
MailTrout: a machine learning browser
extension for detecting phishing emails

Paul Boyle
Lynsay A. Shepherd

This is a conference paper presented at the 33rd British
Human Computer Interaction Conference: Post-
Pandemic HCI – Living digitally, 19-21 July 2021,
online, London, UK
The paper will be published by ACM in the Proceedings
of the 33rd British Human Computer Interaction
Conference: Post-Pandemic HCI – Living digitally

1 © The Authors. Published by BCS
Learning and Development Ltd.
Proceedings of …

MailTrout: A Machine Learning Browser
Extension for Detecting Phishing Emails

Paul Boyle
School of Design and Informatics

Division of Cyber Security
Abertay University

Bell Street, Dundee, DD1 1HG, UK
1600301@abertay.ac.uk

Lynsay A. Shepherd
School of Design and Informatics

Division of Cyber Security
Abertay University

Bell Street, Dundee, DD1 1HG, UK
lynsay.shepherd@abertay.ac.uk

The onset of the COVID-19 pandemic has given rise to an increase in cyberattacks and cybercrime,
particularly with respect to phishing attempts. Cybercrime associated with phishing emails can
significantly impact victims, who may be subjected to monetary loss and identity theft. Existing anti-
phishing tools do not always catch all phishing emails, leaving the user to decide the legitimacy of
an email. The ability of machine learning technology to identify reoccurring patterns yet cope with
overall changes complements the nature of anti-phishing techniques, as phishing attacks may vary
in wording but often follow similar patterns. This paper presents a browser extension called
MailTrout, which incorporates machine learning within a usable security tool to assist users in
detecting phishing emails. MailTrout demonstrated high levels of accuracy when detecting phishing
emails and high levels of usability for end-users.

Phishing. Usable Security. Machine Learning. Browser Extension. Socio-Technical Security.

1. INTRODUCTION

Phishing emails generally attempt to persuade the
recipient to reveal private or confidential information
such as passwords or bank details and may deliver
malware to infect the victim’s machine. Information
gained via phishing emails is used for fraudulent
purposes by the sender, placing users at risk of
identity theft, fraud, and significant financial loss.

Since the beginning of the COVID-19 pandemic,
incidences of cyberattacks and cybercrime have
increased considerably, including a sharp rise in
phishing attempts (Lallie et al., 2021; Horgan et al.,
2021). The pandemic has caused a fundamental
shift in working practices and social interactions,
creating an enhanced dependence on technology.
Thus, users require additional support to identify
potentially malicious emails.

Successful phishing scams can be costly for victims;
in the UK, it is estimated that it takes 20 days and
£960,000 to address the consequences of a single
phishing or social engineering attack (Graham,
2018).

To combat phishing attempts, email clients make
use of spam filters to quarantine suspicious emails.
However, these filters are not always successful;
consequently, users require additional assistance to
help them detect phishing emails in the form of anti-
phishing tools and security education.

Anti-phishing tools may take the form of browser
extensions, which can augment the users’ browsing
experience. These tools can identify different forms
of phishing attacks; ‘GoldPhish’ is an Internet
Explorer extension used to identify phishing
webpages (Dunlop et al., 2010), while ‘PhishAri’ is a
Google Chrome extension designed to detect
phishing attempts on Twitter (Aggarwal et al., 2012).
Anti-phishing tools may also make use of machine
learning (ML), allowing systems to learn from
existing data to make decisions without the need for
human interaction. Previous work by Fette et al.
(2007) was able to detect phishing emails based on
features such as the number of hyperlinks present
and the use of JavaScript.

This paper presents a prototype browser extension
to detect phishing emails, which harnesses the
power of machine learning to assist users in
identifying phishing attempts, protecting them from
becoming a victim of cybercrime.

TensorFlow was used to develop and train an ML
model using a dataset of fraudulent and legitimate
emails. The model was evaluated for accuracy and
converted for use in a prototype Google Chrome
browser extension. The extension parses email text
and evaluates sentiment and language to determine
legitimacy. The extension was also tested with
participants to evaluate its usability.

MailTrout: A Machine Learning Browser Extension for Detecting Phishing Emails
Paul Boyle ● Lynsay A. Shepherd

2

The remainder of the paper is organised as follows;
Section 2 explores related work in phishing
detection and machine learning. Section 3 describes
the methodology. Results are presented in Section
4 and are discussed in Section 5. Section 6 presents
conclusions and considers future work.

2. RELATED WORK

2.1 Existing anti-phishing tools

Phishing emails are not a new problem; however,
attempts have increased in the wake of the COVID-
19 pandemic attempts (Lallie et al., 2021). Usable
security research has investigated anti-phishing
security tools to protect users and increase the
awareness of risks associated with phishing
attempts.

A vital consideration when developing security tools
– especially those aimed at non-technical individuals
– is ensuring that they are accessible and user-
friendly. Kumaraguru et al. (2010) developed two
anti-phishing tools: the embedded email-based
‘PhishGuru’ and the online game ‘Anti-Phishing
Phil’. To ensure the tools provided effective
education, the developers followed a series of
design principles, including ‘learning-by-doing’,
which states that people learn better when they
practice their skills. In PhishGuru, instructional
materials are embedded into the user’s everyday
tasks, such as checking their emails. Implanting the
materials increases the prevalence of ‘teachable
moments’ – optimal opportunities to convey a point
or idea – increasing the tool’s educational potential.
Other embedded tools may take the form of browser
extensions. GoldPhish, developed by Dunlop et al.
(2010), was an extension for the now deprecated
Internet Explorer browser, allowing it to easily
access the sites viewed by the user to identify
phishing (Dunlop et al., 2010).

Aggarwal, et al. (2012) developed ‘PhishAri’, a
Chrome browser extension used to detect phishing
attempts on Twitter. The researchers found that
phishing attacks carried out through social media
sites have risen, and a common technique used is
the obfuscation of malicious web links through URL
shortening. The extension uses ML techniques to
classify phishing URLs and tweets through
characteristics of the URL, the tweet, and the author.
The tool applies a red indicator to phishing tweets
and a green indicator to safe tweets.

2.2 Machine Learning (ML)

The language patterns commonly reused in phishing
attacks have generated interest in how machine
learning can identify and protect users from phishing

attacks due to its ability to classify data by identifying
trends.

ML models require input data stored in a numerical
format for processing. Data can come from a variety
of sources, including images and text converted to
numerical vectors. In the field of natural language
processing (NLP), structured collections of text
referred to as ‘corpora’ are used as datasets for
training. Converted data can make predictions on
non-numerical information, using qualities such as
its visual appearance or use of language.

Fu et al. (2006) proposed a method for detecting
phishing webpages by assessing the visual
similarities between a potential phishing site and a
set of protected sites known to be legitimate. The
research interpreted the colour and location of each
pixel on a webpage as data used when making a
prediction. However, this method only detects
phishing pages that look similar to those in the
protected set, with less success at detecting
phishing web pages outside of this set. Fu et al.
(2006) cited using natural language analysis to
enhance the project, improving detection accuracy.

The GoldPhish browser extension by Dunlop et al.
(2010) uses optical character recognition (OCR) to
detect a company logo on a webpage and converts
it to text. Google PageRank is then used to compare
the top domains with that name to the current
webpage. However, one potential issue with this
method is that webpage logos may be highly
stylised, rendering them difficult for OCR to interpret.

The aforementioned research has explored phishing
webpages, which contain more graphical content
than phishing emails. Image-based phishing
detection is less flexible than text-based detection. It
is only able to detect images similar to those used
during model training and is dependent on the
accuracy of external technologies, such as OCR
software. Thus, it is essential to focus on the text
content using sentiment analysis, which has been
applied to other contexts.

Tao and Fang (2020) proposed a multi-label
sentiment analysis method to determine the
sentiment of online reviews for restaurants, wines
and films. This method allows the sentiment towards
specific aspects of a sample to be analysed, rather
than producing a prediction for the overall sentiment.
For example, a review for a restaurant may express
a positive sentiment towards the food but a negative
sentiment towards the atmosphere.

While emails may contain some common features,
such as greetings and sign-offs, these are not
present in all emails. Also, compared to descriptions
of specific features of an object, such as a wine’s
variety or country of origin, these email features are
more abstract and may be more difficult for an ML
model to identify. However, this method used a
multi-class approach, allowing samples to be

MailTrout: A Machine Learning Browser Extension for Detecting Phishing Emails
Paul Boyle ● Lynsay A. Shepherd

3

classified as positive, negative, neutral or conflicted
(both positive and negative). Such an approach may
be applicable when identifying phishing emails, as it
may produce more accurate results, considering
different types of phishing attempts.

Other important factors to consider relating to the
dataset used in training are its quality, size, and
format. Halgaš et al. (2019) proposed a phishing
classifier that uses a recurrent neural network (RNN)
to evaluate an email’s text and structure.
Researchers highlighted the ability of phishing
emails to avoid filters due to their changing nature
and suggest that ML may be able to identify trends
in phishing emails. Two datasets comprised of
legitimate and phishing emails sourced from existing
email corpora were used to train the model. Of the
two datasets used, the RNN classified emails more
accurately when trained with the smaller and less
balanced of the two datasets, demonstrating that
both quantity and quality of a corpus impact a
model’s accuracy. This method classified emails as
either ‘ham’ (legitimate) or phishing. However, this
binary classification system may have impacted the
model’s accuracy, given the many differences in
language used in the numerous types of phishing
attacks, such as extortion compared to unexpected
money fraud.

Prusa et al. (2015) investigated the correlation
between the size of a training dataset and the
accuracy of a sentiment analysis classifier, explicitly
studying the number of instances required to train a
tweet sentiment classifier. The researchers found
that as the size of the dataset used for training
increased, the accuracy of the machine learning
model improved. However, there was no significant
improvement in the accuracy of this classifier after
the use of a dataset containing 81,000 instances.
The sentiments of tweets were classified as either
positive or negative, which are very general terms
(Prusa et al., 2015).

2.3 Machine learning and anti-phishing tools

ML techniques could be applied to the field of
usable security. Given the increased need for
usable, anti-phishing tools and the ability of ML to
detect patterns in data, this highlights the potential
for these research areas to be combined, thus
protecting users and enhancing phishing detection.
In the following section, the methodology behind
the research is outlined, explaining how an ML
model was integrated into an anti-phishing browser
extension to support end-users.

3. METHODOLOGY

An ML model was trained to classify emails as
phishing or legitimate and was designed to produce
a classification prediction based on an email’s text

contents. The browser extension operated by
reading and processing selected text to generate an
output in a popup window.

The browser extension and the ML model were
integrated into a single extension named MailTrout
(Figure 1). The browser extension selected and read
text from the browser window and converted the text
into a numerical sequence for processing. The ML
model then generated a prediction based on the
sequence. Finally, the browser extension displayed
an output based on the prediction of the ML model.

Figure 1: Components within MailTrout

3.1 Machine learning model

The ML model was developed using Python 3, the
Python deep-learning library Keras (Chollet, 2015)
and the open-source ML library, TensorFlow
(Google, 2020a).

3.1.1. Algorithm selection
Artificial neural networks (ANNs) are computational
algorithms based on the model of biological neurons
in the human brain. ANNs can be used in ML to
process input data and produce an output, such as
a classification or prediction (Chen et al., 2019).
Recurrent neural networks (RNNs) are variants of
ANNs. The results of previous items in a sequence
– such as words in a text – are stored to provide
contextual information and produce results based on
both the current and previous input. This method is
ideal for NLP as it can evaluate the sentiment of text
overall by evaluating words individually as well as in
their context by considering the impact of the
previous text (Lai et al., 2015).

Long Short-Term Memory networks (LSTMs) are an
RNN architecture designed to cope with long-range
dependences. As the distance between previous
information and present input data grows, traditional
RNNs become less effective at connecting this
information to apply context. However, LSTMs are
more capable of learning long-term dependencies,
as they use multiple neural network layers to pass
the neuron’s output value and a memory cell state
along the network, providing contextual information
that can influence the output value at each stage.
Due to this technique, LSTMs are shown to
outperform standard RNNs at learning context-free
and context-sensitive language (Gers &
Schmidhuber, 2001; Sak et al., 2014).

MailTrout: A Machine Learning Browser Extension for Detecting Phishing Emails
Paul Boyle ● Lynsay A. Shepherd

4

Bidirectional Long Short-Term Memory networks
(BLSTMs) further improve the ability to learn long-
term dependencies. BLSTMs operate on the input
sequence from both directions, allowing the
network to incorporate context from before and
after the present item in a sequence. This method
has proven to be powerful in tasks involving NLP,
including sentiment analysis and classification
(Wang, et al., 2015). For these reasons, the ML
model was designed to use a BLSTM layer to
process data.

3.1.2. Classification
Binary-class models allow data to be classified as
one of two categories, typically ‘positive’ or
‘negative’. While this approach could be applied in
this research, the issue of the many differences in
phishing email patterns and vectors had to be
considered. Avanan’s Global Phish Report (2019)
classified the phishing emails reviewed into four
vectors: spearphishing, extortion, credential
harvesting and malware phishing.

Spearphishing attacks - phishing targeted at a
specific individual, such as a high-level employee in
an organisation - were commonly found to
impersonate senior employees such as CEOs.
Spearphishing uses social engineering to urge their
victim to complete a task, such as granting the
attacker access to company information or finances.
This form of attack is known as business email
compromise.

Extortion attacks use threats to pressure their victim,
e.g. threatening to share compromising information,
holding them to a cryptocurrency-based ransom.
These emails often use email spoofing techniques
and passwords uncovered from data leaks to add
credibility to their claims.

Credential harvesting attacks aim to steal sensitive
information from their victims, such as passwords or
bank details. These attacks commonly impersonate
trusted brands and lead the victims to phishing
webpages, using social engineering to create a
sense of urgency.

Malware phishing attempts seek to install harmful
software on a victim’s device. These exhibit
characteristics similar to the aforementioned
attacks.

Postolache and Postolache (2010) also identified
numerous phishing vectors, including extortion and
the impersonation of legitimate organisations and
individuals. However, they also identified numerous
vectors not covered by these terms, including
advance-fee, lottery and investment fraud. These
are examples of unexpected money and winnings
scams, in which a scammer attempts to make a
victim believe that they can receive a financial or
material reward by following their instructions, such
as by sharing their bank details or paying an upfront

fee (Australian Competition & Consumer
Commision, 2015). These investigations highlight
the broad range of phishing email vectors in use and
pose an issue for an ML model; as classification
predictions are most accurate when items of a class
have more similarities, a model’s accuracy may be
hindered by large differences in the data.

To reduce issues with accuracy, a multi-class
approach was chosen for the ML model, in which
text could either be classified as legitimate (HAM) or
one of four classes of phishing: impersonation
phishing (IMP), business email compromise (BEC),
extortion (EXT) or unexpected money/winnings
scams (UNX). This method ensured that data used
for training could be sorted into classes of as little
variance as possible. The approach would help to
ensure the ML model’s accuracy, allowing the
finished product to produce information specifically
relevant to the type of phishing email that the user
had likely received.

Finally, the ML model used the softmax function to
output results as a probability distribution. Softmax
normalises output by converting a vector of numbers
to values between 0 and 1 that have a sum of 1,
allowing each result to be interpreted as a probability
(Goodfellow et al., 2016). This approach allows the
model to output the certainty of its result, which may
be helpful to a user when considering if they should
follow the actions recommended by the browser
extension in response to an email message they
have received.

3.1.3. Datasets
The Fraud Email Dataset published by Verma
(2018) was included in the final dataset used to train
the ML model. Verma’s dataset contains fraud
emails described as ‘Nigerian fraud’ (advance-fee
scam) taken from the CLAIR collection of fraud email
(Radev, 2008), and legitimate emails taken from the
dataset of Hillary Clinton’s emails released by the
US Department of State (Kaggle, 2019).

Verma’s dataset was chosen as it did not require
much formatting or review; the data did not contain
any email header information, only the body content,
which the ML model was designed to process. Also,
all items were labelled as either fraud (1) or
legitimate (0), allowing for easy relabelling to UNX
and HAM respectively, for, compatibility with the ML
model’s multi-class system. Additionally, the Python
Reddit API Wrapper (PRAW) was used to collect
extortion phishing emails posted on a series of
Reddit threads titled “The Blackmail Email Scam”
(EugeneBYMCMB, 2019). Suitable entries were
labelled as EXT and added to the final dataset.

Online records of phishing emails are commonly in
the format of screenshots rather than plaintext
copies. In response to this, a script was developed
to use OCR technology to read and store the text of
saved images of emails. The Python script ‘Google

MailTrout: A Machine Learning Browser Extension for Detecting Phishing Emails
Paul Boyle ● Lynsay A. Shepherd

5

Images Download’ was used to download results of
online image searches for examples of phishing
emails. This script allowed for multiple prefix and
suffix terms to be added to a keyword for individual
searches. The approach allowed for greater
automation of image acquisition by appending
names of well-known banks and commerce
platforms to a search of “impersonation phishing
email”. The script also allowed for colour filters to be
applied to searches, which was used to specify
black-and-white images for forms of phishing that
were unlikely to include colours or images (Vasa,
2019).

The image results required manual review as many
were not suitable, including infographics and images
on the subject of email phishing. The suitable
images were then compiled into folders manually,
separated by their classifications. The free OCR
engine Tesseract was used to interpret the text from
the images (Google 2020b). The Python wrapper
tool PyTesseract was used to include Tesseract as
part of a Python script (Lee, 2020).

All emails (Table 1) were compiled into one large
CSV file.

Table 1: Different types of phishing email in the dataset.

Email Category Count
Business Email Compromise (BEC) 391
Extortion (EXT) 1427
Legitimate (HAM) 5287
Impersonation (IMP) 541
Unexpected Money/Winnings (UNX) 3581
Grand Total 11227

3.1.4. Training

The email text from the dataset was split into
portions for training and validation of 80% and 20%,
respectively, following the commonly used Pareto
Principle (McRay, 2015).

High-frequency words that consume processing
time but do not contribute to sentiment were filtered
from the dataset. These words are known as stop
words. The Natural Language Toolkit (NLTK) is a
Python library used for NLP and includes a corpus
of stop words, including “the”, “a”, and “also” (Bird et
al., 2009). This corpus was used as part of the ML
training script to find and remove all stop words
present in the training data.

Words in the dataset were converted to integers
using a tokenizer, which converts text into
meaningful data or ‘tokens’. The tokenizer used was
included in the Keras Python library and was created
using the 10,000 most reoccurring words in the
dataset vocabulary. The tokenizer was exported as
a JSON file so that it could be used later. Both the
training and validation sequences were tokenized,

and a separate tokenizer was used to convert the
data labels to integers (Google, 2020c).

The sequences used to train the model had to be
equal in size, meaning that sequences had to be
padded or truncated to fit a set length. Sequence
padding involves adding zeros to a sequence until it
is the desired length. This can be done from the
beginning (pre-padding) or the end (post-padding.
The sequences were pre-padded, as this method
has been shown to produce the most accurate
results when used with an LSTM model
(Dwarampudi & Reddy, 2019).

The standard sequence length chosen was 500
words. The mean word count of the emails used in
training was 201, and the standard deviation
approximately 266. The sequence length was
calculated as the mean plus one standard deviation
rounded to the nearest hundred. On inspecting the
distribution of word counts of the emails, it was
confirmed that this length was suitable, as most
emails were within this range. Emails with a word
count greater than 500 were truncated. Truncation
can be carried out from the beginning (pre-
truncation) or the end (post-truncation) of the
sequence. There is no widely accepted best practice
for sequence truncation for LSTMs; therefore, post-
truncation was used to avoid removing keywords or
phrases commonly located near the beginning of
phishing emails, e.g. “Dear Customer”.

3.2 Web browser extension

The browser extension was designed to help the
user classify an email as legitimate or phishing,
using the ML model. The extension was developed
for use in Google Chrome, which has the largest
share (StatCounter, 2021).

MailTrout: A Machine Learning Browser Extension for Detecting Phishing Emails
Paul Boyle ● Lynsay A. Shepherd

6

Figure 2: Screenshot of the browser extension.

The browser extension uses a complementary
colour palette of turquoise and gold, ensuring that
text and buttons are high contrast and easy to
distinguish visually. The extension also uses green
and red icons to highlight what the user should and
should not do in response to receiving a potential
phishing email. Green is commonly associated with
safety, while red is associated with danger. The
extension uses this recognisable colour scheme to
make the meaning of its messages clear.
Screenshots of the prototype were tested using
‘Coblis’, an online tool that allows the user to view
an uploaded image as a person would see it with a
colour vision deficiency (CVD) or colour-blindness
(Wickline, 2001).

3.2.1. Implementation

In order to select an email to be evaluated by the
extension, the user highlights text using their cursor
and then selects a button on the extension popup.
This method was deemed the most transferable for
use in different web email clients as it did not
require email contents to be automatically detected,
ensuring that the extension processed only the text
a user wanted to evaluate. The extension popup
displays on the right side of the page; this is
common practice for web browser extensions and
would be familiar to the user. This also prevents
disruption to the user’s browsing experience; given
that the user is likely to have left-aligned text on a
page, the popup will not cover any important parts
of the text.

3.2.2. Readability

To ensure that users could easily understand the
instructions, certainty of classification, and
information given by the extension, the Python
package ‘TextStat’ was used to evaluate the
readability and complexity of the text in the
extension’s instructions and results (Bansal &
Aggarwal, 2020).

TextStat can be used to produce a readability score
using numerous established readability formulas.
The Dale-Chall readability formula was used to
calculate the US grade level of text, which was then
used to determine the average age level. According
to Begeny and Greene (2014), the Dale-Chall
formula outperforms other commonly used
readability formulas as a consistent and accurate
indicator of text difficulty. Text within the extension
was written to be understandable by those aged 18
majority – the legally recognised threshold of
adulthood – in most countries (UN General
Assembly, 1989).

3.3 Integration of model into extension

The ML model was converted from a Hierarchical
Data Format Files to the TensorFlow.js Layers
format, allowing for use with JavaScript as part of
the web browser extension. The Layers formatted
model consisted of a JSON file of the model
architecture and a binary weights file. The JSON
file was loaded into JavaScript using
TensorFlow.js, allowing the browser extension to
make and output predictions using the ML model.

The browser extension was designed to use the ML
model to make classifications on the client-side.
This approach ensured the analysis of emails
would be faster compared to loading the model
from a server (Figure 3). The model was loaded
from the JSON file stored by the extension and
generated a prediction based on the sequence.
The prediction consisted of an array of probabilities
that the sequence was one of the potential email
categories. The browser extension then displayed a
result based on the classification with the highest
probability.

Figure 3: System architecture.

3.4 User testing

User acceptance testing was carried out to evaluate
the browser extension’s usability. Testing was
conducted remotely owing to the COVID-19
pandemic and restrictions regarding in-person
experiments. Participants emailed the researchers
indicating interest and were provided with a copy of
the extension, along with an instructional YouTube
video containing installation details.

An online survey used to record participants’
feedback on the extension’s usability was
developed. Participants had to agree to an informed
consent statement before proceeding with the
experiment and were asked to provide demographic
information. Participants were also asked about
their familiarity with the terms used to describe the
four categories of phishing emails. They were then
given a fuller description of each category and asked
to rate how likely they would be to identify an email
of that category.

A scenario was given to participants to add a level
of realism to the testing environment. This scenario

MailTrout: A Machine Learning Browser Extension for Detecting Phishing Emails
Paul Boyle ● Lynsay A. Shepherd

7

stated that the participant was working for an
organisation and had been asked to review their
boss’s email inbox using the MailTrout extension to
identify phishing emails received.

A webmail-style sandbox environment created using
HTML, CSS, JavaScript, and PHP was developed
and displayed to participants in the browser. The
inbox randomly selected 10 test emails out of a
possible 30 and displayed these to the participant
one at a time, moving to the next email once the
participant marked each as either legitimate or
phishing. Once they completed the task, they were
asked to consider how usable they found the
extension, using an all-positive version of the
System Usability Scale (SUS) as discussed by
Sauro & Lewis (2011).

After using the extension, participants were again
asked how likely they would be to identify phishing
emails of each category. Additional questions
explored how helpful they found the instructions
provided for using the extension and how likely they
would be to recommend the extension to someone
looking to protect themselves against phishing
emails. Participants were also asked to provide
feedback on how the extension catered to any
conditions they had which may impact their ability to
use a browser extension, such as a specific learning
difficulty (SpLD), CVD, or visual impairment.
Participants were also given the opportunity to
provide any other feedback they had about the
extension overall.

4. RESULTS

Results showed that overall, the ML model classified
emails accurately, and test participants were content
with the usability of the extension. Additionally, they
found it simple to use and felt it educated them on
the techniques commonly used in phishing emails.

4.1 Model accuracy

The model was trained with a sequence size of 500
words, using pre-padding and post-truncation to
reach this standard size. The size of 500 words was
chosen because the majority of emails in the dataset
fell within this range. Overall, the dataset contained
11227 records.

The model produced: 5930 true positives (TPs),
5287 true negative (TNs), 0 false positives (FPs),
and 10 false negatives (FNs). The true categories of
emails were recorded when counting FNs to
understand the model’s accuracy when classifying
categories of phishing emails (Table 2).

Table 2: Total number of emails in the dataset and FNs.

Email Category Total No. of FNs

Unexpected
Money/Winnings (UNX)

3581 0

Extortion (EXT) 1427 0
Impersonation (IMP) 541 7
Business Email
Compromise (BEC)

391 3

4.2 User acceptance

To evaluate the usability of the extension, 44
participants (23 male, 21 female) over the age of 18
years were recruited for the pilot study. Participants
ranged in age from 18-69 (with 59% falling into the
18-24 bracket), and varied in level of education, field
of study, and country of residence.

Overall, participants’ answers to the SUS
questionnaire gave the MailTrout extension a score
of 87.5 out of 100. Notably, younger participants
gave the extension a higher usability rating than
older participants. Only one participant reported
being in the age range of 40-54. The two highest age
ranges (40-54 and 55-69) were combined into one
range of 40-69 to aid in presenting and interpreting
the results. Participants aged 18-24 gave the
extension the highest usability score on average,
while those aged 40-69 gave the extension the
lowest usability score. While the ratings received
overall were positive, these findings demonstrate
that older participants may have found the tool less
usable (Figure 4).

Figure 4: SUS score by age bracket.

Many participants remarked on how easy they found
the extension to use and understand, describing it
as refined and straightforward. Participants also
found the speed and ability of the extension
impressive. A common view among participants was
that the extension was well designed, and the text
was easy to read and understand.

Several participants expressed that the extension
would be helpful to those who are less confident
online and perhaps more vulnerable to phishing
emails, such as the elderly. Another emerging theme
was that participants said they would recommend
MailTrout to people they knew who commonly
receive phishing emails. Overall, participants felt
they would be very likely to recommend the
extension to someone looking to protect themselves

MailTrout: A Machine Learning Browser Extension for Detecting Phishing Emails
Paul Boyle ● Lynsay A. Shepherd

8

against phishing emails, scoring their likelihood an
average of 4.59 out of 5.

Before testing the extension, users were asked to
rate their familiarity with terms describing the types
of phishing emails. They were then given a
description of each category and asked to rate the
likelihood that they would be able to identify an email
of each category. After using the extension, they
were asked to rate the likelihood again, exploring if
their level of understanding increased. Results
showed that participants understanding of phishing
emails and the associated categories improved
post-test.

Some participants raised issues with the extension’s
functionality. Some reported that the result produced
was more accurate if more text was selected for
analysis. Therefore, users could receive less
accurate results if they omitted some words when
highlighting an email’s text. Participants also
expressed issues with interaction, notably the need
to highlight text and click the extension icon. Others
argued the extension often flagged emails as
phishing where there were no typical characteristics
of phishing attacks present in the text, such as
requests for information or money or when the email
appeared to have been sent by a trusted individual.

The results of the user testing were recorded to
evaluate the accuracy of participants’ classification
of emails either as legitimate or phishing. These
results are displayed as a confusion matrix – a table
of the number of correct and incorrect predictions
(Figure 5).

Figure 5: Confusion matrix of participant classifications.

The specific categories of phishing emails were also
recorded to determine the number of phishing
emails erroneously marked legitimate (false
negatives), as shown in Table 3. These results
showed that BEC emails had the largest number of
FNs, suggesting they may have been the category
detected with the least accuracy.

Table 3: FNs per category during user testing

Email Category No. of
Emails

No.
of
FNs

Unexpected Money/Winnings
(UNX)

124 1

Extortion (EXT) 97 1
Impersonation (IMP) 143 5

Business Email Compromise
(BEC)

178 31

5. DISCUSSION

This section discusses the accuracy and success of
the ML model used by MailTrout and the usability
and functionality of the integrated solution as a
security tool.

5.1 Model

Using the FP and FN rates of PILFER and
SpamAssassin as shown in Table 1 (Fette et al.,
2007), categories were devised to rank the success
of the ML model.

Table 4: Categories of ML Model FP and FN Rates.

Figure 6: Formulae for false positive (FP) and false
negative (FN) rates.

Using the formula shown in Figure 6, the FP of the
MailTrout model was 0.0, with an FN of 0.00168,
demonstrating the model's accuracy.

In comparison to existing research, the model
outperformed other ML-based phishing detection
methods. As shown in Table 4, the email classifier
PILFER combined with a feature using the spam
filter SpamAssassin developed by Fette et al. (2007)
had an FP rate of 0.0013 and an FN rate of 0.036,
while the trained SpamAssassin filter alone had an
FP rate of 0.0012 and an FN rate of 0.130. The most
accurate RNN phishing classifier developed by
Halgaš et al. (2019) had FP and FN rates of 0.0126
and 0.0147, respectively.

However, these findings are somewhat limited by
issues with the dataset. Firstly, due to the lack of
data available, 80% of emails from the same dataset
were used for training, with 20% for testing, following

Category False Positive
(FP) Rates

False Negative (FN)
Rates

‘Excellent’ ≤ 0.0012 ≤ 0.036

‘Good’ > 0.0012, ≤
0.00135

> 0.036, ≤ 0.0715

‘Average’ > 0.00135, ≤
0.0022

> 0.0715, ≤ 0.13

‘Poor’ > 0.0022 > 0.13

MailTrout: A Machine Learning Browser Extension for Detecting Phishing Emails
Paul Boyle ● Lynsay A. Shepherd

9

the Pareto Principle (McRay, 2015). Since the
training and testing emails were from the same
dataset, the model’s familiarity may cause it to
produce more seemingly accurate results than it
would on unseen data. Models may learn the details
of the training data with such specificity that they
cannot make more general predictive rules that can
be applied to new datasets, in an issue known as
‘overfitting’ (Dietterich, 1995). Due to the use of the
same dataset for training and testing, the results of
this study may suggest that the model is more
accurate than it would be in a practical setting.

The dataset’s quality may have been negatively
impacted by the methods used to collect data or
issues with the existing corpora. The Fraud Email
Dataset (Verma, 2018) used as part of the training
dataset contained some email metadata such as the
date and time that emails were sent and encoded
text for use with older email servers. This data was
not valuable for training and may have caused the
ML model to overfit or fail to identify words and
phrases correctly. The dataset also had a lack of
variety of legitimate emails; as the legitimate emails
used all came from the released dataset of Hillary
Clinton’s emails (Kaggle, 2019), they may not have
been reflective of the average email user’s inbox.

When using the Python Reddit API Wrapper to
extract comments from a Reddit thread of extortion
emails (EugeneBYMCMB, 2019), some unrelated
comments were extracted and added to the dataset.
This was due to the thread containing general
comments from users introducing or discussing the
emails shared. Also, the OCR technology used to
extract text from images of phishing emails may
have produced inaccurate results due to an inability
to understand stylised text or navigate unusual text
layouts. The presence of text added to images to
highlight common signs of phishing attacks may also
have been picked up by OCR technology.

5.2 User acceptance
Considering the SUS adjective ratings proposed by
Bangor et al. (2009), the SUS score of 87.5 given to
the extension can be described as ‘excellent’, and
highlights that the extension met its aim of being a
usable security tool.

Participants reported that they found the extension
easy to use and understand. One participant
suggested that users would be more likely to keep
using MailTrout due to the extension’s accessibility
and embedded nature.

- “I like how easy it is to use, it's always in the
corner so it isn't a complicated process that
people will give up on easily”

Participants also remarked how impressed they
were with the speed and ability of the extension.

- “There are certain things in the tone of an
email that I would not have flagged had it not
been for the extension”

- “I was amazed by how quickly [the
extension] could analyse whether [an email]
was a phishing email or not”

Commenting on the design and layout of the
extension, one participant with strong colour vision
deficiency (CVD) reported the colour scheme
provided a high level of contrast and therefore had
no issues using it. Other participants with specific
learning difficulties (SpLDs) found the extension
accessibly designed with a simple layout, colour-
coding, and succinct information.

- “I am extremely colour blind (strong
deuteranopia) and had absolutely no issues
using the web extension and found each
colour to clearly stand out from its
surroundings”

- “I have dyslexia which makes using
some text-based extensions difficult, this
extension and the colour coded nature of the
help box layout made it very accessible to
use. Additionally the lists of what to look out
for were to the point and easy to
understand”

Participants also suggested that the extension could
educate people on identifying phishing emails
themselves, reporting that the information on what
to look out for, what to do and what not to do was a
particularly good feature.

- “The Look Out/Do/Don't is a really
good feature, as the user is learning as they
use [the extension] rather than just relying
on a traffic light system.”

The responses to each statement in the SUS survey
were very positive overall, generally averaging
between ‘Agree’ (4) and ‘Strongly Agree’ (5).
However, the average response to the first
statement was found to be lower than that of all
others. The first statement read “I think that I would
like to use this extension frequently”.

A possible explanation is that while participants
provided positive feedback on the extension overall,
they did not feel that they needed it themselves due
to their ability to identify phishing emails unaided.
This can be understood further using the theory of
diffusion of innovations (DOI), which explores how
new ideas and technologies are adopted. One of the
characteristics of an innovation is its ‘relative
advantage’, meaning the degree to which the
innovation is perceived as better in comparison to
existing measures. If a user perceives the relative
advantage of an innovation as low, they will be less
likely to adopt it (Rogers, 2003). Therefore, if
participants believed they were able to identify

MailTrout: A Machine Learning Browser Extension for Detecting Phishing Emails
Paul Boyle ● Lynsay A. Shepherd

10

phishing emails themselves with high levels of
accuracy, they may have felt the relative advantage
of using the extension was low. Therefore they felt
less likely to adopt the practice of using the
extension.

Participants’ ratings of their ability to spot phishing
emails (where 1 is poor and 5 is excellent) were
compared to their answers for SUS statement 1 to
understand this finding further. As hypothesised,
participants who answered that they would not use
the extension frequently reported they had a strong
ability to spot phishing emails, suggesting that they
would find using the extension unnecessary.

Another characteristic of innovation is ‘observability’,
meaning the degree to which the effects of the
innovation are visible. If a user perceives the visible
results of innovation as low, they will be less likely to
adopt it (Rogers, 2003).

In DOI theory, ‘preventative innovations’ aim to
lower the probability of an unwanted future event.
Preventative innovations tend to take longer to be
adopted by users due to the lack of observable
impact of their use. However, if a user experiences
a ‘cue-to-action’ – an event that causes them to
undergo a behavioural change – then this can result
in a more favourable attitude towards an innovation
(Xiao, et al., 2014).

Security tools such as MailTrout may be considered
preventative innovations as they aim to lower the
probability of security failures, such as a user falling
victim to phishing emails. Therefore, users may be
more likely to adopt the extension if they have
experienced a cue-to-action, such as becoming the
victim of a phishing attack.

Participants were shown to have an increased
understanding of types of phishing email after using
the extension. Average familiarity ratings for each
phishing email category increased as participants
used the extension to learn what to look for in
phishing emails. These findings demonstrate the
extension’s ability to educate users about identifying
phishing emails in the long term.

The results also demonstrated a correlation
between a participant’s SUS rating and their
demographic characteristics. Firstly, participants
studying or working in a formal sciences subject,
such as computing science, found the extension
more usable than those in other subject areas.

A potential explanation for this result may be that
those employed in formal science fields are more
frequent users of computers and are therefore more
comfortable learning how to use new tools.
Participants in formal sciences may have had more
experience, specifically with web browser
extensions and would find learning to use the
extension far less challenging than someone who
has never used a browser extension before. They

may also have had more exposure to phishing
emails, especially if they are involved in
cybersecurity, which may also have given them an
advantage over users who are less familiar with the
terms and techniques often associated with email
phishing. Participants in formal sciences
demonstrated an overall higher familiarity with
categories of phishing emails than those in other
fields throughout the experiment.

However, it is important to note that the average
SUS scores of each subject field were all in the
‘excellent’ category. Hence, differences between
subject fields are a minor concern.

Younger participants found the extension more
usable than older participants. The average SUS
scores of the 18-24 and 25-39 age ranges were in
the ‘excellent’ category, while that of the 40-69 range
was in the ‘good’ category. While these ratings are
positive, it demonstrates that older participants
found the tool less usable.

A potential reason for this may be that participants
who were born after the 1980s – commonly referred
to as ‘digital natives’ – are more likely to have grown
up around digital technology and so have been
familiar with computers from an early age. However,
users born before the 1980s – commonly referred to
as ‘digital immigrants’ – grew up before the
widespread use of digital technology and have not
had the same experience, thus making it harder for
them to learn how to use new technologies
(Prensky, 2001). Younger participants may also
have had more experience using browser
extensions and dealing with phishing emails - this
group demonstrated an overall higher familiarity with
categories of phishing emails throughout the
experiment than older participants..

6. CONCLUSION AND FUTURE WORK

The research showed that due to the presence of
common words and sentiment patterns across
phishing emails, and the ability of ML algorithms to
classify data by detecting recurring patterns, ML
technology is well-suited to the task of identifying
phishing emails. Additionally, the web browser
extension format provided a suitable way to create
an embedded learning tool, providing users with an
opportunity to use the extension while completing
everyday tasks, such as checking their emails. The
extension demonstrated high levels of accuracy
when detecting phishing emails and high levels of
usability.

These findings also indicate that browser extensions
can act as accessible security tools, requiring limited
technical knowledge to use and can easily be
incorporated within a person’s routine online
activities. Due to their simplicity and embedded

MailTrout: A Machine Learning Browser Extension for Detecting Phishing Emails
Paul Boyle ● Lynsay A. Shepherd

11

nature, browser extensions may be beneficial for
those with less experience of using the internet.

The COVID-19 pandemic has caused a fundamental
shift in our lives, heightening the pace at which
society adopts and utilises digital technologies.
Thus, it is vital to protect the most vulnerable
citizens.

7. REFERENCES

Australian Competition & Consumer Commission.
(2015) Types of scams.
https://www.scamwatch.gov.au/types-of-scams
(Retrieved 13 March 2019).

Aggarwal, A., Rajadesingan, A., and Kumaraguru,
P. (2012) PhishAri: automatic realtime phishing
detection on twitter. 2012 eCrime Researchers
Summit, Las Croabas, PR, USA, 23-24 October
2012, pp. 1-12. IEEE.

Avanan. (2019) Global Phish Report.
https://www.avanan.com/global-phish-report
(Retrieved 7 February 2020).

Bangor, A., Kortum, P. & Miller, J., (2009).
Determining What Individual SUS Scores Mean:
Adding an Adjective Rating Scale. Journal of
Usability Studies, 4(3), pp. 114-123.

Bansal, S. & Aggarwal, C. (2020) textstat 0.6.0.
https://github.com/shivam5992/textstat
(Retrieved 3 March 2020).

Begeny, J. C. & Greene, D. J., (2014). Can
Readability Formulas Be Used to Successfully
Gauge Difficulty of Reading Materials?.
Psychology in the Schools, 51(2), pp. 198-215.

Bird, S., Klein, E. & Loper, E., (2009). 2.4.1 Wordlist
Corpora. In: J. Steele, 1st ed. Natural Language
Processing with Python. Sebastopol: O’Reilly
Media, Inc., pp. 60-62.

Chen, Y. Y. et al., (2019). Design and
Implementation of Cloud Analytics-Assisted
Smart Power Meters Considering Advanced
Artificial Intelligence as Edge Analytics in
DemandSide Management for Smart Homes.
Sensors (Basel), 19(9).

Chollet, F. (2015) Keras Documentation.
https://keras.io/ (Retrieved 14 March 2020).

Dietterich, T. (1995) Overfitting and undercomputing
in machine learning. ACM computing surveys
(CSUR), 27(3), pp. 326-327.

Dunlop, M., Groat, S. and Shelly, D. (2010)
Goldphish: using images for content-based
phishing analysis. 2010 Fifth international

conference on internet monitoring and protection,
Barcelona, Spain, 9-15 May 2010, pp. 123-128.
IEEE.

Dwarampudi, M. & Reddy, N. V. S. (2019) Effects of
padding on LSTMs and CNNs.
https://arxiv.org/pdf/1903.07288.pdf (Retrieved 5
February 2020).

EugeneBYMCMB. (2019) The Blackmail Email
Scam (part 3) : Scams.
https://www.reddit.com/r/Scams/comments/biv65
o/the_blackmail_email_scam_part_3/ (Retrieved
21 January 2020).

Fette, I., Sadeh, N. & Tomasic, A. (2007) Learning
to detect phishing emails. 16th International
World Wide Web Conference, Banff, Canada,
May 2007, pp. 649–656. ACM.

Fu, A. Y., Wenyin, L. & Deng, X., (2006). Detecting
Phishing Web Pages with Visual Similarity
Assessment Based on Earth Mover's Distance
(EMD). IEEE Transactions on Dependable and
Secure Computing, 3(4), pp. 301-311.

Gers, F. A. & Schmidhuber, E., (2001). LSTM
recurrent networks learn simple context-free and
context-sensitive languages. IEEE Transactions
on Neural Networks, 12(6), pp. 13331340.

Goodfellow, I., Bengio, Y. & Courville, A., (2016).
6.2.2.3 Softmax Units for Multinoulli Output
Distributions. In: Deep Learning. Cambridge: MIT
Press, pp. 180-184.

Google. (2020a) Tensorflow.
https://www.tensorflow.org/ (Retrieved 15
January 2020).

Google. (2020b). tesseract-ocr / tesseract:
Tesseract Open Source OCR Engine (main
repository). https://github.com/tesseract-
ocr/tesseract (Retrieved 6 February 2020).

Google. (2020c). tf.keras.preprocessing.text
.Tokenizer.
https://www.tensorflow.org/api_docs/python/tf/ke
ras/preprocessing/text/Tokenizer (Retrieved 23
March 2020).

Graham, A. (2018) The cost of a cyber attack. IT
Governance.
https://www.itgovernance.co.uk/blog/the-cost-of-
a-cyber-attack (Retrieved 7 February 2020).

Halgaš, L., Agrafiotis, I. & Nurse, J. R. C., (2019).
Catching the Phish: Detecting Phishing Attacks
using Recurrent Neural Networks (RNNs). Jeju
Island: 20th World Conference on Information
Security Applications, Springer.

Horgan, S., Collier, B., Jones, R., Shepherd, L.
(2021) Re-territorialising the policing of
cybercrime in the post-COVID-19 era: towards a
new vision of local democratic cyber policing.

MailTrout: A Machine Learning Browser Extension for Detecting Phishing Emails
Paul Boyle ● Lynsay A. Shepherd

12

Journal of Criminal Psychology, Accepted/In
Press.

Kaggle. (2019) Hillary Clinton's Emails.
https://www.kaggle.com/kaggle/hillary-clinton-
emails/ (Retrieved 15 March 2020).

Kumaraguru, P. et al., (2010). Teaching Johnny not
to fall for phish. ACM Transactions on Internet
Technology (TOIT), 10(2), pp. 1-31.

Lai, S., Xu, L., Liu, K. & Zhao, J., (2015). Recurrent
convolutional neural networks for text
classification. Proceedings of the National
Conference on Artificial Intelligence, Volume 3,
pp. 2267-2273.

Lallie, H. S., Shepherd, L. A., Nurse, J. R. C., Erola,
A., Epiphaniou, G., Maple, C., & Bellekens, X.
(2021) Cyber security in the age of COVID-19: a
timeline and analysis of cyber-crime and cyber-
attacks during the pandemic. Computers &
Security, 105. 102248.

Lee, M. (2020) madmaze/pytesseract: A Python
wrapper for Google Tesseract
https://github.com/madmaze/pytesseract
(Retrieved 6 February 2020).

McRay, J., 1st ed., (2015). Pareto principle. In:
Leadership glossary: Essential terms for the 21st
century. Santa Barbara: Mission Bell Media.

Postolache, F. & Postolache, M., (2010). Current
and Ongoing Internet Crime Tendencies and
Techniques. Preventive Legislation Measures in
Romania. EIRP Proceedings, 5(1), pp. 35-43.

Prensky, M., (2001). Digital Natives, Digital
Immigrants. On the Horizon, 9(5), pp. 1-6.

Prusa, J., Khoshgoftaar, T. M. & Seliya, N., (2015).
The Effect of Dataset Size on Training Tweet
Sentiment Classifiers. Miami: IEEE 14th
International Conference on Machine Learning
and Applications (ICML), IEEE.

Radev, D. (2008). CLAIR collection of fraud email,
ACL Data and Code Repository,
ADCR2008T001.https://aclweb.org/aclwiki/CLAI
R_collection_of_fraud_email_(Repository)
(Retrieved 15 February 2020).

Rogers, E. M., (2003). Diffusion of Innovations. 5th
ed. New York City: Simon and Schuster.

Sak, H., Senior, A. & Beaufays, F., (2014). Long
Short-Term Memory Recurrent Neural Network
Architectures for Large Scale Acoustic Modeling.
15th Annual Conference of the International
Speech Communication Association, Singapore,
ISCA Archive.

Sauro, J. & Lewis, J., (2011). When designing
usability questionnaires, does it hurt to be
positive?. Proceedings of the SIGCHI Conference

on human factors in computing systems, 7 May,
pp. 2215-2224.

StatCounter. (2021) Browser market share
worldwide. https://gs.statcounter.com/browser-
market-share (Retrieved 6 May 2021).

Tao, J. & Fang, X., (2020). Toward multi-label
sentiment analysis: a transfer learning based
approach. Journal of Big Data, 7(1), pp. 1-26.

UN General Assembly, (1989). Convention on the
Rights of the Child. United Nations, Treaty Series,
Volume 1577, p. 3.

Vasa, H. (2019) Google Images Download.
https://github.com/hardikvasa/google-images-
download (Retrieved 15 March 2020).

Verma, A. (2018). Fraud Email Dataset | Kaggle.
https://www.kaggle.com/llabhishekll/fraud-email-
dataset (Retrieved 28 January 2020).

Wang, P. et al., (2015). Part-of-Speech Tagging with
Bidirectional Long Short-Term Memory Recurrent
Neural Network. ArXiv [Preprint]. [Online] Available
at: https://arxiv.org/pdf/1510.06168.pdf [Accessed 9
March 2020].

Wickline, M. (2001) Coblis - Color Blindness
Simulator. https://www.color-
blindness.com/coblis-color-blindness-simulator/
(Retrieved 10 March 2020).

Xiao, S., Witschey, J. & Murphy-Hill, E., (2014).
Social Influences on Secure Development Tool
Adoption: Why Security Tools Spread.
Proceedings of the 17th ACM conference on
Computer supported cooperative work & social
computing, pp. 1095-1106.

	Blank Page

