sequence of random

qubits at some distant party, i.e. untrusted quantum server. Their classical description

is (computationally) unknown to any other party (including the distant party prepar-

ing them) but known to the client. We emphasize the crucial feature that no quantum

communication is required to implement it. This primitive enables classical clients

to participate in a wide range of quantum communication and computation protocols

with only a public classical channel between the classical clients and the quantum

server. A key such example is the delegated universal blind quantum computing prob-

lem, for example using our functionality one could achieve a purely classical-client

computationally-secure delegated universal quantum computing.

We give a concrete protocol (HBC−QFactory) implementing classical client re-

mote state preparation, relying on the cryptographic primitive of trapdoor one-way

function with certain additional properties (quantum-safe, two-regular, collision-resistant).

The produced output states belong to the set {|+θ〉 |θ ∈ {0,π/4, · · · ,7π/4}}.
We then prove the security of HBC−QFactory in the Honest-But-Curious setting,

which is a security model assuming that the malicious server needs to follow the proto-

col specifications, but he can use his classical information obtained from the protocol,

in order to obtain any advantage in guessing the classical description of the quantum

output 1. Concretely, given that the produced state is of the form |+θ〉, the secret is

represented by the classical description of this state, θ, which is unknown to the server,

but known to the client using the trapdoor information. To show the security we prove

that the classical description is a hardcore function and we show this by developing a

similar reduction to the Goldreich-Levin Theorem.

Moreover, we provide methods for obtaining the required trapdoor functions from

weaker assumptions: trapdoor permutation functions or homomorphic trapdoor func-

tions. Then, to complete the construction of HBC−QFactory, we present a family of

1Stronger notions of honest-but-curious in the quantum setting have been defined, such as the ones

in [DNS10, SSS09].

16 Chapter 1. Introduction

functions relying on the LWE problem.

Finally, we give a proof-of-principle implementation of HBC−QFactory using the

IBM quantum computer (IBM Quantum Experience). This experiment is completed

using a toy trapdoor function, as due to the limited number of available qubits, we

consider a simple function which cannot be post-quantum secure.

1.2.3 Computationally Secure CDQC against malicious server

After introducing the classical client remote state preparation primitive, in the third

part we define a simpler (basic) primitive consisting of only BB84 states, and give

a protocol called Malicious 4-states QFactory that implements this primitive and that

is secure against the strongest possible adversary (an arbitrarily deviating malicious

server).

The construction of Malicious 4-states QFactory relies on the following crypto-

graphic primitives: quantum-safe, two-regular, collision resistant trapdoor one-way

function and homomorphic hardcore predicate. The security of the protocol ensures

that the basis of the generated qubits are completely hidden from any adversary and is

based on the properties of the two families of functions.

The specific functions used are constructed based on known trapdoor one-way

functions, resulting in the security of our basic primitive being reduced to the hard-

ness of the Learning-With-Errors problem.

We then give a number of extensions of the Malicious 4-states QFactory protocol,

demonstrating its modular construction. Firstly, we show an efficient secure exten-

sion to a classical client remote state preparation producing the 8 states {|+θ〉}θ. The

security of this construction refers to the fact that the basis of the produced state is

completely hidden. Finally, we give proper consideration of the abort case occurring

when the properties of the trapdoor one-way functions are not satisfied.

1.2.4 Composable Security of CDQC

As indicated by the previous two protocols, remote state preparation realized using

only a classical channel is one of the promising candidates to eliminate the need for

quantum channels in several quantum communication and computation protocols. This

primitive allows to rely solely on classical channels between client and server and

yet benefit from its quantum capabilities while retaining privacy, because it enables

a client, using only classical communication resources, to remotely prepare a quan-

1.3. Outline 17

tum state. In the fourth part, we analyze the security when employing classical-client

remote state preparation (RSPCC) as a sub-module in any protocol to avoid quantum

channels. In this part, we investigate this question using the Constructive Cryptogra-

phy framework [MR11] and we discover the security limitations of using RSPCC as a

general sub-module but also in the context of classical delegation of quantum compu-

tations, when used inside the UBQC protocol.

Firstly, we prove a limitation specific to any composable classical client RSP,

which stems from the following relation. If an RSP resource is realized by a RSPCC

protocol with security against QPT distinguishers, then the resource will leak an en-

coded, but complete description of the underlying produced state. This connection be-

tween the composability of RSPCC (computational notion) and the statistical leakage of

the ideal resource it is achieving (an information-theoretic notion) allows us to show

that some desirable RSP resources are impossible to classically realize. Concretely,

we show that if some specific verifiable RSP resource is computationally secure im-

plementable then this would imply the existence of a quantum cloner.

Secondly, despite these security limitations, we might still be able to use a clas-

sical client RSP protocol as a sub-module in other specific protocol and expect the

combined protocol as a whole to be composable secure. In this direction, we study

the composable security of UBQCCC, the family of protocols where an RSPCC is used

for replacing the quantum channel required for the UBQC protocol, hence enabling

fully classical clients. We prove that UBQCCC cannot be composable (even against

QPT distinguishers) and to show this impossibility result we proceed in the following

manner. Using a proof by contradiction we first show this task reduces to the existence

of a composable single-qubit UBQCCC protocol (where the computation is described

by a single qubit in the MBQC model). Then, we prove that the single-qubit UBQC

resource can be turned into an RSP resource, which allows us to use the characteriza-

tion we developed for RSP protocols. Finally, we show that the existence of such an

RSP resource would violate the no-signalling principle.

1.3 Outline

In Chapter 2 we present the required definitions from quantum computing, complexity

theory, security frameworks and cryptographic tools that we will use throughout the

dissertation. Chapter 3 introduces the notions of information-theoretic secure classical

delegation of quantum computations and the Generalised Encryption Scheme frame-

18 Chapter 1. Introduction

work. We present evidence for the no-go of this task in the case of decision problems

in Chapter 3.1 and for sampling problems in Chapter 3.2.

In Chapter 4 we introduce the primitive remote state preparation constructed us-

ing a classical channel and we describe the protocol HBC−QFactory achieving this,

whose security is proven in the honest-but-curious model through a Goldreich-Levin

type of reduction in Chapter 4.4, assuming a certain family of post-quantum trapdoor

one-way functions exist. Then we construct such a family of functions based on the

Learning-With-Errors problem in Chapter 4.5 and finally we also present an imple-

mentation of this protocol using a toy function on the IBM quantum cloud service in

Chapter 4.6.

Next, in Chapter 5 we present our protocol Malicious QFactory for classical client

remote state preparation with enhanced security against any malicious server. The

standard protocol is presented in Chapter 5.2 and similarly, the required underlying

function construction is described Chapter 5.3. Additionally, the extension to a larger

set of produced states is given in Chapter 5.4 and finally a complete analysis of the

abort of the protocol caused by the probabilistic nature of the function properties re-

quired for the protocol construction is shown in Chapter 5.5.

In Chapter 6, we provide the characterization of classical-client remote state prepa-

ration resources through the lens of composable security framework. In Chapter 6.2

we show the impossibility of classically realizing remote state preparation, while in

Chapter 6.3 we also prove that even in the context when a classical-client remote state

preparation protocol is used to replace the quantum channel in a delegated quantum

computation protocol, the result cannot be composable secure.

Finally, in Chapter 7 we conclude with a summary of our results and possible future

directions.

Chapter 2

Preliminaries

2.1 Quantum Computing

We begin by introducing some quantum computing notions required for the under-

standing of our main results. For a more thorough description we recommend [NC00].

The central unit of quantum information and computation is the qubit, the quantum

analogue of a classical bit. As classical bits can take 2 possible values, 0 or 1, the

qubit analogous are the states |0〉 and |1〉. However, the qubit is more general, with the

crucial difference is that a qubit can also act as if it is in the |0〉 and |1〉 states at the

same time, more specifically as a linear combination of them. We can get a better intu-

ition by considering the physical representation of a qubit: for a particle, its spin state

can be aligned up (corresponding to state |1〉), down (corresponding to state |0〉) or be

arbitrarily aligned, in between these 2 states (a linear combination of the up and down

states). Therefore, a qubit, which we denote here as the state |ψ〉, can be expressed as:

|ψ〉 = a |0〉+ b |1〉, where the coefficients a,b ∈ C satisfy |a|2 + |b|2 = 1 and are also

known as amplitudes of the qubit |ψ〉.
Mathematically, we say that |ψ〉 is a vector in a complex Hilbert Space H of dimension

2. For instance, the quantum states |0〉 and |1〉 can be represented in vector form as:

|0〉=
(

1

0

)
and |1〉=

(
0

1

)
, hence for a general qubit we have: |ψ〉= a

(
1

0

)
+b

(
0

1

)
.

We also denote 〈ψ| the Hermitian conjugate of |ψ〉 : 〈ψ|= ā
(

1 0
)
+ b̄
(

0 1
)

.

Moreover, |0〉 and |1〉 form an orthonormal basis, known as the computational ba-

sis. Another examples of basis are the Hadamard basis described by the 2 quan-

tum states {|+〉 , |−〉}, where |+〉= 1√
2
|0〉+ 1√

2
|1〉 and |−〉= 1√

2
|0〉− 1√

2
|1〉 and the

rotated Hadamard basis {|+θ〉 , |−θ〉}, where |+θ〉 = 1√
2
|0〉+ 1√

2
eiθ |1〉 and |−θ〉 =

19

20 Chapter 2. Preliminaries

1√
2
|0〉− 1√

2
eiθ |1〉, and θ is an angle in [0,2π].

The evolution of quantum states can be described using unitary operators. An operator

U is called unitary if and only if UU† = I, where U† represents the hermitian conjugate

of U and I denotes the identity matrix.

In order to describe quantum systems containing more than 1 qubit we use tensor prod-

uct as a way to join multiple vector spaces. For instance if we have a composite system

consisting of 2 single-qubit components |ψ1〉 and |ψ2〉, we denote the 2-qubit system

as: |ψ〉= |ψ1〉⊗ |ψ2〉. We will call |ψ〉 a product state.

However, not all composite quantum states can be represented as tensor products of

quantum states. In those cases, we say the quantum state is entangled. One such ex-

ample of state is the GHZ state: 1√
2
(|000〉+ |111〉).

In order to extract classical information from the quantum states we need to perform

quantum measurements. The result of a quantum measurement is fundamentally ran-

dom and to describe a measurement we use a collection measurement operators

{M1, ...,Mm} each corresponding to a possible measurement result m. If the quantum

system is described by the state |ψ〉, then by performing a quantum measurement, the

probability of each outcome m, denoted by p(m) is equal to: p(m)〈ψ|M†
mMm |ψ〉. If

the measurement outcome was equal to m then after the measurement the state of the

system becomes 1√
p(m)

Mm |ψ〉. In order to ensure that the sum of the probabilities of

all measurement results is equal to 1, the measurements operator satisfy the complete-

ness condition: ∑m M†
mMm = I.

An important class of quantum measurements are called projective measurements. In

this case the measurement operators satisfy the following 2 conditions: Mm are hermi-

tian (M†
m = Mm) and MiM j = δi, jMi. For the examples the measurements described by

the sets of operators {|0〉〈0| , |1〉〈1|}, or {|+〉〈+| , |−〉〈−|} or {|+θ〉〈+θ| , |−θ〉〈−θ|} are

all projective measurements.

Another representation of quantum states can be done using density matrices. We say

a matrix ρ is a density matrix if it satisfies the following: Tr(ρ) = 1, it is hermitian

and positive semi-definite. Therefore, if the quantum system is in the state |ψ〉, then

we can represent it as the density operator ρ = |ψ〉〈ψ|.
Until now, we have assumed that the state of a quantum system is always known to be

in some state |ψ〉. In this case, we say the system is in a pure state. If the state of the

system is however unknown, we say the system is in a mixed state. Specifically, if our

quantum state can be one of the states |ψi〉, each with probability pi, then these form

an ensemble of pure states {pi, |ψi〉}i and more importantly, we can represent the state

2.1. Quantum Computing 21

of the quantum system as the density operator: ρ = ∑i pi |ψi〉〈ψi|.
Now using the density operator representation, we can also describe the before-mentioned

state transformations. Namely, for quantum measurements described by a collection

{Mi}i, the probability to obtain outcome m is p(m) = Tr(M†
mMmρ) and the state af-

ter obtaining result m becomes 1
p(m)MmρM†

m. And the unitary evolution is defined as:

UρU†. However unitaries are not the most general way a quantum state can evolve.

The most general family of transformations that can be applied to density operators are

called CPTP maps (completely positive and trace preserving). We say a transformation

Φ is a CPTP map if it acts on a state ρ as: Φ(ρ) = ∑i KiρK†
i , such that ∑i KiK

†
i = I. The

linear operators Ki are known as Kraus operators. Using the density operator repre-

sentation we can also describe the state of a subsystem of a composite state. Namely, if

we have a system composing of 2 components denoted as ρAB, then the first subsystem

can be described as ρA = TrB(ρAB) and the second subsystem as ρB = TrA(ρAB), where

TrB and TrA denote the partial trace over the second and respectively first component.

When studying the states of different quantum systems, in quantum cryptography we

would like to analyze how far one state is from the other one, or how easy is to distin-

guish one quantum state from the other. To quantify how distinct two quantum states

are we use the trace distance, which can be thought as a generalization of the total

variation distance.The total variation distance between 2 probability distributions D∞

and D∈ over a set S is defined as:

||D1−D2||=
1
2 ∑

x∈S
|D1(x)−D2(x)| (2.1)

Then, the trace distance between 2 states ρ1 and ρ2 is:

T (ρ1,ρ2) =
1
2

Tr
(√

(ρ1−ρ2)2
)

(2.2)

The trace distance can also be interpreted as the maximum probability to distinguish

between ρ1 and ρ2. Another useful measure of distance between 2 states ρ1 and ρ2

is called fidelity. When ρ2 is a pure state ρ2 = |ψ2〉〈ψ2|, the fidelity is defined as:

F(ρ1, |ψ2〉〈ψ2|) = 〈ψ2|ρ1 |ψ2〉.
In order to describe quantum computations we use the quantum circuit model,

the quantum analogue of the classical circuit model. This model defines a mecha-

nism to implement any possible quantum computation and specifically defines quan-

tum gates that allow us to obtain quantum circuits manipulating quantum states. The

most important quantum gates encountered in the remaining chapters are the follow-

ing: X =

(
0 1

1 0

)
mapping |0〉 to |1〉 and |1〉 to |0〉, Y =

(
0 −i

i 0

)
, Z =

(
1 0

0 −1

)
,

22 Chapter 2. Preliminaries

H = 1√
2

(
1 1

1 −1

)
mapping |0〉 to |+〉 and |1〉 to |−〉, the Rotation around Z-axis

RZ(θ) =

(
1 0

0 eiθ

)
, the 2-qubit CNOT gate: CNOT (|x〉⊗ |y〉) = |x〉⊗ |x⊕ y〉.

Additionally, we can also define a quantum transformation based on a classical func-

tion.

Definition 2.1.1 (Function Unitary). For any function f : A→ B that can be described

by a polynomially-sized classical circuit, we define the controlled-unitary U f , as acting

in the following way:

U f |x〉 |y〉= |x〉 |y⊕ f (x)〉 ∀ x ∈ A ∀ y ∈ B, (2.3)

where we name the first register |x〉 control and the second register |y〉 target. Given

the classical description of this function f , we can always define a QPT algorithm that

efficiently implements U f .

Definition 2.1.2 (Quantum Instrument). A map Λ : Cn×n→{0,1}m1×Cm2×m2 is said

to be a quantum instrument if there exists a collection {Ey}y∈{0,1}m1 of trace-non-

increasing completely positive maps such that the sum is trace-preserving (i.e. for

any positive operator ρ, ∑y Ey(ρ) = Tr(ρ)), and, if we define ρy =
Ey(ρ)

Tr(Ey(ρ))
, then

Pr [Λ(ρ) = (y,ρy)] = Tr(Ey(ρ)).

2.2 Complexity Theory Background

In this section we cover some necessary background in Complexity Theory, essential

for the understanding of the Chapter 3. For extended details, see [AB09, BDG12,

BDG90].

We proceed by defining the complexity classes, both classical and quantum, which are

going to be encountered in this thesis.

• P is the class of problems which can be solved efficiently in polynomial time by

a deterministic Turing Machine [AB09]. We say that a language L belongs to the

class P if we can build a deterministic Turing Machine M running in polynomial

time, such that:

– for every x ∈ L, M accepts x (returns 1)

– for every x 6∈ L, M rejects x (returns 0).

2.2. Complexity Theory Background 23

• NP is the class of problems which can be computed in polynomial time by a

nondeterministic Turing Machine [AB09]. Every NP algorithm has 2 stages:

the first in which he makes a guess for the result of the problem and the second

where he verifies in polynomial time if the guess was a correct answer. A useful

way to describe the behaviour of any NP algorithm is by looking at its compu-

tational tree [BDG12]. The computational tree indicates how does the algorithm

work given a specific input x to the problem. The initial configuration of the Tur-

ing Machine on the input x represents the root of the tree. Every internal node

corresponds to a computation performed by the algorithm and the children of the

node are the possible configurations which can be obtained in one computational

step. For each nonterminal node, the choice for the next computation is made in

a nondeterministic way. In a decision problem, the leaves of the computational

tree are either accepting or rejecting states. Then, we say that a string s is ac-

cepted by the language defined in the decision problem, if in the computational

tree generated for s there exists at least one path ending in an accepting state. On

the other hand, a string s is rejected if all possible paths of the tree end in a reject

state. A decision problem G belongs to the class coNP, if the complement of G,

obtained by switching the accepting answers with the rejecting answers and vice

versa, is in the NP class. In this way, we have that a string x is accepted if every

path of the computational tree ends in an accepting state and is rejected if there

exists one path ending in a rejecting state.

Another definition for the class NP, which is going to be used in Chapter 3 is the

following:

A language L is in NP if there exists a polynomial-time TM V and a polynomial

p such that for every x ∈ {0,1}∗, we have:

x ∈ L if and only if ∃ a witness w ∈ {0,1}p(|x|) such that M(x,w) = 1

Observation: The class of NP Turing Machines is countable.

• The BPP class (Bounded-error Probabilistic Polynomial Time) contains the prob-

lems which can be solved by probabilistic Turing Machines in polynomial time,

with the probability of giving a wrong answer being less than 1/3. We say a lan-

guage L is in the BPP class if we can construct a probabilistic Turing Machine

M running in polynomial time such that:

– If x ∈ L, then M accepts x with probability p≥ 2/3;

24 Chapter 2. Preliminaries

– If x 6∈ L, then M accepts x with probability p≤ 1/3;

Notice that the choice of the constant 1/3 is arbitrary. In general, the error can

be as high as 1
2 − 1

nc , for any positive constant c.

• The MA class (Merlin-Arthur) contains the problems that can be solved in poly-

nomial time by Merlin-Arthur protocols. These are protocols where Merlin who

is computationally unbounded sends to Arthur a polynomial-sized proof, while

Arthur must verify this proof by running a probabilistic polynomial-time com-

putation. We say a language L is in MA if there exists a polynomial time TM and

a polynomial p such that:

– If x∈ L, then there exists a witness w∈{0,1}p(|x|) such that M(x,w) accepts

with probability at least 2/3

– If x 6∈ L, then for all witnesses w ∈ {0,1}p(|x|), M(x,w) accepts with prob-

ability at most 1/3.

• The BQP class (Bounded-error Quantum Polynomial Time) is the quantum equiv-

alent of the BPP class. BQP consists of the problems which can be solved in

polynomial time by Quantum Turing Machines with the probability of giving a

wrong answer being less than 1/3 [NC00, Aar10]. We can prove that a decision

problem G belongs to BQP by showing that there exists a quantum circuit of

polynomial size (as defined in the quantum circuit model) that can solve G with

bounded-error.

Additionally, BQP is closed under complement, meaning that the complement of

any problem in BQP also belongs to the class BQP.

A very important problem belonging to the class BQP which we will make use of

in our work is the Simon’s problem.

The input of Simon’s problem is a function from n-bit strings to n-bit strings f , to

which we only have “black-box” access (meaning that we cannot see the description

of the function and we are only allowed to query it on elements of the domain and

receive the value of the function on those points).

The input function f : {0,1}n→{0,1}n is guaranteed to satisfy one of the following 2

properties:

1. f is 1-to-1: f is a permutation of the set {0,1}n.

2.2. Complexity Theory Background 25

2. f is 2-to-1: ∃s∈{0,1}n−{0} such that ∀x 6= x′ we have: f (x)= f (x′) if and only if x′=

x⊕ s. We call s the xor mask of f .

The task of the problem is to determine whether the input f is 1-to-1 or 2-to-1.

To solve this problem, the optimal classical algorithm uses O(2
n
2) queries.

However, quantumly we can solve Simon’s problem using O(n) queries using Simon’s

algorithm [Sim97]. Therefore, both Simon’s problem and its complement belong to

the class BQP.

Decision Problems versus Sampling Problems. All the complexity classes de-

scribed above refer to decision problems - problems in which the answer is either

“yes” or “no” depending on whether an input x belongs or not to a language L. In this

thesis, we also focus on sampling problems problems in which the answer is a sample

from particular probability distribution. Specifically, we define a sampling problem S

as a set of probability distributions {Dx}x each corresponding to an input x, such that

each Dx is a probability distribution over {0,1}p(|x|), for some polynomial p. Solving

the sampling problem S essentially means that when receiving the input x, the task is

to sample from the distribution Dx, whereas solving S approximately means sampling

from a distribution D ′x, such that ||D ′x−Dx|| ≤ 1
q(|x|) , for some polynomial q. There-

fore, we can define SampBQP as the class of sampling problems for which there exists

a quantum polynomial time algorithm that given as input a tuple (x,ε) will output a

sample from a probability distribution D ′x satisfying ||D ′x−Dx|| ≤ ε. Such an example

of SampBQP problem that we will encounter later in our work is the Boson Sampling

problem.

Another class of problems which we will use in our work, is #P. This is neither a

decision nor a sampling class, but is the class of all functions f : {0,1}∗ → N that

take as input a description of a P algorithm and output the number of inputs which the

algorithm can accept.

Now, we need to focus on 2 particular categories of problems: problems which can

be solved by Turing Machines which receive an additional “help” called advice and

problems which can be solved by Turing Machines which have access to an oracle

that can correctly answer to particular questions. We are going to give a thorough

description of these two models of computation as they are directly connected with

our major results in Chapter 3.

26 Chapter 2. Preliminaries

2.2.1 Advice Turing Machines

An advice function can be thought of as any function f : N→ Σ∗. Turing Machines

with an advice function f receive an additional help to solve problems, in the form of

an advice string f (n). The most important aspect of the advice function is that this

external information does not depend on the value of the input for a problem, but only

on the input size n:

That is, for a given input x, the received advice is f (|x|)

Definition 2.2.1. The class C/F of languages recognized by Turing Machines with

advice is the set of languages L associated with a language C from C together with an

advice function f from F such that:

A = {x ∈ Σ
∗ | the pair (x, f (|x|)) ∈C,C ∈ C , f ∈ F } (2.4)

Intuitively, we say that there exists a function f from F , which gives the necessary

additional information to a machine from the class C in order to accept a more difficult

language belonging to the class C/F .

We will now indicate some commonly known classes of advice languages and their

interpretation:

1. F = log represents the set of functions f satisfying the property:

∀ n ∈ N ∃ c ∈ N such that | f (n)| ≤ c · log(n). We define P/ log as the class of

languages:

L = {x |(x, f (|x|)) ∈ A,A ∈ P, f ∈ log} (2.5)

We say that for any language L∈ P/ log we can determine if a string x belongs to

L by using a deterministic polynomial time algorithm with the help of an external

information s, where |s|= log(|x|).

2. F = poly represents the family of functions f satisfying the property:

∀ n,∃ p a polynomial such that | f (n)| ≤ p(n). We define P/poly as the class of

languages L = {x |(x, f (|x|)) ∈ A,A ∈ P, f ∈ poly}.

3. NP/poly is represented by the set of languages:

L = {x |(x, f (|x|)) ∈ A,A ∈ NP, f ∈ poly} (2.6)

Advice Turing Machines are known as non-uniform models, where we have a differ-

ent algorithm for every possible size of the input, as opposed to the standard Turing

2.2. Complexity Theory Background 27

Machines known as uniform models where the same algorithm is used for all possible

input lengths.

Another family of non-uniform models are Boolean circuits. A Boolean circuit

computes a binary function by sequentially applying logical gates AND, OR, NOT on

a given input.

We say a language L has polynomial circuits if there exists a family of circuits {Cn}n

and a polynomial p such that:

1. The number of gates in the circuit is bounded by p: |Cm| ≤ p(m)

2. For any x ∈ {0,1}m Cm receives m input bits and returns 1 if x ∈ L and 0 other-

wise.

The connection between Advice TM and Boolean circuits can be described in the fol-

lowing way. We say that a Boolean circuit family {Cn}n is f -size bounded if the

number of gates of Cn is at most f (n) for any n. And we will denote by Size(f (n)) the

class of languages decided by O(f (n))-size bounded Boolean circuit family.

Then, the class P/poly of determininstic TM that receive polynomial size advice, can

also be described as: P/poly = ∪d≥1Size(nd). In other words, we say a language L

belongs to P/poly if it can be solved by a polynomially-sized Boolean circuit family.

2.2.2 Oracle Turing Machines

Definition 2.2.2. An oracle TM is a machine with access to an oracle that can decide

if a string is in a language O⊆ Σ∗.

In addition to the standard TM, an oracle TM has an oracle tape which can be used

to query for an extra input and the machine will receive in a single computational step

an answer specifying whether that input belongs to the language O or not.

Any standard TM can be considered an oracle TM by setting the empty set /0 as the

oracle’s language.

For any oracle machine MO we are able to describe its computational tree in the

following way. Let MO run on input m. Then, we set the configuration of MO on input

m as the root of the computational tree. Next, every inner node of the tree represents a

query made by MO to the oracle O. For every such node we have 2 branches defining

2 different sets of computations which MO might perform depending on the result of

the query. Namely, if the queried string belongs to the language O, then we proceed to

the computations specified in the left branch, otherwise to the computations indicated

28 Chapter 2. Preliminaries

by the right branch. In the nodes where no more queries are made (the leaves of the

tree), MO will take a decision, if it is an accepting state or not.

Now, we define the language L corresponding to the oracle O. For each input, we

will obtain a single path π in the computation tree starting from the root and ending in

an accept or reject node. For every node i the path goes to its left child if the string

labelled at node i is inside the language L and goes to its right child otherwise. Finally,

we conclude that the initial input m is in the language accepted by the oracle TM MO

if this resulting path π terminates in an accepting state.

Now, we will present 2 very important advice classes which we will also make use of

in Chapter 3.

Definition 2.2.3. We define PO as the set of problems which can be solved by a deter-

ministic polynomial-time TM which has access to the oracle O.

Similarly, we define NPO as the set of problems solved by a nondeterministic polynomial-

time TM with access to the oracle O.

Whenever O is a language which cannot be decided by M, the oracle adds more

computational power to M. For instance, the PSAT represents the set of problems solved

by a deterministic TM which also has access to an oracle capable of solving the SAT

problem. This oracle will obviously help compute more functions.

Using oracles we can also define the polynomial hierarchy (PH). We define the 0th level

of the polynomial hierarchy as: ΣP
0 =P and ΠP

0 = P. we can define recursively the next

levels of PH, in the following way: the kth level can be computed as ΣP
k = NPΣP

k−1 and

ΠP
k = coNPΣP

k−1 . And the PH is defined as: PH = ∪k≥0ΣP
k . Additionally, we say the

PH collapses at the level k if ΣP
k = ΠP

k .

A very important role of oracle classes, is that they allows us to identify relations

between different complexity classes. Therefore, proving separations between classes

of problem with respect to a given fixed oracle represents a strong evidence that those

separations would also hold in the lack of the oracle.

2.3 Cryptographic Primitives

In this section, we are considering cryptographic primitives secure against quantum

adversaries, so we assume that all the properties of our functions hold for a general

Quantum Polynomial Time (QPT) adversary, rather than the usual Probabilistic Poly-

2.3. Cryptographic Primitives 29

nomial Time (PPT) one. We will denote D the domain of the functions, while D(n) is

the subset of strings of length n.

Definition 2.3.1 (Quantum-Safe (informal)). A protocol or a function is quantum-safe

(also known as post-quantum secure), if all its properties remain valid when the ad-

versaries are QPT (instead of PPT).

The following definitions are for PPT adversaries, however in this paper we will gen-

erally use quantum-safe versions of those definitions and thus security is guaranteed

against QPT adversaries.

Definition 2.3.2 (One-way). A family of functions { fk : D→ R}k∈K is one-way if:

• There exists a PPT algorithm that can compute fk(x) for any index function k,

outcome of the PPT parameter-generation algorithm Gen and any input x ∈ D;

• Any PPT algorithm A can invert fk with at most negligible probability over the

choice of k:

Pr
k←Gen(1n)

x←D
rc←{0,1}∗

[f (A(k, fk(x)) = f (x)]≤ negl (n)

where rc represents the randomness used by A

Definition 2.3.3 (Second preimage resistant). A family of functions { fk : D→ R}k∈K

is second preimage resistant if:

• There exists a PPT algorithm that can compute fk(x) for any index function k,

outcome of the PPT parameter-generation algorithm Gen and any input x ∈ D;

• For any PPT algorithm A , given an input x, it can find a different input x′ such

that fk(x) = fk(x′) with at most negligible probability over the choice of k:

Pr
k←Gen(1n)

x←D
rc←{0,1}∗

[A(k,x) = x′such that x 6= x′ and fk(x) = fk(x′)]≤ negl (n)

where rc is the randomness of A;

Definition 2.3.4 (Collision resistant). A family of functions { fk : D→ R}k∈K is colli-
sion resistant if:

• There exists a PPT algorithm that can compute fk(x) for any index function k,

outcome of the PPT parameter-generation algorithm Gen and any input x ∈ D;

30 Chapter 2. Preliminaries

• Any PPT algorithm A can find two inputs x 6= x′ such that fk(x) = fk(x′) with at

most negligible probability over the choice of k:

Pr
k←Gen(1n)
rc←{0,1}∗

[A(k) = (x,x′)such that x 6= x′ and fk(x) = fk(x′)]≤ negl (n)

where rc is the randomness of A (rc will be omitted from now).

Theorem 2.3.5. [KL14] Any function that is collision resistant is also second preimage

resistant.

Definition 2.3.6 (k-regular). A deterministic function f : D→ R is k-regular if ∀y ∈
Im(f), we have | f−1(y)|= k.

Definition 2.3.7 (Trapdoor Function). A family of functions { fk : D→ R} is a trapdoor
function if:

• There exists a PPT algorithm Gen which on input 1n outputs (k, tk), where k

represents the index of the function;

• { fk : D→ R}k∈K is a family of one-way functions;

• There exists a PPT algorithm Inv, which on input tk (which is called the trap-

door information) output by Gen(1n) and y = fk(x) can invert y (by returning all

preimages of y1) with non-negligible probability over the choice of (k, tk) and

uniform choice of x.

Definition 2.3.8 (Hard-core Predicate). A function hc : D→{0,1} is a hard-core pred-
icate for a function f if:

• There exists a QPT algorithm that for any input x can compute hc(x);

• Any PPT algorithm A when given f (x), can compute hc(x) with negligible better

than 1/2 probability:

Pr
x←D(n)

rc←{0,1}∗
[A(f (x),1n) = hc(x)] ≤ 1

2 +negl (n), where rc represents the random-

ness used by A;

Definition 2.3.9 (Hard-core Function). A function h : D→ E is a hard-core function
for a function f if:

1While in the standard definition of trapdoor functions it suffices for the inversion algorithm Inv to

return one of the preimages of any output of the function, in our case we require a two-regular tradpdoor

function where the inversion procedure returns both preimages for any function output.

2.4. Learning-With-Errors 31

• There exists a QPT algorithm that can compute h(x) for any input x

• For any PPT algorithm A when given f (x), A can distinguish between h(x) and

a uniformly distributed element in E with at most negligible probability:

∣∣ Pr
x←D(n)

[A(f (x),h(x)) = 1]− Pr
x←D(n)

r←E(|h(x)|)

[A(f (x),r) = 1]
∣∣≤ negl (n)

The intuition behind this definition is that as far as a QPT adversary is concerned,

the hard-core function appears indistinguishable from a randomly chosen element of

the same length.

Theorem 2.3.10 (Goldreich-Levin [GL89]). From any one-way function f : D→R, we

can construct another one-way function g : D×D→ R×D and a hard-core predicate

for g. If f is a one-way function, then:

• g(x,r) = (f (x),r) is a one-way function, where |x|= |r|.

• hc(x,r) = 〈x,r〉 mod 2 is a hard-core predicate for g

Informally, the Goldreich-Levin theorem is proving that when f is a one-way func-

tion, then f (x) is hiding the xor of a random subset of bits of x from any PPT adver-

sary2.

Theorem 2.3.11 (Vazirani-Vazirani XOR-Condition Theorem [VV85]). Function h is

hard-core function for f if and only if the xor of any non-empty subset of h’s bits is a

hard-core predicate for f .

2.4 Learning-With-Errors

The Learning-With-Errors problem (LWE) is described in the following way:

Definition 2.4.1 (LWE problem (informal)). Given s, an n dimensional vector with

elements in Zq, for some modulus q, the task is to distinguish between a set of poly-

nomially many noisy random linear combinations of the elements of s and a set of

polynomially many random numbers from Zq.

2The Goldreich-Levin proof is using a reduction from breaking the hard-core predicate hc(x,r) to

breaking the one-wayness of h. In this thesis the functions we consider are one-way against quantum

adversaries, and using the same reduction we conclude that hc(x,r) is a hard-core predicate against QPT

adversaries.

32 Chapter 2. Preliminaries

Regev [Reg05] and Peikert [Pei09] have given quantum and classical reductions

from the average case of LWE to problems such as approximating the length of the

shortest vector or the shortest independent vectors problem in the worst case, problems

which are conjectured to be hard even for quantum computers.

Theorem 2.4.2 (Reduction LWE, from [Reg05, Therem 1.1]). Let n, q be integers and

α ∈ (0,1) be such that αq > 2
√

n. If there exists an efficient algorithm that solves

LWEq,Ψ̄α
, then there exists an efficient quantum algorithm that approximates the de-

cision version of the shortest vector problem GAPSVP and the shortest independent

vectors problem SIVP to within Õ(n/α) in the worst case.

2.5 Constructive Cryptography Framework

The Constructive Cryptography (CC) framework (also sometimes referred to as the

Abstract Cryptography (AC) framework) introduced by Maurer and Renner [MR11]

is a top-down and axiomatic approach, where the desired functionality is described as

an (ideal) resource S with a certain input-output behavior independent of any partic-

ular implementation scheme. A resource has some interfaces I corresponding to the

different parties that could use the resource. In our case, we will have only two inter-

faces corresponding to Alice (the client) and Bob (the server), therefore I = {A,B}.
Resources are not just used to describe the desired functionality (such as a perfect state

preparation resource), but also to model the assumed resources of a protocol (for ex-

ample a communication channel). The second important notion is the converter which

is used to define a protocol. Converters always have two interfaces, an inner and an

outer one, and the inner interface can be connected to the interface of a resource. For

instance, if R is a resource and πA, πB ∈ Σ are two converters (corresponding to a

given protocol making use of resource R) we can connect these two converters to

the interface A and B, respectively, (the resulting object being a resource as well) us-

ing the following notation: πAR πB. Furthermore, in this thesis we consider that any

converter interacting classically on its inner interface and outputting a single quantum

message on its outer interface can be represented as a sequence of quantum instru-

ments (which is a generalization of CPTP maps taking into account both quantum and

classical outputs, see Definition 2.1.2) and constitutes the most general expression of

allowed quantum operations. More precisely, this model takes into account interactive

converters (and models the computation in sequential dependent stages). This is sim-

2.5. Constructive Cryptography Framework 33

ilar to the classical world where we would instantiate the converter by a sequence of

classical Turing machines (passing states to each other) [Gol01].

A filter (usually denoted `) is a special converter used to force a honest behaviour

on a given interface of a resource. They are usually used to prove the correctness of a

protocol, as they describe what can be done in an honest run. They are removed when

we want to provide full power to a cheating adversary or to a simulator. Usually, in

order to keep the filter simple, the functionality accepts as a first message a bit c which

says if the party wants to behave honestly (c = 0) or maliciously (c = 1). That way,

the filter `c=0 (or simply `) just sends c = 0 to the resource, and then forwards all the

messages between it’s inner and outer interface.

In order to characterize the distance between two resources (and therefore the se-

curity), we use the so-called distinguishers. We then say that two resources S1 and

S2 are indistinguishable (within ε), and denote it as S1 ≈ε S2, if no distinguisher can

distinguish between S1 and S2 with an advantage greater than ε. In this thesis, we will

mostly focus on quantum-polynomial-time (QPT) distinguishers.

Central to Constructive Cryptography is the notion of a secure construction of an

(ideal) resource S from an assumed resource R by a protocol (specified as a pair of

converters). We directly state the definition for the special case we are interested in,

namely in two-party protocols between a client A and a server B, where A is always

considered to be honest. The definition can therefore be simplified as follows:

Definition 2.5.1 (See [Mau11, MR11]). Let I = {A,B} be a set of two interfaces (A

being the left interface and B the right one), and let R ,S be two resources. Then, we

say that for the two converters πA,πB, the protocol π := (πA,πB) (securely) constructs

S from R within ε, or that R realizes S within ε, denoted:

R π−→
ε

S (2.7)

if the following two conditions are satisfied:

• Availability (i.e. correctness):

πAR πB ≈ε S ` (2.8)

(where ` represents a filter, i.e. a trivial converter that enforces honest/correct

behavior 3, and A≈ε B means that no polynomial quantum distinguisher can dis-
3Usually, a filter simply sends a bit c = 0 and then forwards all communications between its two

interfaces (this filter will be denoted by `c=0), but it could be a more general converter. When the filter

is not clear from the context, we need to specify also which filter we consider.

34 Chapter 2. Preliminaries

tinguish between A and B (given black-box access to A or B) with an advantage

better than ε)

• Security: there exists σ ∈ Σ (called a simulator) such that:

πAR ≈ε Sσ (2.9)

We also extend this definition when ε is a function ε : N→ R: we say that S is ε-

realizable if for any n ∈ N, S is ε(n)-realizable.

The intuition behind this definition is that if no distinguisher can know whether

he is interacting with an ideal resource or with the real protocol, then it means that

any attack done in the “real world” can also be done in the “ideal world”. Because

the ideal world is secure by definition, so is the real world. Using such a definition is

particularly useful to capture the “leakage” of information to the server. This is quite

to capture in the real world, but very natural in the ideal world.

Lemma 2.5.2 ([MR11, Thm. 1][Mau11, Thm. 3]). The construction→ is (generally)

composable, i.e. for all (ε,ε′) ∈ R+, (R ,S ,T) ∈Φ3, π ∈ Σ2:

• we have sequential composability: (R π−→
ε

S ∧S π′−→
ε′

T)⇒ R π◦π′−−→
ε+ε′

T ,

• we have parallel composability: (R π−→
ε

S ∧R ′ π′−→
ε′

S ′)⇒ R ‖R ′ π|π′−−→
ε+ε′

S‖S ′

• R id−→
0

R

where | (resp. ◦) represents the parallel (respectively serial) composition of protocols,

‖ is the merging of resources, and id is the identity converter.

Chapter 3

Complexity Limitations of Classical

Client Delegated Quantum Computing

One of the main questions that arises in secure delegated computations is whether it is

possible to delegate a computation to a server in such a way that he learns nothing, in

an information-theoretic sense, about the input of the computation.

More precisely, we address this question in the setting where the client is entirely clas-

sical and the server has a quantum computer. Therefore, we want to study whether

the client can securely delegate any efficient quantum computation to the server. We

emphasize here that as the client is entirely classical, this also implies that the commu-

nication between client and server must also be entirely classical. In the remaining of

the chapter we will denote any protocol achieving information-theoretic secure classi-

cal delegation of quantum computations an an ITS-CDQC protocol.

In this chapter we focus on 2 main results: secure delegation of decision BQP

problems and secure delegation of sampling BQP problems.

For the secure delegation of decision problems we show that if the client-server com-

munication consists of O(nd) bits, then the existence of such an ITS-CDQC protocol

would imply the following complexity theory result: BQP⊂MA/O(nd). We then give

strong evidence that this complexity relation is unlikely by constructing an oracle O
with respect to which this relation does not hold: BQP 6⊂MA/O(nd).

For our second result, we prove that if there exists a secure delegation protocol for

quantum sampling problems (such as Boson Sampling), then there exist non-uniform

circuits of size 2n−Ω

(
n

log(n)

)
, making polynomially queries to an NPNP that can compute

the permanent of an n×n matrix, where n refers to the size of the client’s input. While

this result does not directly imply an impossibility of delegating sampling problems, it

35

36Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

reveals a connection between this task and the complexity of computing the permanent

of a matrix. Even though the latter problem has been studied for a very long time, there

are still very few algorithms (Ryser’s algorithm from 1963 is still considered one of

the most promising candidates) and very few results on the complexity analysis for the

computation of a matrix permanent.

The problem of classical delegation from a classical client to an unbounded server

has been studied for many decades. Our starting point represents the work of Abadi,

Feigenbaum and Kilian who gave a characterization of what complexity classes of

problems can be computed in this classical secure delegation setting, by first defin-

ing a framework that would encompass these families of protocols that achieve this

task, framework called Generalised Encryption Scheme (GES). In our work, in order

to analyse the complexity theoretic implications of (information-theoretical) secure

delegation of quantum computations, we use the GES framework introduced by Abadi

et al [AFK87]. Essentially, a GES is a protocol between a probabilistic polynomial-

time (BPP) classical Client and a computationally unbounded Server, in which the

Server computes on encrypted data. The Client would like to compute some predicate

f : {0,1}n→{0,1}, but as she is computationally bounded, she would like to achieve

this by taking advantage of the power of the untrusted Server. In the GES, the Client

would first send to the Server a description of f . Then she would encrypt her private

input x ∈ {0,1}n using a BPP algorithm Enc and would send the result Enc(x) to the

Server. After this, the Client and the Server are allowed to interact for a number of

rounds which is at most polynomial in n. After the interaction takes place, in the last

stage of the GES, the Client uses a BPP algorithm Dec and applies to the entire tran-

script. As a result the Client obtains the desired outcome f (x) with probability at least
1
2 +

1
poly(n) .

But, very crucially, from a security point of view, after the GES protocol the Server

should be able to learn nothing about the Client’s input x, apart from its length n. As

we considered the Server to be unbounded, the GES requires information-theoretic se-

curity. In the work of Abadi et al, they give a complexity theoretic characterization of

all the predicates f that can be securely delegated in a GES protocol. More precisely,

they showed that any predicate f that can be computed in a GES, while leaking to the

Server only the size of the input must belong to the class NP/poly∩ coNP/poly. We

show an alternative proof of this result in the next section. This result additionally, im-

plies that no NP-Hard functions can be securely delegated in a GES scheme, by using

the result that if NP-Hard problems would be included in NP/poly∩ coNP/poly then

3.1. Classical Delegation of Decision Problems 37

the polynomial hierarchy would collapse.

Therefore, the two main questions that we address in this work can be rephrased as:

can BQP computations be information-theoretically secure delegated using a GES

scheme? Following the previously mentioned result this would be equivalent to study-

ing the relation between the quantum class BQP and the classical complexity class

NP/poly∩ coNP/poly.

because we are both interested in delegating decision and sampling BQP problems, we

study two variants of the GES framework: 1) delegating decision problems when the

total communication between Client and Server is bounded by a polynomial O(|x|d),
for an arbitrary but known constant d, and 2) delegating arbitrary sampling problems.

For the first result, knowing a bound on the (polynomial) size of the communication,

we show that it implies that: BQP is a subset of MA/O(nd). Then, we prove that this

relation is unlikely by providing an oracle separation between these 2 classes.

For the second category, we prove that having a GES for BQP sampling problems

(SampBQP) implies that there exist circuits for computing the permanent of a matrix

more efficiently than it is believed to be possible. Regarding the first main result, it

can be argued that oracle results do not represent the strongest evidence for relations

between complexity classes. As an example, there exists oracles relative to which we

both have that P and NP are equal and distinct. Nevertheless, using oracles we can

study the query complexity of problems in different computational models. Further-

more, oracle results have also lead to important progress in complexity theory and

developing new algorithms [GGH+13, Aar10].

3.1 Classical Delegation of Decision Problems

In this section we address the question of securely delegating BQP decision problems.

As already discussed, Abadi et al showed that any function f that can be computed in

a GES must satisfy:

Lemma 3.1.1. [From [AFK87]] If f can be computed in a GES which leaks only the

size of the input, then f ∈ NP/poly∩ coNP/poly.

Additionally, they proved that if NP - Complete problems would be securely del-

egated using a GES protocol, then this would imply that NP - Complete ⊆ NP/poly∩
coNP/poly. This in turn would lead to a collapse of the polynomial hierarchy at the

third level, as showed by Yap [Yap83]. Therefore, it seems highly unlikely that NP-

38Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

Complete problems can be information-theoretically secure delegated by a classical

Client.

Then, to answer our question, whether BQP-Hard problems can be classically secure

delegated, then the characterization of GES implies that this task would be possible

only if any BQP-Hard problem can be computed in NP/poly∩ coNP/poly.

While ideally, we would like to have that similarly such a complexity relation would

imply a collapse of the polynomial hierarchy, even the containment BQP ⊆ P is not

known to lead to a collapse of the PH.

To indicate an impossibility of delegating securely BQP computations, we instead con-

sider a variant of GES where, we know in advance a bound on the size of the commu-

nication between Client and Server, in other words, considering their communication

is upper bounded by a polynomial of fixed degree d in the size of the input. The rest

of the GES remains exactly the same, with no restriction on the polynomial running

time of the Client. As a consequence, we show that having such a GES for efficient

quantum computations would imply: BQP⊆MA/O(nd)∩ coMA/O(nd).

Then, to indicate that this relation is unlikely we show an oracle separation between

the classes BQP and MA/O(nd)∩ coMA/O(nd):

Theorem 3.1.2. For any d ∈ N, there exists an oracle Od such that:

BQPOd 6⊆MA/O(nd)
Od (3.1)

We remark that an interesting further question would be if the same separation

between BQP and MA/O(nd) can be achieved assuming an oracle that can be only

accessed through classical queries by both the quantum and the classical algorithms.

However, achieving this extension does not follow directly from our proof techniques

and it would be non-trivial to deduce such an oracle separation.

Our result shows that relative to an oracle Od , there exist BQP problems that can-

not be securely delegated by a classical Client in a GES with known bound on the

communication.

We give a constructive proof for the family of oracles {Od}d , which will be based on

a version of the complement of Simon’s problem [Sim97].

Specifically, for Simon’s problem we have black-box access to a function f : {0,1}n→
{0,1}n, that is promised to be either a permutation or a 2-to-1 function: there exists a

non-zero string s such that if f (x) = f (y) for x 6= y then y = x⊕s. To solve the problem

we need to decide which is the type of the function f .

3.1. Classical Delegation of Decision Problems 39

The problem is known to be in BQP (relative to the function oracle) due to Simon’s al-

gorithm that requires only O(n) queries to the function f [Sim97]. For the complement

of this problem, called coSimon, in which we accept the input if the function f is 2-to-

1, it can be shown that coSimon cannot be solved by an NP algorithm (and not even

by a MA algorithm). Therefore, coSimon shows us an oracle separation (relative to the

function f oracle) between the classes BQP and MA. Now, to use Simon’s problem as

a problem that cannot be solved by a GES, we would have to analyze its complexity

relative to advice classes (such as NP/poly). As recalled from subsection 2.2.1, for

advice classes the algorithm receives an additional advice string which is the same for

all inputs of same size. However, for Simon’s problem, for all inputs of size n, we have

a unique underlying oracle function f : {0,1}n. Therefore, Simon’s problem (or its

complement) can be solved by a polynomial time algorithm with a single bit of advice:

for any input of size n the advice would be 0 if the function is a permutation and 1

otherwise. For this reason, we need to modify the structure of Simon’s problem.

Essentially, to show our first main result, we consider that the black-box function is

input-dependent. And to solve the problem, one needs as before, to determine whether

the function specified by the input is a permutation or 2-to-1. In this case we can

show by considering that our black-box functions are defined on a larger domain,

f : {0,1}nD → {0,1}nD
, then the problem, called D-coSimon can still be solved in

BQP, but very importantly it cannot be solved in MA/O(nd)
Od , for any constant d and

a suitably chosen D > d (as explained later). To show this separation, we will use a

diagonalisation argument.

Unfortunately, we cannot use the same oracle to show the separation between BQP

and NP/poly (or MA/poly) as D must depend on d and we would need to first know a

bound on the size of the advice (the degree of the polynomial) in order to fix the size

of the domain of our functions.

Next we describe formally the Generalised Encryption Scheme framework and we

give an alternative proof for Lemma 3.1.1.

3.1.1 Generalised Encryption Scheme

A Generalised Encryption Scheme describes a 2-party protocol between an honest clas-

sical Client C and a malicious unbounded Server S, where the aim of C is to delegate a

hard computation to S.

Formally, the components of the GES are the following:

40Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

• A predicate function f : {0,1}∗→{0,1};

• A plaintext input x ∈ {0,1}∗, for which C wants to learn the outcome f (x);

• A BPP algorithm for key generation K, such that for any input x ∈ {0,1}∗, K(x)

outputs (k,success) with probability at least 1
2 +

1
poly(|x|) , where k∈ {0,1}poly(|x|).

If the algorithm does not succeed, then it outputs (k′, fail), where k′ ∈{0,1}poly(|x|);

• A polynomial-time deterministic algorithm E such that for any input x∈ {0,1}∗,
any key k ∈ {0,1}poly(|x|) and any message s ∈ {0,1}poly(|x|), E(x,k,s) outputs

an encryption y ∈ {0,1}poly(|x|);

• A polynomial-time deterministic algorithm D such that for any input x∈ {0,1}∗,
any key k ∈ {0,1}poly(|x|) and any message s ∈ {0,1}poly(|x|), D(s,k,x) outputs a

decryption z ∈ {0,1}poly(|x|)

And they satisfy the following properties:

1. The rounds of communication between C and S are m = poly(|x|). We will

denote with ci the message that C sends in round i, and with si the message sent

by S at round i;

2. Given input x, C runs the key generation algorithm K(x) until it succeeds - out-

puts (k,success). This step can be thought as preprocessing, taking place before

the communication between C and S starts, and the same key k will be used in

all the remaining stages of the protocol;

3. In round i, C will compute the encryption ci := E(x,k, s̄i−1), where s̄i−1 repre-

sents the transcript of messages received by C from S until round i. Then C sends

the encryption ci to S;

4. In round i, after receiving ci, S will respond with a message si;

5. After the communication between C and S ends, as a last step C uses algorithm

D to compute z := D(s̄m,k,x). With probability at least 1
2 +

1
poly(|x|) , z is equal to

the target computation f (x).

Roughly speaking, the purpose of a GES scheme is to allow a computationally bounded

Client to obtain an outcome f (x) for an input of her own choice x, which she cannot

compute using her limited computational resources. To obtain this desired computation

she interacts with a computationally unbounded, but malicious Server, for a number of

3.1. Classical Delegation of Decision Problems 41

rounds which is polynomial in the length of the input.

But very importantly, the GES also ensures security against the malicious Server, more

precisely the privacy for the Client’s input. As the Server is unbounded, the privacy

must hold an information theoretic sense, and we define it formally in the following

manner:

Definition 3.1.3. Let X be the random variable denoting the input of C in a GES, T (X)

be the random variable for the transcript during the protocol running on input X and

L(X) a function of X, which we will call leakage. We say that the GES protocol leaks

at most L(X) if and only if:

X and T (X) are independent given L(X).

Before showing the alternative proof of Lemma 3.1.1, we must first introduce the

notion of randomized advice. Apart from the standard advice classes introduced in

subsection 2.2.1, where the advice is a fixed deterministic function of the size of the

input, we also introduce here an advice complexity class, where the advice is random-

ized, meaning that for each input length n, the advice is sampled according to some

distribution Dn (distribution parametrized by size of input). A very important rela-

tion regarding randomized advice class, which we will also use in our work, is the

following:

Lemma 3.1.4. [From [Aar06]] MA/rpoly =MA/poly = NP/poly

Now, we can present the simplified proof of Lemma 3.1.1, by first showing that

any function computable in a GES belongs to the class MA/rpoly.

Lemma 3.1.5. If a function f admits a GES leaking at most the size of the input,

namely L(X) = |X |, then f ∈MA/rpoly.

Proof. Consider a predicate f which admits a GES leaking at most the size of the

input.

To begin with, we consider a simplified GES, in which the communication consists of

a single round between Client C and Server S. As a result, the GES protocol running

on input x can be described in the following steps:

1. C runs K(x) until it successfully outputs an encryption key k;

2. C computes the encryption c := E(x,k,′ ′) and sends y to S;

42Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

3. C receives a response s from S;

4. C runs the decryption algorithm D(s,k,x) and obtains z, such that with probabil-

ity 1
2 +

1
poly(|x|) satisfies: z = f (x).

Based on this GES that leaks at most the size of x, we will construct a MA/rpoly algo-

rithm for f . In other words, we will give a probabilistic polynomial-time algorithm that

receives a checkable witness w and a randomized polynomial-sized advice (sampled

from a distribution which is the same for inputs of equal length) which can compute

f (x).

The algorithm is described in the following way.

Consider an input x of length n. Then the randomized advice r for all inputs of length

n is constructed in the following way:

1. We sample at random xn in {0,1}n;

2. We compute a successful key in a GES for input xn: kn := E(xn);

3. We compute the encryption: yn := E(xn,kn,
′ ′) and send it to S;

4. We receive sn as response from S;

5. The advice is rn = (xn,kn,yn,sn).

We consider two cases. If xn = x, then the MA algorithm uses the decryption algorithm

D on input (rn,kn,xn) and will obtain f (x) with probability 1
2 +

1
poly(n) and we are done.

Now consider xn 6= x. From the security condition, we know that the GES leaks about

x at most n. This implies that there must exist some key k such that yn = E(x,k,′ ′).

To see this, suppose by contradiction that for any possible key k we would have

E(x,k,′ ′) 6= yn. Then if in the GES described above, S receives from C the message

yn and as a result he knows that the Client’s input cannot be equal to x, and therefore

he learned more about the input of C, than he is allowed to (the size of input). More

formally, this would imply that the input and the transcript of the protocol are not in-

dependent given the size of the input, as some certain transcripts (containing yn) can

only take place for certain input (different than x).

Now that we made sure that there exists a key k such that yn = E(x,k,′ ′), we will use

k as the witness for the MA algorithm. Namely, the polynomial-time verifier given the

witness k will check that the yn from the advice verifies the equality: yn = E(x,k,′ ′).

Finally, the algorithm will run the GES decryption algorithm D, D(rn,k,x) and from the

3.1. Classical Delegation of Decision Problems 43

correctness of the GES, the result would be equal to f (x) with probability 1
2 +

1
poly(n) .

This shows the MA algorithm receiving a randomized advice that computes f (x) which

concludes our proof.

Therefore, f ∈MA/rpoly and using Lemma 3.1.4, we also have that f ∈ NP/poly.

Furthermore, as the key k must exist independent of the value of the predicate f (x),

then the algorithm we presented above holds for both cases f (x) = 0 and f (x) = 1 and

hence the same algorithm works both when x is a yes instance and a no instance. As a

result, we also have that f ∈ coNP/poly and consequently f ∈ NP/poly∩ coNP/poly.

To finish our proof, we need to show that this result holds also in the case when the

GES consists of multiple rounds of communication. For the general case, we follow

the previous strategy which generalizes in a straightforward way.

From the privacy condition of the GES, we know that any transcript consisting of poly-

nomially in n number of rounds can depend only on n.

Therefore, we will make the advice for inputs of length n to be the entire transcript

of a GES protocol, drawn from the distributions of possible GES transcripts for inputs

of length n. This distribution will correspond to the parametrized distribution corre-

sponding to the randomized advice.

Similarly as before, the witness the MA algorithm will receive is a key k which will

make the input x compatible with the transcript from the advice. And from the security

condition, we know such a key k must exist. Finally, the MA procedure will run the

GES decryption for k, x and the advice transcript and from the correctness condition

will obtain the desired outcome f (x) with probability 1
2 +

1
poly(n) .

Interestingly, we observe that if the communication between C and S consists of

O(nd) messages, for some constant d, then we can also characterize to which com-

plexity class f belongs. Namely, following the above proof we notice that the advice

is exactly a GES transcript, therefore O(nd) bits of advice would suffice to compute f .

As a result we have that:

Corollary 3.1.6. If a function f admits a GES with communication bounded by O(nd),

then f ∈MA/O(nd).

In the next section we present our main result about the delegation of BQP decision

problems in a GES with a known bound on the communication. To give evidence

that BQP computations cannot be information-theoretically secure delegated in such a

GES, we will show an oracle separation between the classes BQP and MA/O(nd), as

stated in Theorem 3.1.2.

44Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

3.1.2 Oracle separation between BQP and MA/O(nd)

In order to show the separation between the classes BQP and MA/O(nd) we will con-

struct an oracle based on the complement of Simon’s problem.

We recall that for Simon’s problem, the input is a function f : {0,1}n → {0,1}n, to

which we only have black-box access and such that f is promised to be either 1-

to-1 (permutation) or 2-to-1 (there exists s ∈ {0,1}n−{0}, such that for any x 6= y,

f (x) = f (y) if and only if y = x⊕ s). To solve the problem we need to determine of

which type f is. Namely, for Simon’s problem the algorithm must accept if f is 2-to-1

and reject if it is 1-to-1. And thus, for the complement of Simon’s problem, an algo-

rithm must accept if f is 1-to-1 and reject otherwise.

As mentioned, for this problem we are not given an actual description of the underly-

ing function, but only oracle access to f . In this way, Simon’s problem offers an oracle

separation between the classes BPP and BQP, as a classical algorithm (with oracle ac-

cess to f), requires O(2
n
2) queries to f , whereas a quantum algorithm only needs O(n)

queries to f .

More precisely, the oracle is a function O : {0,1}∗→ {0,1}∗ such that for any n ∈ N,

if we consider the restriction of O to the domain {0,1}n, and we denote it by On :

{0,1}n→{0,1}n, then On corresponds to either a 1-to-1 or a 2-to-1 function.

As a result, we can naturally define a language which lies in BQPO, but is not contained

in BPPO:

L(O) = {0n |On corresponds to a 2-to-1 function} (3.2)

Even more powerful, we can use the complement of this language, defined as: Lc(O) =

{0n |On corresponds to a 1-to-1 function} in order to show a separation between BQP

and NP with respect to the oracle O [Aar10]. Next we will also show a proof for this

separation for a modified version of the oracle, which will then help us construct our

main oracle for the separation between BQP and MA/O(nd).

A GES for securely delegating BQP problems would imply that BQP⊆NP/poly∩
coNP/poly. Therefore, ideally we would aim to show that there exists an oracle O for

which BQPO 6⊆ NP/polyO.

And the intuition behind constructing this oracle O would be the following: instead of

considering a single function On for each possible input length n, we would construct

instead a different oracle function Ox for any input x ∈ {0,1}n. As a result for an input

length n, we would have 2n functions that need to be decided whether they are 1-to-1

or 2-to-1.

3.1. Classical Delegation of Decision Problems 45

However a classical NP algorithm with oracle access to O will receive only a polyno-

mial (in n) bits of advice, which will be the same advice string for all these 2n functions.

And as a result, it seems that this amount of advice would be insufficient to make the

NPO algorithm decide correctly for all these inputs. However, we will see later that

formalizing this intuition for any polynomial advice is problematic.

For this reason, we consider that we know in advance a bound on the degree of the

polynomial advice. In other words, assuming that this degree is d, then we can con-

struct an oracle showing our oracle separation: BQPO 6⊆ (MA/O(nd))O.

To construct this oracle, we will show an incremental proof, starting from an oracle

separation between the classes BQP and NP. While separation of these 2 classes with

respect to an oracle are already known, including using the complement of Simon’s

problem, in our case we will show this separation for a different variant of Simon’s

problem, where instead of assigning a different function to each input size, we will

assign a different function for each different input.

Lemma 3.1.7. There exists an oracle O based on the complement of Simon’s problem

such that:

BQPO 6⊆ NPO (3.3)

Proof. We will define the oracle O, together with a language based on O, coSimon(O)

such that:

coSimon(O) ∈ BQPO and coSimon(O) 6∈ NPO (3.4)

Specifically, for each n we will consider a family of 2n functions:

F n = { f (n)i : {0,1}n→{0,1}n}i∈{0,1}n .

Then, we define the oracle O on input 1n, i ∈ {0,1}n and x ∈ {0,1}n as:

O(1n, i,x) := f (n)i (x)

O(1n, i) corresponds to the function f (n)i

(3.5)

Now, we define the language coSimon(O) as:

coSimon(O) = {(1n, i) | f (n)i is a 1-to-1 function } (3.6)

The problem we are constructing is a promise problem and the language coSimon(O)

is the set of “yes” instances of the problem, whereas the set of “no” instances is not the

complement of this set, but is the language: coSimonc(O)= {(1n, i) | f (n)i is a 2-to-1 function }.
From this definition we can see that the oracle O gives access to the functions for which

46Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

we need to tell whether they are 1-to-1 or 2-to-1. The main point is that for this prob-

lem, as for the standard Simon’s problem, the algorithms only have black-box access

to these functions and the only way they can solve this problem is by querying the

oracle O.

We also know that given O, the language coSimon(O) belongs to the class BQPO, as

we can just run Simon’s algorithm on an input (1n, i) and then flip the acceptance and

rejection answers.

As standard in quantum query complexity, querying the quantum oracle O is realised

through the following unitary operation, and has the following form:

|1n〉 |i〉 |x〉 |y〉 O−→ |1n〉 |i〉 |x〉 |y⊕O(1n, i,x)〉 (3.7)

Therefore, O on input (1n, i,x) will output the value of the function f (n)i : {0,1}n →
{0,1}n evaluated on the point x, where f (n)i is either 1-to-1 or 2-to-1 . We can see that

the size of the input tuple is 3n as the first input specifying the domain size is given in

unary and the index of the function and the element on which we want to evaluate the

function are given in binary. Additionally, the oracle is defined for all n and for any

i,x ∈ {0,1}n.

Now that we defined abstractly how the oracle O works, we will now show how to

construct the adversarial oracle O, and more specifically, how to construct the family

of functions F n, for any n. By adversarial we mean that we will define F n in such

a way that every non-deterministic algorithm using the oracle O will fail to decide

correctly the language coSimon(O). The following proof will use a diagonalisation

argument.

Using the fact that the set of NP Turing Machines is countable, we consider an

enumeration of them and pick the k-th NP machine, denoted by Mk. Now we will

study its behaviour for input size n = k+n0, for some n0 > 0 defined later on.

Now suppose some function index i ∈ {0,1}n, and we fix a 1-to-1 function as f (n)i .

By simulating the behaviour of Mk on the input (1n, i), we can check to see whether

Mk accepts or not f (n)i . Recall that for coSimon(O) accepting means the input function

is 1-to-1 and rejecting means the input function is 2-to-1 .

If Mk rejects the input (1n, i), then Mk gave the wrong answer and we are done. On the

other hand, if Mk accepted the input, then from the definition of NP TM, we know that

there exist a polynomial-sized path in the non-deterministic computation tree of Mk,

which ends in an acceptance state. Let us denote this acceptance path with π and its

length with l′ = poly(n).

3.1. Classical Delegation of Decision Problems 47

Then we know that Mk can make at most l′ queries to the function oracle O, and we

will denote the list of l < l′ queries that Mk will make and the answers from O to these

queries as:

Q = [(x1, fi(x1)),(x2, fi(x2)), · · · ,(xl, fi(xl))] (3.8)

where x1, · · ·xl ∈ {0,1}n are the queried elements, chosen by Mk, during the path π, as

depicted in Figure 3.1.

Figure 3.1: Computational tree of Mk and the queries to O during the accepting path π

We now construct a new function gi, which will be a 2-to-1 function such that gi

will have the same values as fi in the queried points x1,x2, · · · ,xl , namely: gi(x1) =

fi(x1), · · · ,gi(xl) = fi(xl).

But first we need to show that we construct such a 2-to-1 function gi. Since gi is 2-to-1

, then there exists a non-zero string called xor-mask s such that gi(x) = gi(y) if and

only if x = y or y = x⊕ s. The number of xor-masks s is 2n−1.

Now as gi is equal to fi in l different points and as f is a permutation, then it must

be that gi also produces different images for each of those l = poly(n) inputs. This

implies that we need to choose the xor mask s for gi different than the xor of any 2

of those points: ∀1 ≤ i, j ≤ l, i 6= j, we have that s 6= xi⊕ x j. This means that we

need to eliminate
(l

2

)
values for s. But the total number of possible s is 2n− 1 and as

l = poly(n), there exist sufficiently large n such that 2n−1≥ l(l−1)
2 = poly(n).

Therefore, we choose n0 such that 2n−1 > poly(n) and as there exist such xor masks

s satisfying the above condition and we just need to pick one of them to construct the

2-to-1 function gi.

Finally, for the oracle O, we change the function at index i, by replacing the 1-to-1 fi

with the 2-to-1 gi. In this case, we are guaranteed that the path π of the computational

tree of Mk will remain an accepting path, and therefore Mk will decide incorrectly that

the input (1n, i) corresponds to a 1-to-1 function.

48Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

Then using this construction, for any non-deterministic TM, we will construct an input

for which the machine will decide the language coSimon(O) incorrectly, hence:

coSimon(O) 6∈ NPO (3.9)

which concludes the proof.

Next, we can show a stronger oracle separation, between BQP and MA. Namely,

by using the proof technique from Lemma 3.1.7, we can show that even if the NP

algorithm receives additionally a polynomial amount of randomness, it cannot decide

correctly the language coSimon(O). As a result coSimon(O) lies outside the class MA

relative the oracle O.

Lemma 3.1.8. There exists an oracle O such that BQPO 6⊆MAO.

Proof. As opposed to the previous case, an MA TM is an NP machine that can also

use randomness and essentially can be thought as a probability distributions over NP

algorithms.

The main idea for this proof will be to pick an oracle at random and then reduce the

problem to the NP case. Suppose that the function oracle is 1-to-1 or 2-to-1 with equal

probability and that in both cases the specific function is chosen uniformly at random.

If the complement of Simon’s problem with respect to the random oracle lies in MA,

this implies that there must exist an NP algorithm that can decide the problem correctly

with probability at least 2
3 over the choice of the oracle function.

Now, we proceed with a proof by contradiction. Suppose there exists such a NP TM

Mk.

Then we pick an input which is accepted by Mk, and we denote it by (1n, i). As Mk

accepts (1n, i), then there must exist an accepting path in the computational tree of Mk

along which the machine makes l = poly(n) queries to the oracle function.

If the underlying function f (n)i is 2-to-1 (with xor-mask s), then from the proof of

Lemma 3.1.7, we know that the probability of distinguishing f (n)i from a 1-to-1 func-

tion is given by the probability of finding a collision after l queries, which is bounded

by:

Pr[collision]≤ Pr
[
∃ j ∈ {1, · · · , l−1}| f (n)i (xl) = f (n)i (x j)

]
= Pr

[
∃ j ∈ {1, · · · , l−1}|s = xl⊕ x j

]
=

l−1

2n−1− l(l−1)
2

(3.10)

3.1. Classical Delegation of Decision Problems 49

But l = poly(n), therefore Pr[collision] is exponentially small in n.

Then, as for any input (including (i,n)) the probability that the underlying function

(f (n)i) is 1-to-1 or 2-to-1 is 1
2 , then we obtain that the probability that Mk accepts cor-

rectly the input (i,n) is at most: 1
2 +2−Ωn < 2

3 (for sufficiently large n). This ends our

contradiction proof.

In the next part we move to classical advice classes. Namely, we first show an ora-

cle separation between the quantum polynomial time TM and the classical polynomial

time machines that receive a bounded polynomial of advice. The proof techniques re-

quired for this result, will also help us show our main oracle separation between BQP

and MA/O(nd).

Lemma 3.1.9. For any d ∈ N, there exist an oracle O such that: BQPO 6⊆ P/O(nd)
O.

Proof. The class P/O(nd) refers to the class of problems which can be solved by a

deterministic polynomial-time TM which receives an additional advice of size O(nd),

where d is a constant and n specifies the size of the input (as we have seen, in our case

the input size is 2n, as n represents the size of the inputs for our oracle functions).

As opposed to the previous analysis, instead of having the ability to non-deterministically

choose one of exponentially many paths, we will deal with polynomial-time determin-

istic algorithm M that will receive some non-uniform information in order to decide

the language coSimon(O). Essentially, each possible advice will determine a new be-

haviour for M, which can even involve a different sequence of queries to the oracle

depending on the advice.

What we want to prove is that irrespective of what advice M will receive, M cannot

decide correctly coSimon(O) for all inputs. To show this, we first need to consider

functions over a larger domain than n-bit strings.

More specifically, for any d > 0, we will choose D > d such that the family of func-

tions F n will contain 2n 1-to-1 or 2-to-1 functions f defined on the domains:

f : {0,1}nD → {0,1}nD
. Then for any d, the oracle denoted as Od will receive queries

of the form:

(1n, i,x) - where i ∈ {0,1}n is the index of the function within F n and x ∈ {0,1}nD
is

an element from its domain.

In order to show that this oracle can be used to prove the separation, we first need to

argue that this modified problem can still be solved in BQPOd .

This is indeed the case, since by expanding the domains of the functions we just change

50Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

the running time of Simon’s algorithm from O(n) to O(nD). But, as D is just a fixed

constant, then the algorithm still runs in polynomial time and therefore coSimon(Od)∈
BQPOd . What remains to be shown is that we also have: coSimon(Od) 6∈ P/O(nd)

Od .

As in the previous oracle separations, we will prove this by diagonalisation, by consid-

ering an enumeration of the deterministic polynomial time machines and we will show

that no matter what advice the k-th polynomial time machine Mk receives, it cannot

correctly decide coSimon(Od).

However, the main challenge comes from the fact that each advice can induce a differ-

ent behaviour to Mk and therefore we need to construct the oracle in such a way that

all advice strings would lead to Mk failing to answer correctly for at least one input.

This is contrast to the previous case where we only had to analyze the behaviour of

one accepting paths on the non-deterministic computation tree.

Let us consider the behaviour of Mk for an input of size n = k+n0, where the constant

n0 will be specified later.

As the advice is a string of size O(nd), there are 2O(nd) possible advice strings. Cru-

cially, whichever of these strings Mk will use, it will be the same for for all 2n inputs

of length n (all 2n functions from F n).

In order to construct the oracle for inputs of size n, we essentially need to construct the

family of functions F n.

Hence, let us consider the first index inside F n, namely 0n and assign to this index any

1-to-1 function f : {0,1}nD → {0,1}nD
. We will now inspect the behaviour of Mk for

the index 0n and for each possible advice string.

If for more than half of all the advice strings Mk rejects f , then we keep f in its current

form for the index 0n. This is because in this case, we have that half of the advice

strings have been eliminated as they all lead to Mk giving a wrong answer.

If on the other hand, more than half of all the advice strings lead to Mk accepting f , we

will attempt to turn f into a 2-to-1 function while keeping acceptance for those advice

strings. As a result this would reduce to the previous case, and we would be able to

again eliminate half of the advice strings.

For each advice, denoted by a j, for j ∈ {0,1}O(nd), the machine Mk will make a se-

quence of polynomially in n many queries to f .

We denote these sequences of queries together with their responses from the oracle as:

σ j = [(x j
1, f (x j

1)),(x
j
2, f (x j

2)), · · · ,(x
j
l j
, f (x j

l j
))] (3.11)

where each l j is polynomial in n.

3.1. Classical Delegation of Decision Problems 51

We now consider a 2-to-1 function g : {0,1}nD →{0,1}nD
such that:

For all j such that Mk with advice a j and querying σ j, accepts the function f :

g(x j
1) = f (x j

1),g(x
j
2) = f (x j

2), · · · ,g(x
j
l j
) = f (x j

l j
) (3.12)

In other words, if we place g on index 0n, then we will get identical responses to

the queries which make Mk accept this input. Since the number of queries inputs is

l j = poly(n) and the number of advice strings is 2O(nd), then the maximum number of

different inputs which can be queried is l j ·2O(nd), which is also of order 2O(nd).

However, unlike the proofs for our previous results, this number of queried inputs is

exponential in the size of the input of Mk, so we first have to make sure that such a

2-to-1 function even exists.

The trick is that we chose the domain of our functions through the variable D, and

we can make it sufficiently large to accommodate for a 2-to-1 function satisfying the

2O(nd) restrictions mentioned above.

As before, because f is a permutation then no two queried values will have the same

image. And therefore in order to construct the xor-mask s ∈ {0,1}nD
for the function

g, we need to ensure that it is different from the xor of any 2 queried preimages. These

will be the restricted values of the xor-mask s. The total number of pairs of queried

inputs is at most
(2O(nd)

2

)
= 2O(2nd)−2O(nd)

2 , which is also of order 2O(nd). But the total

number of possible xor masks is 2nD
. Therefore, to make sure that such a xor mask s

exists and hence such a 2-to-1 function g exists, it suffice to ensure that: 2nD
> 2O(nd).

As a result if we set D > d, then we have a 2-to-1 function g that matches the responses

of f for all 2O(nd) possible queries.

Therefore, by placing g on the index 0n, we can eliminate half of the possible advice

strings. Then, no matter how Mk behaves, for the input 0n, we can eliminate half of the

advices.

And now, we can repeat this procedure for the other inputs (function indices). We are

effectively halving the number of possible advice strings with each index. Since in F n

there are exactly 2n functions, in order to eliminate all possible advice strings, we need

to ensure that: 2O(nd)

22n < 1, or equivalently, O(nd) < 2n. Then, to achieve this, we just

have to choose n0 (where n = n0 + k) large enough such that this inequality holds.

Finally, we have that for any k and for any advice that Mk can receive, there always

exists at least one input to coSimon(Od) that is decided incorrectly by Mk, and as a

result:

coSimon(Od) 6∈ P/O(nd)
Od (3.13)

52Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

which concludes our proof.

Remark: Note that the same proof technique cannot be used to show an oracle

separation between BQP and P/poly. The reason is that the trick in our proof was to

consider D - determining the size of the function domain to be larger than d - deter-

mining the size of the advice. This is clearly possible only when we know in advance a

bound on the degree of the advice polynomial. If the advice size could be any arbitrary

polynomial, then no matter how we would choose the oracle domain size parameter

D, there would always exist some degree d′ > D of the advice for which our proof

technique would not work.

A possible way to fix this issue, would to make D part of the input in some way such

that it can increase as well. Hence, if D was included in the input as unary string

h(n), where h is an increasing function, then for sufficiently large n, we will have

g(n) > d. But we can immediately notice the issue with this strategy. While through

this construction indeed the problem cannot decided by a P/poly algorithm, it is also

not solvable anymore in BQP. This is because in this case, the quantum query com-

plexity required to run Simon’s algorithm would become O(ng(n), which is no longer

polynomial, as g is an increasing function, and cannot be constant. As a result, prov-

ing an oracle separation between BQP and P/poly seems to require some non-trivial

modifications of our proof or a very different approach.

Finally, we are able to show our main result concerning the delegation of BQP

computations in a GES with a known bound on the communication.

Theorem 3.1.10. For each d ∈ N, there exists an oracle Od such that BQPOd 6⊆
MA/O(nd)

Od .

Proof. To begin with, we first show that there exists an oracle Od relative to which the

complement of Simon’s problem does not belong to the class NP/O(nd).

The oracle Od will be constructed in the same way as we did for the P/O(nd) case.

The same proof technique can be applied here. Namely, we consider the k-th non-

deterministic polynomial-time machine Mk and we will examine its behaviour for some

input (1n, i), where n = k+n0, with n0 chosen as in Lemma 3.1.9.

For which index we initially choose a permutation and examine what Mk will do given

any possible advice of length O(nd).

If more than half of the advice strings lead to Mk rejecting the input, then we keep

this permutation for this input and proceed to the next one. Otherwise we will replace

the permutation with a 2-to-1 function constructed in the following way. For each

3.2. Classical Delegation of Sampling Problems 53

advice for which Mk accepts, there must exist a path in the computational tree of size

polynomial in n which leads to an accept node. We will pick one such accepting paths

for each advice leading Mk to an accept. Then when constructing the 2-to-1 function

we want to ensure that for every input queries along all these accepted paths, the 2-to-1

function will have the same images as the initial permutation function. This reduces

the problem to the proof of Lemma 3.1.9. As a result, we know that by picking D > d,

such a 2-to-1 function exists and therefore as before for each function index we are

able to eliminate half of the possible advice strings. Finally, by choosing n0 large

enough to ensure that all advice will be eliminate after we process all inputs (after 2n

steps), we consequently have that the language coSimon(Od) is decided incorrectly by

all non-deterministic polynomial-time algorithms that receive an extra advice of size

O(nd).

For the MA/O(nd) case, we can use the same proof technique as in Lemma 3.1.8 to

reduce the MA case to the NP setting. We therefore conclude that:

coSimon(Od) 6⊆MA/O(nd)
Od (3.14)

3.2 Classical Delegation of Sampling Problems

We now want to study what would happen if we can securely and classically delegate a

sampling problem, such as Boson Sampling to a quantum Server using a GES protocol.

Boson Sampling defined by Aaronson and Arkhipov [AA11] is the problem of simu-

lating the statistics of photons (bosons) passing through a linear optics network. In this

problem we have an initial configuration of identical photons placed in known loca-

tions (referred to as modes). The photons then pass through the linear optics network,

consisting of optical elements. Finally, we perform a measurement to determine the

new location of photons, in the output modes of the system. To illustrate this process,

we can think of the following example: imagine identical balls which are dropped se-

quentially from different initial locations, through a board containing pegs arranged as

depicted in Figure 3.2. Then, the input of the problem is the arrangement of the pegs

and the output is represented by the number of balls in each output location.

The main reason why this is referred to as a sampling problem is the fact that we

have defined a probability distribution over the different configurations of photons in

the output modes.

54Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

Figure 3.2: Analogy of the Boson Sampling problem

In the exact sampling version of this problem, called Exact Boson Sampling, which

is the problem we will be considering for the GES delegation, the task is to output a

sample from this specific probability distribution.

Regarding the complexity of Boson Sampling, Aaronson and Arkhipov [AA11] showed

that the probability of observing a particular configuration of photons in this experi-

ment is proportional to the squared permanent of a matrix describing the optical net-

work. Moreover, they showed a separation between SampBQP and SampBPP by prov-

ing that no polynomial-time probabilistic algorithm can sample from this distribution,

unless the polynomial hierarchy collapses at the third level.

As a result, while a quantum computer can simulate the optical network and sample

from the underlying target distribution in polynomial time in the size of the network,

it is highly unlikely that classical computers can achieve this.

Now, in the context of delegating Exact Boson Sampling, in a GES the classical

Client’s input would be a description of the linear optics network. The Client’s tar-

get is to obtain after the interaction with the Server a sample from the Boson Sampling

distribution associated with the input network, but such that the description of this net-

work remains information-theoretically hidden from the Server, with the only leaked

information to the Server being the size of the network.

Our main result about the delegation of Exact Boson Sampling can be summarized as

follows:

If there exists a GES for exact Boson Sampling, then for any square n×n matrix X with

elements in {−1,0,1} there exists circuits C of size 2n−Ω

(
n

logn

)
making polynomially-

sized queries to an NPNP oracle for computing the permanent of the matrix X .

Regarding the hardness of computing the permanent of a matrix, this problem is known

3.2. Classical Delegation of Sampling Problems 55

to be #P-Hard. By Toda’s theorem [Tod91], we know that this implies that if solving

this problem would be possible at any level of the polynomial hierarchy, then the hierar-

chy would collapse at that level. Furthermore, regarding the exact complexity, the best

known algorithm for computing the permanent of a matrix, developed by Björklund

[Bjö16] has a running time of 2
n−Ω

(√
n

logn

)
. Prior to this, the leading algorithm for

computing the permanent of a matrix was Ryser’s algorithm [Rys63], developed over

50 years ago, which requires O(n2n) arithmetic operations.

For these reasons, we conjecture that the circuits C cannot exist, and as a result, the

Boson Sampling cannot be classically and securely delegated.

3.2.1 The Boson Sampling Problem

We recall from section 2.2 that for sampling problems, the input describes a probability

distribution and the output is a sample from this distribution either exactly or approxi-

mately (sample from a close distribution).

In this work we will be studying exact sampling and more specifically the Exact Boson

Sampling problem. In this problem identical bosons are sent through a linear optics

network and then non-adaptive quantum measurements are performed in order to count

the number of bosons in each output mode (output location).

In more details, if our quantum system has n bosons and m output modes, then any

computational basis state of this system has the form: |S〉 = |s1〉⊗ |s2〉⊗ · · · ⊗ |sm〉,
where for any i ∈ {1, · · · ,m}, si ∈ {0,1, · · · ,n} denotes the number of bosons in mode

i. Hence we must have s1 + · · ·+ sm = n. We denote by S, the tuple (s1, · · · ,sm) such

that s1 + · · ·+ sm = n and with Sm,n the set of all such tuples S. We notice that the

cardinality of Sm,n is |Sm,n|=
(m+n−1

n

)
.

Using this computational basis, then the general quantum state of the system can be

expressed as:

|ψ〉= ∑
S∈Sm,n

aS |S〉 (3.15)

where aS ∈ C such that: ∑S∈Sm,n |aS|2 = 1.

The action of the linear optics network can be expressed using a matrix A ∈ Um,n

(where Um,n is the set of m×n matrices whose columns are orthonormal).

Then we construct the matrix AS as a function of the network description A∈Um,n and

a basis state S = (s1, · · · ,sm) in the following way: AS is the n× n matrix where for

i ∈ {1, · · · ,m}, we take si copies of the i-th row of A.

New we assume that m ≥ n, and that for the initial state of the system denoted by

56Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

|1n〉 we have one boson in each of the first n locations (and 0 in the remaining m− n

locations):

|1n〉= |1〉⊗ · · ·⊗ |1〉⊗ |0〉⊗ · · · |0〉 (3.16)

Then, it can be proven [AA11] that the target output distribution DA over Sm,n, indi-

cating the probability to a specific basis state S, after the photons passed through the

network described by matrix A, and after measuring the number of photons in each

mode, is described by:

PrDA[S] =
|Per(AS)|2

s1! · s2! · · · · · sm!
(3.17)

where Per(AS) is the permanent of an the matrix AS:

Per(AS) = ∑
σ∈Σn

n

∏
i=1

ASi,σ(i) (3.18)

and Σn is the set of all permutations of {1, · · · ,n}.
As a result Exact Boson sampling is the problem of sampling from the distribution DA

defined by PrDA[S] when given the input A.

This problem is known to be hard for classical computers and we will present next one

of the arguments that support this statement. But first we need to introduce a result

known as Stockmeyer approximate counting method:

Theorem 3.2.1. [From [Sto83]] Let f : {0,1}n → {0,1} be a predicate that can be

computed using a deterministic polynomial-time algorithm. Consider the averaged

sum:

p =
1
2n ∑

x∈{0,1}n

f (x) (3.19)

Then, for all g≥ 1+ 1
poly(n) , there exist a BPPNP algorithm that can compute p within

a multiplicative factor of g: output p̃, such that p
g ≤ p̃≤ pg.

Then, by contradiction suppose there exist a probabilistic polynomial time algo-

rithm M that can solve the Exact Boson Sampling. This is equivalent to M given the

input A (the description of the network) can output a sample from the distribution DA.

M being a BPP algorithm can be seen as a deterministic polynomial-time computable

function F that when given the input A and an additional string r ∈ {0,1}poly(n) sam-

pled uniformly at random (r can be thought as the internal random coins of M), will

output a basis state S = (s1, · · · sm) such that PrDA[S] =
|Per(AS)|2

s1!·s2!·····sm! . This can be ex-

pressed equivalently as:

Pr
r

$←−{0,1}poly(n)

[F(A,r) = S] =
|Per(AS)|2

s1! · s2! · · · · · sm!
(3.20)

3.2. Classical Delegation of Sampling Problems 57

Consider now the initial state of the system |1n〉. We can compute the probability

of obtaining |1n〉 in the output modes as:

Pr
r

$←−{0,1}poly(n)

[F(A,r) = |1n〉] = |Per(A|1n〉)|2 (3.21)

We will define the following predicate f :

f (A,r) =

0, if F(A,r) 6= |1n〉
1, if F(A,r) = |1n〉

(3.22)

Now, using this predicate f we can express the probability of outputting |1n〉, as the

number of random strings r that lead to this output, over the total number of random

strings:

Pr
r

$←−{0,1}poly(n)
[F(A,r) = |1n〉] =

1
2poly(n) ∑

r∈{0,1}poly(n)

f (A,r) (3.23)

Next, we can observe that the predicate f can be computed in polynomial time,

since F can be computed in polynomial time and then we just need to check whether

the output of F is |1n〉.
Then using Stockmeyer Theorem, we can approximate the probability that F(A,r)

outputs |1n〉 up to multiplicative error using a BPPNP algorithm.

In other words, there exist a BPPNP algorithm for computing |Per(A|1n〉)|2.

On the other hand in [AA11], it is shown that any matrix M ∈ {−1,0,1}n×n can be

embedded into the input matrix A (using only an extra polynomial overhead) such that

|Per(A|1n〉)|2 is proportional to |Per(M)|2.

As a result, there exist a BPPNP algorithm that for any matrix M with elements in

{−1,0,1}, can compute a multiplicative estimate of the permanent of M. But this

problem belongs to the class #P. Additionally, BPPNP is contained within the third

level of the polynomial hierarchy. Then using Toda’s theorem, this implies that the PH

would collapse at the third level, which ends the contradiction proof.

3.2.2 GES for Exact Boson Sampling

Having a GES for a general sampling problem means that the Client’s input A is a

description of a probability distribution DA : {0,1}poly(|A|) → [0,1]. Then the Client

would interact with the Server for a polynomial number of rounds m and finally she

would apply the decryption algorithm to obtain: z := D(s̄m,k,A). Then the outcome z

58Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

should, with probability at least 1
2 +

1
poly(|A|) be a sample from the distribution DA, or

in other words:

Pr
k
¯sm

[D(s̄m,k,A) = z] = Pr[z←DA] (3.24)

From a security point of view, the GES should hide from the Server in an information-

theoretic sense everything about A, but its size.

Looking at our case, for the Exact Boson Sampling with m modes and n photons, the

input is represented by the m× n column orthonormal matrix A describing the linear

optics network. And the target distribution described by A is DA , whereas the Client’s

output S is a sample from DA such that: PrDA[S] =
|Per(AS)|2

s1!·s2!·····sm! .

The sample S is essentially a particular configuration of the n bosons in the m output

locations.

From Lemma 3.1.5, we know that any decision function f that can be delegated in

a GES must belong to the class MA/rpoly. The proof of Lemma 3.1.5 can be applied

for sampling problems as well.

As a result, if a Client can securely delegate exact sampling from DA to a Server using

GES, then there exist an MA/rpoly algorithm for exactly sampling from DA.

But, very importantly, the result of Lemma 3.1.4 according to which MA/rpoly =

NP/poly applies only to decision problems, and hence we cannot say this algorithm is

equivalent to an NP/poly sampling algorithm.

In our case, using the fact that MA/rpoly⊆ BPPNP/rpoly, instead of working with the

class MA/rpoly it will be simpler to consider the sampling algorithm as a BPPNP/rpoly

algorithm (due to the connection with Stockmeyer theorem, and the complexity of per-

manent, as we will see later). In other words, the existence of a GES for sampling

problems implies the existence of a probabilistic polynomial-time algorithm with ac-

cess to an NP oracle and to a randomized polynomial-sized advice that can solve the

target sampling problem.

In order to connect this implication concerning the secure delegation of Exact Boson

Sampling with the complexity of computing the matrix permanent we must first show

some intermediate results about the latter in the next section.

3.2.3 Circuits for the Permanent

The aim of the following intermediate results concerning the analysis of the matrix per-

manent is to finally show that using an oracle for estimating the squared permanent of

a n×n matrix with values in {−1,0,1}, we can construct a polynomial time algorithm

3.2. Classical Delegation of Sampling Problems 59

having random access to nO(n) bits of advice that can exactly compute the permanent.

We would use this result together with the assumption that using a GES a Client can

delegate the exact sampling from the Boson Sampling distribution and the result of

Björklund [Bjö16], to prove our main implication about the existence of GES for sam-

pling problems.

We first introduce the notation: given a matrix A, we will denote with Ai, j the matrix

obtained from A by eliminating the row i and the column j and with A(i1,i2),(j1, j2) the

matrix obtained from A by eliminating the rows i1 and i2 and the columns j1 and j2.

Lemma 3.2.2. Consider am n×n matrix X = (xi, j) ∈ {−1,0,1}n×n. Then there exists

an (n+2)× (n+2) matrix Z = (zi, j) ∈ {−1,0,1}(n+2)×(n+2) such that:

1. zn+2,n+2 = 0

2. Per(Z) =−Per(X)

3. Per(Zn+2,n+2) = Per(X1,1)

Proof. We give the following construction of the matrix Z:

Z =



xn,n xn,n−1 · · · xn,1 0 0

xn−1,n xn−1,n−1 · · · xn−1,1 0 0

· · · · · · · · · · · · · · · · · ·
x2,n x2,n−1 · · · x2,1 0 0

x1,n x1,n−1 · · · x1,1 1 −1

0 0 · · · 1 0 1

0 0 · · · −1 −1 0


(3.25)

For Per(Zn+2,n+2) using the Laplace development along the last row of Zn+2,n+2,

and then along the last column of Z(n+2,n+1),(n+2,n) we have:

Per(Zn+2,n+2) = 1 ·Per(Z(n+2,n+1),(n+2,n)) = Per(X1,1) (3.26)

For Per(Z) using the Laplace development along the last row we have:

Per(Z) =−Per(Zn+2,n+1−Per(Zn+2,n) (3.27)

But for Per(Zn+2,n using the development along the lost row we obtain: Per(Zn+2,n =

Per(X1,1) and similarly for Per(Zn+2,n+1) we obtain: Per(Zn+2,n+1)=Per(X)−Per(X1,1).

Therefore, Per(Z) = −Per(X)+Per(X1,1)−Per(X1,1) = −Per(X) which concludes

the proof.

60Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

Lemma 3.2.3. Consider the matrices X =(xi, j)∈{−1,0,1}n×n, Z =(zi, j)∈{−1,0,1}m×m,

such that zm,m = 0 and m≥ 2 and the matrix W = (wi, j) ∈ {−1,0,1}(m+n−1)×(m+n−1)

constructed in the following way:

W =



z1,1 z1,2 · · · z1,m 0 · · · 0

z2,1 z2,2 · · · z2,m 0 · · · 0

· ·
zm−1,1 zm−1,2 · · · zm−1,m 0 · · · 0

zm,1 zm,2 · · · x1,1 x1,2 · · · x1,n

0 0 · · · x2,1 x2,2 · · · x2,n

· ·
0 0 · · · xn,1 xn,2 · · · xn,n


(3.28)

Then, we have:

Per(W) = Per(Z) ·Per(X1,1)+Per(Zm,m) ·Per(X) (3.29)

Proof. We will prove this relation by induction over m.

For the base case m = 2, we have:

W =



z1,1 z1,2 0 · · · 0

z2,1 x1,1 x1,2 · · · x1,n

0 x2,1 x2,2 · · · x2,n

· · · · · · · · · · · · · · ·
0 xn,1 xn,2 · · · xn,n


(3.30)

In this case we have Per(Z) = z1,2 · z2,1 and Per(Z2,2) = z1,1.

For W if we use Laplace expansion for the first row, we have:

Per(W) = z1,1 ·Per(X)+ z1,2 ·Per(W 1,2)

= z1,1 ·Per(X)+ z1,2 · z2,1 ·Per(X1,1)

= Per(Z2,2) ·Per(X)+Per(Z) ·Per(X1,1)

(3.31)

For the inductive step, we assume that the relation holds for m and we want to prove

it for dimension m+ 1. We will denote with Z′ the matrix for the m+ 1 case (of size

(m+ 1)× (m+ 1) and with W ′ the corresponding matrix (of size (m+ n)× (m+ n))

using Z′.

Then, by using Laplace expansion along the first row for W ′ we get:

Per(W ′)= z1,1Per(W ′
1,1
)+· · ·+z1,m−1Per(W ′

1,m−1
)+z1,mPer(W ′

1,m
)+z1,m+1Per(W ′

1,m+1
)

(3.32)

3.2. Classical Delegation of Sampling Problems 61

But for any i ∈ {1, ...,m} the matrix obtained by eliminating the first row and column

i is of the same form and dimension as the matrix W , and therefore we can apply the

inductive hypothesis for all the terms in the previous sum but the last one:

Per(W ′) =
m

∑
i=1

z1,iPer(W ′
1,i
)+ z1,m+1Per(W ′

1,m+1
)

=
m

∑
i=1

z1,i

[
Per(Z′1,i) ·Per(X1,1)+Per(Z′(1,m+1),(i,m+1)

) ·Per(X)
]
+ z1,m+1Per(W ′

1,m+1
)

= Per(X1,1)

[
m

∑
i=1

z1,iPer(Z′
1,i
)

]
+Per(X)

[
m

∑
i=1

z1,iPer(Z′
(1,m+1),(i,m+1)

)

]
+ z1,m+1Per(W ′

1,m+1
)

(3.33)

But we know that Per(Z′m+1,m+1) = ∑
m
i=1 z1,i ·Per(Z′(1,m+1),(i,m+1)) (by using Laplace

expansion after the first row). Hence, we can rewrite Per(W ′) as:

Per(W ′)=Per(X1,1)

[
m

∑
i=1

z1,iPer(Z′
1,i
)

]
+Per(X)·Per(Z′m+1,m+1

)+z1,m+1Per(W ′
1,m+1

)

(3.34)

Now, we take separately the terms from this expression.

W ′1,m+1
=



z2,1 z2,2 · · · z2,m 0 · · · 0

· ·
zm,1 zm,2 · · · zm,m 0 · · · 0

zm+1,1 zm+1,2 · · · zm+1,m x1,2 · · · x1,n

0 0 · · · 0 x2,2 · · · x2,n

· ·
0 0 · · · 0 xn,2 · · · xn,n


(3.35)

We observe that W ′1,m+1 is of the same form as W with the following instantiations for

X̄ and Z̄:

Z̄ =


z2,1 z2,2 · · · z2,m

· · · · · · · · · · · ·
zm,1 zm,2 · · · zm,m

zm+1,1 zm+1,2 · · · 0



X̄ =


zm+1,m x1,2 · · · x1,n

0 x2,2 · · · x2,n

· · · · · · · · · · · ·
0 xn,2 · · · xn,n



(3.36)

62Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

Using again the induction hypothesis, we have that:

Per(W ′1,m+1
) = Per(Z̄) ·Per(X̄1,1)+Per(Z̄m,m) ·Per(X̄) (3.37)

But by decomposing Per(X) after the first column we have that:

Per(X̄) = zm+1,m ·Per(X1,1)

Additionally, we observe that X̄1,1 = X1,1, and therefore we have that:

Per(W ′1,m+1
) = Per(Z̄) ·Per(X1,1)+ zm+1,m ·Per(Z̄m,m) ·Per(X1,1)

= Per(X1,1)[Per(Z̄)+ zm+1,m ·Per(Z̄m,m)]
(3.38)

And now, if we analyze the Z̄ component, we have:

Firstly, we observe that Z̄m,m = Z1,m. Secondly, let us analyze the two matrices Z′1,m+1

and Z̄:

Z′1,m+1
=


z2,1 z2,2 · · · z2,m

· · · · · · · · · · · ·
zm,1 zm,2 · · · zm,m

zm+1,1 zm+1,2 · · · zm+1,m

 (3.39)

If we develop the permanents of Z′1,m+1 and Z̄ after the last line we obtain:

Per(Z′1,m+1
) =

[
m−1

∑
i=1

zm+1,i ·Per(Z1,i)

]
+ zm+1,m ·Per(Z1,m)

Per(Z̄) =
m−1

∑
i=1

zm+1,i ·Per(Z1,i)

(3.40)

Thus by combining the 3 previous equations we get:

Per(Z′1,m+1
) = Per(Z̄)+ zm+1,m ·Per(Z1,m) = Per(Z̄)+ zm+1,m ·Per(Z̄m,m) (3.41)

Then by replacing this in Equation 3.38, we obtain:

Per(W ′1,m+1
) = Per(X1,1) ·Per(Z′1,m+1

) (3.42)

Now, finally we can go back to Per(W ′) and by replacing in Equation 3.34 the previous

expression of Per(W ′1,m+1), we derive:

Per(W ′) = Per(X1,1)

[
m

∑
i=1

z1,iPer(Z′
1,i
)

]
+Per(X) ·Per(Z′m+1,m+1

)+

+ z1,m+1Per(X1,1) ·Per(Z′1,m+1
)

= Per(X1,1) ·
[

m+1

∑
i=1

z1,iPer(Z′
1,i
)

]
+Per(X) ·Per(Z′m+1,m+1

)

= Per(X1,1) ·Per(Z′)+Per(X) ·Per(Z′m+1,m+1
)

(3.43)

which concludes the inductive proof.

3.2. Classical Delegation of Sampling Problems 63

Using 2 general results about permanents we can now show that by having an

oracle that gives us a multiplicative approximation of the squared permanent of an

(n×n) matrix, we can construct a polynomial-time algorithm with nO(n) bits of advice

that can exactly compute the permanent of the matrix.

The proof of the following implication is inspired from the result of Aaronson and

Arkhipov (Thm. 4.3 of [AA11]). However, in their case the oracle was outputting a

multiplicative approximation of the squared permanent of a matrix with arbitrary real

elements, while in our case the matrices are restricted to elements from {−1,0,1}.

Theorem 3.2.4. Consider O an oracle such that when queried with input a matrix

X ∈ {−1,0,1}n×n, it outputs a value O(X) satisfying:

Per(X)2

g
≤O(X)≤ gPer(X)2 , where g ∈ [1, poly(n)] (3.44)

Then for any matrix X ∈ {−1,0,1}n×n we can compute the permanent of X, using a

polynomial time algorithm which has access to nO(n) bits of advice and that can makes

poly(n) queries to O.

Proof. We will proceed with a proof by induction over n.

For the base case n= 1, we have Per(X) = X and thus the algorithm can directly output

the input X .

For the inductive step we assume for any matrix X ∈ {−1,0,1}n×n there exist an algo-

rithm A using nO(n) bits of advice and making poly(n) queries to O, that can compute

Per(X). And we want show that for any X ′ ∈ {−1,0,1}n×n, we can construct an algo-

rithm A ′ that using (n+1)O(n+1) bits of advice and poly(n+1) queries to O that can

output Per(X ′).

Now let us examine how we can computer Per(X ′).

Firstly, if we query O and we obtain O(X ′) = 0, then this happens if and only if

Per(X ′) = 0 (Per(X
′)2

g ≤ 0, with g≥ 1, hence Per(X ′) = 0) and we are done.

Secondly, we will query O for all matrices X ′i, j to obtain all minors of order n. Now,

as Per(X) 6= 0, then there must exist a minor different from 0: exists i, j ∈ {1, · · ·n+1}
such that Per(X i, j) 6= 0 (and therefore O(X i, j)).

Then, as the permanent is invariant under the permutation of rows and columns, we

can consider (i, j) = (1,1). Therefore, we have Per(X ′) 6= 0 and Per(X ′1,1) 6= 0.

Now, if we take a matrix Z ∈ {−1,0,1}m×m, with m ≥ 2 and zm,m = 0, then from

Lemma 3.2.3, we know there exists a matrix W ∈ {−1,0,1}(m+n)×(m+n) such that:

Per(W) = Per(Z) ·Per(X ′1,1)+Per(Zm,m) ·Per(X ′) (3.45)

64Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

If Per(W) = 0 and Per(Zm,m) 6= 0, then we have:

Per(X ′) =−Per(Z) ·Per(X ′1,1)
Per(Zm,m)

(3.46)

We first show there exist matrices W and Z such that Equation 3.45 holds and such

that Per(W) = 0 and Per(Zm,m) 6= 0.

From Lemma 3.2.2 we know that there exists a matrix Z ∈ {−1,0,1}(n+3)×(n+3) such

that zn+3,n+3 = 0 and:

Per(Z) =−Per(X ′)
Per(Zn+3,n+3) = Per(X ′1,1)

(3.47)

where as Per(X ′) and Per(X ′1,1) are non-zero, then Per(Z) 6= 0 and Per(Zn+3,n+3) 6= 0.

If we set m = n+3 and by using this Z in the construction this Z in the construction of

W , we have:

Per(W) =−Per(X ′) ·Per(X ′1,1)+Per(X ′1,1) ·Per(X ′) = 0 (3.48)

Then, we know that for any X ′ ∈ {−1,0,1}(n+1)×(n+1) there exist matrices

Z ∈ {−1,0,1}(n+3)×(n+3), with Per(Zn+3,n+3) 6= 0 such that:

Per(X ′) =−Per(X1,1) · Per(Z)
Per(Zn+3,n+3)

(3.49)

The algorithm A ′ will search for a matrix Z, it will construct the corresponding matrix

W (as in Lemma 3.2.3) and use the oracle O to test if Per(W) = 0.

Then if Per(W) = 0, then we can compute Per(X ′) using Equation 3.49.

To compute Per(X1,1) we will use A from the induction hypothesis, but the main ques-

tion is how to search for the matrix Z and how to compute the factor Per(Z)
Per(Zn+3,n+3)

.

Here is where the advice steps in.

Specifically, we will define the advice as the set of tuples:(
Z(i),Per

(
Z(i)n+3,n+3

)
,

Per(Z(i))
Per
(

Z(i)n+3,n+3
)
)

, where Z(i) are matrices, Z(i) ∈{−1,0,1}n+3,n+3,

such that Z(i)
n+3,n+3 = 0 and Per

(
Z(i)n+3,n+3

)
6= 0. But now, we need to see how to

choose these matrices Z(i) and how many would be needed to be part of advice.

Firstly, we observe that if Z(i) ∈ {−1,0,1}(n+3)×(n+3), then Per
(

Z(i)
)
∈ Z and −(n+

3)! ≤ Per
(

Z(i)
)
≤ (n+ 3)!. Using that 2(n+ 3)! < nO(n), we have that there are at

most nO(n) possible values for the permanents of Z(i) matrices.

Similarly, as Per
(

Z(i)
)

can take 2(n+3)! values and Per
(

Z(i)n+3,n+3
)

can take 2(n+

3.2. Classical Delegation of Sampling Problems 65

2)!, then fi :=
Per(Z(i))

Per
(

Z(i)n+3,n+3
) can take at most nO(n) different values.

As a result, the matrices Z(i) that constitute the advice will be chosen such that all pos-

sible values of fi =
Per(Z(i))

Per
(

Z(i)n+3,n+3
) are covered. Hence, the number of tuples:

(Z(i),Per
(

Z(i)n+3,n+3
)
, fi) is at most nO(n). Each tuple requires 2(n+3)2+[log(2(n+3)!)]+

[log(2(n+3)!(n+2)!)] = O(n2). As a result the size of the advice will be nO(n) ·
O(n2) = nO(n).

Furthermore, we place the tuples in the advice in ascending order with respect to fi.

Then for a given input X ′, our algorithm A ′, will search for the advice in order to find

a matrix Z(i) such that Per(W (i)) = 0 (constructed as in Lemma 3.2.3), which A ′ will

test by running O(W (i)) = 0.

Then, when such a matrix Z(i) is found we will use the corresponding fi to compute

the permanent of X ′ as:

Per(X ′) =−Per(X1,1) · fi (3.50)

Finally, to computer Per(X1,1), as X1,1 is an n×n matrix, we can run the algorithm A
from the inductive hypothesis.

Therefore, the last thing we need to take care of, is how to search in the advice for a

matrix Z(i) such that Per(W (i)) = 0.

Suppose i ranges from 1 to l = nO(n) and let us denote αi = Per
(

Z(i)n+3,n+3
)

. Then

for any i ∈ {1 · · · , l}, we have:

Per(W (i)) = Per(Z(i)) ·Per(X ′1,1)+αi ·Per(X ′) (3.51)

Equivalent to:

Per(W (i)) = αi(fi ·Per(X ′1,1)+Per(X ′)) (3.52)

Then, by running O(W (i)) we obtain a multiplicative approximation of Per(W (i))2:

Per(W (i))2

gi
≤O(W (i))≤ giPer(W (i))2 , gi ∈ [1, poly(n)]

|Per(W (i))|√
gi

≤
√
O(W (i))≤√gi|Per(W (i))|

(3.53)

And hence as αi is part of the advice, we can obtain a multiplicative approximation of

| fi ·Per(X ′1,1)+Per(X ′)|, by computing
√

O(W (i))
αi

:

1√
gi
| fi ·Per(X ′1,1)+Per(X ′)| ≤

√
O(W (i))

αi
≤√gi| fi ·Per(X ′1,1)+Per(X ′)| (3.54)

66Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

If we consider the function h(i) := Per(X ′)+ fiPer(X ′
1,1) as a function of index i ∈

{1, · · · , l}, then as fi is an increasing sequence, this means that h is a strictly increas-

ing function if Per(X ′1,1) > 0 and strictly decreasing otherwise. Hence h is a strictly

monotone and thus injective function. As we showed before, in Equation 3.49 there

exists ī such that h(ī) = 0. As h is injective it means that this solution is unique.

Therefore our goal is to find the unique ī ∈ {1, · · · , l} such that h(ī) = 0. We have

a multiplicative approximation for |h(i)|, which we denote as t(i) :=
√

O(W (i))
αi

. This

function will be strictly decreasing between 1 and ī and strictly increasing between ī

and l. We search ī using binary search as follows: we choose 2 middle points v and w

that divide the interval [1, l]. If t(v) = 0 or t(w) = 0 then we are done. Otherwise, if

t(v) < t(w), then we search on the interval [2,v], otherwise on the interval [w+ 1, l].

And we repeat this recursively, until the minimum is found.

Given that the number of tuples is nO(n), the algorithm will query O at most O(n log(n))

times. Additionally, the construction of each matrix W (i) requires O(n2) operations and

since this computation is performed O(n log(n)) times, the complexity of this step is

O(n3 log(n)). Then A ′ calls A once to computer Per(X). A in turn requires nO(n) bits

of advice and performs poly (n) queries to O. Thus, A ′ uses nO(n) bits of advice and

queries O for poly (n) times, which concludes the proof.

Theorem 3.2.5. If there exists a BPP/rpoly algorithm that can sample exactly from

the Boson Sampling distribution, then for any matrix X ∈ {−1,0,1}n×n, there exist

circuits of size 2n−Ω

(
n

log(n)

)
, making polynomially many queries to an NP oracle for

computing Per(X).

Proof. The starting point of the proof is a result of Björklund according to which for

any k≤ n, the permanent of an n×n matrix X can be expressed as a linear combination

of poly (n) · 2n−k many permanents of k× k matrices. It should be noted, that while

these k× k matrices are not necessarily minors of the original matrix X , they can still

be computed efficiently given X .

Our task is to compute all of these poly (n)2n−k permanents and then compute their

linear combination to obtain the permanent of X .

To do so, we will use the result of Theorem 3.2.4 together with the assumption of

this theorem that there exists a BPP/rpoly for Exact Boson Sampling, to show that

the permanent of any k× k matrix can be computed in polynomial time using random

access to kO(k) bits of advice and polynomially-sized queries to an NP oracle.

3.2. Classical Delegation of Sampling Problems 67

Crucially, the kO(k)-sized advice will be the same for all k× k matrices. This mean

that to compute all the k× k permanents, and thus to compute Per(X), we can do it in

poly (n)2n−k time with access to kO(k) bits of advice.

The explicit value of k as a function of n will be determined later.

Consider a k× k matrix M and a parameter ε ∈ (0,1). We will embed εM, a scaled

version of M, as a submatrix of a Boson Sampling input AεM, as shown in [AA11].

In other words, AεM ∈Cm×k, with m = poly (k). Then, the probability of obtaining the

state |1k〉 in the output mode is:

p = Per(εM)2 = ε
2k ·Per(M)2 (3.55)

Since Per(M)2 ≤ (k!)2, from p≤ 1, we require ε≤ 1
k√k!

, hence we can choose ε = 1
k .

If a BPP/rpoly algorithm can solve Exact Boson Sampling with the input network

description AεM, then there exists a BPP algorithm A and a probability distribution

Dk = {qy}y∈{0,1}poly(k) which only depends on k, such that:

∑
y∈{0,1}poly(k)

qy ·Pr{A(AεM,y) = |1k〉}= p =
Per(M)2

k2k (3.56)

where y represents the rpoly advice sampled according to Dk.

It is clear that if we can estimate the probability p with multiplicative error in polyno-

mial time (potentially using an NP oracle and kO(k) bits of advice then we can simulate

the behaviour of the oracle O from Theorem 3.2.4 and then compute Per(M) using a

polynomial time algorithm with kO(k) bits of advice and making poly (k) queries to O.

Now, as M has elements in {−1,0,1}, then PerM ∈ Z and −k! ≤ Per(M) ≤ k!. If

Per(M) 6= 0, then we have: 1≤ Per(M)2 ≤ (k!)2. Hence:

1
k2k ≤ p≤ (k!)2

k2k (3.57)

Moreover, as p = Per(M)2

k2k , p can take at most (k!)2 < kO(k) different values.

Then, the advice string S will consist of kO(k) samples from Dk together with their

probabilities: S = {(yi,qyi)}1≤i≤kO(k) . Using this advice we can define:

pest = ∑
y∈S

qy ·Pr{A(AεM,y) = |1k〉} (3.58)

as a multiplicative estimate of p. Since A is a BPP algorithm, then as before, we

can view it as a deterministic polynomial-time computable function fA that receives

as input AεM,y and an additional random string r ∈ {0,1}l(k), with l polynomial. The

68Chapter 3. Complexity Limitations of Classical Client Delegated Quantum Computing

function fA will output 1 when A outputs |1k〉 and will output 0 otherwise. Hence, we

have:

Pr
r

$←−{0,1}l(k)
[A(AεM,y) = |1k〉] =

1
2l(k) ∑

r∈{0,1}l(k)

fA(AεM,y,r) (3.59)

And therefore the estimate for p is equal to:

pest =
1

2l(k) ∑
r∈{0,1}l(k)

∑
y∈S

qy · fA(AεM,y,r) (3.60)

However, it can be seen that computing pest requires summing kO(k)2l(k) terms, each of

them being computed efficiently in polynomial time using the deterministic function

fA and the advice.

Therefore, we will use Stockmeyer Theorem (Thm 3.2.1) in order to obtain a mul-

tiplicative estimate of pest . Consequently, there exists a BPPNP algorithm that can

compute pest up to a multiplicative error. This will then also yield a multiplicative

approximation of p.

More specifically, we showed that to compute the multiplicative estimate of a k× k

matrix M, we can use a BPP algorithm having access to kO(k) bits of advice and to

an NP oracle (for Stockmeyer counting). But then, this algorithm can be seen as an

implementation of the oracle O.

Therefore, from Theorem 3.2.4, we have an algorithm for computing the permanent of

M exactly, running in polynomial time using kO(k) bits of advice and access to an NP

oracle.

But very importantly, as the advice is the same for all k× k matrices, we can then re-

peat the same procedure for all poly (n) ·2n−k permanents.

This yields that in order to compute Per(X) we require poly (n) ·2n−k ·poly (k) opera-

tions and access to kO(k) bits of advice and to an NP oracle.

Finally, we need to convert this algorithm into a circuit.

We can now choose k conveniently that would minimize both the number of operations

poly (n) ·2n−k ·poly (k) and the size of the advice kO(k).

Then if we choose k = c · n
logn , for some constant c > 0 , we have:

The number of operations becomes: poly (n) · poly
(

n
logn

)
· 2n−c· n

logn = 2n−Ω

(
n

logn

)
.

And the size of advice:
(

cn
logn

) c′n
logn

= 2n−Ω

(
n

logn

)
. Therefore, we have circuits of size

2n−Ω

(
n

logn

)
. And to implement the random access to the 2n−Ω

(
n

logn

)
bits of advice we

consider that the gates have unbounded fan-in. Hence, the advice bits are hardcoded

into the circuit and fed whenever the algorithm A uses them. Since only polynomially

3.2. Classical Delegation of Sampling Problems 69

many bits of advice are used at any given step of the algorithm, this will increase the

size of the circuit by a factor polynomial in n, which still keeps the size of the circuit

as 2n−Ω

(
n

logn

)
, concluding the proof.

We are now ready to show our main result about the secure delegation of the Boson

Sampling problem.

Theorem 3.2.6. If Exact Boson Sampling admits a GES then for any matrix X ∈
{−1,0,1}n×n there exist circuits of size 2n−Ω

(
n

logn

)
making poly-sized queries to an

NPNP oracle for computing Per(X).

Proof. If Boson Sampling admits a GES then as shown in subsection 3.2.2 this im-

plies that there exist a BPP algorithm with access to an NP oracle and to a randomized

poly-sized advice that can sample from the Boson Sampling distribution DA.

The result of Theorem 3.2.5 relativises with respect to an NP oracle. More specifi-

cally, this implies that if a BPPNP/rpoly algorithm can sample exactly from the Boson

Sampling distribution then for any matrix X ∈ {−1,0,1}n×n there exist circuits of size

2n−Ω

(
n

logn

)
making poly-sized queries to an NPNP oracle that can compute the perma-

nent of X .

Chapter 4

QFactory against Honest-but-Curious

Server

Secure delegated quantum computation between a classical client and a quantum server

with information theoretic security is implausible given our results in the previous

chapter. As a result, we turn our attention to achieving the same task under more

restricted levels of security. Specifically, the question we address in this chapter is

obtaining classical delegation of quantum computations with post-quantum computa-

tional security against a malicious Server.

To achieve this task, the key is a primitive that allows us to replace the need

for (a particular) quantum communication channel with a computationally (but post-

quantum) secure generation of secret and random qubits using exclusively classical

resources. This can be used by classical clients to achieve blind quantum computing

but also, because of the modularity of the functionality, can be used in a number of

other applications too (such as multi-party quantum computation).

We call this primitive classical client remote state preparation (CC−RSP), where

a classical client can instruct the preparation of a sequence of random qubits at some

distant party. Their classical description is (computationally) unknown to any other

party (including the distant party preparing them) but known to the client. We em-

phasize the unique feature that no quantum communication is required to implement

CC−RSP. This enables classical clients to perform a class of quantum communica-

tion protocols with only a public classical channel between the classical clients and a

quantum server. One of the main example is in fact our goal, purely classical-client

(computational) secure delegation of quantum computations.

In this chapter we will give a concrete protocol called HBC−QFactory imple-

70

71

menting CC−RSP, using the Learning-With-Errors problem to construct a trapdoor

one-way function with certain desired properties (quantum-safe, two-regular, collision-

resistant). We then prove the security in the game-based framework, in the semi-honest

setting.

The CC−RSP primitive, viewed as a resource, by replacing the need for quantum

channel between parties in certain quantum communication protocols with trade-off

that the protocols become computationally secure (against quantum adversaries), has a

wide range of applications. Here we will present a general overview of the applications

of CC−RSP.

The first category of applications concerns a large class of delegated quantum com-

putation protocols, including blind quantum computation and verifiable blind quan-

tum computation. These protocols are of great importance, enabling information-

theoretically secure (and verifiable) access to a quantum cloud. However, the require-

ment for quantum communication limits their domain of applicability. This limitation

is removed by replacing the off-line preparation stage with our QFactory protocol.

Concretely, we can use QFactory to implement the blind quantum computation pro-

tocol of [BFK09], as well as the verifiable blind quantum computation protocols (e.g.

those in [FK17, Bro15b, FKD17]), in order to achieve classical-client secure and veri-

fiable access to a quantum cloud.

The second category of applications refers a more general family of protocols for which

their quantum communication consists of random single qubits similar to those pro-

vided by our protocol HBC−QFactory, such as: quantum-key-distribution [BB14],

quantum money [BOV+18], quantum coin-flipping [PCDK11], quantum signatures

[WDKA15], etc.

In this chapter our contributions can be summarized as follows:

1. We define the primitive Classical Client Remote State Preparation (CC−RSPθ
1)

in section 4.2. CC−RSPθ can replace the need for quantum channel between

parties in certain quantum communication protocols with trade-off that the pro-

tocols become computationally secure (against quantum adversaries).

2. We give a basic protocol (HBC−QFactory) that achieves this functionality from

a correctness point of view, given a trapdoor one-way function that is quantum-

1the parameter θ refers to the set of quantum states produced by this primitive, which are the quan-

tum states {|+θ〉}θ∈{0,··· ,7π/4}

72 Chapter 4. QFactory against Honest-but-Curious Server

safe, two-regular and collision resistant in section 4.3 and prove its correctness.

3. We prove the security of the HBC−QFactory against Honest-But-Curious server

(server follows the protocol specifications, but can try to infer any information

about the secret from the classical transcripts) or against any malicious third

party using a game based security definition. To show the security we prove that

the classical description of the generated qubits is a hard-core function (follow-

ing a reduction similar that of the Goldreich-Levin Theorem) in section 4.4.

4. While the above-mentioned results do not depend on the specific function used,

the existence of such specific functions (with all desired properties) makes the

CC−RSPθ a practical primitive that can be employed as described in this paper.

In section 4.5, we first give methods for obtaining two-regular trapdoor one-way

functions with extra properties (collision resistant or second preimage resistant)

assuming the existence of simpler trapdoor one-way functions (permutation trap-

door or homomorphic trapdoor functions). We use reductions to prove that the

resulting functions maintain all the properties required. Furthermore, we give

in subsection 4.5.3 an explicit family of functions that respect all the required

properties based on the security of the Learning-With-Errors problem as well as

a possible instantiation of the parameters. This function is also quantum-safe,

and thus directly applicable for our setting. Note, that other functions may also

be used, such as the one in [BCM+18] or functions based on the Niederreither

cryptosystem and the construction in [FGK+10].

5. Finally, we implement HBC−QFactory on the quantum computer IBM Quan-

tum Experience using a toy function (given the current limited number of avail-

able qubits we consider a 2-regular function acting on a small number of bits,

consequently, it cannot be post-quantum secure). Hence, we provide in addition

to the theoretical results, an experimental evidence of the correctness and output

distribution of the HBC−QFactory Protocol on a real quantum device.

4.1 Overview of the Protocol and Proof

The general idea is that a classical client gives instructions to a quantum server to per-

form certain actions (quantum computation). Those actions lead to the server having

as output a single qubit, which is randomly chosen from within a set of possible states

4.1. Overview of the Protocol and Proof 73

of the form |+θ〉 := 1/
√

2(|0〉+ eiθ |1〉), where θ ∈ {0, π

4 , · · · , 7π

4 }. The randomness of

the output qubit is due to the (fundamental) randomness of quantum measurements that

are part of the instructions that the client gives. Moreover, the server cannot guess the

value of θ any better than if he had just received that state directly from the client (up to

negligible probability). This is possible because the instructed quantum computation

is generically a computation that is hard to (i) classically simulate and (ii) to reproduce

quantumly because it is unlikely (exponentially in the number of measurements) that

by running the same instructions the server obtains the exact same measurement out-

comes twice. On the other hand, we wish the client to know the classical description

and thus the value of θ. To achieve this task, the instructions/quantum computation

the client uses are based on a family of trapdoor one-way functions with certain extra

properties2. Such functions are hard to invert (e.g. for the server) unless someone (the

client in our case) has some extra “trapdoor” information tk. This extra information

makes the quantum computation easy to classically reproduce for the client, which can

recover the value θ, while it is still hard to classically reproduce for the server. Sending

random qubits of the above type, is exactly what is required from the client in most of

the protocols and applications given earlier, while with simple modifications our pro-

tocol could achieve other similar sets of states.

Our HBC−QFactory protocol can heuristically be described in the next steps:

Preparation. The client randomly selects a function fk, from a family of trapdoor

one-way, quantum-safe, two-regular and collision resistant functions. The choice of fk

is public (server knows), but the trapdoor information tk needed to invert the function

is known only to the client.

Stage 1: Preimages Superposition. The client instructs the server (i) to apply Hadamard(s)

on the control register, (ii) to apply U fk on the target register i.e. to obtain ∑x |x〉⊗
| fk(x)〉 and (iii) to measure the target register in the computational basis, in order to

obtain a value y. This collapses his state to the state (|x〉+ |x′〉)⊗|y〉, where x,x′ are

the unique two preimages of y 3.

Remarks. First we note that each image y appears with same probability (therefore,

2The functions should also be two-regular (each image has exactly two preimages), quantum safe

(secure against quantum attackers) and collision resistant (hard to find two inputs with the same image).
3The uniqueness of the 2 preimages is due to the fact that the function is two-regular.

74 Chapter 4. QFactory against Honest-but-Curious Server

obtaining twice the same y happens with negligible probability). We now consider the

first register |x〉+ |x′〉= |x1 · · ·xn〉+ |x′1 · · ·x′n〉, where the subscripts denote the different

bits of the corresponding preimages x and x′. We rewrite this:(
⊗i∈Ḡ |xi〉

)
⊗
(

∏
j∈G

Xx j
)(
|0 · · ·0〉G + |1 · · ·1〉G

)
where Ḡ is the set of bits positions where x,x′ are identical, G is the set of bits positions

where the preimages differ, while we have suitably changed the order of writing the

qubits. It is now evident that the state at the end of Stage 1 is a tensor product of iso-

lated |0〉 and |1〉 states, and a Greenberger-Horne-Zeilinger (GHZ) state with random

X’s applied. The crucial observation is that the connectivity (which qubit belongs to

the GHZ and which doesn’t) depends on the XOR of the two preimages x⊕ x′ and is

computationally impossible to determine, with non-negligible advantage, without the

trapdoor information tk.

Stage 2: Squeezing. The client instructs the server to measure each qubit i (except the

output) in a random basis {|0〉±eiαiπ/4 |1〉} and return back the measurement outcome

bi. The output qubit is of the form |+θ〉= 1/
√

2(|0〉+ eiθ |1〉), where:

θ =
π

4
(−1)xn

n−1

∑
i=1

(xi− x′i)(4bi +αi) mod 8 (4.1)

Intuitively, measuring qubits that are not connected has no effect to the output,

while measuring qubits within the GHZ part, rotates the phase of the output qubit (by

a (−(1)xiαi + 4bi)π/4 angle). The above intuition shows that our HBC−QFactory

protocol is correct, as fully proven in Theorem Theorem 4.3.1.

Security. The protocol is secure, if we can prove that the server (or other third parties)

cannot guess (obtain noticeable advantage in guessing) the classical description of the

state, i.e. the value of θ. We consider an honest-but-curious server which means that

he essentially follows the protocol and the security reduces in proving that the server

cannot use his classical information to obtain any advantage in guessing the classical

description of the (honest) quantum output.

The server does not know the two preimages x,x′ and needs to guess θ (which is a

three-bit string) from the value of the image y. The key technical part of the security

proof is showing a variant of the Goldreich-Levin theorem [GL89], that (informally)

states that the predicate represented by the inner product of the preimage of a one-way

4.1. Overview of the Protocol and Proof 75

function with a random vector, taken modulo 2, is indistinguishable from a random bit.

In our case, θ has a similar expression (4.1) as it can be expressed as the inner product

between the XOR of two preimages and a random vector taken modulo 8. We prove

in Theorem 4.4.4 that if a computationally bounded server could obtain non-trivial

advantage in guessing θ, then he could also break the property of “second preimage

resistance” which we requested4 for our function fk. To prove this theorem we first

express each of the 3 bits of θ as a XOR between a Goldreich-Levin type of predicate

and some extra functions. Each of these predicates, instead of having a preimage in

the inner product, they have the (bitwise) XOR of the two preimages. We therefore

show that guessing any of those predicates would break the (stronger) assumption of

collision resistance, reaching a contradiction. Then, to connect the hardness of com-

puting the bits of θ (each of the three predicates) with the hardness of computing θ,

we use the theorem [VV85] to address the issue of possible correlations. The technical

hardest part of Theorem 4.4.4 is on the one hand that we fix all but one variable in the

expression of each predicate (bit of θ), with an extra cost that is an inverse polynomial

probability and on the other hand that we then use a “disentangling” trick to express

the bits as the XOR between a Goldreich-Levin predicate and an extra function (now

independent of the other variables).

Using the property of θ mentioned above, we then prove the full security of the

HBC−QFactory protocol by showing the game-based security holds through a reduc-

tion to the hardcore function property of θ in Theorem 4.4.3. More specifically, we

show that if the server runs honestly the protocol, but keeps a record of the classical

transcript of the protocol together with the measurement outcomes he performs, then

it is hard for him to correlate this internal view of the protocol with the protocol output

(θ, |+θ〉).

The function. Our protocol relies on using functions that have a number of proper-

ties (one-way, trapdoor, two-regular, collision resistant (see Remark 4.1.1)), quantum

safe). Any function satisfying those conditions is suitable for our protocol. While in

first thought some of these appear hard to satisfy jointly (e.g. two-regularity and colli-

sion resistance), we give two constructions that achieve those properties from simpler

functions: one from injective, homomorphic trapdoor one-way function and one from

bijective trapdoor one-way function. Both constructions define a new function that has

4We actually request the strongest collision-resistance property that implies the second preimage

resistance.

76 Chapter 4. QFactory against Honest-but-Curious Server

domain extended by one bit, and the value of that bit “decides” whether one uses the

initial basic function or not.

More specifically, for the first construction, let us denote the injective, homomor-

phic, trapdoor one-way function by gk, with k the public description of the function

and tk the trapdoor - used for the inversion of the function gk. Then, we pick at random

an element x0 from the domain of gk. The public description k′ of the new desired

function f will be k along with gk(x0) and the corresponding trapdoor tk′ of f would

be tk along with x0.

Then, the function f , which is evaluated by the server, is described as: fk′(x,c) =

gk(x)+ c · gk(x0), which due to the homomorphic property of g, can be rewritten as:

fk′(x,c) = gk(x+ c · x0). Now, we can see the 2-regularity property of f as, since gk

is injective, f will always have exactly 2 preimages of the form: x and x+ x0, which

can always be efficiently computed from the image of f using tk′ . The one-wayness

and quantum-safety of f are then proved by reduction to the one-wayness, respectively

quantum-safety of g and finally, we prove the collision-resistance of f , by reducing it

to the one-wayness of g.

For the second construction, we denote by g, a bijective, trapdoor one-way function.

Then, in order to construct f , we will basically use 2 such functions g: the public de-

scription k′ of f will consist of k0 and k1 – the public descriptions of gk0 and gk1 and

the trapdoor of fk′ will consist of the pair tk′ = (tk0, tk1) – the trapdoors of gk0 and gk1 .

Then, the function f , evaluated by the server, is described as: fk′(x,c) = gkc(x). Now,

we can see the 2-regularity property of f as, since gk is bijective, every y from the

image of f , will have 2 preimages, namely the unique preimage of gk0 and the unique

preimage of gk1 , which can be both computed from y using tk′ . Then, in section A.2

we prove the one-wayness and quantum-safety of f by reduction to one-wayness and

quantum-safety of g and finally, we prove the second preimage-resistance of f by re-

duction to the one-wayness of one of the 2 functions g.

We then give a real implementation of the required function f based on the first

type of construction, starting from the injective trapdoor one-way function defined in

[MP12], which is derived from the Learning-With-Errors problem : gK(s,e)= stK+et ,

where s ∈ Zn
q and K ∈ Zn×m

q , so using the above notation, we have x = (s,e) and x0 =

(s0,e0). This function also seems to satisfy the homomorphic property with respect

to addition modulo q: gK(s,e) + gK(s0,e0) mod q = (stK + et + st
0K + et

0) mod q =

gK((s+ s0) mod q,e+ e0). Unfortunately, things are not so simple, because the do-

main of the error vector e ∈ Zm is such that each component of e is bounded by some

4.2. CC−RSPθ Primitive 77

value µ, in order for g to be injective and correctly inverted using the trapdoor. This

implies that g is homomorphic as long as e+ e0 is also bounded (in infinite norm) by

µ. In our case, this means that e+e0 may not be small enough to lie within g’s domain,

so it may be possible to have only one preimage for some image y. To overpass these

problems, we do the following:

When we are constructing the trapdoor for the function f , in particular when we are

sampling x0 = (s0,e0) from the domain of g, we will in fact sample e0 from a smaller

set, such that when it will be added together with a random input e, the total noise vec-

tor will still be small enough to lie within the domain of g with some good probability.

What we prove is that as long as e0 is sampled from a subset of the domain of g

such that e0 is now bounded by µ′ = µ
m , we will get that with at least a constant proba-

bility, e+e0 is inside the domain of g, or in other words that f is now 2-regular with at

least a constant probability. What remains to be proven is that when e0 is restricted to

this smaller domain, gK(s0,e0) still cannot be inverted by an adversary. Therefore, as

a final step we prove that there exists an explicit choice of parameters such that both g

and the restriction of g to the domain of e0 are one-way functions and such that all the

other properties of g are preserved.

As a result, under this choice of parameters, we obtain our desired function f ,

satisfying all required properties: one-wayness, trapdoor, collision-resistance and 2-

regularity (with at least constant probability), where the hardness of inverting f is

proven by reduction to worst-case hardness of approximating short vectors problems,

with polynomial approximation factor, which is the current standard in lattice-based

cryptosystems.

Remark 4.1.1. It appears that the second preimage resistance property will be enough

to prove the security of our scheme in the honest-but-curious setting. However, as soon

as the server can be malicious, the collision resistance property will be very important,

else the server might forge known valid states, which would break the security.

4.2 CC−RSPθ Primitive

In many distributed protocols the required communication consists of sending se-

quence of single qubits prepared in random states that are unknown to the receiver

(and any other third parties). What we want to achieve is a way to generate remotely

single qubits that are random and (appear to be) unknown to all parties but the client

that gives the instructions.

78 Chapter 4. QFactory against Honest-but-Curious Server

Definition 4.2.1. Let |+θ〉= 1/
√

2
(
|0〉+ eiθ |1〉

)
. We define the set of states:

R := {|+θ〉} where θ ∈ {0,π/4,π/2, · · · ,7π/4} (4.2)

By including magic states (
∣∣+π/4

〉
), this set of states can be viewed as a “univer-

sal” resource, as applying Clifford operations on those states is sufficient for universal

quantum computation. Furthermore, it is sufficient to implement both Blind Quantum

Computation (e.g.[BFK09]) and Verifiable Blind Quantum Computation (e.g.[FKD17]).

We emphasize that the aim of defining an ideal functionality is to highlight the task

we want to achieve (in terms of correctness) with our protocol HBC−QFactory, rather

than using it in a simulation or composable security definition.

Protocol 1 Primitive: Clasical Channel Remote State Preparation (CC−RSPθ)

Requirements: Client is a purely classical party with no access to quantum resources.

Public Information: A distribution on pairs of lists M, intuitively containing the values of the

classical variables used by the client and by the server.

Trusted Party:

– With some probability p returns to both parties abort, otherwise:

– Samples (mC,mS)←M

– Samples θ←{0,1}3 · π

4

– Prepares a qubit in state |+θ〉
Outputs:

– Either returns abort to both client and server

– Or returns (mC,θ) to the client, and (mS, |+θ〉) to the server

Remark 4.2.2. (i) The outcome of this primitive is the client “sending” the qubit |+θ〉
(that she knows) to the server, thus simulating a quantum channel. (ii) We note that

there is an abort possibility and some auxiliary classical messages (mC,mS), both

included to make the primitive general enough to allow for our construction. Further-

more, the classical description of the qubit, θ, and the classical messages (mC,mS) are

totally uncorrelated (as θ is chosen randomly for each (mC,mS). (iii) While the server

can learn something about the classical description (e.g. by measuring the qubit), this

information is limited and is the exact same information that he could obtain if the

client had prepared and send a random qubit.

4.3. The Real Protocol 79

4.3 The Real Protocol

We assume the existence5 of a family { fk : {0,1}n→{0,1}m}k∈K of trapdoor one-way

functions that are two-regular and collision resistant (or the weaker second preimage

resistance property, see Remark 4.1.1) even against a quantum adversary. For any y,

we will denote by x(y) and x′(y) the two unique different preimages of y by fk (if the

y is clear, we may remove it from x(y) and x′(y) and denote the 2 preimages as x and

x′). Note that because of the two-regularity property m ≥ n−1. We use subscripts to

denote the different bits of the strings.
Protocol 2 Real HBC−QFactory Protocol

Requirements:

Public: A family F = { fk : {0,1}n→{0,1}m} of trapdoor one-way functions that are quantum-

safe, two-regular and collision resistant (or second preimage resistant, see Remark 4.1.1)

Input:

– Client: uniformly samples a set of random three-bits strings α = (α1, · · · ,αn−1) where

αi←{0,1}3, and runs the algorithm (k, tk)←GenF (1n). The α and k are public inputs (known

to both parties), while tk is the “private” input of the Client.

Stage 1: Preimages superposition

– Client: instructs Server to prepare one register at⊗nH |0〉 and second register initiated at |0〉m

– Client: returns k to Server and the Server applies U fk using the first register as control and the

second as target

– Server: measures the second register in the computational basis, obtains the outcome y and

returns this result y to the Client. Here, an honest Server would have a state (|x〉+ |x′〉)⊗|y〉
with fk(x) = fk(x′) = y and y ∈ Im fk.

Stage 2: Squeezing

– Client: instructs the Server to measure all the qubits (except the last one) of the first register

in the
{
|0〉± eαiπ/4 |1〉

}
basis. Server obtains the outcomes b = (b1, · · · ,bn−1) and returns the

result b to the Client.

– Client: using the trapdoor tk computes x,x′. Then check if the n-th bit of x and x′ (corre-

sponding to the y received in stage 1) are the same or different. If they are the same, returns

abort, otherwise, obtains the classical description of the Server’s state.

Output: If the protocol is run honestly, when there is no abort, the state that Server has is |+θ〉,
where the Client (only) knows the classical description (see Theorem 4.3.1):

θ =
π

4
(−1)xn

n−1

∑
i=1

(xi− x′i)(4bi +αi) mod 8 (4.3)

5See section 4.5 for our function. With that choice, we are guaranteed that the last bits of the two

preimages are always different, and thus no need for an abort. We keep the protocol general so that

different functions can be used.

80 Chapter 4. QFactory against Honest-but-Curious Server

Remarks: The first thing to note is that the server should not only be unable to guess θ

from his classical communications, but he should also be unable to distinguish it from

a random string with probability greater than negligible. We will prove this later, but

for now it is enough to point out that θ depends on the preimages x and x′ of y (which

the Client can obtain using tk).

The second thing to note is that while our expression of θ resembles the inner

product in the Goldreich-Levin (GL) theorem, it differs in a number of places and

our proof (that θ is a hard-core function), while it builds on GL theorem proof, is

considerably more complicated. Details can be found in the security proof, but here we

simply mention the differences: (i) our case involves three-bits rather than a predicate,

and the different bits, if we view them separately, may not be independent, (ii) we have

a term (x−x′) rather than a single preimage, so rather than the one-way property of the

function we will need the second preimage resistance and (iii) for the same reason, if

we view our function as an inner product, it can take both negative and positive values

((x− x′) could be negative).

A third thing to note is that we have singled-out the last qubit of the first register,

as the qubit that will be the output qubit. One could have a more general protocol

where the output qubit is chosen randomly, or, for example, in the set of the qubits that

are known to have different bit values between x and x′, but this would not improve

our analysis so we keep it like this for simplicity. Moreover, while the “inner product”

normally involves the full string x that one tries to invert, in our case, it does not include

one of the bits (the last) of the string we wish to invert. It is important to note, that it

does not change anything to our proofs, since if one can invert all the string apart from

one bit with inverse polynomial probability of success, then trivially one can invert the

full string with inverse polynomial probability (by randomly guessing the remaining

bit or by trying out both values of that bit). Therefore, all the proofs by contradiction

are still valid and in the remaining, for notational simplicity, we will take the inner

products to involve all n bits.

4.3.1 Correctness and intuition

Theorem 4.3.1. If both the Client and the Server follow Protocol 2, the protocol aborts

when xn = x′n, while otherwise the Server ends up with the output (single) qubit being

in the state |+θ〉, where θ is given by Eq. (4.3).

Proof. In the first stage, before the first measurement, but after the application of U fk ,

4.3. The Real Protocol 81

the state is ∑x |x〉⊗ | fk(x)〉. What the measurement does, is that it collapses the first

register in the equal superposition of the two unique preimages of the measured y =

fk(x) = fk(x′), in other words in the state (|x〉+ |x′〉)⊗|y〉. It is not possible, even for

malicious adversary (not considered here), to force the output of the measurement to

be a given y (see [Aar05] for relation of PostBQP with BQP). This completes the first

stage of the protocol. Before proceeding with the proof of correctness we make three

observations.

By the second preimage resistance property of the trapdoor function, learning x is

not sufficient to learn x′ but with negligible probability, and intuitively, by the stronger

collision resistance property, even a malicious server cannot forge a state |x〉+ |x′〉
(with f (x) = f (x′)) fully known to him.

Then, we examine what happens if the last bit of x and x′ are the same and see why

the protocol aborts. In this case, in the first register, the last qubit is in product form

with the remaining state, and therefore any further measurements in stage 2 do not

affect it, leaving it in the state |xn〉. Because of this, the output state is not of the form

of Eq. (4.3), while including this states in the set of possible outputs would change

considerably our analysis.

Finally, we should note that the resulting state is essentially a Greenberger-Horne-

Zeilinger (GHZ) state [GHZ89]: let G be the set of bits positions where x and x′ differ

(which include n – output qubit), while Ḡ is the set where they are identical. The state

is then (where we no longer keep the qubits in order, but group them depending on

their belonging to G or Ḡ):(
⊗i∈Ḡ |xi〉

)
⊗
(
⊗ j∈G

∣∣x j
〉
+⊗ j∈G

∣∣x j⊕1
〉)

(4.4)

This can be rewritten as (up to trivial re-normalization):(
⊗i∈Ḡ |xi〉

)
⊗
(

∏
j∈G

Xx j
)(
|0 · · ·0〉G + |1 · · ·1〉G

)
(4.5)

It is now evident that the state at the end of Stage 1 is a tensor product of isolated

|0〉 and |1〉 states, and a GHZ state with random X’s applied.

The important thing to note, is that the set G, that determines which qubits are in

the GHZ state and which qubits are not, is not known to the server (apart from the

fact that the position of the output qubit belongs to G since otherwise the protocol

aborts). Moreover, this set denotes the positions where x and x′ differ, which is given

by the XOR of the two preimages x⊕ x′ := (x1⊕ x′1, · · · ,xn⊕ x′n). Because of second

preimage resistance of the function, the server should not be able to invert and obtain

82 Chapter 4. QFactory against Honest-but-Curious Server

x⊕ x′ apart with negligible probability (without access to the trapdoor tk). This in

itself does not guarantee that the Server cannot learn any information about the XOR

of the preimages, but we will see that the actual form of the state is such that being

able to obtain information would lead to invert the full XOR and thus break the second

preimage resistance.

Now let us continue towards Stage 2. Measuring a qubit (other than the last one)

in Ḡ has no effect on the last qubit (since it is disentangled). When the qubit index is

in G, then measuring it at angle αiπ/4 gives a phase to the output qubit of the form

(−(−1)xiαi+4bi)π/4 as one can easily check6. Therefore, adding all the phases leads

to the output state being:

|+θ〉 ; θ =
π

4
(−1)xn

(
∑

i∈G\{n}

(
−αi(−1)xi +4bi

))
mod 8 (4.6)

Because θ is defined modulo 2π and −4 = 4 mod 8, we can express the output angle

in a more symmetrical way:

θ =
π

4
(−1)xn

(
n−1

∑
i=1

(xi− x′i)
(
4bi +αi

))
mod 8 (4.7)

Note that because the angles are defined modulo 2π, one can represent this angle as

a 3-bits string B̃ (interpreted as an integer) such that θ := B̃× π

4 and eventually remove

the (−1)xn if needed by choosing the suitable convention in defining x and x′.

A final remark is that in an honest run of this protocol, the measurement outcomes

bi and y are uniformly chosen from {0,1} and Im(fk) respectively. This justifies why

in the honest-but-curious model we can view the protocol as sampling randomly the

different α,y,b’s.

4.4 Security of HBC−QFactory

Here we will prove the security of HBC−QFactory (Protocol 2) against Honest-But-

Curious adversaries in the game-based security model. Before proceeding further, it is

worth stressing that this security level has three-fold importance. Firstly, the Honest-

But-Curious model concerns any application of CC−RSPθ that involves a protocol

6The (−1)xi -term arises because of the commutation of Xxi
i with the measurement angle, and the

final Xxn
n gate gives an overall (−1)xn to the angle of deviation

4.4. Security of HBC−QFactory 83

where the adversaries are third parties that have access to the classical communica-

tion and nothing else. In this case, we can safely assume that the quantum part of the

protocol is followed honestly and we only require to prove that the third parties learn

nothing about the classical description of the state from the classical public communi-

cation. Second case of interest is scenarios where the “server” does not intend to sabo-

tage/corrupt the computation but may be interested to learn (for free) extra information.

In such case, the protocol should be followed honestly, since any non-reversible devi-

ation other than copying classical information could corrupt the computation. Finally,

the Honest-But-Curious case, as in the classical setting, is a first step towards proving

the full security against malicious adversaries.

4.4.1 Game-Based Security Definition

Definition 4.4.1. In the following, HBC−QFactory is said to be secure if for all QPT

adversaries A the following game is won with probability at most 1
2 +negl (n):

Game Gsec

Challenger Adversary A

c←${0,1}
(k̃, t̃k)←$ GenF (1n)

α̃←${0,1}3(n−1)

x̃←$ Dom(fk̃)

ỹ← fk̃(x̃)

b̃←${0,1}n−1

θ
(0)← Inv(t̃k, ỹ, b̃)

θ
(1)←${0,1}3 · π

4
−{θ(0)}

k̃, α̃, ỹ, b̃,θ(c), |+
θ(c)〉

c̃

Adversary A wins the game Gsec if and only if c = c̃.

84 Chapter 4. QFactory against Honest-but-Curious Server

Then what we want to show is that:

Pr[A wins Gsec]≤
1
2
+negl (n) (4.8)

In other words:

Pr[A(θ(c),
∣∣+

θ(c)

〉
) = c]≤ 1

2
+negl (n) (4.9)

Remark 4.4.2. Note that a stronger game could have been defined, where the |+θ〉
that is sent to the adversary is always

∣∣+
θ(0)

〉
, along with θ(c). This would be closer

to the actual view of an honest but curious adversary, but it is not possible to prove

the security of this game, no matter how secure the underlying protocol is. Indeed,

given θ(c) and
∣∣+

θ(0)

〉
, it is always possible to measure the

∣∣+
θ(0)

〉
in the basis θ(c) and

output c̃ = 0 only if the measurement outcome was 0.

The case c = 0 corresponds to the adversary receiving a transcript of the protocol

(k̃, ỹ, b̃) along with the real output of the protocol (θ(0),
∣∣+

θ(0)

〉
) matching to this tran-

script. The case c = 1 corresponds to adversary receiving a transcript of the protocol

along with a random output of the protocol (θ(1),
∣∣+

θ(1)

〉
). The game ensures that an

adversary cannot distinguish these two views. The security of Gsec tries to capture the

following idea: If an adversary (server) runs honestly the protocol and keeps a record

of the measurements he performs together with the transcripts he receives during the

protocol, it must be hard for him to correlate this internal view with the output of the

protocol (θ, |+θ〉). This is why in the game we ask the adversary to distinguish whether

he has access to either a correlated or an uncorrelated θ.

4.4.2 Game-Based Security of HBC−QFactory

Theorem 4.4.3. For any QPT adversary A , the game Gsec can be won with probability

at most ≥ 1
2 +negl (n).

To prove that HBC−QFactory is secure according to Definition 4.4.1 we will rely

on the following result, proven in Section 4.4.3:

Theorem 4.4.4. The function θ expressed as:

θ =
π

4

(
n−1

∑
i=1

(xi− x′i)(4bi +αi)

)
mod 8 (4.10)

as was defined in Protocol 2, is a hard-core function with respect to fk.

NB: here the collision resistance is not needed and is replaced by the weaker second

preimage resistance property.

4.4. Security of HBC−QFactory 85

Proof of Theorem 4.4.3. The main idea would be to use a reduction to the hardcore

property of the state description θ. We will assume that there exists an adversary A
that can win Gsec with probability 1

2 + p and we will construct an adversary A ′ that can

break the hard-core function property of θ with probability 1
8 +

p
4 . This implies that if

the game Gsec can be won with inverse polynomial probability, the same applies to the

hard-core function property, and hence we reach a contradiction.

More specifically, let us assume that the adversary A can win with probability
1
2 + p0 when c = 0 and with probability 1

2 + p1 when c = 1. Then, we have:

Pr[A wins Gsec] = Pr[c̃ = c] = Pr[c̃ = 0 |c = 0] · 1
2
+Pr[c̃ = 1 |c = 1] · 1

2

So we have: Pr[c̃ = 0 |c = 0]+Pr[c̃ = 1 |c = 1] = 1+2p.

By denoting Pr[c̃ = 0 |c = 0] = 1
2 + p0 and Pr[c̃ = 1 |c = 1] = 1

2 + p1, we obtain:

p0 + p1 = 2p.

Now we can define the following adversary A ′ that will attack the hardcore prop-

erty of the state description using the adversary A for the game Gsec. Namely, A ′ will

receive the tuple (y,b,k) - representing the messages that an adversary has during an

honest run of HBC−QFactory and will try to determine the underlying state descrip-

tion θ.

A ′(y,b,k,α)

1 : φ←${0,1}3 · π
4

2 : Sends (k,α,y,b,φ,
∣∣+φ

〉
) to A

3 : c̃← A(k,α,y,b,φ,
∣∣+φ

〉
)

4 : if (c̃ == 0) then

5 : θ̃← φ

6 : elseif (c̃ == 1) then

7 : θ̃←${0,1}3 · π
4
−{φ}

8 : return θ̃

Now we want to determine the probability that the output of the adversary A is

equal to the “true” θ(y,b,k,α) that is obtained by Inv(tk,y,b,α).

We will consider separately two cases, namely: (i) φ = θ(y,b,k,α) and (ii) φ 6=
θ(y,b,k,α). Since φ is chosen randomly from the eight possible angles, it is clear that

86 Chapter 4. QFactory against Honest-but-Curious Server

case (i) occurs with probability 1/8 and case (ii) occurs with probability 7/8.

(i) A receives the “true” state (c = 0), so to win the game he needs to return c̃ = 0.

By definition this happens with 1
2 + p0, and in this case A ′ also wins (since he

outputs the correct state). The overall probability that all this happens, i.e. that

A ′ succeeds in this case, is 1
8 ·
(1

2 + p0
)
.

(ii) A receives one of the “false” states (c = 1), and thus to win Gsec he needs to

return c̃ = 1. By definition this happens with probability 1
2 + p1. Now, in this

case, A ′ has essentially ruled-out one of the eight possible states. His random

guess, after ruling-out one state, succeeds with probability 1
7 . Combining all this

together we see that A ′ succeeds with probability 7
8 ·
(1

2 + p1
)
· 1

7 .

More explicitly, the probability that A ′ breaks the hardcore property of θ is (where we

denoted the “true” θ(y,b,k,α) by simply θ):

Pr[A ′(y,b,k,α) = θ] = Pr[A ′(y,b,k,α) = θ |φ = θ] ·Pr[φ = θ]+

+Pr[A ′(y,b,k,α) = θ |φ 6= θ] ·Pr[φ 6= θ]

=
1
8
·Pr[A ′(y,b,k,α) = θ |φ = θ]+

7
8
·Pr[A ′(y,b,k,α) = θ |φ 6= θ]

=
1
8

Pr[c̃ = 0 |c = 0]+
7
8

Pr[c̃ = 1 and random θ̃ = θ|c = 1]

=
1
8

(
1
2
+ p0

)
+

7
8
·
(

1
2
+ p1

)
· 1

7
=

1
8
+

p0 + p1

8
=

1
8
+

p
4

(4.11)

We showed that Adversary A ′ succeeds with probability 1
8 +

p
4 in guessing θ(y,b,k,α),

where p is the advantage A has in Gsec. However, we will prove in Theorem 4.4.4, that

A can’t win with probability better than 1/8+negl (n). Contradiction.

4.4.3 Hardcore Function θ

Proof Sketch of Theorem 4.4.4. In Protocol 2, the adversary (Server) can only use the

classical information that he possesses (k,y,α,b) in order to try and guess with some

probability the value of θ in the case that there is no abort. Since the adversary follows

the honest protocol, the choices of y,b are truly random (and not determined by the

adversary as he could in the malicious case).

Outline of proof sketch: We first express the classical description of the state into

expressions for each of the corresponding three bits. The aim is to prove that it is

impossible to distinguish the sequence of these three bits from three random bits with

4.4. Security of HBC−QFactory 87

non-negligible probability. To show this we follow five steps. In Step 1 we express

each of the the bits as a sum mod two, of an inner product (of the form present in GL

theorem) and some other terms. In Step 2 we show that guessing the sum modulo two

of the two preimages breaks the second preimage resistance of the function and thus

is impossible. We assume that the adversary can achieve some inverse polynomial ad-

vantage in guessing certain predicates and in the remaining steps we show that in this

case he can obtain a polynomial inversion algorithm for the one-way function fk, and

thus reach the contradiction. In Step 3 we use the Vazirani-Vazirani Theorem 2.3.11

to reduce the proof of hard-core function to a number of single hard-core bits (pred-

icates). In Step 4 we use a result that allows us to fix all but one variable in each

expression, with an extra cost that is an inverse polynomial probability and therefore

the (fixed variables) guessing algorithm still needs to have negligible success proba-

bility. Finally, in Step 5, we reduce all the predicates in a form of a known hard-core

predicate XOR with a function that involves variables not included in that predicate.

Using the previous step, it reduces to guessing the XOR of a hard-core predicate with a

constant, which is bounded by the probability of guessing the (known to be hard-core)

predicate.

Here we give the sketch described above, while the full proof can be found in the

section A.1. Let us start by defining:

B̃ = B̃1B̃2B̃3 =

(
n−1

∑
i=1

(xi− x′i)(4bi +αi)

)
mod 8 (4.12)

where B̃i are single bits. Moreover, we treat x,x′ as vectors in {0,1}n; we define

α(j) = (α
(j)
1 , · · · ,α(j)

n−1) the vector that involves the j ∈ {1,2,3} bit of each of three-bit

strings α, and we define x̃ := x⊕ x′. We define z as a vector in {−1,0,1}n defined as

the element-wise differences of the bits of x and x′, i.e. zi = xi− x′i. Finally, as in GL

theorem, we will denote the inner product of 2 vectors a and b each with n−1 elements

as: 〈a,b〉= ∑
n−1
i=1 aibi.

We will prove that any QPT adversary A having all the classical information that

Server has (y,α,b), can guess B̃ with at most negligible probability:

Pr
x←{0,1}n

α←{0,1}3n

b←{0,1}n

[A(f (x),α(1),α(2),α(3),b) = B̃1B̃2B̃3]≤
1
8
+negl (n) (4.13)

where for simplicity we denote the function f instead of fk. This means that the ad-

versary A cannot distinguish B̃ from a random three-bit string with non-negligible

88 Chapter 4. QFactory against Honest-but-Curious Server

probability.

Step 1: We decompose Eq. (4.12) into three separate bits, and use the variable x̃,z

defined above.

B̃3 = 〈x̃,α(3)〉 mod 2

B̃2 = 〈x̃,α(2)〉 mod 2⊕h2(z,α(3))

B̃1 = 〈x̃,α(1)〉 mod 2⊕h1(z,α(3),α(2),b) (4.14)

where the derivation and exact expressions for the functions h1,h2 are given in sec-

tion A.1. We notice from Eq. (4.14) that each bit includes a term of the form 〈x̃,α(i)〉 mod

2 which on its own is a hard-core predicate following the GL theorem.

Step 2: By the second preimage resistance we have:

Pr
x←{0,1}n

[A(1n,x) = x′ such that f (x) = f (x′) and x 6= x′]≤ negl (n)⇒

Pr
x←{0,1}n

[A(1n,x) = x′⊕ x = x̃]≤ negl (n) (4.15)

For each bit j ∈ {1,2,3}, separately we assume that the adversary can achieve an

advantage in guessing B̃ j which is 1
2 +ε j(n). Then, similarly to GL theorem, we prove

that if this ε j(n) is inverse polynomial, this leads to contradiction with Eq. (4.15) since

one can obtain an inverse-polynomial inversion algorithm for the one-way function f .

Step 3: While each bit includes terms that on its own it would make it hard-core predi-

cate (as stated in Step 1), if we XOR the overall bit with other bits it could destroy this

property. To proceed with the proof that B̃ is hard-core function we use the Vazirani-

Vazirani theorem which states that it suffices to show that individual bits as well as

combinations of XOR’s of individual bits are all hard-core predicates. In this way one

evades the need to show explicitly that the guesses for different bits are not correlated.

To proceed with the proof, we use a trick that “disentangles” the different variables.

Step 4: We would like to be able to fix one variable and vary only the remaining, while

at the same time maintain some bound on the guessing probability.

The advantage ε j(n) that we assume the adversary has for guessing one bit (or a

XOR) is calculated “on average” over all the random choices of (x̃,α(i),b). Using

Lemma 4.4.5 we can fix one-by-one all but one variable (applying the lemma itera-

tively, see section A.1). With suitable choices, the cardinality of the set of values that

satisfies all these conditions is O(2nε j(n)) for each iteration. Unless ε j(n) is negligi-

ble, this size is an inverse polynomial fraction of all values. This suffices to reach the

contradiction. The actual inversion probability that we will obtain is simply a product

4.5. Function Constructions 89

of the extra cost of fixing the variables with the standard GL inversion probability. This

extra cost is exactly the ratio between the cardinality of the Good sets (defined below)

and the set of all values.

Lemma 4.4.5. Let Pr
(v1,··· ,vk)←{0,1}n×···×{0,1}n

[Guessing] ≥ p+ ε(n), then for any vari-

able vi, there exists a set Goodvi ⊆ {0,1}n of size at least ε(n)
2 2n, such that for all

vi ∈ Goodvi , we have:

Pr
(v1,··· ,�vi ,··· ,vk)←{0,1}n×···×{0,1}n

[Guessing]≥ p+
ε(n)

2

where the latter probability is taken over all variables except vi.

Step 5: If the expression we wish to guess involves XOR of terms that depend on dif-

ferent variables, then by using Step 4 we can fix the variables of all but one term. Then

we note that trying to guess a bit (that depends on some variable and has expectation

value close to 1/2) is at least as hard as trying to guess the XOR of that bit with a

constant. For example, if the bit we want to guess is 〈x̃,r1〉 mod 2⊕ h(z,r2,r3)] and

we have a bound on the guessing probability where only r1 is varied, then we have: 7

Pr
r1←{0,1}n

[A(f (x),r1,r2,r3) = 〈x̃,r1〉 mod 2⊕h(z,r2,r3)]≤

Pr
r1←{0,1}n

[A(f (x),r1,r2,r3) = 〈x̃,r1〉 mod 2]
(4.16)

We note that all bits of B̃ and their XOR’s can be brought in this form. Then using

this, we can now prove security, as the r.h.s. is exactly in the form where the GL

theorem provides an inversion algorithm for the one-way function f . For details, see

section A.1.

4.5 Function Constructions

For our Protocol 2 we need a trapdoor one-way function that is also quantum-safe,

two-regular and second preimage resistant (or the stronger collision resistance prop-

erty). These properties may appear to be too strong to achieve, however, we give here

methods to construct functions that achieve these properties starting from trapdoor

one-way functions that have fewer (more realistic) conditions, and we specifically give

one example that achieves all the desired properties. In particular we give:

7Here and in the full proof, when we compare winning probabilities for QPT adversaries, it is

understood that we take the adversary that maximises these probabilities.

90 Chapter 4. QFactory against Honest-but-Curious Server

• A general construction given either (i) an injective, homomorphic (with respect

to any operation8) trapdoor one-way function or (ii) a bijective trapdoor one-way

function, to obtain a two-regular, second preimage resistant9, trapdoor one-way

function. In both cases the quantum-safe property is maintained (if the initial

function has this property, so does the constructed function).

• (taken from [MP12]) A method of how to realise injective quantum-safe trap-

door functions derived from the LWE problem, that has certain homomorphic

property.

• A way to use the first construction with the trapdoor from [MP12] that requires

a number of modifications, including relaxation of the notion of two-regularity.

The resulting function satisfy all the desired properties if a choice of parameters

that satisfy multiple constraints, exists.

• A specific choice of these parameters, satisfying all constraints, that leads to a

concrete function with all the desired properties.

4.5.1 Obtaining two-regular, collision resistant/second preimage

resistant, trapdoor one-way functions

Here we give two constructions. The first uses as starting point an injective, homo-

morphic trapdoor function while the second a bijective trapdoor function. While we

give both constructions, we focus on the first construction since (i) we can prove the

stronger collision-resistance property and (ii) (to our knowledge) there is no known

bijective trapdoor function that is believed to be quantum-safe.

Theorem 4.5.1. If G is a family of injective, homomorphic, trapdoor one-way func-

tions, then there exists a family F of two-regular, collision resistant, trapdoor one-

way functions. Moreover the family F is quantum-safe if and only if the family G is

quantum-safe.

From now on, we consider that any function gk ∈G has domain D and range R and

let +D be the closed operation on D and +R be the closed operation on R such that gk

is the morphism between D and R with respect to these 2 operations:

gk(a)+R gk(b) = gk(a +D b) ∀a,b ∈ D

8in particular it is only required to be homomorphic once for this operation
9In (i) we prove the stronger collision-resistant property.

4.5. Function Constructions 91

We also denote the operation −D on D, the inverse operation of +D, specifically:

a +D b−1 = a −D b ∀a,b ∈ D and 0D be the identity element for +D.

Then, the family F is described by the following PPT algorithms:

FromInj.GenF (1n)

1 : (k, tk)←$ GenG (1n) // k is an index of a function from G and tk is its associated trapdoor

2 : x0←$ D\{0D} // x0 6= 0D to ensure that the 2 preimages mapped to the same output are distinct

3 : k′ := (k,gk(x0)) // the description of the new function

4 : t ′k := (tk,x0) // the trapdoor associated with the function fk′

5 : return k′, t ′k

The Evaluation procedure receives as input an index k′ of a function from F and

an element x̄ from the function’s domain (x̄ ∈ D×{0,1}):

FromInj.EvalF (k′, x̄)

return fk′(x̄)
where every function from F is defined as:

fk′ : D×{0,1}→ R

fk′(x,c) =

gk(x), if c = 0

gk(x)+R gk(x0) = gk(x +D x0)
10 , if c = 1

FromInj.InvF (k′,y, t ′k)

1 : // y is an element from the image of fk′ , k′ = (k,gk(x0)), t ′k = (tk,x0)

2 : x1 := InvG (k,y, tk)

3 : x2 := x1−D x0

4 : return (x1,0) and (x2,1) // the unique 2 preimages corresponding to

5 : // an element from the image of fk′

Proof. To prove Theorem 4.5.1 we give below five lemmata showing that, the family

F of functions defined above, satisfies the following properties: (i) two-regular, (ii)

trapdoor, (iii) one-way, (iv) collision-resistant and (v) quantum-safe.

Lemma 4.5.2 (two-regular). If G is a family of injective, homomorphic functions, then

F is a family of two-regular functions.
10The last equality follows since each function gk from G is homomorphic

92 Chapter 4. QFactory against Honest-but-Curious Server

Proof. For every y ∈ Im fk′ ⊆ R, where k′ = (k,gk(x0)):

1. Since Im fk′ = Imgk and gk is injective, there exists a unique x := g−1
k (y) such

that fk′(x,0) = gk(x) = y.

2. Assume x′ such that fk′(x′,1) = y. By definition fk′(x′,1) = gk(x′ +D x0) = y,

but gk is injective and gk(x) = y by assumption, therefore there exists a unique

x′ = x−D x0 such that fk′(x′,1) = y

Therefore, we conclude that:

∀ y ∈ Im fk′ : f−1
k′ (y) := {(g−1

k (y),0),(g−1
k (y) −D x0,1)} (4.17)

Lemma 4.5.3 (trapdoor). If G is a family of injective, homomorphic, trapdoor func-

tions, then F is a family of trapdoor functions.

Proof. Let y ∈ Im fk′ ⊆ R. We construct the following inversion algorithm:

InvF (k′,y, t ′k)

1 : // t ′k = (tk,x0), k′ = (k,gk(x0))

2 : x := InvG (k,y, tk)

3 : return (x,0) and (x −D x0,1)

Lemma 4.5.4 (one-way). If G is a family of injective, homomorphic, one-way func-

tions, then F is a family of one-way functions.

Proof. We prove it by contradiction. We assume that there exists a QPT adversary A
that can invert a function in F with non-negligible probability P (i.e. given y ∈ Im fk′

to return a correct preimage of the form (x′,b) with probability P). We then construct a

QPT adversary A ′ that inverts a function in G with the same non-negligible probability

P reaching a contradiction, since G is one-way by assumption.

From Eq. (4.17) of Lemma 4.5.2 we know the two preimages of y are: (i) (g−1
k (y),0)

and (ii) (g−1
k (y)−D x0,1). We see that information on g−1

k (y) is obtained in both cases,

i.e. obtaining any of these two preimages, is sufficient to recover g−1
k (y) if x0 is known.

We now construct an adversary A ′ that for any function gk : D→ R, inverts any output

y = gk(x) with the same probability P that A succeeds.

4.5. Function Constructions 93

A ′(k,y)

1 : x0←$ D\{0D}// A ′ knows x0, but is not given to A

2 : k′ := (k,gk(x0))

3 : (x′,b)← A(k′,y)

4 : if ((b == 0)∧ (gk(x′) == y) then

5 : // equivalent to A succeeded in returning the first preimage

6 : return x′

7 : elseif ((b == 1)∧ (gk(x′ +D x0)) == y) then

8 : // A succeeded in returning the second preimage

9 : return x′ +D x0// A ′ uses x0 known from step 1

10 : else // A failed in giving any of the preimages (happens with probability 1−P)

11 : return 0

Lemma 4.5.5 (collision-resistance). If G is a family of injective, homomorphic, one-

way functions, then any function f ∈ F is collision resistant.

Proof. Assume there exists a QPT adversary A that given k′ = (k,gk(x0)) can find

a collision (y,(x1,b1),(x2,b2)) where fk′(x1,b1) = fk′(x2,b2) = y with non-negligible

probability P. From Eq. (4.17) we know that the two preimages are of the form

(x,0),(x4x0,1) where gk(x) = y. It follows that when A is successful, by comparing

the first arguments of the two preimages, can recover x0.

We now construct a QPT adversary A ′ that inverts the function gk with the same

probability P, reaching a contradiction:

A ′(k,gk(x))

1 : k′ := (k,gk(x))

2 : (y,(x1,b1),(x2,b2))∧ x1 6= x2← A(k′)// where y is an element from the image of fk′

3 : if f (x1,b1) == f (x2,b2) == y

4 : return x := x1 −D x2

5 : else // A failed to find collision of fk′ ; happens with probability (1−P)

6 : return 0

94 Chapter 4. QFactory against Honest-but-Curious Server

Lemma 4.5.6 (quantum-safe). If G is a family of quantum-safe trapdoor functions,

with properties as above, then F is also a family of quantum-safe trapdoor functions.

Proof. The properties that require to be quantum-safe is the one-wayness and colli-

sion resistance. Both these properties of F that we derived above were proved using

reduction to the hardness (one-wayness) of G . Therefore if G is quantum-safe, its

one-wayness is also quantum-safe and thus both properties of F are also quantum-

safe.

Theorem 4.5.7. If G is a family of bijective, trapdoor one-way functions, then there ex-

ists a family F of two-regular, second preimage resistant, trapdoor one-way functions.

Moreover ,the family F is quantum-safe if and only if the family G is quantum-safe.

The family F is described by the following PPT algorithms, where each function

gk ∈ G has domain D and range R:

FromBij.GenF (1n)

1 : (k1, tk1)←$ GenG (1n)

2 : (k2, tk2)←$ GenG (1n)

3 : k′ := (k1,k2)

4 : t ′k := (tk1 , tk2)

5 : return k′, t ′k

FromBij.EvalF (k′, x̄)

return fk′(x̄)

where every function from F is defined as:

fk′ : D×{0,1}→ R

fk′(x,c) =

gk1(x), if c = 0

gk2(x), if c = 1

4.5. Function Constructions 95

FromBij.InvF (k′,y, t ′k)

1 : // y is an element from the image of fk′ , k′ = (k1,k2), t ′k = (tk1 , tk2)

2 : x1 := InvG (k1,y, tk1)

3 : x2 := InvG (k2,y, tk2)

4 : return (x1,0) and (x2,1) // the unique 2 preimages corresponding to

5 : // an element from the image of fk′

The proof of Theorem 4.5.7, using the family of function defined above, follows

same steps as of Theorem 4.5.1 and is given in the section A.2.

4.5.2 Injective, homomorphic quantum-safe trapdoor one-way func-

tion based on LWE (from [MP12])

We outline the Micciancio and Peikert [MP12] construction of injective trapdoor one-

way functions, naturally derived from the Learning-With-Errors problem. At the end

we comment on the homomorphic property of the function, since this is crucial in order

to use this function as the basis to obtain our desired two-regular, collision resistant

trapdoor one-way functions.

The algorithm below generates the index of an injective function and its corre-

sponding trapdoor. The matrix G used in this procedure, is a fixed matrix (whose exact

form can be seen in [MP12]) for which the function from the family G with index G

can be efficiently inverted without any trapdoor.

LWE.GenG(1n)

1 : A′←$Zn×m̄
q

2 : R←$ Dm̄×kn
αq // element-wise gaussian distribution with mean 0, standard deviation αq on m̄× kn matrices

3 : A := (A′,G−A′R) // concatenation of matrices A′ and G−A′R, representing the index of the function

4 : return (A,R)// A - public function index, R - trapdoor

where the parameters k, α, q and m̄ are defined in Theorem 4.5.11.

The actual description of the injective trapdoor function is given in the Evaluation

algorithm below, where each function from G is defined on: gK : Zn
q×Lm→Zm

q , and L

is the domain of the errors in the LWE problem (the set of integers bounded in absolute

value by the parameter µ):

96 Chapter 4. QFactory against Honest-but-Curious Server

LWE.EvalG(K,(s,e))

1 : y := gK(s,e) = stK + et

2 : return y

The inversion algorithm returns the unique preimage (s,e) corresponding to bt ∈
Im(gK). The algorithm uses as a subroutine the efficient algorithm InvG for inverting

the function gG, with G the fixed matrix mentioned before.

LWE.InvG(K, tK,bt)

1 : b′t := bt

[
R

I

]
2 : (s′,e′) := InvG(b′)

3 : s := s′

4 : e := b−Kts

5 : return s,e

We examine now whether the functions gK are homomorphic with respect to some

operation.

We first define the domain and the range as D := Zn
q×Lm and R := Zm

q . Then, given

a = (s1,e1) ∈ Zn
q×Lm and b = (s2,e2) ∈ Zn

q×Lm, the operation +D is defined as:

(s1,e1) +D (s2,e2) = (s1 + s2 mod q,e1 + e2)

Given y1 = gK(a) ∈ Zm
q and y2 = gK(b) ∈ Zm

q , the operation +R is defined as:

y1 +R y2 = y1 + y2 mod q

Then, we can easily verify that:

gK(s1,e1)+gK(s2,e2) mod q = s1
tK + e1

t + s2
tK + e2

t mod q =

(s1 + s2 mod q)tK +(e1 + e2)
t = gK((s1 + s2) mod q,e1 + e2)

However, the sum of two error terms, each being bounded by µ, may not be bounded

by µ. This means that the function is not (properly) homomorphic. Instead, what we

conclude is that as long as the vector e1 + e2 lies inside the domain of gK , then gK

is homomorphic. To address this issue, we will need to define a weaker notion of 2-

regularity, and a (slight) modification of the FromInj construction to provide a desired

function starting from the trapdoor function of [MP12].

4.5. Function Constructions 97

4.5.3 A suitable δ-2 regular trapdoor function

Using the injective trapdoor function of Micciancio and Peikert [MP12] and the con-

struction defined in the proof of Theorem 4.5.1, we derive a family F of collision-

resistant trapdoor one-way function, but with a weaker notion of 2-regularity, called

δ-2 regularity:

Definition 4.5.8 (δ-2 regular). A family of functions (fk)k←GenF is said to be δ-2 regular,

with δ ∈ [0,1] if:

Pr
k←GenF ,y∈Im(fk)

[| f−1
k (y)|= 2]≥ δ

Given this definition, we should note here that in Protocol 2 we need to modify the

abort case to include the possibility that the image y obtained from the measurement

does not have two preimages (something that happens with at most probability (1−δ)).

Theorem 4.5.9 (Existence of a δ-2 regular trapdoor function family). There exists a

family of functions that are δ-2 regular (with δ at least as big as a fixed constant),

trapdoor, one-way, collision resistant and quantum-safe, assuming that there is no

quantum algorithm that can efficiently solve SIVPγ for γ = poly (n).

Proof. To prove this theorem, we define a function similar to the one in the FromInj

construction, where the starting point is the function defined in [MP12]. Crucial for

the security is a choice of parameters that satisfy a number of conditions given by

Theorem 4.5.11 and proven in section A.3. The proof is then completed by providing

a choice of parameters given in Lemma 4.5.12 that satisfies all conditions as it is shown

in section A.4.

Definition 4.5.10. For a given set of parameter P chosen as in Theorem 4.5.11, we

define the following functions, that are similar to the construction FromInj, with the

difference that the key generation requires the trapdoor error to be sampled from a

smaller subdomain (α′ < α):

98 Chapter 4. QFactory against Honest-but-Curious Server

REG2.GenP(1n)

1 : (A,R)← LWE.GenG (1n)

2 : s0← Zn,1
q

3 : e0←Dm,1
α′q // α

′ < α

4 : b0 := LWE.Eval(A,(s0,e0))

5 : k := (A,b0)

6 : tk := (R,(s0,e0))

7 : return (k, tk)

REG2.EvalP((A,b0),(s,e,c))

1 : // s is a random element in Zn,1
q , c ∈ {0,1}

2 : // e is sampled uniformly and such that

3 : // each component is smaller than µ

4 : return LWE.Eval(A,(s,e))+ c ·b0

REG2.InvP((A,R,(s0,e0)),b)

1 : (s1,e1) := LWE.Inv(R,b)

2 : if ||e1− e0||∞ ≤ µ then return ⊥
3 : return ((s1,e1,0),(s1− s0 mod q,e1− e0,1))

Note, that the pairs (s,e) and (s0,e0) correspond to x and x0 of the FromInj con-

struction of subsection 4.5.1. The idea behind this construction is that the noise of

the trapdoor, e0, is sampled from a set which is small compared to the noise of the

input function. That way, when we will add the trapdoor (s0,e0) together with an input

(s,e), the total noise will still be small enough to lie in the set of possible input noise

with good probability, mimicking the homomorphic property needed in Theorem 4.5.1.

Note that the parameters need to be carefully chosen, and a trade-off between proba-

bility of success and security exists.

We first introduce the following notation: for all n,q,µ ∈ Z,µ′ ∈ R, let us define:

• k := dlog(q)e

• m̄ = 2n

• ω = nk

• m := m̄+ω = 2n+nk

• α′ = µ′√
mq

• α = mα′

• C the constant in Lemma 2.9 of [MP12] which is around 1√
2π

• B = 2 if q is a power of 2, and B =
√

5 otherwise.

4.5. Function Constructions 99

Theorem 4.5.11 (Requirements on the parameters). If for all security parameters n

(dimension of the lattice), there exist q (the modulus of LWE) and µ (the maximum

amplitude of the components of the errors) such that:

1. m is such that n = o(m) (required for the injectivity of the function (see e.g.

[Vai]))

2. 0 < α < 1

3. µ′ = O(µ/m) (required to have constant probability to have two preimages)

4. α′q≥ 2
√

n (required for the LWE to SIVP reduction)

5. n
α′ is poly (n) (representing, up to a constant factor, the approximation factor γ

in the SIVPγ problem) - for the standard hardness of the SIVP problem.

6.
√

mµ <
q

2B

√(
C · (α ·q) · (

√
2n+

√
kn+

√
n)
)2

+1︸ ︷︷ ︸
rmax

−µ′
√

m

(required for the correctness of the inversion algorithm - rmax represents the

maximum length of an error vector that one can correct using the [MP12] func-

tion11, and the last term is needed in the proof of collision resistance to ensure

injectivity even when we add the trapdoor noise, as illustrated in Figure 4.1)

then the family of functions of Definition 4.5.10 is δ-2 regular (with δ at least as big as

a fixed constant), trapdoor, one-way and collision resistant (all these properties hold

even against a quantum attacker), assuming that there is no quantum algorithm that

can efficiently solve SIV Pγ for γ = poly (n).

Proof. The proof follows by showing that the function with these constraints on the

parameters is: (i) δ-2 regular, (ii) collision resistant, (iii) one-way and (iv) trapdoor. In

section A.3 we give and prove one lemma for each of those properties. For an intuition

of the choice of parameters see also Figure 4.1.

11We chose to use the computational definition of [MP12], but this theorem can be easily extended

to other definitions of the same paper, or even to other construction of trapdoor short basis)

100 Chapter 4. QFactory against Honest-but-Curious Server

µ µ′ =
√
mα′q

√
mµ

rmax

Figure 4.1: The red circle represents the domain of

the error term from the trapdoor information, which

is being sampled from a Gaussian distribution. The

orange square is an approximation of this domain,

which must satisfy that its length is much smaller (by

a factor of at least m – the dimension of the error)

than the length of the blue square, used for the ac-

tual sampling from the domain of the error terms,

for which it is known that the trapdoor function is in-

vertible, domain represented by the green circle (in-

cluding the dashed part). The dashed part, repre-

senting the distance between the maximum domain

for which the function is invertible (green circle) and

the actual domain used for sampling (blue square) is

needed to ensure that if there is a collision (x1,x2),

then x1 = x2± x0.

4.5.4 Parameter Choices

Lemma 4.5.12 (Existence of parameters). The following set of parameters fulfills The-

orem 4.5.11.

n = λ

k = 5dlog(n)e+21

q = 2k

m̄ = 2n

ω = nk

m = m̄+ω

µ =
⌈

2mn
√

2+ k
⌉

µ′ = µ/m

B = 2

and α,α′,C are defined like in Theorem 4.5.11.

4.6. Implementation of HBC−QFactory on IBM Quantum Cloud 101

The proof is given in section A.4. As a final remark, we stress that other choices of

the parameters are possible (considering the trade-off between security and probability

of success) and we have not attempted to find an optimal set.

4.6 Implementation of HBC−QFactory on IBM Quan-

tum Cloud

Finally, in this section we provide the first proof-of-principle demonstration of a clas-

sical remote state preparation protocol. Very importantly, this implementation is not

secure against a quantum adversary. The reason is that, as our 2-regular trapdoor func-

tion needs to be hard to invert this requires the size of the function to be sufficiently

large, but at the same time we need to implement on server’s quantum computer the

unitary corresponding to this function. Therefore, given the current limited number of

available qubits, we choose a 2-regular function that can be easily inverted by brute-

force attacks. The scope of this implementation is to demonstrate the correctness and

the randomness of the HBC−QFactory protocol.

For the implementation we use the IBM Quantum Experience service and will run

all the experiments to prove the correctness and randomness of the protocol using both

the simulator “ibmq qasm simulator” (32 available qubits) and the IBM real devices:

“ibmq athens” (5 available qubits) and “ibmq melbourne” (16 available qubits).

4.6.1 Function Construction for Simulation

We will construct a specific 2-regular function (which given the limitations of the num-

ber of available qubits cannot be LWE-based or one-way). More specifically, we define

the following 2-regular family of functions fA,B : {0,1}3→ {0,1}2, where the public

key is a pair of 2 matrices A,B ∈ {0,1}3×3:

fA,B(x1x2x3) =

(⊕
i, j

Ai, jxix j

)
‖
(⊕

i, j

Bi, jxix j

)
(4.18)

where by ‖ we denote the concatenation of the 2 bits.

To construct the Key Generation Algorithm, we will proceed as follows. We first

sample uniformly at random the trapdoor information, (d0,e) ∈ {0,1}2, and we will

construct the public key (A,B) as a function of the trapdoor in the following way:

Ae+1,e+1 = A2−e,3 = B3,3 = 1,B2−e,2−e = d0, and all others elements are 0 (4.19)

102 Chapter 4. QFactory against Honest-but-Curious Server

For the Inversion Algorithm, we proceed in the following way:

Given a function image y=(y1,y2)∈{0,1}2, we compute its 2 preimages x=(x1,x2,x3)∈
{0,1}3 and x′ = (x′1,x

′
2,x
′
3) ∈ {0,1}3 as:

x2−e = 0, x1+e = y1, x3 = y2

x′2−e = 1, x′1+e = y1⊕ y2⊕d0, x′3 = y2⊕d0

(4.20)

We emphasize that by constructing f in this particular way, we have the structure

required for HBC−QFactory. Moreover, the circuit to implement the unitary U fA,B , it

is simple to derive from A and B as we just need to implement a Toffoli gate (or CNOT

if i = j) between i-th input qubit, j-th input qubit and the first output qubit whenever

Ai j = 1, and similarly with the second output qubit whenever Bi j = 1.

4.6.2 Randomness Results

We first want to indicate the randomness of the output of the HBC−QFactory protocol.

By this we mean that we want to show that the quantum output is a |+θ〉 state, where

θ is uniformly sampled from a set of 8 possible values: {0, π

8 , · · · , 7π

8 }.
The following plot indicates the distribution of θ, can be seen in Fig. 4.2a.

We run the protocol 1000 number of times, where the distribution is taken over the

randomness of the 2 measurements: y (image register) and b (the final measurement -

the preimage register) and over the uniform distribution of the measurement angles α.

The same protocol, run 5000 times shows an even closer to uniform distribution of θ,

as seen in Fig. 4.2b.

0 1 2 3 4 5 6 7
0

50

100

150

Angle (in multiple of π/4)

N
u
m
b
er

of
sa
m
p
le
s

Illustration of the randomness of the output angle

(a) 1000 runs of HBC−QFactory using

function fA,B described in Section 4.6.1. Plot

depicts resulting output distribution.

0 1 2 3 4 5 6 7
0

200

400

600

Angle (in multiple of π/4)

N
u
m
b
er

of
sa
m
p
le
s

Illustration of the randomness of the output angle

(b) 5000 runs of HBC−QFactory

4.6. Implementation of HBC−QFactory on IBM Quantum Cloud 103

4.6.3 Correctness Results

For the correctness of the protocol we want to show 2-fold:

• The Server always obtains a |+θ〉 type of state on his side;

• The Client, by knowing the preimages of each image y, can always efficiently

compute this θ;

Additionally, we will actually run 2 different types of experiments: using the sim-

ulator and a real quantum device. We proceed in the following two different manners.

When running the simulator we check that the state description the Client obtained

and the quantum state resulted on the Server’s side correspond to the same value of θ,

in the following manner: For Client we run the algorithm described in HBC−QFactory

and we compute the value θ. And now to check that Server obtained exactly the state

|+θ〉, the Simulator allows us to get the description of the corresponding final quantum

output state (as a vector), and we are therefore able to check that it matches perfectly.

Therefore, the first correctness evidence is showed in Fig. 4.3, which depicts the values

of θA obtained by Client and the the values of θB , where |+θB〉 is obtained by Server.

As observed θA = θB for all the runs of our protocol.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

Index of the run

A
n
gl
e
o
b
ta
in
ed

b
y
..
.

Illustration of the correctness of the protocol when run on the simulator

Alice Bob

Figure 4.3: Values of θA (written as multiples of π

4) obtained by Client and the corre-

sponding θB obtained by Server for 29 different runs of HBC−QFactory on the simu-

lator, illustrating the correctness of the protocol.

For the run on the actual quantum device, Client obtains the value of θ in the same

way. However, we are no longer able to get the vector description of the quantum state

of Server, because now it corresponds to an actual physical qubit. Now, the only way

to see what state Server has on his side is to perform a final measurement on the output

qubit of the Server, which we will denote by |ψout〉.

104 Chapter 4. QFactory against Honest-but-Curious Server

One way would be to measure the output state |ψout〉 in the {|+θ〉 , |−θ〉} basis, where

θ would be the angle obtained by Client through her classical computations, and in this

way for correctness we should have always outcome 1 for this measurement. Unfortu-

nately, this is not possible, because the IBM Quantum Experience framework does not

allow for intermediate measurements. Therefore, the way we will proceed for this is

as follows. At the beginning of the protocol we pick a random θr and then we measure

the final state of the Server |ψout〉 in the basis {|+θr〉 , |−θr〉}. Then, once we receive

all the measurement outcomes (preimage, image registers and |ψout〉) we first compute

(using Client’s algorithm) the actual θ and then we check:

• If θ = θr, we should obtain measurement outcome 0 with probability 1;

• If θ = θr±π we should obtain 1 with probability 1;

• if θ = θr± π

2 we should get 1 with probability 1
2 ;

• if θ = θr± π

4 we should get 0 with probability 1
2 +

√
2

4 ;

• In general the probability of the outcome 0 is equal to: p(0) = 1
2 +

cos(θ−θr)
2

Therefore, in Fig.4.4a, we can see the expected probability of the measurement out-

come to be 0 - which corresponds to the “ideal” quantum computer case. Then in

Fig.4.4b we have the actual probability of outcome 0, as a result of running it on the

“noisy” real quantum device - which corresponds to the real run.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Angle θa − θr (in multiple of π/4)

P
ro
b
ab

il
it
y
of

ou
tc
o
m
e
0

Expected Prob (without noise) 1
2 + cos(θ−θr)

2

(a) Ideal Case: θ is the honest angle ex-

pected by Client, θr is the random angle used

to measure the state obtained by Server.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Angle θa − θr (in multiple of π/4)

P
ro
b
ab

il
it
y
of

ou
tc
om

e
0

Probabilities obtained on Athens computer, 10240 runs

(b) Real Case: θ is the honest angle expected

by Client, and θr is the random angle used to

measure the state obtained by Server.

Chapter 5

QFactory against Malicious Server

In chapter 4, we described the primitive of classical-client remote state preparation as

a method to enable fully classical parties to participate in secure quantum computation

and communications protocols at the cost of relying on post-quantum computational

security. The idea is to replace the quantum channel (used in many different proto-

cols implementing blind or verifiable quantum computation) with a module running

between a classical client and a quantum server. To achieve this, a classical party (the

Client) is instructing a quantum party (the Server) to generate a qubit on the Server’s

side that is random and unknown to the Server, but known to the Client. Such a task can

be accomplished under computational assumptions, but implausible to achieve with

information-theoretic security as indicated by our results in chapter 3. In the previous

chapter we showed how a classical client could implement this module (referred to as

HBC−QFactory) in order to achieve secure delegated universal quantum computing,

but potentially also, other functionalities such as multi-party quantum computation.

While the HBC−QFactory Protocol guaranteed the secure preparation of {|+θ〉}θ∈{0,··· , 7π

4 }
,

in this contribution, we define a basic primitive consisting of BB84 states.

But more importantly, the security proof of HBC−QFactory was shown in a weak

Honest-but-Curious model. In this work we extend the security proof, by giving a

classical-client remote state preparation protocol that is secure against the strongest

possible adversary (an arbitrarily deviating malicious Server). All our proofs are made

using reductions to hardness assumptions (namely the Learning-With-Errors problem),

and the simplicity of the main protocol suggests that an extension to a composable

framework such as Constructive Cryptography [MR11] should be possible to analyze.

Following the modularity of HBC−QFactory we present in this chapter a universal,

yet minimal functionality module that is fully secure, and can be used as a black box in

105

106 Chapter 5. QFactory against Malicious Server

other Client-Server applications to replace the need for a reliable long-distance quan-

tum communication network. The price one has to pay is a reduction from information-

theoretic security (achievable using quantum communication) to post-quantum com-

putational security via our modules.

In Chapter 4 we defined the primitive of classical-client remote state preparation

(CC−RSP) that can replace the need for quantum channel between parties in certain

quantum communication protocols, with the only trade-off being that the protocols

would become computationally secure (against quantum adversaries). However, the

proof of security was done in a weak model called “honest-but-curious”.

In this chapter our contributions can be summarized as follows:

1. We present a new protocol called Malicious 4-states QFactory in section 5.2

that implements the CC−RSP primitive for the generation of the quantum states

{|0〉 , |1〉 , |+〉 , |−〉} (known as the BB84 states), given 2 cryptographic functions:

1) a trapdoor one-way function that is quantum-safe, two-regular and collision

resistant and 2) a homomorphic, hardcore predicate. The novelty of this new pro-

tocol reflects in both simplicity of construction and proof, as well as enhanced

security, namely the protocol is secure against any arbitrarily deviating adver-

sary. The target output qubit set is one of the four BB84 states, states that form

the core requirement of any quantum communication protocol.

Then, in subsection 5.2.3, we present the security of the Malicious 4-states QFac-

tory against any fully malicious server, by proving that the basis of the generated

qubits are completely hidden from any adversary, using the properties of the two

functions, the security being based on the hardness of the Learning-With-Errors

problem.

2. While the above-mentioned results do not depend on the specific function used,

the existence of such functions (with all desired properties) makes the function-

ality a practical primitive that can be employed as described in this paper. In

section 5.3, we describe how to construct the two-regular, collision resistant,

trapdoor one-way family of functions and the homomorphic, hardcore predicate.

Furthermore, we prove using reductions in subsection 5.3.2 that the resulting

functions maintain all the required properties.

3. In order to demonstrate the modular construction of the basic Malicious 4-states

QFactory, we also present in section 5.4, a secure and efficient extension to the

5.1. Overview of Protocols and Proof Techniques 107

functionality of generating 8 states, called the Malicious 8-states QFactory pro-

tocol (where the security refers to the fact that the basis of the new state is com-

pletely hidden). The set of output states
{
|+θ〉 |θ ∈ {0, π

4 , ...,
7π

4 }
}

(no longer

within the Clifford group) are used in various protocols, including protocols for

verifiable blind quantum computation.

4. While the protocol introduced in section 5.2 requires (for the security proof)

a family of functions having 2 preimages with probability super-polynomially

close to 1, we also define in section 5.5 a protocol named Malicious-Abort 4-

states QFactory, that is secure when the functions have 2 preimages with only a

constant (greater than 1/2) probability. Indeed, even if the parameters used for

the first category of functions are implicitly used in some protocols [Mah18],

the second category of functions is strictly more secure and more standard in

the cryptographic literature [Bra18]. The Malicious-Abort 4-states QFactory

protocol is proven secure also for this second category of functions, assuming

that the classical Yao’s XOR lemma also applies for one-round protocols (with

classical messages) against quantum adversaries.

5.1 Overview of Protocols and Proof Techniques

The Protocol. The general idea is that a classical client communicates with a quantum

server instructing him to perform certain actions. By the end of the interaction, the

client obtains a random value B = B1B2 ∈ {00,01,10,11}, while the server (if he fol-

lowed the protocol) ends up with the state HB1XB2 |0〉, i.e. with one of the BB84 states.

Moreover, the server, irrespective of whether he followed the protocol or how he de-

viated, cannot guess the value of the (basis) bit B1 any better than making a random

guess (more details in subsection 5.2.3).

This module is sufficient to perform (either directly or with simple extensions) mul-

tiple secure computation protocols including blind quantum computation. To achieve

such a task, we require three central elements. Firstly, the quantum operations per-

formed by the server should not be repeatable, in order to avoid letting the (adversar-

ial) server run multiple times these operations and obtain multiple copies of the same

output state. That would (obviously) compromise the security since direct tomography

of a single qubit is straightforward. This can be achieved if the protocol includes a

measurement of many qubits, where the probability of getting twice the same outcome

108 Chapter 5. QFactory against Malicious Server

would be exponentially small. The second element is that the server should not be able

to efficiently classically simulate the quantum computation that he needs to perform.

This is to stop the server from running everything classically and obtaining the explicit

classical description of the output state. This is achieved using techniques from post-

quantum cryptography and specifically the Learning-With-Errors problem. Lastly, the

computation has to be easy to perform for the client, since she needs to know the output

state. This asymmetry (easy for client and hard for server) can be achieved in the com-

putational setting, where the client has some extra trapdoor information. The protocol

requires the following cryptographic primitives defined formally in Definition 5.2.1:

• F : a family of 2-regular, collision resistant, trapdoor one-way functions (that

can be constructed from a family of injective, homomorphic, trapdoor one-way

functions G);

• d0(tk): a hardcore predicate of the index of the functions in F . More precisely,

every function fk ∈ F has an associated hardcore bit d0 that is hard to guess

given only k, but easy to compute given the trapdoor tk;

• h: a predicate such that h(x)⊕h(x′) = d0 for any x,x′ with fk(x) = fk(x′)

Given these functions, the protocol steps are as follows.

The client sends the descriptions of the functions fk (from the family F) and h. The

server’s actions are described by the circuit given in Figure 5.1 (see section 5.2), clas-

sically instructed by the client: prepares one register at ⊗nH |0〉 and second register at

|0〉m; then applies U fk using the first register as control and the second as target; mea-

sures the second register in the computational basis, obtains the outcome y. Through

these steps server produces a superposition of the 2 preimages x and x′ of y for the

function fk, i.e. |x〉+ |x′〉. Next, server is instructed to apply the unitary corresponding

to function h (targeting a new qubit |0〉) and to measure all but this new qubit in the

Hadamard basis (the measurement outcomes will be denoted as b), which will be the

output of the protocol. This last step intuitively magnifies the randomness of all the

qubits to this final output qubit.

Essentially, this differs from the construction of HBC−QFactory in 2 points: the use

of the function h that can be thought of as a privacy amplifier and secondly, the last

set of measurement is performed in the Hadamard basis (as opposed to |±α〉 basis, for

random α chosen by client in the HBC−QFactory case).

5.1. Overview of Protocols and Proof Techniques 109

Then, it can be proven that, in an honest run, this output state is:

|out〉= HB1XB2 |0〉 , where

B1 = h(x)⊕h(x′) = d0(tk) =: d0

B2 = (d0 · 〈b , (x⊕ x′)〉)⊕h(x)h(x′)

where x⊕ x′ denotes the bitwise xor of x and x′ and 〈α , β〉 denotes the inner product

between the strings α and β: 〈α , β〉= ∑i αi ·βi.

Therefore, the client can efficiently obtain the description of the output state, namely

B1 and B2 by inverting y, to obtain the 2 preimages x and x′ using her secret trapdoor

information tk.

Security. Informally speaking the desired security property of the module is to prove

that the server cannot guess better than randomly the basis bit B1 of what the client

has, no matter how the server deviates or what answers he returns. In other words, we

prove that given that the client chooses k randomly, then no matter which messages y

and b the server returns, he cannot determine B1.

Specifically, using the properties of the 2 cryptographic functions, we show that the

basis of the output state is independent of the messages sent by server and essentially,

the basis is fixed by the client at the beginning of the protocol.

Here it is important to emphasize that the simplicity of our modular construction

allow us to make a direct reduction from the above security property to the crypto-

graphic assumptions of our primitives functions F , d0 and h. Indeed, from the ex-

pression above, we can see that at the end of the interaction the client has recorded as

the basis bit the expression B1 = h(x)⊕ h(x′) = d0(tk), which is a hardcore bit and is

therefore hard to guess given only k.

The Primitive Construction. In order to use this module in practise, it is crucial to

have functions that satisfy our cryptographic requirements, and explore the choices

of parameters that ensure that all these properties are jointly satisfied. Building on

the function construction from chapter 4 we gave specific choices that achieve these

properties. The starting point is the injective, trapdoor one-way family of functions Ḡ
from [MP12], where the hardness of the function is derived from the Learning-With-

Errors problem.

More precisely, to sample a function fk, we first sample a matrix K ∈ Zm×n
q using

the construction of [MP12] (that provides an injective and trapdoor function), a uni-

110 Chapter 5. QFactory against Malicious Server

form vector s0 ∈ Zn
q, an error e0 ∈ Zm

q according to a small Gaussian1 and a random bit

d0, and we compute

y0 = Ks0 + e0 +d0 ·
(

q
2 0 . . . 0

)T
mod q (5.1)

The hardcore property of d0 will directly come from the fact that under LWE assump-

tion, no adversary can distinguish a LWE instance Ks0 + e0 from a random vector, so

it is not possible to know if we added or not a constant vector. The function fK,y0 will

then be defined as follow:

fK,y0(s,e,c,d) = Ks+ e+ c · y0 +d ·
(

q
2 0 . . . 0

)T
mod q (5.2)

Note that c and d are bits, and the error e is chosen in a bigger space2 than e0 to ensure

that the function fK,y0 has two preimages with good probability. Moreover, if we define

h(s,e,c,d) = d, it is easy to see that for all preimages x,x′ with f (x) = f (x′), we have:

h(x)⊕h(x′) = d0

The Extended Protocol. In order to use the above protocol for applications such

as blind quantum computing [BFK09], we need to be able to produce states taken

from the (extended) set of eight states {|+θ〉 ,θ ∈ {0, π

4 , ...,
7π

4 }}. Importantly, we still

need to ensure that the bits corresponding to the basis of each qubits produced, remain

hidden. Here we prove how given two states produced by the basic protocol described

previously, which we denote as |in1〉 and |in2〉, we can obtain a single state from the

8-states set, denoted |out〉, ensuring that no information about the bits of the basis of

|out〉 is leaked3.

To achieve this, we need to find an operation (see Figure 5.2 in Section 5.4.1),

that in the honest case maps the indices of the inputs to those of the output using a

map that satisfies certain conditions. This relation (inputs/output) should be such that

learning anything about the basis of the output state implies learning non-negligible

information for the basis of (one) input. This directly means, that any computationally

bounded adversary that can break the basis blindness of the output, can use this to

construct an attack that would also break the basis blindness of at least one of the

inputs, i.e. he would break the security guarantees of the basic module that was proven

earlier.
1but big enough to make sure the function is secure
2but small enough to make sure the partial functions f (·, ·,c, ·) are still injective
3Note that one of the input states is exactly the output of the basic module, while the second comes

from a slightly modified version (essentially rotated in the XY-plane of the Bloch sphere).

5.1. Overview of Protocols and Proof Techniques 111

Other Properties. To further improve the practicality of the black box call of the

QFactory we also present the security against abort scenario that could be achieved

based on a quantum version of Yao’s XOR Lemma.

Before, describing the main protocol, we first need to introduce some notation used

in the remaining of the chapter.

5.1.1 Notations

For a state |+θ〉= 1√
2
(|0〉+ eiθ |1〉), where θ ∈ {0, π

4 , ...,
7π

4 }, we use the notation:

θ =
π

4
·L

Additionally, as L is a 3-bit string, we write it as L= L1L2L3, where L1,L2,L3 represent

the bits of L.

As a result when we refer to the basis of the |+θ〉 state, it is equivalent to referring to

the last 2 bits of L, thus saying that nothing is leaked about the basis of this state, is

equivalent to saying nothing is leaked about the bits L2 and L3.

For a set of 4 quantum states {|0〉 , |1〉 , |+〉 , |−〉}, we denote the index of each state

using 2 bits: B1,B2, with B1 = 0 if and only if the state is |0〉 or |1〉, and B2 = 0 if and

only if the state is |0〉 or |+〉, i.e. HB1XB2 |0〉. We will use interchangeably the Dirac

notation and the basis/value notation.

In the following sections, we will consider polynomially bounded malicious ad-

versaries, usually denoted by A . The honest clients will be denoted by π, and both

honest parties and adversaries can output some values, that could eventually be used

in other protocols. To denote that two parties πA and A interact in a protocol, and

that πA outputs a while A outputs b, we write (a,b)← (πA‖πB) (we may forget the

left hand side, or replace variables with underscores “ ” if it is not relevant). We can

also refer to the values of the classical messages sent between the two parties using:

Pr [a = accept | (πA‖A)], and this probability is implicitly over the internal random-

ness of πA and A . To specify a two-party protocol, it suffices to specify the two honest

parties (πA,πB). Moreover, if the protocol consists of a single round of communica-

tion, we will write y←A(x) with x the first message sent to A , and y the messages sent

from A . Finally, a value with a tilde, such as d̃, represents a guess from an adversary.

We are considering protocols secure against quantum adversaries, so we assume

that all the properties of our functions hold against a general Quantum Polynomial

112 Chapter 5. QFactory against Malicious Server

Time (QPT) adversary. We will denote D the domain of the functions, while D(n) is

the subset of strings of length n.

5.2 The Malicious 4-states QFactory Protocol

5.2.1 Requirements and protocol

The Malicious 4-states QFactory Protocol described in Protocol 3 uses a family of

cryptographic functions F and a function h having the following properties (see sec-

tion 5.3 to see how this family of functions can be constructed from a family of injec-

tive, trapdoor and (pseudo) homomorphic functions):

Definition 5.2.1 (2-regular homomorphic-hardcore family). A family F = { fk : D ′→
R }k∈K is said to be a 2-regular homomorphic-hardcore family with respect to hk :

D ′→{0,1} and d0 : T →{0,1} (T is the set of trapdoors tk) if:

• it is 2-regular, collision resistant and trapdoor;

• for all k, hk can be described by a polynomial classical circuit;

• d0 is a hardcore predicate for Pub, i.e. given a random index k = PubF (tk), it is

impossible to obtain d0 := d0(tk) with probability better than 1/2+negl (n), i.e.

for any QPT adversary A:

Pr [A(k) = d0(tk) | (k, tk)← GenF]≤ 1
2
+negl (n) (5.3)

• for all k ∈K and x,x′ ∈D ′ such that fk(x) = fk(x′), we have:

hk(x)⊕hk(x′) = d0 (5.4)

Note that in our specific construction h does not depend on k, so we might omit the

subscript k, and just use h, for simplicity.

We also extend this definition to δ-2-regular homomorphic-hardcore family, when the

function is δ-2-regular, i.e. 2-regular with probability δ (see Definition B.4.2 for a

formal definition).

Then the protocol can be described as follows:

Protocol 3 Malicious 4-states QFactory Protocol: classical delegation of BB84 states
Requirements:

Public: A δ-2-regular homomorphic-hardcore family F with respect to {hk} and d0, as de-

scribed above. For simplicity, we will represent the sets D ′ (respectively R) using n (respec-

tively m) bits strings: D ′ = {0,1}n, R = {0,1}m. In this protocol, we require δ to be negligibly

5.2. The Malicious 4-states QFactory Protocol 113

close to 1, see section 5.5 for an extension to a constant δ.

Stage 1: Preimages superposition

– Client: runs the algorithm (k, tk)← GenF (1n).

– Client: instructs Server to prepare one register at ⊗nH |0〉 and a register initiated at |0〉m.

– Client: sends k to Server and the Server applies U fk using the first register as control and the

second as target.

– Server: measures the second register in the computational basis, obtains the outcome y. Here,

in an honest run, the Server would have a state (|x〉+ |x′〉)⊗|y〉 with fk(x) = fk(x′) = y and

y ∈ Im fk.

Stage 2: Output preparation

– Server: applies Uhk on the preimage register |x〉+ |x′〉 as control and another qubit initiated at

|0〉 as target. Then, measures all the qubits, but the target in the { 1√
2
(|0〉± |1〉)} basis, obtain-

ing the outcome b = (b1, ...,bn). Now, the Server returns both y and b to the Client.

– Client: using the trapdoor tk computes the preimages of y:

• if y does not have exactly two preimages x,x′ (the server is cheating with overwhelming

probability), defines B1 = d0(tk), and chooses B2 ∈ {0,1} uniformly at random

• if y has exactly two preimages x,x′, defines B1 = hk(x)⊕ hk(x′) = d0(tk), and B2 as

defined in Theorem 5.2.2.

Output: If the protocol is run honestly, the state that the Server has produced is (with

overwhelming probability) the BB84 state |out〉 = HB1XB2 |0〉, having the basis B1 = hk(x)⊕
hk(x′) = d0 (see Theorem 5.2.2 for the exact value of B2). The output of the Server is |out〉,
and the output of the Client is (B1,B2).

5.2.2 Correctness of Malicious 4-states QFactory

In an honest run, the description of the output state of the protocol depends on mea-

surement results y ∈ Im fk and b, but also on the 2 preimages x and x′ of y.

The output state of Malicious 4-states QFactory belongs to the set of states

{|0〉 , |1〉 , |+〉 , |−〉} and its exact description is the following:

Theorem 5.2.2. In an honest run, with overwhelming probability the output state |out〉
of the Malicious 4-states QFactory Protocol (Protocol 3) is a BB84 state whose basis

is B1 = hk(x)⊕hk(x′) = d0, and:

• if d0 = 0, then the state is |hk(x)〉 (computational basis, also equal to |hk(x′)〉)

• if d0 = 1, then if ∑i bi · (xi⊕x′i) = 0 mod 2, the state is |+〉, otherwise the state is

|−〉 (Hadamard basis).

114 Chapter 5. QFactory against Malicious Server

i.e.

|out〉= HB1XB2 |0〉 (5.5)

with

B1 = hk(x)⊕hk(x′) = d0 (5.6)

B2 = (d0 · 〈b , (x⊕ x′)〉)⊕h(x)h(x′) (5.7)

(the inner product is taken modulo 2, and x⊕ x′ is a bitwise xor)

Proof. The operations performed by the quantum server, can be observed in Fig. 5.1:

|0〉

Ũh

|out〉

|0〉 H

U fk

MX ⇒ b

|0〉 H

· · · · · ·
|0〉 H

|0〉 H

|0〉
MZ ⇒ y· · ·

|0〉

Figure 5.1: The circuit computed by the Server

|0〉⊗ |0n〉⊗ |0m〉 I2⊗H⊗n⊗I2
⊗m

−−−−−−−−→ |0〉⊗ ∑
x∈D
|x〉⊗ |0m〉

I2⊗U fk−−−−→

|0〉⊗ ∑
x∈D
|x〉⊗ | fk(x)〉

fk2-regular−−−−−−→ |0〉⊗ ∑
y∈Im(fk)

(|x〉+
∣∣x′〉)⊗|y〉 I2⊗I2

⊗n⊗M⊗m
Z−−−−−−−−→

|0〉⊗ (|x〉+
∣∣x′〉)⊗|y〉 Ũh⊗I2

⊗m

−−−−−→ (|h(x)〉⊗ |x〉+
∣∣h(x′)〉⊗ ∣∣x′〉)⊗|y〉 I2⊗M⊗n

X ⊗I2
⊗m

−−−−−−−−→
|out〉⊗ |b1〉 ...⊗|bn〉⊗ |y〉 ⇒ |out〉= Hd0X (d0·〈b·(x⊕x′)〉)⊕h(x)h(x′) |0〉

where Ũh is a “swapped” Uh, acting on the first register as target and input register as

control: |0〉 |x〉 Ũh−→ |h(x)〉 |x〉.

5.2. The Malicious 4-states QFactory Protocol 115

The server initially prepares the state |0n〉⊗|0m〉, where we will call the first regis-

ter the preimage register, and the second one the image register.

After applying U fk we obtain the state ∑x∈D |x〉 | fk(x)〉. Using the 2-regularity property

of fk, after measuring the second register (in the computational basis) and obtaining the

measurement result y ∈ Im(fk), the state can be expressed as (|x〉+ |x′〉)⊗|y〉, where x

and x′ are the 2 unique preimages of y. By omitting the image register and by initializ-

ing another qubit in the |0〉 state and using the above notation, the input to the unitary

Ũh can be written as:

(|x〉+
∣∣x′〉)⊗|0〉 (5.8)

Ũh is basically Uh acting on the input and the new register, and after we apply it, we

obtain the state:

(|x〉⊗ |h(x)〉+
∣∣x′〉⊗ ∣∣h(x′)〉 (5.9)

As a final step, we measure all but the last qubit of this state in the { 1√
2
(|0〉± |1〉)}

basis (obtaining the measurement result string b), which is equivalent to applying H⊗n

on the input register, and then measuring it in the computational basis. Thus, after

applying the Hadamard gates (which is a Fourier transformation in Z2), we get:
2n−1

∑
b=1

(−1)〈b,x〉 |b〉⊗ |h(x)〉+
2n−1

∑
b=1

(−1)〈b,x
′〉 |b〉⊗

∣∣h(x′)〉
After obtaining the measurement result b, the remaining state becomes (up to a global

phase):

|out〉= (−1)〈b,x〉 |h(x)〉+(−1)〈b,x
′〉 ∣∣h(x′)〉

= |h(x)〉+(−1)〈b,(x⊕x′)〉 ∣∣h(x′)〉 (5.10)

Therefore, we have:

• if h(x) = h(x′) (i.e. d0 = h(x)⊕h(x′) = 0, using Equation 5.4), we have |out〉=
|h(x)〉= Hd0Xh(x) |0〉

• if h(x) 6= h(x′) (i.e. d0 = h(x)⊕h(x′) = 1) we have |out〉= |+〉 iff 〈b,(x⊕x′)〉=
0 mod 2, and |−〉 otherwise. Thus, |out〉= Hd0X 〈b,(x⊕x′)〉 |0〉

Hence, |out〉= HB1XB2 with B1 = d0 = h(x)⊕h(x′), and

B2 = (1⊕h(x)⊕h(x′))h(x)+(h(x)⊕h(x′)) · 〈b,(x⊕ x′)〉 mod 2

= h(x)+h(x)2 +h(x)h(x′)+d0 · 〈b,(x⊕ x′)〉 mod 2

= h(x)+h(x)+h(x)h(x′)+d0 · 〈b,(x⊕ x′)〉 mod 2

= h(x)h(x′)⊕d0 · 〈b,(x⊕ x′)〉 mod 2

116 Chapter 5. QFactory against Malicious Server

It can be noticed that, in an honest run of the protocol, using y and the trapdoor

information of the function fk, the Client obtains x and x′ and thus can efficiently

determine what is the output state that the Server has prepared.

In the next section, we prove that no malicious adversary can distinguish between the 2

possible bases {|0〉, |1〉} and {|+〉, |−〉} of the output qubit, or equivalently distinguish

whether B1 is 0 or 1.

5.2.3 Security of Malicious 4-states QFactory

In any run of the protocol, honest or malicious, the state that the client believes that the

server has is given by Theorem 5.2.2. Therefore, the task that a malicious server wants

to achieve, is to be able to guess, as good as he can, the description of the output state

that the client (based on the public communication) thinks the server has produced. In

particular, in our case, the server needs to guess the bit B1 (corresponding to the basis)

of the (honest) output state.

Note that we want to make sure that the server cannot guess the basis bit B1

(for most applications ([BFK09, FK17]) basis blindness is sufficient as indicated in

[DK16]), and we do not care about the value bit B2 simply because it is not possible

to say that B2 cannot be guessed with probability better than random. Indeed, even

in the honest case, or in the “perfect” case with a quantum channel, the server can al-

ways measure the qubit |out〉 he has to extract the value bit (for example by measuring

it in a random basis (computational or Hadamard) and outputting the outcome of the

measurement, he will succeed with probability 1
2 · 1

2 +
1
2 ·1 = 3

4 > 1/2). Additionally,

partial blindness of B2 is implicit in our work, since learning B2 leads to leaking par-

tial information about B1, in the case that the server possesses the honest output state

HB1XB2 |0〉. Optimal bounds for B2’s leakage are not known if the server is malicious

and without verification, is non-trivial and will be studied as a future work.

Definition 5.2.3 (4 states basis blindness). We say that a protocol (πA,πB) achieves

basis-blindness with respect to an ideal list of 4 states

S = {SB1,B2}(B1,B2)∈{0,1}2 if:

• S is the set of states that the protocol outputs, i.e.:

Pr [|φ〉= SB1B2 ∈ S | ((B1,B2), |φ〉)← (πA‖πB)]≥ 1−negl (n)

5.3. Function Implementation 117

• No information is leaked about the index bit B1 of the output state of the protocol,

i.e for all QPT adversary A:

Pr
[
B1 = B̃1 | ((B1,B2), B̃1)← (πA‖A)

]
≤ 1/2+negl (n)

Theorem 5.2.4 (Malicious 4-states QFactory is secure). Protocol 3 satisfies 4-states

basis blindness with respect to the ideal list of states

S = {HB1XB2 |0〉}B1,B2 = {|0〉 , |1〉 , |+〉 , |−〉}.

Proof. The advantage of our construction is that this theorem is now a direct applica-

tion of the definition of the family F (Definition 5.2.1). Indeed, let us suppose that

there exists a QPT adversary A such that:

Pr
[
B1 = B̃1 | ((B1,B2), B̃1)← (πA‖A)

]
≥ 1/2+

1
poly (n)

where πA is the honest Client and A is the malicious Server in Protocol 3.

From Theorem 5.2.2, we notice that the value of B1 is always equal to d0(tk). More-

over, our adversary is a one-round adversary, so we can rewrite the previous equation

as:

Pr [d0(tk) = A(k) | (k, tk)← GenF]≥ 1/2+
1

poly (n)
But d0 is a hardcore predicate, so this contradicts Equation 5.3. So no QPT adversary

A can guess the basis B1 with probability better than 1/2+negl (n).

Remark 5.2.5. In the run of the Malicious 4-states QFactory protocol, the adversary

(server) has no access to the abort/accept bit, specifying whether the Client wants to

abort the protocol after receiving the image y from the server (the abort occurs when y

does not have exactly two preimages). So this is why this first protocol is correct with

overwhelming probability only when the function fk is 2-regular with overwhelming

probability (δ > 1− negl (n)). See section 5.5 to see how we address this issue for

constant δ.

5.3 Function Implementation

5.3.1 Generic construction of 2-regular homomorphic-hardcore

To complete the construction of Malicious 4-states QFactory, we must find functions

F , h, and d0 satisfying the properties described in Definition 5.2.1. We first explain

118 Chapter 5. QFactory against Malicious Server

a general method to construct a 2-regular function from an injective homomorphic

function (the generalisation to δ-2-regularity from pseudo-homomorphic functions is

treated in section B.4), and we give in the next section a candidate that achieves the two

other properties required in our definition (homomorphic-hardcore predicate) whose

security is based on the cryptographic problem LWE.

Lemma 5.3.1. It is possible to construct a family of functions F : { fk : D×{0,1} →
R }, hk and d0 that are a 2-regular homomorphic-hardcore family (Definition 5.2.1)

from a family of functions G = {gk′ : D→ R }k′ that is:

• injective

• trapdoor

• homomorphic 4

and such that for every gk′ there exists a homomorphic hardcore predicate h′k′ .
5

Proof. Because G is homomorphic, there exist 2 operations ”+D ” acting on D and

”+R ” acting on R such that:

gk′(z1 +D z2) = gk′(z1)+R gk′(z2) ∀k′ ∀z1,z2 ∈D (5.11)

The hardcore predicate h′ : D→{0,1} is homomorphic, hence we have:

h′(z1)⊕h′(z2) = h′(z2 +D z1) ∀z1,z2 ∈D (5.12)

And because we are working modulo 2 it is easy to see that:

h′(z1)⊕h′(z2) = h′(z2−D z1) ∀z1,z2 ∈D, (5.13)

where ”−D” is the inverse of the operation ”+D”.

Then, the functions F , hk, d0 are constructed as follow. First, to generate a private

key, we generate a private key of G , and we pick a random element z0 from D:

4We only require G to be homomorphic with good probability for a single application of the oper-

ation +D and this would result in F being 2-regular with good probability, as proven in section B.4.
5We will omit the subscript k′ and simply denote the hardcore predicate by h′ - as we will see in the

next section the instantiation of h is independent of k′.

5.3. Function Implementation 119

GenF (1n)

1 : (k′, t ′k′)←$ GenG (1n)

2 : z0←$ D

3 : y0← gk′(z0)

4 : tk = (t ′k′ ,z0)

5 : k = (k′,y0)

6 : return (k, tk)

And then we define fk : D×{0,1}→ R as:

fk(z,c) = gk′(z)+R c · y0

We also define hk : D×{0,1}→ R as:

hk(z,c) = h(z)

and d0 : T →{0,1} (where T is the sets of trapdoors tk) as

d0(tk) = h(z0)

Now we need to check the properties of F , hk and d0 from Definition 5.2.1:

• The 2-regularity of F comes directly from the injectivity of G : for any y∈ Im fk,

we have one preimage (g−1
k′ (y),0) and one preimage (g−1

k′ (y)− z0,1). The past

two formula also show the trapdoor property using the fact that G is a trapdoor

family (more details can be found in Theorem 4.5.1).

• The collision-resistant property comes from the homomorphicity , injectivity,

and one-wayness of G : if we find a collision, we can write a reduction that

breaks the one-wayness of G . Indeed by injectivity two different preimages

have a different c, i.e. fk(z,0) = fk(z′,1). Hence, gk′(z) = gk′(z′)+ gk′(z0), i.e.

z0 = z− z′. So it means that from a collision we can find z0, which contradicts

the one-wayness of gk′ .

• hk is equal to h, so it can be computed efficiently.

• d0(tk) = h(z0), and h is a hardcore predicate, so d0 is also hardcore predicate

120 Chapter 5. QFactory against Malicious Server

• The last condition is respected, because if fk(z,0) = fk(z′,1), we have:

hk(z,0)⊕hk(z′,1) = h(z)⊕h(z′)

= h(z−R z′)

= h(z0)

= d0(tk) = d0

5.3.2 Construction of δ-2-regular homomorphic-hardcore family F

We will now give an explicit implementation of a family G that is injective, trapdoor,

(pseudo) homomorphic with a homomorphic-hardcore predicate d0, and then we will

rely on a construction similar to Lemma 5.3.1 to produce a family F , h, and d0 with

the properties described in Definition 5.2.1 needed by Protocol 3 and Protocol 5. We

notice that we defined in the previous chapter a similar construction, but without the

additional homomorphic-hardcore property.

The starting point is the injective, trapdoor one-way family of functions Ḡ = {ḡK :

Zn
q×Em→ Zm

q }K
6 from [MP12] (where E defines the set of integers bounded in abso-

lute value by some “big-enough” value µ which will be defined later, and additions are

matrix additions modulo q, where q is an even integer).

ḡK(s,e) = Ks+ e

Then, to sample a function from the family G = {gk′ : Zn
q×Em×{0,1} → Zm

q },
which will be used for construction F as in Lemma 5.3.1, we first build the public key

matrix K ∈Zm×n
q along with the trapdoor matrix R using the construction from [MP12]

and additionally, we extend the domain with an extra input bit d. Now, after denoting

the constant vector v =
(

q
2 0 . . . 0

)T
, we define gk′ as:

gk′(s,e,d) = Ks+ e+d ·


q
2

0
...

0

= Ks+ e+d · v

where k′ := K and t ′k′ := R

(5.14)

6The bar on top of Ḡ denotes the version where there is not yet the hardcore bit d0

5.3. Function Implementation 121

Finally, to sample a function from the family F = { fk :Zn
q×Em×{0,1}×{0,1}→

Zm
q }, we construct matrices K and R as before, and will sample a uniform random

vector s0 ∈ Zn
q, a random small error vector e0 ∈ Zm

q sampled according to a “small-

enough” Gaussian distribution Dm
α′q on integers and a (uniform) random bit d0 ∈ {0,1}.

Now by defining:

y0 := Ks0 + e0 +d0 · v

the trapdoor is set to tk := (R,s0,e0,d0), and the public index is k := (K,y0).

We can already note at this step that d0 is a hardcore-predicate:

Lemma 5.3.2. The function d0(tk) := d0 is a hardcore predicate of k, i.e. for all QPT

adversaries A , we have:

Pr[A(k) = d0(tk)]≤
1
2
+negl (n)

The proof can be found in subsection B.1.1.

Now, we can define fk : Zn
q×Em×{0,1}×{0,1}→ Zm

q as follows:

fk(s,e,c,d) = Ks+ e+ c · y0 +d · v

and h : Zn
q×Em×{0,1}×{0,1}→ {0,1} as:

h(s,e,c,d) = d

The idea behind this construction is similar to the general construction presented in

subsection 5.3.1. Intuitively, the first two terms Ks+e are useful for the security, the c ·
y0 term is needed to ensure the 2-regularity (the two images will differ by (s0,e0,1,d0)),

and the last term d ·v is mostly useful to provide the hardcore property. More precisely:

• This function cannot have more than 2 preimages because the partial functions

f (·, ·,c, ·) are injective (because ḡK is injective).

• h is the homomorphic-hardcore predicate required by Definition 5.2.1. Indeed,

if there is a collision, i.e. if fk(s,e,0,d) = fk(s′,e′,1,d′), it is easy to see that

d⊕d′ = d0 (q is even, and operations are modulo q), i.e.: h(x)⊕h(x′) = d0.

• Finally, for an appropriate choice of parameters (see Lemma 5.3.3), this function

is 2-regular with good probability. Indeed, if for a random element (s,e,0,d)

there exists (s′,e′,1,d′) with fk(s,e,0,d) = fk(s′,e′,1,d′), then e = e′+ e0. But

e0 is sampled from a set significantly smaller than E, so with good probability

e′ = e− e0 will belong to E.

122 Chapter 5. QFactory against Malicious Server

Note on the parameters: α′ is chosen to make sure that the sampled elements are

small compared to µ (the upper bound on E), but such that the noise is still big enough

for security. On the contrary, µ must stay small enough to ensure that the function

does not have more than two preimages. In the previous chapter we provided a set of

parameters having all the required constraints, which we recall here:

Lemma 5.3.3. The family of functions F is δ-2-regular with good (constant greater

than 1/2) probability, trapdoor, one-way and collision resistant (all these properties

are true even against a quantum attacker), assuming that there is no quantum algo-

rithm that can efficiently solve SIVPγ for γ = poly (n), for the following choices of

parameters:

q = 25dlog(n)e+21

m = 23n+5ndlog(n)e
µ = 2mn

√
23+5log(n)

α
′ =

µ
m
√

mq
(5.15)

Moreover, we can find another set of parameters such that this probability δ is negli-

gibly close to one assuming that SIVPγ is secure for a superpolynomial γ (depending

on the value of δ, you may choose Protocol 3 (δ∼ 1) or Protocol 5 (δ > 1/2)).

We can now formalize the above intuitions:

Theorem 5.3.4. The family F defined above with appropriate parameters, such as the

one defined in Lemma 5.3.3, is a δ-2-regular homomorphic-hardcore family.

Proof. Le us first show that gK is an injective function. To prove this, we will use the

injectivity property of the function ḡ.

gK(s,e,d) = ḡK(s,e)+d · v

Assume there exist 2 tuples (s1,e1,d1) and (s2,e2,d2) such that gK(s1,e1,d1) =

gK(s2,e2,d2). To prove that gK is injective we must show that (s1,e1,d1) = (s2,e2,d2).

This is equivalent to:

ḡK(s1,e1)+d1 · v = ḡK(s2,e2)+d2 · v
ḡK(s1,e1)− ḡK(s2,e2)+(d1−d2) · v = 0 (5.16)

Now, if d1 = d2, then we have that ḡK(s1,e1)− ḡK(s2,e2) = 0, and because ḡK is

injective, this would imply that s1 = s2 and e1 = e2 and thus, gK would also be injective.

5.3. Function Implementation 123

Let us suppose that d1 6= d2 and we will prove that this is impossible. Without loss of

generality we can assume that d1 = 0 and d2 = 1.

Thus, we want to show that it is impossible to have (s1,e1) and (s2,e2) such that:

ḡK(s1,e1)− ḡK(s2,e2) = v (5.17)

Using the definition of ḡK , this is equivalent to:

Ks1 + e1−Ks2− e2 =


q
2

0
...

0

 mod q (5.18)

This can be rewritten as:

K1,1(s1,1− s2,1)+ ...+K1,n(s1,n− s2,n)+(e1,1− e2,1) =
q
2

mod q (5.19)

Ki,1(s1,1− s2,1)+ ...+Ki,n(s1,n− s2,n)+(e1,i− e2,i) = 0 mod q (5.20)

for any i ∈ {2, · · · ,m} and where s1,i and s2,i denote the i-th elements of s1 and s2

respectively and e1,i and e2,i are the i-th elements of e1, respectively e2.

Now, as the function ḡK : Zn
q×Em→ Zm

q , where K← Zm×n
q , is injective, the following

function is also injective:

ḡ1K1
: Zn

q×Em−1 → Zm−1
q , where K1 ← Zm−1×n

q and where ḡ and ḡ1 have the exact

same definition:

ḡ1K1
(s,e) = K1s+ e mod q (5.21)

More specifically, the only difference between the 2 functions is the change of dimen-

sion from m to m−1, but as the injectivity proof from [MP12] holds for any m = Ω(n),

then ḡ1 is also injective.

Now, consider the matrix K1 obtained from K by removing the first line. As shown

above, ḡ1K1
is an injective function, thus from Equation 5.20, we get that:

s1 = s2 (5.22)

e1,i = e2,i ∀ i = 2, ..,m (5.23)

Now as s1 = s2, from Equation 5.19, we obtain e1,1− e2,1 =
q
2 .

However, from the domain of ḡ, we have that: |e1,1− e2,1| < |e1,1|+ |e2,1| < 2µ < q
2

(where for the last inequality we used Lemma 5.3.3). This concludes the contradiction

proof and shows us that gK is injective.

124 Chapter 5. QFactory against Malicious Server

The proofs of homomorphicity for gK and h can be found in subsection B.1.2 and

one-wayness of gK in subsection B.1.3. Finally, the Lemma 5.3.3 ensures that the

family is δ-2-regular and the hardcore property results from Lemma 5.3.2.

5.4 The Malicious 8-states QFactory Protocol

In order to use the Malicious 4-states QFactory Protocol functionality for applications

such as blind quantum computing [BFK09], we need to be able to produce states taken

from the set {|+θ〉 ,θ ∈ {0, π

4 , ...,
7π

4 }}, always ensuring that the bases of these qubits

remain hidden. Here we prove how by using two states produced by Malicious 4-

states QFactory Protocol, we can obtain a single state from the 8-states set, while no

information about the bases of the new output state is leaked.

To achieve this, we need to find an operation, that in the honest case maps the

correct inputs to the outputs, in such a way, that the index of the output state corre-

sponding to the basis, is directly related with the bases bits of the input states. This

relation should be such that learning non-negligible information about the basis of the

output state implies learning non-negligible information about the basis of the input

state. This directly means, that any computationally bounded adversary that breaks the

8-states basis blindness of the output, also breaks the 4-states basis blindness of at least

one of the inputs.

The protocol achieving this task is described as outlined below.

Protocol 4 Malicious 8-states QFactory
Requirements: Same as in Protocol Protocol 3

Input: Client runs 2 times the algorithm GenF (1n), obtaining (k1, t1
k),(k

2, t2
k). Client keeps

t1
k , t

2
k private.

Protocol:

– Client: runs Malicious 4-states QFactory algorithm to obtain a state |in1〉 and a “rotated”

Malicious 4-states QFactory to obtain a state |in2〉. By a rotated Malicious 4-states QFactory

we mean a Malicious 4-states QFactory outputting one of the 4 states {|+〉 , |−〉 ,
∣∣∣+ π

2

〉
,
∣∣∣− π

2

〉
}.

This can be obtained from the construction of Malicious 4-states QFactory, by simply applying

the operation HR
(
−π

2

)
on the BB84 output state.

– Client: records measurement outcomes (y1,b1), (y2,b2) and computes and stores the corre-

sponding indices of the output states of the 2 Malicious 4-states QFactory runs: (B1,B2) for

|in1〉 and (B′1,B
′
2) for |in2〉.

5.4. The Malicious 8-states QFactory Protocol 125

– Client: instructs Server to apply Merge Gadget (Figure 5.2) on the states |in1〉, |in2〉.
– Server: returns the 2 measurement results s1, s2.

– Client: using (B1,B2), (B′1,B
′
2), s1, s2 computes the index L = L1L2L3 ∈ {0,1}3 of the output

state (as showed in Eq.(5.29), Eq.(5.30) and Eq.(5.31) of Theorem 5.4.1).

Output: If the protocol is run honestly, the state that the Server has produced is:

|out〉= X (s2+B2)·B1ZB′2+B2(1−B1)+B1[s1+(s2+B2)B′1]R
(

π

2

)B1
R
(

π

4

)B′1 |+〉

5.4.1 Correctness of Malicious 8-states QFactory

We prove the existence of a mapping M (which we will call Merge Gadget), from 2

states |in1〉 and |in2〉, where |in1〉 ∈ {|0〉 , |1〉 , |+〉 , |−〉} and |in2〉 ∈ {|+〉 , |−〉 ,
∣∣∣+ π

2

〉
,
∣∣∣− π

2

〉
}

to a state of the form |out〉=
∣∣∣+L· π4

〉
, where L = L1L2L3 ∈ {0,1}3.

Namely, as depicted in Figure 5.2, M is acting in the following way:

M (|in1〉 , |in2〉) = MX ,2MX ,1∧Z2,3∧Z1,2

[∣∣∣+ π

4

〉
⊗|in1〉⊗ |in2〉

]
(5.24)

∣∣∣+ π

4

〉
• |±〉 s1

|in1〉 Z • |±〉 s2

|in2〉 Z |out〉

Figure 5.2: Merge Gadget

Theorem 5.4.1. In an honest run, the Output state of the Malicious 8-states QFactory

Protocol is of the form
∣∣∣+L· π4

〉
, where L = L1L2L3 ∈ {0,1}3.

Proof. In an honest run, using the Merge Gadget (Figure 5.2) we get:

M (|in1〉 , |in2〉) = MX ,2MX ,1∧Z2,3∧Z1,2

[∣∣∣+ π

4

〉
⊗|in1〉⊗ |in2〉

]
(5.25)

Using the correctness of Malicious 4-states QFactory (Thereom 5.2.2), we have

that:

|in1〉= HB1XB2 |0〉

|in2〉= R
(

π

2

)B′1
ZB′2 |+〉

(5.26)

126 Chapter 5. QFactory against Malicious Server

Thus:

|out〉= MX ,2MX ,1∧Z2,3∧Z1,2

[∣∣∣+ π

4

〉
⊗HB1ZB2 |+〉⊗R

(
π

2

)B′1
ZB′2 |+〉

]
(5.27)

Which is then equivalent to:

|out〉= R
[
π(B′2 +B2 +B1 · (s1 + s2))+

π

2
(B′1 +(B2 + s2) ·B1)+

π

4
B1

]
|+〉 (5.28)

As a result, we obtain:

L1 = B′2⊕B2⊕ [B1 · (s1⊕ s2)] (5.29)

L2 = B′1⊕ [(B2⊕ s2) ·B1] (5.30)

L3 = B1 (5.31)

It can also be noticed that, in an honest run of Malicious 8-states QFactory, the

Client can efficiently determine L: using b1,b2,y1,y2 and the trapdoors t1
k , t

2
k , she first

obtains (B1,B2) and (B′1,B
′
2), and after receiving s1,s2, she determines the description

of the state prepared by the Server.

5.4.2 Security against Malicious Adversaries of Malicious 8-states

QFactory

In any run of the protocol, honest or malicious, the state that the client believes that the

server has, is given by Theorem 5.4.1.

Therefore, as in the case of Malicious 4-states QFactory, the task that a malicious

server wants to achieve, is to be able to guess, as good as he can, the index of the

output state that the client thinks the server has produced. In particular, in our case,

the server needs to guess the bits L2 and L3 (corresponding to the basis) of the (honest)

output state.

Definition 5.4.2 (8 states basis blindness). A protocol (πA,πB) achieves basis-blindness
with respect to an ideal list of 8 states S = {SL1,L2,L3}(L1,L2,L3)∈{0,1}3 if:

• S is the set of states that the protocol outputs, i.e.:

Pr [|φ〉= SL1,L2,L3 ∈ S | ((L1,L2,L3), |φ〉)← (πA‖πB)] = 1

5.4. The Malicious 8-states QFactory Protocol 127

• No information is leaked about the “basis” bits (L2,L3) of the output state of the

protocol, i.e for all QPT adversary A:

Pr
[
L2 = L̃2 and L3 = L̃3 | ((L1,L2,L3),(L̃2, L̃3))← (πA‖A)

]
≤ 1

4
+negl (n)

Theorem 5.4.3. Malicious 8-states QFactory satisfies 8-state basis blindness with re-

spect to the ideal set of states S =
{∣∣∣+L· π4

〉}
L∈{0,...,7}

=
{
|+〉 ,

∣∣∣+ π

4

〉
, ..,
∣∣∣+ 7π

4

〉}
.

Proof. We will prove this result by reduction showing that, if there exists a QPT adver-

sary A that is able to break the 8-states basis blindness property of Malicious 8-states

QFactory (determine the indices L2 and L3 with probability 1
4 +

1
poly1(n)

for some poly-

nomial function poly1(·)), then we can construct a QPT adversary A ′ that can break

the 4-states basis blindness of the Malicious 4-states QFactory protocol (determine the

basis bit with probability 1
2 +

1
poly2(n)

, for some polynomial function poly2(·)).
The input to A ′ should be consisting only of the F family index, k, and the description

of h. Next we show how to construct A ′ to determine the corresponding index B1 or

B′1 of the output state (of one of the 2 Malicious 4-states QFactory runs), by using as

a subroutine A that acts as follows: receives as input 2 function indices k(1) and k(2),

runs Malicious 8-states QFactory and then A is able to output the correct basis bits L2

and L3, with probability 1
4 +

1
poly1(n)

.

Before we describe A ′, we need to define the following 3 values:

• P2 = probability that A guesses correctly L2;

• P3 = probability that A guesses correctly L3;

• P⊕ = probability that A guesses correctly L2⊕L3;

Now, given that A is able to produce both L2 and L3 with probability 1
4 +

1
poly1(n)

, this

implies that max(P2,P3,P⊕)≥ 1
2 +

1
poly2(n)

for some polynomial poly2(·) (the proof is

presented in section B.2).

We will construct A ′ such that if P3 is the maximum, then A ′ can determine B1 (break

the basis blindness of the first Malicious 4-states QFactory run) and if P2 or P⊕ is

the maximum, then A ′ can determine B′1 (break the basis blindness of the the second

”rotated” Malicious 4-states QFactory run).

128 Chapter 5. QFactory against Malicious Server

A ′(k,h,1n)

1 : // k(1) will correspond to the input for the first run of Malicious 4-states QFactory

2 : // - with the output index (B1,B2), while k will correspond to

3 : // the input for the second run - with the output index (B′1,B
′
2)

4 :
(

k(1), t(1)k

)
←$ GenF (1n)

5 : // As the probability P of successfully guessing L2 and L3 is
1
4
+

1
poly1(n)

6 : // We know that max(P2,P3,P⊕)≥
1
2
+

1
poly2(n)

7 : if P3 = max(P2,P3,P⊕)

8 : // we break the basis-blindness of the first Malicious 4-states QFactory by determining B1

9 : (y(1),y(2),b(1),b(2),s1,s2),(L̃2, L̃3)← A(k,k(1),h)

10 : // (y(1),y(2),b(1),b(2),s1,s2) represents the classical communication received from A

11 : // during the run of Malicious 8-states QFactory, and

12 : // (L̃2, L̃3) - are the guesses of A for the indices of the outcome

13 : B̃1← L̃3

14 : return B̃1// as B1 = L3 as seen in Eq. 5.31 and

15 : // we have success probability ≥ 1
2
+

1
poly2(n)

16 : else // we break the basis-blindness of the second Malicious 4-states QFactory by determining B′1

17 : (y(1),y(2),b(1),b(2),s1,s2),(L̃2, L̃3)← A(k(1),k,h)

18 : // (y(1),y(2),b(1),b(2),s1,s2) represents the classical communication received from A

19 : // during the run of Malicious 8-states QFactory, and

20 : // (L̃2, L̃3) - are the guesses of A for the indices of the outcome

21 : (z(1),z′(1))← InvF (y(1), t(1)k)

22 : B1← h(z(1))⊕h(z′(1))

23 : B2← [b(2)n +∑(z(2)i ⊕ z′(2)i) ·b(2)i]B1 +h(z(2))(1−B1) mod 2

24 : if P2 = max(P2,P3,P⊕)

25 : // Then B′1 = L2⊕B1 · (B2⊕ s2) as seen in Eq. 5.30

26 : B̃′1← L̃2⊕ [B1 · (B2⊕ s2)]

27 : return B̃′1

28 : if P⊕ = max(P2,P3,P⊕)

29 : B̃′1← L̃2⊕ L̃3⊕B1⊕ [B1 · (B2⊕ s2)]

30 : return B̃′1

5.5. Malicious-abort 4-states QFactory: treating abort case 129

5.5 Malicious-abort 4-states QFactory: treating abort

case

In this section, we will discuss an extension of Malicious 4-states QFactory, whose

aim is to achieve basis blindness even against adversaries that try to exploit the fact

that Malicious 4-states QFactory can abort when there is only one preimage associ-

ated to the y returned by the server. One may think that we could just send back this

accept/abort bit to the server, but unfortunately it could leak additional information

on the hardcore bit d0 (which corresponds to the basis B1 of the produced qubit) to the

server, and as soon as the probability of acceptance is small enough, we cannot guar-

antee that this bit remains secret. On the other hand, for honest servers, the probability

of aborting is usually non-negligible, so we cannot neglect this case.

We stress out that it is also possible to guarantee that for honest servers this proba-

bility goes negligibly close to 1 by making an appropriate choice of parameters for the

function. In that case the initial protocol of Malicious QFactory defined in section 5.2

is secure, but this comes (as far as we know), at the cost of using a function which

is “less” secure. More specifically, instead of having a reduction to GAPSVP with a

polynomial γ, the reduction usually goes to GAPSVP with a super-polynomial γ. Such

function parameters have been used implicitly in other works [Mah18] ([Bra18] later

removed this assumption), and for now they are believed to be secure (the best known

polynomial algorithm cannot break GAPSVP with a γ smaller than exponential), but

nevertheless we aim to remove this non-standard assumption.

The solution we propose here uses the assumption that the classical Yao’s XOR

Lemma also applies for one-round protocols (with classical messages) against quan-

tum adversary. This lemma roughly states that if you cannot guess the output bit of

one round with probability better than η, then you cannot guess the output bit of t in-

dependents rounds with probability much better than 1/2+ηt . As far as we know, this

lemma has been proven only in the classical case (see [GNW11]).

In the following, we will call “accepted run” a run of Malicious 4-states QFactory

such that the y received from the server has 2 preimages (“probability of success” also

refers to the probability of this event when the server is honest), and otherwise we call

it an “aborted run”.

130 Chapter 5. QFactory against Malicious Server

5.5.1 The Malicious-Abort 4-state QFactory Protocol

The solution we are proposing is to run several instances of Malicious 4-states QFac-

tory, by remarking that we do not need to discard the aborted runs. Indeed, it is easy to

see that in these cases, the produced qubits will always be in the same basis ({|0〉 , |1〉}
denoted by 0). The idea is then to implement on the server side a circuit that will out-

put a qubit having as basis the XOR of all the basis of the accepted runs (without even

leaking which runs are accepted or not), and verify on client’s side that the number

of accepted runs is high enough (this will happen with overwhelming probability for

honest servers). If it is the case, the client will just output the XOR of the basis of the

accepted run, and otherwise (i.e. if the server is malicious), she will just pick a random

bit value.

Unfortunately, in practice things are a bit more complicated, and in order to prove

the security of our construction we need to divide all the t runs into nc “chunks” of size

tc, and test the chunks individually. We provide now a more detailed description of the

protocol and proof technique:

1. We run t = nc · tc parallel instances of Malicious 4-states QFactory, without re-

vealing the abort bit for any of these instances;

2. The key point to note is that for honest servers, if yi has only one preimage

then the output qubit produced by the server at the end of the protocol will be

either |0〉 or |1〉, but cannot be |+〉 or |−〉 (with one preimage we do not have a

superposition), as we show in Lemma 5.5.2. In other words, the basis is always

the {|0〉 , |1〉} basis (denoted as 0) so we do not really need to abort. Therefore,

for honest runs, at the end, the basis of the output qubits will be equal to βi =

d0,i · ai, for all i ∈ {1, · · · , t}, where ai = 1 if and only if yi has two preimages,

and ai = 0 otherwise.

3. Then, from the t qubits in the basis β1, . . . ,βt , we will produce a single qubit

belonging to the set {|0〉 , |1〉 , |+〉 , |−〉} whose basis B1 is the XOR of the basis

of the t qubits, i.e. B1 =⊕t
i=1βi. The construction is shown in Lemma 5.5.3.

4. Then, the client will test every chunk, by checking whether the proportion of

accepted runs in every chunk is greater than some parameter pc. If all chunks

have enough accepted runs, then the client just computes and outputs the real

value for the basis (which is the XOR of the hardcore bits of all the accepted

runs) and the value bit B2. However, if at least one chunk does not have enough

5.5. Malicious-abort 4-states QFactory: treating abort case 131

accepted runs (which cannot happen if the server is honest), then the client just

outputs random values for the basis and value bit, not correlated with server’s

qubit (equivalent to saying that a malicious server can always throw the qubit

and pick a new qubit, not correlated with client’s state description).

5. Correctness: if the probability of F to have two preimages (given an honest

server) is at least a constant pa greater than 1/2 (the parameters we propose in

Lemma 5.3.3 guarantee this property), and if t is chosen high enough, the frac-

tion of accepted runs will be close to pa, and we can show that the probability to

have a fraction of accepted runs smaller than a given constant pb < pa is expo-

nentially (in t) close to 0 (cf Lemma 5.5.4). So with overwhelming probability,

all the chunks will have enough accepted runs, i.e. honest servers will have a

qubit corresponding to the output of the client.

6. Soundness: to prove the security of this scheme, we first prove in Lemma 5.5.7

that it is impossible for any adversary to guess the output of one chunk with a

probability bigger than a constant η < 1 (otherwise we have a direct reduction

that breaks the hardcore bit property of gK). Now, using the quantum version

of Yao’s XOR Lemma that we conjecture at Conjecture 5.5.1, we can deduce

that no malicious server is able to guess the XOR of the tc chunks/instances with

probability better than 1/2+ηtc + negl (n), which goes negligibly close to 1/2

when tc = Ω(n).

Putting everything together, the parties will run t = nc · tc Malicious 4-states QFactory

in parallel, the client will then check if ∑i ai is higher than pc · tc for all the nc chunks,

and if so, she will set B1 =⊕t
i=1di ·ai (server has a circuit to produce a qubit in this basis

as well). Otherwise B1 will be set to a uniformly chosen random bit (it is equivalent

to say that a malicious server can destroy the qubit, and this is also unavoidable even

with a real quantum communication), and we still have correctness with overwhelming

probability for honest clients. The exact algorithm is described in Protocol 5, while the

security result is shown in Theorem 5.5.8.

5.5.2 Correctness and Security Malicious-Abort 4-state QFactory

In this section we will formalize and prove the previous statements.

Conjecture 5.5.1 (Yao’s XOR Lemma for one-round protocols (with classical mes-

sages) against quantum adversary).

132 Chapter 5. QFactory against Malicious Server

Let n be the security parameter, let fn : Xn×Yn→{0,1} be a (possibly non-deterministic)

family of functions (usually not computable in polynomial time), and let χn be a dis-

tribution on Xn efficiently samplable. If there exists δ(n) such that |δ(n)| ≥ 1
poly(n) and

such that for all polynomial (in n) quantum adversary An : Xn→ Yn×{0,1},

Pr
[
β̃ = fn(x,y) | (y, β̃)← An(x),x← χn

]
≤ 1−δ(n)

then, for all t ∈ N∗ and for all QPT adversary A ′n : X t
n→ Y t

n ×{0,1}, we have:

Pr

[
β̃ =

t⊕
i=1

fn(xi,yi) | (y1, . . . ,yt , β̃)← A ′n(x1, . . . ,xt),∀i,xi← χn

]
≤1

2
+(1−δ(n))t +negl (n)

Lemma 5.5.2 (Aborted runs are useful). If Client (πA4) and Server (πB4) are follow-

ing the Malicious 4-states QFactory protocol honestly, and if y does not have not 2

preimages, then the output qubit produced by πB4 is in the basis {|0〉 , |1〉}.

The proof can be found in section B.3.

Lemma 5.5.3 (Gadget circuit Gad⊕ computes XOR). If we denote by bi the basis of

|ini〉 (equal to 0 if the basis is 0/1, and 1 if the basis is +/−), then by running the

circuit Gad⊕ represented in Figure 5.3 on these inputs, then the basis of the output of

the circuit, |out〉 is equal to ⊕t
i=1bi.

The proof can be found in section B.3.

∣∣+π/2
〉

• |±〉 s1,1

|in1〉 Z • |±〉 s1,2∣∣+π/2
〉

• |±〉 s2,1

|in2〉 Z • |±〉 s2,2

...
...

...∣∣+π/2
〉

• |±〉 st,1

|int〉 Z • |±〉 st,2

|+〉 Z Z Z |out〉

Figure 5.3: The XOR gadget circuit Gad⊕ (performed by Server)

5.5. Malicious-abort 4-states QFactory: treating abort case 133

We can now describe the protocol of Malicious-Abort 4-states QFactory:

Protocol 5 Malicious-Abort 4-states QFactory Protocol
Requirements:

Public: The family of functions F and h, such that the probability of having two preimages for

a random image is greater than a constant pa > 1/2.

Parameters:

• nc ∈ N - number of chunks;

• tc ∈ N - number of repetitions per chunk;

• pa ∈ (1/2,1] - lower bound on probability of accepted run in the honest protocol;

• pc ∈ (1/2,1]< pa - threshold on fraction of accepted runs per chunk;

Parameters can be chosen in such a way to have overwhelming probability of success for honest

players, and negligible advantage for an adversary trying to guess the basis.

Stage 1: Run multiple QFactories

– Client: prepares t = nc · tc public keys and trapdoors:(
(k(i, j), tk(i, j))← GenF (1n)

)
i∈{1,··· ,nc}, j∈{1,··· ,tc}

The Client then sends the public keys k(i, j) to the Server, together with h.

– Server and Client: follow Protocol 3 for t times, with the keys sent at the step before. Client

receives ((y(i, j),b(i, j)))i, j, and computes for all i, j:

a(i, j) :=

1, if | f−1(y(i, j))|= 2

0, otherwise
(5.32)

• If a(i, j) = 1 Client computes B(i, j)
1 and B(i, j)

2 as in Protocol 3;

• Else if a(i, j) = 0, Client sets B(i, j)
1 = 0 and B(i, j)

2 = h(f−1(y));

• Server obtains t outputs
∣∣in(i, j)〉.

Stage 2: Combine runs and output

– Server: applies circuit Gad⊕ (Figure 5.3) on the t outputs |int〉, and outputs |out〉.
– Client: checks that for every chunks i ∈ {1,nc} the number of accepted runs is high enough,

i.e.: ∑
tc
j=1 a(i, j) ≥ pctc.

• If at least one chunk does not respect this condition, then Client picks two random bits

B1 (the basis bit) and B2 (the value bit) and outputs (B1,B2), corresponding to the de-

scription of the BB84 state HB1XB2 |0〉.
• If all nc chunks respect this condition, then Client sets B1 :=

⊕
i, j B(i, j)

1 (the final basis is

the XOR of all the basis), and B2 will be chosen to match the output of Gad⊕ (Figure 5.3).

134 Chapter 5. QFactory against Malicious Server

Lemma 5.5.4 (Probability of correctness of Malicious-Abort 4-states QFactory for one

chunk). If the probability to have an accepted run in Malicious 4-states QFactory with

honest parties is greater than a constant pa > 1/2, i.e.:

Pr
[
| f−1

k (y)|= 2 | (πA4‖πB4)
]
≥ pa

(where πA4 and πB4 are the honest protocols of Malicious 4-states QFactory) then

for any constant pb < pa, the probability to have in a chunk of tc runs, at least pbtc
accepted runs is exponentially in tc close to 1:

Pr

[
tc

∑
i=1

ai ≥ pbtc | (πtc
A4⊕c‖π

tc
B4⊕c)

]
≥ 1− 1

e2(pa−pb)2tc
= 1−negl (tc)

(where π
tc
A4⊕c and π

tc
B4⊕c are the (honest) parties of the Protocol 5 restricted on one

chunk of size tc, or, equivalently tc parallel repetitions of Protocol 3)

The proof can be found in section B.3.

Lemma 5.5.5 (Correctness of Protocol 5). Protocol 5 is correct with overwhelming

probability as soon as t = poly (n) and tc = Ω(n), i.e.

Pr
[
|out〉= HB1ZB2 | ((B1,B2), |out〉)← (πA‖πB)

]
≥ 1−negl (n)

The proof can be found in section B.3.

Definition 5.5.6. For any public key k and image y, we define:

a(k,y) :=

1, if | f−1
k (y)|= 2

0, otherwise
(5.33)

Then, for all tc ∈ N and pc ∈ [0,1], we define the randomized function:

βtc,pc

(
k(1), . . . ,k(tc),y(1), . . . ,y(tc)

)
:=

B =⊕tc
i=1a

(
k(i),y(i)

)
·d(i)

0 , if
tc
∑

i=1
a(k(i),y(i))≥ pc · tc

u , if
tc
∑

i=1
a(k(i),y(i))< pc · tc

(5.34)

where u is a uniform random bit and d(i)
0 is the hardcore bit corresponding to k(i) :=

(K(i),gK(i)(z
(i)
0)), i.e. d(i)

0 = h(z(i)0).

5.5. Malicious-abort 4-states QFactory: treating abort case 135

Lemma 5.5.7 (Solving one chunk is difficult). Let pc ∈ (1
2 ,1]. Then, for all QPT

adversary A we have:

Pr
[
B̃1 = βtc,pc

(
k(1), . . . ,k(tc),y(1), . . . ,y(tc)

)
|(

y(1), . . . ,y(tc), B̃1

)
← A

(
k(1), . . . ,k(tc)

)]
< η

with η = 1
2

(
1+ 1

2pc

)
, where the randomness is over the randomness of β, A , and over

the choices of (k(i))i and (y(i))i.

Proof. By contradiction, let us assume that there exists a QPT adversary A outputting

B̃1 and
(
(y(1), . . . ,y(tc)

)
such that:

Pr
[
B̃1 = β

]
> η

where we omitted the parameters for readability.

We can rewrite Pr
[
B̃1 = β

]
as:

Pr
[
B̃1 = β

]
= Pr

[
B̃1 = β |

tc

∑
i=1

a(k(i),y(i))≥ pc · tc
]
·Pr

[
tc

∑
i=1

a(k(i),y(i))≥ pc · tc
]
+

+Pr

[
B̃1 = β |

tc

∑
i=1

a(k(i),y(i))≤ pc · tc
]
·Pr

[
tc

∑
i=1

a(k(i),y(i))≤ pc · tc
]
(5.35)

Now, using the definition of the function β and by using the notation

α := Pr
[
∑

tc
i=1 a(k(i),y(i))≤ pc · tc

]
, we have:

Pr
[
B̃1 = β

]
= Pr

[
B̃1 =⊕tc

i=1a
(

k(i),y(i)
)
·d(i)

0

]
· (1−α)+Pr

[
B̃1 = u

]
·α

= Pr
[
B̃1 =⊕tc

i=1a
(

k(i),y(i)
)
·d(i)

0

]
· (1−α)+

α

2
≤ 1−α+

α

2
= 1− α

2
(5.36)

Therefore, we also have: α < 2(1−η).

Now, let us examine Pr
[
B̃1 = B

]
, the probability that the adversary A can output

B =⊕tc
i=1a

(
k(i),y(i)

)
·d(i)

0 .

We will show through a reduction that if A can output B with probability p, then

there exists a QPT adversary A ′ that can break the hardcore predicate property of

gk (determine the hardcore predicate d0 associated with k) with probability at least

(1−α)pc · p.

136 Chapter 5. QFactory against Malicious Server

A ′(k)

1 : Runs tc−1 times GenF obtaining {(k(i), tk(i))}tc−1
i=1

2 : Calls A(k,k(1), · · · ,k(tc−1))→ (B̃1,{y,y(1), · · ·y(tc−1)})
3 : for i = 1, · · · tc−1 :

4 : Compute d(i)
0 ← d0(tk(i))// As indicated in Protocol 3

5 : Run InvF (y(i), tk(i))

6 : if y(i) has 2 preimages then

7 : a(k(i),y(i))← 1

8 : else a(k(i),y(i))← 0

9 : d̃0←⊕tc−1
i=1 a(k(i),y(i)) ·d(i)

0 ⊕ B̃1// this will represent the guess of A ′ for d0(tk) - the hp corresponding to gk

10 : return d̃0

We can see that in order for A ′ to output the correct d0 hardcore predicate of gk, 3

things must happen: 1) A to output the correct B, 2) ∑
tc
i=1 a(k(i),y(i))≥ pc · tc and 3) the

y outputted by A corresponding to function k has 2 preimages (and hence a(k,y) = 1).

Then, we compute the probability of success for A ′ as:

Pr
[
A ′(k) = d0

]
= p ·Pr

[
tc

∑
i=1

a(k(i),y(i))≥ pc · tc
]
· pa ≥ p · (1−α) · pc (5.37)

Therefore, as d0 is a hardcore predicate we deduce:

Pr
[
B̃1 =⊕tc

i=1a
(

k(i),y(i)
)
·d(i)

0

]
· (1−α) · pc ≤

1
2
+negl (n) (5.38)

Therefore, by returning to Eq.(5.36), we have:

Pr
[
B̃1 = β

]
= Pr

[
B̃1 =⊕tc

i=1a
(

k(i),y(i)
)
·d(i)

0

]
· (1−α)+

α

2

≤ 1
2pc

+
α

2
+negl (n)

≤ 1
2pc

+1−η+negl (n)

(5.39)

From our assumption we have that Pr
[
B̃1 = β

]
> η, hence this gives us:

η <
1
2
+

1
4pc

+negl (n) (5.40)

Because η and pc are constants that do not depend on n, this equality is also true

without the negl (n) term:

η <
1
2
+

1
4pc

(5.41)

which contradicts that η = 1
2 +

1
4pc

and completes our proof.

5.5. Malicious-abort 4-states QFactory: treating abort case 137

Finally, by combining all these results we obtain the correctness and security of the

full Malicious-Abort QFactory (Protocol 5).

Theorem 5.5.8 (Malicious-Abort QFactory is correct and secure). Assuming Conjec-

ture 5.5.1, and by ensuring that the probability of the family F to have two preimages

for any image is bigger than a constant pa > 1/2, then there exists a set of parameters

pc, tc and nc such that Protocol 5 is correct with probability exponentially close to 1

and basis-blind, i.e. for any QPT adversary A:

Pr
[
B̃1 = B1 | ((B1,B2), B̃1)← (πA4⊕‖A)

]
≤ 1

2
+negl (n)

More precisely, we need tc ∈ (1/2, pc) to be a constant, and both tc and nc need to be

polynomial in n and Ω(n).

Proof. Firstly, the overwhelming probability of correctness is ensured by Lemma 5.5.5.

For security, using Lemma 5.5.7, we know that there exists a constant η < 1 such that

no adversary can solve a chunk (compute βtc,pc) with probability better than η.

Now, we will use Conjecture 5.5.1 in the following way. The function fn will be equal

to βtc,pc defined in Definition 5.5.6 (for each chunk). Then the input x sampled effi-

ciently from χn provided to the adversary is represented by the set of tc public keys

{k(i)}tci=1 and the outputs y given by A is the set of images {y(i)}tci=1. Then, we need to

ensure that δ(n) = 1−η is at least 1
poly(n) , which holds as in our case η is a constant

(η = 1
2 +

1
4pc

).

Then Conjecture 5.5.1 implies that for any number of chunks nc, no QPT adversary

can get the XOR of the solutions of nc chunks with probability better than 1
2 +ηnc +

negl (n). As η is a constant and nc = poly(n) we have that:

No QPT adversary can obtain the basis B1 of Protocol 5 with probability better than
1
2 +negl (n), which concludes our proof.

Chapter 6

Security Limitations of Classical Client

Delegated Quantum Computing

One of the central building blocks to achieve secure delegation of quantum computa-

tions, as well as other client-server functionalities is secure remote state preparation

(RSP) defined first in [DKL11]. The RSP resources enable the Client to remotely pre-

pare a quantum state on Server’s side and as a result, they are the natural candidate

to replace quantum channel resources in a modular fashion. These resources further

appear to enable a large family of composable protocols [DKL11, DFPR14], including

the Universal Blind Quantum Computation (UBQC) protocol [BFK09] used to dele-

gate a computation to a remote quantum Server who learns no information about the

ongoing computation.

However, secure delegated quantum computing is typically achieved in the settings

when both Client and Server have access to quantum resources, in particular via quan-

tum communication such that the Client can establish the necessary correlations with

the Server to securely perform this task. As a result, the question becomes relevant

whether it is possible to rely solely on classical channels between Client and Server

and still benefit from its quantum capabilities while preserving the same security level.

Motivated by this, we first introduced in chapter 4 the protocol HBC−QFactory

mimicking the remote state preparation resource over a purely classical channel, en-

abling a fully classical Client (using exclusively classical communication resources)

to remotely prepare a quantum state on Server’s side, under the assumption that the

Learning-With-Errors problem is hard to solve for quantum computers. A further ex-

ample from the family of classical-client remote state preparation protocols, denoted

in this chapter by RSPCC, is the Malicious 4-states QFactory described in chapter 5,

138

6.1. Overview of Contributions and Proof Techniques 139

with enhanced security compared to HBC−QFactory.

The important role of such classical RSP primitives as part of larger protocols,

most notably in their role of replacing quantum channels between Client and Server, is

emphasized by their ability to allow classical-server functionalities, such as delegated

quantum computing, available to classical users. Therefore, it is of utmost importance

to develop an understanding of this primitive, notably its security guarantees when

composed in larger contexts, such as in [GV19].

In this chapter we will investigate the composable security of classical client remote

state preparation. More specifically, we study what is the privacy loss when employing

RSPCC as a sub-module, and we address this question using the Constructive Cryp-

tography framework of Maurer and Renner [MR11] to provide a clear analysis of the

RSP resources from a composable perspective. To begin with, we define the goal of

RSPCC as the construction of ideal RSP resources from classical channels and most

importantly, we reveal the security limitations of using RSPCC in general, but also in

specific contexts.

Firstly, we determine a fundamental relation between the construction of ideal RSP

resources from classical channels and the task of cloning quantum states with auxiliary

information. We will prove that any classically constructed RSP resource must leak

the full description (possibly in an encoded form) of the generated quantum state,

even when we target computational security only. As a consequence, we find that the

realization of common RSP resources, without weakening their security guarantees

drastically, is impossible due to the no-cloning theorem.

Secondly, this result does not rule out that a specific RSPCC protocol can replace

the quantum channel at least in some contexts, such as the Universal Blind Quantum

Computation protocol. However, we show that the resulting classical client UBQC

protocol cannot maintain its proven composable security as soon as RSPCC is used as

a subroutine.

6.1 Overview of Contributions and Proof Techniques

In this chapter, we will cover the security of RSPCC, the class of remote state prepa-

ration protocols which use only a classical channel and the use-case that corresponds

to its arguably most important application: classical client delegated quantum compu-

tation achieved through the UBQC protocol with a completely classical Client. More

specifically, we analyze the security of UBQCCC, the family of protocols where an

140Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

RSPCC is used in order to replace the quantum channel required for the original quan-

tum client UBQC protocol.

An example of an RSP resource is the SZ π

2
resource depicted in Figure 6.1 (where

Zπ

2 refers to the set of the 4 angles {0, π

2 ,π,
3π

2 }). This resource outputs the quantum

state |+θ〉 on its right interface, and the classical description of this state, θ, on its left

interface.

θ←
{

0,
π

2
,π,

3π

2

} SZ π

2

θ |+θ〉

Figure 6.1: Ideal resource SZ π

2

We will show in 6.2 a wide-ranging limitation of the composable guarantees that

any protocol in the family of protocols RSPCC can achieve. This limitation follows

from the relation between: i) the notion of classical realization of the RSP resource

and ii) the notion of describability, which is a property of resources that intuitively

measures how leaky is an RSP. This relation directly affects the amount of additional

leakage on the classical description of the quantum state. In this way, it rules out a

wide set of desirable resources, even against computationally bounded distinguishers.

Theorem 6.2.6 (Security Limitations of RSPCC). Any RSP resource, realizable by an

RSPCC protocol with security against quantum polynomial-time distinguishers, must

leak an encoded, but complete description of the generated quantum state to the server.

The importance of Theorem 6.2.6 lies in the fact that it is drawing a connection

between a computational notion - the composability of an RSPCC protocol with an

information theoretic notion - the statistical leakage of the ideal resource it is con-

structing. This allows us to use fundamental physical principles such as no-cloning

and no-signalling in the security analysis of computationally secure RSPCC protocols.

As one direct application of this powerful tool, we show that a computationally

secure implementation of the ideal resource in Figure 6.1 would give rise to the con-

struction of a quantum cloner and is hence impossible.

Proof sketch. While Theorem 6.2.6 applies to much more general RSP resources hav-

ing arbitrary behaviour at its interfaces and targeting any output quantum state, for sim-

plicity and clearance we will exemplify the main ideas of the proof of Theorem 6.2.6

6.1. Overview of Contributions and Proof Techniques 141

for the underlying resource SZ π

2
.

The composable security of a protocol realizing SZ π

2
implies by definition, the ex-

istence of an efficient (BQP) simulator σ, which turns the right interface of the ideal

resource SZ π

2
(outputting |+θ〉 into a completely classical interface (given that the com-

munication between Client and Server must be entirely classical), as depicted in Figure

6.2.

Figure 6.2: D denotes the polynomial-time distinguisher having access to the left inter-

face of SZ π

2
and to the classical messages sent by σ. D will run the honest Server using

the transcript from σ. A is the exponential-time algorithm that runs the same computa-

tions as the honest Server by emulating him. In this way, the classical description θ can

be extracted, resulting in the algorithm in the dashed part representing the quantum

cloner.

The polynomially-bounded quantum distinguisher will have access to this classical

interface as well as the left interface of SZ π

2
and will run the protocol of the honest

server, which will allow him to reconstruct the quantum state |+θ〉 received by the

simulator from the ideal resource. Since the distinguisher has access to θ via the left

interface, he can simply perform a quantum measurement to verify that the state ob-

tained after interacting with the simulator corresponds to the classical description θ.

By the correctness of the protocol, the quantum state obtained by the distinguisher,

|+θ〉, must therefore comply with θ.

Now, since the quantum state |+θ〉 is transmitted from σ to the distinguisher over a

classical channel, the ensemble of exchanged classical messages must contain a com-

plete encoding of the description of the state, namely θ. A (possibly unbounded) al-

gorithm can hence extract the actual description of the state by means of a classical

emulation of the honest Server, as shown in Figure 6.2. This property of the ideal

resource of being able to extract the description of the underlying quantum state is

142Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

central to our proof technique and we will call it describability.

Finally, having a full description of the quantum state produced by SZ π

2
would

allow to create several copies of this state, a procedure prohibited by the no-cloning

theorem. Consequently, we conclude that the resource SZ π

2
cannot be constructed from

a classical channel only.

One could attempt to modify the RSP ideal resource to incorporate some leakage

to the Server about the classical description of the state, which would be necessary

as the above result shows. However, this yields an ideal resource that is not a useful

idealization or abstraction of the real world which puts in question whether they are at

all useful in a composable analysis.

Consider for example constructions of composite protocols that utilize the (non-

leaky) ideal resource as a sub-module. These constructions require a fresh security

analysis if the sub-module is replaced by any leaky version of it, but since the modified

resource is very specific and must mimic its implementation (in terms of leakage) it

appears that this replacement does not give any benefit compared to directly using the

implementation as a subroutine and then examining the composable security of the

combined protocol as a whole. This latter way is therefore examined next.

More precisely, we might still be able to use RSPCC as a subroutine in other specific

protocols and expect the overall protocol to still construct a useful ideal functionality.

The family of protocols UBQCCC is such an application. Unfortunately, as we show

in section 6.3, UBQCCC fails to provide the expected composable security guaran-

tees once classical remote state preparation protocols are used to replace the quantum

channel between Client and Server 1. This result holds even if the distinguisher is

computationally bounded.

Theorem 6.3.10 (Impossibility of UBQCCC). No RSPCC protocol can replace the

quantum channel in the UBQC protocol while preserving composable security.

Proof sketch. We first show that the existence of any composable UBQCCC protocol, in

the sense of achieving the ideal UBQC resource, implies the existence of a composable

single-qubit UBQCCC protocol. Then, the impossibility of composable single-qubit

UBQCCC protocols is shown in 2 steps. Firstly, we show that single-qubit UBQCCC

1By composable security of UBQC we refer to the goal of achieving the established ideal function-

ality of [DFPR14], which we recall in section 6.3.

6.2. Impossibility of Composable Classical RSP 143

can be turned into RSP protocols. As a result, this allows us to employ the toolbox we

developed before on RSP protocols. As a second step, we deduce that an RSP protocol

of this specific kind (leaking the classical description of the underlying quantum state

in the form of an encoded message) would imply a violation of the no-signaling prin-

ciple, therefore showing that a composable UBQCCC protocol could not have existed

in the first place.

Before presenting our main results outlined above, we need to first introduce some

notation used throughout the following sections.

6.1.1 Notations

We will denote by Zπ

2 the set of the 4 angles {0, π

2 ,π,
3π

2 }, and Zπ

4 = {0, π

4 , ...,
7π

4 }
the similar set of 8 angles. If ρ is a quantum state, [ρ] will represent the classical

representation (as a density matrix) of this state. We also denote the quantum state

|+θ〉 := 1√
2
(|0〉+eiθ |1〉), where θ∈Zπ

4 , and for any angle θ, [θ] will denote [|+θ〉〈+θ|],
i.e. the classical description of the density matrix corresponding to |+θ〉. For a protocol

P = (P1,P2) with two interacting algorithms P1 and P2 denoting the two participating

parties, let r← 〈P1,P2〉 denote the execution of the two algorithms, exchanging mes-

sages, with output r. We use the notation C to denote the classical channel resource,

that just forwards classical messages between the two parties.

6.2 Impossibility of Composable Classical RSP

In this section we proceed by defining the general notion of RSP, what it tries to

achieve in terms of resources and then we will quantify the information that an ideal

RSP resource must leak (at its interface) to the server even when the distinguisher is

computationally bounded. One would expect that against bounded distinguishers, the

resource RSP can express clear privacy guarantees, which we prove cannot be the case.

The reason can be intuitively summarized as follows: assuming that there exists a

simulator making the ideal resource indistinguishable from the real protocol, we can

exploit this fact to construct an algorithm that can classically describe the quantum

state given by the ideal resource. It is not difficult to see that there would exist an in-

efficient algorithm (i.e. running in exponential time) achieving this task. We show that

even a computationally bounded distinguisher can distinguish the real protocol from

144Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

the ideal protocol whenever the simulator’s strategy is independent of the classical de-

scription of the quantum state sent by the ideal resource. This implies that for an RSP

protocol to be composably secure, there must exist a simulator that possesses at least a

classical transcript encoding the description of the underlying quantum state. This fact

coupled with the quantum no-cloning theorem implies that the most meaningful and

natural RSP resources cannot be realized from a classical channel alone. We conclude

the section by examining the class of imperfect (describable) RSP resources which

avoid the no-go result at the price of being “fully-leaky”, not standard, and having an

unfortunately unclear composable security.

6.2.1 Remote State Preparation and Describable Resources

We first introduce, based on the standard definitions of the Constructive Cryptography

framework, the notions of correctness and security for a two-party protocol between

an honest Client and a malicious Server, which constructs (realizes) a resource from a

classical channel resource C .

Definition 6.2.1 (Classically-Realizable Resource). An ideal resource S is said to be ε-

classically-realizable if it is realizable (in the sense of Definition 2.5.1) from a classical

channel, i.e. if there exists a protocol π = (πA,πB) between two parties (interacting

classically) such that:

C π−→
ε

S (6.1)

A simple ideal prototype capturing the goal of RSP can be phrased as follows: the

resource outputs a quantum state (chosen at random from a fixed set of states) on one

interface to the Server and the classical description of that state on the other interface

to the Client. However, for our purposes this view is too narrow and we would like to

generalize this definition of the resource. For instance, a resource could accept some

input from the Client or could interact with the server and still be powerful enough to

comply with the above described basic behaviour, when both Client and Server follow

the protocol.

For this reason, we would like to capture than any resource can be categorized as an

RSP resource as soon as there exists a way to efficiently convert the Client and Server

interfaces to comply with the basic prototype. To formalize, this we would need to

introduce the following converters that will ensure this:

6.2. Impossibility of Composable Classical RSP 145

1. Converter A will output (to the Client), after interacting with the ideal resource2,

a classical description [ρ] which is one of the following:

(a) A density matrix corresponding to a quantum state ρ.

(b) The null matrix, in order to denote the fact that we detected some deviation

that should not happen in an honest run.

2. A converter Q , whose goal is to output (to the Server) a quantum state ρ′ as close

as possible to the state ρ output by A .

3. A converter P , whose goal is to output a classical description [ρ′] of a quantum

state ρ′ which is on average “close”3 to ρ.

An RSP must meet 2 central criteria:

1. Accuracy of the classical description of the obtained quantum state. More specif-

ically, we require that the quantum state ρ described by A’s output to be close to

Q ’s output ρ′, in terms of trace distance.

2. Purity of obtained quantum state. Since the RSP resource aims to replace a

noise-free quantum channel, it is desirable that the quantum state output by Q to

admit a high degree of purity, i.e. that trace of ρ′2 to be close to 1. Since ρ′ is

required to be close to ρ, this implies a high purity of ρ as well.

These 2 conditions on the states ρ and ρ′ can be unified and equivalently captured

by requiring that the quantity Tr(ρρ′) to be close to 1 as shown in Lemma C.1.3.

We can also gain a more information theoretical intuition of RSP by considering

that an RSP resource together with the converters A and Q) can be understood not only

as a box that produces a quantum state together with its description, but also a box who

accuracy can be easily and precisely tested. For example, if such a box produces a state

ρ′ and claims that the description of that state corresponds to a quantum state |φ〉 (i.e.

[ρ] = [|φ〉〈φ|]), then the natural way to test the box, would be to measure ρ′ by doing a

projection on |φ〉. This test will pass with probability ps = 〈φ|ρ′ |φ〉, and thus if the box

is perfectly accurate (i.e. if ρ′= |φ〉〈φ|), the test will always succeed. On the other hand,

2A is allowed to interact with the ideal resource in a non-trivial manner. However, A will often be

the trivial converter in the sense that it simply forwards the output of the ideal resource to the Client, or

– when the resource waits for a simple activation input – picks some admissible value as input to the

ideal resource and forwards the obtained description to its outer interface.
3The closeness is defined in the same way in the two cases corresponding to Q and P

146Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

when ρ′ is far from the state |φ〉〈φ| , this test is very unlikely to pass and we will have

ps much smaller than 1. We can then generalise this testing for arbitrary (eventually

non-pure) states 4 by remarking that ps = 〈φ|ρ′ |φ〉 = Tr(|φ〉〈φ|ρ′) = Tr(ρρ′). This

last expression corresponds to 5 the probability of outputting 0 when measuring the

state ρ′ according to the POVM described by the measurement operators E0 := ρ and

E1 = I− ρ. Since the classical description of ρ is known, then it is also possible to

perform this POVM and test the average accuracy of our box. This further intuition

motivates the following definition for general RSP resources.

Definition 6.2.2 (RSP resource). A resource S is said to be a remote state preparation

resource within ε with respect to converters A and Q if the following conditions hold:

1. Converters A and Q output a single message at the outer interface, where the

output [ρ] of A is classical and is either a density matrix or the null matrix, and

the output ρ′ of Q is a quantum state;

2. The following accuracy relation is satisfied:

E
([ρ],ρ′)←AS`Q

[Tr
(
ρρ
′)]≥ 1− ε (6.2)

where the probability is taken over the randomness of A , S and Q

3. For all the possible outputs [ρ] of ([ρ],ρ′) ← AS ` Q , if we define E0 = ρ,

E1 = I−ρ, then the POVM {E0,E1} must be efficiently implementable6 by any

distinguisher.

In the remaining of the chapter, when we speak of an RSP resource S, this has to

always be interpreted in a context where converters A and Q are fixed.

Additionally, to provide some intuition on the generality of this definition, the 2 con-

verters would also allow us to define as an RSP: i) a resource in which the Client is

sending the description of the state to the resource, where converter A will forward

this description from its right interface to its left interface, or ii) a more complex and

4While we emphasized that the relevant RSP resources are the ones with high purity of the produced

quantum states, our main result regarding the characterization of RSP resources hold also when the

underlying quantum state is mixed (hence for any quantum state).
5This expression measuring the closeness between the states is also equal to the squared fidelity

between ρ and ρ′, when ρ is pure.
6We could also define a similar definition when it suffices that the POVM can to be approximated

(for example because the distinguishers can only perform quantum circuits using a finite set of gates) and

the results would be similar, up to this approximation, but for simplicity we will stick to this definition.

6.2. Impossibility of Composable Classical RSP 147

interesting example would be the classical client UBQC functionality which we will

see in the next section on how it can be turned into an RSP resource.

Describable resources. We have defined that a resource qualifies as an RSP, if when

both Client and Server follow the protocol, we know how to obtain a quantum state on

the right interface and a classical description of a close state on the left interface. A

security-related question is whether it is also possible to extract, possibly in an inef-

ficient manner, from the right interface a classical description of a quantum state that

is close to the state described by the output of Client. If there exists a converter P
achieving this, we call the RSP resource describable. We formalize this as follows.

Definition 6.2.3 (Describable Resource). Let S be a resource and A a converter out-

putting a single classical message [ρ] on its outer interface (either equal to a density

matrix or the null matrix). Then we say that (S ,A) is ε-describable (or, equivalently,

that S is describable within ε with respect to A) if there exists a (possibly inefficient)

converter P (outputting a single classical message [ρ′] on its outer interface represent-

ing a density matrix) such that:

E
([ρ],[ρ′])←ASP

[Tr
(
ρρ
′)]≥ 1− ε (6.3)

(the expectation is taken over the randomness of S , A and P).

Reproducible converters. To show our first main result about the characterization

of RSP resources we will encounter a crucial decoding step. The core of this decoding

element is the ability to convert the classical the classical interaction between Server

and Client - which can be seen as an encoding of the quantum state - back into an

explicit classical representation of the state prepared by the Server. More formally,

this can be phrased in the following definition.

Definition 6.2.4 (Reproducible Converter). A converter π that outputs (on the right

interface) a quantum state ρ is said to be reproducible if there exists a (possibly ineffi-

cient) converter π̃ such that:

1. The outer interface of π̃ outputs only a classical message [ρ′]

2. The converter π is perfectly indistinguishable from π̃ against any unbounded dis-

tinguisher D, up to the conversion of the classical messages [ρ′] into a quantum

state ρ′. More precisely, if we denote by T the converter that takes as input on

148Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

its inner interface a classical description [ρ′] of a quantum state and outputs that

quantum state ρ′, we have (as shown in Figure 6.3):

Cπ≈D
0 C π̃T (6.4)

Figure 6.3: Reproducible converter π

Next, we will prove that whenever we have only classical communication, it is

always possible to extract (in exponential time) the exact description of the state from

the classical transcript and the quantum instruments (circuit) used to implement the

actions of the converter. We recall from Definition 2.1.2 that a quantum instrument is

a generalization of the CPTP map allowing for both a quantum and classical output.

In the proof of this result we consider that π interacts classically with the inner interface

and then outputs a quantum state on the outer interface. In this way, we can decompose

π, as depicted in Figure 6.4, using the notation:

π := (πi)i (6.5)

Figure 6.4: Representation of an interactive protocol π into a sequence of quantum

instruments.

Each πi is associated to a round of communication and we denote with (yi,ρi+1)←
πi(xi,ρi) the output of i-th round, where xi ∈ {0,1}li is a classical input message re-

ceived from the inner interface, ρi and ρi+1 are the internal quantum state before and

6.2. Impossibility of Composable Classical RSP 149

respectively after round i and yi ∈ {0,1}l′i ∪⊥ is a classical message sent by π to the

inner interface, when yi 6=⊥. Before the first round, we will set ρ0 = (1), which is the

trivial density matrix of dimension 1. Moreover when yi =⊥ this represents that we do

not send any message anymore to the inner interface (the last round of communication)

and instead we send ρi+1 to the outer interface and stop the protocol. Note that if we

want to let π send the first message instead of receiving it, we can simply set x0 = ⊥,

and similarly if the last message is in fact sent instead of received, we can add one

more round where we set xn+1 =⊥.

Now, we can finally show that a party producing a quantum state at the end of a proto-

col with exclusively classical communication, is reproducible.

Lemma 6.2.5. Let π = (πi)i be a converter such that:

1. π receives and sends only classical messages from the inner interfaces;

2. π outputs at the end a quantum state on the outer interface;

3. Each πi is a quantum instrument;

Then π is reproducible.

Proof. The intuition behind the proof is to argue that because the only interations of

π are classical as seen in Figure 6.4 , the internal state of π can always be simulated

(computed) in exponential time manually.

More precisely, for any i, as πi is a quantum instrument (Definition 2.1.2) there

exists a set of maps {Eyi} such that:

• Tr
(
∑yi(ρ)

)
= Tr(ρ) for any quantum state ρ;

• If we denote by ρyi =
Eyi(ρ)

Tr(Eyi(ρ))
, then we have:

Pr[π(ρ) = (yi,ρyi)] = Tr(Eyi(ρ)) for any state ρ (6.6)

And because for every yi, Eyi is completely positive, there exists a finite set of matrices

{B(i,yi)
k }k, known as Kraus operators, such that for all ρ, we can decompose the action

of Eyi as:

Eyi(ρ) = ∑
k

B(i,yi)
k ρB(i,yi)†

k (6.7)

150Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

By choosing the state ρ := |xi〉〈xi| ⊗ρi, from Eq.6.6, we obtain that with probability

pyi = Tr(Eyi(|xi〉〈xi|⊗ρi)) we have:

πi(xi,ρi) = (yi,Eyi(|xi〉〈xi|⊗ρi)) (6.8)

= (yi,∑
k

B(i,yi)
k (|xi〉〈xi|⊗ρi)B

(i,yi)†
k︸ ︷︷ ︸

ρi+1

) (6.9)

We remark that if we know [ρi], the elements of the density matrix ρi, then we can sim-

ulate the output probability distribution of π, by determining for all yi the probability

pyi of outputting yi and the corresponding state description [ρi+1] (the coefficients of

the density matrix ρi+1), by just doing the above classical computation. Therefore, to

construct the converter π̃ we do the following:

• For every i, we construct π̃i, which given an input (xi, [ρi]) will output (yi, [ρi+1])

with probability pyi using the formula in Eq.(6.9);

• We define π̃ as π̃ = (π̃i)i, with [ρ0] = (1).

As a result, we trivially have Cπ ≈0 C π̃T even against unbounded distinguishers, as

π̃ is exactly simulating π, except that the representation of the quantum states in π̃ are

matrices, while in π they are actual quantum states. Hence, by adding the converter T
turning [ρi] into ρi on the outer interface we obtain Cπ≈0 C π̃T .

6.2.2 Classically-Realizable RSP are Describable

Now we are able to show our main result about RSP resources, which interestingly

links a constructive computational notion (composability) with an information theo-

retic property (describability).

This directly implies the impossibility result regarding the existence of non-describable

RSPCC composable protocols secure against bounded quantum polynomial-time dis-

tinguishers. While this no-go does not rule out all the possible RSP resources, it shows

that the “useful” RSP resources are impossible. This is because the describability

property is usually not a desirable property, as it implies that an unbounded adversary

could learn the description of the state he received from an ideal resource. To illustrate

the implication of this theorem, we will show in subsection 6.2.3 the impossibility of

classical protocols implementing specific RSP resources and in subsubsection 6.2.4.1

we will see examples of “imperfect” resources escaping the impossibility result.

6.2. Impossibility of Composable Classical RSP 151

Theorem 6.2.6 (Classically-Realizable RSP are Describable). If an ideal resource

S is both an ε1-remote state preparation with respect to some A and Q and ε2-

classically-realizable (including against only polynomially bounded distinguishers),

then it is (ε1 +2ε2)-describable with respect to A . In particular, if ε1 = negl (n) and

ε2 = negl (n), then S is describable within a negligible error ε1 +2ε2 = negl (n).

Proof. Let S be an ε1-remote state preparation with respect to some converters A
and Q which is also ε2-classically-realizable. Then from Definition 6.2.2 and Defi-

nition 6.2.1, there exist πA,πB and simulator σ such that:

E
([ρ],ρ′)←AS`Q

[Tr
(
ρρ
′)]≥ 1− ε1 (6.10)

πACπB ≈ε2 S ` (6.11)

and

πAC ≈ε2 Sσ (6.12)

From Eq.(6.11), we also have:

AπACπBQ ≈ε2 AS ` Q (6.13)

In other words we cannot distinguish between AS ` Q and AπACπBQ with an advan-

tage better than ε2 (i.e. with probability better than 1
2(1+ ε2)).

But consider the following efficient distinguisher:

1. Runs ([ρ],ρ′)← AS ` Q ;

2. Then measures ρ′ using the POVM {E0,E1}, where E0 = ρ and E1 = I − ρ

(which is efficient to perform from the definition of remote state preparation);

Then, from Eq.(6.10), distinguisher will obtain outcome 0 (corresponding to E0) with

probability at least 1− ε1.

This means that by replacing AS ` Q with AπACπBQ , the probability to obtain out-

come 0 (E0) when ([ρ],ρ′)← AπACπBQ , should also be close to 1− ε1. More pre-

cisely, we can show that we must have:

E
([ρ],ρ′)←AπACπBQ

[Tr
(
ρρ
′)]≥ 1− ε1− ε2 (6.14)

Assume by contradiction that the above probability is less than 1− ε1− ε2.

Then we can construct a distinguisher D to distinguish between AS `Q and AπACπBQ .

Essentially, D is defined as above: will simply measure the state ρ′ using POVM

152Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

{E0,E1}. Then D will output the measurement outcome (0 for E0 and 1 for E1). Then,

by denoting measurement outcome with m and the case AS `Q with a= 0 and the case

AπACπBQ with a = 1, the probability of D to distinguish AS ` Q from AπACπBQ is

equal to:

Pr[m = a] = Pr[m = a |a = 0] ·Pr[a = 0]+Pr[m = a |a = 1] ·Pr[a = 1] (6.15)

=
1
2

E
([ρ],ρ′)←AS`Q

[Tr
(
ρρ
′)]+ 1

2
E

([ρ],ρ′)←AπACπBQ
[Tr
(
(I−ρ)ρ′

)
] (6.16)

>
1
2
((1− ε1)+1− (1− ε1− ε2)) (6.17)

=
1
2
(1+ ε2) (6.18)

Therefore, distinguisher D has an advantage greater than ε2, which is in contradiction

with Equation 6.13.

Now, from Eq.(6.12), we also have:

AπACπBQ ≈ε2 ASσπBQ (6.19)

Similarly, we will construct a distinguisher D ′ between AπACπBQ and ASσπBQ : gets

([ρ],ρ′) and measures ρ′ with POVM E0,E1 and outputs the measurement outcome. As

before this would imply that:

E
([ρ],ρ′)←ASσπBQ

[Tr
(
ρρ
′)]≥ E

([ρ],ρ′)←AπACπBQ
[Tr
(
ρρ
′)]− ε2 ≥ 1− ε1−2ε2 (6.20)

We will now use the converter πBQ to construct a B that can describe the state

given by the ideal resource S . Because πBQ interacts only classically with the inner

interface (with the simulator σ) and outputs a quantum state on the outer interface, then

using Lemma 6.2.5, this implies that πBQ is reproducible. This means that there exists

an inefficient converter B such that:

CπBQ ≈0 CBT (6.21)

Therefore, we also have in particular ASσCπBQ ≈0 ASσC BT , and because C is a

neutral resource we can remove C , which implies:

E
([ρ],ρ′)←ASσBT

[Tr
(
ρρ
′)]≥ 1− ε1−2ε2 (6.22)

But because T simply converts the classical description [ρ′] into ρ′, we also have:

E
([ρ],[ρ′])←ASσB

[Tr
(
ρρ
′)]≥ 1− ε1−2ε2 (6.23)

6.2. Impossibility of Composable Classical RSP 153

Finally, by defining the converter P as P := σB , we obtain that (S ,A) is (ε1 + 2ε2)-

describable (where P is the converter describing the quantum state), which concludes

the proof.

6.2.3 RSP Resources Impossible to Realize Classically

In the previous section we show that if an RSP functionality is classically-realizable

(secure against polynomial quantum distinguishers), then this resource is describable

by an unbounded adversary having access to the right interface of that resource.

This main result directly implies that as soon as there exists no unbounded adver-

sary that, given access to the right interface, can find the classical description given

on the left interface, then the RSP resource is impossible to classically realize (against

bounded BQP distinguishers). Very importantly, this no-go result shows that the only

type of RSP resources that can be classically realized are the ones that leak on the right

interface enough information to allow an (possibly unbounded) adversary to determine

the classical description given on the left interface. From a security point of view, this

property is highly non-desirable, as the resource must leak the secret description of the

state at least in some representation.

We now present some examples of RSP resource impossible to classically realize.

Definition 6.2.7 (Ideal Resource SZ π

2
). SZ π

2
is the verifiable RSP resource (RSP which

does not allow any deviation from the server), that receives no input, that internally

picks a random θ← Zπ

2 , and that sends θ on the left interface, and |+θ〉 on the right

interface as shown in Figure 6.5.

θ← Z
π

2

SZ π

2

θ |+θ〉

Figure 6.5: Ideal resource SZ π

2

Lemma 6.2.8. There exists a universal constant η > 0, such that for all 0≤ ε < η the

resource SZ π

2
is not ε-classically-realizable.

Proof. The impossibility proof at its core will be a consequence of quantum no-cloning.

154Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

We begin with defining A(θ) := [|+θ〉〈+θ|] (A just converts θ into its classical

density matrix representation) and Q the trivial converter that just forwards any mes-

sage from its inner to its outer interface. Then we have that SZ π

2
is a 0-remote state

preparation resource with respect to A and Q as:

E
([ρ],ρ′)←ASZ π

2
`Q

[]Tr
(
ρρ
′)] = 1

4 ∑
θ∈Z π

2

Tr(|+θ〉〈+θ| |+θ〉〈+θ|) = 1≥ 1−0 (6.24)

Then, we will show that there exists a constant η > 0 such that for all δ < η, SZ π

2

is not δ-describable with respect to A .

We first prove that SZ π

2
is not 0-describable with respect to A . We prove this by

contradiction, hence assuming that there exists a converter P such that:

E
([ρ],[ρ′])←ASZ π

2
P
[Tr
(
ρρ
′)] = 1 (6.25)

But then, because ρ = |+θ〉〈+θ| is a pure state, Tr(ρρ′) corresponds to the fidelity

of ρ and ρ′, so Tr(ρρ′) = 1⇔ ρ = ρ′. However this is impossible because P just

has a quantum state ρ as input, and if he can completely describe this quantum state

then he can actually clone perfectly the input state with probability 1. But because

the different possible values of ρ are not orthogonal, this is impossible due to the no-

cloning theorem.

This tells us that the resource SZ π

2
cannot be 0-classically-realizable. Specifically, if we

assume by contradiction that SZ π

2
is 0-classically-realizable and since SZ π

2
is a 0-remote

state preparation, then from Theorem 6.2.6, we would have that SZ π

2
is 0-describable,

reaching a contradiction.

What we want to show is something stronger, namely that SZ π

2
is not negl (n)-

classically realizable.

From the optimality of quantum no-cloning [SIGA05, FWJ+14] we also know we

cannot produce two copies of ρ with a fidelity arbitrary close to 1.

Therefore, there exists a constant η > 0, such that:

E
([ρ],[ρ′])←ASZ π

2
P
[Tr
(
ρρ
′)]< 1−η (6.26)

Now, by contradiction, we assume that SZ π

2
is ε-classically-realizable. Because

limn→∞ ε(n) = 0, there exists N ∈ N such that ε(N)< η/2.

Therefore, using Theorem 6.2.6, SZ π

2
is 0+2ε(N)-describable with respect to A . From

the definition of describability this is equivalent to:

E
([ρ],[ρ′])←ASZ π

2
P
[Tr
(
ρρ
′)]≥ 1−2ε(N)> 1−η (6.27)

6.2. Impossibility of Composable Classical RSP 155

which contradicts Eq.(6.26) and completes our proof.

Next, we will describe the resource RSPV, a variant of SZ π

2
introduced in [GV19].

This resource differs from SZ π

2
in the following aspects: the adversary can make the

resource abort, the set of output states is larger and the client can choose the basis of

the output state.

As for SZ π

2
, we will show that classically-realizable RSPV cannot be achieved. Before

presenting the details of the no-go result, we formalize the ideal resource RSPV.

Definition 6.2.9 (Ideal Resource RSPV). The ideal verifiable remote state preparation

resource RSPV, takes an input W ∈ {X ,Z} on the left interface, and no input on the

right interface. The right interface has a filtered functionality that corresponds to a

bit c ∈ {0,1}. When c = 1, RSPV outputs error message ERR on both the interfaces,

otherwise:

1. If W = Z, resource picks a random bit b and outputs b to the left interface and

the state |b〉〈b| to the right interface;

2. If W = X, resource picks a random angle θ ∈ Zπ

4 and outputs θ to the left inter-

face and the quantum state |+θ〉〈+θ| to the right interface.

Corollary 6.2.10. There exists a universal constant η > 0, such that for all 0≤ ε < η

the resource RSPV is not ε-classically-realizable.

Proof. To show this we follow exactly the steps of the impossibility proof for SZ π

2
. The

main difference is that we need to address the abort case occurring when c = 1. To do

this, we will change the converter A as follows: A will pick W = X and will output to

the outer interface either the classical density matrix corresponding to ρ = |+θ〉〈+θ|,
when c= 0 or the null matrix ρ= 0 when c= 1 (ERR). Q remains as in the case of SZ π

2
,

the trivial converter. Now, it is easy to see that RSPV is a 0-remote state preparation

resource with respect to converters A and Q . Moreover, RSPV cannot be ε-describable

for arbitrary small ε, as when c = 1, we have ρ = 0 thus Tr(ρρ′) is 0. Hence, from

a converter P that can also input c = 1, we can always increase the quantity Tr(ρρ′),

by considering a new converter P ′ setting c = 0. Then, we are essentially back to the

setting of SZ π

2
, where we have a the set of states |+θ〉〈+θ| that are impossible to be

cloned with arbitrary small fidelity, which concludes the proof.

156Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

Remark 6.2.11. Note that our impossibility result for classical realization of RSPV

does not contradict the result of [GV19]. Specifically, their security analysis requires

an assumption of a “measurement buffer”7 resource in addition to the classical chan-

nel in order to construct RSPV. Our result shows that the measurement buffer resource

is a strictly non-classical assumption.

6.2.4 Characterization of RSP resources

The main result in Theorem 6.2.6 rules out all resources that are impossible to be

describable with unbounded power such as SZ π

2
or RSPV. More importantly, it tells

us the only type of classically-realizable RSP resources must be describable and hence

would be the ones leaking the full classical description of the output quantum state to

an unbounded adversary, which we will refer to as being fully-leaky RSP.

Fully-leaky RSP resources can be separated into two categories:

1. If the RSP is describable in quantum polynomial time, then the adversary can

learn the secret in polynomial time. This is obviously not an interesting case as

the security of protocols such as UBQC cannot be preserved if such a resource

is employed to prepare the quantum states.

2. If the RSP are only describable using unbounded power, then these fully-leaky

RSP resources are not trivially insecure, but their composable security remains

unclear. Indeed, it defeats the purpose of aiming at a proper ideal resource where

the provided security should be clear “by definition” and it becomes hard to

quantify how the additional leakage could be used when composed with other

protocols.

To complete the picture of RSP resources, we will next show an example of a

fully-leaky RSP denoted by RSP4−states,F
CC , describable only with unbounded power,

together with a protocol that realizes it. This resource is inspired from the Malicious

4-states QFactory presented in chapter 5 and this protocol will be precisely the example

realizing it. As a final remark, we emphasize that this category of leaky RSP resources

is not desirable: the resources are non-standard and it looks hard to write a modular

protocol with this resource as an assumed resource. Additionally, the resource is very

specific and mimics its implementation.
7This resource forces distinguisher to give the state he is supposed to measure to the simulator,

allowing the simulator to change the state given by the distinguisher with the state sent by the ideal

resource, without letting the distinguisher know.

6.2. Impossibility of Composable Classical RSP 157

6.2.4.1 Fully-Leaky RSP

Definition 6.2.12 (Ideal Resource RSP4−states,F
CC). Let F =(Gen,Enc,Dec) be a public-

key encryption scheme. Then, RSP4−states,F
CC is defined as depicted in Figure 6.6.

Specifically, B1 represents the basis bit of the output state, and is guaranteed to be

random even when the server on the right interface is malicious. B2 represents the

value bit of the output state when encoded in the basis B1, and in the malicious case

(c = 1) it can be chosen by the right interface, expressed through the deviation func-

tion D (as seen in Figure 6.6)8. The resource sends to the left interface the classical

description (B1,B2) and, in an honest run, sends to the right interface the quantum

state |ψ〉 := HB1XB2 |0〉.

Figure 6.6: Ideal resource RSP4−states,F
CC which prepares a BB84 state. The state |ψ〉 is

sent to the right interface only in the honest case (c= 0) and the dashed communication

is exchanged only in the dishonest case (c = 1).

Lemma 6.2.13. The Malicious 4-states QFactory protocol (Protocol 3) securely con-

structs RSP4−states,F
CC from a classical channel.

Proof. We define F based on the family of functions required for the construction of

Malicious 4-states QFactory, as described in subsection 5.3.2. Concretely, we have:

1. Gen(1n)→ (K, tK), where K is the function description and tK is the trapdoor

information;

8Note that for RSP4−states,F
CC the right interface (Server) can have in a malicious scenario full con-

trol over B2, but in the Malicious 4-states QFactory Protocol it is not clear what an adversary can do

concerning B2.

158Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

2. EncK(B1)→ y0, where y0 = Ks0 + e0 +B1 · v, where s0,e0 and v are chosen as

in subsection 5.3.2;

3. DectK(y0)→ B1 - using tK we can efficiently obtain B1 from y0

From the correctness of the QFactory protocol (πA,πB), shown in Theorem 5.2.2,

we have:

πACπB ≈ε RSP
4−states,F
CC ` (6.28)

for some negligible ε.

We now need to show that there exists a simulator σ such that:

πAC ≈ε′ RSP
4-states,F
CC σ (6.29)

Simulator σ is constructed as follows: sends c = 1 to the ideal resource, then for-

wards the message (K,y0) received from the resource to its outer interface and when

receiving the measurement outcomes (y,b) from the server (as in the real protocol) it

sets the deviation function D to be the same function as Client uses in πA to obtain B1.

As a result, we trivially have: πAC ≈0 RSP
4-states,F
CC σ, which concludes the proof.

6.3 Impossibility of Composable Classical-Client UBQC

In the previous section we showed that it is impossible to have a useful composable

RSPCC protocol. However, a weaker RSP protocol could still be used internally in

other protocols, with the aim that the overall protocol to be composably secure. To this

end, we analyze the composable security of a well-established delegated quantum com-

puting protocol, universal blind quantum computation (UBQC), proposed in [BFK09].

The UBQC protocol allows a quantum client, Alice, to delegate an arbitrary quantum

computation to a (universal) quantum server Bob, in such a way that her input, the

quantum computation and the output of the computation are information-theoretically

hidden from Bob. The protocol requires Alice to be able to prepare single qubits of the

form |+θ〉, where θ ∈ Zπ

4 and send these states to Bob at the beginning of the protocol,

the rest of the communication between the two parties being classical.

We define the family of protocols RSP8−states
CC as the RSP protocols that classically

delegate the preparation of an output state |+θ〉, where θ ∈ Zπ

4 . That is, without loss

of generality, we assume a pair of converters PA, PB such that the resource R := PACPB

has the behavior of the prototype RSP resource except with negligible probability. Put

differently, we assume we have an (except with negligible error) correct RSP protocol,

6.3. Impossibility of Composable Classical-Client UBQC 159

but we make no assumption about the security of this protocol. Therefore, we can

directly replace the quantum interaction with the RSP8−states
CC as indicated in the first

step of Protocol 7 presented below, and obtain a new protocol for the delegation of

quantum computations between a quantum server and an entirely classical client.

Protocol 7 UBQC with RSP8−states
CC ([BFK09])

• Client’s classical input: An n-qubit unitary U that is represented using the set of angles

{φ}i, j of a one-way quantum computation over a brickwork state/cluster state [MDF17],

of size n×m, along with the dependencies X and Z obtained via flow construction [DK06].

• Client’s classical output: The measurement outcome s̄ corresponding to the n-qubit

quantum state, where s̄ = 〈0|U |0〉.

1. Client and Server runs n×m different instances of RSP8−states
CC (in parallel) to obtain

θi, j on client’s side and
∣∣+θi, j

〉
on server’s side, where θi, j ← Zπ

4 , i ∈ {1, · · · ,n}, j ∈
{1, · · · ,m}

2. Server entangles all the qubits, n ·(m−1) received from RSP8−states
CC , by applying controlled-

Z gates between them in order to create a graph state Gn×m

3. For j ∈ [1,m] and i ∈ [1,n]

(a) Client computes δi, j = φ′i, j +θi, j + ri, jπ, ri, j ← {0,1}, where φ′i, j = (−1)sX
i, j φi, j +

sZ
i, jπ and sX

i, j and sZ
i, j are computed using the previous measurement outcomes and

the X and Z dependency sets. Client then sends the measurement angle δi, j to the

Server.

(b) Server measures the qubit
∣∣+θi, j

〉
in the basis {

∣∣∣+δi, j

〉
,
∣∣∣−δi, j

〉
} and obtains a mea-

surement outcome si, j ∈ {0,1}. Server sends the measurement result to the client.

(c) Client computes s̄i, j = si, j⊕ ri, j.

4. The measurement outcome corresponding to the last layer of the graph state (j = m) is

the outcome of the computation.

Note that Protocol 7 is based on measurement-based model of quantum computing

(MBQC). This model is known to be equivalent to the quantum circuit (up to polyno-

mial overhead in resources) and does not require one to perform quantum gates on their

side to realize arbitrary quantum computation. Instead, the computation is performed

by an (adaptive) sequence of single-qubit projective measurements that steer the infor-

mation flow across a highly entangled resource state. Intuitively, UBQC can be seen as

160Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

a distributed MBQC where the measurements are performed by the server whereas the

classical update of measurement bases is performed by the client. Since the projective

measurements in quantum physics, in general, are probabilistic in nature and therefore,

the client needs to update the measurement bases (and classically inform the server

about the update) based on the outcomes of the earlier measurements to ensure the

correctness of the computation. Roughly speaking, this information flow is captured

by the X and Z dependencies. For more details, we refer the reader to [RB01, Nie06].

In the remaining of the section we will show that the Universal Blind Quantum

Computing protocol, which is proven to be secure in the Constructive Cryptography

framework [DFPR14], cannot be composably secure, for the same ideal resource, when

the quantum interaction is replaced with a RSPCC protocol (this class of resulting pro-

tocols will be denoted as UBQCCC).

6.3.1 Impossibility of Composable UBQCCC on 1 Qubit

In order to show that there can exist no composable UBQCCC protocol, we will first

show the impossibility of a simpler setting, when the underlying quantum computation

(in UBQC) is described by a single measurement angle. The corresponding resource

that performs blind quantum computations on one qubit will be denoted by SUBQC1

and is defined as follows:

Definition 6.3.1 (Ideal resource of single-qubit UBQC). The ideal resource SUBQC1,

depicted in Figure 6.7, achieves blind quantum computation, where the computation is

specified by a single input angle φ. The input (ξ,ρ) is filtered when c = 0. ξ represents

any deviation (specified using the classical description of a CPTP map) outputting a

bit, and which can depend on the computation angle φ and on an arbitrary state ρ.

Theorem 6.3.2 (No-go composable classical-client single-qubit UBQC). Consider (PA,PB)

be a protocol interacting only using a classical channel C , such that the output of the

protocol is PA receiving classical output θ ∈ Zπ

4 and PB receiving quantum output

ρB (denoted as (θ,ρB)← (PAC)PB and such that the trace distance between ρB and

|+θ〉〈+θ| is negligible with overwhelming probability. Then if we define πA and πB as

the UBQC protocol on one qubit that makes use of (PA,PB) as a sub-protocol in order

to replace the quantum channel (as depicted in Figure 6.8), then the protocol (πA,πB)

cannot be composable, i.e. there exists no simulator σ such that:

πACπB ≈ε SUBQC1 `c=0

πAC ≈ε SUBQC1σ , where ε = negl (n)
(6.30)

6.3. Impossibility of Composable Classical-Client UBQC 161

Figure 6.7: Ideal resource SUBQC1 for UBQC with computation described by one angle

φ. In the case of honest server, the output s̄ ∈ {0,1} is computed by measuring the

qubits |+〉 in the {
∣∣+φ

〉
,
∣∣−φ

〉
} basis. On the other hand, if c = 1, any malicious be-

haviour of server can be captured by (ξ,ρ), i.e. the output s̄ is computed by applying

the CPTP map ξ on the input φ and on another auxiliary state ρ chosen by the server.

Figure 6.8: UBQC with RSP8−states
CC protocol (PA,PB) on one qubit computation, when

both Alice and Bob follow the protocol honestly (See Protocol 7). M±δ represents a

measurement in the basis {|+δ〉 , |−δ〉}.

Sketch of Proof. In order to show this no-go result, we will proceed with a proof by

contradiction. Let us assume there exists a protocol (PA,PB) and a simulator σ satis-

fying the above conditions. Then, for the same resource SUBQC1 we will consider a

different protocol π′ = (π′A,π
′
B) that realizes it, but using a different filter 9 `σ and a

different simulator σ′:

π
′
ACπ

′
B ≈ε SUBQC1 `σ (6.31)

π
′
AC ≈ε SUBQC1σ

′ (6.32)

9 Note that we could include this new filter `σ inside the SUBQC1 resource and then have the standard

filter `c=0, but for simplicity we will just use a different filter. Specifically, we could have defined a

functionality S ′UBQC1 that receives as input a bit c and if c = 0, then S ′UBQC1 behaves as the resource

SUBQC1 `σ and if c = 1 then it behaves as SUBQC1.

162Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

The new filter `σ will depend on the simulator σ required for the soundness of (πA,πB),

as seen in Eq.(6.30).

Then our full proof will follow the next steps:

1. We first prove in Lemma 6.3.4 that SUBQC1 is also ε-classically-realizable by

(π′A,π
′
B) using the filter `σ.

2. We then show in Lemma 6.3.5 that the resource SUBQC1 is an RSP within negl (n)

with respect to some well chosen converters A and Q (as depicted in Figure 6.10)

and the filter `σ.

3. Then we use our main result about the characterization of RSP (Theorem 6.2.6)

to deduce that SUBQC1 is describable within negl (n) with respect to converter A
(Corollary 6.3.6).

4. Finally, we prove that if SUBQC1 is describable, then we can achieve superluminal

signaling, concluding our contradiction proof (Lemma 6.3.8).

Now, let us first define the above mentioned protocol π′ and the corresponding filter

`σ, which we will show they classically-realize the SUBQC1 resource.

Definition 6.3.3 (π′). Consider the protocol π′ = (π′A,π
′
B) defined in the following way

(as depicted in Figure 6.9):

• π′A = πA

• π′B:

1. Runs PB and obtains a state ρB ≈ |+θ〉;

2. Computes the quantum state ρ̃ := RZ(−δ)ρB, using the angle δ received

from π′A;

3. Outputs s := 0 on its inner interface (to π′A) and the state ρ̃ on its outer

interface.

Then we define the corresponding filter as `σ:= σπ′B, where σ is the simulator corre-

sponding to π (Eq.(6.30)).

Lemma 6.3.4. If SUBQC1 is ε-classically-realizable by (πA,πB) with the filter `c=0 then

SUBQC1 is ε-classically-realizable by (π′A,π
′
B) with the filter `σ.

6.3. Impossibility of Composable Classical-Client UBQC 163

Figure 6.9: Protocol π′ = (π′A,π
′
B)

Proof. If SUBQC1 is ε-classically-realizable with `c=0 by (πA,πB), then as seen in The-

orem 6.3.2, we have:

πACπB ≈ε SUBQC1 `c=0 (6.33)

πAC ≈ε SUBQC1σ (6.34)

Now, we can show that SUBQC1 is ε-classically-realizable by (π′A,π
′
B), illustrated

in Figure 6.9, together with `σ, namely that there exists a simulator σ′ such that the

following 2 conditions are satisfied:

π
′
ACπ

′
B ≈ε SUBQC1 `σ

π
′
AC ≈ε SUBQC1σ

′
(6.35)

For the correctness condition by using the definitions of π′A and `σ and Eq.(6.34),

we have:

π
′
ACπ

′
B = πACπ

′
B = (πAC)π′B

≈ε (SUBQC1σ)π′B = SUBQC1(σπ
′
B)

= SUBQC1 `σ

(6.36)

For the security condition, we will define the simulator as σ′ := σ. Then, from

Eq.(6.34) we obtain:

π
′
AC = πAC ≈ε SUBQC1σ = SUBQC1σ

′ (6.37)

which concludes our proof.

Lemma 6.3.5. If SUBQC1 is negl (n)-classically-realizable with `c=0, then SUBQC1 is an

negl (n)-remote state preparation resource with respect to converters A and Q defined

in Figure 6.10, and the filter `σ.

164Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

Figure 6.10: Converters A and Q

Proof. Given the converters A and Q defined in Figure 6.10, to show that SUBQC1 is a

remote state preparation resource we need to prove that:

E
([ρ],ρ̃)←ASUBQC1`σQ

[Tr(ρρ̃)]≥ 1−negl (n) (6.38)

Firstly, using Lemma 6.3.4, we also have:

Aπ
′
ACπ

′
BQ ≈negl(n) ASUBQC1 `σ Q (6.39)

Now let us examine the real world Aπ′ACπ′BQ . Using the description of the proto-

col and of the 2 converters we have: s̄= 0⊕r = r and therefore the classical description

output of A is:

φ
′ = φ0 + s̄π =−φ+ rπ

And the corresponding state is ρ =
∣∣+φ′

〉〈
+φ′
∣∣= ∣∣+−φ+rπ

〉〈
+−φ+rπ

∣∣.
Then we analyze the output of Q on the rightmost interface. From the correctness

of the protocol (PA,PB), we have that the trace distance between ρB and |+θ〉〈+θ| is

negligible and as trace distance is preserved under unitary transformations, we also

have that: ρ̃ = RZ(−δ)ρBRZ(−δ)+ is negligibly close in trace distance to the state:

RZ(−δ) |+θ〉〈+θ|RZ(−δ)+ = |+θ−δ〉〈+θ−δ|
=
∣∣+−φ−rπ

〉〈
+−φ−rπ

∣∣ (from the definition of δ)

=
∣∣+−φ+rπ

〉〈
+−φ+rπ

∣∣= ∣∣+φ′
〉〈
+φ′
∣∣= ρ

As a result, we have:

E
([ρ],ρ̃)←Aπ′ACπ′BQ

[Tr(ρρ̃)]≥ 1−negl (n) (6.40)

Now, consider that:

E
([ρ],ρ̃)←ASUBQC1`σQ

[Tr(ρρ̃)] = 1− ε (6.41)

6.3. Impossibility of Composable Classical-Client UBQC 165

and we will need to show that ε = negl (n).

Using a similar argument to the one given in Theorem 6.2.6, we will define the

following distinguisher D to distinguish between the ideal ASUBQC1 `σ Q and the real

world Aπ′ACπ′BQ . More specifically, D will obtain ([ρ, ρ̃]) (from the real or ideal

world) and he will measure the state ρ̃ using the POVM {E0 = [ρ],E1 = I − [ρ]}.
Then D will output the measurement outcome 1−m (m = 0 - corresponding to E0

or m = 1 - corresponding to E1). Then the probability p of D to distinguish between

ASUBQC1 `σ Q (a = 0) and Aπ′ACπ′BQ (a = 1) can be computed as:

p = Pr[m = 1−a] =
1
2

Pr[m = 1−a|a = 0]+
1
2

Pr[m = 1−a|a = 1]

=
1
2

E
([ρ],ρ̃)←ASUBQC1`σQ

[Tr((I−ρ)ρ̃)]+
1
2

E
([ρ],ρ̃)←Aπ′ACπ′BQ

[Tr(ρρ̃)]

≥ 1
2
− 1

2
(1− ε)+

1
2
(1−negl (n)) =

1
2
+

1
2
(ε−negl (n))

(6.42)

But from Eq.(6.39) we know that the probability to distinguish between ASUBQC1 `σ Q
and Aπ′ACπ′BQ is at most 1

2(1+negl (n)).

Therefore, we must have p≤ 1
2(1+negl (n)), which implies that:

1
2
+

1
2
(ε−negl (n))≤ 1

2
(1+negl (n))

ε≤ 2negl (n)
(6.43)

Consequently, we obtain:

E
([ρ],ρ̃)←ASUBQC1`σQ

[Tr(ρρ̃)]≥ 1−negl (n) (6.44)

which concludes the proof.

Now, using our main Theorem 6.2.6 we obtain directly that if SUBQC1 is classically-

realizable and RSP with respect to the filter `σ, then it is also describable:

Corollary 6.3.6. If SUBQC1 is negl (n)-classically-realizable with respect to filter `c=0

then SUBQC1 is negl (n)-describable with respect to the converter A described above.

Lemma 6.3.7. Let Ω = {[ρi]} be a set of classical descriptions of density matrices,

such that for any 2 states ρi,ρ j whose descriptions [ρi], [ρ j] ∈Ω, we have: Tr
(
ρiρ j

)
≤

1−η.

166Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

We define the following rounding operation, that for any quantum state ρ̃ rounds ρ̃ to

the closest ρr, with [ρr] ∈Ω:

[ρr] := RoundΩ([ρ̃]) := argmax
[ρr]∈Ω

Tr(ρ̃ρr) (6.45)

Then, if we consider the random variables [ρ] and [ρ̃] satisfying: [ρ] ∈ Ω and

E
[ρ],[ρ′]

[Tr(ρρ̃)]≥ 1− ε, where η > 6
√

ε, the following relation must hold:

Pr
([ρ],[ρ̃])

[RoundΩ(ρ̃) = [ρ]]≥ 1−
√

ε (6.46)

In particular, if ε = negl (n), and η 6= 0 is a constant, Pr(RoundΩ([ρ̃]) = [ρ]) ≥ 1−
negl (n).

Proof. Using the fact that E
[ρ],[ρ′]

[Tr(ρρ̃)] ≥ 1− ε, we can apply Markov inequality for

the random variable 1−Tr(ρρ′) and obtain:

Pr
([ρ],[ρ̃])

[1−Tr(ρρ̃)≥
√

ε]≤ E[1−Tr(ρρ̃)]√
ε

Pr
([ρ],[ρ̃])

[Tr(ρρ̃)≤ 1−
√

ε]≤ 1−E[Tr(ρρ̃)]√
ε

≤ ε√
ε
=
√

ε

Pr
([ρ],[ρ̃])

[Tr(ρρ̃)≥ 1−
√

ε]≥ 1−
√

ε

(6.47)

Next, we will prove that if Tr(ρρ̃) ≥ 1−√ε, this implies that: RoundΩ([ρ̃]) = ρ.

In other words, we will show that if Tr(ρρ̃) ≥ 1−√ε then for any [ρi] ∈ Ω we have

Tr(ρiρ̃)≤ Tr(ρρ̃).

By contradiction, let us assume that there exists [ρi] ∈Ω, with ρi 6= ρ such that:

Tr(ρiρ̃)> Tr(ρρ̃)≥ 1−
√

ε

But using the transitivity bound of trace distance from Lemma C.1.4, we also have:

Tr(ρiρ)≥ 1−3(
√

ε+
√

ε) = 1−6
√

ε (6.48)

On the other hand, both [ρ] and [ρi] belong to Ω, so we also have:

Tr(ρiρ)≤ 1−η < 1−6
√

ε

which is a contradiction.

Therefore, using Eq.(6.47), we obtain:

Pr
([ρ],[ρ̃])

[RoundΩ([ρ̃]) = [ρ]]≥ 1−
√

ε (6.49)

which concludes the proof.

6.3. Impossibility of Composable Classical-Client UBQC 167

Lemma 6.3.8. SUBQC1 cannot be negl (n)-describable with respect to converter A .

Proof. Assume by contradiction that SUBQC1 is negl (n)-describable. Then there must

exist a converter P , whose output is a classical description [ρ̃] such that:

E
([ρ],[ρ̃])←ASUBQC1P

[Tr(ρρ̃)]≥ 1−negl (n) (6.50)

In the remaining we are going to use the converters A and P , together with the

ideal resource SUBQC1 to construct a 2-party setting that would achieve signalling,

which would complete our contradiction proof. More specifically, we will define a

converter D running on the right interface of the resource SUBQC1, which will succeed

in recovering the input φ0 chosen at random by A .

Figure 6.11: Construction of the signalling game between C and D, where the input of

C is φ0 and the output of D is φ′π = φ0 mod π.

As shown in Figure 6.11, by defining C as C := ASUBQC1 and D the converter

D :=P P ′, where P ′ will be formally defined later, then the game between the 2 players

can be described as follows: C chooses a random φ0 ∈ Zπ

4 and D needs to output

φ0 mod π. This is however impossible, as no message is sent from SUBQC1 to its right

interface (as can be observed in Figure 6.11), and thus no message is sent from C

to D. Consequently, guessing φ0 mod π is forbidden by the no-signalling principle

[GRW80].

Next we need to construct the converter P ′ allowing D to give the desired output

described above. First we define the set of classical descriptions Ω := {[|+θ〉〈+θ|] |θ∈
{0, π

4 , · · · , 7π

4 }}. For simplicity we will denote [|+θ〉〈+θ|] by [θ].

Then, we can define P ′ as:

• Given [ρ̃] received from the P , compute [φ̃] := RoundΩ([ρ̃]);

• Output φ′π := φ̃ mod π.

168Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

To show that D can win the above game, we now need to prove that the output of

P ′, φ′π, is equal to φ0 mod π with overwhelming probability.

Let us first examine the first operation of P ′. Consider 2 different state descriptions

from Ω: [ρi] = [θi] and [ρ j] = [θ j]. Then we have:

Tr
(
ρiρ j

)
= Tr

(
|+θi〉〈+θi|

∣∣+θ j

〉〈
+θ j

∣∣)
= Tr

(
|
〈
+θi

∣∣+θ j

〉
|2
)
= |
〈
+θi

∣∣+θ j

〉
|2

=
1
4
|1+ ei(θ j−θi)|2 = 1

2
(1+ cos(θi−θ j))

(6.51)

Therefore, there exists a constant η > 0 such that: Tr
(
ρiρ j

)
≤ 1−η. Additionally,

from Eq.(6.50), we have that SUBQC1 is ε-describable with ε = negl (n), hence we also

have (for sufficiently large n) that η > 6
√

ε. Consequently, by applying Lemma 6.3.7

we have that:

Pr
([ρ],[ρ̃])←ASUBQC1P

[RoundΩ([ρ̃]) = [ρ]]≥ 1−
√

ε = 1−negl (n) (6.52)

But using the definition of converter A we have that [ρ] = [φ′] and φ′ = φ0 + s̄π

and hence φ′ mod π = φ0 mod π. Finally, by using the definition of P ′, the Eq.(6.52)

becomes equivalent to:

Pr
([ρ],φ′π)←ASUBQC1P P ′

[φ′π = φ0 mod π]≥ 1−negl (n) (6.53)

Putting things together, we have obtained a game between C = ASUBQC1 and

D = P P ′, where as explained above, C picks a random φ0 ∈ Zπ

4 and D needs to output

φ0 mod π. From Eq.(6.53), we have obtained that D can win this game with over-

whelming probability, however, since there is no information transfer from C to D,

winning this game with probability better than 1/4 (guessing the 2 bits of φ0 mod π

uniformly at random) would imply signalling.

6.3.2 Impossibility of Composable General UBQCCC

From Theorem 6.3.2, we know that it is impossible to implement a composable clas-

sical client UBQC protocol performing a computation consisting of a single qubit.

In this last section, we prove that this no-go result generalizes to the impossibility of

UBQCCC on computations using an arbitrary number of qubits. To show this we will

reduce the general setting to the single-qubit case.

6.3. Impossibility of Composable Classical-Client UBQC 169

Definition 6.3.9 (Ideal Resource general UBQC). The ideal resource SUBQC achieves

blind quantum computation, where the computation is specified by a set of angles

{φi, j}i∈{1,··· ,n}, j∈{1,··· ,m}. The ideal resource is defined similar to SUBQC1 with the dif-

ference that in the honest run, the resource performs an MBQC computation described

by angles {φi, j}i, j and the output on the left interface represents the classical outcome

of the computation.

Theorem 6.3.10 (No-go Composable Classical-Client UBQC). Let (PA,PB) be a proto-

col interacting only through a classical channel C such that (θ,ρB)← (PACPB) where

θ ∈ Zπ

4 and such that the trace distance between ρB and |+θ〉〈+θ| is negligible with

overwhelming probability.

If we define (πG
A ,π

G
B) as the UBQC protocol on any quantum computation (de-

scribed by a graph G), that uses (PA,PB) as a sub-protocol to replace the quantum

channel, then (πG
A ,π

G
B) is not composable secure, i.e. there exists no simulator such

that:

π
G
A Cπ

G
B ≈ε SUBQC `c=0

π
G
A C ≈ε SUBQCσ

(6.54)

for ε = negl (n).

Proof. We will show that we can reduce this to the setting of a single qubit, specifically

where the computation is described by a single angle φ (Theorem 6.3.2).

As the graph G describing the target computation consists of at least one output

qubit, we will denote by w the index of the last output qubit. The main idea is to con-

sider a distinguisher between the real and ideal world that would conveniently choose

the client’s input in the following way: for every node i∈G, we choose φi := 0 if i 6= w

and φi := φ if i = w.

Then on the right interface (server’s side), the distinguisher will behave like the honest

πG
B , except that he will not entangle the qubits produced by the sub-protocol (PA,PB).

Finally, for the output qubit ρw, instead of measuring it, he will send s := 0 on the

left interface, and he will rotate the qubit with angle −δw, ρ̃w = RZ(−δw)ρw and will

output ρ̃w, exactly as π′B in the single-qubit case.

Then it is easy to observe that for every qubit i 6= w, we have that the angle δi (received

by distinguisher from the right interface corresponding to the client) is: δi := θi + riπ

(as the qubits are not entangled and φi = 0). As a result, the distinguisher by mea-

suring |+θi〉 in the basis {|+δ〉 , |+δ〉}, obtains: MZHRZ(−δi) |+θi〉= MZH |riπ〉= |ri〉.

170Chapter 6. Security Limitations of Classical Client Delegated Quantum Computing

Therefore, we also have that s̄i = ri⊕ ri = 0. Additionally, for all nodes i, includ-

ing w, we have that the dependency from previous measurements sX
i and sZ

i will be:

sX
i = ⊕ j∈DX

i
s̄ j = 0 and sZ

i = ⊕ j∈DZ
i
s̄ j = 0 (where DX

i and DZ
i are the X and Z depen-

dency sets, as described in Protocol 7). Therefore, for the output node w we have that

the angle received by distinguisher is:

δw = θw +(−1)sX
w φw + sZ

wπ+ rwπ = θw +φ+ rwπ (6.55)

Consequently, we have reached exactly the single-qubit setting (as shown in Figure 6.9,

where the computation is described by a single angle φ, which we have proved is

impossible.

Chapter 7

Conclusions

The current dissertation studies the problem of secure delegation of quantum computa-

tions between a fully classical honest client and a quantum untrusted server (CSDQC).

Our results can be summarizes as follows:

• Chapter 3 ([ACGK19]): We show that achieving information-theoretic secure

delegation of quantum computations between a fully classical client and a quan-

tum server is implausible, by showing certain complexity theoretic implications.

• Chapter 4 ([CCKW18]): We provide a solution for the CSDQC problem under

post-quantum computational security. Our solution is based on constructing a

remote state preparation primitive. However, this first candidate is only secure

in the honest-but-curious framework.

• Chapter 5 ([CCKW19]): We present a second construction for a remote state

preparation with improved security, namely achieving security against malicious

adversary. Both constructions rely on the same cryptographic primitive of trap-

door functions, which in turn rely on the learning-with-errors problem.

• Chapter 6 ([BCC+20]): We examine the composability property of the remote

state preparation primitive in a general context, but also when used as a sub-

module for the task of secure delegation of quantum computations.

Given the need for a practical solution for the CSDQC problem in order to exploit the

full potential of quantum computers, a key next step is represented by the optimisation

of the proposed schemes and bringing our theoretical results close to practice. Sec-

ondly, another future work would be investigating the use of our proposed primitive -

the classical remote state preparation - as a sub-protocol in different communication

and computation protocols, such as in the quantum multiparty computation setting

[CCKM20].

171

Appendix A

App: HBC−QFactory

A.1 Full proof of Theorem 4.4.4

Proof. From Eq. (4.12) we have the definition of B̃ in terms of the three corresponding

bits and we aim to prove that it is hard-core, i.e. that Eq. (4.14) is satisfied. We will

follow the five steps outlined in the main text. Before that let us define some simple

identities that will be used. For any a,b,d,e ∈ N, we have:

(a+b) mod 8 = (a mod 8+b mod 8) mod 8 (I1)

[(a+b) mod 8] mod 4 = (a mod 4+b mod 4) mod 4 (I2)

[(a+b) mod 4] mod 2 = (a mod 2+b mod 2) mod 2 (I3)

(2a) mod 4 = 2 · (a mod 2) (I4)

(2a) mod 8 = 2 · (a mod 4) (I5)

(2d + e) mod 4− e mod 2 = [2d + e− (e mod 2)] mod 4 (I6)

(2d + e) mod 8− e mod 2 = [2d + e− (e mod 2)] mod 8 (I7)

We now return to Eq. (4.12):

B̃ = g(x− x′) =
n

∑
i=1

(xi− x′i)(4bi +αi) mod 8

where B̃ = B̃1B̃2B̃3, with B̃ j ∈ {0,1}. We also define x̃ = x⊕ x′ ∈ {0,1}n and

z ∈ {−1,0,1}n be the vector defined as: zi = xi− x′i = (−1)x′i x̃i , ∀ i ∈ {1,2, ...,n}.

172

A.1. Full proof of Theorem 4.4.4 173

Step 1: We will rewrite this expression in terms of single bits and obtain the expression

of Eq. (4.14). We have g(z) =
n
∑

i=1
zi(4bi +αi) mod 8, or equivalently:

4B̃1 +2B̃2 + B̃3 =

[(
4

n

∑
i=1

zibi

)
mod 8+

(
n

∑
i=1

ziαi

)
mod 8

]
mod 8

We define the following terms: αi = 4α
(1)
i +2α

(2)
i +α

(3)
i , where α

(1)
i ,α

(2)
i ,α

(3)
i are the

3 bits of αi and α(j) ∈ {0,1}n are the vectors consisting of the j-th bit of all values αi,

∀i ∈ {1,2, ...,n}, j ∈ {1,2,3};

S0 =
n

∑
i=1

zibi ; S1 =
n

∑
i=1

ziα
(1)
i

S2 =
n

∑
i=1

ziα
(2)
i ; S3 =

n

∑
i=1

ziα
(3)
i

We also notice that under mod 2, we have that:

S j mod 2 =
n

∑
i=1

x̃iα
(j)
i mod 2 = 〈x̃,α(j)〉 mod 2 , for j ∈ {1,2,3}.

Then, we have:

4B̃1 +2B̃2 + B̃3 = (
n
∑

i=1
(xi− x′i)(4bi +αi)) mod 8 =[

4S0 +
n
∑

i=1
(xi− x′i)(4α

(i)
1 +2α

(i)
2 +α

(i)
3)

]
mod 8

4B̃1 +2B̃2 + B̃3 = (4S0 +4S1 +2S2 +S3) mod 8 (A.1)

Applying mod 2 to Eq. (A.1), we get:

B̃3 = (4S0 mod 2+4S1 mod 2+2S2 mod 2+S3 mod 2) mod 2

B̃3 = S3 mod 2 = 〈x̃,α(3)〉 mod 2 (A.2)

If, instead we apply mod 4 to Eq. (A.1), we get:

2B̃2 + B̃3 = [4S0 mod 4+4S1 mod 4+2S2 mod 4+S3 mod 4] mod 4

2B̃2 + B̃3 = [(2S2) mod 4+S3 mod 4] mod 4. Using I4, we have:

2B̃2 + B̃3 = [2(S2 mod 2)+S3 mod 4] mod 4

174 Appendix A. App: HBC−QFactory

B̃2 =
1
2
{[2(S2 mod 2)+S3 mod 4] mod 4−S3 mod 2}. Using I6:

B̃2 =
1
2
[2(S2 mod 2)+S3 mod 4−S3 mod 2] mod 4

B̃2 =
1
2

{
2 ·
[
(S2 mod 2)+

(S3 mod 4−S3 mod 2)
2

]}
mod 4. Using I4, we obtain:

B̃2 =

[
S2 mod 2+

(S3 mod 4−S3 mod 2)
2

]
mod 2.

B̃2 = S2 mod 2⊕
(

S3 mod 4−S3 mod 2
2

)

B̃2 = 〈x̃,α(2)〉 mod 2⊕
(

S3 mod 4−S3 mod 2
2

)
(A.3)

Finally, we can derive B̃1:

B̃1 =
1
4 {(4S0 +4S1 +2S2 +S3) mod 8− (S3 mod 2)−

2
[(

S2 mod 2+ (S3 mod 4−S3 mod 2)
2

)
mod 2

]}
Using I7:

B̃1 =
1
4 {(4S0 +4S1 +2S2 +S3− (S3 mod 2)) mod 8−

2
[(

S2 mod 2+ (S3 mod 4−S3 mod 2)
2

)
mod 2

]}
Using I5:

B̃1 =
1
4

{
2
[(

2S0 +2S1 +S2 +
S3−S3 mod 2

2

)
mod 4

]
−

−2
[(

S2 mod 2+
(S3 mod 4−S3 mod 2)

2

)
mod 2

]}
=

1
2

[(
2S0 +2S1 +S2 +

S3−S3 mod 2
2

)
mod 4−

−
(

S2 mod 2+
(S3 mod 4−S3 mod 2)

2

)
mod 2

]
Using I6 we can rewrite the first term, and we get:

B̃1 =
1
2

{(
S2 +

S3−S3 mod 2
2

)
mod 2+

[
2(S0 +S1)+S2 +

S3−S3 mod 2
2

−

−
(

S2 +
S3−S3 mod 2

2

)
mod 2

]
mod 4−

[
S2 mod 2+

(S3 mod 4−S3 mod 2)
2

]
mod 2

}
Combining the first and third term:

B̃1 =
1
2

{[
(S2−S2 mod 2)+

S3−S3 mod 4
2

]
mod 2+

+

[
2(S0 +S1)+S2 +

S3−S3 mod 2
2

−
(

S2 +
S3−S3 mod 2

2

)
mod 2

]
mod 4

}

A.1. Full proof of Theorem 4.4.4 175

We notice that both S2−S2 mod 2 and S3−S3 mod 4
2 are even, so the first big term is 0:

B̃1 =
1
2

{[
2(S0 +S1)+S2 +

S3−S3 mod 2
2

−
(

S2 +
S3−S3 mod 2

2

)
mod 2

]
mod 4

}
which can be rewritten as:

B̃1 =
1
2


2 ·

S0 +S1 +

(
S2 +

S3−S3 mod 2
2

)
−
(

S2 +
S3−S3 mod 2

2

)
mod 2

2

 mod 4


Finally using I4, we get:

B̃1 =

S0 +S1 +

(
S2 +

S3−S3 mod 2
2

)
−
(

S2 +
S3−S3 mod 2

2

)
mod 2

2

 mod 2

B̃1 = S1 mod 2⊕S0 mod 2⊕


(

S2 +
S3−S3 mod 2

2

)
−
(

S2 +
S3−S3 mod 2

2

)
mod 2

2

 mod 2

B̃1 = 〈x̃,α(1)〉 mod 2⊕〈x̃,b〉 mod 2⊕

⊕


(

S2 +
S3−S3 mod 2

2

)
−
(

S2 +
S3−S3 mod 2

2

)
mod 2

2

 mod 2
(A.4)

Important observation: B̃1, B̃2, B̃3 all depend on the same value of x and x′ (or

x̃, or z). Therefore, to make our analysis easier, we can consider that z and x̃ are fixed.

Then, if we define the function:

B(r) = 〈x̃,r〉 mod 2 =

(
n

∑
i=1

x̃iri

)
mod 2 (A.5)

we can rewrite B̃3, B̃2, B̃1 as in Eq. (4.14) completing Step 1:

B̃3 = B
(

α
(3)
)

B̃2 = B
(

α
(2)
)
⊕h2(z,α(3))

B̃1 = B
(

α
(1)
)
⊕h1(z,α(3),α(2),b) (A.6)

Where:

h2(z,α(3)) := 〈z,α(3)〉 mod 4−〈z,α(3)〉 mod 2
2 (A.7)

h1(z,α(3),α(2),b) := 〈z,b〉 mod 2 ⊕ (A.8)

⊕


(
〈z,α(2)〉+ 〈z,α

(3)〉−〈z,α(3)〉 mod 2
2

)
−
(
〈z,α(2)〉+ 〈z,α

(3)〉−〈z,α(3)〉 mod 2
2

)
mod 2

2

 mod 2

176 Appendix A. App: HBC−QFactory

Step 2: We see from Eq. (A.4) that each of the three bits involve a term similar to that

of the GL theorem 2.3.10 (the B
(

α(i)
)

term), but with two the important differences.

First, there is another term, and the bits of B̃ are XORs of the GL-looking term and

that other one. The second type of terms (that involve h1,h2) depend on variables that

appear in the expressions of other bits, potentially introducing correlations among the

different bits. We will deal with the issue of correlations in Step 3, while with the

effects of having extra terms in Steps 4 and 5. Here we deal with the second important

difference, namely that the GL-looking terms (those of the form 〈x̃,r〉 mod 2) depend

on x̃ rather than x in the inner product. For the remaining Step 2, we assume that the

first issue is resolved and it all reduces to GL theorem subject to having x̃ rather than

x.

Since we have x̃ in our expression if we follow the same proof with that of the

GL theorem we can follow the proof until the point that we end up with obtaining a

polynomial number of guesses for x̃ of which one is the correct value with probability

negligibly close to unity. Now to continue with the proof we are lacking two elements.

First, in GL theorem they use the fact that computing f (x) given x is easy, and check

one-by-one the polynomial guesses to see which one (if any) is correct. We cannot do

this since we only obtain x̃ and there is no way with no extra information to check if x̃

actually corresponds to a given image y = f (x) = f (x′). The second issue, is that even

if we could check this, having obtained x̃ does not contradict the definition of one-way

function (definition 2.3.2).

We resolve both these issues with two observations.

Observation 1: We notice that because of the 2-regularity property of f , x̃ is uniquely

determined by x (f (x) = f (x′), x̃ = x⊕ x′).

Observation 2: The assumption that our 2-regular trapdoor function f is second

preimage resistant (i.e. a QPT adversary given x, cannot find the second preimage

x′, where f (x) = f (x′)) means that:

Pr
x←{0,1}n

[A(1n,x) = x′ such that f (x) = f (x′)]≤ negl (n)

As

Pr
x←{0,1}n

[A(1n,x) = x′] = Pr
x←{0,1}n

[A(1n,x) = x′⊕ x]

we have that:

Pr
x←{0,1}n

[A(1n,x) = x̃]≤ negl (n) (A.9)

A.1. Full proof of Theorem 4.4.4 177

As we have mentioned, following the GL theorem proof we would obtain polyno-

mially many guesses x̃g for x̃ (where subscript g stands for guess). Now by the second

preimage resistance, if we are given x we should be unable to obtain x′ in polynomial

time. However, using our polynomially many guesses for x̃ and checking for each

guess if f (x⊕ x̃g) = f (x) we can obtain with probability negligible close to unity the

correct x̃ and therefore come to contradiction with Eq. (A.9).

Step 3: Since the different bits involve common variables, to prove that our function

is hard-core we need to consider the issue of correlations. One way to deal with this

would be to prove the independence of both the bits and of the optimal guessing algo-

rithms. We, instead, use the Vazirani-Vazirani Theorem 2.3.11, which for our case it

means that it suffices to show that: B̃1, B̃2, B̃3, B̃1⊕ B̃2, B̃1⊕ B̃3, B̃2⊕ B̃3, B̃1⊕ B̃2⊕ B̃3

are all hard-core predicates for f .

The most general expression that captures all these hard-core predicates (formed

from the subsets of {B̃1, B̃2, B̃1}) is:

E(x,r1,r2,r3) = 〈x̃,r1⊕ r2〉 mod 2⊕g(z,r2,r3) (A.10)

where g can be any binary function. Using 〈x̃,r1⊕r2〉 mod 2= 〈x̃,r1〉 mod 2⊕〈x̃,r2〉 mod

2 we can rewrite this as:

E(x,r1,r2,r3) = 〈x̃,r1〉 mod 2⊕g′(z,r2,r3) (A.11)

where g′(z,r2,r3) = 〈x̃,r2〉 mod 2⊕ g(z,r2,r3). In other words, in order to prove that

B̃1B̃2B̃3 is a hard-core function for f , it suffices to prove that E(x,r1,r2,r3) is a hard-

core predicate for f .

Step 4: In this step, we will see how we can effectively fix all but one variables, and

turn Eq. (A.11) to depend only on r1.

We want to prove that if there exists a QPT algorithm A that can guess the predicate

E as given in Eq. (A.11), A(f (x),r1,r2,r3) = E(x,r1,r2,r3) with probability non-

negligible better than 1/2, then the second preimage resistance assumption is violated

by constructing a QPT algorithm A ′ that, when given x can obtain x̃, A ′(f (x),1n) = x̃,

with non-negligible probability.

178 Appendix A. App: HBC−QFactory

We now assume that the advantage A has in computing is ε(n), without restrict-

ing ε(n) to be non-negligible, aiming to reach a contradiction if this ε(n) is inverse

polynomial. We therefore assume:

Pr
x←{0,1}n

r1←{0,1}n

r2←{0,1}n

r3←{0,1}n

[A(f (x),r1,r2,r3) = E(x,r1,r2,r3)] =
1
2
+ ε(n) (A.12)

Since the different variables (x,r1,r2,r3) are chosen randomly and independently

we can effectively “fix” one variable. We can consider the set of values of that variable

that satisfy some condition that we need and name these values “Good” values (e.g.

the guessing algorithm A to succeed with higher than negligible probability). Then

we can work with the assumption that the fixed variable is within the “Good” set, with

only caveat that at the end, whatever probability of inversion we obtain, is conditional

on the fixed variables being “Good” and thus we need to multiply that probability with

the probability that the fixed variable is “Good”. For this reason, it is important that

the probability of being “Good” (ratio between cardinality of Good values and total

number of values) should be at least inverse polynomial.

We will, therefore, be using the following Lemma:

Lemma A.1.1. Let Pr
(v1,··· ,vk)←{0,1}n×···×{0,1}n

[Guessing] ≥ p+ ε(n), then for any vari-

able vi, there exists a set Goodvi ⊆ {0,1}n of size at least ε(n)
2 2n, such that for all

vi ∈ Goodvi , we have:

Pr
(v1,··· ,�vi ,··· ,vk)←{0,1}n×···×{0,1}n

[Guessing]≥ p+
ε(n)

2

where the latter probability is taken over all variables except vi.

Proof.

p+ ε(n)≤ 1
2n ∑vi∈Goodvi

Pr
(v1,··· ,�vi ,··· ,vk)|v j∈{0,1}n

[Guessing]+

1
2n ∑vi /∈Goodvi

Pr
(v1,··· ,�vi ,··· ,vk)|v j∈{0,1}n

[Guessing]

≤ 1
2n |Goodvi|+ 1

2n ∑vi /∈Goodvi
(p+ ε(n)

2)

(A.13)

p+ ε(n) ≤ 1
2n |Goodvi|+(p+

ε(n)
2

)

ε(n)
2

2n ≤ |Goodvi| (A.14)

A.1. Full proof of Theorem 4.4.4 179

Now we return to Eq. (A.12), we fix the set of Goodx, the set of inputs x such that:

Pr
r1←{0,1}n

r2←{0,1}n

r3←{0,1}n

[A(f (x),r1,r2,r3) = E(x,r1,r2,r3)]≥
1
2
+

ε(n)
2
∀x ∈ Goodx (A.15)

and using Lemma A.1.1 we have |Goodx| ≥ ε(n)
2 2n. Note that fixing x is equivalent

with fixing x̃ or z, given the definition of the 2-regular function f . Starting with Eq.

(A.15) we can now fix r3 (conditional on x ∈ Goodx):

Pr
r1←{0,1}n

r2←{0,1}n

[A(f (x),r1,r2,r3) = E(x,r1,r2,r3)]≥
1
2
+

ε(n)
4

∀x ∈ Goodx ∧ ∀r3 ∈ Goodr3 (A.16)

where using again Lemma A.1.1 we have |Goodr3 | ≥ ε(n)
4 2n. Finally, we can fix r2

(conditional on x ∈ Goodx and r3 ∈ Goodr3):

Pr
r1←{0,1}n

[A(f (x),r1,r2,r3) = E(x,r1,r2,r3)]≥
1
2
+

ε(n)
8

∀x ∈ Goodx ∧ ∀r3 ∈ Goodr3 ∧ ∀r2 ∈ Goodr2 (A.17)

and again by Lemma A.1.1 we have |Goodr2| ≥ ε(n)
8 2n.

Step 5: In Eq. (A.17) the only variable is r1. Using Eq. (A.11) we can see that given

that x,r2,r3 are all fixed, E(x,r1,r2,r3) = 〈x̃,r1〉⊕g′(z,r2,r3) where g′(z,r2,r3) = c is

constant. Because c is a constant, we can define Ã = A ⊕ c. Now, we can easily see

that:

Pr
r1←{0,1}n

[A(f (x),r1,r2,r3) = 〈x̃,r1〉 mod 2⊕g′(z,r2,r3)]

= Pr
r1←{0,1}n

[Ã(f (x),r1,r2,r3) = 〈x̃,r1〉 mod 2]

So, using Eq. (A.17), we obtain

Pr
r1←{0,1}n

[Ã(f (x),r1,r2,r3) = 〈x̃,r1〉 mod 2]≥ 1
2
+

ε(n)
8

∀x ∈ Goodx ∧ ∀r3 ∈ Goodr3 ∧ ∀r2 ∈ Goodr2 (A.18)

180 Appendix A. App: HBC−QFactory

which is exactly the expression in GL theorem. There, one obtains guesses for inver-

sion, i.e. to obtain x̃ with a polynomial in ε(n) probability of success, given the fixed

x,r2,r3’s. Multiplying this with the probability of actually being in Goodx and Goodr3

and Goodr2 we obtain another polynomial in ε(n). This rules out the possibility of ε(n)

being inverse polynomial, since that would break the second preimage resistance. As

we have already stated, guessing x̃ with inverse polynomial success probability does

not contradict the one-way property of the trapdoor function, but it does contradict the

second preimage resistance, since given x and x̃ one can obtain deterministically x′.

Concretely, using GL proof to construct from Ã , a QPT algorithm A ′ that obtains

x̃, A ′(f (x),1n) = x̃ for all inputs x ∈ {0,1}n, when, x ∈ Goodx, r3 ∈ Goodr3 and r2 ∈
Goodr2 , this algorithm A ′ succeeds with probability:

Pr
x←{0,1}n

r3←{0,1}n

r2←{0,1}n

[A ′(f (x),1n) = x̃ |x ∈ Goodx ∧ r3 ∈ Goodr3 ∧ r2 ∈ Goodr2]

≥ ε2(n)
2(32n+ ε2(n))

≥ ε2(n)
2(32n+1)

Then, we have:

Pr
x←{0,1}n

r3←{0,1}n

r2←{0,1}n

[A ′(f (x),1n) = x̃]≥

Pr
x←{0,1}n

r3←{0,1}n

r2←{0,1}n

[A ′(f (x),1n) = x̃ ∧ x ∈ Goodx ∧ r3 ∈ Goodr3 ∧ r2 ∈ Goodr2]≥

≥ Pr
x←{0,1}n

r3←{0,1}n

r2←{0,1}n

[A ′(f (x),1n) = x̃ |x ∈ Goodx ∧ r3 ∈ Goodr3 ∧ r2 ∈ Goodr2] ·

· Pr
x←{0,1}n

r3←{0,1}n

r2←{0,1}n

[x ∈ Goodx ∧ r3 ∈ Goodr3 ∧ r2 ∈ Goodr2]

We now see that:

Pr[x ∈ Goodx ∧ r3 ∈ Goodr3 ∧ r2 ∈ Goodr2] =

Pr[r2 ∈ Goodr2|r3 ∈ Goodr3 ∧ x ∈ Goodx] ·Pr[r3 ∈ Goodr3|x ∈ Goodx]×Pr[x ∈ Goodx]

By construction we have Pr[x ∈ Goodx] =
|Goodx|

2n and Pr[r3 ∈ Goodr3|x ∈ Goodx] =
|Goodr3 |

2n and Pr[r2 ∈ Goodr2|r3 ∈ Goodr3 ∧ x ∈ Goodx] =
|Goodr2 |

2n , which leads to

A.2. Proof of Theorem 4.5.7 181

Pr
x←{0,1}n

r3←{0,1}n

r2←{0,1}n

[A ′(f (x),1n) = x̃] ≥ ε2(n)
2(32n+1)

· |Goodx|
2n · |Goodr3 |

2n · |Goodr2|
2n

≥ ε5(n)
128(32n+1)

(A.19)

where we can view r3 and r2 as the internal randomness of the inversion algorithm

A ′. It is clear that if ε(n) is non-negligible, it means that there exists polynomial p(n)

such that ε(n) = 1/p(n), and then

Pr
x←{0,1}n

r3←{0,1}n

r2←{0,1}n

[A ′(f (x),1n) = x̃] ≥ 1
128(32n+1)p(n)5 (A.20)

which as explained in Step 2 breaks second preimage resistance, Eq. (A.9). Since all

the terms given in Step 3 (B̃i, B̃i⊕ B̃ j, B̃1⊕ B̃2⊕ B̃3) are of the form E(x,r1,r2,r3) as in

Eq. (A.11) our analysis suffices to prove that B̃1B̃2B̃3 is a hard-core function for f .

A.2 Proof of Theorem 4.5.7

Lemma A.2.1 (two-regular). If G is a family of bijective functions, then F is a family

of two-regular functions.

Proof. For every y ∈ Im fk′ ⊆ R, where k′ = (k1,k2):

1. Since Im fk′ = Imgk1 and gk1 is bijective, there exist unique x1 := g−1
k1
(y) such

that fk′(x,0) = gk1(x) = y.

2. Since Im fk′ = Imgk2 and gk2 is bijective, there exist unique x2 := g−1
k2
(y) such

that fk′(x,1) = gk2(x) = y.

Therefore, we conclude that:

∀ y ∈ Im fk′ : f−1
k′ (y) := {(g−1

k1
(y),0),(g−1

k2
(y),1)} (A.21)

Lemma A.2.2 (trapdoor). If G is a family of bijective trapdoor functions, then F is a

family of trapdoor functions.

182 Appendix A. App: HBC−QFactory

Proof. Let y ∈ Im fk′ ⊆ R. We construct the following inversion algorithm:

InvF (k′,y, t ′k)

1 : // t ′k = (tk1 , tk2), k′ = (k1,k2)

2 : x1 := InvG (k1,y, tk1)

3 : x2 := InvG (k2,y, tk2)

4 : return (x1,0) and (x2,1)

Lemma A.2.3 (one-way). If G is a family of bijective, one-way functions, then F is a

family of one-way functions.

Proof. We prove it by contradiction. We assume that a QPT adversary A can invert a

function in F with non-negligible probability P (i.e. given y∈ Im fk′ to return a correct

preimage of the form (x′,b) with probability P). We then construct a QPT adversary

A ′ that inverts any function in G with the same non-negligible probability P reaching

the contradiction since G is one-way by assumption.

From Eq. (A.21) we know the two preimages of y are: (i) (g−1
k1
(y),0) and (ii)

(g−1
k2
(y),1). We now construct an adversary A ′ that for gk : D→ R, inverts any image

y = gk(x) with the probability P/2.

A ′(kc,y)

1 : r←$ {0,1}
2 : kr := kc

3 : (kr′ , tkr′)←$ GenG (1n)

4 : if r == 0 then

5 : k′ := (kr,kr′)

6 : else

7 : k′ := (kr′ ,kr)

8 : (x′,b)← A(k′,y)

9 : if ((b == r)∧ (gkr(x
′) == y) then

10 : // A returns correct preimage that also corresponds to the challenge of A ′

11 : return x′

12 : else // A failed in giving any of the preimages (happens with probability 1−P)

13 : // or the preimage returned corresponds to the r′ that is not the challenge (happens with probability P/2)

14 : return 0

A.3. Proof of Theorem 4.5.11 183

The inversion algorithm succeeds with 1−((1−P)+P/2) = P/2 and thus reaches

a contradiction.

Lemma A.2.4 (second preimage resistance). If G is a family of bijective, one-way

functions, then, any function f ∈ F is second preimage resistant.

Proof. Assume there exists a PPT adversary B that given k′ = (k1,k2) and (y,(x,b))

such that fk′(x,b) = y can find (x′,b′) such that fk′(x′,b′) = y with non-negligible prob-

ability P. From Eq. (A.21) we know that the two preimages have different b’s. We now

construct a PPT adversary B ′ that inverts the function gkc with the same probability P,

reaching a contradiction:

B ′(kc,y)

1 : (k2, tk2)←$ GenG (1n)

2 : x2← g−1
k2
(y)// using the trapdoor tk2

3 : k′ := (kc,k2)

4 : (x,0)← B(k′,y,(x2,1))// where y is an element from the image of fk′

5 : if fk′(x,0) == fk′(x2,1) == y

6 : return x

7 : else // B failed to find a second preimage; happens with probability (1−P)

8 : return 0

Lemma A.2.5 (quantum-safe). If G is a family of quantum-safe trapdoor functions,

with properties as above, then F is also a family of quantum-safe trapdoor functions.

Proof. The properties that require to be quantum-safe is the one-wayness and second

preimage resistance. Both these properties of F that we derived above were proved

using reduction to the hardness (one-wayness) of G . Therefore if G is quantum-safe,

its one-wayness is also quantum-safe and thus both properties of F are also quantum-

safe.

A.3 Proof of Theorem 4.5.11

In the following, we will denote by f (s,e,c), the function REG2.EvalP(k,(s,e,c)) for k

the index function obtained by REG2.GenP(1n), and by s0,e0 the trapdoor information

associated with this function f .

184 Appendix A. App: HBC−QFactory

We now prove separately the δ-2 regularity, collision resistance, one-wayness and

trapdoor property of the function in Definition 4.5.10.

A.3.1 δ-2 regularity

Here we describe how to achieve δ-2 regularity using the construction FromInj and

specifically, the function in Definition 4.5.10.

This reduces to ensuring that the two function inputs (s,e) and (s− s0,e−e0) both

lie within the domain of the function. The input (s,e) is the result of the inversion

algorithm, so it is by definition inside the domain. Additionally, as the first element of

the domain is only required to be in Zn
q and as Zq is closed with subtraction mod q,

then s− s0 ∈ Zn
q for any s, s0 ∈ Zn

q. On the other hand, the second element of the

domain is required to be in Zm, such that each component is bounded in absolute value

by some value µ. In this case, we are not guaranteed that adding or subtracting two

such elements the result is still in the domain. What we want to ensure is that with (at

least) constant probability over the choice of (s,e) and (s0,e0), the result (s−s0,e−e0)

is in the domain of the function.

It is not difficult to show that if (s0,e0) is chosen arbitrarily from the domain of

the function, then (s− s0,e− e0) lies within the domain of the function only with

inverse exponential in m probability. This is why we consider restricting e0 to be

within a subset of the domain. By suitable choice of this subset we can make the

success probability (of having two preimages) – seen as a function in m – to be at

least a constant value. Firstly, we remark that the exact probability of success can be

explicitly computed. Indeed, if the trapdoor noise e0 is sampled from a Gaussian of

dimension m, and standard deviation σ, and if the noise e1 is sampled uniformly from

an hypercube C of length 2µ (both distribution being centered on 0) then the probability

that e0 + e1 is still inside C is:(
erf

(√
2µ
σ

)
− σ√

2πµ

(
1− exp

(
−2
(µ

σ

)2
)))m

However, for simplicity, and because we do not aim to find optimal parameters,

we will use a (simpler) lower bound of this probability (that will be less efficient by

a factor of
√

m). To do that, remark that using Lemma 2.5 in [Reg05], we have that

if e0 ∈ Zm, such that each component of e0 is sampled from a Gaussian distribution

with parameter α′q, then we have that every component of the vector e0 is less than

µ′ := α′q
√

m with overwhelming probability as m increases. So one can remark that,

A.3. Proof of Theorem 4.5.11 185

up to a negligible term, the Gaussian distribution with parameter α′q is “closer to 0”

than the uniform distribution on [−α′q
√

m;α′q
√

m] for sufficiently large m (i.e. for

any x, the integral between −x and x of the Gaussian distribution is bigger, up to a

negligible term, than the integral of the uniform distribution). Therefore, to obtain

a lower bound on the probability of having two preimages, we can consider that e0

is sampled according to the uniform distribution on a hypercube of length 2α′q
√

m

rather than according to the Gaussian distribution of parameter α′q. This simplifies

our analysis, and allows us to find the subset in which e0 must reside, as seen in the

following lemma. Note also that if one does not want to do any assumption on the

input distribution, and only assume that the infinity norm is smaller than µ′, then the

same Lemma applies with the constant 4 replaced by 2.

Lemma A.3.1 (Domain Addition). Let V =Rm be a vector space of dimension m, and

let Dm,µ be the uniform distribution inside the hypercube of dimension m and length

2µ centered on 0. Then, for any µ′ < µ, we have:

Pm,µ,µ′ := Pr
[
||e0 + e1||∞ ≤ µ | e0←Dm,µ′,e1←Dm,µ

]
=

(
1− µ′

4µ

)m

Moreover, if µ′ = O(µ
m) then the probability Pm,µ,µ′ becomes lower bounded by a posi-

tive constant.

Proof. As ||e0 + e1||∞ must be less than µ, which means that each component of the

sum vector must be less than µ, and as each component of the 2 vectors e0 and e1 was

independently sampled, then we can simplify our proof by considering that e0 and e1

are vectors in R, essentially determining P1,µ,µ′ and then, we can compute Pm,µ,µ′ =

P1,µ,µ′
m.

Then, let us denote by E1 the random variable sampled uniformly from [−µ,µ], E0 the

random variable sampled uniformly from [−µ′,µ′] and E the random variable obtained

as E = E1 +E0. Therefore, P1,µ,µ′ = Pr[−µ≤ E ≤ µ].

Now, we can compute the density function of E using convolution:

fE(e) =
∫

∞

−∞

fE1(e1) · fE0(e− e1)de1

where fE1 and fE0 are the probability density functions of E1 and E0 (fE1(e1) =
1
2µ ,

when e1 ∈ [−µ,µ] and 0 elsewhere and fE0(e0) =
1

2µ′ , when e0 ∈ [−µ′,µ′] and 0 else-

where).

Then, we are only interested in the cases when both the values of fE1(e1) and fE0(e−

186 Appendix A. App: HBC−QFactory

e1) are non-zero and for this we need to consider 3 cases for e, given by the intervals:

e ∈ [−µ−µ′,µ′−µ]
⋃
[µ′−µ,µ−µ′]

⋃
[µ−µ′,µ+µ′]. Thus, we can derive:

fE(e) =


∫ e+µ′
−µ

1
4µµ′ de1 , e ∈ [−µ−µ′,µ′−µ]∫ e+µ′

e−µ′
1

4µµ′ de1 , e ∈ [µ′−µ,µ−µ′]∫ µ
e−µ′

1
4µµ′ de1 , e ∈ [µ−µ′,µ+µ′]

Finally, we have that Pr[−µ≤E ≤ µ] =
∫ µ
−µ fE(e)de=

∫ −µ+µ′
−µ fE(e)de+

∫ µ−µ′
−µ+µ′ fE(e)de+∫ µ

µ−µ′ fE(e)de =
∫ −µ+µ′
−µ

e+µ′+µ
4µµ′ de+

∫ µ−µ′
−µ+µ′

1
2µ de+

∫ µ
µ−µ′

µ+µ′−e
4µµ′ de = 1− µ′

4µ .

Consequently, we have Pm,µ,µ′ = (1− µ′
4µ)

m.

Now, given that µ is a function of m, µ = µ(m), we want to determine the values

of µ′, such that this probability (seen as a function in m) is at least a positive constant

number.

• If lim
m→∞

µ′

µ
= 0, then:

lim
m→∞

(
1− µ′

4µ

)m

= lim
m→∞

(
1− µ′

4µ

) 4µ
µ′

µ′m
4µ

=

(
1
e

)limm→∞
µ′m
4µ

Now, what we require is that lim
m→∞

µ′m
4µ

= c ≥ 0, where c is a constant, as then,

we have that the probability of success is at least a constant ≥
(1

e

)c
.

• If lim
m→∞

µ′

µ
> 0 (and less than 1, as 0 < µ′ < µ), then:

lim
m→∞

(
1− µ′

4µ

)m

= 0

Consequently, it is clear that in order to get a positive constant lower bound for the

success probability, we must have:

µ′ = c · 4µ
m
, c≥ 0

Thus, in our case, if e1 is sampled uniformly on a hypercube of length 2µ and e0

from a Gaussian with parameter α′q, by replacing the actual values of µ = αq
√

m and

µ′ := α′q
√

m, what we require is that:

α
′ = c · 4α

m
, c≥ 0

A.3. Proof of Theorem 4.5.11 187

A.3.2 Collision resistance

We start by the observation that for the choices of Definition 4.5.10, no QPT adversary

can infer the trapdoor information (s0,e0), as determining s0 from k = (A,b0) would

be equivalent to solving LWEq,Ψ̄
α′q

:

Corollary A.3.2 (One-wayness of the trapdoor [Reg05, Theorem 1.1]). Under the

SIVPγ (with γ = poly (n)) assumption, no QPT adversary can recover the trapdoor

information (s0,e0).

Lemma A.3.3 (Collision resistance). The function f defined in Definition 4.5.10 is col-

lision resistant if the parameters are chosen accordingly to Theorem 4.5.11 assuming

that SIVPγ is hard.

Proof. By contradiction, let us suppose that this function is not collision resistant.

Then there exist two pairs (s1,e1), (s2,e2) such that f (s1,e1,0) = y = f (s2,e2,1). Note

that the last bits are necessary different since the two functions that fix the last bit, are

injective when the error is smaller than rmax (according to [MP12, Theorem 5.4]). By

the definition of f , ||e1||∞ ≤ µ and ||e2||∞ ≤ µ, i.e. both e1 and e2 has Euclidean norm

smaller than
√

mµ. Then, by definition, y = f (s2,e2,1) = f (s2,e2,0)+ f (s0,e0,0) =

A(s2 + s0)+ (e2 + e0). Now, we remark that with overwhelming probability (over the

choice of the trapdoor), ||e0||2 ≤ µ′
√

m as stated in [Reg05, Lemma 2.5], so in this

case, ||e2 + e0||2 ≤
√

m(µ+ µ′) ≤ rmax (last assumption of Theorem 4.5.11). Then,

according to [MP12, Theorem 5.4], there is exactly one element (s,e) with e of length

smaller than rmax such that As+e = y. Because (s1,e1) is a solution, we then have that:

s2 + s0 = s1 and e2 + e0 = e1, i.e. e0 = e1− e2 and s0 = s1− s2 mod q. Hence, it is

possible to deduce the trapdoor information s0 and e0 from the collision pair, which is

impossible by Corollary A.3.2.

A.3.3 One-wayness

One could imagine that the one-wayness of the resulting function of Definition 4.5.10

is implied by the one-wayness of the function in [MP12] (as is the case in Lemma 4.5.4).

However, we need more care here, since in our construction the error term e is not sam-

pled from a Gaussian distribution with suitable parameters (unlike the error term e0).
1

1While other ways to prove the one-wayness are possible, we give here one proof that uses the

previous two lemmata.

188 Appendix A. App: HBC−QFactory

Lemma A.3.4 (Collision resistance to one-wayness). Let f : A→ B, where A is finite

and can be efficiently sampled uniformly and let C be the set of all y ∈ B that admit 2

preimages. If f is a collision resistant function that admits with non-negligible prob-

ability two preimages for any y from its image and if | f
−1(C)|
|A| is non-negligible, then f

restricted to the set f−1(C) is a one-way function.

Proof. By contradiction: suppose that f is not one-way on C, i.e. with a non-negligible

probability we can find a preimage of y for y uniformly sampled in C, and from this we

can show how to find a collision. The idea is to sample an input x ∈ A, and then com-

pute y := f (x). Then, as | f
−1(C)|
|A| is non-negligible, we know that with non-negligible

probability this y will have two preimages. Now, with non-negligible probability, this

function will be easy to invert and one gets x′. Because we sample uniformly at the

step before, we have the same probability to sample one image or the other, so with

probability 1/2, x′ 6= x, therefore, we found a collision.

Corollary A.3.5 (One-wayness from Lemma A.3.3 and Lemma A.3.4). The function

defined in Definition 4.5.10 is one-way for all y that admit two preimages, under the

SIVPγ hardness assumption, when the parameters are chosen accordingly to Theo-

rem 4.5.11.

A.3.4 Trapdoor

We want to prove that using the trapdoor information of the REG2 construction, which

consists of (s0,e0) and tk, the trapdoor information of the LWE function, we can effi-

ciently derive the preimages of an output b of REG2.Eval. Firstly, we notice that to

find all the preimages, we can simply run LWE.Inv on b as well as on b−b0 and if we

succeed we take only the preimages that lie in the input domain, i.e. whose error part

e is bounded in infinity norm by µ: ||e||∞ ≤ µ. Because the function is injective, these

are all the possible preimages. However, because we are interested only in the case

when there are exactly two preimages, the function REG2.Inv can also do the follow-

ing: we first run LWE.Inv on b and obtain (s1,e1). Then, the inversion is completed

by returning (s1,e1,0) and (s1− s0,e1− e0,1), which are both valid preimages, if and

only if the function has two preimages (see Lemma A.3.3 for more details).

A.4. Proof of Lemma 4.5.12 189

A.4 Proof of Lemma 4.5.12

Proof. Using the following explicit values for the parameters of the Micciancio and

Peikert injective trapdoor function [MP12], we want to prove that they fulfil all of the

requirements of Theorem 4.5.11:

n = λ

k = 5dlog(n)e+21

q = 2k

m̄ = 2n

ω = nk

m = m̄+ω

µ =
⌈

2mn
√

2+ k
⌉

µ′ = µ/m

B = 2

and α,α′,C are defined as in Theorem 4.5.11. Now, let us prove that these parameters

satisfy all the requirements.

• The first three requirements are trivially satisfied.

• In the forth condition, the only difficulty is to show that α < 1. By definition,

α =
mµ√
mmq

=
µ√
mq

=

⌈
2mn
√

2+ k
⌉

√
mq

≤ 4mn
√

2+ k√
mq

≤ 8mn
√

k√
mq

≤ 8
√

mnk
q

≤ 8
√

2n+nknk
221n5 ≤ 8

√
2nknk

221n5 ≤ 16(nk)3/2

221n5

≤ 16(n(5(log(n)+1)+21))3/2

221n5 ≤ 16(5×21n2)3/2

221n5 ≤ 16×1076n3

221n5 <
1
n2 ≤ 1

• Now, let us show the fifth condition, i.e. α′q ≥ 2
√

n. First we note that α′q :=
µ√
mm ≥ 2

√
n⇔ µ≥ 2

√
nm
√

m= 2mn
√

2+ k. Then, by defining µ=
⌈
2mn
√

2+ k
⌉
,

the condition is satisfied.

• For the fifth condition, i.e. n
α′ is poly (n), we just need to remark that 1/α′ =

m3/2q
µ < m3/2q, and that both m and q are poly (n).

190 Appendix A. App: HBC−QFactory

• Finally, to show that the last condition is satisfied, we note that:

√
mµ <

q

2B

√(
C · (α ·q) · (

√
2n+

√
kn+

√
n)
)2

+1

−µ′
√

m (A.22)

=
q

4

√(
C · µ√

m · (
√

2n+
√

kn+
√

n)
)2

+1

− µ√
m

(A.23)

if and only if:

A := 4
(√

m+
1√
m

)
µ

√(
C · µ√

m
· (
√

2n+
√

kn+
√

n)
)2

+1≤ q

Now, let us suppose that k := udlog(n)e+ v with u≤ 5 and v≥ 19 and we need

to find u,v such that A ≤ 2k. Note that we will include v in some constants and

then find the good v at the end. First, remark that:

√
m+

1√
m

=
√

m
(

1+
1
m

)
=
√

m
(

1+
1

n(2+ k)

)
(A.24)

≤√m
(

1+
1

2+ k

)
≤√m

(
1+

1
2+ v

)
︸ ︷︷ ︸

γ0

= γ0
√

m (A.25)

A.4. Proof of Lemma 4.5.12 191

So now, we have:

A≤ 4Cγ0µ2
√

kn

√√√√√
(

1+

√
2
k
+

1√
k

)2

+
1

kn
(

C · µ√
m

)2

= 4Cγ0

⌈
2mn
√

2+ k
⌉2√

kn

√√√√√√
(

1+

√
2
k
+

1√
k

)2

+
1

kn
(

C · d2mn
√

2+ke√
m

)2

≤ 4Cγ0

⌈
2mn
√

2+ k
⌉2√

kn

√√√√(1+

√
2
v
+

1√
v

)2

+
1

v
(
2C
√

2+ v
)2︸ ︷︷ ︸

γ1

≤ 4Cγ0γ1

(
2mn
√

2+ k+1
)2√

kn = 4Cγ0γ1

(
2n2(2+ k)3/2 +1

)2√
kn

= 16Cγ0γ1n4(2+ k)3
(

1+
1

2n2(2+ k)3/2

)2√
kn

≤ 16Cγ0γ1n4(2+ k)3
(

1+
1

2(2+ v)3/2

)2

︸ ︷︷ ︸
γ2

√
kn

≤ 16Cγ0γ1γ2n4
(

k
(

1+
2
k

))3√
kn≤ 16Cγ0γ1γ2n4k3

(
1+

2
v

)3

︸ ︷︷ ︸
γ3

√
kn

≤ 16Cγ0γ1γ2γ3n9/2 (udlog(n)e+ v)7/2 = 16Cγ0γ1γ2γ3n9/2v7/2
(

1+
udlog(n)e

v

)7/2

≤ 16Cγ0γ1γ2γ3n9/2v7/2
(

1+
5dlog(n)e

19

)7/2

≤ 16Cγ0γ1γ2γ3n9/2v7/23n1/2

≤ 48Cγ0γ1γ2γ3v7/2n5

Finally, we observe that if v= 21 and u= 5, we have A≤ 2v+udlog(n)e= 2k, which

concludes the proof.

Appendix B

App: Malicious QFactory

B.1 Function Construction proofs

B.1.1 Proof of Lemma 5.3.2

To prove that d0 is a hardcore predicate of k, we must prove that for any QPT adversary

A , we have:

Pr s0 ←$Zn
q

e0 ←$ Em

d0 ←${0,1}

[A(1n,K,gK(s0,e0,d0)) = d0(tk)]≤ 1
2 +negl (n) (B.1)

Using the definitions of the 2 functions, we can express it as:

Pr s0 ←$Zn
q

e0 ←$ Em

d0 ←${0,1}

[A(1n,K,Ks0 + e0 +d0 · v) = d0]≤ 1
2 +negl (n) (B.2)

This is equivalent to proving that the distributions D1 = {K,Ks0 + e0} and D2 =

{K,Ks0 + e0 + v} are indistinguishable to any QPT adversary 1. Equivalently, by con-

sidering each of the m elements of the vectors from the 2 distributions, we need to

show that:

{Ki,〈Ki,s0〉+ e0,i}m
i=1

c≈ {Ki,〈Ki,s0〉+ e0,i + vi}m
i=1 (B.3)

where Ki is the i-th row of K and e0,i is the i-th element of the vector e0.

Using the decisional LWE assumption we know that for {ui}m
i=1 uniformly sampled

from Zq, we have 2:

{Ki,〈Ki,s0〉+ e0,i}m
i=1

c≈ {Ki,ui}m
i=1 (B.4)

1It is also easy to write an explicit reduction
2this holds because the function parameters given in Lemma 4.5.12 are chosen to make Ks0 + e0

indistinguishable from a random vector by a direct reduction to LWE

192

B.1. Function Construction proofs 193

Then, as v is a fixed constant vector, we also have that:

{Ki,〈Ki,s0〉+ e0,i + vi}m
i=1

c≈ {Ki,ui}m
i=1

c≈ {Ki,〈Ki,s0〉+ e0,i}m
i=1 (B.5)

which completes the proof.

B.1.2 Proof of Theorem 5.3.4, homomorphicity

To prove that gK is homomorphic, we notice that:

gK(s1,e1,d1)+gK(s2,e2,d2) = ḡK(s1,e1)+d1 · v+ ḡK(s2,e2)+d2 · v mod q

= ḡK(s1 + s2 mod q,e1 + e2)+(d1 +d2) · v mod q

= gK(s1 + s2 mod q,e1 + e2,d1⊕d2)

where for the last equality we used the fact that if d1,d2 ∈ {0,1}, then d1 · q
2 + d2 ·

q
2 mod q = (d1⊕d2) · q

2 mod q.

We make the following remark: the proof is constructed for the case when ḡ is

perfectly homomorphic, but it also holds in the case when ḡ is homomorphic with high

probability, resulting in g being homomorphic with the same high probability.

Note also that we can easily notice the homomorphicity property of the defined

function h:

h(s1,e1,d1)⊕h(s2,e2,d2) = d1⊕d2

= h(s1 + s2 mod q,e1 + e2 mod q,d1⊕d2) (B.6)

B.1.3 Proof of Theorem 5.3.4, one-wayness

To prove the one-wayness of gK , we are going to reduce it to the one-wayness of ḡK .

Thus, we assume there exists a QPT adversary A that can invert gK with probability P

and we construct a QPT adversary A ′ inverting ḡK with probability P/2.

To show this reduction we will use the fact that gK is injective, implying that for an

image y, there exists an unique preimage (s,e,d) such that gK(s,e,d) = y.

194 Appendix B. App: Malicious QFactory

InvertA ′,K(y)

1 : d←${0,1}
2 : y′←$ y+d · v
3 : if (d == 0) then

4 : (s′,e′,d′)← AK(y)// from the injectivity of gK we know that if A succeeds then d′ = 0

5 : // and (s′,e′) is the preimage of ḡ

6 : return (s′,e′)

B.2 Probability of guessing two predicates

Lemma B.2.1 (Implication of guessing two predicates).
Let (a,b) ∈ {0,1}2 be two bits sampled uniformly at random. Let f be any function of

(a,b) (eventually randomized). Then if A is an adversary such that Pr[A(f (a,b)) = (a,b)]≥
1/4+ 1

poly(n) (where the probability is taken over the choice of a and b, the randomness

of f and A), then either:

• A is good to guess a, i.e.:

P1 = Pr
[
ã = a | (ã, b̃)← A(f (a,b))

]
≥ 1

2 +
1

poly1(n)

• Or A is good to guess b, i.e.:

P2 = Pr
[
b̃ = b | (ã, b̃)← A(f (a,b))

]
≥ 1

2 +
1

poly2(n)

• Or A is good to guess the XOR of a and b, i.e.:

P⊕ = Pr
[
ã⊕ b̃ = a⊕b | (ã, b̃)← A(f (a,b))

]
≥ 1

2 +
1

poly3(n)

for some polynomials poly1, poly2, poly3.

Proof. Let us define the following quantities:

e1 := Pr
[
ã 6= a and b̃ 6= b | (ã, b̃)← A(f (a,b))

]
e2 := Pr

[
ã = a and b̃ 6= b | (ã, b̃)← A(f (a,b))

]
e3 := Pr

[
ã 6= a and b̃ = b | (ã, b̃)← A(f (a,b))

]
e4 := Pr

[
ã = a and b̃ = b | (ã, b̃)← A(f (a,b))

]
(B.7)

From the initial statement we have: e4 ≥ 1
4 +

1
poly(n) .

Now let us assume that A is in neither of the first 2 cases, meaning that A is not good at

guessing a and not good at guessing b. We will show that in this case A must certainly

be in the third case, i.e. she must be good at guessing a⊕b.

B.3. Proof of Malicious-Abort QFactory 195

A is not good at guessing a implies that: e2+e4≤ 1
2 +negl (n) and not good at guessing

b implies: e3 + e4 ≤ negl (n). Then we have:

e2 ≤
1
2
+negl (n)− e4 ≤

1
2
+negl (n)− 1

4
− 1

poly(n)

e2 ≤
1
4
− 1

poly′(n)
for some polynomial poly′

(B.8)

And similarly, there exists a polynomial poly′′ such that:

e3 ≤
1
4
− 1

poly′′(n)
(B.9)

But then the probability that A guesses correctly the XOR of a and b is defined as

e1 + e4, for which we have:

e1 + e4 = 1− (e2 + e3)

≥ 1−
(

1
2
− 1

poly′(n)
− 1

poly′′(n)

)
≥ 1

2
+

1
poly3(n)

for some polynomial poly3

(B.10)

which concludes our proof.

B.3 Proof of Malicious-Abort QFactory

Proof of Lemma 5.5.2. The function fk cannot have more than two preimages by con-

struction, and in the Malicious 4-states QFactory protocol the output y is an image of

fk. So it means that y has exactly one preimage x. So after measuring the last register,

the states will be in the state |0〉⊗|x〉⊗|y〉. Then, after applying Uh, the state becomes

|d〉⊗ |x〉⊗ |y〉 with d ∈ {0,1}. We remark that the first qubit is not entangled with the

measured qubits (second and third register) and as a result, the output qubit will be |d〉,
which is indeed in the basis {|0〉 , |1〉}.

Proof of Lemma 5.5.3. The analysis of the circuit will be performed only with respect

to the basis of the states of the circuit. Let us first examine the first part of the circuit,

where we apply ∧Z between
∣∣∣+ π

2

〉
and |in1〉 = HB1

(1)
ZB2

(1)
(with B1

(1) the basis of

|in1〉) and then measure the first qubit in the |±〉 basis. We denote the resulted state

by V1.

The result of this operation is:

- if B1
(1) = 0, V1 = R

(
π(B(1)

2 + s1,1 +1)
)∣∣∣+ π

2

〉
∈
{∣∣∣+ π

2

〉
,
∣∣∣− π

2

〉}

196 Appendix B. App: Malicious QFactory

- if B1
(1) = 1, V1 = XB(1)

2 |0〉 ∈ {|0〉 , |1〉}
In other words, the state V1 belongs to the basis B0 =

{∣∣∣+ π

2

〉
,
∣∣∣− π

2

〉}
, if B1

(1) = 0 and

to the basis B1 = {|0〉 , |1〉} if B1
(1) = 1.

Now, we can think of the circuit as having t states Vi ∈
{
|0〉 , |1〉 ,

∣∣∣+ π

2

〉
,
∣∣∣− π

2

〉}
, where

every Vi has the basis B1
(i). Then, to compute the output state |out〉 of Gad⊕, for every

i ∈ {1, ..., t} we have to apply CZ between Vi and |+〉 and then measure the first qubit

in the |±〉 basis.

Let us do this step first for V1. The result is a state W1 = X s1,2HV1, thus we obtain

that: W1 belongs to the basis B0 =
{∣∣∣+ π

2

〉
,
∣∣∣− π

2

〉}
, if B1

(1) = 0 and to the basis B2 =

{|+〉 , |−〉} if B1
(1) = 1.

Next we do the same operations between V2 and W1, the result being a state W2, then

between V3 and W2 and so on, therefore, the outcome state is |out〉=Wt .

We will prove by induction that the state Wt ∈
{
|+〉 , |−〉 ,

∣∣∣+ π

2

〉
,
∣∣∣− π

2

〉}
, where the

basis of Wt is given by B1 = B1
(1)⊕ ...⊕B1

(t).

As we have proved already for the basis case t = 1, we now prove the induction step.

Suppose that Wn ∈
{
|+〉 , |−〉 ,

∣∣∣+ π

2

〉
,
∣∣∣− π

2

〉}
with basis B1 = B1

(1)⊕ ...⊕B1
(n).

To obtain Wn+1 we have to apply ∧Z between Vn+1 and Wn and then measure the first

qubit. Then after computing this, we obtain that the basis of Wn+1 is B1 if the basis of

Vn+1 is B1
(n+1) = 0 and the basis of Wn+1 is 1⊕B1 if the basis of Vn+1 is B1

(n+1) = 1.

In other words, the basis of Wn+1 is given by B1 = B1
(1)⊕ ...⊕B1

(n)⊕B1
(n+1), which

concludes the proof.

Proof of Lemma 5.5.4. Let us define {Ai}tci=1 as the (binary) random variables whose

values are 1 if and only if in the i-th run of Malicious 4-states QFactory the corre-

sponding yi has two preimages.

In the honest case, all tc runs of Malicious 4-states QFactory are independents, hence

{Ai}tci=1 are also independent.

From the hypothesis, we know that for all i, E(Ai) ≥ pa > pb. So let us consider

ε := E(Ai)− pb ≥ pa− pb.

Then, by using Chernoff-Hoeffding inequality we have:

Pr

[
1
tc

tc

∑
i=1

Ai < E(Ai)− ε

]
≤ e−2ε2tc ≤ e−2(pa−pb)

2tc

This is equivalent to:

Pr

[
tc

∑
i=1

Ai < tc · pb

]
< e−2(pa−pb)

2tc (B.11)

B.4. Generalisation to pseudo-homomorphic functions 197

As pa− pb is constant, we conclude:

Pr

[
tc

∑
i=1

Ai ≥ tc · pb

]
≥ 1−negl (tc) (B.12)

Proof of Lemma 5.5.5. From Lemma 5.5.4, for a given chunk, the probability to have

at least pctc accepted runs is 1−negl (tc), i.e. if tc = Ω(n), this probability is negl (n).

Then, the probability to accept all nc chunks is (1−negl (n))nc = 1−negl (n) as soon

as nc = poly (n), which is the case because t = tc×nc = poly (n). Then, when all the

chunks are accepted, the correctness of the output values is assured by Lemma 5.5.3.

B.4 Generalisation to pseudo-homomorphic functions

Definition B.4.1 ((η, Z, Z0, D)-homomorphic family of functions). Let us consider

a family of functions {gk : Z → Y ∪⊥}k∈K , as well as two symmetric binary group

relations ∗ and ?, with ∗ acting on a set containing Z and Z0, ? acting on Y ∪⊥, and

so that ∀y ∈ Y ,⊥ ? y = ⊥. We say that { fk}k∈K is an (η, Z, Z0, D)-homomorphic

function if D is a distribution on Z0 and

Pr
k←K

z0←D Z0
z←$ Z

[z∗ z0 ∈ Z and gk(z)?gk(z0) = gk(z∗ z0) 6=⊥]≥ η

Note that we do require that z is sampled uniformly from Z, but z0 is sampled from a

distribution D on Z0 that may not be uniform.

Definition B.4.2 (δ-2-regular family of functions). Let us consider a family of func-

tions { fk : X → Y ∪⊥}k∈K . For a fixed k, Y (2) will be the set of y having two preim-

ages: Y (2)
fk

= {y ∈ Y , | f−1
k (y)| = 2}. Then, this family of functions is said to be δ-2-

regular if

Pr
k←$ K
x←$ X

[fk(x) ∈ Y (2)
fk

]≥ δ

Lemma B.4.3 ((η, Z, Z0)-homomorphicity to δ-2-regularity). Given a family of func-

tions {gk : Z → Y ∪⊥}k∈K that is both injective and an (η, Z, Z0)-homomorphic

family of functions, then it’s possible to build a family { fk′ : Z×{0,1}→ Y ∪⊥}k′∈K ′

that is δ-2-regular, with δ = η.

198 Appendix B. App: Malicious QFactory

Proof. Let us consider the following construction. To sample a key k′ ∈ K ′, we

first sample a key k from K , as well as an z0 ←D Z0, and we define k′ = (k,y0 :=

fk(z0)). Then, we define fk′(z,0) = gk(z) and fk′(z,1) = gk(z) ? y0, also denoted later

as fk′(z,c) = gk(z)? (c · y0) for simplicity. Now, we remark that:

Pr
k′ ←$ K ′
x←$ X

[fk′(x) ∈ Y (2)
f ′k

] = Pr
k←$ K

z0←D Z0
z←$ Z

c←${0,1}

[gk(z)? (c ·gk(z0)) ∈ Y (2)
f ′k

] (B.13)

=
1
2
·
(

Pr
k←$ K

z0←D Z0
z←$ Z

[gk(z) ∈ Y (2)
f ′k

]+ Pr
k←$ K

z0←D Z0
z←$ Z

[gk(z)?gk(z0) ∈ Y (2)
f ′k

]
)

(B.14)

≥1
2
·
(

Pr
k←$ K

z0←D Z0
z←$ Z

[gk(z) ∈ Y (2)
f ′k

and z∗ z−1
0 ∈ Z and gk(z) = gk(z∗ z−1

0)?gk(z0) 6=⊥︸ ︷︷ ︸
C1

]

(B.15)

+ Pr
k←$ K

z0←D Z0
z←$ Z

[gk(z)?gk(z0) ∈ Y (2)
f ′k

and z∗ z0 ∈ Z and gk(z)?gk(z0) = gk(z∗ z0) 6=⊥︸ ︷︷ ︸
C2

]
)

(B.16)

=
1
2
·
(

Pr
k←$ K

z0←D Z0
z←$ Z

[gk(z) ∈ Y (2)
f ′k
|C1] · Pr

k←$ K
z0←D Z0

z←$ Z

[C1]+ Pr
k←$ K

z0←D Z0
z←$ Z

[gk(z)?gk(z0) ∈ Y (2)
f ′k
|C2] · Pr

k←$ K
z0←D Z0

z←$ Z

[C2]
)

(B.17)

Now, we remark that when z0 ∗ z ∈ D and gk(z0) ? gk(z) = gk(z0 ∗ z) 6= ⊥, then y :=

gk(z)?gk(z0) ∈ Y (2)
f ′k

. More specifically:

• y ∈ Y because gk(z)?gk(z0) 6=⊥ and the ? operator is defined on Y ∪⊥

• there are at least two preimages mapping to y, because y = fk(z,1) = gk(z) ?

gk(z0) = gk(z∗ z0) = fk(z∗ z0,0).

• there are at most two preimages mapping to y: indeed gk is injective, so both

partial functions f (·,0) and f (·,1) are injective, so we cannot have more than

two preimages mapping to y.

As a result, we have: Pr k←$ K
z0←D Z0

z←$ Z

[gk(z)?gk(z0) ∈ Y (2)
f ′k
|C2] = 1.

Similarly, Pr k←$ K
z0←D Z0

z←$ Z

[gk(z) ∈ Y (2)
f ′k
|C1] = 1.

B.4. Generalisation to pseudo-homomorphic functions 199

Hence, we can rewrite the above equation as:

Pr
k′ ←$ K ′
x←$ X

[fk′(x) ∈ Y (2)
f ′k

]≥ 1
2
·
(

Pr
k←$ K

z0←D Z0
z←$ Z

[C1]+ Pr
k←$ K

z0←D Z0
z←$ Z

[C2]
)

(B.18)

Now, as {gk}k is (η, Z, Z0)-homomorphic, we have: Pr k←$ K
z0←D Z0

z←$ Z

[C2]≥ η. By symmetry,

we also have: Pr k←$ K
z0←D Z0

z←$ Z

[C1]≥ η. Indeed:

Pr
k←$ K

z0←D Z0
z←$ Z

[z∗ z−1
0︸ ︷︷ ︸

ẑ

∈ Z and gk(z) = gk(z∗ z−1
0)?gk(z0) 6=⊥] (B.19)

= Pr
k←$ K

z0←D Z0
z←$ Z

[ẑ ∈ Z and z ∈ Z and ẑ = z∗ z−1
0 and gk(z) = gk(ẑ)?gk(z0) 6=⊥] (B.20)

= Pr
k←$ K

z0←D Z0
ẑ←$ Z

[ẑ ∈ Z and z ∈ Z and ẑ = z∗ z−1
0 and gk(z) = gk(ẑ)?gk(z0) 6=⊥] (B.21)

= Pr
k←$ K

z0←D Z0
ẑ←$ Z

[ẑ∗ z0 ∈ Z and gk(ẑ∗ z0) = gk(ẑ)?gk(z0) 6=⊥] (B.22)

= Pr
k←$ K

z0←D Z0
z←$ Z

[C2]≥ η (B.23)

So Prk′ ←$ K ′
x←$ X

[fk′(x) ∈ Y (2)
f ′k

]≥ η, which concludes the proof.

Appendix C

App: Composable RSP

C.1 Distance Measures for Quantum States

Lemma C.1.1. For any two density matrices ρ,σ it holds that:

Tr(ρσ) =
1
2
[
Tr
(
ρ

2)+Tr
(
σ

2)]− 1
2
‖ρ−σ‖2

HS ,

where the Hilbert-Schmidt norm is defined as: ‖A‖HS =
√

Tr(A∗A).

Proof. This follows directly from the relation

(ρ−σ)2 = ρ
2−ρσ−σρ+σ

2

and the fact that ρ and σ are hermitian.

The following lemma formalizes the following statement: If Tr(ρσ) is close to

1, then both ρ and σ must be almost pure, and ρ and σ must be close. Note that

Lemma C.1.2 holds in particular for density matrices ρ and σ, despite being stated for

a more general class of operators.

Lemma C.1.2. Let ε ≥ 0 and Tr(ρσ) ≥ 1− ε for two self-adjoint, positive semi-

definite operators ρ,σ with trace less or equal than 1. Then, it holds that:

1. Tr
(
ρ2)≥ 1−2ε,

2. Tr
(
σ2)≥ 1−2ε,

3. ‖ρ−σ‖HS ≤
√

2ε.

Proof. From Lemma C.1.1, we infer that:

Tr(ρσ)≤ 1
2
[
Tr
(
ρ

2)+Tr
(
σ

2)]≤ 1
2
[
Tr
(
ρ

2)+1
]
,

200

C.1. Distance Measures for Quantum States 201

by using the non-negativity of Hilbert-Schmidt norm and Tr
(
σ2)≤ 1. Hence:

Tr
(
ρ

2)≥ 2Tr(ρσ)−1≥ 1−2ε.

Similarly, it can be shown that Tr
(
σ2)≥ 1−2ε.

Finally, using Tr
(
ρ2)≤ 1 and Tr

(
σ2)≤ 1, we obtain:

Tr(ρσ)≤ 1− 1
2
‖ρ−σ‖2

HS

‖ρ−σ‖2
HS ≤ 2(1−Tr(ρσ))≤ 2ε,

Lemma C.1.3. Let λ be a security parameter and let ρ,σ be two density matrices.

Then, the following statements are equivalent:

1. Tr
(
ρ2)≥ 1−negl (λ), Tr

(
σ2)≥ 1−negl (λ) and TD(ρ−σ)≤ negl (λ),

2. Tr(ρσ)≥ 1−negl (λ),

where TD denotes the trace distance.

Proof. One direction of the equivalence follows directly from Lemma C.1.2. The

other direction follows from the formula in Lemma C.1.1 and the fact that in finite-

dimensional spaces the trace norm is equivalent to the Hilbert-Schmidt norm.

Lemma C.1.4. Let ε1,ε2 ≥ 0. Let further Tr(ρ1ρ2) ≥ 1− ε1 and Tr(ρ2ρ3) ≥ 1− ε2

for self-adjoint, positive semi-definite operators ρ1,ρ2,ρ3 with trace less than 1. Then

it holds that Tr(ρ1ρ3)≥ 1−3(ε1 + ε2).

Proof. From Lemma C.1.2 we know that Tr
(
ρ2

1
)
≥ 1−2ε1, Tr

(
ρ2

3
)
≥ 1−2ε2, and

‖ρ1−ρ2‖HS ≤
√

2ε1, ‖ρ2−ρ3‖HS ≤
√

2ε2.

By the triangle inequality for the Hilbert-Schmidt norm, it follows readily that

‖ρ1−ρ3‖HS ≤
√

2ε1 +
√

2ε2

and therefore:

‖ρ1−ρ3‖2
HS ≤

(√
2ε1 +

√
2ε2

)2
= 2ε1 +2ε2 +4

√
ε1
√

ε2 ≤ 4(ε1 + ε2)

where we applied the inequality of the geometric mean to obtain the last bound. Using

the formula from Lemma C.1.1, we then conclude that:

Tr(ρ1ρ3) =
1
2
[
Tr
(
ρ

2
1
)
+Tr

(
ρ

2
3
)]
− 1

2
‖ρ1−ρ3‖2

HS

≥ 1
2
[1−2ε1 +1−2ε2]−

1
2

4(ε1 + ε2)≥ 1−3(ε1 + ε2) .

Bibliography

[AA11] Scott Aaronson and Alex Arkhipov. The computational complexity of

linear optics. In Proceedings of the Forty-Third Annual ACM Symposium

on Theory of Computing, STOC ’11, page 333–342, 2011.

[Aar05] S. Aaronson. Quantum computing, postselection, and probabilistic

polynomial-time. Proceedings of the Royal Society of London Series A,

461:3473–3482, November 2005.

[Aar06] S. Aaronson. Qma/qpoly /spl sube/ pspace/poly: de-merlinizing quantum

protocols. In 21st Annual IEEE Conference on Computational Complex-

ity (CCC’06), pages 13 pp.–273, 2006.

[Aar10] Scott Aaronson. Bqp and the polynomial hierarchy. In Proceedings of

the Forty-Second ACM Symposium on Theory of Computing, STOC ’10,

page 141–150, New York, NY, USA, 2010. Association for Computing

Machinery.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern

Approach. Cambridge University Press, USA, 1st edition, 2009.

[ACGK19] Scott Aaronson, Alexandru Cojocaru, Alexandru Gheorghiu, and Elham

Kashefi. Complexity-Theoretic Limitations on Blind Delegated Quan-

tum Computation. In 46th International Colloquium on Automata, Lan-

guages, and Programming (ICALP 2019), 2019.

[AFK87] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from

an oracle. In Proceedings of the Nineteenth Annual ACM Symposium on

Theory of Computing, STOC ’87, page 195–203, New York, NY, USA,

1987. Association for Computing Machinery.

202

Bibliography 203

[AS03] Pablo Arrighi and Louis Salvail. Blind quantum computation. Interna-

tional Journal of Quantum Information, 04, 10 2003.

[BB14] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public

key distribution and coin tossing. Theor. Comput. Sci., 560:7–11, 2014.

[BCC+20] Christian Badertscher, Alexandru Cojocaru, Léo Colisson, Elham

Kashefi, Dominik Leichtle, Atul Mantri, and Petros Wallden. Secu-

rity limitations of classical-client delegated quantum computing. arXiv

preprint arXiv:2007.01668, 2020.

[BCM+18] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani,

and Thomas Vidick. A cryptographic test of quantumness and certifiable

randomness from a single quantum device. In FOCS, pages 320–331.

IEEE Computer Society, 2018.

[BDG90] José L. Balcázar, Josep Dı́az, and Joaquim Gabarró. Structural Com-

plexity II, volume 22 of EATCS Monographs on Theoretical Computer

Science. Springer, 1990.

[BDG12] Jose L. Balcazar, Josep Diaz, and Joaquim Gabarro. Structural Complex-

ity I. Springer Publishing Company, Incorporated, 2nd edition, 2012.

[BFK09] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind

quantum computation. In Proceedings of the 2009 50th Annual IEEE

Symposium on Foundations of Computer Science, FOCS ’09, pages 517–

526, Washington, DC, USA, 2009. IEEE Computer Society.

[BJ15] Anne Broadbent and Stacey Jeffery. Quantum homomorphic encryption

for circuits of low t-gate complexity. In Annual Cryptology Conference,

pages 609–629. Springer, 2015.

[Bjö16] Andreas Björklund. Below all subsets for some permutational counting

problems. In 15th Scandinavian Symposium and Workshops on Algorithm

Theory, SWAT 2016, June 22-24, 2016, Reykjavik, Iceland, volume 53 of

LIPIcs, pages 17:1–17:11, 2016.

[BKB+12] Stefanie Barz, Elham Kashefi, Anne Broadbent, Joseph F Fitzsimons,

Anton Zeilinger, and Philip Walther. Demonstration of blind quantum

computing. Science, 335(6066):303–308, 2012.

204 Bibliography

[BOV+18] Mathieu Bozzio, Adeline Orieux, Luis Trigo Vidarte, Isabelle Zaquine,

Iordanis Kerenidis, and Eleni Diamanti. Experimental investigation of

practical unforgeable quantum money. npj Quantum Information, 4(1):5,

2018.

[Bra18] Zvika Brakerski. Quantum fhe (almost) as secure asclassical. In Ad-

vances in Cryptology – CRYPTO 2018, pages 67–95, Cham, 2018.

Springer International Publishing.

[Bro15a] Anne Broadbent. Delegating private quantum computations. Canadian

Journal of Physics, 93(9):941–946, 2015.

[Bro15b] Anne Broadbent. How to verify a quantum computation, 2015.

Eprint:arXiv:1509.09180.

[CCKM20] Michele Ciampi, Alexandru Cojocaru, Elham Kashefi, and Atul Mantri.

Secure quantum two-party computation: Impossibility and constructions.

Cryptology ePrint Archive, Report 2020/1286, 2020. https://eprint.

iacr.org/2020/1286.

[CCKW18] Alexandru Cojocaru, Léo Colisson, Elham Kashefi, and Petros Wallden.

Delegated pseudo-secret random qubit generator. arXiv preprint

arXiv:1802.08759, 2018.

[CCKW19] Alexandru Cojocaru, Léo Colisson, Elham Kashefi, and Petros Wallden.

Qfactory: Classically-instructed remote secret qubits preparation. In

Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology

– ASIACRYPT 2019, pages 615–645. Springer International Publishing,

2019.

[CGK+19] Alexandru Cojocaru, Juan Garay, Aggelos Kiayias, Fang Song, and Pet-

ros Wallden. The bitcoin backbone protocol against quantum adver-

saries. Cryptology ePrint Archive, Report 2019/1150, 2019. https:

//eprint.iacr.org/2019/1150.

[Chi05] Andrew M. Childs. Secure assisted quantum computation. Quantum Info.

Comput., 5(6):456–466, September 2005.

[DFPR14] Vedran Dunjko, Joseph F Fitzsimons, Christopher Portmann, and Renato

Renner. Composable security of delegated quantum computation. In

http://arxiv.org/abs/1509.09180
https://eprint.iacr.org/2020/1286
https://eprint.iacr.org/2020/1286
https://eprint.iacr.org/2019/1150
https://eprint.iacr.org/2019/1150

Bibliography 205

International Conference on the Theory and Application of Cryptology

and Information Security, pages 406–425. Springer, 2014.

[DK06] Vincent Danos and Elham Kashefi. Determinism in the one-way model.

Physical Review A, 74(5):052310, 2006.

[DK16] Vedran Dunjko and Elham Kashefi. Blind quantum computing with two

almost identical states. arXiv preprint arXiv:1604.01586, 2016.

[DKL11] Vedran Dunjko, Elham Kashefi, and Anthony Leverrier. Blind quan-

tum computing with weak coherent pulses. Physical Review Letters,

108:200502, 08 2011.

[DNS10] Frédéric Dupuis, Jesper Buus Nielsen, and Louis Salvail. Secure two-

party quantum evaluation of unitaries against specious adversaries. In

Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, pages 685–

706, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[DSS16] Yfke Dulek, Christian Schaffner, and Florian Speelman. Quantum homo-

morphic encryption for polynomial-sized circuits. In Annual Cryptology

Conference, pages 3–32. Springer, 2016.

[Fei86] Joan Feigenbaum. Encrypting problem instances. In Hugh C. Williams,

editor, Advances in Cryptology — CRYPTO ’85 Proceedings, pages 477–

488, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.

[FGK+10] David Mandell Freeman, Oded Goldreich, Eike Kiltz, Alon Rosen, and

Gil Segev. More constructions of lossy and correlation-secure trapdoor

functions. In International Workshop on Public Key Cryptography, pages

279–295. Springer, 2010.

[Fit17] Joseph F Fitzsimons. Private quantum computation: an introduction to

blind quantum computing and related protocols. npj Quantum Informa-

tion, 3(1):23, 2017.

[FK17] Joseph F Fitzsimons and Elham Kashefi. Unconditionally verifiable blind

quantum computation. Physical Review A, 96(1):012303, 2017.

[FKD17] Samuele Ferracin, Theodoros Kapourniotis, and Animesh Datta. Towards

minimising resources for verification of quantum computations. arXiv

preprint arXiv:1709.10050, 2017.

206 Bibliography

[FWJ+14] Heng Fan, Yi-Nan Wang, Li Jing, Jie-Dong Yue, Han-Duo Shi, Yong-

Liang Zhang, and Liang-Zhu Mu. Quantum cloning machines and the

applications. Physics Reports, 544(3):241 – 322, 2014. Quantum cloning

machines and the applications.

[Gen09] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis,

Stanford University, Stanford, CA, USA, 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,

and Brent Waters. Candidate indistinguishability obfuscation and func-

tional encryption for all circuits. In Proceedings of the 2013 IEEE 54th

Annual Symposium on Foundations of Computer Science, page 40–49.

IEEE Computer Society, 2013.

[GHZ89] Daniel M Greenberger, Michael A Horne, and Anton Zeilinger. Going

beyond bell’s theorem. In Bell’s theorem, quantum theory and concep-

tions of the universe, pages 69–72. Springer, 1989.

[GL89] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way

functions. In Proceedings of the Twenty-first Annual ACM Symposium

on Theory of Computing, STOC ’89, pages 25–32, New York, NY, USA,

1989. ACM.

[GMMR13] Vittorio Giovannetti, Lorenzo Maccone, Tomoyuki Morimae, and

Terry G Rudolph. Efficient universal blind quantum computation. Phys-

ical review letters, 111(23):230501, 2013.

[GNW11] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-

Lemma, pages 273–301. Springer Berlin Heidelberg, Berlin, Heidelberg,

2011.

[Gol01] Oded Goldreich. Foundations of Cryptography. Cambridge University

Press, Aug 2001.

[GRB+16] Chiara Greganti, Marie-Christine Roehsner, Stefanie Barz, Tomoyuki

Morimae, and Philip Walther. Demonstration of measurement-only blind

quantum computing. New Journal of Physics, 18(1):013020, 2016.

Bibliography 207

[GRW80] G. C. Ghirardi, Alberto Rimini, and Tullio Weber. A general argument

against superluminal transmission through the quantum mechanical mea-

surement process. Lettere al Nuovo Cimento (1971-1985), 27:293–298,

1980.

[GV19] Alexandru Gheorghiu and Thomas Vidick. Computationally-secure and

composable remote state preparation. 2019 IEEE 60th Annual Sympo-

sium on Foundations of Computer Science (FOCS), pages 1024–1033,

2019.

[Joz05] R. Jozsa. An introduction to measurement based quantum computation.

arXiv: Quantum Physics, 2005.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-

phy, Second Edition. Chapman & Hall/CRC, 2nd edition, 2014.

[LC18] Ching-Yi Lai and Kai-Min Chung. On statistically-secure quantum ho-

momorphic encryption. Quantum Info. Comput., 18(9–10):785–794,

2018.

[LDT+18] Nana Liu, Tommaso F Demarie, Si-Hui Tan, Leandro Aolita, and

Joseph F Fitzsimons. Client-friendly continuous-variable blind and veri-

fiable quantum computing. arXiv preprint arXiv:1806.09137, 2018.

[Lia15] Min Liang. Quantum fully homomorphic encryption scheme based

on universal quantum circuit. Quantum Information Processing,

14(8):2749–2759, 2015.

[Mah18] Urmila Mahadev. Classical homomorphic encryption for quantum cir-

cuits. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foun-

dations of Computer Science, FOCS 2018, Paris, France, October 7-9,

2018, pages 332–338. IEEE Computer Society, 2018.

[Mau11] Ueli Maurer. Constructive cryptography–a new paradigm for security

definitions and proofs. In Theory of Security and Applications, pages

33–56. Springer, 2011.

[MDF17] Atul Mantri, Tommaso F Demarie, and Joseph F Fitzsimons. Universality

of quantum computation with cluster states and (X, Y)-plane measure-

ments. Scientific Reports, 7:42861, 2017.

208 Bibliography

[MDK15] Tomoyuki Morimae, Vedran Dunjko, and Elham Kashefi. Ground state

blind quantum computation on aklt state. Quantum Info. Comput., 15(3-

4):200–234, March 2015.

[MDMF17] Atul Mantri, Tommaso F Demarie, Nicolas C Menicucci, and Joseph F

Fitzsimons. Flow ambiguity: A path towards classically driven blind

quantum computation. Physical Review X, 7(3):031004, 2017.

[MF12] Tomoyuki Morimae and Keisuke Fujii. Blind topological measurement-

based quantum computation. Nature communications, 3:1036, 09 2012.

[MF13] Tomoyuki Morimae and Keisuke Fujii. Blind quantum computation pro-

tocol in which alice only makes measurements. Phys. Rev. A, 87:050301,

May 2013.

[MK13a] Tomoyuki Morimae and Takeshi Koshiba. Composable security

of measuring-alice blind quantum computation. arXiv preprint

arXiv:1306.2113, 2013.

[MK13b] Tomoyuki Morimae and Takeshi Koshiba. Composable security

of measuring-alice blind quantum computation. arXiv preprint

arXiv:1306.2113, 2013.

[MK14] Tomoyuki Morimae and Takeshi Koshiba. Impossibility of perfectly-

secure delegated quantum computing for classical client. arXiv preprint

arXiv:1407.1636, 2014.

[Mor12] Tomoyuki Morimae. Continuous-variable blind quantum computation.

Physical Review Letters, 109(23):230502, 2012.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,

tighter, faster, smaller. In David Pointcheval and Thomas Johansson,

editors, Advances in Cryptology – EUROCRYPT 2012, pages 700–718,

Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[MPDF13] Atul Mantri, Carlos A Pérez-Delgado, and Joseph F Fitzsimons. Optimal

blind quantum computation. Physical review letters, 111(23):230502,

2013.

Bibliography 209

[MR11] Ueli Maurer and Renato Renner. Abstract cryptography. In In Innova-

tions in Computer Science. Citeseer, 2011.

[NC00] Michael A Nielsen and Isaac Chuang. Quantum Computation and Quan-

tum Information. Cambridge University Press, 2000.

[Nie06] Michael A Nielsen. Cluster-state quantum computation. Reports on

Mathematical Physics, 57(1):147–161, 2006.

[NS18] Michael Newman and Yaoyun Shi. Limitations on transversal computa-

tion through quantum homomorphic encryption. Quantum Info. Comput.,

18(11–12):927–948, 2018.

[OTF15] Yingkai Ouyang, Si-Hui Tan, and Joseph Fitzsimons. Quan-

tum homomorphic encryption from quantum codes. arXiv preprint

arXiv:1508.00938, 2015.

[PCDK11] Anna Pappa, André Chailloux, Eleni Diamanti, and Iordanis Kerenidis.

Practical quantum coin flipping. Physical Review A, 84(5):052305, 2011.

[PDF15] Carlos A Pérez-Delgado and Joseph F Fitzsimons. Iterated gate tele-

portation and blind quantum computation. Physical Review Letters,

114(22):220502, 2015.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest

vector problem: Extended abstract. In Proceedings of the Forty-first An-

nual ACM Symposium on Theory of Computing, STOC ’09, pages 333–

342, New York, NY, USA, 2009. ACM.

[Pre18] John Preskill. Quantum Computing in the NISQ era and beyond. Quan-

tum, 2:79, August 2018.

[RAD78] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy

homomorphisms. Foundations of Secure Computation, Academia Press,

pages 169–179, 1978.

[RB01] Robert Raussendorf and Hans J Briegel. A one-way quantum computer.

Physical Review Letters, 86(22):5188, 2001.

210 Bibliography

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and

cryptography. In Proceedings of the Thirty-seventh Annual ACM Sympo-

sium on Theory of Computing, STOC ’05, pages 84–93, New York, NY,

USA, 2005. ACM.

[Rys63] Herbert John Ryser. Combinatorial Mathematics. Mathematical Associ-

ation of America, 1963.

[Sho97] Peter W Shor. Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer. SIAM Journal on Comput-

ing, 26(5):1484–1509, 1997.

[SIGA05] Valerio Scarani, Sofyan Iblisdir, Nicolas Gisin, and Antonio Acı́n. Quan-

tum cloning. Rev. Mod. Phys., 77:1225–1256, Nov 2005.

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM J. Com-

put., 26(5):1474–1483, 1997.

[SSS09] Louis Salvail, Christian Schaffner, and Miroslava Sotáková. On the

power of two-party quantum cryptography. In Mitsuru Matsui, editor,

Advances in Cryptology – ASIACRYPT 2009, pages 70–87, Berlin, Hei-

delberg, 2009. Springer Berlin Heidelberg.

[Sto83] Larry Stockmeyer. The complexity of approximate counting. In Proceed-

ings of the Fifteenth Annual ACM Symposium on Theory of Computing,

STOC ’83, page 118–126, 1983.

[TKO+16] Si-Hui Tan, Joshua A Kettlewell, Yingkai Ouyang, Lin Chen, and

Joseph F Fitzsimons. A quantum approach to homomorphic encryption.

Scientific reports, 6:33467, 2016.

[Tod91] Seinosuke Toda. Pp is as hard as the polynomial-time hierarchy. SIAM J.

Comput., page 865–877, 1991.

[TOR18] Si-Hui Tan, Yingkai Ouyang, and Peter P. Rohde. Practical somewhat-

secure quantum somewhat-homomorphic encryption with coherent

states. Phys. Rev. A, 97:042308, Apr 2018.

[Vai] Vinod Vaikuntanathan. Advanced topics in cryptography: Lat-

tices. https://people.csail.mit.edu/vinodv/6876-Fall2015/

L13.pdf.

https://people.csail.mit.edu/vinodv/6876-Fall2015/L13.pdf
https://people.csail.mit.edu/vinodv/6876-Fall2015/L13.pdf

Bibliography 211

[VV85] Umesh V. Vazirani and Vijay V. Vazirani. Efficient and secure pseudo-

random number generation (extended abstract). In George Robert Blak-

ley and David Chaum, editors, Advances in Cryptology, pages 193–202,

Berlin, Heidelberg, 1985. Springer Berlin Heidelberg.

[WDKA15] Petros Wallden, Vedran Dunjko, Adrian Kent, and Erika Andersson.

Quantum digital signatures with quantum-key-distribution components.

Physical Review A, 91(4):042304, 2015.

[WEH18] Stephanie Wehner, David Elkouss, and Ronald Hanson. Quantum inter-

net: A vision for the road ahead. Science, 362(6412):303, 2018.

[Yap83] Chee K. Yap. Some consequences of non-uniform conditions on uniform

classes. Theoretical Computer Science, 26(3):287 – 300, 1983.

[YPDF14] Li Yu, Carlos A Pérez-Delgado, and Joseph F Fitzsimons. Limitations

on information-theoretically-secure quantum homomorphic encryption.

Physical Review A, 90(5):050303, 2014.

[Zha20] Jiayu Zhang. Succinct blind quantum computation using a random oracle.

ArXiv, abs/2004.12621, 2020.

	Introduction
	Secure Delegated Computing
	Semi-classical Client and Quantum Server
	Fully-classical Client and Quantum Server

	Contributions
	Information-Theoretic Secure CSDQC
	Computationally Secure CDQC against honest-but-curious server
	Computationally Secure CDQC against malicious server
	Composable Security of CDQC

	Outline

	Preliminaries
	Quantum Computing
	Complexity Theory Background
	Advice Turing Machines
	Oracle Turing Machines

	Cryptographic Primitives
	Learning-With-Errors
	Constructive Cryptography Framework

	Complexity Limitations of Classical Client Delegated Quantum Computing
	Classical Delegation of Decision Problems
	Generalised Encryption Scheme
	Oracle separation between and

	Classical Delegation of Sampling Problems
	The Boson Sampling Problem
	GES for Exact Boson Sampling
	Circuits for the Permanent

	QFactory against Honest-but-Curious Server
	Overview of the Protocol and Proof
	 Primitive
	The Real Protocol
	Correctness and intuition

	Security of
	Game-Based Security Definition
	Game-Based Security of
	Hardcore Function

	Function Constructions
	Obtaining two-regular, collision resistant/second preimage resistant, trapdoor one-way functions
	Injective, homomorphic quantum-safe trapdoor one-way function based on (from)
	A suitable regular trapdoor function
	Parameter Choices

	Implementation of on IBM Quantum Cloud
	Function Construction for Simulation
	Randomness Results
	Correctness Results

	QFactory against Malicious Server
	Overview of Protocols and Proof Techniques
	Notations

	The Malicious 4-states QFactory Protocol
	Requirements and protocol
	Correctness of Malicious 4-states QFactory
	Security of Malicious 4-states QFactory

	Function Implementation
	Generic construction of 2-regular homomorphic-hardcore
	Construction of homomorphic-hardcore family

	The Malicious 8-states QFactory Protocol
	Correctness of Malicious 8-states QFactory
	Security against Malicious Adversaries of Malicious 8-states QFactory

	Malicious-abort 4-states QFactory: treating abort case
	The Malicious-Abort 4-state QFactory Protocol
	Correctness and Security Malicious-Abort 4-state QFactory

	Security Limitations of Classical Client Delegated Quantum Computing
	Overview of Contributions and Proof Techniques
	Notations

	Impossibility of Composable Classical RSP
	Remote State Preparation and Describable Resources
	Classically-Realizable RSP are Describable
	RSP Resources Impossible to Realize Classically
	Characterization of RSP resources

	Impossibility of Composable Classical-Client UBQC
	Impossibility of Composable UBQCcc on 1 Qubit
	Impossibility of Composable General UBQCcc

	Conclusions
	App:
	Full proof of Theorem 4.4.4
	Proof of Theorem 4.5.7
	Proof of Theorem 4.5.11
	 regularity
	Collision resistance
	One-wayness
	Trapdoor

	Proof of Lemma 4.5.12

	App: Malicious QFactory
	Function Construction proofs
	Proof of Lemma 5.3.2
	Proof of Theorem 5.3.4, homomorphicity
	Proof of Theorem 5.3.4, one-wayness

	Probability of guessing two predicates
	Proof of Malicious-Abort QFactory
	Generalisation to pseudo-homomorphic functions

	App: Composable RSP
	Distance Measures for Quantum States

	Bibliography

