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Abstract

The need for additional reserves increases alongside the intermittency of genera-

tion and whilst rotating (conventional) generation is replaced, the system’s inertia

reduces and balance volatility increases. Conceptually, any regulation measure

from the “generation side” has an equivalent countermeasure from the “demand

side”. One of the emerging technologies to provide such balancing services is

Demand Response (DR). DR is commercially used, mainly via industrial loads

combined with small scale diesel and gas generators. However, there is a lot of po-

tential for DR from residential and commercial loads that remains untapped due

to implementation costs, lack of technology expertise, load pattern complexity

and the need to simultaneously control numerous sources.

The main focus of this thesis is to explore the potential of loads, mainly residential

and small commercial, to provide DR services and develop methods focused on

accuracy for the most challenging services (frequency regulation), whilst aiming

for minimal infrastructure and implementation costs. The main points include

analysis of common residential and commercial loads for DR services, focusing on

thermostatically controlled loads (TCLs). TCLs are thermal loads which operate

via thermostats on a duty cycle (on and off state), between two temperature

settings in order to maintain an average set temperature. They use electricity as

a primary energy source or for their control and pumps.

The next part includes analysis and creation of realistic bottom up models to

study aggregated behaviour of TCLs during DR actions, as well as the effect

of external factors. Afterwards, a distributed State Estimation algorithm is

proposed to increase accuracy of aggregated models and track aggregation models

from limited information. A new aggregation framework is proposed, specifically

designed for heterogeneous populations, whilst being universal for all TCL types.
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As such, different TCL types can be aggregated together (e.g. cooling and

heating).

The results of this thesis show that with proper aggregation modelling, state

estimation and dynamic updating in time, accuracy of stochastic aggregated

models is improved compared to existing frameworks without the need for

expensive thermal sensors. This suggests that with relatively limited information

the use of residential and commercial TCLs for DR balancing services, is feasible.
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Nomenclature

Symbol Unit Description

β oC Constant

γ oC ·min−1 constant

δ oC Temperature dead-band (of TCL)

ε - Constant

ζ - Constant

θ oC Temperature

θa
oC Ambient temperature (of TCL)

θe
oC Temperature gain (external factor)

θg
oC Temperature gain during on state

θoff
oC TCL switch off temperature

θon
oC TCL switch on temperature

θset
oC Temperature set-point

I - Temperature state bin

κ - Constant

λ min−1 Thermal time constant 1/RC (R, C expressed in min)

µ - 1 for on state, 0 for off state

Ξ - Temperature state bin

% oC/min Rate of temperature change (rate of bin state progress)

%on
oC/min % for on state

%off
oC/min % for off state

σ - Variance

Φ - Gaussian Distribution with 0 mean
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Symbol Unit Description

τ min Simulation time steps

υ - 1 for external factor, 0 otherwise

A - Transition probability matrix

a - Constant e−τ/RC

B - Matrix

C kWh/oC Thermal capacitance

cp Watts Constant

D - Duty cycle (ton/T )

E m2 Heat transfer surface area

f - Factor node

g - Constant

h W/(oC ·m2) Newton’s heat transfer coefficient

H oC Temperature change due to external factors

k - Iteration

m - BP message

N - Gaussian Distribution

NTCL - TCL population

Non - TCL population in on state

Noff - TCL population in off state

Nbin - Number of bin states

P Watts Power rate

Pave Watts Average power (of TCL population)

Ptot Watts Total aggregated power (of TCL population)

Pr < ∈ [0, 1] Probability

Q Joules Heat transfer

R oC/kW Thermal resistance

swoff - Fraction of units switching off in 1 time step

swon - Fraction of units switching on in 1 time step
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Symbol Unit Description

toff minutes off state duration

ton minutes on state duration

T minutes Cycle duration (ton + toff )

U - Uniform Distribution

u - Control input vector

v - Noise vector

w - Noise vector

W - Wiener process

wf < ∈ [0, 1] weight factor, freezer compartment

wr < ∈ [0, 1] weight factor, refrigerator compartment

x - State vector

Xoff - Fraction of TCL population in off state bins

Xon - Fraction of TCL population in on state bins

xs - Steady state vector

y - output (demand/consumption) vector

z - BP message mean
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List of Terms and Abbreviations

Abbreviation Description

AMI Advanced Metering Infrastructure

BP Belief Propagation

CAPEX Capital Expenditure

CFPE Coupled Fokker-Planck Equations

CHP Combined Heat and Power

CI Confidence Interval

CPP Critical Peak Pricing

DECC Department of Energy & Climate Change

DG Distributed Generation

DR Demand Response

DSM Demand-side Management

DTU Demand Turn Up

EFR Enhanced Frequency Response

EKF Extended Kalman Filter

EV Electric Vehicles

ESS Energy Storage System

FFR Firm Frequency Response

FG Factor Graph

FR Fast Reserve

GBP Gaussian Belief Propagation

HVAC Heating Ventilation and Air Condition

ICT Information and Communication Technology

ID Identification

KF Kalman Filter

MC Monte Carlo
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Abbreviation Description

MPC Model Predictive Control

ODE Ordinary Differential Equations

OPEX Operational Expenditure

PMF Probability Mass Function

PTR Peak Time Rebate

RES Renewable Energy Sources

RMS Root Mean Square

RoCoF Rate of Change of Frequency

RTP Real-time Pricing

TCL Thermostatically Controlled Load

TOU Time of Use

TPM Transition Probability Matrix

TSO Transmission System Operator

S-PDE Stochastic Partial Differential Equation

STOR Short-term Operating Reserves

VPP Virtual Power Plant

ZOH Zero-order Hold
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Chapter 1

Introduction

1.1 Background and Motivation

Electricity networks around the globe are facing rapid changes driven by the

consensus to reduce greenhouse emissions. Specific targets have been set and

agreed by developed countries, starting with the Kyoto Protocol (signed 1997),

United Nations Climate Change Conferences are held annually to assess progress

in dealing with climate change. In Power Systems this is reflected by integrating

more Renewable Energy Sources (RES), mainly intermittent RES. RES are

energy resources naturally replenished, such as sunlight, wind, rain, tides, waves,

and geothermal heat. RES are commonly used for electricity generation and

intermittent RES describes sources such as wind, wave, tidal and solar power

whose primary energy input is uncontrollable. Distributed Generation (DG) is

a significant part of it as well, which includes besides RES, co-generation units,

micro-turbines, biomass, geothermal plants, hydrogen plants, energy storage and

more. The term DG describes generation connected in Distribution Networks

instead of Transmission Networks, close to consumption, which is usually of much

1
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smaller size. DG units have limited balancing capabilities (i.e. small inertia) and

limited support capabilities for Transmission Networks’ stability.

Among intermittent RES, the highest integration rates are shared between

wind and solar power with plans to further increase their penetration in grids

(such as in UK [1, 2]). These are characterised by inherent variability and no

inertia which have detrimental effects to the grid’s stability [3]. Intermittent

RES are non-dispatchable, resulting in variable generation output depending on

weather conditions, which in turn results in dispatch of fast ramping conventional

generators and more frequent mismatches between supply and demand due to

forecast errors.

Traditionally, Power System operation assumes that electricity generation is fully

dispatchable and controllable, able to meet the systems requirements whilst

maintaining stability. The key technology for stability is the rotating synchronous

generators, which store kinetic energy, giving the system rotational inertia, the

cornerstone of frequency regulation [3]. Power system inertia is defined as the

ability of a power system to oppose changes in system frequency due to the kinetic

energy stored in Synchronous Generators’ rotating masses. The electrical rotating

frequency of those is normally 50Hz or 60Hz, which is equal to the mechanical

frequency times the pair of poles of the Synchronous Generator. Mismatch in

real time between Power Demand and Supply causes a change in frequency.

Frequency deviations are absorbed via this inertia, and the system’s ability to

do so is directly linked to the sum of its sources’ inertia. Deviations should be

kept within small limits (1% for UK National Grid [4]) of the nominal value,

to avoid harmful vibrations in generators and load shedding. Larger deviations

may lead to disconnection of generators for safety, which may ultimately lead to

a chain reaction if unresolved and cause a black-out with massive economic and

technical consequences. When the system’s frequency diverges beyond set limits,

Balancing Services are deployed to provide power stability (increase or decrease)
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to ensure the security and quality of electricity. Load manipulation can be used in

a similar manner to provide such Balancing Services, where for example instead

of turning on a Back-Up Generator for a few minutes, loads can be used to reduce

demand for the same time. UK’s and EU’s Balancing Services also include such

schemes under the term Demand Response [5].

The intermittent RES impact in power system’s stability is significant because

they do not provide rotational inertia, whilst replacing conventional generators

and their rotating machinery. Though lately, some of the larger scale RES (Wind

Farms and Photovoltaic Farms) include small virtual inertia via the use of power

electronics, energy storage and/or adjusting wind blades [6, 7]. It is important to

note that in the case of pitch angle control for wind blades, there is an inherent

reduction in efficiency. The traditional assumption that grid’s inertia is sufficiently

high with only small variations over time is thus not valid for power systems

with high RES shares. This has implications for frequency dynamics and power

system stability and operation. Frequency dynamics are faster in power systems

with low rotational inertia, making frequency control and power system operation

more challenging [3]. Not only does high penetration of RES and DG, reduces the

system’s inertia but also amplifies active power mismatches and thus frequency

deviations as mentioned above. A system inertia’s is commonly measured as the

time duration during which the system can meet its demand solely via its stored

(kinetic) energy. Studies indicate 3 primary drawbacks in power systems with

high penetration of RES [6]:

1. Reduction in system inertia depending on intermittent RES generation,

2. Variable system inertia, higher frequency deviations, larger and unpre-

dictable power deviation in small intervals (ramping of RES and unobserv-

able DG)

3. The assumption of having the same inertia over a multi-area system is no

longer valid
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Research in the German Power System shows that during high intermittent RES

generation the inertia drops from about 6s to 3s [6], which greatly diminishes

the system’s ability to absorb frequency deviations. Adding the fact that RES

contribute to the increase of active power mismatch between supply and demand,

therefore amplifying frequency deviations, the system is at a higher risk during

periods of high RES generation. System operators are looking for new ways to

increase system reliability and introduce new balancing services to tackle this

issue. These services are used to balance demand and supply, and to ensure

the security and quality of electricity supply across the transmission system. A

metric of demand and supply balance is frequency, when the Rate of Change of

Frequency (RoCoF) is zero then demand and supply are equal. An analysis by

Imperial College London and Electricite de France concluded that the cost of

reserve and response services in 2030 may increase up to 1.23 B£ and 1.04 B£,

respectively for high intermittent RES penetration [1].

Currently, Transmission System Operators (TSOs) rely on Primary, Secondary

and Tertiary reserves in the form of balancing services to stabilize frequency

after a disturbance. Providers can offer one of these or a combination. In the

UK, the Primary response provided must be provided within 10 seconds of an

event, which can be sustained for a further 20 seconds. The Secondary response

must be provided within 30 seconds of an event, which can be sustained for a

further 30 minutes. The Tertiary response comes in the form of Fast Reserve

(FR) and Short-term Operating Reserve (STOR). FR must respond within 2

minutes and sustained for at least 15 minutes, STOR must respond within 240

minutes (preferably though 20 minutes) and sustained for 2 hours at least.

In an event of fault which results in loss of infeed power, the Primary and

Secondary response are designed to maintain frequency within the specified limits.

Tertiary response’s purpose is to assist in bringing the frequency back to nominal

value. Conceptually, any regulation measure from the “supply side” has an
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equivalent countermeasure from the “demand side”. The idea of using loads

for regulation has its roots in 1980’s [8, 9]. Lately, such concepts have taken

form under the DR and are been integrated as vital parts of Power Systems

operation, not only for stability but also for regulation and energy management.

Demand Response in this context means a change in demand (i.e. a load such

as a refrigeration unit) in response to an external signal. That signal can be

an automated command or a response to a change in price which normally does

not require the intervention of the end user. DR can participate in a number of

balancing services, which fall under the categories described above. The exact

services in which DR can participate in UK will be discussed in Chapter 2.

DR is part of Demand-side management (DSM), not to be confused as one

and the same. DR refers to the modification of demand for various reasons,

such as balancing services described above or dynamic pricing, in response to a

signal/event. DSM is a general term which describes the optimal management

of assets from the demand side for some objective. Energy efficiency is part of

DSM but not DR (Figure 1.1). For instance, optimising the temperature set point

settings of refrigeration units and space heating in supermarkets, during day and

night, in order to avoid conflicting settings and energy waste. A DR example is a

case of a grid fault, in which demand responds to an external signal for 30 seconds

and provides a balancing service to the grid. This is part of DSM but it is not

energy efficiency. Main DSM categories are summarized in Figure 1.1 [10].

Figure 1.1: Demand Side Management categories
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DR in the context of this thesis: There are limits to what can be achieved

on the supply side, especially given the higher penetration of RES, because of

the physical limits of generating units, but also cost. Demand can at times be

greater than the capacity of all the available power plants put together, such as

in contingency cases (infeed loss). This is the reason for Reserves and Balancing

Services’ existence. Note that Balancing Services are Power Services, to manage

frequency, short in duration and fast in response, whilst Reserves are Energy

Services, with slower response but higher duration, which usually follow after

Balancing Services have been dispatched. DR can be provide Balancing Services

(response to a contingency) and in some cases the shorter duration Fast Reserves.

This type of DR requires specific response in Power (MW), in short time frames

(usually a few seconds) and with specific requirements on Ramping Rate (accuracy

is important). All Balancing Services providers are coordinated (dispatched) by

the TSO in terms of response time, power, ramping rates etc. Their market is

usually on a tender basis with fixed payments for availability, whether utilized or

not. This type of DR is the main motivation and focus for this thesis.

Another type of DR is based on dynamic pricing/tariffs. A simple example of

that is the usual dual tariff system, where different prices are used overnight and

during the day. New types of more dynamic pricing are being introduced the last

few years with the adoption of smart meters. This type of DR is indirect, through

pricing, to mould the shape of demand, in order to reduce peak demand or follow

RES output etc. It is energy arbitrage, not to be confused with energy efficiency

or curtailment, where demand is deferred in other periods of time. It is energy

and cost driven, has relatively longer duration and no high accuracy/response

requirements etc., but based on consumers’ behaviour.
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1.2 ADVANTAGE Project

The research presented in this thesis is a part of a wider scale, inter-disciplinary

and inter-sectoral project, ADVANTAGE FP7 (Advanced Communications and

Information processing in smart grid systems) which was funded by the European

Union’s Seventh Framework Programme for research, technological development

and demonstration under grant agreement no. 607774.

The main research focus was on smart grid operation and particularly on providing

architectural solutions for smart grid systems with the contribution of innovative

information and communication technology (ICT) solutions. ADVANTAGE is

divided into 4 distinctive but correlated work packages [11]:

”Work package 1: Smart Homes: progressing the development of ICT solutions

and applications in household environments to intelligent, customer-friendly,

efficient and incentive-responsive home energy management solutions for smart

grid household consumers.

Work package 2: Neighbourhood/Industrial Area Networks: providing efficient

wide-area ICT solutions for advanced smart grid data exchange, gathering, pro-

cessing and decision making in larger consumer conglomerations and environ-

ments.

Work package 3: Micro Grids: developing ICT solutions for challenging problem

of integration and distributed control of micro grids in smart grids.

Work package 4: Intelligent Distribution Networks: advancements towards intel-

ligent distribution network that will maintain efficient distribution management,

load clustering, demand side management, distributed micro grid control, and
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two-way communication with customers and micro grids through Advanced Me-

tering Infrastructure (AMI).”

The work presented in this thesis falls primarily under Work package 4. It focuses

on analysis and modelling of residential loads for Demand Response. These loads

are connected in Distribution Networks and when aggregated in large numbers,

through AMI, may be used to provide ancillary services to the system. This thesis

provided input to Work packages 1 and 4, through demand profiles on household

level, in a break-down analysis per load type. Output from Work packages 1 and

2 regarding ICT solutions, specifically capabilities of smart meters and power

metering, was used in the assumptions of this thesis. The outcome of this thesis

shows that TCLs in Distribution Networks can be part of DR.

Thermostatically Controlled Load definition

A thermostat is a component which senses the temperature of a physical system

and performs actions so that the system’s temperature is maintained near a desired

setpoint, with a specific temperature deadband. Thermostats are used in any

device or system that heats or cools to a setpoint temperature, examples include

building heating, central heating, air conditioners, HVAC systems, water heaters,

refrigeration units and medical and scientific incubators. In literature, these

devices are often broadly classified as thermostatically controlled loads (TCLs).

Thermostatically controlled loads comprise roughly 50% of the overall electricity

demand in the United States [12]. The ”closed loop” within that deadband,

with switch on and switch off temperatures, as well as the heat exchange time

constants of those devices (due to thermal resistance and capacity characteristics)

create an equivalent of ”thermal storage”. As such, TCLs can be seen as having

an equivalent ”state of charge” to batteries, where switch on temperature would

be equal to 0% ”state of charge” and switch off equal to 100% ”state of charge”,

which prompted authors in [13] to model TCLs as ”leaky batteries”.
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1.3 Smart Grid Technology and DR

The Smart Grid concept is described as ”an electricity network that can intelli-

gently integrate the actions of all users connected to it - generators, consumers

and those that do both - in order to efficiently deliver sustainable, economic and

secure electricity supplies” [14], based on intelligent monitoring, communication

and control. Low cost computing and communication hardware is what enables

the Smart Grid and therefore automated DR strategies can be developed. T.

Bigler et al. describe the hardware components required to implement smart de-

vices with bidirectional communication through internet with electricity providers

[15]. Smart appliances are becoming commercially available from a variety of pro-

ducers in UK with a 20% penetration.

There are various studies on DR’s potential, such as providing primary response

services by electric vehicles [16], energy arbitrage to defer demand to times of

lower pricing [17], reactive power regulation from distributed energy storage [18]

(note that EVs and distributed energy storage, especially in form of batteries, can

technically provide the same services). DR is estimated to be able to provide up to

54% of the operating reserve requirements of the power system depending on the

time of day [19]. This context motivates the development of frameworks such as

the one described in this thesis, to coordinate large populations of such devices to

provide DR services beyond the old simplistic load-shedding paradigm [20]. Smart

Grid concepts are about non-intrusive DR, which aims not to disturb the quality

of service provided and/or the comfort of the consumer. The flexibility potential

of DR, seen as the maximum amount of time and power increase/decrease within

the comfort requirements of the user, varies during the day, and the potential

for increasing or decreasing the power consumption is in general not equal, as

shown by R. D’hulst et al in a pilot project with 186 household participants in

the Flanders region in Belgium [21]. Major benefits of DR:
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1. System stability: the ability to regulate frequency enhances the system’s

inertial-primary response increasing the system security [19, 22]

2. Cost effective: reduces need for on-line part-loaded generators, also increases

the efficiency of the system. DR may be used to enhance the dispatch of

generators or to follow intermittent RES production or replace fast ramping

reserves [1, 17].

3. Environmentally friendly: by replacing conventional generators for balanc-

ing services but also assisting in higher levels of RES penetration [1, 17].

Some of the most prominent loads to provide DR are the thermostatically

controlled loads (TCLs) and electric vehicles (distributed batteries as well). A

lot of research is focused on TCLs due to their thermal storage capabilities;

they represent a substantial base load connected 24/7, ubiquitously around

the grid, thus reliably available for DR at all times. Their actual ability to

provide balancing, reserve or arbitrage services highly depends on device-level

temperature constraints and intrinsic thermal inertia. In recent years other loads

have been considered too, such as EVs [23], distributed batteries [7] and wet

loads [19]. Similar models developed for TCLs can be used for other types of

loads with storage capabilities [23]. Another interesting DR concept comes from

voltage regulation, which affects active power consumption (short-term). Trials of

this concept were conducted by electricity north west, using online tap changing

transformers [24].



CHAPTER 1. Introduction 11

1.4 DR Services: Literature Review of State of

the Art Models

The study of DR for services has its roots in studies of loads with some form of

storage capabilities in ’80-’90. The original target was to model the unexpected

increased demand and power oscillations after load shedding and interruptions

(brown-outs and black-outs). A significant part of that came from TCLs, due

to starting all together (synchronized). In early works of Ihara and Schweppe

[8] and Malhame and Chong [9] studied this behaviour of TCLs. The proposed

TCL model assumed a ”snapshot” of TCLs current state with some noise to add

stochasticity, whilst using first order ODE to describe TCLs’ dynamics. A TCL’s

thermal storage capability stems from its operational cycle, switching between two

states, ”on” and ”off”. Its objective is to maintain temperature within a small

dead-band and control can be used to alter it without exceeding said dead-band

(non-intrusive control) (Figure 1.2) [25].

Figure 1.2: Cooling cycle example with and without DR. Under normal operation

the TCL is alternating between power on and power off cycles. When DR is used

this cycle is altered. This showcases the concept of short-term power manipulation.
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Several works in literature describe the temperature dynamics of TCLs by means

of a first order ODE [26, 13, 27, 28, 29]. The main advantages of that approach

are the reduced computational burden in simulations involving a large number of

devices and the simplicity in modelling. Higher order formulations are used in

[30, 31, 32] for higher accuracy; for instance, the use of second order models allows

to model the dynamics of multi-compartment TCLs (e.g. freezer and refrigeration

compartments) or those affected by various factors [31]. Though, control design

and computation are not as trivial as in the case of first order ODE models, while

the different modelling also means inability to cluster them with those of lower

order. The last drawback is very important when developing statistically based

frameworks.

Totu et al. [27] focused on developing stochastic control algorithms assuming a

centralised and a distributed approach to provide short-term reserves. Their work

is based on the classic first order ODE model (Ihara & Schweppe [8]) for individual

units and Coupled Fokker-Planck Equations (CFPE) (Malhame & Chong [9]) to

model aggregated population behaviour. For the distributed approach with local

controllers, some coordinator (observer) is required to analyse the available units

for DR, as well as power. A stochastic signal is computed centrally and then sent

[33].

More specifically, 2 control approaches are proposed, initially switch fraction and

later switch rate, a modification of the first one. The switch fraction signal is

sent every few seconds, composed of two rational numbers e0, e1 (probabilities).

The signal triggers a percentage e0 of units in “on state” to switch off (similar

for e1 and units in “off state”). While the switching fractions are given at the

population level, the actual switch is decided at the unit level based on the result of

a binomial trial with success rate equal to the broadcast fraction value. For a large

enough population, by the law of large numbers, the response of the population

will be close to the desired one [34]. The switch rate actuation introduces small
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stochasticity to the time of activation, in order to avoid synchronization across

the population [35].

The main issues that arise from CFPE are due to the fact that they can only be

assumed for a completely homogenous population, which introduces errors and is

unrealistic. Moreover, in such models detailed information of units’ characteristics

are required. The issue of homogeneity and approximate CFPE solutions was

address by D. Callaway in [28]. Callaway worked on the diffusion approximation

proposed by Malhamé and Chong [9] and derived a new exact solution to a

well known hybrid state aggregated load model. The proposed control algorithm

was based on set-point actuation, in which the set operational point is switched

through an external signal. Additionally, the effect of low heterogeneity was

examined, it was concluded that small heterogeneity improves the dynamics

associated with control strategies and that some amount of heterogeneity is

required for realistic dynamics, though the CFPE model’s accuracy is reduced

[28]. This implies that higher heterogeneity, as the one observed in real world,

would have significant errors, as such, clustering would be required in smaller

groups, increasing stochasticity (Kolmogorov’s Law of Large Numbers). Last but

not least, set-point actuation can be intrusive, unless proportionally switched with

small changes within the operational dead-band.

One model developed by Imperial College London focuses on a decentralised

framework, where units can be seen as agents belonging to a population (distri-

bution) [36]. It is based on the classic first order ODE model (Ihara & Schweppe

[8]) and CFPE (Malhame & Chong [9]) for aggregated population behaviour [37].

Trovato et al modified the model for frequency control, short-term reserves and

a variation of it for energy arbitrage as well [38]. The model was developed for

populations with low heterogeneity (independent parameter variation by ±15%)

and focused mostly on control [26].
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Two types of controllers were developed for that purpose, a linear controller and

a pre-set shape controller [22]. The first one controls aggregated power as a linear

function of locally measured frequencies and their rates of change (RoCoF), while

the second one follows a predefined reference power profile depending on the

estimated infeed loss. As mentioned though by the authors “realistic and effective

power system applications proposed in this paper may require a communication

infrastructure”. Accurate calculation of frequency and RoCoF is required at

device level and a sliding window of 500ms is suggested [22]. The model

also assumes knowledge of system’s damping (MW/Hz), droop characteristics

(MW/Hz), base power (MW) and system inertia (s). Due to these restrictions,

they conclude “The risk of under- or over-response from the TCL population rises,

affecting the demand-side flexibility and controllability”, a potential alternative is

thus suggested; a semi-autonomous mode between a central point and the agents,

by using a communication protocol to update these parameters in hourly intervals

[22].

The drawbacks of the approach of such a decentralised method are:

1. Lack of knowledge regarding the availability of other agents in the system

(hence response); agents must have prior knowledge of installed and avail-

able loads for DR [2].

2. Sending system information to agents every hour, as suggested, does not

capture dynamics of the shorter time scales (e.g. generation changes every

30 minutes via day ahead dispatch, 5min changes via intraday dispatch etc.).

3. Most importantly on-fault and post-fault systems conditions are different

and unknown by the agents. These include the system’s damping (MW/Hz),

generators’ droop characteristics (MW/Hz), base power (MW), system

inertia (s). As such the agents’ response is likely to be inaccurate.

4. Some of the issues seen in the models created by Totu et al. and Callaway,

due to the use of first order ODE and CFPE models.
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5. Finally, requirements of local processing, control and execution, means there

has to be a device capable of those plus measuring the rate of frequency

change (sub-second sampling) accurately. This would add a significant cost

per appliance, when considering a population in the order of hundreds of

thousands it can be prohibiting.

A final remark for the above models is that they require knowledge of physical

TCL (load) parameters and precise sensors. As stated by Vinther et al.: “A model

abstraction is required with a level of information that can represent the essential

characteristics of the subsystems with minimum dependence on the number and

physical dimensions of specific components/units used in each subsystem” [39].

S. Koch et al. adopted an alternative approach, instead of CFPE aggregation

models, using transition probability matrixes (TPM) to describe the aggregated

behaviour of TCLs [29]. The individual TCL is described by the classic first

order ODE ([8]). There are a few advantages with this approach. First of

all, the population does not have to be assumed homogeneous, such as in the

case of CFPE where such an assumption is necessary to derive a solution. A

homogeneous population assumes identical loads (appliances) and identical use

pattern, which is unrealistic. In contrast to assuming homogeneous populations

(identical TCL parameters) it is more realistic to assume Gaussian distribution

of parameters, as TCLs build for similar purpose should not vary widely, e.g.

refrigerators will have similar operating set-points (subject to human preference)

and insulation etc. In statistic models of unknown parameter distribution it is

common to start with Gaussian (or similar) distributions of parameters and work

towards more suitable ones, once more real-world data is available. Another

advantage is that it is based on calculating approximately transition probabilities

to represent the aggregated behaviour (response) of the population to external

signals (or normal operation), instead of detailed characteristics. The proposed

approach to derive said transition matrix though was based on heterogeneity
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in only one parameter. Moreover, the authors concluded that calculating the

transition matrix with heterogeneity in more than one parameter is impractical

if not infeasible in some cases. Additionally, the resulting transition matrix has

the same (average) values for all ”on” state bins and the same applies for ”off”

state bins, which as shown later in this thesis but also in literature is not the case

in reality. The control proposed is practically the equivalent of fraction actuation

[34], where a portion of the population (probabilistically) switches from one state

to the other.

Afterwards, Mathieu & Callaway in [40] introduced system identification, state

estimation and feedback control, in order to improve accuracy and feasibility.

Different levels of infrastructure and communication were explored from full state

information of all units to only a subset. Assumptions include knowledge of total

aggregated power consumption (substation or similar level) and varying levels

of knowledge of TCLs parameters, ambient temperatures, and dead-bands (10%,

30%, 100% of the population). Discretizing the dead-band in bins, calculating

the transition probability from one bin to another for a given time step and

knowing the thermal state of TCLs (i.e. in which bin they are at every time

step), is the backbone of this approach. Descretizing in more bins results in higher

accuracy, but that also requires high precision sensors. Knowing the setpoint (and

temperature deadband) is simple with smart appliances, as well as approximate

ambient temperature, but very precise thermal state close to real time within <

0.1 oC or higher accuracy, requires very precise and expensive thermal sensors.

Normal TCLs are not equipped with such sensors and it would be costly to do so

for millions of domestic and commercial TCLs, let alone not practical for existing

ones, which is the main obstacle for the realisation of [40] or any approach that

depends on accurate knowledge of thermal states. The population’s aggregated

power consumption on substation level requires disaggregation techniques since

it is part of the total power (mixed with other loads) [41]. To that end, a few
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disaggregation techniques were investigated on feeder level. Disaggregation on

substation level is also possible, yet feeders have less loads and thus discrete

states are easier to distinguish resulting in higher accuracy. The total daily

demand varied roughly between 4MW and 12MW, with air conditioning being

about 1MW to 5 MW (the target of disaggregation) and lowest root mean square

errors were between 0.2MW and 0.3MW [42]. Kalman Filter (KF), a centralised

algorithm, was used for state estimation and the transition matrix was assumed

known and accurate, which is not the case in reality. As such, a joint parameter-

state estimation was also investigated with Extended KF, however as the authors

stated it was unable to converge and requires real time measuring or some form

of deriving data off-line (for individual unit consumption) [40].

Individual unit modelling instead of aggregated population models were explored

by Vrettos et al., for electric water heating. To eliminate inherent numerical

diffusion and inaccuracy in first-order ODE, the second-order, three level finite

difference Crank-Nicolson scheme was utilized [32]. Afterwards, an MPC (model

predictive control) approach was used instead aiming to optimise consumption

on household level [43, 44]. These models are effective for household level and

act as agents, but are not scalable to large populations (hundreds of thousands

to millions) for provision of services such as frequency control or reserves. In

subsequent work, the use of aggregation models with state estimation is similar

to one used in [40], but with the additions of time delay and noisy estimates of

the aggregated population’s demand and infrequent perfect measurements of each

unit’s state [45].

Another similar decentralised model to Trovato’s [22], is investigated by Ziras et

al., considering start-up consumption spikes (similar approach to Totu’s et al.

work in switch rate actuation [35]). The control was based on dynamic dead-

band manipulation (similar to Trovato et al. [22]) while respecting original dead-

band limits. The decentralised model has the same problems as described earlier
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(unknown DR power, population’s state/availability, power system’s condition

etc.). To overcome this, the model assumes knowledge of system’s damping

(MW/Hz), generators’ droop characteristics (MW/Hz), base power (MW) and

system inertia (s) with a 10 second sampling interval [46]. Such knowledge of

power system’s state, accurately every 10 seconds, means some form of central

information exchange. Still, in an event where Primary Frequency Control is

required, those values will change, resulting in similar problems as those described

above. Last but not least, the local ”agents” require frequency measurements

every 200ms [47] in order to be able to respond.

1.5 Research Objectives and Contributions

Load modelling is important for both Power Systems Planning and for DR, yet

have different requirements. For instance, when voltage dependence is important,

ZIP model accuracy per load type is sought after [48]. In such models, TCLs

are depicted as steady loads within a population and only the number of TCLs

in operation alters, resulting to cold loads (refrigeration units) been modelled

as a steady 24/7 load [48, 49, 50]. In, reality though, as seen by real world

examples, that is not the case. Cold loads in particular vary during the day (20%

to 60% [51, 52]. This would result in a small error within the overall load profile

for Power Systems Planning, but for an aggregator participating in Balancing

Services using such loads, response error has to be within 2.5% [53]. The general

aim of this thesis is to examine and model this change in TCL demand and create

aggregation models for DR which can easily update in time and with low sensoring

requirements.

Ultimately, the key to determining the state of a TCL population is tracking

specific parameters; state on and off duration (ton, toff , i.e. duty cycle D &
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period T ), power when on (Pon) and number of units on, off in regular intervals.

Also knowledge of temperature settings (θset) and ambient approximately (θa).

These can infer the thermal state of the population, as well as be used to

create aggregated models. Knowledge of those parameters do not require use

of sophisticated, highly accurate and expensive thermal sensors but only use of

cheap Smart Plugs and/or Smart Meters.

Key points from the above are summarized below. The aim of this thesis is to

address them to the largest extend possible and propose solutions. As such they

can be seen as key objectives:

1. State of the art DR models assume ”snapshots” of TCLs with some

stochasticity instead of dynamic models.

2. First order ODE are inadequate to fully describe all TCLs. Yet higher order

ODE formulations are complex and result to even more complex aggregation

models.

3. Diverse modelling would result into smaller clusters and higher statistical

errors. A “one for all” fit would be advantageous for aggregators.

4. CFPE compared to transition matrix based approaches assume homogeneity

to be solved and therefore are prone to error under high heterogeneity.

5. Models developed so far require precise thermal sensor and/or frequency

measurement equipment on load level and/or knowledge of power system’s

state on load level and/or precise load data in real time etc. All those would

incur significant costs.

6. State estimation approaches on the other hand show great potential for

reducing such costs and communications needs.

7. Unfortunately approaches without precise thermal sensors have not being

studied extensively, more so combined with state estimation. Additionally,
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mostly homogeneous or slightly heterogeneous cases (not realistic) were

considered.

8. Lastly, most approaches rely only on centralised frameworks, which as

pointed out by Trovato et al [22] and Ziras et al [47] tend to be slower

in response compared to decentralised/distributed ones and not as robust.

The use of privacy is also a concern.

Even though decentralised models exhibit faster response and cut down commu-

nication delay [22], central ones maintain knowledge of the system. As such, a

distributed/hierarchical approach is more likely to be feasible, where:

• Knowledge of the system is central/distributed (as in substation or aggre-

gator level) instead of local level. This includes monitoring the system’s

damping (MW/Hz), droop characteristics (MW/Hz), base power (MW) and

system inertia (s) in real time or receiving this information from system op-

erators.

• Aggregators update their state, receive system information and re-evaluate

DR availability based on load information. This information can be based

on smart meters (and limited additional metering infrastructure if needed

[40]).

• A centralised (or hierarchical) signal, with system’s knowledge in real time.

• Distributed/local unit decision in real time. Something proposed by Totu

et al. as well [27, 35].

According to the points stated, this thesis tries to tackle them and provide

potential solutions. It is worth pointing out that detailed conclusions are offered

at the end of each chapter.

• Analysis of load types’ potential for DR services (mainly focusing on TCLs).
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This is done mainly in Chapter 2, but also in Chapter 3 with specific focus

on cold loads.

• Examining the effects of external factors on TCLs and heterogeneous

operation in time. Subsequently also on aggregation models and DR. This is

done in Chapter 3, the case study being cold loads and addresses objective

1.

• Simplified equivalent model (first order ODE) of thermal loads described

by higher order systems (usually second order). In Chapter 3 for cold loads

with multiple compartments or cold loads operating next to each other (i.e.

supermarkets). This addresses objective 2.

• Creation of a bottom up (Monte Carlo Markov Chain), heterogeneous,

realistic model including external factors. The model has been validated

against real world data (UK and EU cold load data) in Chapter 3 and

addresses objective 1.

• Aggregation models which include external factors and heterogeneity during

operation. One of which fit for high heterogeneity. These are detailed in

Chapters 4, 5 and address objectives 3-5, 7. Key points are 1) that this

method does not focus on thermal sensors but rather relies on duty

cycle (time in power on and off states) to approximate relative state, 2)

the transition matrix does not have steady probabilities, unlike in

literature - introduced by Koch et al. [29] and later used by others (e.g.

[54, 55]). Power on and off states are actually very easy to get from Smart

Meters, some of which can give reading every second per appliance [56] or

Smart Plugs (e.g. teckin, tp-link kasa, WeMo etc. [57]), which are also

inexpensive or relatively low cost. These already come with apps, even on

mobiles, which track real-time demand of each appliance (thus Power and

duration of a TCL’s on & off states) and can additionally command it

to switch on/off [58]. Actually, they have inbuilt WiFi connection and are
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becoming very popular due to reducing costs as well as their ability to be

connected with devices such as Amazon Echo, Google Assistant and Apple’s

Siri for remote control.

• Introduction of a distributed state estimation framework (Gaussian Belief

Propagation with Factor Graphs) from aggregate power measurements, with

limited AMI. BP is highly flexible and can be used in hierarchical or central

frameworks as well. This is introduced in chapter 4 and addresses objectives

6, 8.

• Methodologies for online updating and tracking of the aggregated popu-

lation, without requirements of (precise) thermal sensor, but only power

measurements from smart meters or disaggregation on feeder / substation

level. This is described in chapter 5 and addresses objectives 5-8.

1.6 Thesis Structure

This thesis explores mainly DR in the residential sector and its loads (similar

ones can be found also in the commercial sector). The focus is on large scale

deployment of TCLs for DR, thus modelling aggregated behaviour of large clusters

and state estimation. TCLs were chosen since they have the highest DR potential

among loads [59]. The models developed in Chapters 3-5 are specifically for TCLs

and not other loads. Similar aggregation models though, can be used for other

loads and have been used in other studies (i.e. EVs [23]). Chapters are organized

as follows:

• Chapter 2, analyses the residential sector and helps understand the role of

residential loads in DR services. Loads’ DR potential for both dispatchable

and non-dispatchable DR is examined and based on their characteristics

and human behaviour.
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• Chapter 3 analyses the effect of external factors on TCLs demand. Equiva-

lent first order ODE models are developed to express dynamics which nor-

mally require second order ODE. A dynamic model of individual units is

created to reflect the dynamic behaviour of aggregated TCLs. The devel-

oped model is validated against real world UK and EU measured data using

cold loads, via bottom-up Monte Carlo (MC) simulations.

• Chapter 4 Belief Propagation (BP) is introduced, a fully distributed algo-

rithm, instead of KF for state estimation of TCLs. BP can also be used

centrally or hierarchically and is compatible with KF. Such an approach

can be used to avoid smart agents which require Advanced Metering Infras-

tructure (AMI) and knowledge of power systems’ state. Distributed state

estimation can be developed similarly for other loads if their state space

model is known.

• Chapter 5 A novel aggregation methodology is proposed to calculate the

Probability Transition Matrix (PTM) of highly heterogeneous TCL clusters,

whilst being a simpler approach than the one proposed in literature.

Additionally, it allows for different types of TCLs (or even loads) to be

clustered together as long as they have similar PTM. Lastly, robust on-

line updating methods are proposed, which do not depend on precise

thermal sensor, but only power measurements (i.e. from smart meters or

disaggregation), thus being able to track the changes during operation.

• Chapter 6 Finally, an overview of the main findings of the research and

the contributions is presented. The implications and limitations of the

research are discussed, while recommendations for further development and

improvement, as well as next steps for this research are given.
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Chapter 2

Residential Load Analysis for

Demand Response

2.1 Introduction

This chapter’s focus is to analyse the residential sector, the largest among all

sectors, its loads and potential for DR services. Despite being the largest

sector, it is the least utilized among the big three (industrial, commercial and

residential). The principal downsides of the residential sector derive from its own

particular structure, comprising of various small loads with high variety of sub-

types, demand profile stochasticity, daily and seasonal consumption variation.

Moreover, only part of the residential loads can be utilized for DR services,

referred in literature as controllable or smart loads. These loads have different

characteristics, constraints and thus suitability for DR services. Tracking and

coordinating, in real time, large numbers of different loads is not feasible (if not

improbable in some cases [40]).

25
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The first part presents current DR services, separated in Non-Dispatchable

and Dispatchable. The control strategies for DR can be divided into indirect

(Non-Dispatchable) and direct control (Dispatchable). In Non-Dispatchable

DR, consumers are incited to modify their behaviour and thus demand profiles

[60, 61]. Dispatchable DR is usually central or based on an automated control

[62], dispatched under emergency cases such as faults, lost generation, high RES

fluctuation etc., in order to balance demand and supply. In some DR services,

prompt reaction within a couple seconds is critical and the participating loads

must have the capability to respond almost instantaneously [4].

Afterwards, an analysis of the residential sector is presented, focusing on the

main issues of large-scale DR, which stem from residential sectors’ large number

of loads, with low demand and high heterogeneity. Basic load types are analysed

and their potential for DR is examined. Among them, thermostatically controlled

loads (TCLs) are the most potent.

The chapter concludes with highlighting the importance of loads with some

form of energy storage (be it chemical, thermal or other form), especially for

Dispatchable DR, since balancing services are becoming increasingly crucial [3].

Small commercial consumers have similar loads with residential ones and less

stochasticity, thus can also be used in the same frameworks developed in later

chapters of this thesis.
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2.2 Control Strategies for Demand Response

2.2.1 Indirect Load Control

Generation cost varies depending on numerous factors, yet the most significant

ones are the generation mix and the system’s constraints at each moment.

Generation mix is driven by demand, which changes throughout the day. In

principle, unit commitment starts with the cheapest generation unit and the

next cheapest available one (given constraints) is dispatched, until the demand is

satisfied. In reality various factors affect the decision making in energy markets

but in general cheaper units are procured first and the most expensive ones cover

peak loads. Thus, market spot price during demand peaks tends to be much higher

than base or minimum demand, with a difference of up to 2 orders of magnitude.

High penetration of RES has significant consequences in energy markets’ spot

price, depending on market structure.

Indirect load control refers to dynamic pricing or other forms of incentive-

based control. Essentially it is used in Non-Dispatchable DR, where energy

users might choose to activate Demand Response on their own, without being

dispatched by a third party, given some incentive. Non-Dispatchable DR focuses

on energy markets, mainly peak price reduction through peak load reduction [62],

price following services [63](a UK real world pilot project) and RES integration

[28, 31, 64]. They are referred in literature as peak shifting/shaving, valley filling

and RES following methods. The aim of time sensitive pricing is to support

cheaper energy transmission and distribution, and promote generation from

greener resources while operating power systems within limits (avoid overloads

during peaks).

Dominant tariffs for indirect control are Time of use (TOU), Real-time pricing
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(RTP), Critical peak pricing (CPP) and Peak time rebate (PTR) [61, 65, 66, 67].

A percentage of consumers is expected to alter the starting time of their

appliances. The exact response (fraction of consumers) to dynamic tariffs and

their demand depends on demand-price elasticity, the appliances (loads), time of

the day and human behaviour. Consumers participating in such schemes benefit

from lower market prices, normally during off-peaks and/or excess RES (i.e. cheap

generation mix in general). Their primary target is to shift the demand to different

periods (earlier or later) based on generation and demand profiles. [68]

TOU tariff : Pricing in fixed periods of time to reflect the higher cost of

generation during peak periods, usually occurring around the same time every

day seasonally, and lower cost during off-peak periods (e.g. UK’s Economy

7). However, TOU cannot capture the real time cost of generation, such as

intermittent RES, which varies based on weather conditions.

RTP tariff : RTP is based on the dynamic nature of the generation cost.

Consumers pay electricity prices that are linked to the wholesale cost of electricity.

This type of pricing can fluctuate on a sub-hourly basis, making it harder to

track and maybe not as easily implemented in that form for residential and small

commercial consumers.

CPP tariff : CPP reflects the true cost of power generation to electricity

consumer during peak hours. A price signal is sent based on the cost of production.

The rest hours of the day (off-peak), a discounted tariff exists for the consumers

participating in the CPP. Customers can reduce their bills by shifting their

consumption from more expensive hours (peak hours) to less expensive hours,

thus reducing the overall demand peak.

PTR tariff : PTR is an alternative to CPP and works the opposite way. Instead

of giving a discount during off-peak hours, consumers receive a rebate for reducing
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their demand during peak hours. A set point of power can be used (in kW

or kWh). The rebate is computed as the difference of the set point and the

consumer’s power demand.

From the above tariffs, RTP is obviously the most suitable for RES integration

and to reflect generation cost, but also the hardest to keep track in small intervals

and most complex for residential and small commercial consumers. An alternative

could be an approximation of the average RTP over the next few hours (2 to

6); i.e. for a given y period, based on the RES generation forecast, a price

x ∈ [xmin, xmax] will occur, which is provided on a day (or few hours) ahead basis.

For most consumers, average RTP or similar structures make more sense and are

easier to follow [68, 69]

2.2.2 Direct Load Control

Dispatchable DR can provide various balancing services, mainly for grid reliability

[65, 70]. Reserve services provided by DR can be utilized either for positive or

negative regulation, [71], to respond to unexpected RES generation and/or avert

RES curtailment or price following in general [72, 73, 74, 75, 76]. Yet, most of the

Dispatchable DR services focus on frequency control [36, 77, 78, 79], and short

term reserves, since frequency regulation is imperative for real time stability and

reserves for short term stability of power systems.

National Grid’s current DR services include reserve, frequency control and

RES following, all of which belong to Dispatchable DR services (Table 2.1)

[4, 70, 71, 80].

Firm Frequency Response (FFR) is the firm provision of dynamic or non-

dynamic response to changes in frequency. FFR was created to give service
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providers and National Grid a degree of stability against price uncertainty under

the mandatory service arrangements.

Enhanced Frequency Response (EFR) is a dynamic service aimed at

improving the management of system frequency pre-fault to maintain system

stability. Active power changes proportionally in response to changes in system

frequency.

Fast Reserve (FR) provides the rapid and reliable delivery of active power

through an increased output from generation or a reduction in consumption

from demand sources, following receipt of an electronic dispatch instruction from

National Grid.

Short Term Operating Reserve (STOR) is a service that provides additional

active power from generation or demand reduction, when at certain times access

to sources is needed. Usually due to unforeseen generation unavailability or when

actual demand on the system is greater than forecasted.

Demand Turn Up encourages large energy consumers (or generators) to increase

demand (or reduce generation) at times of excess renewable generation and low

demand. This typically occurs overnight and during weekend afternoons in the

summer.

The main difference between the frequency services is time scale at which providers

need to respond. These services can be provided by generators, spinning reserves

or non-spinning reserves (e.g. batteries) and aggregators. Dispatchable DR

services are an attractive alternative for aggregators due to the fact that there is

no standby cost, the response time is short and no extra emissions are caused.

Though barriers arise for residential and small commercial end users, due to

their small individual demand, load profile deviation (residential users alter their

consumption more than commercial or industrial users) and constrains of loads
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based on their type, mainly delivery power and availability periods. Thus,

aggregation of large numbers is essential, combined with other distributed sources

in some cases.

On a local level, given the fact that loads are ubiquitous, there is potential for

unique DR services, which central generation cannot provide. Those include volt-

age control, overload relief (transmission and distribution), congestion manage-

ment; usually during peak times or in cases of faults [60, 74, 78].

Table 2.1: National Grid’s balancing and reserve services where DR participates

Service Response Duration Power

FFR <10/30 sec ≥20 sec/30 min ≥1 MW

EFR <1 sec ≥15 min ≥1 MW, ≤ 50 MW

FR <2 min ≥15 min ≥50 MW (>25 MW/min)

STOR <20* min ≥120 min ≥3 MW

Demand Turn Up -*** 260** min ≥1 MW

This table contains the main balancing services in which DR providers can

participate in UK and their main technical requirements [4, 70, 71, 80].

* longer times are also acceptable (240) but not preferable, ** variable, 260 min

is the average for 2016 *** variable, providers are given notice as contracted

The services in Table 2.1 are not to be confused with the Balancing Mechanism

(BM) market in UK. The Balancing Mechanism market is a special market which

is used after the 4 main markets (two Day-Ahead and two Intra-Day) in order

to match energy and supply in normal operation. Larger Generators participate

in that 30min period market, with bidding offers to increase or decrease their

output (4 bands each direction). These services are utilized in contingency cases

(e.g. when BM is not enough to match supply and demand due to a fault or a

power surge) and can be provided by either BM or non-BM units, where DR can

participate.
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2.3 Residential Sector for DR

There are three main consumer sectors in power systems: the industrial, com-

mercial and residential sectors, with combined consumption of 91.56% of total

consumption in the case of UK (Figure 2.1). Currently, the focus of DR is on

the industrial sector due to the inherently large loads and existing AMI (sensors

and metering technologies). The relatively low AMI cost to power rating per unit

means aggregating units to minimum power ratings for DR (Table 2.1) is a simple

and cost effective approach. The commercial sector is next in line, mostly from

bigger energy consumers and/or groups of them. Residential loads are gaining

more attention lately, but have not been largely used since the loads are small,

distributed, and not automated [60, 61, 62, 73, 75, 78].

Figure 2.1: Breakdown of UK’s electrical energy consumption per sector [52]

The major challenge in utilizing DR’s full potential lies in the domestic sector,

having the highest consumption of the three (35.76% [81]). Mainly because new

sophisticated aggregation and estimation methods are required, in order to control

simultaneously a large number of small units to achieve the same results as large

commercial or industrial units (aggregation in the order of thousands of units to

participate in Dispatchable DR). In addition, issues arise from deviation in load

profiles, limited knowledge of their load composition, time availability and limited
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knowledge of their potential for DR, including the end users’ awareness and thus

willingness to participate.

The introduction of smart meters, as well as smart loads, in residential and

small commercial consumers makes such schemes possible [15]. A lot research

has been also focused on disaggregation techniques via smart meters, giving load

composition insight unseen before [41, 42]. Signals can be sent to smart meters

for non-intrusive control of specific loads and prompt others to delay their start

time, or next operation [19]. Consumers participating in DR schemes can benefit

from discounts, lower pricing or rebates. They should also have the option to

opt-out if needed for a certain period of time (a simple switch on/off option).

2.3.1 Residential Sector Analysis

Knowledge of the availability of the controllable loads is essential, which means

knowledge of the residential sector’s demand. Table 2.2 shows ownership statistics

of selected residential appliances for the case of UK and EU [49, 68]. These were

selected as potential loads for DR and have been studied in literature [51, 82].

The reason being that they have the higher power rate among residential ones

and potential to shift their demand or alter their duty cycle as investigated in

[51].

Domestic loads are not consistent, as habitual patterns of users and weather

conditions drive demand profiles, which is the main problem faced when trying

to cluster them based on demand profiles. For instance, activities like use of

washing machines (and sometimes tumble dryers), are not done on a daily basis.

A household, thus, has different daily profiles, causing high daily demand profile

deviation, unlike commercial and industrial consumers. Clustering domestic

demand profiles on a similar manner to commercial/industrial ones, would give
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inaccurate results. This is apparent in Figure 2.2, where the difference of base

load (orange) with non-daily load (blue) can be seen. Some activities occur on

a weekly basis (e.g. laundry) and not a daily one and/or depend on weather

conditions from day to day (e.g. heating). For instance, washing machines are

reported to have on average 5 cycles/week and dishwashers 4.5 cycles/per week

[49].

Table 2.2: Ownership statistics for selected appliances

Appliance UK Ownership EU Ownership

Fridge-freezer 69.4%
106%

Refrigerator 37.7%

Chest freezer 15.5%
52%

Upright freezer 31.4%

Washing machines 97% 95%

Tumble dryers 56%* 34.4%

Dishwashers 42% 42%

Heating Circulation pumps 88.8%** 70%

Electric space heating (storage) 6.13% -

Electric space heating (direct) /0.74% -

Electric water heating 4.8% -

Electric oven 65.5% 77%

Electric hob 44.8% 77%

Microwave 93% -

Kettle 98% -

Ownership statistics according to [81] & [51] *Includes washer dryers as given by

UK statistics, ** based on number of dwellings with central heating/boilers [81]

Even though the demand profiles of individuals cannot be predicted and vary

daily, on a larger scale, aggregated demand profiles of ”similar” users, do have
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consistency. Due to habitual patterns, the probability of using specific appliances

is predictable on a large “relatively homogeneous” cluster, based on historical

data and conditions (such as working days, holidays, weather etc.) [82, 83].

Thus, a large number of end users (thousands) can be grouped in a few

clusters based on their similarities, simplifying their management, supervision

and forecasting. Moreover, this may allow unmonitored areas to be matched

based on their characteristics to the closest template with a relatively low error

(on an aggregated level) [84].

Load clustering can simplify data processing for various applications. The main

problem with this, when it comes down to DR, is the fact that load profiles do not

give information about the availability of controllable loads (volume, time, etc.)

but only the overall shape of the profile. Aggregated load data provides even less

information per load type and is harder to disaggregate. These is apparent by

looking at Figures 2.2 - 2.6. Typical weekdays are shown in these figures since

they constitute the majority but weekends can be simulated as well.

These Figures (2.2 - 2.6), as well as other household profiles in this chapter, are

synthetic load profiles created via a bottom-up modelling approach via Markov

chain Monte Carlo method. The same methodology is used as in [48] and in fact

updated appliance data according to DECC has been used [52]. For more details

the readers are prompted to read [48].
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Figure 2.2: Household simulated daily basic demand and deferrable demand

(dotted). Deferrable demand for selected household includes dishwasher, washing

machine, tumble dryer, electric storage water & space heating. Simulation was for a

typical winter weekday in UK.
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Figure 2.3: Aggregation of 5 simulated households, typical winter weekday in UK.
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Figure 2.4: Aggregation of 100 simulated households, typical winter weekday in

UK.
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Figure 2.5: Aggregation of 1000 simulated households, typical winter weekday in

UK.
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Figure 2.6: Aggregation of 10000 simulated households, typical winter weekday in

UK.

2.3.2 Classification Based Aggregation Analysis

Classification takes into consideration occupation characteristics; total number

and employment status, demand characteristics; overall demand and time of use.

Table 2.3: Occupancy mixture

Number of to-

tal occupants

Number of employed occupants

0 1 2 3 4

1 1210 2316 - - -

2 289 790 2290 - -

3 105 395 1000 210 -

4 0 290 895 105 105

Number of households per type, based on UK population statistics which

cover 98% of the population [85]. Total number of households: 10000

Table 2.3 is representation of the UK households (covers 95% of the population).
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The importance of occupation in determining load demand in volume and time

is investigated. The correlation between occupation and demand can be seen in

Tables 2.4 and 2.5. Figures 2.7 & 2.9 are additionally presented to visualize some

of these results.

Table 2.4: Daily mean demand (Power - Watts)

Number of to-

tal occupants

Number of employed occupants

0 1 2 3 4

1 350.673 273.045 - -

2 463.943 410.429 373.442 - -

3 524.967 460.975 444.101 420.233 -

4 - 524.536 490.053 474.480 484.068

Household average consumption per type (as per Table 2.3).

Table 2.5: Relative standard deviation

Number of total

occupants

Number of employed occupants

0 1 2 3 4

1 32.9% 36.7% - -

2 30.4% 32.1% 36.2% - -

3 53.3% 31.6% 34.9% 29.9% -

4 - 27.1% 28.7% 28.2% 28.4%

Relative standard deviation from average consumption per type.

Households of the same size, consisting of non-working occupants tend to have

higher consumption, since the time spend in the house increases. Though that

does not necessarily mean that the opposite in some cases does not occur. Cases

such as A) work based from home or B) students (classified as non-working) being

absent during working hours are just a few to name.
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Figure 2.7: Daily energy consumption of households consisting of 1 unemployed

occupant. Number of households: 1210 out of 10,000 as per Table 2.3
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Figure 2.8: PDF of Figure 2.7. Mean energy consumption 8416.152Wh. Relative

standard deviation 32.9%

Thus a better approach is a combination of household characteristics and overall

historical data. Probability Mass Function (PMF) based approaches have been

suggested to tackle this issue [82]. For example, this allows case A to be placed in

a “non-working occupants” dominant group and case B in a “working occupants”

dominant group, assuming similar consumption characteristics.
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Figure 2.9: Daily energy consumption of households consisting of 1 unemployed

occupant. Number of households: 2316 out of 10,000 as per Table 2.3
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Figure 2.10: PDF of Figure 2.9. Mean energy consumption 6553.08Wh. Relative

standard deviation 36.7%

Figures 2.7 - 2.10 show the distribution and convergence of daily demand

consumption. The mean converges within a sample of a few hundreds for

households of similar type, which is positive for aggregation per household type.

Another metric to look at is the relative standard deviation. In Table 2.3, it can be

seen that some households have high RSD values, largest been the household of 3

non-working occupants, which also has a small number of samples. In which case,
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RSD values are examined with caution to avoid wrong conclusions. Nonetheless,

a decrease in RSD values is observed as the household number increases and as

the number of working occupants decreases. The first one can be attributed to

more consistent use of appliances, e.g. more frequent use of washing machine

within a week for a bigger household thus less demand deviation. The second one

can be attributed to occupants sharing more activities (habitual patterns) due to

higher time flexibility as opposed to working occupants, especially in cases where

their working hours do not align.

Comparisons between individual and aggregated demand from households with 1

employed and 1 unemployed occupant can be seen in Figures 2.11 and 2.15. The

”base” consumption observed is mainly due to cold loads. Differences in peaks

and minimum demand can be seen both in value and in time. Overnight, demand

is almost the same, as expected.
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Figure 2.11: Typical simulated household demand profiles, one from a single

unemployed occupant and one from an employed one.
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Figure 2.12: Aggregation of 5 simulated households with one employed occupant

and 5 simulated households with one unemployed occupant, typical winter weekday

in UK.
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Figure 2.13: Aggregation of 10 simulated households with one employed occupant

and 10 simulated households with one unemployed occupant, typical winter weekday

in UK.
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Figure 2.14: Aggregation of 100 simulated households with one employed occupant

and 100 simulated households with one unemployed occupant, typical winter weekday

in UK.
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Figure 2.15: Averaged aggregation of all (1210) simulated households with one

employed occupant and all (2316) simulated households per Table 2.3, typical winter

weekday in UK.



CHAPTER 2. Residential Load Analysis for Demand Response 45

A note at this point is that part of those peaks and consumption during hours of

high demand is attributed to wet loads (washing machines, tumble dryers, washer-

dryers, dishwasher). Wet loads, have a wide window to shift their operation [51].

As such, they have one of the highest potential for Non-Dispatchable DR (dynamic

tariffs).

Finally, clusters of households consisting of only employed occupants and house-

holds with unemployed occupants can be seen in Figures 2.16 & 2.17). This

shows the similarities between profiles, associated with consumption in mid-day

and is accompanied by an expected increase in average demand as household size

increases.

Another important aspect of household types between employed and unemployed

occupants are the activities throughout the day, such as use of thermal loads.

During the day, the probability of household activity differs significantly between

them (as seen in Figures 2.11 - 2.14) which is taken into account in Chapter

3 where probability of interaction with refrigerators, freezers and fridges is

considered, as well as room temperature (house heating in combination with

heating profiles, Figure 3.2). The analysis of average demand does not give an

insight in household activity but only total demand, which has some correlation

with appliance ownership and use (e.g. a larger household is more likely to have a

dishwasher and use the washing machine more often). Larger household are more

likely to have loads available for DR.
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Figure 2.16: Average demand profiles, household clusters with unemployed occu-

pants
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Figure 2.17: Average demand profiles, household clusters consisting of only

employed occupants
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2.4 Loads Analysis for DR

Knowledge of the composition of residential demand is imperative. This effec-

tively means analysing the loads and their potential for DR, their total volume

(aggregated power), and availability during the day, week, season (thus essen-

tially main consumption driving factors). As seen from Table 2.2, cold loads are

the most common, followed by wet loads. The main residential loads include the

following:

Thermostatically controlled loads (TCLs). Which include cold loads

(refrigerators, fridge-freezers, upright-freezers, and chest-freezers), electric space

heating (direct and indirect), electric water heating (direct and indirect) and air

conditions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (h)

58

60

62

64

66

68

70

72

Po
w

er
 (

W
at

ts
)

Figure 2.18: Average daily residential cold load consumption in UK, as given

by DECC in half hourly intervals [52]. A significant change, around 20% between

minimum and maximum demand is observed.

Cold loads have a ratio on/off around 1:2 to 1:3 (newer technologies), with a total
cycle from 50 to 90 minutes (newer technologies) [25]. Their demand and cycle

are mainly affected by human behaviour, directly and indirectly. Additionally,
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cold loads have a defrost operation, accounting for around 5% of operation times

(3-4 times per day on average, yet a relatively high demand for that short period

[31, 86]. Defrost operation has potential for load shifting. The average UK cold

load demand can be seen in Figure 2.18 [25]. Their 24/7 availability gives high

potential for DR, with defrost cycling being suitable for RES following.

The load analysis here is used later in Chapter 3 to compare the average UK

residential cold load with simulated models, such as in Figures 3.23 and 3.25 of

Chapter 3, where they are used for validation of simulated aggregate cold load

demand.

Storage space/water heating operate mainly overnight, usually operated

during cheap overnight tariffs (such as Economy 7), store thermal energy, which is

released the next day. Some reheating during the day might be required, for short

periods, to maintain temperature. Suitable for balancing services [32] overnight

(mainly) and also absorbing excess cheap RES power. Affected by weather mainly

and human behaviour. Average UK electric storage heating and water heating

load demand can be seen in Figures 2.19 and 2.20.

In the UK, Kemna et al. [87], state that 48% of houses use electricity to heat

water for daily domestic use, of which the vast majority (90%) is used in electric

shower systems.

HVAC (Heating, ventilation and air conditioning). HVAC is common in

warmer countries, where indoors air conditioning during summer is more essential.

In the UK, HVAC systems can be met mostly in commercial buildings. In places

like California they are quite common, have high demand and are considered

among the top loads for both Dispatchable [29, 44] and Non-Dispatchable DR

[28, 31].



CHAPTER 2. Residential Load Analysis for Demand Response 49

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (h)

10

20

30

40

50

60

Po
w

er
 (

W
at

ts
)

Figure 2.19: Average daily residential space heating load consumption in UK, as

given by DECC in half hourly intervals [52].
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Figure 2.20: Average daily residential water heating load consumption in UK, as

given by DECC in half hourly intervals [52].

Circulation pumps (gas or electric). Every central heating system, whether

it is electric or gas, uses circulation pumps to circulate the warm water through

the radiators. They can be used for both DR types [88]. Since they are used in

conjunction with heaters, weather is the basic affecting factor.

Other TCLs: Direct SH (except for portable) are similar to cold loads, though
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not so commonly used in UK, since it is not a feasible option compared to

alternatives (electric storage or gas central heating). Direct water heating

(showers mostly), has essentially no usable thermal storage capacity and thus

cannot be used for DR.

Most TCLs have inherent thermal inertia (except for direct water heating like

showers). Their operational temperature is not constant but fluctuates within

a set range, with the help of a thermostat, who controls the on/off states of

the appliance. This thermal inertia allows TCLs to alter their consumption

pattern for short periods without affecting the quality of service [38, 40, 62].

With the use of an external signal, TCLs can switch state and switch back to

the original upon reaching the normal temperature limit (Figure 2.21). This

gives TCLs thermal storage capabilities [13], making them excellent candidates

for short term Dispatchable DR, one of the most important forms of DR, if not

the most important [3].
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Figure 2.21: Cold load (freezer) with and without use of DR. The normal cycle,

shown with solid line, starts at 10’ where temperature is -17 oC and ends at 38’ once

the temperature has reached -27 oC. Use of DR actions can modify the cycle, e.g.

in this example with a signal to switch off at 21’, but without exceeding temperature

dead-band limits.
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Wet loads: Washing machines, tumble dryers, washer-dryers and dishwashers.

The loads with potentially the highest level of freedom to shift their start time.

Most new models include start delay options and they are already widely utilized

by the consumer base, while also having the highest acceptable potential to be

deferred from users [89]. Economy 7 users with relatively silent wet appliances
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Figure 2.22: Average daily residential wet load consumption in UK, as given by

DECC in half hourly intervals [52].

Figure 2.23: Example of a smart tumble dryer being used for DR [19].

make use of the cheaper price overnight. Suitable for dynamic pricing, but

might also have potential for reserve services through new smart appliances. As

investigated by Nistor et al. [19], during operation, an external command can be

given to delay the next part of the operation, as seen in Figure 2.23.
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Cooking: Including electric ovens, electric hobs, microwaves and kettles. Cook-

ing loads cannot realistically be interrupted without affecting ”quality of service”,

even though most new ovens have start delay options, this is essentially for the

convenience of having the food ready at a certain time. Hence, it cannot real-

istically be utilized for dynamic pricing (time shift is very limited [51] based on

human behaviour).

Lighting: Various types of lighting technologies exist, most common ones include

gas incandescent lamps, halogen incandescent lamps, compact fluorescent lamps,

high intensity discharge, light emitting diodes and more. They cannot realistically

be used for DR.

Consumer electronics and home computing: This term includes, but not

limited to TVs, set top boxes, power supply units, games consoles and desktops,

laptops, mobile phones, monitors, printers, multi-function devices. Similarly to

lighting, they are not suitable for DR.

2.4.1 Controllable Loads: Flexible and Deferrable

The main concept behind Demand Response (DR) derives from the potential

of some loads called ”controllable loads”, thus making use of already existing

components of the grid. DR services can be procured by electricity system

operators through monitoring, aggregation and control of loads and distributed

generation to maintain reliability of electric power systems. As described by S.

Kawachi et al. [72], an ideal controllable load has:

1. minor loss of convenience by control of power consumption,

2. large enough power consumption and

3. response speed to signals fast enough to compensate to fluctuation in power

systems
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However, there are no ideal controllable loads, yet some loads satisfy partially

these requirements and are treated as controllable loads in practice.

Based on the service that is provided, different loads or groups of loads are

utilized. For instance, T. Masuta & A. Yokoyama [77] simulate frequency control

with water heaters and EVs, which can be switched on/off for short intervals (in

case of high frequency fluctuation) without affecting the quality of service. In

[90], I. Hernando-Gil et al., make use of wet loads, but in this case shifting the

load’s operating time to achieve peak demand reduction. Thus, it is important

to identify which services can be provided, by which controllable loads, when and

in what volume.

Controllable loads fall mainly into two categories. The first type includes those

who can provide balancing services, through altering or interrupting their cycle

for a short amount of time without affecting the quality of service [38, 40, 62].

Most TCLs are such loads, EV and potentially wet loads. They can be switched

off (or even reduce their consumption in the case of EVs) upon a dispatch signal,

for a few minutes, as long as the battery gets fully charged or the temperature is

within the thermostat’s limits [77]. These are known as flexible loads.

Flexible load: A controllable load, which can fulfil its nominal operational

objectives under different cycle profiles. Alternation of its profile occurs upon

an external command/signal. Flexible loads are suited for Dispatcahble DR, thus

in case of an emergency a central point can coordinate them properly (power

volume, ramp up/down rates, duration) [68].

The second type, referred here as deferrable load (also found in literature as load

shifting), can shift its operation in time [60, 88]. For instance, a washing machine

or a dishwasher can be programmed to postpone (or advance) its start time for a
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more favourable tariff (i.e. lower price due to excess RES generation or off-peak

use) [38, 61, 91]. In general, some TCLs, EVs and wet loads can be deferrable.

Deferrable load: A controllable load, whose operation can be moved in time

under some limits without affecting ”quality of service”. Changes in time of

operation are expected mainly due to dynamic pricing, received through smart

meters. Deferrable loads are suitable for Non-Dispatchable DR (indirect).

Response to price changes depend on demand-price elasticity. Because of its

nature (human behaviour), it can vary greatly between load types but also in

time (even when assisted by automated systems [67]. This can be seen in [51],

with mixed responses from users regarding acceptable start delays.

Cold loads are plugged in 24/7 and their thermal storage means they could be

used for both Dispatchable and Non-Dispatchable DR, yet their thermal time

constant (form of thermal inertia) is not as high as space heating/cooling or

water heating. On the other hand, storage space/water heating has been used

in basic forms of Non-Dispatchable DR such as overnight tariffs for a long time,

storing thermal energy overnight and using it during the day. Cold loads, due to

their 24/7 availability and high aggregated demand are great candidates for short

term response (Dispatchable DR, e.g. FFR).

An estimated breakdown of UK’s residential demand in flexible and deferrable

demand according to Table 2.6 and DECC’s average annual residential demand

can be seen in Figure 2.24. The main flexible loads are considered to be cold loads,

electric heating (space and water), whilst main deferrable loads are considered to

be wet loads.
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Table 2.6: DR potential of basic load types [68].

Load type DR Potential Main affecting factors

Cold Appliances Dispatchable* Human behaviour

Electric space heating Both Weather

Electric water heating Both Human behaviour

Circulation pumps Both Weather

HVAC Both Weather

Heat pumps Both Weather

Electric Vehicles Both Human behaviour

Wet appliances Both** Human behaviour

* Can be used for both but better fit for specified DR type

** Preferably not for fast Balancing Services where a spinning

cycle would be interrupted to avoid QoS issues
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Figure 2.24: UK’s average residential demand; breakdown to base, flexible and

deferrable load [68]

.
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Figure 2.25: UK synthetic residential demand for 10,000 households, winter;

breakdown to base, flexible and deferrable load.

.

Note that HVAC, Circulation Pumps and Heat pumps are not part of this figure,

as DECC’s data did not include them. A similar estimated breakdown for winter

for 10,000 households’ synthetic demand is given in Figure 2.25. The main

difference are seen overnight, due to the higher use of electric storage water and

space heating loads, as well as considering Circulation Pumps. Throughout the

rest of the day both flexible and deferrable loads are very similar. The total

demand between Figures 2.24 and 2.25 is very similar.

2.5 Virtual Power Plants

Clusters of units/sources can be seen as virtual micro-sources combined in an

aggregated one (e.g. Figure 2.26). A virtual power plant (VPP) or aggregator

is a cloud-based distributed power plant, which aggregates such heterogeneous

micro-sources for the purposes of operating in power systems as single entity
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and provide various services. Such examples of aggregators/VPPs exist in the

United Kingdom [80], most of which provide balancing services, mainly frequency

control, reserves and demand turn up, whilst also providing services to their

clients (micro-sources), including but not limited to triad management, energy

saving and monitoring of equipment.

Figure 2.26: Virtual Power Plant example: EV, heater, cooling, water heating, cold

load. Source:[92]

A VPP/aggregator may include types of micro-sources to give a reliable overall

power supply. These can be either for dispatchable and non-dispatchable DR,

depending on deferrable or flexible load. Usual DG systems include microCHPs,

diesel-fired generators, natural gas-fired reciprocating engines, small-scale RES,

hydroelectricity plants, small hydro, biomass, back-up gensets, and energy storage

systems (ESS).

Given the nature of balancing services provided, accuracy and response within

the specified limits is important. As such knowledge of available aggregated



58 2.5 Virtual Power Plants

power/energy in real time is important. For DR in specific, information of

controllable loads is required, their current state and demand profile (volume and

time). The next step is using appropriate aggregation models, to represent the

entire cluster (based on the acquired information), and most importantly model

the response of the aggregated model to DR actions.

VPPs and DR potential:

1. High amount of balancing capacity already in place (loads)

2. Loads are ubiquitous in the grid, this gives the possibility for spatial control

3. Reliable due to practically a 24/7 availability of loads and statistically safe

4. Instantaneous response (depends on communication only)

5. Emission free

6. No fuel requirements, thus cost ”free”

Aggregators usually incorporate various sources in their portfolio, such as a mix

of back-up units, ESS and DR. Flexitricity and GridBeyond are such examples of

aggregators in UK, with heating loads, cooling loads, cold loads, fans, pumps, air

conditioners, compressors, crushers and more. These loads can be turned off for

short durations without cost or emissions and provide the same effect as a back-up

unit or ESS for balancing. Back-up units or ESS might become unavailable, but

DR is available as long as there is demand, which means always.

There are also various system benefits, such as extra balancing capabilities

at low cost, the ability to deliver peak load reduction, load-following power

generation or intermittent RES following demand on short notice. To some extent

VPPs/aggregators can replace some of the conventional power plants operations

while providing higher efficiency and more flexibility.

In order for a VPP/aggregator to participate in power systems using DR, there

are some key challenges:
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1. Minimum total capacity requirements to participate in balancing services

(each type of service has its own)

2. Coordination and dispatch of large numbers accurately (scalability, aggre-

gation methods)

3. Heterogeneity (in loads and in operation)

4. Monitoring large aggregated populations in real time

The availability of loads for dispatchable and non-dispatchable DR can be

conflicting. In such case Dispatchable DR is most likely to take priority.

Dispatchable DR is becoming increasingly crucial for power systems and is also

commercially more attractive. Expected annual revenues, in California, from

participation varies between $10 and $220 per TCL per annum, while load

following and energy arbitrage are modest between $2 and $35 per TCL per annum

[93]. Therefore, Dispatchable DR is expected to be the first DR of choice in most

cases. At the same time, it has the highest precision requirements, and thus

modelling, aggregation, estimation and control challenges. Models developed for

Dispatchable DR are usually also accurate enough for Non-Dispatchable. Price-

demand elasticity is the only additional tool needed in that regard.

As it is obvious from Table 2.6, TCLs are currently the most important type of

load for DR [68]. Additionally, when both Dispatchable and Non-Dispatchable

DR are possible, it is important to know that using both simultaneously is feasible,

but with limitations. For example, electric heating as previously mentioned

[32, 38, 72, 74, 73] can be used for DR, but its availability depends on weather

conditions and human behaviour. If a low price signal caused the heating to

operate at a given period (t1, t2), it should be anticipated (or able to be tracked)

that there is extra load available for balancing services for that period and vice

versa.
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Approaches for the identification of appliances have been made, such as in [94],

where H. Niska uses load clustering to extract information, whether electrical

heating (a controllable load) is installed, by checking users’ load profiles. A

different method is proposed by Y. Lin & M. Tsai [95], using appliance signature

recognition, where specific electrical signatures matching certain appliances can

be spotted from a user’s profile. Ledva et al. used disaggregation specifically to

identify loads for DR on substation and feeder level in real time [41, 42].

2.6 Conclusions

This chapter discusses the potential of the residential sector to participate in DR

services. These can categorized in DR for Balancing Services, such as FFR used

by many aggregators in UK or DR for dynamic pricing, such as TOU tariffs which

are more common with commercial consumers. An analysis of the domestic sector,

common household types and their demand as well as explore the DR potential

of common loads.

In that analysis, it is identified which type of DR those loads are compatible

with Ancillary Services or Dynamic Pricing, and are categorized as flexible and

deferrable loads accordingly. Specific loads can be perceived as both flexible and

deferrable, in which case, one of DR types will probably out-weight the other. It is

also important to check how much of the domestic demand can be expected to be

able to participate in DR (as seen in Figures 2.24, 2.25 for UK). Low DR capability

for a load type, or high uncertainty in availability for services such as FFR, makes

further efforts in DR schemes questionable, especially when considering the cost

and complexity of implementation.

Based on this analysis, TCLs are considered the best candidates for DR among

residential loads, especially for Balancing Services which are crucial for Power
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Systems with high RES penetration and will be even more important in the future.

Thus the outcome of this analysis in Chapter 2 prompts to further investigate

TCLs for DR in the later chapters.

An interesting point that comes from looking at households based on employment

status is the (expected) activity during working hours, as seen in Figures 2.11 -

2.15, which shows not only the demand potentially available for DR but also

probability of interaction. This for TCLs means heating (which is more like

to be on during office hours for unemployed occupants) and interaction with

cold loads, as well as changing the ambient temperature that TCLs see. This

probability is later considered in Section 3.3 for ambient temperature together

with heating preferences (settings) in different house types (Figure 3.2) and for

human interaction with statistics from Smart-A project (Figure 3.3 [51]). These

are inputs for simulation results (Section 3.8), as explained in Section 3.7. Also,

the cold load data from DECC (UK) of Section 2.4 is compared in Figures 3.23

and 3.25 of Chapter 3, where it used for validation of simulated aggregated cold

load demand.

NB : Dispatchable DR (Balancing Services) requires higher accuracy and fast

response requirements than non-Dispatchable DR (Dynamic Pricing). In general

different models are used for each, yet models of the former can be used for the

latter if price-demand elasticity is combined and then price signal act as ”external”

commands.
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Chapter 3

TCLs’ Dynamic Behaviour in

Time: Analysis and Modelling

3.1 Introduction

This Chapter concerns the non-static aggregated behaviour of TCLs, when no DR

actions are in place. The steady state aggregated consumption of thermal loads is

assumed almost static (especially in the case of cold loads), with the addition of

white noise (Wiener process) [26, 29, 32, 69]. A Wiener process is introduced to

model human behaviour and other external factors such as ambient temperature;

”the noise term W (t) aggregates the effect of external disturbances, e.g., door

openings, changes in food content, and variations of θa”
1 as stated by Vrettos et

al [96] for cold loads.

NB : A Wiener process is a continuous-time stochastic process described by a

1where W (t) Wiener process and θa ambient temperature

63
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Gaussian distribution with zero mean value and increment. As such, when a

large number of units are aggregated the total sum tends towards the mean, 0.

In reality though, as shown in this Chapter (but also expected when looking at

Figure 2.18 of Chapter 2), the sum of the effects of external factors is not 0,

but rather it is driving the trend of TCLs’ aggregated consumption. This has

various impacts in provision of DR services; the aggregation models, the control

actions and expected (or estimated) consumption, thus demand and availability of

DR. Additionally, rebound effects after DR actions are not captured accurately.

Though the extend of those has to be examined and this is one of the main

purposes of this Chapter. For instance this can be seen in Figure 2.18 for Cold

Loads, which most would initially assume to have flat consumption due to been

connected 24/7. Note that domestic cold load contributes at least 36% of total

domestic load in summer and at least 25% in winter, but there are large variations

between households [59], which highlights their importance for DR.

In this Chapter, external factors and their effect on TCLs’ demand are analysed.

Those are separated in direct human interaction and external temperature changes

(or indirect human interaction which causes them). A direct interaction can be

a change on temperature settings, turning on/off the TCLs or interacting with

them (e.g. opening the door of a refrigerator). Indirect interaction can be one

that causes a change in ambient temperature or the thermal losses of a TCL

without using it. Examples are opening windows or cooking or turning on the

heating which changes the ambient temperature of a freezer. These are modelled

as an extra factor, using TOU surveys and empirical or experimental data on

the effect of those factors. Equivalent models of first order ordinary differential

equations (ODE) are introduced where cold loads behaviour is a function of more

than one thermal equations (i.e. multi-compartment colds loads or heating loads

with more than one ambient temperatures, resulting to second order ODE). A

state-of-the-art realistic model is developed to incorporate the above. Lastly,
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bottom-up MC simulations of the model are compared to real world data of cold

loads for validation.

The remainder of this Chapter is organised as follows, in Section 3.2 real world

data of cold loads is presented and the divergence of existing TCL models is shown.

In Section 3.3, non-linear consumption factors are analysed based on experimental

data (mostly on cold loads). In Section 3.4 the effect of stochasticity due to

population size and heterogeneity is investigated. Afterwards, in Sections 3.5 a

more realistic TCL methodology is proposed, taking the above into consideration.

This is done by modelling the direct and indirect external effects (human

interaction and weather/temperature). TCLs’ operation, especially when multiple

of them are considered or multi-compartment (such as in case of Cold Loads),

the accurate representation is normally given in second order ODE. This though

requires a different computation model to be used; instead a virtual ”equivalent”

first order ODE is created for such Cold Loads in Section 3.6. Section 3.7, using

Sections 3.5 and 3.6, describes the methodology of creating realistic bottom-up

aggregated TCL populations, via Monte Carlo. Simulation results are shown in

Section 3.8 and are compared to real world data.

3.2 Real World Data and Aggregated TCLs

Analysis

The TCL model used in state of the art, for instance by Callaway [28] who focuses

on finding the exact continuous solution of CPFE (homogeneous TCLs) or by

Koch et al.[29] where an approach based on discretization is used for transition

probabilities, was introduced by Mortensen and Haggerty in 1988 [97]. It is a

computational model, discrete-time discrete-state Markov chain, created to study
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the synchronization of TCLs which caused increased demand in short term and

oscillation.

The magnitude and duration of the overload caused by TCLs, mainly space

conditioning, heating and cooling loads, after an outage were the main focus

by Ihara & Schweppe in 1981 [8] and by Mortensen & Haggerty in 1988 [97] and

not the normal variation in TCL demand throughout operation. Under normal

operation a large population of TCLs operates in an unsynchronized manner, but

after an outage, many of them will start at the same time, causing an initial

partial synchronization. The transient load and oscillatory behaviour after the

outage is important to determine the total overload post outage. The purpose

of this model was to model the thermodynamics of individual TCLs in a large

population through data collection and computation of a reasonable effort. An

effect similar to that is created when DR commands are given to TCLs to switch

off for short term, since they also cause partial synchronization.

The model assumes a ”snap shot” of the TCLs’ demand in a given moment and

explains the rebound effect after brown outs and/or black outs. The demand at

that period may be assumed as the demand likely to occur in a similar given

moment (date, day period, weather conditions), with a small “noise” factor for

stochasticity. The model’s equations are:

θi(n+ 1) = ai · θi(n) + (1− ai) · [θa,i − µi(n) · θg,i] + Φi(n) (3.1a)

ai = e
− τ
Ci·Ri (3.1b)

θg,i = Ri · Pi (3.1c)

µi(n+ 1) =



0, if θi(n) < θset,i − δi/2

1, if θi(n) > θset,i + δi/2

µi(n), otherwise,

(3.2)
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Ptot(n) = ΣNTCL
1 Pi · µi(n) (3.3)

where θ the temperature of the TCL, n the integer-valued time step, θa the

ambient temperature (lower than θ, θset for heating loads and higher for cold

and cooling loads), µ (a dimensionless discrete variable equal to 0 (off) or 1

(on), θg the temperature generated by the TCL (positive for heating loads and

negative for cold and cooling loads), Φ(n) ∼ N(mean,Σ) denotes multivariate

normal (or Gaussian) distribution with mean vector mean and covariance matrix

Σ, C thermal capacitance, R thermal resistance, θset temperature set-point, δ

temperature dead-band. TCLs are indexed by i, which takes on a unique value

for each TCL in the population. The n-dimensional (discrete-time) stochastic

processes Φ(n) denotes (Gaussian) process noise assumed to be an i.i.d process.

Even though this model is suitable to represent a ”snap shot” of TCLs’ population

for a given moment (with knowledge of similar conditions, based on historic data),

it does not reflect the dynamic nature of TCLs’ population throughout the day, or

the main driving factors behind this behaviour. As seen in some of these studies,

the aggregated profile has significant differences to actual demand profiles. The

best showcase being cold loads, which are plugged in 24 hours a day, where their

aggregated demand is displayed as an almost straight line with a small fluctuation

(noise). In reality, throughout the day, cold loads’ aggregated demand follows the

trend of the rest demand, lower overnight and higher during the day. Peaks occur

around the same time as the total demand, in both residential and commercial

cases [51, 52] (Figure 3.1), which can be attributed to human interaction (door

opening) and heating when residents are present. El-Férik & Malhamé [98]

proposed an identification algorithm to calculate and update the parameters of

the model, thus be able to cope with real world changes; it was concluded that

sampling intervals should be around 15 minutes or less. Between each update,

assumptions of relatively steady ambient temperature (θa), Wiener noise with



68 3.2 Real World Data and Aggregated TCLs Analysis

small σ (practically no significant external disturbance) and homogeneity are

required, which might not be the case in reality.

The changes in consumption can be attributed mainly to ambient temperature

changes and human interaction [99]. It is important to note here that only part

of the population causes this increase, thus that part has on average a higher

increase than the mean displayed, it also varies between individuals. This is a

good indication of the cold loads’ population dynamics and how even identical

appliances (homogeneous population characteristics) will behave differently in

time due to external factors (heterogeneous population in operation, duty cycle).

Figure 3.1: Average measured daily demand of domestic cold loads, EU and UK.

The difference between maximum and minimum value for UK is around 20% and for

EU around 60% and 20% respectively. Sources: Smart-A, DECC. [51, 52]

This is mainly due to human behaviour and the effect of human interaction on

cold loads’ power consumption as discussed in [99, 100]. In both studies, it was

concluded that it was the most important factor in energy consumption. The

overall deviation in domestic demand (and behaviour) was studied in [68], which

was based on a detailed model of domestic demand using real data from a Time of
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Use Survey (TUS) [50], as shown in Figure 2.15 earlier. The lowest demand for the

second cluster (employed occupant) is attributed mainly to passive consumption

of cold loads, with minimal to no interaction, whilst the first cluster shows

human presence; interaction with appliances and most likely different household

temperature (heating). As such cold loads’ operation of even identical appliances

(parameters R, C, P of (3.1a)) will differ between these 2 groups due to ambient

temperature and human interaction.

The dimensionless discrete parameter µ(t) defines whether a TCL is in on or off

state. The evolution of the discrete state µ(t) is governed by the dead-band δ

(thermostat setting) and switches from 1 to 0 when θ(t) reaches θoff and vice

versa for θon. An important note here is that for discrete models, this transition

is assumed to occur on discrete time steps only. As such, the evolution of

the continuous state θ(t) depends on µ(t) and the discrete state µ(t) transition

depends on θ(t). This means that the model consists of two interconnected

subsystems, a linear continuous one and a non-linear discrete one. Also, µ has

a stochastic nature as θ and δ are stochastic. For a large enough number of

loads NTCL (Kolmogorov’s law) and assuming that µi(t) is an i.i.d process with

(common) mean value E(µ(t)):

¯µ(t) =
1

NTCL

ΣNTCL
1 µi(t) ≈ E(µ(t)) (3.4)

This can be assumed for both homogeneous and heterogeneous populations, albeit

with some error. The interesting point is that it is connected to an operational

characteristic of TCLs, the duty cycle (D), defined as the runtime ratio within a

cycle, D = ton/T , where ton the on state duration and T the cycle duration. The

probability of a TCL in a random moment within a period to be on will be equal

to its duty cycle D and the probability to be off is equal to 1−D. At the same

time, the probability of a unit to be on in a random moment within a period is

actually the probability of µi(t) to be 1, so E(µi(t)) = Di(t).
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ΣNTCL
1 E(µi(t)) = ΣNTCL

1 Di(t)⇒ 1
NTCL

ΣNTCL
1 E(µi(t)) = 1

NTCL
ΣNTCL

1 Di(t), thus,

¯E(µ(t)) = D̄(t) =
1

NTCL

ΣNTCL
1 Di(t) (3.5)

Which means that for a population without partial synchronization between

TCLs, the probability of TCLs to be on is equal to the mean duty cycle of

the population, D̄(t). Given no external interactions or changes, this quasi-

equilibrium condition is called the natural diversity of a cycling load.

Now if we take (3.5) and multiple by NTCL, we can tell that the expected number

of TCLs to be on (Non(t)) at any given time is equal to

E(Non(t)) = NTCL · D̄(t) (3.6)

Consider also the mean power rating, P̄ , of the population (P̄ = 1
NTCL

ΣNTCL
1 Pi).

We can then get the following approximation:

Ptot(t) ≈ NTCL · D̄(t) · P̄ (3.7)

This is an approximate equation (not to be confused with (3.3)) and can be

used for (almost) homogeneous population, whilst there will be some error for

heterogeneous ones, as one could easily observe in an example where TCLs with

the highest duty cycle D also have the highest power ratings P . In general,

the larger the population the smaller the expected error. As we see from (3.6)

and (3.7), the duty cycle has an important link to the number of units in on

state, subsequently to the consumption and provides valuable information. This

is something that will be investigated further in the following Chapters.

Finally, a similar approach can be taken for a highly heterogeneous population
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of TCLs. In which case depending on how high the level of heterogeneity is,

clustering might be the best approach. The first step is to create clusters of

TCLs based on their duty cycle, which changes in time. The ith cluster with

population NTCL,i(t) and mean duty cycle D̄i(t), has a total power Ptot,i(t), which

are functions of time. The total Power is approximated by (3.8). Larger cluster

population NTCL,i(t) and smaller time steps improve accuracy of estimating total

demand. An interesting note here is that some level of heterogeneity is sought-

after for control dynamics, in particular desynchronizing the population after

control actions or other causes of partial synchronization [28].

Ptot(t) = Σ[Ptot,i(t)] ≈ Σ[NTCL,i(t) · D̄i(t) · P̄i(t)] (3.8)

Evidently, the population’s demand is approximately linearly dependent on the

duty cycle. Upon synchronization (e.g. a DR signal or power outage) this

is no longer the case, synchronization causes units to operate simultaneously

in phase and natural diversity will be re-established slowly in time due to

heterogeneity and random factors or through corrective control actions [28]. This

synchronization causes the rebound effect and its magnitude is based on the

number of synchronized units.

Another note here regarding real cold load demand is that the aggregated power

in (3.3) is not completely accurate, since it assumes that units in off state consume

no power. In reality most TCLs maintain a small idle consumption for electronics

operation and thermostat control. For the purpose of this thesis though it can be

neglected, which is the norm in literature as well.
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3.2.1 DECC and Smart-A Project Data

As this Chapter is looking into how TCLs’ demand (and particularly focuses on

Cold Loads) changes throughout the day and examines the reason behind this

behaviour as well as trying to model it, it is deemed important to use validated

official data for comparison. These come from the Department of Energy and

Climate Change (DECC) and Smart-A project.

DECC was created on October 2008, by then Prime Minister Gordon Brown to

take over some of the functions related to energy of the Department for Business,

Enterprise and Regulatory Reform, and those relating to climate change of the

Department for Environment, Food and Rural Affairs. It released a major White

Paper in July 2009, setting out its purpose and plans. The majority of DECC’s

budget was spent on managing the historic nuclear sites in the United Kingdom, in

2012/13 this being 69% of its budget spent through the Nuclear Decommissioning

Authority. On July 2016 DECC became part of the Department for Business,

Energy & Industrial Strategy.

DECC contains a variety of data for UK energy consumption [52]. ’Energy

Consumption in the United Kingdom’ is an annual statistical publication that

provides a comprehensive review of energy consumption and changes in intensity

and output since the 1970s, with a particular focus on trends since 2000. It

covers the following key Chapters, Overall energy consumption in the UK,

Energy intensity by sector, Primary energy consumption, End uses and Electrical

products consumption and stock.

The data of importance here is the ’Household average daily electricity consump-

tion by appliance type’ which includes average daily (24h) consumption (Wh) for

the following loads:
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1. Cold Appliances

2. Cooking

3. Lighting

4. Audio-visual

5. ICT

6. Washing/ drying/ dishwasher

7. Water heating (electric)

8. Heating (electric)

9. Showers (electric)

10. Other

11. Unknown

This data shows average electricity use profiles from 250 households in UK, mon-

itored over 12 months using meters on total electricity use and main appliances

as per above. Unfortunately, it does not report the data in detail for weekdays

and weekends or per season. Yet it is official data from a UK government body,

thus is used for validation. The data is given in average consumption per load

type per year. A more preferable official data would have been per load type, per

season, separately for weekdays and weekends for UK. Unfortunately such official

data was not found at the time of writing from any source.

The project ”Smart Domestic Appliances in Sustainable Energy Systems (Smart-

A)” is an EU project led by the University of Bonn, with partners from Austria,

Belgium, Germany and the United Kingdom. It is also co-funded by the Federal

Ministry for the Environment, Nature Conservation and Nuclear Safety.

Smart-A aims to develop strategies in which smart domestic appliances can

contribute to load management in future energy systems. In order to do this,

the project assesses the options for load-shifting (for dynamic tariff schemes) by

a variety of appliances across Europe and compares these with the requirements
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from energy systems both on the local and regional level. The technical aspects of

the assessment include an analysis of potential changes to appliances operation,

of characteristics of local energy generation (from renewable energies and also

co-generation) and of load management requirements in the larger electricity

networks. The project also features a detailed assessment of the acceptance of

smart appliances operation by users, and an evaluation of the usability of available

control technologies and communication standards.

Data is reported for EU countries (United Kingdom, Denmark, Italy, France,

Spain, Sweden, Poland, Hungary, Finland, Czech). It includes domestic load type

ownership statistics per country, behavioural statistics, willingness for shifting the

time of operation per load type per country and more. The data of importance

here is the demand per load type which is given in average daily demand (24

hours) for the following loads:

1. Washing machines

2. Tumble dryer

3. Dishwasher

4. Oven and stove

5. Refrigerator

6. Freezer

7. Air conditioner

8. Water heating (electric)

9. Heating (electric)

10. Showers (electric)

11. Heating circulation pump

An interesting note is the high similarity in demand profiles per load type in

different EU countries, with the exception of air conditioners and electric heating,

where countries could be grouped in southern and northern in terms of demand

profiles.
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The data in Smart-A project is also given as average consumption per load type

per year, without any more detail, as in per season or separately for weekdays and

weekends. Fortunately for comparison purposes, amongst residential TCLs, Cold

Loads have the least seasonality since they are connected 24/7 despite weather

conditions and room temperature indoors varies less than outdoors temperate due

to human preference.

3.3 External Consumption Factors

Since external factors affect the consumption of loads and thus their load profile

and availability for DR, they have to be analysed and modelled. In order to do

so, the following three step were taken (for cold loads in this particular instance,

without loss of generality).

First, various experimental data on TCL parameters were analysed, such as in [28]

for cooling/heating loads and specific data on cold loads ([30, 86, 69, 101]). Then,

thermal properties of such loads ([102, 103]) and the effect of human interaction

([99, 100]) were studied. Lastly, using the above as a basis, simulations were

carried out and validated against real-world demand profiles. In specific, real-

world data was taken from UK’s government DECC [52] and the EU Project

Smart-A [51].

The model was created in such a manner that it may be used for either

cold/cooling or heating loads. The governing Stochastic PDE (Partial Differential

Equations) can be applied to all TCL types by changing the input only. The

reason for choosing cold loads as case studies is the fact that they exhibit the

highest DR potential; highest aggregated demand among TCLs, ubiquitous,

available 24/7. Important TCLs consumption factors are:



76 3.3 External Consumption Factors

1. Ambient temperature, a function of human behaviour and weather

2. Appliance characteristics and operation settings

3. Human interaction, preferences and socio-economic factors

3.3.1 Ambient Temperature

Thermal loads used by the industrial, commercial and residential sector make use

of heat transfer mechanisms; advection, conduction, convection and radiation.

For relatively small temperature changes, such as in the case of TCLs (domestic

and commercial), Newton’s law of cooling applies. Therefore, heat transfer

and consecutively the thermal load is practically linearly dependent on the

temperature difference,

d(θ(t))

dt
= −λ · [θ(t)− θa(t) + µ(t) · θg] (3.9)

where λ thermal time constant (λ = 1/(RC)). As expected TCLs’ energy

consumption depends mainly on the ambient temperature and any change affects

them directly. Refrigeration demand during winter is about 2/3 of the one in

summer, while there is also a deviation between daytime and night time [30, 52].

Previous work on TCL modelling and simulations has assumed steady or relatively

steady ambient temperature around a set value (a plethora of such can be found

in literature, including [28, 31, 40, 69, 86, 104, 105]). In [106] variations of 10

oC in all house types during heating periods were found, which highlights the

significance of θa in heterogeneity and deviation of heating practices. Zehir et

al. [86], used real data to study cold loads’ demand side management, where

room temperature was also monitored, showing changes of 3 oC in a few minutes.

Average temperature profiles for 292 dwellings in UK during February are shown

in Figure 3.2 [106]. This clearly indicates the different temperature set-points

between different dwellings and show the heterogeneity in human behaviour which
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has a direct effect on TCL operation. This is taken into account in the model, with

varying ambient set-points (θa) within the day and different set-points between

TCLs to reflect dwelling’s expected maximum, minimum and average temperature

within the day. The way this is modelled can be seen in Section 3.7.3 and results

of the simulated mean ambient can be seen in Figure 3.18.
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Figure 3.2: Temperature profiles per dwelling type, measured for 292 dwellings in

UK, averaged daily profiles over February 2010. [106].

In Masjuki et al.’s measurements [99], energy consumption increased from 0.56

kWh/day to 1.12 kWh/day when the ambient temperature was raised from 16oC

to 31oC, a 100% overall increase or equivalently around 37.3 Wh/day for a 1oC

increase in temperature. Hasanuzzaman et al. [100] has reported an increase in

consumption from 1.2 kWh/day to 1.7 kWh/day, when ambient temperature was

raised from 18oC to 30oC, 41.66% increase or 46 Wh/day per 1oC. Therefore,

a change in ambient temperature in short periods will have a direct effect on

TCL’s demand and therefore on duty cycle (D(t)). According to Newton’s law

of cooling, the thermal flow, for a given heat transfer coefficient, is a function of

temperature difference with the ambient. Thus, a TCL’s thermal demand depends

on temperature difference to ambient. Therefore, if that difference increased
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two-fold, according to Newton’s law of cooling, the thermal flow (thermal load

for TCLs) would also increase two-fold, which would increase the electrical

consumption by the same amount given that electrical to thermal conversion

remains the same. We could say, that since the set-point temperature is the

mean temperature of the TCL during operation (mean of dead-band), that the

change in thermal and thus electrical load is approximately equal to the change

of the difference between TCL set-point and ambient. A TCL’s demand is also

linked to its duty cycle as described earlier. Thus the following approximation

can be assumed for a TCL:

θa(t)− θset(t)
θa(t0)− θset(t0)

≈ D(t)

D(t0)
≈ P (t)

P (t0)
(3.10)

Note that the above equation doesn’t not account for other factors that affect

demand, the delay in TCLs response to ambient changes (thus delay in duty cycle

change) and small changes to heat transfer coefficients under different conditions.

Yet, it can still be used approximately and an example can be seen in Table 3.4.

3.3.2 TCL Characteristics and Operation

A set-point value θset is targeted by users and the temperature fluctuates between

θon and θoff values, which are the switching (on/off) points. Excluding external

interference, thermal losses are defined by the thermal characteristics of the

appliance, namely thermal capacitance C, resistance R, efficiency η and also the

difference between ambient θa and set-point temperature θset (∆θ as discussed

above). Consequently, set-point temperature is of equal importance to ambient

temperature. Set point actuation control algorithms are based on this fact

(thermal load ∝ ∆T ), [28, 105, 107]. The effect, as expected, is essentially the

same as ambient temperature θa changes [99].
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3.3.3 Human Behaviour, Preferences and Socio-economic

Factors

Human behaviour, preferences and socio-economic factors vary across consumers

and TCL end function. They are multi-variable dependent and stochastic, posing

the biggest challenge to model, especially because they introduce heterogeneity

in operation even among identical appliances. Thus, making a homogeneous

population behave heterogeneously in time, which directly affects the accuracy

of aggregation models and control actions. Yet, for large populations, statistical

approaches are fit for such tasks, especially because humans are ”creatures of

habit”, thus proper examination can lead to appropriate aggregation and control

frameworks.

Space heating/cooling loads operation is essentially a combination of weather

and human behaviour. Human behaviour is a function of 3 connecting variables;

time, comfort zones (conditions, preferences) and socio-economic factors. For

instance, a household of employed individuals, is statistically less likely to use

heating/cooling during office hours (individuals not present) on a given working

day [68], Figure 2.15 shows the difference in demand. Once individuals are present,

heating/cooling might be used; it depends primarily on weather conditions and

individuals’ preference of “comfort zones” but also socio-economic factors. De

Cian et al. [108] examined the interaction between income, temperature and

energy demand, where an income interaction model was created, examining the

income/temperature elasticity of electricity demand. Additionally, in Kane T.

et al’s [106] work (real world measurements), the economic rebound effect was

greater than expected, which is attributed to the above socio-economic behaviour.

In particular, the energy savings from energy efficiency improvements has been

lower than expected and that is because blanket heating practice behaviour was

assumed. Thus, geographical clustering for thermal loads, such as in [105],
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where relative homogeneity is assumed (air conditioners) and similar operation

characteristics leads to error, θa alone is inadequate, even more so for TCLs

with incremental human interaction. Water heating is similar, but less reliant

on weather conditions or comfort zones, rather based on preferences and habits

instead. In this thesis heterogeneity in operation is a key factor, and instead of

blanket behaviour, distribution of expected behaviours (Section 3.7.2) and heating

practices (dwelling ambient as mentioned in previous section and Section 3.7.3)

have been used.

The major electric TCLs consumers, cold loads, have one external affecting

factor, human behaviour. It can be broken down to door opening and loading of

compartments. Experimental tests, using ISO standards [99], with door opening

of 12s at a 90oC angle, report an increase in consumption from 0.85 kWh/day

to 1.42 kWh/day, for 75 such events; 7.6 Wh (or 0.894%) increase per event.

In practice, during door opening the insulation alters drastically but for a short

period (thermal resistance and therefore overall heat transfer coefficient), warm

air mixes with cool air inside and heat transfer occurs through convection. A note

at this point is that such events are dependent on ∆θ; it is the same ∆θ during

normal operation and during the event, with the change of overall heat transfer

coefficient (h), thus the proportional increase (0.894%) can be assumed relatively

constant. This can be expressed as:

Qnormal = hnormal · E · (−∆θ) (3.11)

Qevent = hevent · E · (−∆θ) (3.12)

Qevent

Qnormal

=
hevent
hnormal

≈ const (3.13)

where Q is the rate of heat transfer, h is the heat transfer coefficient (assumed

independent of temperature and averaged over the surface), E is the heat transfer

surface area. During interaction with a cold load (e.g. door opening) the
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heat transfer between room and compartment increases, whilst the temperature

difference (room and internal of compartment) remain practically the same. It

can actually be seen as if the total thermal resistance (insulation) has decreased,

since one side is not there temporarily (open door). In which sense that particular

TCL’s R has decreased and subsequently h has increased, increasing the rate of

heat transfer for the event.

When an event occurs, only the heat transfer coefficient changes and the increase

in heat transfer is proportional to this change (3.13). This means that the same

event, under different ambient temperature conditions will have proportionally

almost the same increase in thermal load, and consecutively in electric load.

Other experimental studies on refrigeration have actually showed that new

load can have the greatest impact in consumption, especially in short term

[99, 100, 102]. Zehir et al [86] mention that these effects need to be considered

during simulations, yet they are hard to model. In Masjuki et al.’s measurements

[99], energy consumption increased from 0.96 kWh/day to almost 2.3 kWh/day

with 18kg of water added (room temperature), though not linearly. Until about

9kg the increase was linear, with a rate of about 37.5 Wh/kg; an increase of 3.9%

per kg. Hasanuzzaman et al. [100] has reported an increase in consumption from

1.2 kWh/day to 1.9 kWh/day, with 12kg of water added (room temperature),

about 58.3 Wh/kg, an increase of 4.83% per kg.

Taking these findings into account, as well as the fact that those are not randomly

distributed during the day (Figure 3.3), it is obvious that a Gaussian process

with mean equal to 0 does not properly model such effects or their impact in

consumption and the TCLs populations’ dynamic nature in time.

In aggregated models, such as those based on CFPE ([26, 28, 27]), Markov Chains

([29, 32, 40]) etc., none of the above (θa, human interaction) is included; ambient
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is assumed constant or almost constant (quasi-static) and a Wiener process has

0 mean, thus inadequate to model them. For example, in the case of cold loads

the effect of human behaviour can only be a positive value that increases duty

cycle, such as when opening the fridge or when putting shopping goods/cooked

food etc., but cannot be negative as it would require to put a cooling source in

the compartment with lower temperature. Similarly, the same argument can be

used for water heating (use of hot water). In the case of space heating and cooling

it could be either, but the main activities will tend towards increased duty cycle.

Ambient temperature’s effect is almost proportional to demand and duty cycle as

described in (3.10). An illustration of the error can be seen in Figure 3.1 where

cold load demand varies considerably during the day (20%+). Results from the

model developed in this Chapter, in comparison with no heterogeneity can be

seen in Figures 3.22, 3.23 and 3.24.

Figure 3.3: Probability distribution of door-openings per day [51].
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3.4 Population Size and Stochasticity

When dealing with stochastic approaches, a limited population size is detrimental

for statistical accuracy. Especially for realistic studies with heterogeneous

populations, the number should be large enough to be able to model real world

dynamics and maintain a degree of statistical validity. Relatively small population

sizes, such as commercial units (i.e. supermarkets refrigerators), might be more

appropriate to model and study using bottom up models (such as MC). These

also have higher demand than residential loads and if CFPE or Euler-Maruyama

approximation are used the statistical errors will be significantly higher. As

Tindemans et al. [37] stated, due to TCL units being statistically independent of

each other, the relative deviations from the expected mean value of TCL units on

will decrease approximately to 1/
√
NTCL. For large NTCL (3.7) holds true, but

with a small error. The point is to quantify that error and select a large enough

NTCL for simulations.

For highly heterogeneous populations, subject to external factors, it is hard to

define a minimum acceptable population size. Yet, in the case of homogeneous,

free of external factors TCL population, minimum population size can be

calculated simply and efficiently through Confidence Intervals. As previously

mentioned, estimating available power in time is directly linked to estimation of

the state of the population in that given time. It is thus imperative to define

such a metric, as well a metric for estimation of its validity. The parameter

that describes the state of an individual TCL (on/off probability) is its duty

cycle D ∈ (0, 1). Based on the above assumptions (homogeneous population, no

external factors), this falls under a Bernoulli process. The Confidence Interval

can be linked directly to duty cycle and the size of the population.

The probability of each value x of a Binomial distributed random variable X is
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defined through its probability mass function:

X ∼ Bin(n, p)↔ Pr(X = κ|n,D) = f(κ;n,D) = (nκ)Dκ(1−D)n−κ (3.14)

where n number of trials, κ observed outcome. Expected value and variance

respectively:

E(X) = n ·D (3.15)

V ar(X) = n ·D · (1−D) (3.16)

The above also holds true for heterogeneous populations when clustered in

relatively homogeneous clusters, where D is replaced by the average duty cycle for

the ith cluster in a time period ( ¯Di(τ)). Taking into consideration the operational

heterogeneity (D changes in time), then clusters themselves change in time, as

TCLs might be shifting to other clusters as their duty cycle changes. For instance,

assuming clustering TCLs every 15 or 30 minutes according to their duty cycle,

the above becomes:

Pri(X = κ|ni, ¯Di(τ)) = fi(κ;ni, ¯Di(τ)) = (niκ ) ¯Di(τ)
κ
(1− ¯Di(τ))ni−κ (3.17)

The larger the population, the closer to the expected value in a random moment

for a relatively homogeneous population of TCLs, thus a “random/uniform”

distribution can be assumed with a small error. Confidence Intervals can be used

as a metric; adjusted Wald, Wilson-Score, and exact Clopper-Pearson methods

were considered. For large populations (=> 1000) and 0.1 < p < 0.9, any of

those 3 methods yield practically the same results. For smaller populations the

exact method is preferable. Such calculations of Confidence Intervals can be seen

in Tables 3.1 and 3.2 for different duty cycle values.
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Table 3.1: Confidence Intervals (0.95 & 0.98) for 1/3 duty cycle

D=0. ¯333 (p) CI 95% CI 98%

Population size Low High MoE(%) Low High MoE(%)

1,000 (exact) 303.8 363.2 8.77% 298.6 368.8 10.39%

10,000 (adj. wald) 3241 3426 2.76% 3224 3444 3.30%

100,000 (any) 33041 33630 0.87% 32988 33677 1.03%

MoE stands for Margin of Error

Table 3.2: Confidence Intervals (0.95 & 0.98) for 1/2 duty cycle

D=0.50 (p) CI 95% CI 98%

Population size Low High MoE(%) Low High MoE(%)

1,000 (exact) 468.5 531.5 6.30% 462.8 537.2 7.44%

10,000 (adj. wald) 4902 5098 1.96% 4884 5116 2.32%

100,000 (any) 49690 50310 0.62% 49635 50365 0.73%

MoE stands for Margin of Error

The above values of duty cycle were selected since in reality cold loads’ duty cycle

fluctuates usually within this region. It can be observed that for populations

(clusters) of around 1,000, stochasticity is significant and their expected state

would not be as accurate (statistically). The fluctuation introduced to the model

from the binomial distribution will affect the accuracy of assessing the impact

of the factors described above. For a population size of 100,000 it is well within

limits and preferable, yet computationally slow. A model with size of 10,000 has

acceptable accuracy to study TCLs’ dynamics, whilst remaining computationally

efficient. This is shown in Figures 3.4 & 3.5 where a small improvement

(2std/mean) is observed from 2.97% to 2.16% whilst the computation time

increases to almost 4 times.
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For population size up to 100,000 (Figures 3.6 & 3.7) the stochasticity is still

just above 1% (1,28% for 100,000), thus simulations with populations >100,000

are required to drop the noise introduced due to stochasticity below 1%. These

figures were based on data from Tables 3.5 & 3.6 of Section 3.7. Where such

data is not available, for different expected duty cycles (D) and population size,

Confidence Intervals as described can be used for the expected stochasticity (error)

due to population size. In reality, for a heterogeneous population, these values

are expected to be slightly higher. This can also serve as a metric for clusters’

minimum size for statistical accuracy.
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Figure 3.4: Distribution of TCL units on with a population of 10,000, TCL data is

based on Tables 3.5 & 3.6, initialization (on or off) is based on each unit’s duty cycle

(D). Mean value 3113.7 and 2 standard deviations 92.346, percentage of 2 standard

deviations to mean value 2.97%
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Figure 3.5: Distribution of TCL units on with a population of 20,000, TCL data

is based on Tables 3.5 & 3.6, initialization (on or off) is based on each unit’s duty

cycle (D). Mean value 6283.3 and 2 standard deviations 135.945, percentage of 2

standard deviations to mean value 2.16%
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Figure 3.6: Distribution of TCL units on with a population of 50,000, TCL data

is based on Tables 3.5 & 3.6, initialization (on or off) is based on each unit’s duty

cycle (D). Mean value 15,570 and 2 standard deviations 261.426, percentage of 2

standard deviations to mean value 1.68%
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Figure 3.7: Distribution of TCL units on with a population of 100,000, TCL data

is based on Tables 3.5 & 3.6, initialization (on or off) is based on each unit’s duty

cycle (D). Mean value 31,141 and 2 standard deviations 398.678, percentage of 2

standard deviations to mean value 1.28%

3.5 Realistic TCL Modelling and Human Factor

3.5.1 Physically-Based Model of a Single TCL

Given the previous analysis, a TCL can be described by:

θ̇(t) = −λ[θ(t)− θa(t)− µ(t) · θg − υ(t) · θe(t)] (3.18)

Where θe temperature gain due to human interaction and υ a non-dimensional

variable which takes values 0,1. Note that (3.18) is different to the classic one, as

θa(t) is not constant, and u(t), qe represent interactions due to human behaviour,

which in theory can be either positive or negative. In practice though, it is positive
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for cold loads, negative for water heating (use of water), either of them for space

heating and positive for space cooling.

Note: θg can be perceived as a temperature to which the system tends to, during

the on state (but cannot reach due to switching off). If it does not switch off

(meaning µ(t) = 1 always), after time t >> ton, where losses ∼= gain, then

d(θ(t))
dt
∼ 0⇒ θ(t) ∼= θg + θa.

General solution of first order ODE: Assume ODE y′+P (x)y = Q(x), the

solution to this is given by y(x) = e−
∫
P (x)dx[

∫
e
∫
P (x)dxQ(x)dx+Const]. Equation

(3.18) can be written as θ̇(t) + λ · θ(t) = λ · θa(t) + λ[µ(t) · θg + υ(t) · θe(t)].

TCL DE discrete solution: The above then has the following solution:

θ(t) = e−
∫
λdt[Const+

∫
e
∫
λds[λ · θa(s) + λ(µ(s) · θg + υ(s) · θe(s))]ds].

To get the discrete solution of (3.18) a sampling time τ will be used (tn = nτ ,

tn+1 = (n+ 1)τ etc.).

θ(t) = e−λ(t−tn)[Const +
∫ t
tn
eλ(s−tn)[λ · θa(s) + λ(µ(s) · θg + υ(s) · θe(s))]ds]. By

placing t = tn: θ(tn) = e0[Const + 0], thus Const = θ(tn). The above is then

written as:

θ(t) = e−λ(t−tn)θ(tn)+e−λ(t−tn)
∫ t
tn

[eλ(s−tn)λ ·θa(s)ds] +e−λ(t−tn)
∫ t
tn

[eλ(s−tn)λ(µ(s) ·

θg + υ(s) · θe(s))]ds

The same assumption as used to derive (3.1a) in the original works of Malhame

[9] and Mortesen [97] will be used; µ switches state only on discrete time steps.

The same will extend for υ and θe as well. Thus, by zero-order hold (ZOH), µ, υ

and θe are equal to µ(tn), υ(tn) and θe(tn) respectively on t ∈ [tn, tn+1):
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θ(t) = e−λ(t−tn)θ(tn) + e−λ(t−tn)
∫ t
tn

[eλ(s−tn)λ · θa(s)ds] + [µ(tn) · θg + υ(tn) ·

θe(tn)]e−λ(t−tn)
∫ t
tn

[λeλ(s−tn)]ds whose solution is

θ(t) = e−λ(t−tn)θ(tn) + [µ(tn)θg + υ(tn)θe(tn)][1− e−λ(t−tn)]+

e−λ(t−tn)

t∫
tn

[eλ(s−tn)λθa(s)ds]
(3.19)

or equivalently by using the notation θ(tn) ≡ θ(n) and similarly for µ, υ and θe ,

we get:

θ(n+ 1) = e−λ(τ)θ(n) + [µ(n)θg + υ(n)θe(n)][1− e−λ(τ)]+

e−λ(τ)

(n+1)τ∫
nτ

[eλ(s−tn)λθa(s)ds]
(3.20)

where now υ(n) will be assumed stochastic (Gaussian) in order to reflect the

nature of human interaction.

3.5.2 Fit for θa(t) as a function of time

For space heating/cooling (heat pumps, air conditioners, electric space heating,

gas heating), ambient temperature is perceived as the outdoors, which has

relatively small hourly variations and even smaller on a minute scale (usual range

of simulations time step). In reality the change in external temperature depends

on many factors and the best fit between small time steps is a polynomial fit

of small order or a linear one. For cold loads and water heaters, when heat is

turned on, such as early morning or when returning home, ambient temperature

can have more drastic changes. The temperature increase in this case, based on

experimental data [106], seems to also follow a polynomial or linear trend (Figure

3.2). As such, a linear fit is preferred for simplicity, though in any case where

∆θa is significant (maybe in an industrial environment), exponential fits might be
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more accurate, yet probably still of small importance. A note here is that in the

model developed, a simulation time step of 1 minute is used, with temperature

readings every 1 hour or half hour. Obviously, if ambient temperature sampling

is similar to simulation sampling, then θa(t) can be assumed constant for the

equations and updated in each time step of the simulation.

Ambient temperature linear fit between hourly readings, θa(t) = γt + β,

discrete solutions

The solution of the integral in (3.20), given linear fit, is:
∫ (n+1)τ

nτ
[eλ(s−tn)λθa(s)ds] =∫ (n+1)τ

nτ
[eλ(s−tn)λ(γs+ β)ds] = [(γt+ β − γ

λ
) · eλ(t−tn ]

(n+1)τ
(n)τ or

(γnτ + β − γ

λ
)(eλτ − 1) + γτ · eλτ (3.21)

Substituting (3.21) in (3.20):

θ(n+ 1) = e−λτθ(n) + [µ(n)θg + υ(n)θe(n) + (γnτ + β − γ

λ
)][1− e−λτ ] + γτ

(3.22)

Defining a ≡ e−λτ , H(n) ≡ [1− e−λ][υ(n) · θe(n)] and θa(n) ≡ θa(nτ) = γnτ + β

(3.22) is simplified to:

θ(n+ 1) = a · θ(n) + [1− a][µ(n) · θg + θa(n)] + γ
a− 1 + λτ

λ
+H(n) (3.23)

Comparing the above with the steady θa case (3.1a), the dynamics of a non-

constant ambient temperature are obvious. The term a−1+λτ
λ

defines the impor-

tance of γ, which is the rate of change of the ambient temperature. This rate also

depends on the time step τ . H(n) defines the effect of human behaviour, which

as mentioned earlier exerts a considerable effect in cold loads’ consumption. It

can be modelled to include a Gaussian Φ(n) process as described earlier to induce
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some noise, though not mandatory when MC simulations are used, since MC in-

troduces stochasticity. In this case a Φ(n) process was deemed unnecessary (MC

models already have noise) and it would only incur extra computational cost.

Constant θa(t) = θa(n) = const, discrete time solutions

Practically this is special cases of the above for θa(t) = θa = const:

θ(n+ 1) = a · θ(n) + [1− a][µ(n) · θg + θa(n)] +H(n) (3.24)

This can be used for when θa is practically constant or updated in short intervals,

where θa(n) ≈ θa(n+ 1). As expected, (3.1a) and (3.24) are very similar.

3.6 Equivalent Models for Multi-Compartment

TCLs

The above models, as well as the ones used in the state of the art, are derived from

first order ODE. In reality though, many thermal loads follow second order ODE

[30, 31]. For instance, fridge-freezers, the most common cold load in households

(about 69.7% ownership in 2014), with the largest average consumption per unit

[52], are a case of multi-compartment thermal load and thus follow second order

ODE. The latter requires different modelling to be accurate for DR and thus,

difficult to form aggregation models from those. Therefore, equivalent first order

ODE models are introduced.

ISO 8187, ISO 8561, and ISO 7371 are the relevant standards for testing

the energy consumption of household refrigerator-freezers having two or more

compartments. At least one compartment (the fresh food storage compartment)

is suitable for storing unfrozen food, and at least one compartment (the food
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freezer compartment) is suitable for freezing fresh food and for the storage of

frozen food at -18oC or lower [30, 99]. They may be equipped with one or two

compressors. In the case of one compressor, the operating cycle is controlled by

both the refrigerator’s and freezer’s air temperature, while commonly a damper

or fan is used to assist heat transfer from the refrigerator to the freezer. This is

the most common set-up due to cost. In the case of two compressors (or more),

each compartment has its own independent compressor, yet there will be some

synchronization as time progresses, as investigated by Leth et al. in [109, 110].

This is an expected behaviour due to the heat exchange between compartments.

In the case of one compressor (most common case), each compartment’s operation

can be described by (note the term −υ(t) · θe of (3.18) is excluded for simplicity,

but can easily be added in the same manner as −µ(t) · θg):

θ̇f (t) = −λf · [θf (t)− θa(t)− µ(t) · θg]− λfr · [θf (t)− θr(t)] (3.25a)

θ̇r(t) = −λr · [θf (t)− θa(t)] + λfr · [θf (t)− θr(t)] (3.25b)

where λf heat transfer coefficient of freezer compartment to ambient, λr heat

transfer coefficient of refrigerator compartment to ambient, λfr heat transfer

coefficient of freezer compartment to refrigerator, θf freezer temperature and θr

refrigerator temperature. Adding (3.25a) and (3.25b) results in:

θ̇f (t) + θ̇r(t) = −λf · [θf (t)− θa(t)− µ(t) · θg]− λr · [θr(t)− θa(t)] (3.26)

Similarly for the case of two compressors:

θ̇f (t) = −λf · [θf (t)− θa(t)− µf (t) · θg,f ]− λfr · [θf (t)− θr(t)] (3.27a)

θ̇r(t) = −λr · [θr(t)− θa(t)− µr(t) · θg,r] + λfr · [θf (t)− θr(t)] (3.27b)

where µf , θg,f the respective parameters of the freezer compartment and µr, θg,r
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of the refrigerator compartment. Adding (3.27a), (3.27b) gives the formula which

describes the operation of the appliance:

θ̇f (t) + θ̇r(t) = −λf · [θf (t)− θa(t)− µf (t) · θg,f ]− λr · [θr(t)− θa(t)− µr(t) · θg,r]
(3.28)

A couple of things become apparent by observing (3.26) and (3.28). Firstly, the

heat exchange between compartments does not matter in the unit’s total heat

exchange, though it is the cause of synchronization [109, 110]. Secondly, when

compared to (3.18) and its solutions (3.23), (3.24) (or the state of the art discrete

model (3.1a)), it is not possible to simulate such a unit with them. There are 2

different temperatures (θf and θr), 2 different set points, 2 different heat transfer

coefficient etc. If either are used, the simulated model would be incorrect.

For which purpose, Keep et al [31], used (3.29), instead of (3.1a) or variations

of it. The case of one compressor only with 2 compartments was modelled, via

discretization using Euler’s method and simulated for a time step of 1 minute,

smaller time step simulations had no significant changes in accuracy.

θ̇f (t) =
1

mf · cf
[qo,f + (qc + qa)− p · η · s] (3.29a)

θ̇r(t) =
1

mr · cr
[qo,r − (qc + qa)] (3.29b)

where mass of contents mf , mr (kg), content thermal capacitance cf , cr

(kJ/kg − K), heat transfer to ambient qo,f , qo,r (kW), inter-compartment heat

transfer: conduction qc (kW), inter-compartment heat transfer: air flow qa (kW),

compressor binary on/off state s, compressor real power consumption p (kW ),

compressor coefficient of performance η. For more details on Keep et al.’s model

the reader is encouraged to read [31] (derivation of equations, assumptions,

limitations etc.).

The main problem with Keep et al.’s approach, as mentioned by the authors [31], is
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that this is a model specifically designed for one compressor with 2 compartments.

Which means that cold loads (and thermal loads in generally) would have to

be modelled separately for single compartment (freezer or refrigerator only),

multi-compartment with single compressor and multi-compartment with multiple

compressor (for each combination) and aggregated and controlled separately.

Moreover, when more complex models than (3.1a) (or similar ones) are used,

their aggregation models (e.g. CFPE) are more complex and harder to derive

and subsequently their control algorithms. It would be thus beneficial to have

an ”equivalent” simplified model which follows (approximately) the same duty

cycle and thermal dynamics (e.g. duty cycle changes to ambient) and thus enable

aggregation of units following the classic model (3.1a) and the ones developed

(3.23), (3.24).

Assumption: since for a single compressor (two compartments) there is one duty

cycle, there should be an ”equivalent” unit with approximately the same duty

cycle and thermal dynamics that can be represented by the state of the art discrete

model (3.1a) or (3.23) and (3.24). Also, in the case of two compressors, since they

tend to synchronize, it means that their duty cycles synchronize, thus operate as

”one unit”.

The total thermal load losses of a refrigerator-freezer in steady state is the sum

of the freezer’s and refrigerator’s load:

Qtot = (Qf +Qfr) + (Qr −Qfr) = Qeq (3.30)

where Qf heat transfer from room to freezer, Qfr heat transfer from refrigerator

to freezer and Qr heat transfer from room to refrigerator. According to Newton’s

law of cooling, Q = h · A · (−∆θ), where ∆θ the temperature difference to

the ambient. A freezer compartment will have a temperature difference to

ambient, ∆θf , with typical freezer temperatures between −11oC and −17oC
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for θon, −21oC and −31oC for θoff [30, 31, 69, 86, 100, 101, 102, 103]. A

refrigerator compartment will have a temperature difference to ambient, ∆θr,

with typical freezer temperatures between 0oC and 4oC for θoff , 4oC and 8oC for

θon [30, 31, 69, 86, 100, 101, 102, 103]. A virtual ”equivalent” single compartment

unit then would be defined as Qeq ≡ heq · Etot(−∆θeq), where Etot = Ef + Er,

Ef , Er the surface of heat flux between f, r to ambient and ∆θeq the temperature

difference to ambient which reflects the same equivalent total thermal load of all

compartments (two in this example). The aim is to calculate those temperature

points (θon and θoff ) of the equivalent ”virtual” TCL.

Etot
Etot

=
Ef
Etot

+
Er
Etot
⇒ 1 = wf + wr (3.31)

The heat transfer coefficients of the two compartments are not equal but similar

(as expected due to similar material). The heat transfer coefficient of the

”equivalent” single unit could be assumed as either of them, or the average of

them or better a weighted average based on surface: heq ≡ wf ·hf +wr ·hr. Setting

the equivalent ”virtual” TCL to reflect the same total thermal load, Qtot = Qeq:

hf · Ef (−∆θf ) + hr · Er(−∆θr) = heqEtot(−∆θeq) (3.32)

Dividing by Etot, using (3.31) and replacing heq, the above is written:

wf · hf ·∆θf + wr · hr ·∆θr = heq ·∆θeq = (wf · hf + wr · hr)∆θeq (3.33)

Heat transfer coefficients are the sum of the internal cabinet coefficient and

the appliance’s outside surface coefficient with the room. Studies have shown

a difference less than 9% between freezer’s and refrigerator’s internal cabinet heat

transfer coefficients (convective plus radiative). By adding the outside surface’s

coefficient, the sums’ difference is less than 4% (3.7%) [100]. Due to the small

difference between heat transfer coefficients of the compartments, either of those
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can assumed for the virtual ”equivalent” or some weighted average of those:

hf = (1− e)hr or hr = (1 + f)hf (3.34)

where e, f ∈ (0, 1) (typical values of e, f are expected between (0, 0.04) [100]).

Thus, (3.33) can be written as:

wf · (1− e) · hr ·∆θf + wr · hr ·∆θr = (wf · (1− e) · hr + wr · hr) ·∆θeq ⇒

wf · (1− e) ·∆θf + wr ·∆θr = (wf · (1− e) + wr) ·∆θeq ⇐⇒

wf · (1 − e) · θf − wf · (1 − e) · θa + wr · θr − wr · θa = (wf · (1 − e) + wr) · θeq −

(wf · (1− e) + wr) · θa ⇒

wf · (1− e) · θf + wr · θr = (wf · (1− e) + wr) · θeq ⇒

wf ·(1−e)·θf+wr·θr
wf+wr−e·wr = θeq,

similarly for hr = (1 + f)hf ,
wf ·θf+wr·(1+f)·θr
wf+wr+f ·wr = θeq or

θeq =
θf · wf + θr · wr − e · wf · θf

1− e · wf
(3.35a)

θeq =
θf · wf + θr · wr + f · wr · θr

1 + f · wr
(3.35b)

It is important to note that this virtual ”equivalent” model does not have a

physical meaning or does not try to model some physical parameter of the unit.

It is a way of simulating a multi-compartment thermal load (2nd ODE and above)

as if it was a single-compartment one (1st ODE) so the ”state of the art” model

(3.1a) or the ones developed in this Chapter (3.23), (3.24).
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Figure 3.8: Thermal model of a common fridge with 2 compartments (on the left)

& the equivalent thermal model to be used for aggregation and DR (on the right)

Heat transfer is essentially always from the room to the freezer, directly or

indirectly (through refrigerator Figure 3.8), thus for normal operation the thermal

behaviour is practically closer to the freezer’s thermal properties, as if though the

freezer was larger (larger surface for heat loss) and it’s set temperature was closer

to the ambient. Yet human interaction with the refrigerator, i.e. door opening,

extra load etc., will have an effect (heat transfer to refrigerator’s compartment)

closer to the refrigerator’s thermal properties. The above are relevant to each

compartment’s relative size, surface typical weight factors can be seen in Table

3.3 [25].

Table 3.3: Typical wf and wr values

Freezer’s compartment (wf ) Refrigerator’s compartment (wr)

0.33 0.67

0.27 0.73

0.36 0.64

0.35 0.65

Based on experimental data from [31, 99, 100, 102]

An examination of the above can be done with the experimental measurements

from [100] in Table 3.4, where the virtual ”equivalent” single compartment unit’s
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parameters have being calculated based on (3.35a). The proportional duty cycle

change (from 0.303 to 0.429) for a 2-compartment unit is practically the same as

the proportional demand change (D(t)−D(t0))
D(t0)

= 0.4158 ≈ (P (t)−P (t0))
P (t0)

= 0.4166, an

error < 0.2%, as expected from (3.10). Yet, the first part of (3.10) does not hold

true when looking at the refrigerator’s or freezer’s parameters separately. Thus

when modelling such a unit, using the characteristics of the refrigerator (e.g. θoff ,

θoff ) would be inaccurate, using those of the freezer would also be inaccurate and

in both cases neglect that those two compartments work in synch due to the

thermal flow between them [109, 110].

Table 3.4: Comparison of relative Power increase to relative Temperature increase

Specifications Operation

Power rating 165 W Ambient 18 oC 1.2 kWh/day

Freezer factor (wf ) 0.33 Ambient 30 oC 1.7 kWh/day

Refrigerator factor (wr) 0.67 ∆P (%) 41.66%

Freezer θmin, θset, θmax -21.5, -16.75, -12 ∆(θeq,set − θa)(%) 55.53%

Refrigerator θmin, θset, θmax 1.5, 3.5, 5.5 ∆(θr,set − θa)(%) 82.75%

”Equivalent” θmin, θset, θmax -6.573, -3.608, -0.643 ∆(θf,set − θa)(%) 34.53%

Based on experimental data from [100]. Where ∆(θset − θa) = θset−θa
θset−θa0 − 1

3.7 Bottom-Up Heterogeneous Modelling Method-

ology

Even though simulations of aggregated models are much faster than the MC

ones, accuracy of MC ones is higher, especially when heterogeneity is considered,

relatively small populations or mixed load populations. On the other hand, they

are slower to compute and do not give a state space or something that can be used

for aggregated control algorithms. Rather, MC models are useful (and should be
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used) to validate aggregated models and control actions (as those are given by

control algorithms). A flowchart of the methodology can be seen in Figure 3.9

NB : Defrost heater power and cycles are ignored for simplicity. Defrost heaters

are typically operating for less than 5% of the time [86, 104], yet their demand

during this time is usually considerably higher than normal operation ( e.g. 480W

[86]). They operate a few times per day, with daily consumption around 0.35 kWh

[86] and are more suited as deferrable loads (non-dispatchable DR) rather than

as flexible loads (dispatchable DR). They do not follow the models described in

this Chapter, whose focus is a realistic model to represent the dynamics of TCLs

(mainly cold loads as a test case) for dispatchable DR.

Figure 3.9: Model flowchart [25].



CHAPTER 3. TCLs’ Dynamic Behaviour in Time: Analysis and Modelling 101

3.7.1 Step 1: Calculation of Basic TCLs’ Parameters

Using Experimental Data

It is important to mention that the values of [86] have significant variations

compared to the rest; as stated by the authors, data was taken from a G class

top mounted refrigerator, and was chosen as a good example for a low efficient

refrigerator with high energy demand (relatively older model). According to

Residential Energy Consumption Survey 2009, in USA, this was one of the most

common (more than 60% percent) refrigerators in households, thus chosen by

the authors for their study in 2009, also mentioning that customers mostly use

the same appliance for more than 5 years and up to 14 years. Newer models

(post 2009) are more efficient and similar to those used in [69]. Some fridges

(refrigerator-freezer) from table 3.5 have significantly different conditions than

what is commonly observed in the UK (i.e. 33oC room temperature). In the case

of UK, the values from [69, 100, 102, 103] are more suitable for a realistic model.

Table 3.5 is used to calculate the required parameters, λ, θg, which are constant,

dependent on appliance characteristics and independent of ambient temperature

and human interaction [25]. Simply knowing those is enough to populate (3.9),

a representation of a TCL’s physical model. This principle was also used in [98],

where an algorithm was developed to identify λ, θg through readings of duty cycle

(D). During a deterministic cycle (without external effects) and constant ambient

temperature (θa), a TCL’s off cycle is described by (µ = 0)

θ(t) = (1− e−λt) · θa + θ0 · e−λt (3.36)

and a TCL’s on cycle is described by (µ = 1)

θ(t) = (1− e−λt) · (θa + θg) + θ0 · e−λt (3.37)
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Table 3.5: Cold load experimental data

ton toff cycle θmin θmax θa D P (W ) Type

25’ 75’ 100’ 3.5 oC 7 oC 20 oC 0.25 - R

30’ 65’ 95’ 2 oC 5 oC 20 oC 0.316 - R

70’ 110’ 180’ 4.5 oC 7.5 oC 21 oC 0.389 - R

140’ 110’ 250’ 4.5 oC 7.5 oC 21 oC 0.560 - R

30’ 60’ 90’ 4 oC 8 oC 20 oC 0.33 - R

34’ 66’ 100’ 0 oC 7 oC 33 oC 0.34 197 M

-22 oC -15 oC

12’ 36’ 48’ 3.5 oC 6.5 oC 20 oC 0.25 - M

-22 oC -11 oC

28’ 65’ 93’ 1.5 oC 5.5 oC 18 oC 0.30 165 M

-21.5 oC -12 oC

32’ 64’ 96’ 2.1 oC 4.3 oC 25 oC 0.33 175 M

-19.1 oC -16.9 oC

30’ 60’ 90’ 4 oC 8.2 oC 20 oC 0.33 120-160 M

-31 oC -15 oC

-27 oC -17 oC F

R stands for refrigerator, M for multi-compartment, F for freezer.

Sources: [30, 31, 69, 86, 100, 101, 102, 103].

At the end of the off state, t = toff :

θ(toff ) = (1− e−λtoff ) · θa + θ0 · e−λtoff (3.38)

and at the end of the on state, t = ton:

θ(ton) = (1− e−λton) · (θa + θg) + θ0 · e−λton (3.39)
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For the off state, after time toff the units switches on, thus θ(toff ) = θmax = θon

and θ0 = θmin = θoff , substituting on (3.38) and solving for λ results:

λ = − 1

toff
ln(

θon − θa
θoff − θa

) (3.40)

Similarly, for on state, θ(ton) = θmin = θoff and θ0 = θmax = θon, substituting on

(3.39) and solving for θg results:

θg =
θoff − θon · e−λton

1− e−λton
− θa (3.41)

Table 3.6: Parameters λ, θg (calculated at 20oC)

Cold load type λ (10−3) θg (oC) θa (oC) D

Refrigerator 3.179 -58.815 20 0.250

Refrigerator 2.805 -52.172 20 0.316

Refrigerator 1.458 -38.541 21 0.389

Refrigerator 4.795 -41.856 20 0.333

Freezer 3.987 -125.701 20 0.333

Fridge (equiv.) 2.909 -107.401 33 0.340

Fridge (equiv.) 7.102 -87.323 20 0.250

Fridge (equiv.) 4.249 -71.512 18 0.301

Fridge (equiv.) 1.202 -85.819 25 0.333

Fridge (equiv.) 5.812 -71.123 20 0.333

Calculated using equations (3.40) and (3.41)

Sources: [30, 31, 69, 86, 100, 101, 102, 103].

These are used via MC to construct heterogeneous populations of TCLs (the 3

basic types of cold loads) with randomized variance in parameters θg, λ, θa, and

initial conditions θ(t), µ(t); µ(t) based on on/off probability which is equal to
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the duty cycle D of each. The population’s mixture, as a percentage of each cold

load type, is based on UK ownership statistics [52], which is about 107% per

household, meaning that on average 7% of households have an extra unit.

3.7.2 Step 2. Human Interaction

The effect of human interaction as discussed in Section 3.3.3 is relative to ∆θ.,

since right before and during interaction the ambient temperature is the same.

Two similar interactions (e.g. door opening of a freezer) at different ambient

temperatures (thus different initial consumption) will have different impact in

increased consumption in absolute terms, but similar as a percentage of their

respective initial consumption. Therefore, it is best to map the experimental

percentile increase in consumption to the term H(n) of (3.23) and (3.24).

As shown previously by (3.10) and experimental data, the increase in TCLs’

consumption is proportional to increase in their Duty Cycle.

Figure 3.10: Real refrigerator measurements of inner temperature. [86]

An example of how temperature and ton, toff are affected can be seen in Figure

3.10, which has real measurements gained by a data logger for a refrigerator’s

inner temperature [86]. As it can be noticed, ton and toff vary, and a few sudden
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temperature jumps (increase of inner temperature) are noticed whilst in on state,

increasing the ton required to reach 5 oC (θoff ).

It can be assumed that an interaction which causes x(%) increase in consumption,

causes x(%) increase in Duty Cycle (D). This means an ε(%) increase in ton or

ζ(%) decrease in toff , such that Duty Cycle (D) increases by x(%). In order

to calculate the H(n) value which causes x(%), it is best to express H(n) as a

function of ε and ζ. Thus we have the following two cases:

D
′
=

t
′
on

t′on + toff
=

ton(1 + ε)

ton(1 + ε) + toff
=
ton(1 + x)

ton + toff
(3.42)

D
′

=
ton

ton + t
′
off

=
ton

ton + toff (1− ζ)
=
ton(1 + x)

ton + toff
(3.43)

where D
′

denotes the new Duty Cycle (D
′

= (1 + x)D). The solutions to the

above are:

ε = x
ton + toff

toff − x · ton
(3.44)

ζ = x
ton + toff
toff (1 + x)

(3.45)

Now H(n) has to be expressed as a function of ε and ζ. Equation (3.24) is used,

where θa = const for the duration of the event, due to relatively short duration

(e.g. opening of freezer door). When new loading is considered in addition to

door opening, there is an extended time required to chill products, which can be

estimated by using a simple model of natural convection around the product and

conduction inside the product, as per [102]. Studies have reported that the heat

removed from new food loadings accounted for the majority of cold load’s increase

in demand, compared to other variables (ambient temperature change, thermostat

setting change, door opening) [99, 100, 102]. The quantity of heat to be removed

can be calculated from knowledge of the product, including its state upon entering

the refrigerating space, final state, mass, specific heat above and below freezing
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temperature, and latent heat. Latent heat of fusion of a product is related to its

water content and can be estimated by multiplying the percent of water in product

by the latent heat of fusion of water. Once the product attains the desired cooling

temperature, it does not affect the energy consumption significantly until fresh

products are placed in the refrigerator again [99]. In this thesis there is no point

to go into such detail, but rather use results of previous studies which quantify

the impact in % increase in demand. In short, in this case H(n) has a higher and

more prolonged impact.

As such, H̄ is defined as the cumulative H(n) for each state (off , on). So the aim

is to calculate the H̄ which results in a x% increase in consumption (and duty

cycle (3.10)), using (3.24), with θa = const. (even if θa changes later during the

cycle, when new load was added, it had the θa at the time of event). In a sense, H̄

can be seen as an ”internal heat source” (the opposite for heating loads), which

results in increased consumption by changing ton (3.46) and toff (3.48).

θ(t′on) = [1− e−λt′on ][θg + θa] + θon · e−λt
′
on + H̄

θoff − (θg + θa + H̄) = [θon − (θg + θa)] · e−λt
′
on

t′on = −1

λ
· ln(

θoff − (θg + θa + H̄)

θon − (θg + θa)
) (3.46)

using t′on = (1 + ε)ton:

− 1
λ
· ln(

θoff−(θg+θa+H̄)

θon−(θg+θa)
) = (1 + ε) · [− 1

λ
· ln(

θoff−(θg+θa)

θon−(θg+θa)
)]

θoff−(θg+θa+H̄)

θon−(θg+θa)
= [

θoff−(θg+θa)

θon−(θg+θa)
](1+ε)

θoff − (θg + θa + H̄) =
[θoff−(θg+θa)][θoff−(θg+θa)](ε)

[θon−(θg+θa)](ε)
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H̄ = θoff − (θg + θa)− [θoff − (θg + θa)][
[θoff−(θg+θa)]

[θon−(θg+θa)]
](ε)

H̄ = (θoff − θa − θg)[1− (
θoff − θa − θg
θon − θa − θg

)ε] (3.47)

Similarly for t′off :

t′off = −1

λ
· ln(

θon − (θa + H̄)

θoff − θa
) (3.48)

And for ζ during off state:

H̄ = (θon − θa)[1− (
θon − θa
θoff − θa

)(−ζ)] (3.49)

Using the above and experimental data described in Section 3.3, human behaviour

effect per event for each cold load type is calculated, separately for door opening

and new load. Some results of the impact of door opening and adding new load

to cold loads can be seen in Figures 3.12, 3.14 and 3.15. These reflect the impact

of human interaction (H̄) and with the addition of non-constant ambient (θa),

which alter the duty cycle of TCLs (Cold Loads in this case) during operation

(as seen later in Figure 3.32 in Section 3.8) and result in the changes in demand

throughout operation, as seen later in Figures 3.22 - 3.27. The procedure to

obtain Figures 3.11 - 3.14 is:

• Monte Carlo Markov Chain on human interaction for every hour as per

Figure 3.3 (interaction probability distribution) (alternatively any other in-

teraction probability distribution if such data is available). This probability

is converted from hours to minutes, since simulations later use a simulation

step of 1 minute.

• Afterwards the impact of the event is given, in this case randomly chosen

between a small event (door opening) and larger event (new load), but with

different possibilities for each. Each of those potential events are represented
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by Gaussian distributions. The impact of events is taken from experimental

data as discussed in Section 3.3.3 ([99, 100, 102]).

• Lastly, that output is converted to H̄ which expresses the thermal losses

(or gain in the case of Cold Loads) caused, according to (3.47), (3.49). In

short, that H̄ causes a temperature gain which shortens toff or extends ton

(or both) and alters D to D
′
. For a metric, the impact of 1H̄ is assumed

as a door opening for 12s at a 90oC angle, which resulted in an increase

in consumption by 0.894%. (Section 3.3.3: Experimental tests, using ISO

standards [99], demand change from 0.85 kWh/day to 1.42 kWh/day, for

75 such events)

Figure 3.11: Human interaction impact: distribution between 0am and 1am for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.
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Figure 3.12: Human interaction events: distribution between 0am and 1am for

10,000 households, ”zoom” to non-zero values.

Figure 3.13: Human interaction impact: distribution between 6pm and 7pm for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.



110 3.7 Bottom-Up Heterogeneous Modelling Methodology

Figure 3.14: Human interaction impact: distribution between 6pm and 7pm for

10,000 households, ”zoom” to non-zero values.

The rest of them can be found in the Appendix. Additionally CDF of those are

given. Figure 3.15 shows the CDF between midnight and 4am, which shows how

interaction overnight reduces (as expected) in the majority of households.
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Figure 3.15: Cumulative distribution of human interaction events.
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Figure 3.16: Detailed human interaction modelling, (Step 2 of flowchart 3.9) [25]

3.7.3 Step 3. Ambient (Room) Temperature

Kane T. et al [106] examined the variation of indoor temperatures and heating

practices in UK dwellings and variations of up to 10 oC were reported. UK’s

heating “preferred” comfort zones and outdoors temperature were used to create

a realistic MC model. The heating PMF is used to create an MC model of possible

heating action, which is then compared to probable indoor temperature (based

on outdoor temperature) and thus hourly temperature is defined per dwelling.

This can be seen as a similar model to reality, where based on knowledge of

weather conditions and historic data (population’s behaviour in these conditions)

the temperature can be probabilistically estimated. The resulting MC model is

then converted to a time step resolution of 1 minute.

Temperature changes in dwellings due to use of heating can occur in shorter

periods than an hour [86], but for this model more “mild” fluctuations were

used to describe the general behaviour of the population. Simulated average

household temperature and reported average temperature ([106]) can be seen in

Figure 3.18 and as expected they are very close. Assuming that this report is a

good representation of UK’s heating practices overall, the cold load demand is
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also expected relatively to be close to the actual report in [52]. The procedure

Figures 3.17, 3.18 is generated is:

• Heating practices in UK according to [106]. PMF is taken from here

for the following dwelling types: flats, detached, mid terrace and semi-

detached/end terrace (since the last 2 were almost the same).

• Weather statistics of average winter UK temperature (since UK household

data was available for February only, annual average or summer was not

unfortunately [106]). If external temperature changes more than 2oC

(temperature change which humans notice) then in next hour (assuming

a delay for room temperature to be affected ([106]) an MC is performed and

compared to the PMF, resulting in success or failure. If the outcome was

a success, then heating is assumed to be switched on or off accordingly,

following heating preferences for dwelling type [106].

• For simulations later on (Section 3.8) the output is converted from hours to

minutes (for each household).

• The average of the output is taken for each hour and compared with the

average of Figure 3.2.

An important note here is that for any given simulation period, data on room

temperature is needed. Thus, if someone wanted to model summer months

instead, where little to no heating is needed, some hourly or sub-hourly data

of temperature ranges as in Figure 3.2 would suffice or something similar.

Despite the season, room temperatures in occupied dwellings will tend towards

some temperature band, due to human preferences. For instance, in very hot

climates/seasons, occupants are very likely to have room cooling, which will

be set to comfortable temperatures and the aggregated data will tend towards

that. The opposite will occur in cold climates/seasons and thus the ambient
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Figure 3.17: Mean indoors temperature of synthetic simulated households (1000,

2000, 5000, 100000 households).
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Figure 3.18: Mean indoors temperature of synthetic simulated households (10,000

households) compared to real average (Figure (3.2))

temperature of cold loads should not vary drastically. Still, higher consumption

is expected during summer. Assuming that average temperatures for seasons are

known, (3.10) can be used to calculate deviations/errors from the ”average day

of a whole annum”. For the purposes of creating realistic aggregated cold load

demand that follows real world data, the used data was deemed sufficient.



114 3.8 Simulation Results

3.8 Simulation Results

One important aspect of a model described by (3.23) is that it can focus on

the state of the TCLs specifically without including the power demand of each.

Thus, it can give a clear picture of TCLs’ state and how they respond to different

commands as well as other factors. Demand can be added through (3.3) or (3.7)

to determine the total power demand of the TCLs’ population.

The model can be used in the same way as classic models (Malhamé and Chong

[9]), by assuming constant θa and minimal external factors (Wiener process with

mean 0 and small variance σ). In which case the heterogeneity of the population

due to technical parameters and their effects on stochasticity (Section 3.4) can

be shown through simulations. Figures 3.19-3.20 show that for 2 population

sizes, 10,000 and 20,000 respectively. This is simply the ”white noise” due to

stochasticity, which is modelled via a Gaussian noise process in ”state of the art”

models similar to Φ(n) described here for discrete models and as a Wiener Process

for continuous ones (e.g. [26, 28, 29, 32, 40, 69, 86, 104, 105]). In contrast, when

human behaviour and ambient changes are considered and modelled (as mentioned

in the previous section) the result is varying in addition to some ”white noise”,

this can be seen in Figure 3.21. A direct comparison of the ”state of the art”

model (10,000 population - Figure 3.19) and the one developed (Figure 3.21) is

seen in Figure 3.22.

Populations of smaller size (e.g. 1,000) will have significant elements of stochas-

ticity and thus are not proposed for DR studies of TCLs. Unless the study is

specifically aimed for small populations, then one of the most important elements

to be studied is stochasticity and control actions need to take it into account. As

expected the stochastic behaviour reduces as the population size increases, the val-

ues (fluctuation) are close but higher than those of Table 3.1 due to heterogeneity

in parameters (different duty cycle D). Increasing the population size from 10,000
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to 20,000 yields a small improvement, thus a size of 10,000 is deemed satisfactory

for examining effects of human interaction and changing ambient temperature.

NB : To assume an almost uniform distribution (around 1% fluctuation or less)

for heterogeneous populations, requires population sizes of the order of 100,000.

Computational time would increase considerably and memory allocation might

be an issue for some software.
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Figure 3.19: TCLs’ population (10,000) state without external factors or ambient

change. The level of noise due to population stochasticity and duty cycle is just above

the expected range (Figure 3.4)

Arguably, one of the other important points of this model is the realistic repre-

sentation of TCLs under different conditions during the day and their dynamic

behaviour in time. Detailed bottom up models like this one give the highest fi-

delity for studying behavioural characteristics. Figure 3.21 displays simulation

results for varying ambient (room) temperature and human behaviour, as de-

scribed in steps 2 and 3 of the previous Section. The comparison to experimental

data from DECC and Smart-A can be seen in Figure 3.23; comparison is done

after converting the simulation from 1 minute resolution to hourly resolution since

DECC and Smart-A have only 1hour resolution data.
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Figure 3.20: TCLs’ population (20,000) state without external factors or ambient

change. The level of noise due to population stochasticity and duty cycle is just above

the expected range (Figure 3.5)

A direct comparison of the same data from DECC and Smart-A and the

classic/”state of the art” used in most TCL studies (such as [26, 28, 29, 32, 69])

can be seen in Figure 3.24. This model is described by (3.1a) as described in

the beginning of this Chapter. The result will be better with varying ambient

temperature if simulation time step is small (up to a few minutes). Again in this

case ambient should randomized for a heterogeneous TCL population, otherwise

all TCLs’ duty cycle will follow exact same trend. Yet, they should have a

realistic change for the time of the day, i.e. randomization to be sampled on

some distribution of real data, otherwise it will simply be ”white noise” as in

Figure 3.22.

Other important characteristics and phenomena that can be studied in detail with

this model are the response to external commands during different conditions

(periods of the day), rebound effects and oscillation damping after those, due

to partial synchronization (Figures 3.26 and 3.27). The exact response of a DR
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Figure 3.21: Realistic cold load demand simulation, total cold load and cold load

per simulated type
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Figure 3.22: Comparison of ”state of the art” model and developed model with

varying heterogeneity during operation. Y axis shows number of TCL units in

operation (on) out of a population of 10,000. TCL data is based on Tables 3.5

& 3.6, initialization (on or off) is randomized around each unit’s duty cycle (D).

The developed model follows a trend similar to Figure 3.1, as expected.

action (or other forms of interruptions such as brown-outs), are directly affected

by TCLs aggregated state at that given period. In Figures 3.26 and 3.27 a short

term switch off is applied (1 minutes for units in on state and forcing units in
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Figure 3.23: Comparison of simulated model and experimental data
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Figure 3.24: Comparison of simulated classic/”state of the art” model and

experimental data

off state that would have switched on, not to), with an external command for

all units. This does reduce demand for that short period as observed, but forces

units in on state to change their normal duty cycle, whilst units in off state

are not affected, causing a partial aggregated synchronization. Since part of the

TCL population synchronizes, rebound effects occur, which are detrimental for

DR actions.

The rebound effect and why it occurs is explained in the following Figures 3.28 -

3.31. For simplification, assume a relatively homogeneous population of 54 units
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Figure 3.25: Comparison of simulated model and experimental data for 10,000

households. DECC data according to Section 2.4. Power rating of some TCLs can

be seen in Table 3.5

Figure 3.26: Switch off at t= 300’ for 1 minute, partial synchronization of TCLs is

caused as expected

(or any multiple of that), with a duty cycle D equal to 1/3, as represented in

Figure 3.28. This means that, under normal operation and even distribution, 18

units are on (i.e. D · NTCL). For every time step, a few units will advance in

their respective state, with units in the off state advancing at half the average

rate compared to the units in on state, because of D = 1/3. If D = 0.5 then the

average rates between states would be equal and half the units would be in each
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Figure 3.27: Comparison of switch off actions at different conditions (moments),

1 minute and the partial synchronizations caused

state. Note that the time step size is important in determining where units will

advance (within their sub-state or next ones).

Figure 3.28: Relatively homogeneous population of 54 TCLs, evenly distributed

within their temperature dead-band. The temperature dead-band has been separated

in sub-temperature states for simplification. Depending on the time step, units might

advance within their sub-temperature state or to next ones, as depicted by the arrows

of sub-state 2 and 8.

When the units are forced to switch off, they change state, as marked by the

arrows pointing downwards in the 9 sub-states of Figure 3.28 (instead of the
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normal cycle), whilst retaining their temperature of course. This results in Figure

3.29, where partial-synchronization has been forced on the TCL population.

Figure 3.29: Relatively homogeneous population of 54 TCLs, when an external

signal forces them to switch off. Partial synchronization occurs

In the next time step, where external control no longer applies, TCLs will resume

normal operation, but now the population is under partial synchronization.

Instead of 2 units switching on when θon has been reached (as marked in Figure

3.28), now 3 units will switch on, as marked in Figure 3.29. This results in Figure

3.30 in the next time step.

Figure 3.30: Relatively homogeneous population of 54 TCLs, step after partial

synchronization due to external signal.
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This process will repeat for the following steps, until TCLs reach the state

described in Figure 3.31. At this point the rebound effect reaches its peak.

Note that now 27 units are in on state compared to 18 units of the normal

operation (Figure 3.28). This is an increase by 50%! In reality, due to TCL

populations being heterogeneous, this partial synchronization decays over time.

Figures 3.26 and 3.27 in comparison, show a rebound effect with a peak around

30-40% higher than the previous ”normal” state, lower than the 50% of the

homogeneous population (D = 1/3), due to their heterogeneity. If inrush currents

were included (which are not), these peaks would be slightly higher.

Figure 3.31: Relatively homogeneous population of 54 TCLs, peak of rebound effect

is reached after a few time steps, following partial synchronization due to external

signal.

These effects are significant for both Dispatchable and non-Dispatchable DR

actions. For instance, when a certain amount of power is required for frequency

control, TCLs can provide it by reducing demand output equal to that required

amount, but after some time when the rebound effect is introduced an almost

equal extra amount of energy is required, which if not countered properly by

additional control actions could practically recreate the original problem [69].

The higher the current demand, the higher the rebound effect and its oscillations.
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It is thus essential for control actions to take such effects into consideration and

try to minimize/counter them or at least postpone them, as well as consider the

natural damping occurring due to heterogeneity [28]. It is crucial to note that,

in non-intrusive actions (thermal limits are maintained), the overall thermal load

remains essentially the same. Consecutively, the overall electrical demand remains

also the same, but spreads in time, unless the control framework is designed

otherwise.

One of the starting arguments of this thesis and Chapter, but also motivation for

this work, was whether small heterogeneity can be assumed for TCLs, such as cold

loads, and the accuracy of models based on such assumptions. Figure 3.32 shows

the variation of duty cycles during the day for 4 TCLs with relatively similar

starting duty cycle (and thus operation), yet significant changes are observed

during the day. This is true for the majority of the population, and the original

point, that even in a (relatively) homogeneous population there will be significant

heterogeneity in operation in time holds true, as well as that a Wiener process

with small variance is inadequate to represent it. It is also important to note

that response to control actions varies during the day (i.e. night-morning hours

have relatively shorter cycles than evening), based on the state of the TCLs’

population, which can also serve as a factor in identifying the available power for

DR.
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Figure 3.32: Duty cycles of 4 randomly selected TCLs during the day

3.9 Conclusions

TCLs modelling was examined and a detailed bottom up realistic model was

developed for DR studies, including human interaction modelling and its effect.

Controlling large amounts of loads is inevitably only possible through probabilistic

models, but with proper approaches it can be accurate enough. One of the key

issues for TCLs’ applications is the high heterogeneity and the dynamic behaviour

in time. This Chapter focused on data from experimental studies to determine the

most important factors that drive TCLs’ dynamic behaviour. Based on those and

the developed MC model, simulations were carried out for the case of colds loads.

The initial hypothesis of high heterogeneity in operation, even among relatively

homogeneous loads was shown to hold true, thus the accuracy of various existing

aggregation models is questionable.

The following Chapters will focus on aggregation methodologies, distributed

state estimation of those and a new aggregation model. Finally, approaches
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to dynamically update the developed aggregation model to follow the dynamic

behaviour and duty cycle changes were described in this Chapter.

Important points and outcomes can be summarised in 6 points (with DR

significance order):

1. Illustration the dynamic nature of TCLs and how their duty cycle (opera-

tion) changes during the day significantly, thus the problematic nature of

using aggregation models such as CFPE by assumptions of relative hetero-

geneity.

2. The above occur due to external factors, essentially human behaviour, be it

directly or indirectly, which were modelled and simulated using real world

data to highlight their actual effects in TCLs’ consumption and subsequently

in TCLs clusters’ state and thus DR actions.

3. A simplified equivalent thermal model of multi-compartment cold loads was

developed, which converts the actual second order thermal model to a first

order one, thus useable for the S-PDE models developed so far for DR

without loss of TCLs characteristics.

4. The bottom up approach used, can be computationally demanding due to

its detail, yet that detail allows for high flexibility and the highest possible

accuracy to study DR actions, rebound effects and the performance of

control algorithms.

5. Additionally, it can be used to evaluate the accuracy of more computation-

ally efficient aggregation models and simulate smaller populations taking

into consideration the magnitude of stochasticity in such cases.

6. Finally, due to the main equations including external factors, minimum

and maximum limits of “normal” operation can be deduced, thus abnormal

(faulty) TCL consumption can be tracked, something useful for commercial

loads mostly. So far this has mainly been done through regression models;
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yet it can be used in conjunction, to improve accuracy or to estimate

consumption under different operational conditions for energy efficiency.



Chapter 4

State Estimation via Belief

Propagation

4.1 Introduction

Various approaches are used for control algorithms and aggregation models,

though the probably the most common assumption is accurate knowledge of

thermal state in real time, meaning integrated costly thermal sensors, which is

not feasible for individual light commercial and residential units [54]. In addition,

most assume that TCL parameters are known (e.g. [26, 28, 29, 32, 40, 69,

86, 104, 105]), even in real-time . Additionally, some form of communication

and processing is required, which in many cases can be feasible with minimal

to no cost, via Smart Meters or Smart plugs and Apps [56, 57, 58]. As seen

though in the previous Chapter, aggregated TCLs’ demand change throughout

the day, due various factors and includes some level of stochasticity according to

heterogeneity and size. Thus, even 2 TCLs with identical parameters can have

different duty cycles and thus consumption. For that reason, but also in order to

127



128 4.1 Introduction

reduce monitoring (sensors) cost, one potential solution is State Estimation, such

as the one suggested by Koch et al. [29] and investigated further in [40, 54, 55].

For this approach there are 2 main scenarios, no state information but knowledge

of aggregated power and full state information with knowledge of aggregated

power (in both scenarios TCL parameters are considered known as well). For

the aggregated measurements of TCL demand, those are assumed on substation

level, through disaggregation techniques [41, 42, 94], though technically possible,

due to practical reasons (e.g. VPPs need approval System Operators to install

equipment and perform such process) and the disaggregation accuracy are limiting

factors.

Creating VPPs to provide DR services through the use of State Estimation and

aggregated power measurements [54] could be technically possible. In these

studies, central models have been adopted, where a lot of TCL info needs to

be gathered centrally (raising privacy concerns), though as stated in [54], a

decentralized approach can be more beneficial (such as for response times).

Kalman Filter (KF) has been used [29, 54] for State Estimation, which is known

to be an instance of Sum-Product Algorithms [111]. One such Sum-Product

Algorithm is the Belief Propagation (BP) algorithm, which is fundamentally a

fully distributed algorithm, more generic and offers higher flexibility of system

modelling due to Factor Graphs (FGs). This was the motivation to introduce

BP in this framework as well as investigating more decentralised approaches.

Essentially, FGs can be seen as generic Bayesian networks, utilizing factors nodes,

which are functions. Apart from DR, BP can be applied for different purposes in

power systems, such as in Cosovic’s & Vukobratovic’s work on distributed state

estimation of power systems [112]. BP can be applied in either fully distributed,

or centralised or mixed systems (i.e. hierarchical), and is easily integrated with

KF or similar probabilistic frameworks.
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This Chapter explores BP, for state estimation of thermal states in aggregated

populations of TCLs, to provide balancing services in power systems. Thermal

states can be described by hybrid-state Markov processes and hence aggregated

populations behaviour by Markov Chains. If a method like the one suggested by

Koch et al. [29] where to be used, one simple example of hierarchical architecture

to visualize would be substations exchanging information (distributed), whilst

each substation has its own aggregation and then partial measurements of loads

(Figure 4.1). In which case BP can be used as a method to pass information

between them.

The chapter is organized as follows: Section 4.2 explains how power state reading

can be used via Smart Meters or Smart Plugs, Section 4.3 defines the transition

probabilities of a TCL population and Section 4.4 the analytical calculation of the

Probability Transition Matrix. In Section 4.5 the state space model is presented

and KF basics. Section 4.6 details how factor graphs are formed and Section

4.7 the BP algorithm which is considered for this Chapter. Section 4.8 presents

numerical results and Section 4.9 concludes.

Figure 4.1: Distributed / Hierarchical architecture for VPP operation with load

sampling and State Estimation
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4.2 Thermal State Approximation via Power

State Measurement

Literature models assume knowledge of thermal state from precise thermal sensors

(i.e. [29, 54, 55]) and/or smart agents on appliance level which measures TCL

parameters (e.g. λ, C, R, θg) in addition to accurate ambient temperature

readings (i.e. [34, 39]). In some model there is the addition of devices within

households which provide fast and accurate frequency readings (i.e. [36]),

knowledge of the rest TCL population (in terms of available P ) and knowledge

of Power Systems characteristics to respond autonomously. In this thesis on of

the main aims is to minimize such requirements and use primarily power readings

in time (ton, toff , i.e. duty cycle), which here will be referred to as power state.

The concept behind estimation of thermal state using duty cycle and power state

(ton, toff ) is shown in Figure 4.2. In Figure 4.2 the temperature dead-band is

partitioned in n (5 for this example) equal intervals, state bins, for each state

(on, off). If a very precise thermal sensor was installed in this TCL, the readings

at different times (e.g. 45, 72, 119) would show the exact temperature (marked

by X in Figure 4.2) and thus the bin for each of those times can be identified,

assuming θoff , θon are also known. If the time within each state is used instead

and compared to ton, toff for this duty cycle, then the bin for each time can be

approximated (marked by � in Figure 4.2), with a small error.

Note that in this case relative position within the deadband is given, thus actual

knowledge/readings of θoff , θon are not required, e.g. a unit shows power on for

37minutes (out of 45minutes ton), thus likely to be in bin 80%-100% on, i.e. bin

5 (on). On the other hand, compared to precise thermal sensors, error of actual

state bin is higher (e.g. at time 72). Interestingly, in case of multi-compartment

TCLs, thermal sensors will give different readings for each compartment; even
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Figure 4.2: TCL cycle using real characteristics of cold load of Figure 3.10. The

temperature deadband is partitioned in 10 state bins, 5 for on and for off state.

Solid line shows the thermal state over time, whilst power demand is shown by bold

dashed line.

though they tend to synchronize [109, 110], readings can give different state bins,

one in off state, another in on, whilst TCL is either on or off , resulting in wrong

input for the state space model. For which case, power readings at unit level are

needed to avoid instances where commands to switch on is given to units whilst

being already on or vice versa. Using power state instead, means directly looking

at demand and ”relative” thermal bin for the unit as a whole (”an equivalent”).

Either way, using transition probability from previous states and state estimation

is important in improving bin state estimations. The key advantage of using power

states is how inexpensive this approach is compared to the cost of precise thermal

sensors for each TCL. Also, with Smart Home Systems which are now supported

by Smart Meters or Smart Plugs in combination with smart agents (also known

as virtual assistants, well known ones have been developed by Amazon, Google,

Apple), it is very simple to implement. Many households already use either,

meaning no extra equipment costs for those.

Figure 4.3 shows 2 different TCLs (different parameters R, C, θg), but with the

same duty cycle due to some external effect (similar to the real cold load of Figure
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3.10). For both of these TCLs, approximating the thermal state using power state

still has a small error. Another point seen in both Figures 4.2 and 4.3 is that for a

small time step relative to a (e.g. 1 minute), the transition probabilities between

bins is practically limited. For instance, a TCL with a normal cycle of 90minutes

(30minutes on, 60 minutes off , see as example Figure 4.2) cannot realistically

move from the beginning of one state to the middle of the other in 1 minute

(τ = 1min). Even when H is considered, for 1minute that TCL can practically

move to the next bin, the previous (Figure 4.3) or most likely stay in its current

one. Respectively, if a time step τ of 25minutes is assumed for the same TCL

(Figure 4.2), a transition to the next bin or the one after are likely, but not staying

in the same bin. When H is considered (Figure 4.3) though, there is one more

possible bin to transition to. Small time step are preferable obviously and also

required Balancing Services, thus the error minimal.
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Figure 4.3: Two TCL cycles with different characteristics, yet same duty cycle. The

temperature deadband is partitioned in 10 state bins, 5 for on and for off state. The

first TCL (solid line) has the same parameters as in Figure 4.2 but with an external

effect, whilst the dashed one without. The errors of estimating state bin through

power state is higher than before but still small.

A few key points are:
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1. As seen this method gives an approximation of the state bin, albeit very

close, state estimation will be important in reducing errors. Given previous

state and transition probability, state estimation is beneficial. Note that

even when precise thermal sensors are considered, such as in [29, 40, 54, 55],

state estimation is still deemed crucial.

2. The duty cycle (ton, toff ) as stated in Chapter 3 is important since

consumption directly depends on it. Not only that, but with this approach

relative thermal state (indirectly) is tracked by power state and ton, toff .

This is already done by devices and Apps which are becoming increasingly

common [56, 57, 58]. Additionally, clustering based on ton, toff is more

generic than based on TCL parameters (e.g. R, C, θg). In general clustering

has shown improvement in accuracy of modelling aggregated populations of

TCLs [113].

3. As someone can easily notice from Figure 4.3, there are times when previous

state and a state space model will give an inaccurate estimation, be it either

when measuring temperature or the proposed method. On an aggregated

population though, this error will be lower, as TCLs are not synchronized

and disturbances are randomly distributed. This means that in some of

them the error will be towards one direction (in regards to state bins) and

in some others towards the other one.

4. Units with different parameters, can have the same ton, toff (thus duty

cycle). Clustering based on ton, toff (i.e. duty cycle) as proposed in Chapter

3 is beneficial. Some level heterogeneity is still sought after for control

actions to dump partial-synchronization, as discussed in Chapter 3.
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4.3 Trans. Probabilities for TCLs, Including

External Factors

For the purposes of this chapter, BP is directly compared to KF for state

estimation. As such the same state space model is used as in KF studies [29, 54].

Additionally, a similar method for calculating analytically the PTM is explored,

though transition probabilities within each state are not equal and there is the

addition of external factors. For comparison purposes, external factors are set to 0

during simulations, since they were not considered in the aforementioned studies.

Three crucial points, that limit the potential of this particular aggregation model,

as will be made evident later on, are:

1. Limited heterogeneity modelling (only parameter eτ/R·C)

2. Impractical to calculate external factors in reality

3. Complex (if not infeasible) to perform analytical calculations for more

parameters

Therefore, a new aggregation method for heterogeneous TCL populations is

developed in the following chapter, as well as the corresponding state space model

and FG. Yet for this chapter, a plain field between BP and KF was deemed

necessary.

TCL models in this Chapter adhere to (but are not limited to) HVAC, cold loads,

electric space and water heating, heat pumps, chiller etc. They are found in

residential, commercial and industrial consumers. TCLs control is based on a

hysteresis scheme within a deadband δ, where they change between on and off

states as described in the previous chapter. During on state a TCL operates until

it reaches a specific temperature θoff , at which point it switches off (thermostat
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command). After entering the off state, the temperature advances towards a

specific θon temperature, where it switches on again and repeats the cycle.

This is the most common operation found in domestic, commercial and industrial

thermal loads and gives them thermal ”storage” capabilities; rendering them

perfect candidates for providing short term balancing services as mentioned in

previous chapters. Loads whose operation is characterized by a cycle and exhibit

some form of inertia (or hysteresis) can be represented by a cycle of transition

probabilities between on and off states (and sub-states of those). Aggregated

TCLs, given the proper communication infrastructure, can operate as part of

virtual power plants [114, 115]. The equations derived in Chapter 3 to represent

the operation of a TCL will be used to calculate transition probabilities for a TCL

and consequently for a TCL population.

Individual TCL Model:

The previous Chapter focused on accurate bottom-up MC models, with the aim to

capture the dynamic changes in duty cycles. Yet, as mentioned, for coordinated

control of large populations, aggregation models are required. In this and the

following Chapter the focus will be on aggregation model, keeping in mind that

they should not be static. The MC model developed in the previous Chapter can

be used to validate aggregation models developed hereon, by simulating both and

comparing results (aggregation models should ideally match the MC one with a

small noise).

Equations (3.23) and (3.24) derived in Chapter 3 describe the (discrete-time)

evolution of temperature of a TCL unit, where ZOH has been applied. When

small time steps are assumed, such as those needed for Balancing Services, the

term γ a−1+λτ
λ

of (3.23) tends to 0 and given that θa(n) is updated in each time

step it can be excluded, thus (3.23) or (3.24) can be used indiscriminately.
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TCL approximation for transition probabilities:

As observed by (3.24) and also Figures 3.10 and 4.3 (the reader is highly

encouraged to see Figure 3.10 which is based on real world data), the effect of

H can cause a TCL to move ”backwards” in terms of thermal state when in on

state or advance faster when in off state. Especially in the case of ”on” state,

this behaviour means that in reality, for a single TCL, there is the possibility of

going to a previous state when in on state. Albeit this behaviour was captured

in Chapter 3 and the Monte Carlo simulations of 10,000 units, in reality it is

not practical to track and include in the same detail to calculate transition

probabilities of large aggregated TCL populations; unless very precise thermal

sensors are used to monitor the exact thermal state which is against the aims of

this thesis.

Observing Figure 4.3, we can see that in such a case, the TCL can be approxi-

mated, with some error, with another TCL of equal ton, toff (thus Duty Cycle),

resulting in the same consumption in time. For this particular example, if the

TCL of equal ton, toff (dotted line) was used to approximate the thermal state,

then before time t = 126 the real thermal state is lower (for on state), whilst

afterwards the opposite. For most of the time, the real thermal state is lower in

this case. If that same event had occurred around time t = 100 then for most part

(of on state) the real thermal state would be higher. Given that within a TCL

population the state of one unit is independent of another, then the distribution

of these events can be considered random in terms of where they occur within

each state (on or off). Based on that, we will use the TCL of equal ton, toff

(see Figure 4.3 dotted) to calculate transition probabilities and that of course will

introduce some error. Note that not all TCLs in a population will have such an

event for every of on or off state.
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The second TCL of Figure 4.3 is thus given by

θ(n+ 1) = aH · θ(n) + [1− aH ][µ(n) · θg + θa(n)] (4.1)

where aH = e−λHτ can change value in each state to account for H and is

calculated using t′on of (3.46) and t′off of (3.48) as per below:

λH = − 1

t′off
· ln(

θon − θa
θoff − θa

) (4.2)

λH = − 1

t′on
· ln(

θoff − (θg + θa)

θon − (θg + θa)
) (4.3)

Note that when H̄ = 0 then λH = λ, for that state thus aH = e−λτ = e−
τ
R·C = a,

otherwise aH and a are different. Specifically, aH now changes values in each

state to account for the increased duty cycle and consumption, as per Figure 4.3

(dotted line).

Note that (4.1) is used only for the transition probabilities and the

resulting transition matrix of a large TCL population as shown later in this

section and not for the Monte Carlo simulations of this Chapter or others, which

still use the model of Chapter 3. The aim is to create a transition matrix (via

a way that does not require precise thermal sensors) that indirectly accounts

for increased consumption due to H, to use together with State Estimation to

estimate the state of the TCL population. That TCL population is modelled

via mentioned Monte Carlo according to Chapter 3. In that sense, for a fraction

of the TCL population (4.1) will overestimate the state and for another it will

underestimate it (as shown in Figure 4.3), where random distribution of the events

is assumed. It is hard to argue if the overall error will be biased towards either

direction, unless extensive experimental data is used (but unfortunately was not

available). Of course (4.1) is not equal to (3.24), and the above method introduces

some error, albeit does not require precise thermal sensors.
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TCL population: Observing and tracking a large collection of individual TCL

models is not scalable. In [40], an aggregation method is proposed for a large

collection of heterogeneous individual TCL models. The advantage of such a

model is better tracking of the TCL population behaviour to external controls

through system analysis and thermal state estimation, which proves to be more

effective than model-free control algorithms [54, 55]. State estimation (on /

off) is crucial for real time control as well as determining the ability of TCL

populations to serve as VPPs and provide balancing services (in terms of both

power and duration). In the absence of external signals, the dynamics of the

discrete-valued state µ(t) are given by the standard thermostat operation (switch

at θon, θoff ). The change from one state to another (or remaining within the same

state) can be described by a Markov chain (Figure 4.4). This can be extended

further by partitioning on, off states, such an example can be seen in Figure 4.5.

Figure 4.4: TCL dynamics described by a Markov chain.

Using that process, the operation of an aggregated TCL population can be

described by the graph presented in Fig. 4.5, where each bin state has a fraction

of the TCL population, randomly distributed.
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Figure 4.5: TCL aggregated population transition between 2n bin states, where n

here equal to 2. Same process as above can be applied for n higher than 2. TCL

state transition representation between 2n bin states (off and on)

The temperature deadband is divided in n equal temperature bins. It contains

two sets of states: the set of off states Xoff = {x1, x2, . . . , xn}, and the set of on

states Xon = {xn+1, xn+2, . . . , x2n}. The states in both sets are defined as follows;

for a given i-th bin, 1 ≤ i ≤ 2n, the corresponding state xi represents a random

variable that describes the fraction of the TCL population that is currently in the

i-th bin (temperature interval). The total number of states is N = 2n, as shown

in Fig. 4.5. This way by separating each state in n bins (for each on/off state),

the above can be mapped to probabilities and thus a TPM.

4.4 Transition Matrix Analytical Solution

Transition probabilities from one state bin to another can be calculated, albeit

with limitations, based on a (consecutively aH). A concept originally introduced

by Koch et al. [29] and later used by others such as Mathieu et al. [40], Vrettos et

al. [55]. Though the transition probabilities in [29] are not solved analytically but
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numerically via simulations. The main basis to create probabilities will be used in

Chapter 4 (but not in Chapter 5), but with a few distinct differences, such as that

the transition probabilities within each state to not be equal and constant (for

instance see [40]), with the addition of accounting indirectly for external factors

as shown previously and the distribution of starting temperature (θstart). Also,

the probabilities here are analytically solved and not via simulations. This is

highlighted as in the author’s opinion the transition probabilities should not be

equal within each state as the temperature evolution of TCLs is not linear

(but exponential).

Assume that θg, θa are the same for all TCLs of the population and that aiH of

(4.1) (i denoting the ith TCL within the population) is stochastic in a such a way

that all aiH are uniformly distributed aH ∼ U(amin, amax) for given amin and amax.

Note that aH (as well as a) is a function of the time step τ and thus the factor

(1 − aH) in front of the term (µ(n) · θg + θa(n)) defines the rate of temperature

evolution towards θoff or θon for that time step depending on state. As the time

step τ increases, (1−aH) increases as well. The factor aH in front of the term θ(n)

has the opposite effect. These assumptions introduce two important limitations

at this point; first the distribution of aH and secondly the assumption of θg, θa

being the same for all TCLs. Both introduce some error, maybe for θg, θa average

values of the population could be used instead, which still would have some error.

By choosing a relatively small time step τ , the temperature evolution for each

step is practically restricted within the starting bin or the next one (as shown

earlier in Figure 4.2 and Figure 4.3 for the equivalent TCL), which is also affected

by the size of the state bins.

A unit’s advance from a temperature point to another one depends on aH (4.1)

as shown in Figure 4.6. Two units with a1 < a2, will go to θ1, θ2 accordingly.
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Figure 4.6: TCLs advancing to another temperature, based on aH .

These a1, a2 are given by:

a1 =
θ1 − θa(n)− µ(n) · θg
θ0 − θa(n)− µ(n) · θg

(4.4a)

a2 =
θ2 − θa(n)− µ(n) · θg
θ0 − θa(n)− µ(n) · θg

(4.4b)

As seen by Figure 4.6, amin defines the maximum temperature jump in one time

step (which depends on τ) and the minimum bin size for which the assumption

of restricting transition to current and next bin holds.

The probability of a TCL going from θ0 to a temperature between θ2 and θ1 can

be given by:

Pr(a1 < aH < a2) =

a2∫
a1

p(aH) daH (4.5a)

p(aH) =

 1
amax−amin for aH ∈ (amin, amax)

0 otherwise
(4.5b)

Now consider state bins a group of TCLs, that are either all on or off (µi(n) =

µ(n)). The probability (Pr) of going from a θs ∈ (θsj, θej) to a θend ∈ (θsi, θei) in

one time step can be given by:
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Pr =

θej∫
θsj

1

θej − θsj

a2∫
a1

p(aH)daHdθs (4.6a)

p(aH) =

 1
amax−amin for aH ∈ (amin, amax)

0 otherwise
(4.6b)

where a1, a2 depend on θs as per (4.4a), (4.4b). Also note that in (4.6a) there is the

assumption that θis are uniformly distributed within the state bin, which looking

at Figures 4.2 and 4.3 (dotted) it is not a big error, but again here extensive

experimental data should be used and the appropriate distribution should be

used in real life applications with (4.6a) being adjusted accordingly.

Now, using the above the aim is to derive the TPM-A, thus find the solution of

4.6a. Solving for the off state, there are 5 cases regarding the given starting state

bin and possible new state bin in the next time step, where θ1 = θsi, θ2 = θei and

µ = 1 if the TCL is in on state, θ1 = θei, θ2 = θsi and µ = 0 if the TCL is in off

state. Since the state bin size is larger than the maximum temperate jump (the

one for amin) due to small simulation step, which means amax − amin < a2 − a1.

This can be visualized in both Figures 4.6 and 4.7, but also in Figures 4.2, 4.3.

If a larger step is chosen, then there will be transition probabilities in more bins.

For models designed for Balancing Services, small steps are expected to be used,

even smaller than the one used here.
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Figure 4.7: TCLs advancing within state bins, based on a. Note that the more the

TCLs advance in each state the slower the rate they do so. Cases 1 (leftmost) and 2

(rightmost) are shown

Pr(a1 < aH < a2) =



0, if a2 < amin

a2−amin
amax−amin , if amin < a2 < amax (a1 < amin implied),

1, if amax < a2 (a1 < amin implied),

amax−a1
amax−amin , if amin < a1 < amax (amax < a2 implied),

0, if amax < a1

(4.7)

Note that α1, α2 are functions of θs (4.4a, 4.4b), as such, we can calculate the

above inequalities for θs. In that way, we can see the possible positions of θs for

the above cases.

Case 1, off state, a2 < amin

a2 < amin ⇒
θ2 − θa − µ · θg
θs − θa − µ · θg

< amin ⇔

θ2 − θa − µ · θg − amin · (θs − θa − µ · θg)
θs − θa − µ · θg

< 0

(4.8)

For the OFF state θs − θa − µ · θg < 0 (because µ = 0 and θs < θa always for
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cooling/cold loads). Equation 4.8 during the off state becomes:

θ2 − θa > amin · (θs − θa)⇔ θs <
θ2 + (amin − 1) · θa

amin
(4.9)

The rest cases for the on state are calculated similarly to 4.8 and 4.9.

Off state θs limits for each case:

θs <
θ2 + (amin − 1) · θa

amin
(4.10a)

θ2 + (amin − 1) · θa
amin

< θs <
θ2 + (amax − 1) · θa

amax
(4.10b)

θ2 + (amax − 1) · θa
amax

< θs <
θ1 + (amin − 1) · θa

amin
(4.10c)

θ1 + (amin − 1) · θa
amin

< θs <
θ1 + (amax − 1) · θa

amax
(4.10d)

θ1 + (amin − 1) · θa
amin

< θs (4.10e)

For the on state, θs − θa − µ · θg > 0 (because µ = 1 and θs − θg > θa always).

Thus 4.8 during the on state becomes:

θs >
θ2 + (amin − 1) · (θa + µ · θg)

amin
(4.11)

The rest cases for the on state are calculated similarly to 4.8 and 4.11. On state:

θs >
θ2 + (amin − 1)(θa − µ · θg)

amin
(4.12a)

θ2 + (amin − 1)(θa − µ · θg)
amin

> θs >
θ2 + (amax − 1)(θa − µ · θg)

amax
(4.12b)

θ2 + (amax − 1)(θa − µ · θg)
amax

> θs >
θ1 + (amin − 1)(θa − µ · θg)

amin
(4.12c)

θ1 + (amin − 1)(θa − µ · θg)
amin

> θs >
θ1 + (amax − 1)(θa − µ · θg)

amax
(4.12d)

θ1 + (amin − 1)(θa − µ · θg)
amin

> θs (4.12e)
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The solution of (4.6a) from state bin I (θsj, θej) to state bin Ξ (θsi, θei), in off

state can now be calculated. Note, that the above (4.10) and (4.12) show the

values θs can take for each case.

Case 1, off state, a2 < amin ⇒ θs <
θ2+(amin−1)·θa

amin

The relation a2 < amin means obviously that the probability is zero, as a cannot

take a value out of limits. This in practical terms means that for the given time

step (τ), a cannot take such a small value and transition to a bin so far from the

starting bin, as shown in Figures 4.7 and 4.2. A small aH results to large steps,

but that requires a relatively large time step as well.

Pr(a1 < aH < a2) = 0, thus

Pr1
I,Ξ = 0 (4.13)

Case 2, off state, amin < a2 < amax ⇒ θ2+(amin−1)·θa
amin

< θs <
θ2+(amax−1)·θa

amax

The solution of the first integral is:

a2
amax−amin −

amin
amax−amin

Supplementing a2 from 4.4b (θs the variable of the second integral):

1
θej−θsj

∫ θej
θsj

θ2−θa
(θs−θa)(amax−amin)

− amin
amax−amindθs

Remember that θ2+(amin−1)·θa
amin

< θs <
θ2+(amax−1)·θa

amax
, hence if θsj <

θ2+(amin−1)·θa
amin

,

the above integral from θsj to θ2+(amin−1)·θa
amin

is zero. Similarly if θej >
θ2+(amax−1)·θa

amax
.

Denoting θs1 = max(θsj,
θ2+(amin−1)·θa

amin
) and θs2 = min(θej,

θ2+(amax−1)·θa
amax

), the
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solution of the above is:

Pr2
I,Ξ =

[
(θ2 − θa) · ln(θs − θa)− θs · amin

(θej − θsj)(amax − amin)

]θs2
θs1

(4.14)

An illustration of the probability calculated in (4.14) (moving to next state bin

between θ2 and θ1) can be seen in Figure 4.7 (rightmost example). The probability

of staying in the same state bin for the same example is calculated in case 4 below.

Case 3, off state, amax < a2, a1 < amin ⇒ θ2+(amax−1)·θa
amax

< θs <
θ1+(amin−1)·θa

amin

Denoting θs1 = max(θsj,
θ2+(amax−1)·θa

amax
) and θs2 = min(θej,

θ1+(amin−1)·θa
amin

), the

probability is:

Pr3
I,Ξ =

[
θs

θej − θsj

]θs2
θs1

(4.15)

An illustration of the probability calculated in (4.15) (staying in the same bin,

before the illustrated θ2) can be seen in Figure 4.7 (leftmost example) when θ2,

θ1 are chosen for the starting bin instead (e.g. the illustrated θ2 is now the θ1).

Case 4, off state, amin < a1 < amax ⇒ θ1+(amin−1)·θa
amin

< θs <
θ1+(amax−1)·θa

amax

Similarly to case 2, denoting θs1 = max(θsj,
θ1+(amin−1)·θa

amin
) and θs2 =

min(θej,
θ1+(amax−1)·θa

amax
)

Pr4
I,Ξ =

[
θs · amax − (θ1 − θa) · ln(θs − θa)

(θej − θsj)(amax − amin)

]θs2
θs1

(4.16)

An illustration of the probability calculated in (4.16) (staying in the same bin,

before the illustrated θ2) can be seen in Figure 4.7 (rightmost example) when θ2,

θ1 are chosen for the starting bin instead (e.g. the illustrated θ2 is now the θ1).



CHAPTER 4. State Estimation via Belief Propagation 147

Case 5, off state, amax < a1 ⇒ θ1+(amin−1)·θa
amin

< θs

Pr5
I,Ξ = 0 (4.17)

The above practically means that aH cannot take a value large enough (out of

bounds) to stay in the same state bin.

A simple example is given below for the readers:

Consider a TCL (air conditioner) with with Cmin = 1.5, Rmin = 1.5, Cmax = 1.5,

Rmax = 1.5, θa = 32, θg = −2, temperature dead-band δ = 1, with 4 bins and

their respective temperature points [19.50, 19.75, 20, 20.25, 20.5]. For simulation

step τ = 1minute, amax = 0.997336885730501, amin = 0.992619959819751.

Figure 4.8: θs for case 2

The probability of going from bin [19.75, 20] (θsj, θej) to bin [20, 20.25] (θsi, θei)

is given by (since Pr4
I,Ξ gives the probability to stay in the same bin, e.g. θs out

of bounds, and Pr1
I,Ξ, P r

5
I,Ξ = 0):

PrI,Ξ = Pr2
I,Ξ + Pr3

I,Ξ

First calculate limits for case 2 (these can be seen in Figure 4.8):

θs1 = max(19.75, θ2+(amin−1)·θa
amin

) and θs2 = min(20.00, θ2+(amax−1)·θa
amax

).

θ2+(amin−1)·θa
amin

= 20+(0.992619959819751−1)·32
0.992619959819751

= 19.910781078612327,
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thus θs1 = 19.910781078612327

θ2+(amax−1)·θa
amax

= 20+(0.997336885730501−1)·32
0.997336885730501

= 19.967957295382110,

thus θs2 = 19.967957295382110

Then calculate Pr2
I,Ξ, using (4.14):

Pr2
I,Ξ =

[
(θ2−θa)·ln(θs−θa)−θs·amin

(θej−θsj)(amax−amin)

]θs2
θs1
⇒

(θ2−θa)·ln(
θs2−θa
θs1−θa

)−(θs2−θs1)·amin
(θej−θsj)(amax−amin)

=

(20−32)·ln(
θs2−32
θs1−32

)−(θs2−θs1)·amin
(20.25−20)(amax−amin)

= (−12)·(−0.004740740740741)−(0.057176216769783)·amin
(20.25−20)(amax−amin)

=

0.056888888888889−0.056754253992667
(0.25)(0.004716925910750)

= 0.028542932148801
0.25

Similarly for case 3 limits:

θs1 = max(19.75, θ2+(amax−1)·θa
amax

) and θs2 = min(20.00, θ1+(amin−1)·θa
amin

).

θ2+(amax−1)·θa
amax

= 20+(0.997336885730501−1)·32
0.997336885730501

= 19.967957295382110,

thus θs1 = 19.967957295382110

θ1+(amin−1)·θa
amin

= 20.25+(0.992619959819751−1)·32
0.992619959819751

= 21.400556929841688,

thus θs2 = 20

Then calculate Pr3
I,Ξ, using (4.15):

Pr3
I,Ξ =

[
θs

θej−θsj

]θs2
θs1
⇒ θs2−θs1

θej−θsj = 0.032042704617890
0.25
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The probability of moving from bin [19.75, 20.00] to bin [20.00, 20.25] is thus

0.028542932148801
0.25

+ 0.032042704617890
0.25

= 0.060585636766691
0.25

= 0.242342547066765

The probability of staying in bin [19.75, 20] (θsj = θsi, θej = θei) is given by:

PrI,I = Pr3
I,I + Pr4

I,I

Alternatively, it could be given as 1−(Pr2
I,Ξ+Pr3

I,Ξ), which was calculated before.

Yet, we will calculate it as Pr3
I,I + Pr4

I,I and check that the sum is equal to 1.

For case 3 limits:

θs1 = max(19.75, θ2+(amax−1)·θa
amax

) and θs2 = min(20.00, θ1+(amin−1)·θa
amin

).

θ2+(amax−1)·θa
amax

= 19.75+(0.997336885730501−1)·32
0.997336885730501

= 19.717289739035905,

thus θs1 = 19.75

θ1+(amin−1)·θa
amin

= 20.00+(0.992619959819751−1)·32
0.992619959819751

= 19.910781078612327,

thus θs2 = 19.910781078612327

Then calculate Pr3
I,I , using (4.15):

Pr3
I,I =

[
θs

θej−θsj

]θs2
θs1
⇒ θs2−θs1

θej−θsj = 0.160781078612327
0.25

Similarly for case 4 limits:

θs1 = max(19.75, θ1+(amin−1)·θa
amin

) and θs2 = min(20.00, θ1+(amax−1)·θa
amax

).

θ1+(amin−1)·θa
amin

= 20.00+(0.992619959819751−1)·32
0.992619959819751

= 19.910781078612327,
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thus θs1 = 19.910781078612327

θ1+(amax−1)·θa
amax

= 20.00+(0.997336885730501−1)·32
0.997336885730501

= 19.967957295382110,

thus θs2 = 19.967957295382110

Then calculate Pr4
I,I , using (4.16):

Pr4
I,I =

[
θs·amax−(θ1−θa)·ln(θs−θa)

(θej−θsj)(amax−amin)

]θs2
θs1
⇒

(θs2−θs1)·amax−(θ1−θa)·ln(
θs2−θa
θs1−θa

)

(θej−θsj)(amax−amin)

0.057176216769783·0.997336885730501−(−12)·(−0.004740740740741)
(0.25)(0.004716925910750)

=

0.028633284620309
0.25

The probability of staying in bin [19.75, 20.00] is thus

0.160781078612327
0.25

+ 0.028633284620309
0.25

= 0.189414363232636
0.25

= 0.757657452930544

Summing the above probabilities PrI,I + PrI,Ξ gives 0.060585636766691
0.25

+

0.189414363232636
0.25

= 0.249999999999327
0.25

= 1

Now the solution of 4.6a from bin (θsj, θej) to bin (θsi, θei) in on state for each

case accordingly:

Case 1, on state, a2 < amin

Pr1
I,Ξ = 0 (4.18)

Case 2, on state, amin < a2 < amax

Pr2
I,Ξ =

[
(θ2 − θa − θg) · ln(θs − θa − θg)− θs · amin

(θej − θsj)(amax − amin)

]θs2
θs1

(4.19)

Case 3, on state, amax < a2

Pr3
I,Ξ =

[
θs

θej − θsj

]θs2
θs1

(4.20)
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Case 4, on state, amin < a1 < amax

Pr4
I,Ξ =

[
θs · amax − (θ1 − θa − θg) · ln(θs − θa − θg)

(θej − θsj)(amax − amin)

]θs2
θs1

(4.21)

Case 5, on state, amax < a1

Pr5
I,Ξ = 0 (4.22)

The full TPM A of the example is given below (rounded to 4th digit):



0.7526 0 0 0 0 0 0 0.3130

0.2474 0.7577 0 0 0 0 0 0

0 0.2423 0.7627 0 0 0 0 0

0 0 0.2373 0.7678 0 0 0 0

0 0 0 0.2322 0.6718 0 0 0

0 0 0 0 0.3282 0.6769 0 0

0 0 0 0 0 0.3231 0.6819 0

0 0 0 0 0 0 0.3181 0.6870



As TCLs advance in each state, the rate of temperature change reduces, thus

transition probabilities to next bins reduce, which is reflected in the example

above. The general form of matrix A is (for 4 state bins):

A =



Pr1,1 0 0 0 0 0 0 Pr1,8

Pr2,1 Pr2,2 0 0 0 0 0 0

0 Pr3,2 Pr3,3 0 0 0 0 0

0 0 Pr4,3 Pr4,4 0 0 0 0

0 0 0 Pr5,4 Pr5,5 0 0 0

0 0 0 0 Pr6,5 Pr6,6 0 0

0 0 0 0 0 Pr7,6 Pr7,7 0

0 0 0 0 0 0 Pr8,7 Pr8,8



(4.23)
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Looking at (4.13) to (4.22) we can see that transition probabilities from one state

bin to another can be calculated if θie, θis, θa, θg, aH are known. The temperature

set-point/dead-band and number of bins gives θie, θis without the need of extra

precise thermal sensors (e.g. cold loads with internal sensor of accuracy < 0.1

oC), whilst θg can be calculated from (3.40) and (3.41) if θa is approximately

known. In houses the approximate ambient room temperature is known, simply

by the heating settings, though if Smart Home Systems are available it would be

easier and straightforward to communicate such information. In any case, some

sort of simple ”intelligent” infrastructure (even only a Smart Meter) is required.

Obviously, H is not known and cannot be measured directly, though it affects

ton, toff (as per (3.46), (3.48)) and thus is captured indirectly to some extent

indirectly via aH as described in previous section. This shows that transition

probabilities should be updated in regular (sub hourly) intervals. This topic is

further investigated in Chapter 5, Section 5.5.

At this point is also deemed important to note differences with [29, 40] in the last

part of this section:

1. The effect of external factors is assumed via a noise process (defined as

”ωi,t”) with mean value 0, thus not considered in transition probabilities. This

means that two TCL with same physical characteristics (R, C) will have the

same probabilities, whilst here that is not the case and aH changes values to

account for increased duty cycle and consumption. It results in increased ton,

thus lower transition probabilities in on state compared to the actual a (if physical

characteristics of TCLs are only considered); the opposite for off state.

2. Also, (4.6a) and (13) of [29] (and similar papers by the same authors, e.g. [40])

are different. Moreover, instead of solving the integrals (here solutions are given

in (4.13) to (4.22)), as state in [29] ”For each combination of starting and ending
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bins, we evaluate (13) numerically to generate the analytically-derived A-matrix”.

The exact numerical process is given in more detail in [116] with steps:

• discretize the starting temperature bin into 1,000 ‘starting temperatures’

• compute for each the range of reachable temperatures

• discretize the total range of reachable temperatures into 1,000 ‘ending

temperatures

• sum the number of starting temperatures that could end up in each ending

temperature

• normalize the sums so that the total probability of going from all starting

temperatures to all ending temperatures is 1

• map the ending temperatures to the ending temperature bin

3. The form of A matrix as noted in [40] is the following:

A =


α1 0 0 1− α2

1− α1 α1 0 0

0 1− α1 α2 0

0 0 1− α2 α2

 (4.24)

where α1, α2 in this matrix are probabilities (not be confused with a). Similar

matrices with equal (static) transition probabilities in each state are used in

[117, 118]. It is an important difference with the one given here, since the further a

TCL population advances in each state the slower the rate of temperature change

(as easily seen by thermal equations), meaning lower transition probabilities,

which is clearly shown in the earlier example of this section. The smaller the

number of state bins the smaller the error of assuming a form like (4.24); as

shown in [40], increasing the number of bins from Nbin = 2 to Nbin = 80 reduced

the accuracy of KF estimates, which highlights the issue. The opposite can be

argued for the form proposed in this section (based on (4.13) to (4.22)).
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4.5 State Space Model

The dynamics of the TCL population can be modelled using a state space model,

illustrating system evolution between two consecutive time instances k and k+ 1:

x(k + 1) = Ax(k) + Bu(k) + v(k) (4.25a)

y(k) = Cx(k) + w(k), (4.25b)

where the vector x = (x1, . . . , x2n) ∈ RN represents the state vector, u ∈ Zn is

the control input (zero-vector in normal operation), y ∈ RN is the output vector

(power demand), vectors v ∈ RN and w ∈ RN are defined as random noise vectors

containing i.i.d. (Independent and identically distributed) zero-mean Gaussian

random variables. The control vector u influences a TCL’s on/off state as an

external command. By broadcasting a signal to switch TCLs between on and

off states, they move from their current state bin to its mirror bin which has the

opposite state (on ↔ off ). The upper part of the matrix B ∈ ZN×n is defined as

a negative identity matrix, while the lower part is defined as an exchange matrix:

B =



−1 0

. . .

0 −1

0 1

. .
.

1 0


(4.26)

It is assumed that the only available measurement is aggregated power, thus y is

a scalar and C ∈ RN is a vector:

C = cp ·
[
0 . . . 0, 1, . . . 1

]
, (4.27)
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where cp = NTCL·P̄ON is a constant, NTCL is the number of TCLs in the population

and P̄ON is the mean power consumption of TCLs in the on state. For units in

the off state the corresponding element of the matrix C is equal to zero.

To estimate the state of the above state space model from the observed mea-

surements, standard KF can be applied. Modelling and control of virtual power

plants either relies on centralised or distributed approaches, where for the former,

KF has been traditionally used [54, 55, 119]. In this work, the aim is to introduce

BP for state estimation, a distributed approach, which can also be used centrally.

Then, the aim is to demonstrate that BP can be used instead of KF with the

same efficiency, while providing higher flexibility.

4.6 Factor Graphs and Belief Propagation

A factor graph is a bipartite graph that describes factorization of a global function

of many variables and contains a set of variable nodes X and a set of factor nodes

F. Using the BP algorithm in factor graphs, it is possible to determine exactly

or approximately marginal functions derived from the global function. The BP

algorithm over factor graphs is based on exchanging two types of messages along

the edges of the factor graph: i) variable node to a factor node, and ii) factor

node to a variable node messages. Both variable and factor nodes process the

incoming messages and calculate outgoing messages [111]. If all factors of the

global function and all the inputs to the BP algorithm represent the Gaussian

distributions, then the corresponding BP algorithm is known as the Gaussian BP

algorithm. Each message exchanged in Gaussian BP is represented using only

two values: the mean and the variance [120].

The message mxj→fi(xj) from the variable node xj to the factor node fi, shown

in Figure 4.9a, is equal to the product of all incoming messages mfw→xj(xj), . . . ,
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Figure 4.9: The message mxj→fi(xj) from the variable node xj to the factor node

fi (subfigure a) and the message mfi→xj(xj) from the factor node fi to the variable

node, xj(subfigure b)

mfW→xj(xj) from factor nodes to the variable node arriving from all the other

adjacent edges.

If all incoming messages are Gaussian represented by their mean-variance pairs

(zfw→xj , σ
2
fw→xj), . . . , (zfW→xj , σ

2
fW→xj), it can be shown that the message

mxj→fi(xj) is proportional (∝) to the Gaussian function:

mxj→fi(xj) ∝ N(zxj→fi |xj, σ2
xj→fi), (4.28)

with mean zxj→fi and variance σ2
xj→fi :

zxj→fi =

( ∑
fa∈Fj\fi

zfa→xj

σ2
fa→xj

)
σ2
xj→fi (4.29a)

1

σ2
xj→fi

=
∑

fa∈Fj\fi

1

σ2
fa→xj

, (4.29b)

where Fj \ fi ⊂ F defines the set of factor nodes adjacent to the variable node xj,

excluding the factor node fi.

The message mfi→xj(xj) from the factor node fi to the variable node xj, shown
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in Figure 4.9b, is defined as a product of all incoming variable node to factor

node messages arriving from all the other adjacent edges, multiplied by the

function associated to the factor node fi, and marginalized over all of the variables

associated with the incoming messages. The message mfi→xj(xj) can be computed

only when all other incoming messages are known, denoted by:

mxl→fi(xl) ∝ N(zxl→fi |xl, σ2
xl→fi)

...

mxL→fi(xL) ∝ N(zxL→fi |xL, σ2
xL→fi).

(4.30)

Furthermore, the Gaussian function associated with the factor node fi is given

by:

N(zi|xj, xl, . . . , xL, σ2
i ) ∝ exp

{
[zi − ηi(xj, xl, . . . , xL)]2

2σ2
i

}
(4.31)

where ηi(xj, xl, . . . , xL) is a linear function:

ηi(xj, xl, . . . , xL) = gxjxj + gxlxl + · · ·+ gxLxL. (4.32)

Due to the linearity of function hi(·), it can be shown that the message mfi→xj(xj)

is proportional to the Gaussian function:

mfi→xj(xj) ∝ N(zfi→xj |xj, σ2
fi→xj), (4.33)

with mean zfi→xj and variance σ2
fi→xj :

zfi→xj =
1

gxj

(
zi −

∑
xb∈Xi\xj

gxbzxb→fi

)
(4.34a)

σ2
fi→xj =

1

g2
xi

(
σ2
i +

∑
xb∈Xi\xj

g2
xb
σ2
xb→fi

)
. (4.34b)
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where Xi \ xj ⊂ X is the set of variable nodes adjacent to the factor node fi,

excluding the variable node xj.

4.7 Belief Propagation for Decentralized State

Estimation

Factor graphs can be used to depict a large variety of algorithms, such as the

forward-backward algorithm for hidden Markov models, probability propagation

in Bayesian networks, the Viterbi algorithm and KF, to name a few. The later,

KF, can be represented by a factor graph as described in [111], which connects

any time instance k with the next one (k + 1). KF can be seen as the forward

sum-product recursion through the factor graph (i.e. Figure 4.10) and yields the

posterior probability distribution of the state given observations up to time k.

4.7.1 The Choice of Belief Propagation

Various aggregation and control methods have been suggested in literature,

mainly fully central or decentralised ones, but also some mixed ones. In a central

approach, the aggregation and the control are determined in a server, which

gathers information on units and computes available Power for DR. It usually

assumes high system observability (precise sensors) [28, 29, 55]. Even so, State

Estimation, via KF (Kalman Filtering) has been suggested in central models to

improve accuracy [29, 54, 55]. Note that in these models ([29, 54, 55]) there

is the assumption of knowledge of the total aggregated TCL power (Ptot) per

substation, which assumes that all TCLs in one substation belong to the same

aggregator/VPP (meaning also same utility or same third party contracts). This

is unrealistic since not all consumers will opt-in in DR, neither be contracted
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to the same companies. Moreover, it would require each Distributed System

Operator to install measuring devices with high resolution in each substation and

then use disaggregation techniques, before finally sending such information to the

aggregator/VPP. Besides the previous issues, this also raises privacy concerns,

unless all consumers have agreed to it and opted-in.

On the other end of the spectrum, decentralised methods are based on smart

agents and to the best of the author’s knowledge no other decentralised State

Estimation has been suggested besides the author’s [121]. Instead of State

Estimation, they rely on assumptions of near perfect knowledge of the state

of TCLs, based on very precise measurements (i.e. thermal sensors), as well

as knowledge of the grid’s state in order to respond. For Balancing Services

these models (e.g. [36, 37, 38]) require accurate frequency readings, in high

resolution and processing of rate of change within 200ms, the power system’s

inertia or RoCoF in case of unbalance events, power system’s damping and the

system’s demand or infeed loss, in order to calculate the required aggregated DR

response. Also, the response of other TCLs (agents) must be predicted/known,

which means total number, average power and duration. Therefore, the authors

usually assume that such information is been updated from some central point

on some sub-hourly intervals and that units, via their local processors (agents),

take decisions accordingly to frequency changes [36, 37, 47]. Note that in reality,

the response of other Balancing Services providers must be known as well, which

is why such Balancing Services are contracted, coordinated and controlled by

the grid operators. Besides that crucial issue, there is also the cost, when not

only accurate thermal sensors but also high resolution frequency readers are

required per agent. On the flip-side, agents (virtual assistants) or applications

that monitor the demand, report it and control it are becoming very common.

In addition, privacy concerns are less of an issue since data per consumer is not
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sent to some central server but only receive power system information (consumers

decide themselves to use such applications and opt-in).

Last, but not least, somewhere in the middle ground mixed models exist. There

are various types, some of the most common described by Totu et al. [35]

and Vinther et al. [39] assume an aggregator collecting consumer (TCL) data,

receiving information from the grid operators as commercial aggregator operate

currently (business as usual), computing available Power for DR and sending

a reference signal during a demand response event. TCLs in this case take a

local decision of how to respond. This approach is closer to a central model.

Some aggregators already include DR in their portfolio in a similar set-up, albeit

industrial loads are used mainly, in combination with other back-up sources,

ensuring that contractual obligations, response level in MW and duration will

be met.

Looking at the rapid adoption of Smart Home Systems which operate with

devices that already provide readings of power states and have basic processing

capabilities, the proposed approach in this thesis fits seamlessly. A few other

approaches can be feasible, with some common points. Those points are that an

aggregator must exist, which has updated information on available total Power

for DR (and a state space model), which operates in a similar manner as current

aggregators (preferably including other sources as well) and can be part of the

market. As such, the signal will be central but decision local as described by

Totu et al [69]. For instance a central signal -0.3 would mean that 30% of units

in on state between [0.7, 1.0] of their deadband will switch off (similarly with a

positive signal for the opposite). According to the example signal, if 10 bins for

each state are assumed (20 in total), it would mean that units in the last 3 on

bins will switch off (though not all from the bin third from the end, as that would

be a bit more than 30%). Architecture examples are:
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• If consumers agree to opt-in, an aggregator would collect all relevant data

(power states) and TCL parameters as per Section 4.3. State Estimation

is performed centrally to compute the available Power for DR. The VPP

responds to System Operator’s requests according to contracts (business as

usual), the signal is computed centrally for DR, but the decision is local. In

case of such a model, which is central, anonymous data from TCLs might

be possible in some way (maybe randomized TCL ID’s which update daily

or so). This could work with KF as well.

• In a more decentralised approach, the agents would do the decentralised

State Estimation as follows: Initial state for all TCLs is according to

power state (time in given state preferably or simply on/off). In an

NTCL population with a given state space model (A TPM) and number

of units in state on, the fraction of TCLs X in each state bin can be

estimated. This is done via a Sum-Product Algorithm, Gaussian BP in

this thesis (the readers are encouraged to read [111]). The BP message

passes on aggregated information (fraction of units in each state bin) and

not individual information (minimizing privacy concerns), given transition

probability, previous state, current estimate and total number of units on.

In practice, together with the BP message, transition probability (calculated

as per Section 4.4), total number of units on (Non) within NTCL and Paver

should be send as well in a fully decentralised State Estimation, where

aggregated data (state X, Non within NTCL, Paver) should be sent to the

aggregator as well.

• Given that only aggregated information needs to be send to the aggregator,

another possible approach is an (Hierarchical) aggregation on some local

level, potentially substation level and then on aggregator level. For example,

a few agents can act as an aggregation medium and then aggregated data

can be send via a Sum-Product Algorithm. Aggregated data per substation

would also be beneficial if known, which can be given to System Operators
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to estimate the change in Power (resulting in changes in Voltage in the

network) in case of a DR action, especially if multiple VPPs exist in the

Distribution Network (even when not in the same substation). Note that

for small time steps (as per Section 4.4), we can make the assumption (with

small error), that the fraction of units (xi(n)) in one bin depends on the

previous time step’s fractions of itself (xi(n − 1)) and its preceding bin

(xi−1(n − 1)) given transition probabilities accordingly (ai,i, ai, i− 1). As

such, an agent per bin can act as the local aggregation point, where TCLs

with a power state belonging to that bin will send data to the according

medium and then BP messages are exchanged between those.

The first and third options can be seen as similar, where in the third option there

is an intermediate step to gather information for on, off states and transition

probabilities. Then only aggregated information is sent to the VPP (fraction of

units in each bin, Pave and TPM probabilities), meaning no states on/off or TCL

parameters or even ambient temperature settings for households are sent to the

VPP.

4.7.2 The Factor Graph Construction

The set of variable nodes X consists of two sets of bins Xoff and Xon. In general,

each factor node from the set F is defined with (noisy) linear equation as defined

in (4.31), and the set contains two sets of factor nodes. The set of factor nodes

Ft ⊂ F which is defined by transition equations is given in (4.25a) and the set of

factor nodes Fm ⊂ F defined by measurement equations provided by (4.25b).

To explain the concept of the proposed algorithm, a simple example with

N = 4 bins is used. More specifically, the TCL population is divided in two

temperature ranges where Xoff = {x1, x2} and Xon = {x3, x4}. The factor nodes
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Ft = {f1, f2, f3, f4} are defined according to (4.25a) and they describe transition

from the time step k to the time step k+1. The factor node Fm = {fy} is defined

by (4.25b) and represents the real-time measurement (e.g. aggregated active

power) in the time step k. Hence, the factor graph in Figure 4.10 represents the

discrete time state space model (4.25).

Figure 4.10: Factor graph of the state-space model for Nbin = 4

4.7.3 Algorithm

The form of the algorithm is shown in Figure 4.11. The initialization of xi ∈ X at

the time instance k = 0 can be done in different ways. The simplest one is to give

each state bin an equal fraction of the population, thus xi = 1/N . Otherwise, by

having an initial assumption of the duty cycle, D (fraction of on state duration

during one cycle), each xi ∈ Xon can be given an equal fraction of D and each

xi ∈ Xoff an equal fraction of 1−D.

Subsequently, the algorithm propagates messages through a sequence of segments

of the factor graph. In the following, the segment defined by the sets of state

variables in two consecutive time instances, k and k+1, is considered (example in
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Figure 4.10). For simplicity of notation, the time indices are not used in further

description of the algorithm, as they are made evident from the context. Each

variable node xi ∈ X is initialized at time instance k from messages arriving from

the factor graph segment processing in time instance k − 1.

The first step is processing messages from the factor node fy to the variable node

xj ∈ Xon which can be computed using (4.34a) and (4.34b):

zfy→xj =
1

cp

(
zfy − cp

∑
xb∈Xi\xj

zxb→fy

)
(4.35a)

σ2
fy→xj =

1

c2
p

(
σ2
fy − c

2
p

∑
xb∈Xi\xj

σ2
xb→fy

)
. (4.35b)

where Xi \ xj ⊂ Xon is the set of variable nodes adjacent to the factor node fy,

excluding the variable node xj. Equations (4.35a) and (4.35b) can be simplified if

zfy is expressed as a function of cp, zfy = z′fy · cp. This is achieved by normalizing

the measurement first. By normalizing the demand it is also easier to check the

aggregated TCLs’ behaviour independently of population size and demand (cp),

which are but scaling constants practically.

The second step is processing messages from variables nodes xj ∈ Xon to factor

nodes fi ∈ Ft according to (4.29a) and (4.29b):

zxj→fi =

(
zxj
σ2
xj

+
zfy→xj
σ2
fy→xj

)
σ2
xj→fi (4.36a)

σ2
xj→fi =

σ2
fy→xj · σ

2
xj

σ2
fy→xj + σ2

xj

(4.36b)

Lastly, messages are propagated from all factor nodes fi ∈ Ft to the next time
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step k + 1 using

zfi→xi = αi,i−1 · zxi−1→fi + αi,i · zxi→fi + bi · uki (4.37a)

σ2
fi→xk+1

i
= σ2

xi
+ α2

i,i−1 · σ2
xi−1→fi + α2

i,i · σ2
xi→fi + b2

i · σ2
ui

(4.37b)

where αi,i, αi,i−1 represent the elements of the Markov transition matrix A.

Figure 4.11: BP algorithm for State Estimation of Factor Graph 4.10

From the algorithm in Figure 4.11, the information that is given is the number

of on units and Power, as in the base case in [29]. But here this is not via

disaggregation but from Smart Meters or Smart Plugs. In some sub-hourly

interval, aij should also be updated (or the info required to compute it according

to Section 4.4). If time in power on state where to be used (as per example in

Figures 4.2 & 4.3) then this could be used for initialization as well (not done in this
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Chapter). Note that when control signals are sent, for TCLs that have switched

state, this information will no longer be as accurate unless the expected state

during the switch is considered. For example, a TCL which is halfway through

the off state and is switched on, is already starting at 50% of the relative dead-

band (for example see Figure 2.21) and the appropriate state bin. It would thus

take approximately half the time to reach θoff again. Considering the expected

state at the time of switch and the duty cycle, it could be calculated in a simple

manner. In general, if not done appropriately it could introduce errors during

control actions.

4.8 Simulation Results

The Monte Carlo model of Chapter 3 is simulated for 10,000 TCLs using the data

listed in Table 4.1 [54], as well as for the cold loads used in Chapter 3. Then, the

state space model is derived for each case and simulated, using State Estimation,

where the total number of units on with some noise is given by the Monte Carlo

model accordingly.

Table 4.1: TCL (Air Conditioner) Parameters

Parameter Value(1) Value(2)

θset 20 oC U(15 oC,25 oC)

δ 1 oC U(0.25 oC,1 oC)

θa 32 oC 32 oC

R U(1.5 oC/kW ,2.5 oC/kW ) U(1.5 oC/kW ,2.5 oC/kW )

C U(1.5 kWh/oC,2.5 kWh/oC) U(1.5 kWh/oC,2.5 kWh/oC)

θg 28 oC U(15 oC,41 oC)

(1) lower heterogeneity, (2) higher heterogeneity (as [54])

Air condition load data from [54], both cases have the same state space model
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Monte Carlo is used to randomly draw parameters from the Uniform distributions

according to Table 4.1, initial temperature θ is taken randomly from a Uniform

distribution within the dead-band. Initial state m is randomly taken with a

Uniform distribution between [0,1], where a successful trial (trial value > mean

duty cycle) returns value mi = 1; otherwise mi = 0. The small heterogeneity

and high heterogeneity difference is taken by using values from the according

columns of Table 4.1, where in higher distribution 5 parameters taken random

values within Uniform distributions instead of only 2.

For comparison purposes, H = 0 for the data listed in Table 4.1 [54]. The

Monte Carlo on cold loads of Chapter 3 are modelled normally, as in Chapter

3. The output is normalized (with respect to cp) in order to track only the

state of the population (number of units on, off). Essentially, for large enough

populations (NTCL >> 1, 000), behaviour of TCLs is independent of the constant

cp. Comparing KF and BP, it is evident that both algorithms yield practically

the same state estimation (as expected).

4.8.1 KF and GBP Results

A comparison between GBP and KF on steady state measurement and number of

iteration/time steps is performed. The initial sates are given as xi = 1/Nbin, the

population size is assumed very large (NTCL →∞), thus noise due to population

size tends to 0, and for a small period no changes in population are assumed.

Results are shown in Figures 4.12, 4.13 and Table 4.2. KF reaches the steady

state of each bin after 15 steps, whilst BP does so after 44 steps, both give

practically the same results. Number of steps between BP and KF are hard to

compare since one iteration of BP is not equal to one iteration of KF, still BP

should improve, something investigated in the next Chapter. Looking at these
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figures also highlights the importance of a good initial state estimation and more

importantly of the preceding time step (k) in order to estimate the following

(k + 1) accurately.
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Figure 4.12: KF State Estimation. Assume NTCL → ∞, thus no noise due to

population size, also assume no external interactions for a short period, thus the

population in steady state. From initialization xi = 1/Nbin to Xss, number of time

steps are observed.

In reality, the initial state estimation of course will not be xi = 1/Nbin, but more

accurate (and obviously between time steps information of the previous step is

used). Under normal operation the state (x(k)) and aggregated demand between

consecutive time steps will not vary greatly, but when control actions are used

there will be some ”drops/jumps” (e.g. Figures 4.14 - 4.19). Good estimation of

state (x(k)) and thus accurate use of control (u(k)) are important in estimating

that change of state (x(k + 1)) and therefore subsequent control actions and

demand output.
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Figure 4.13: BP State Estimation. Assume NTCL → ∞, thus no noise due to

population size, also assume no external interactions for a short period, thus the

population in steady state. From initialization xi = 1/Nbin to Xss, number of time

steps are observed.

Table 4.2: KF & BP Steady State

KF BP

x1 0.13856 0.13857

x2 0.14142 0.14144

x3 0.14443 0.14444

x4 0.14760 0.14757

x5 0.10448 0.10447

x6 0.10610 0.10608

x7 0.10780 0.10778

x8 0.10967 0.10965

KF at 15 iterations, BP at 44, rounded at the 5 decimals
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4.8.2 Simulation Results of Control Commands

Starting with the loads of Table 4.1, for a populations with lower and higher

heterogeneity, at time t = 120min an external signal is given to the whole TCL

population to switch off. The state space model follows the MC model, with a

small lag and initial error which increases at first and then reduces. The delay

to ”catch up” between actions (commands) and output is inherent due to the

state space model itself, something explored in the next Chapter. Finally, it is

obvious when comparing Figures 4.14 and 4.15 that the rebound effect depends

on heterogeneity level, where higher heterogeneity results in faster damping of

oscillations.
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Figure 4.14: 10,000 TCLs, according to Table 4.1, lower heterogeneity, switch off

signal at time 120’ for whole population, short duration

In a 100% homogeneous population this oscillation would remain indefinitely

and in the case of Figure 4.14 where a population with low heterogeneity

(high homogeneity) is modelled, the partial synchronization remains for hours

afterwards. The same conclusion comes from aggregated models based on CFPE,

as shown in [28].
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Figure 4.15: 10,000 TCLs, according to Table 4.1, higher heterogeneity, switch

off signal at time 120’ for whole population, short duration

A few more control commands are explored in Figures 4.16 - 4.19, with commands

given to populations of TCLs of Table 4.1 as well as TCLs of Chapter 3. These

commands vary in duration and percentage of units on. The higher the duration

and number of units used, the higher the rebound afterwards.
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Figure 4.16: 10,000 TCLs, higher heterogeneity (according to Table 4.1), switch

off signal at time 180’ for 40% of units on, 10’ duration.

Also, higher heterogeneity results in faster damping of oscillations. More
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sophisticated control algorithms can improve this behaviour and many such have

been developed in literature as discussed, thus not developed here.
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Figure 4.17: 10,000 TCLs, higher heterogeneity (according to Table 4.1), switch

off signal at time 240’ for 60% of units on, 6’ duration.
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Figure 4.18: 10,000 TCLs of Chapter 3, switch off signal at time 500’ for 40% of

units on, 30’ duration.



CHAPTER 4. State Estimation via Belief Propagation 173

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (h)

0

2000

4000

6000

8000
N

um
be

r 
of

 T
C

L
 u

ni
ts

 O
N MC model

State Estimation

Figure 4.19: 10,000 TCLs of Chapter 3, switch off signal at time 700’ for 60% of

units on, 20’ duration.

4.9 Conclusions

This Chapter introduces BP for state estimation in large scale populations

of TCLs, as well a state space model to represent aggregated heterogeneous

TCL populations, based on transition probabilities. The transition probabilities

according to equations of Section 4.4 include external factors, albeit in reality, it

is not possible to track them, directly that is at least.

The effect of the parameter H on duty cycle (i.e. consumption) is extending ton or

shortening toff , as explained in Chapter 3, (3.46), (3.48), and modelled here via

aH . As observed in Figure 4.3, due to this two TCLs with different parameters can

have the same duty cycle and ton, toff . As such, the TCL can be virtually seen as

operating with different parameters (λ′, θ′g) for that period. What matters at the

end of the day is tracking those ton, toff changes, which practically means tracking

aH and ambient changes indirectly. This can be done via tracking Pon duration,

through a Smart Plug or Smart Meter. These could also used to approximate
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thermal state (Figures 4.2, 4.3) and can be used as initial estimation, which will

be explored more in the next chapter.

Another important point is that the analytical derivation method of Section 4.4

has limitations. Heterogeneity is modelled on α only and assumptions of uniform

distribution of TCL parameters are used. Despite these, the results shown in

simulations show that State Estimation has a good level of accuracy.

In the following chapter, a more generic aggregation method is developed, to fit a

highly heterogeneous population, with heterogeneity in more than one parameters,

whilst being simple and easy to calculate. Additionally, an updated FG and BP

algorithm are presented, where not only information of number of on units is used

but also of number of off units. Last, but not least, methodologies for on-line

updating of the aggregation model are developed which do not rely on precise

thermal sensors but only power readings.



Chapter 5

Aggregation of Heterogeneous

TCLs Using Power Rates

5.1 Introduction

In state of the art models where aggregation methods are explored, heterogeneity

is regarded as partial heterogeneity for modelling purposes, such as in [40] where

it was only considered for a (excluding parameters θg, θa and limiting C, R)

or in [28] where only small and static heterogeneity is considered. Afterwards,

simulations and case studies are performed on data with heterogeneity in more

parameters though, to test models derived with partial heterogeneity. As noted

by the authors [40]; ”If we allow R and Ptrans to vary across TCLs, the A-matrix

becomes harder to derive.” Looking at the method examined in the previous

chapter, for each extra parameter the calculation of an additional integral in

(4.6a) is required, which results to an extra 3 integrals, as well as requiring the

knowledge of each parameter’s distribution. It is hard to add external factors

or reflect their dynamic behaviour (non-static parameters and demand in time,

175
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Chapter 3). In addition, in order to track aggregated populations (such as for

State Estimation [29]) the information of units on and aggregated Power are

measured, whilst information of units off is not considered.

In this chapter, a new aggregation approach is developed, which allows for a

simple calculation of the TPM, with heterogeneity added in multiple parameters,

to better represent real world scenarios. Additionally, improvements to the state

space model and state estimation are introduced alongside the new aggregation

method. As shown, seemingly different types of TCLs can be aggregated, given

similar behaviour to control actions, something indicated in Chapter 3. Hence, a

universal, flexible aggregation model is advantageous for aggregators. Stochastic

errors diminish as population size increases, leading to higher accuracy. In the

case of balancing services, such as FFR, high accuracy is important. TPM and

heating/cooling rates are the base of the aggregated model and BP for state

estimation. The result is a more accurate, flexible, and universal model.

The developed aggregation model was created with the intention to be easily

updated in time in order to match the dynamic behaviour of TCLs. Lastly, any

type of loads which follow a similar behaviour or cycles, such as batteries, can be

modelled in similar frameworks [7, 23], using a TPM.

The chapter is organized as follows. Section 5.2 details how the aggregation model

is formed. Section 5.3 describes factor graphs and the BP algorithm for this model.

Markov aggregation model is formed. Section 5.4 presents simulation results and

a comparison with the previous model. Section 5.5 describes the on-line updating

methodologies and Section 5.6 concludes.
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5.2 On/off Duration to Transition Probability

The method used in Chapter 4 has the following limitations:

• Partial heterogeneity (assumed on one parameter only, a)

• Requirement of uniform distribution of that parameter (4.6b)

• Complex to model and calculate heterogeneity in more parameters as shown

in [40]

• Unpractical to measure/consider H (external influence) directly, as discussed

in Chapter 4, where aH is used instead

The new method is based on deriving transition probabilities based on ton, toff

and the relative temperature advance in time, as shown in Figures 4.2, 4.3. If a

TCL was in on state which had a duration ton equal to 30′, then we could say

that for that state, every minute, the TCL advanced on average 1/30 of the dead-

band (between θon and θoff ). That means on average 3.33% relative temperature

advance every minute. If we separated the dead-band in 10 equal bins, on average,

every minute the TCL would have advanced 1/3 of each bin. We could say, that

given a random point within a bin, on average, the probability of advancing to

the next bin is 1/3 (in a similar manner to Chapter 4).

Of course, the rate (dθ(t)
dt

) reduces as units advance towards the switching points,

θt being an exponential function, thus the transition probability reduces as TCLs

near the end of each state. This shows that units in the first state bins (following

a switch) have a higher probability of moving to the next state bins. This has

being captured in the TPM of Chapter 4, one such TPM can be seen in Table

5.1. The deviation from that average practically depends on parameters θa , θg,

λ. Yet TPMs used in state of the art use a static (same) probability in the TPM
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for each state, practically an approximate average value [29, 40], (this would be

correct if θ(t) was a linear function and not an exponential).

In reality during either the heating or cooling part of the cycle, an individual TCL

may experience a change in temperature opposing its state or hastening it, due

to external factors (see (3.46), (3.48)). Overall though, each part of the cycle will

be completed. Also, when large aggregated populations are considered and their

relative dead-band (0% at θ(on), 100% at θoff ), which are not synchronized, then

these interactions or changes in ambient temperature can be considered randomly

distributed within the relative dead-band in any point in time.

Using (3.18) the on and off rates at different temperatures are calculated:

%on = −λ · (θ(t)− θa(t)− θg) +H(t) (5.1a)

%off = −λ · (θ(t)− θa(t)) +H(t) (5.1b)

where H(t) ≡ λ · υ(t) · θe(t).

Parameters %on and %off represent the rate at which a TCL’ temperature

”advances”, consecutively, so does a population of TCLs and these equations

can be assumed for each individual TCL.

The starting (switch on), ending (switch off) and mean rates are:

%on,start =
dθ(t0)

dt
= −λ · (θon − θa(t0)− θg) +H(t0) (5.2a)

%on,end =
dθ(ton)

dt
= −λ · (θoff − θa(ton)− θg) +H(toff ) (5.2b)

%on,mean =
%on,start + %on,end

2
= −λ · (θoff + θon

2
− θ̄a − θg) + H̄ (5.2c)
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%off,start =
dθ(t0)

dt
= −λ · (θoff − θa(t0)) +H(t0) (5.3a)

%off,end =
dθ(toff )

dt
= −λ · (θon − θa(toff )) +H(toff ) (5.3b)

%off,mean =
%off,start + %off,end

2
= −λ · (θoff + θon

2
− θ̄a) + H̄ (5.3c)

This approximation will have a small error, as seen in Figure 4.3.

At this point, by partitioning the dead-band in Nbin number of bins (Nbin/2 for

each state) we may calculate the mean rate of the nth bin (θn, θn+1) as

%on,n = −λ · (θn + θn+1

2
− θ̄a − θg) + H̄ (5.4)

%off,n = −λ · (θn + θn+1

2
− θ̄a) + H̄ (5.5)

The transition probability from one state bin (θn, θn+1) can be calculated as the

probability of a random TCL, within the state bin, moving out of it in one time

step. Temperature change in one time step τ is:

∆θon,n = %on,n · τ (5.6a)

∆θoff,n = %off,n · τ (5.6b)

The above practically gives the expected temperature change of TCLs, within the

nth bin, in one time step τ . Thus the probability of moving out of the n-th state

bin in one time step is the fraction of temperature change with respect to the size

of the bin.

Pron,n =
∆θon,n
θn+1 − θn

(5.7a)

Proff,n =
∆θoff,n
θn+1 − θn

(5.7b)
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The probability of staying in the same state bin is obviously 1 − Prn, given the

same assumption as in Chapter 4, that for a small time step the potential move

in bin is limited to the next or the existing bin.

TCLs with similar probability transitions, independently of actual TCL parame-

ters, can be aggregated together if they have similar TPMs. As such, heterogene-

ity in multiple TCL parameters is not an issue. Moreover it is a simpler method

where when seemingly different TCLs (λ, θa, θg, θmax, θmin), have similar TPMs,

their response to control actions is similar. This allows for aggregation of larger

TCL populations (even mixed heating and cooling loads), therefore coordinated

control actions should be more accurate due to lower stochasticity related to pop-

ulation size (Section 3.4).

5.3 State Space Model and Factor Graph

The state space model used in Chapter 4 and literature ([29, 40]), as shown in

Figures 4.14 - 4.19, assumes that the effects of actions (u(k)) in time step ”k”

take place and are seen in next time step ”k+1”. Therefore, in a simulation with

a time step of 1 minute, when a control action (u(k)) is given within that minute,

it will be accounted in the next minute (x(k + 1)), even though a change in the

Monte Carlo has already occurred. The State Estimation will try to respond

to that according to measurement y(k) and a small error is observed for time

step k+ 1. The expected practical delay (between command and action) in most

VPPs’ will be below 200ms since they use internet connection (internet connection

is usually around 50ms). If the state space model runs with a control step and

measurement update step <1second (around 200ms) then (4.25) should be used.

Whether in reality measurements and data on TCLs would be available in such

time resolution is unknown. For this thesis 1 minute resolution is assumed. As

such, using (4.25) will have that 1 time step lag and initial error.
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Note that for Balancing Services the response time should be fast and in the

case of Frequency Response Services the requirements can be response <1second

(EFR, FFR etc.). Given these specification, a VPP would probably need to have

state space models in the order of a few seconds, if not faster, with control actions

capture at the same time step.

Otherwise, there will be a lag equal to one time step and some related error. In

which case, it is more accurate to use the following, where control actions are seen

in the same time step [122]:

x(k + 1) = Ax(k) + Bu(k + 1) + v(k + 1) (5.8a)

y1(k + 1) = C1x(k + 1) + w(k + 1) (5.8b)

y2(k + 1) = C2x(k + 1) + w(k + 1), (5.8c)

where C1 = NTCL ·
[
0 . . . 0, 1, . . . 1

]
and C2 = NTCL ·

[
1, . . . 1, 0 . . . 0

]
. Here we

can use y = [y1; y2] and C = [C1; C2] to get the same form as used in Chapter 4.

Estimation of the next time step (k+1), based on the current measurement (k),

is important for control too. A good estimation for the next time steps (k + 1)

allows for control choices with lower error. Therefore, less corrective actions are

required, a key point for open-loop control or control where measurements cannot

be updated fast enough. The actual difference between (5.8) and (4.25) is that

the former accounts for control actions in the same time step and not the next

one, which is preferred here for the given simulation time step as explained above.

5.3.1 Factor Graph and Algorithm

The factor graph in this case uses the same concept as described in the Chapter

4, with the addition of an extra factor node. An example with N = 4 bins is
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shown in Figure 5.1. The new factor node Fm = {fy2} is defined as cp−y(k). The

factor graph in Fig. 5.1 represents the discrete time state space model (5.8).

Figure 5.1: Factor graph of the state-space model for Nbin = 4

The form of the algorithm of the above FG is shown in Algorithm 5.2, where

besides the extra factor node, a new initialization is used. The point of the extra

factor is increased information from the TCL population, where now not only

number of units on is tracked for State Estimation, but also number of units

off . The extra information of number of units in off state can be used in a

similar manner to number of units in on state for state estimation, thus adding

information to the system. Assuming a population of N units, by tracking the

number of units in on state, Non, someone can easily calculate Noff . In reality

though, there will be units which are in the off state of the duty cycle (meaning

idle) and units not in operation, thus there will be an error. As such it is best

to track units in off state. The initialization of xi ∈ X at the time instance

k = 0 can be done as in Chapter 4. The most accurate method though is via the

Steady-State vector or better via ton, toff if power state duration is considered, as

shown and discussed in Figures 4.2, 4.3. The former would be used if only power

states on, off are available and not current ton, toff ; though it would be easy to
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calculate ton, toff by having power states updated every minute or so, it might

not be done for privacy issues. In which case, the available info is only state

(on / off), potentially send with randomized ID. The extra factor makes the

BP algorithm more accurate, as xi ∈ Xoff are more accurate, meaning also the

transition from the last bin off to the first bin on is more accurate. In addition

this has value for TCLs that are not operating 24/7 (like cold loads do) and the

actual number of TCLs NTCL in operation changes dynamically.

Figure 5.2: BP algorithm for State Estimation of Factor Graph 5.1. Dotted lines

denote extra info which may be used but not a necessity.

Regular Transition Matrix: A transition matrix is regular when there is a

power of that matrix that contains all positive non-zero entries. The 3 main rules

of a Regular Transition Matrixes are:
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1. If the transition matrix is not irreducible (not connectable), then it is not

regular

2. If the transition matrix is irreducible (connectable) and at least one entry

of the main diagonal is nonzero, then it is regular

3. If all entries on the main diagonal are zero, but T n (after multiplying by

itself n times) contains all positive entries, then it is regular.

In this case, the TPM (matrix A is regular because of condition 2. Alternatively,

after multiplying with itself r − 2 times (where r the size of rows), A(r−2) has no

0 entries.

5.3.2 Initialization

The Steady-State Vector: A regular Transition Matrix is one that always

achieves a steady state. The probability vector which remains unchanged when

it is multiplied by the transition matrix is the Steady-State vector. The Steady-

State vector, xss satisfies the equation:

Axss = xss ↔ (A− I)xss = 0 (5.9)

where A here is used in a generic way. We will be solving for the A defined in (5.8),

to get its steady state vector. As long as the steady-state vector of a transition

matrix is found, it can be considered regular, regardless of the entries in the

transition matrix (excluding matrices with negative integers, since probabilities

are always positive).

Solving the above for A ∈ Z2n×2n gives (where αij elements of A):

(1− α11)xs1 = α1nxs2n

(1− α22)xs2 = α21xs1

.
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.

(1− α2n2n)xs2n = α2n2n−1xs2n−1

It should be noted here that αii is the probability of not moving within the

next time step, while αi+1,i is the probability of moving. Thus αi+1,i = 1 − αii.

Substituting to the above:

(1− α11)xs1 = (1− α22)xs2 = ... = (1− α2n2n)xs2n (5.10)

This equation shows that in a ”steady state”, the flow of units (from one bin to

the next one) remains steady. In an infinite number of units the above should

hold true for any given moment, assuming no external influence.

This proves the quasi-equilibrium condition of the natural diversity of a cycling

load, in steady state (3.10). In steady state, the flow of units, switching from

on state to off state has to match those switching to the opposite directions, in

steady state, otherwise the aggregated consumption would change. Duty cycle is

the sum of all fractions of units in on state (these are given by the first n bins),

therefore:

D =
∑

xi ∈ Xon =
2n∑
n+1

xn (5.11)

1−D =
∑

xi ∈ Xoff =
n∑
1

xn (5.12)

Equations (5.11), (5.12) and (5.10) can be used to express xss (xsi) as a function

of A (αij). Solution:

1−D = xs1 + xs2 + xs3 + ...+ xsn ⇒

1−D = xs1 + 1−α11

1−α22
xs1 + 1−α11

1−α33
xs1 + ...+ 1−α11

1−αnnxs1 ⇒

1−D = xs1(1− α11)
∑n

1
1

1−αNN

xs1 = 1−D
1−α11

1∑n
1

1
1−αNN
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For i ∈ [1, n]:

xsi =
1−D
1− αii

1∑n
1

1
1−αNN

(5.13)

For i ∈ [n+ 1, 2n], similarly:

xsi =
D

1− αii
1∑2n

n+1
1

1−αNN
(5.14)

5.3.3 BP Message Propagation

The algorithm propagates messages through a sequence of segments of the factor

graph, as described in Chapter 4. Each variable node xi ∈ X is initialized at

time instance k from messages arriving from the factor graph segment processing

in time instance k − 1 apart from the first initialization, using the Steady-State

vector, xss.

The first step is processing messages from the factor nodes fy1 and fy2 to the

variable nodes xj ∈ Xon and xj ∈ Xoff accordingly:

zfy1→xj =
1

cp

(
zfy1 − cp

∑
xb∈Xon,i\xj

zxb→fy1

)
(5.15a)

σ2
fy1→xj =

1

c2
p

(
σ2
fy1
− c2

p

∑
xb∈Xon,i\xj

σ2
xb→fy1

)
(5.15b)
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zfy2→xj =
1

cp

(
(cp − zfy1 )− cp

∑
xb∈Xoff,i\xj

zxb→fy2

)
(5.16a)

σ2
fy2→xj =

1

c2
p

(
σ2
fy2
− c2

p

∑
xb∈Xoff,i\xj

σ2
xb→fy2

)
(5.16b)

where Xon,i \xj ⊂ Xon is the set of variable nodes adjacent to the factor node fy1 ,

excluding the variable node xj (similarly for Xoff,i \ xj ⊂ Xoff).

The second step is processing messages from variables nodes xj ∈ X to factor

nodes fi ∈ Ft:

zxj→fi =

(
zxj
σ2
xj

+
zfy→xj
σ2
fy→xj

)
σ2
xj→fi (5.17a)

σ2
xj→fi =

σ2
fy→xj · σ

2
xj

σ2
fy→xj + σ2

xj

(5.17b)

Lastly, messages are propagated from all factor nodes fi ∈ Ft to the next time

step k + 1 using

zfi→xi = αi,i−1 · zxi−1→fi + αi,i · zxi→fi + bi · uki (5.18a)

σ2
fi→xk+1

i
= σ2

xi
+ α2

i,i−1 · σ2
xi−1→fi + α2

i,i · σ2
xi→fi + b2

i · σ2
ui

(5.18b)

where αi,i, αi,i−1 the elements of the TPM A.

The output, xk+1
i states, is corrected through normalization over the sum

ΣN
i=1x

k+1
i , where N here is the summation variable.
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5.4 Simulation Results

TPM comparison

The model of Chapter 4 (parameters listed in Table 4.1 [54]) is used to compare

TPMs between Chapter 4 and Chapter 5. Tables 5.1, 5.2 show these TPMs

according to Chapter 4 (Section 4.4) and Chapter 5 (Section 5.2) methods.

Analytical calculation in the first case, as mentioned before, is limited to

heterogeneity in one parameter(α). The difference between the 2 TPM is minimal,

this is expected due to the choice of Gaussian and Uniform distributions for TCL

parameters (Table 4.1). In case of different parameter distribution (e.g. Log-

Normal distributions where the mode value is a better choice than the average

value), the gap is wider. Note, that as stated in [54], the analytical calculation

of the TPM requires assumption of Uniform distribution of parameter α, for the

rest TCL parameters within the population average values are assumed.

Convergence comparison

Another change in this chapter is the FG (Figure 5.1) and its algorithm (algorithm

5.2). Factor node fy2 adds extra information, which causes xj∈Xoff to be updated

faster and normalisation converges all states (xj∈X) to fractions whose sum equals

1. A comparison between the previous model (Chapter 4) [121] and this one can be

seen between Figures 4.13 and 5.3. Both are given a constant measurement (equal

to the steady state in this case) and have the same initialization (for comparison

purposes) as per Chapter 4. Note, the initialization here is the same only for

comparison purposes and for the remaining simulations of this chapter they will

be as described in the previous section.



CHAPTER 5. Aggregation of Heterogeneous TCLs Using Power Rates 189

Table 5.1: TPM according to Section 4.4

Xoff Xon

x1 x2 x3 x4 x5 x6 x7 x8

x1 0.7526 0 0 0 0 0 0 0.3130

x2 0.2474 0.7577 0 0 0 0 0 0

x3 0 0.2423 0.7627 0 0 0 0 0

x4 0 0 0.2373 0.7678 0 0 0 0

x5 0 0 0 0.2322 0.6718 0 0 0

x6 0 0 0 0 0.3282 0.6769 0 0

x7 0 0 0 0 0 0.3231 0.6819 0

x8 0 0 0 0 0 0 0.3181 0.6870

Heterogeneity can be assumed on a = e−τ/RC only, fixed uniform distribution

Rounding at 4 decimals(per MatLab). Columns may sum to 0.9999 or 1.0001

From the very first iteration the new model gives an output close to the steady

state and converges about 3 times faster for xi ∈ Xoff and about twice as fast for

xi ∈ Xon. This shows the importance of tracking not only on units, as commonly

suggested in literature ([29, 40, 54, 55]) but also off units. The steady states are

identical, as seen in Table 5.3.

NB.: If (5.13), (5.14) are applied, according to transition probabilities of Tables

5.1 and 5.2, the resulting steady states are practically the same as in Table 5.3.
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Table 5.2: TPM according to Section 5.2

Xoff Xon

x1 x2 x3 x4 x5 x6 x7 x8

x1 0.7507 0 0 0 0 0 0 0.3148

x2 0.2493 0.7557 0 0 0 0 0 0

x3 0 0.2443 0.7607 0 0 0 0 0

x4 0 0 0.2393 0.7658 0 0 0 0

x5 0 0 0 0.2342 0.6701 0 0 0

x6 0 0 0 0 0.3299 0.6751 0 0

x7 0 0 0 0 0 0.3249 0.6801 0

x8 0 0 0 0 0 0 0.3199 0.6852

Heterogeneity TCL parameters of table 4.1, Gaussian & Uniform distributions

Rounding at 4 decimals(per MatLab). Columns may sum to 0.9999 or 1.0001

0 2 4 6 8 10 12 14 16 18 20
Iterations

0.1

0.12

0.14
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at

e
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x8

Figure 5.3: New factor graph and algorithm, state estimation for ”steady” state

State space models performance comparison

Using the TCL parameters listed in Table 4.1 (high heterogeneity), Mathieu

et al. [54] simulated a population of 10,000 TCLs and randomly drew each
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Table 5.3: BP Steady State, Chapter 4 and 5 comparison

BP (Chapter 5) BP (Chapter 4)

x1 0.13880 0.13857

x2 0.14147 0.14144

x3 0.14428 0.14444

x4 0.14719 0.14757

x5 0.10449 0.10447

x6 0.10610 0.10608

x7 0.10783 0.10778

x8 0.10982 0.10965

Chapter 5 BP at 14 iterations (Chapter 4 BP at 44, Table 4.2),

rounded at the 5 decimals

parameter from the uncorrelated uniform distributions between the minimum

and maximum values. Information of aggregate power demand was used for state

estimation. The performance of the state space model to predict the aggregate

response to control signals was evaluated using the RMS (Root Mean Square)

error for the first 5 minutes of the simulation following a control action. In

more detail (quoting Mathieu et al. [54]): ”Two randomly generated open-

loop control sequences (drawn from uniform distributions) were used to force

the population: high forcing, in which up to 12.5% of the TCLs were switched in

one time step, and low forcing, in which up to 2.5% of the TCLs were switched

in one time step. The control was applied such that TCLs in bins nearer to

the dead-band were switched preferentially. We then evaluated the ability of

the model to predict the aggregate power consumption of the plant. We assume

that the model knows the state perfectly when the prediction horizon is zero and

gains no additional state information over time.” The RMS prediction error was

normalized by the steady state power consumption of the TCL population, for

different prediction horizons and plotted. The reported RMSE for Nbin = 10
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for high forcing (12.5% of the TCLs) was approximately up to 80% and for low

forcing (2.5% of the TCLs) was approximately up to 18%. Unfortunately no

further information or exact numbers were given. For more details the readers

are prompted to read [54].

For comparison purposes, the same procedure to calculate the RMS error will be

used. The RMS error is calculated using the standard formula:

RMSE =

√
Σn
i=1(y1,i −Non,i)2

n
(5.19)

where n the prediction horizon (in minutes) starting at the minute the control

signal is sent (i = 0), as done in [54]. Non is given by the MC simulation with

actual number of units on. Then the RMS error is normalized by the steady state

number of TCL units on (D ·NTCL). Note that simulations of Chapter 4 the RMS

error is calculated using yi instead of y1,i.
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Figure 5.4: Chapter 4 model performance, without state estimation after signal,

lower heterogeneity

At time t = 120min a short switch off command is given to all TCL units.

At that point there is no further state information over time (as in [54]).
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Results can be seen in Figures 5.4 - 5.9, where the RMS error of Figures 5.4, 5.5

are shown in Figures 5.6, 5.7.
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Figure 5.5: Chapter 5 model performance, without state estimation after signal,

lower heterogeneity

The RMS error of Figures 5.4, 5.5 are very similar in shape and numbers, thus

excluded here but included in Table 5.4. The prediction horizon of up to 120

minutes post signal was chosen since there is little change in the RMS error

afterwards, which is expected when observing the State Estimation in Figures

5.4, 5.5 (or Figures 5.8, 5.9).
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Figure 5.6: RMS error of Figure 5.4, for prediction horizons up to 120 minutes.
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Figure 5.7: RMS error of Figure 5.5,for prediction horizons up to 120 minutes.
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Figure 5.8: Chapter 4 model performance, without state estimation after signal,

higher heterogeneity



CHAPTER 5. Aggregation of Heterogeneous TCLs Using Power Rates 195

1 2 3 4 5
Time (h)

0

2000

4000

6000

8000

N
um

be
r 

of
 T

C
L

 u
ni

ts
 O

N MC model
State Estimation

Figure 5.9: Chapter 5 model performance, without state estimation after signal,

higher heterogeneity

The results show an improvement compared to the method used in Chapter 4 and

in [54]. Also, it is apparent that the state space model itself is not enough and

State Estimation is crucial for accuracy.

Simulation results with same control commands as in Chapter 4

The same control commands and same TCL populations as in Section 4.8.2 are

used for comparison purposes.
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Figure 5.10: 10,000 TCLs, according to Table 4.1, lower heterogeneity, switch off

signal at time 120’ for whole population, short duration
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Figure 5.11: 10,000 TCLs, according to Table 4.1, higher heterogeneity, switch

off signal at time 120’ for whole population, short duration

Compared to the method of Chapter 4 there is an improvement in the first few

steps after the control command is send, which results in more accuracy thereafter

as well.



CHAPTER 5. Aggregation of Heterogeneous TCLs Using Power Rates 197

0 1 2 3 4 5 6 7 8
Time (h)

2000

3000

4000

5000

6000

7000
N

um
be

r 
of

 T
C

L
 u

ni
ts

 O
N

MC model
State Estimation

Figure 5.12: 10,000 TCLs, higher heterogeneity (according to Table 4.1), switch

off signal at time 180’ for 40% of units on, 10’ duration.
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Figure 5.13: 10,000 TCLs, higher heterogeneity (according to Table 4.1), switch

off signal at time 240’ for 60% of units on, 6’ duration.

In case of steps around 1 second or less (based on expected time for the command

signal to be send and the time for TCLs to respond), the state space model should

change where control actions in step k (u(k)) are observed in step k+1 (x(k+1)).
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Figure 5.14: 10,000 TCLs of Chapter 3, switch off signal at time 500’ for 40% of

units on, 30’ duration.
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Figure 5.15: 10,000 TCLs of Chapter 3, switch off signal at time 700’ for 60% of

units on, 20’ duration.

Finally, Table 5.4 shows the RMS error of simulations in Chapter 4 and 5.

It is hard to have a direct comparison with [54] due to lack of data, yet the

closest comparison would be the high forcing (%12.5 of TCL population) with the
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simulation of 40% with a duration of 10’. In which case both methods described in

Chapter 4 and 5 have better results. Overall the results of the method described

in Chapter 5 has the lowest RMS error between all. The larger the percentage of

the TCL population used to switch state the greater the RMS error as expected.

It is hard to comment how much would be used in real world applications without

the appropriate data.

Table 5.4: RMS errors of simulations in Chapters 4 and 5

Figures Chapter 4(max) Chapter 4(120’) Chapter 5(max) Chapter 5(120’)

5.4, 5.5 99.7 13.1 13.1 8.2

5.8, 5.9 100.6 13.4 14.1 8.5

4.14, 5.10 99.7 10.7 5.3 3.4

4.15, 5.11 100.6 10.7 5.7 3.4

4.16, 5.12 37.7 8 5.5 3.4

4.17, 5.13 57.3 9.9 6.8 3.7

4.18, 5.14 40.9 7.8 1.3 1.1

4.19, 5.15 58.7 9 2.9 1.5

5.5 Online Aggregated Parameter Identification

As investigated in Chapter 3, loads vary during the day due to various external

factors. Therefore, it is crucial for aggregation models to be able to keep up

with those changes and update in real-time if possible. El-Férik & Malhamé [98]

proposed an identification algorithm to calculate and update the parameters (C,

R, P , θ etc.) of their proposed CFPE model, so that it could cope with real

world changes and concluded that sampling intervals of 15.198 minutes or less is

required. Trovato et al. [22], Vinther et al. [39] and Totu et al. [34] in their

respective works have also reported similar conclusions, where precise sensors for

tracking of current temperature and system parameters are required for all loads.
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On the other hand, Koch et al.’s work [29] suggests a model with reduced sensoring

requirements, where sampling of the state of a percentage of the population is

only needed. Still for state (temperature for the case of TCLs) thermal sensors

are needed even if not as precise. Mathieu et al. [54] build on that work and

investigate a joint parameter/state estimation through EKF to further reduce

sensor requirements but without success.

A method to derive the TPM is introduced which requires no thermal sensors,

but only using knowledge of power on state (duration), as it is provided by smart

meters, smart appliances or even from disaggregation techniques as described

earlier (variation of this method). The assumptions are the following:

• Power on is known in time (i.e. from smart meter). Thus ton and toff are

known.

• Set-point is known (θset, θon, θoff ). This does not require thermal sensors.

• Either θg is known or external temperature θa is estimated (can be known

for indoors, from the set-point of other devices)

A more generic calculation of average rates over the whole period of each state is

(using the notations ρon,aver, ρoff,aver to avoid confusion):

ρoff,aver = −θoff − θon
toff

(5.20a)

ρon,aver = −θon − θoff
ton

(5.20b)

NB : An important aspect is that they require less information and that external

factors are actually included. Since the average rates depend on ton, toff , any

effect of external factors and/or variations is factored in.

Consider for example Figure 4.3. Both TCLs have the exact same ρon,aver, ρoff,aver

(and ρon,mean, ρoff,mean obviously), even though they clearly have different TCL
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parameters. Using equations (5.2c) and (5.3c) the values λ and θg (or θa) can

be calculated. The calculated values do not reflect the actual parameters of the

device, but rather the ones that the system should have to account for noise,

temperature changes, external factors etc. This holds true especially for λ(t)

which adjusts as cycles change, but that actually makes the system robust (to

avoid confusion notations λ′ and θ′g will be used, as in the parameters of the TCL

without noise of Figure 4.3). Solving (5.2c) and (5.3c) for λ′ and θ′g gives:

λ′ = − ρoff,mean
θon+θoff

2
− θ̄a

(5.21)

θ′g =
θon + θoff

2
− θ̄a +

ρon,mean
λ′

(5.22)

Alternatively, (4.2) can be used to calculate λ′ (λ′ replacing λH in the equation)

and (3.46) to calculate θ′g (solving for θg and using λ′ value in place of λH). For

a large population of TCLs, the error of this assumption will be minimal. This is

easily observed in Figure 4.3 where such disturbances are distributed randomly

since the TCLs are not synchronized. Thus, in some TCLs the bin estimation will

have an error towards one direction and in some other TCLs towards the other.

Given a heterogeneous population, various readings of Pon and subsequently

ton and toff measurements are expected. The first step is to determine the

distribution of those and process them in order to create the TPM. It might

also be favourable to cluster them when deemed appropriate, independently of

the load type. The readings reflect recent data but not exactly real-time data,

as the ton, toff are the ones from states that have just ended, yet the aggregated

state should not change significantly.
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5.5.1 Case Studies

The proposed method’s accuracy was tested using the simulated MC model

employed before with a population of 10,000 TCLs (Table 4.1), whose TPM is

already known as a basis for comparison (Tables 5.1, 5.2). A sampling every 15

minutes is taken, where duration of power on (ton) and power off states (toff )

is measured, as it could be done in real life (note that Smart Plugs track power

state every second and these updates can be done in smaller intervals than 15

minutes). Some of those can be seen in Figures 5.16, 5.18, 5.17 and 5.19, where

for blocks of 15 minutes the duration of ton and toff of TCL units is tracked.

Figure 5.16: Distribution of power on state duration ton. Sampling between

simulation time 30’ and 45’.

In these figures the distribution (histogram) can be seen, where for instance in

Figure 5.16, between simulation time 30’ and 45’, an approximate number of 300

TCLs had ton equal to 15 minutes and a total number of units on is above 4000,

as expected when looking at Figure 5.12 in simulation time 45’. Additionally,

knowledge of set-point (θoff , θon) and estimation of ambient temperature (θa

with noise, e.g. from the settings of heating or an air-conditioner, which requires



CHAPTER 5. Aggregation of Heterogeneous TCLs Using Power Rates 203

no thermostat) are considered. Examining the distribution of Figures 5.16, 5.18,

5.17 and 5.19 it is apparent that the Log-Normal distribution is a good fit. Now

using the ton and toff information we will calculate the TPM as described in the

previous section.

Figure 5.17: Distribution of power on state duration ton. Sampling between

simulation time 255’ and 270’.

Figure 5.18: Distribution of power off state duration ton. Sampling between

simulation time 30’ and 45’.
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Figure 5.19: Distribution of power off state duration ton. Sampling between

simulation time 255’ and 270’.

A few cases will be examined on representative ton , toff values to be used in order

to derive the TPM closest to the ones of Table 5.1 and Table 5.2. According to

the data observed (part of it seen in Figures 5.16, 5.18, 5.17 and 5.19), these cases

are:

• Case 1: First and simplest case, use the mean values of ton, toff to calculate

the TPM (would fit well Gaussian distributions).

• Case 2: Secondly, use the median values of ton, toff to calculate the TPM.

• Case 3: Lastly, given the observation that the distribution of ton, toff

values follows a Log-normal distribution trend, examine between the mean

(exp

(
µ+

σ2

2

)
), median (exp(µ)) and mode (exp(µ− σ2)). A note here

is that even though the input parameters (Table 4.1) do not follow a Log-

normal distribution, the resulting ton, toff do. This is easily explained by

looking at (3.46), (3.48) of Chapter 3.

The resulting TPMs for each of these cases are shown below. For the case of
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Log-Normal distribution the best result was given using the mode and the others

are not shown.

Table 5.5: TPM, transition from column to row - case 1

Xoff Xon

x1 x2 x3 x4 x5 x6 x7 x8

x1 0.7831 0 0 0 0 0 0 0.2666

x2 0.2169 0.7875 0 0 0 0 0 0

x3 0 0.2125 0.7918 0 0 0 0 0

x4 0 0 0.2082 0.7962 0 0 0 0

x5 0 0 0 0.2038 0.7203 0 0 0

x6 0 0 0 0 0.2797 0.7247 0 0

x7 0 0 0 0 0 0.2753 0.7290 0

x8 0 0 0 0 0 0 0.2710 0.7334

Rounding at 4 decimals(per MatLab). Columns may sum to 0.9999 or 1.0001

Table 5.6: TPM, transition from column to row - case 2

Xoff Xon

x1 x2 x3 x4 x5 x6 x7 x8

x1 0.7708 0 0 0 0 0 0 0.2788

x2 0.2292 0.7755 0 0 0 0 0 0

x3 0 0.2245 0.7801 0 0 0 0 0

x4 0 0 0.2199 0.7847 0 0 0 0

x5 0 0 0 0.2153 0.7073 0 0 0

x6 0 0 0 0 0.2927 0.7120 0 0

x7 0 0 0 0 0 0.2880 0.7166 0

x8 0 0 0 0 0 0 0.2834 0.7212

Rounding at 4 decimals(per MatLab). Columns may sum to 0.9999 or 1.0001
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Table 5.7: TPM, transition from column to row - case 3

Xoff Xon

x1 x2 x3 x4 x5 x6 x7 x8

x1 0.7576 0 0 0 0 0 0 0.3035

x2 0.2424 0.7625 0 0 0 0 0 0

x3 0 0.2375 0.7674 0 0 0 0 0

x4 0 0 0.2326 0.7723 0 0 0 0

x5 0 0 0 0.2277 0.6818 0 0 0

x6 0 0 0 0 0.3182 0.6867 0 0

x7 0 0 0 0 0 0.3133 0.6916 0

x8 0 0 0 0 0 0 0.3084 0.6965

Rounding at 4 decimals(per MatLab). Columns may sum to 0.9999 or 1.0001

As it is easily observed the Log-Normal distribution with mode gives the closest

result to the base TPM, which is expected. The ones corresponding to on states

have an error of approximately 1-2% compared to Tables 5.1 and 5.2. This

showcases that accurate enough TPM can be derived via ton and toff and limited

information, without the need of high precision thermal sensors or other expensive

equipment, in contrast to other methods (e.g. [54, 22, 34, 39]). The duty cycle in

steady state of these TPMs can be obtained as described in Section 5.4.

5.5.2 Switches Tracking

The method described above can be used when the aggregated population is in

a steady state; steady state here is defined as having no considerable changes on

aggregated level in a short period of time (i.e. permitting small noise). Of course

that is not the case all the time, as analysed in detail in Chapter 3. As such it is

important to include some method of tracking it.
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Equation (5.10) describes the condition of a steady state, since the number (or

fraction of the population) of units that switch from on state to off state have to

be equal to the ones that switch the other way around, otherwise there would be

no steady state. In reality, this will be the case, but with a small level of noise.

The parameter z can be defined as the fraction of switches between states (and

state bins).

(1− α11)xs1 = (1− α22)xs2 = ... = (1− α2n2n)xs2n (5.23)

The number of on switches and off switches can be tracked via Smart Meters

and Smart Plugs (or even disaggregation on feeder level [41, 42, 94] though not

probable as discussed earlier). In one time step h, the average (expected) number

of on and off switches are equal to the fraction of h to ton, toff of the population

within each corresponding state:

swoff (h) =
h

toff
Noff =

h

toff
(1−D) ·N (5.24a)

swon(h) =
h

ton
Non =

h

ton
(D) ·N (5.24b)

Using D = ton
ton+toff

, 1 − D =
toff

ton+toff
, it easy to show that woff (h) = swon(h)

during steady state, as expected. Expressing (5.24a) and (5.24b) as fractions

(divided by N), they are equal to (1−αnn)xs,n (off switches) and (1−α2n2n)xs,2n

(on switches) respectively. When (5.24a) and (5.24b) are (almost) equal, steady

state can be assumed.

Another interesting application of tracking switches is identifying the TPM which

describes the aggregated behaviour. One simple way of doing so, is by using the

equations (5.24a) and (5.24b) and having knowledge of the most recent duty cycle

D(t) (i.e. 15minutes intervals as described in the method above) to calculate ton

and toff in almost real-time. Another way of doing so is by estimating the duty

cycle in real-time. Given the average demand per unit Paver and the current
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aggregated demand Ptot:

Ptot ≈ D ·N · Paver ↔ D ·N ≈ Ptot
Paver

(5.25)

Replacing (5.25) into (5.24a) and (5.24b):

toff ≈
Ptot
Paver

· h

swoff
(5.26a)

ton ≈
Ptot
Paver

· h

swon
(5.26b)

5.6 Conclusions

This chapter introduces a new method to model aggregated heterogeneous pop-

ulations of TCLs and loads with similar operational characteristics. TPM based

models are used in conjunction with on/off rates, referring to the operational

behaviour and a methodology to analytically derive the TPM is presented. Af-

terwards, the equivalent FG is described as well as the BP algorithm which runs

on top. The results are compared to existing models and the one used in the pre-

vious chapter. Finally, simulation results and comparison to the existing models

and previous work are illustrated, which highlight the advantages of the proposed

framework. These can be summarised as:

1. A new methodology, to derive the TPM, modelling heterogeneity in multiple

parameters in a simple manner, as well being external factors.

2. Can be used universally for various TCLs types which have similar TPMs

(or even other loads with similar TPMs).

3. A more appropriate state space model is suggested and its equivalent factor

graph, resulting in higher accuracy on predicting new time steps and control
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actions. The BP state estimation algorithm is also updated facilitating

faster convergence and higher accuracy.

4. Methodologies for online robust updating have been proposed, without

requirements of (precise) thermal sensor, but only power measurements from

smart meters or disaggregation on feeder / substation level.

5. A simple metric to identify steady state was also created.
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Chapter 6

Thesis Conclusions

6.1 Thesis Summary

This thesis made a contribution in the four key-aspects of the DR via TCLs

(and similar loads with storage capabilities): dynamic behaviour modelling,

heterogeneous aggregation, state estimation of large populations and dynamic

tracking. The second Chapter examines the DR potential of loads, mainly

residential but can be extended to commercial ones as well, under different types

of DR services. DR balancing services are crucial for the grid’s stability, especially

under high intermittent RES penetration; later Chapters of this thesis focus on

TCLs in particular as loads with the highest potential for such DR given that they

are available 24/7 and have high demand throughout the day, thus high reliability

as there is always a significant amount that be used for DR. The third Chapter

deals with the derivation of dynamic thermal models to describe aggregated

behaviour of TCLs. Different types of cold loads are modelled via Monte Carlo

with high level of accuracy with regard to the scope of this work. The fourth

Chapter introduces a distributed state estimation algorithm, Belief Propagation,

211
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over Factor Graphs and in the fifth Chapter a novel aggregation model is combined

with BP and online tracking and updating algorithms. It is concluded that a large

population of heterogeneous TCLs can be accurately modelled over different time

scales and without the use of expensive and sophisticated sensors or monitoring

equipment; This is based on approximate (with noise) knowledge of power states

which can infer relative thermal states, meaning reduced CAPEX and OPEX for

DR services.

Reducing infrastructure and communication cost helps to minimize total system

cost, but also when distributed method are considered privacy concerns are

minimized [123, 124]. Instead of transmitting usage data – whether real-time

or not – to a central controller, distributed models can be used which exchange

between them aggregated data and afterwards it is send to the VPP/aggregator.

Alternatively, anonymous or randomised data might be possible to be utilized,

such via randomized IDs assigned every few hours or so, though such an case has

not been studied here for its validity and this only a suggestion. Disaggregation

on substation level, as suggested in literature, would have to be done by System

Operators and then data would have to be sent to VPPs/aggregators, though

that would have various implications, besides privacy concerns (in such case

all connected end users would have to give consent). For instance, when in

the same substation, there are clients who have contracted to more than one

VPP/aggregator, differentiating the information to send to each VPP/aggregator

is impossible.

State estimation is imperative in minimizing the errors and state space models

can be used for stochastic control. Probabilistic signals can be sent to (part of)

the cluster and then decision is taken locally based on the power state of the

TCLs.
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6.2 Potential Implications

6.2.1 Dynamic Load Modelling

Data acquisition of (aggregated) demand profiles on a daily basis, when linked

with affecting factors (such as weather conditions, time, day of the week, season,

holidays, etc.), can improve load forecasting. This, combined with almost real-

time aggregated demand readings can greatly increase intra-day forecasting. The

outcome is minimization of errors in day-ahead and intra-day markets, thus

reduced dispatch and re-dispatch costs.

6.2.2 Proposed DR Framework

There are a few key points, which can be seen as requirements for successful

deployment of residential DR, as the one investigated in this thesis:

• Viability is probably the foremost requirement, which means minimizing

cost where possible; Precise thermal sensors, high sampling frequency

measuring devices, sophisticated sensoring and monitor equipment etc., can

be a feasible but not viable solution.

• It is not only about minimizing costs, but also about privacy and security

concerns associated with how advanced metering and consumers’ data are

used. Transmitting consumers’ data centrally could cause lower levels of

participation in DR. Realistic solutions must aim on anonymous or limited

data or intervals of readings, which means utilizing only a fraction of the

communication and computation capabilities available in a Smart Grid

[125, 126].
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• Yet, control strategies must be robust, with tracking and real-time evalu-

ation DR availability. Aggregators/VPPs require feedback or closed loop

control for accuracy.

The statistical modelling and on-line aggregated parameter identification allow

for minimal metering infrastructure, relying on power measurements and not

precise thermal sensors which are costly. The framework proposed allows for

flexible design from central to distributed designs, whilst hierarchical ones seems

to be a good niche. As such, the aggregated data reaching the central level

(VPP/aggregator) is practically anonymous, whilst being sufficient. High-tech

measurement equipment (i.e. frequency readings) on local level are not required,

since the signal can be broadcast centrally, yet decision is taken locally on unit

level.

6.2.3 Large Scale DR Implications

The analysis of the residential demand in flexible, deferrable and base demand

gives an insight on the potential for both balancing services and dynamic pricing.

DR is but the utilization of already existing resources within the system, which

are ubiquitous and large in numbers, available 24/7, thus highly reliable and do

not require fuel.

As such, DR can benefit Power Systems in various ways, either by sculpting the

daily demand profile in favourable system conditions or providing the ever more

needed balancing services. The DR in such cases can be seen as “borrowed”

energy. Loads have to provide some specific services which require a set amount

of energy within some time and constraints. Power ratings can vary within those,

as long as the energy and service is delivered; i.e. a kettle’s power rating might

be held a) constant or b) vary 5% higher and 5% lower on equal time scales, the
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thermostat will activate when the same total thermal energy is delivered in both

cases. Varying though the total demand by 5% when a generation in-feed loss

occurs could determine whether the system maintains stability or not. To that

extend DR’s benefits are:

• Reduced cost since there is no fuel consumption, compared to spinning

reserves which tend to be expensive (running below rated value and fast

ramping engines).

• Reduced emissions accordingly, by avoiding use of conventional spinning

reserves, running in inefficient states.

• RES absorption through negative reserves (e.g. Demand Turn Up in UK),

further assisting in cheap and clean energy.

• Dynamic pricing to regulate demand and supply, such as for peak demand

reduction, reducing generation dispatch costs.

• Enhanced power system stability via frequency services (e.g. Firm Fre-

quency Response, Enhanced Frequency Response in UK).

• Extra system flexibility for system operators, such as in case of congestion

management.

It is important to note that the above are already provided in various countries

and adding residential DR will further enhance these capabilities. Studies have

shown that significant cost savings can be achieved by adding an extra control

parameter. For the UK the potential was estimated up to £813 million annually

in under a Gone Green scenario (2030) from the use of TCLs for DR whilst also

greatly reducing greenhouse gases emissions [127].
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6.2.4 Aggregators

There are a few extra benefits of aggregators utilizing DR, arising from demand

monitoring, which applies mostly to industrial and commercial units and not to

residential ones:

• Power charges management (i.e. Triad management in UK). Triad periods

are defined as half hourly periods of peak consumption, occurring between

November and February each year, with at least 10 days between each triad

period. Businesses are charged according to their consumption during those

periods. VPPs monitor and reduce consumption during those periods.

• Energy savings (energy efficiency), by monitoring usage and demand of

loads, as well as optimising consumption where possible.

• Abnormal operation / fault detection, using historic load data.

6.3 Limitations

The proposed models in this thesis are designed for DR for large scale populations,

using statistical models, state estimation and with specific data requirements.

They were based on specific assumptions and as such, have the following

limitations:

• First and foremost, as in every statistical model, stochasticity produces

some error. In the case studies investigated in this thesis, it was shown that

for populations below a few thousands (2,000 approximately), the error can

be prohibiting. As such, one limitation is the need for a large number of

loads (more than 20,000 preferably).



CHAPTER 6. Thesis Conclusions 217

• Another related limitation is the examined distributions of TCLs param-

eters, given the experimental data available. For other distributions the

accuracy is unknown, yet same principles can be used, for instance cluster-

ing according to ton, toff parameters and use of representative population

values to calculate the TPMs.

• For the state space model and state estimation, Gaussian (white) noise was

assumed. In reality, coloured noise is more likely to be observed, in which

case the GBP algorithm has to be adjusted accordingly.

• Power measurements are a requirement, they can be provided from Smart

Meters and/or Smart Plugs and their Apps, or even from Smart Appliances

directly. Alternatively, (thermal) state readings can be used (though not

advised due to the associated cost of extra sensors) or disaggregation.

• The intervals of readings (due to privacy concerns) were assumed to be

at 15 minutes, for significantly longer intervals the accuracy might not be

satisfactory.

Although the proposed methods can achieve relatively highly accurate results,

there are always errors when approximate and stochastic models are used. Even

with the most accurate dynamic models, exact knowledge of DR availability

in advance (as in day ahead) is not possible, but only some forecast of mini-

mum/maximum DR availability with level of confidence. This is precisely why

on-line tracking and updating is crucial. Still, DR cannot be a ”stand alone” solu-

tion and some form of backup will be required to ensure the minimum balancing

requirements are always met.

Another important limiting factor during the course of this thesis was the scarce

availability of DR and residential load real world data. Additionally, no field trials

took place to verify the results in real world.
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6.4 Further Work

Further improvement in the accuracy of aggregated behaviour of loads, as those

considered in this work and not only, is possible. First and foremost, pilot

studies are essential for commercial acceptance; main aspects to focus on would be

studying the distribution of real-world loads, preferably in the order of thousands

and state estimation noise, which is expected to be non-Gaussian.

Dynamic updating in real-time can also be studied more in depth and improved,

especially during periods when aggregated behaviour is shifting, as well as the

effect on control actions. For frequency DR services, these should be combined

with analysis of the effect of communication constraints, delays and packet loss.

Moreover, similar models should be tested and validated on other loads with

storage capabilities and/or similar characteristics, notably EVs and potentially

wet loads. Then the impact on national level should be examined. Lastly, the

effect of both active and reactive power changes associated to the control of

loads should be investigated in realistic networks; on voltage profiles (distribution

networks - active power, transmission networks - reactive power).
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Appendix

Figure 7.1: Human interaction events: distribution between 0am and 1am for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.
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Figure 7.2: Human interaction events: distribution between 0am and 1am for

10,000 households, ”zoom” to non-zero values.

Figure 7.3: Human interaction events: distribution between 1am and 2am for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.
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Figure 7.4: Human interaction events: distribution between 1am and 2am for

10,000 households, ”zoom” to non-zero values.

Figure 7.5: Human interaction events: distribution between 2am and 3am for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.
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Figure 7.6: Human interaction events: distribution between 2am and 3am for

10,000 households, ”zoom” to non-zero values.

Figure 7.7: Human interaction events: distribution between 3am and 4am for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.
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Figure 7.8: Human interaction events: distribution between 3am and 4am for

10,000 households, ”zoom” to non-zero values.
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Figure 7.9: Cumulative distribution between midnight and 4am.
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Figure 7.10: Human interaction events: distribution between 4am and 5am for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.

Figure 7.11: Human interaction events: distribution between 4am and 5am for

10,000 households, ”zoom” to non-zero values.
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Figure 7.12: Human interaction events: distribution between 5am and 6am for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.

Figure 7.13: Human interaction events: distribution between 5am and 6am for

10,000 households, ”zoom” to non-zero values.
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Figure 7.14: Human interaction events: distribution between 6am and 7am for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.

Figure 7.15: Human interaction events: distribution between 6am and 7am for

10,000 households, ”zoom” to non-zero values.
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Figure 7.16: Human interaction events: distribution between 7am and 8am for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.

Figure 7.17: Human interaction events: distribution between 7am and 8am for

10,000 households, ”zoom” to non-zero values.
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Figure 7.18: Cumulative distribution between 5am and 8am.

Figure 7.19: Human interaction events: distribution between 8am and 9am for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.
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Figure 7.20: Human interaction events: distribution between 8am and 9am for

10,000 households, ”zoom” to non-zero values.

Figure 7.21: Human interaction events: distribution between 9am and 10am for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.
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Figure 7.22: Human interaction events: distribution between 9am and 10am for

10,000 households, ”zoom” to non-zero values.

Figure 7.23: Human interaction events: distribution between 10am and 11am for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.
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Figure 7.24: Human interaction events: distribution between 10am and 11am for

10,000 households, ”zoom” to non-zero values.

Figure 7.25: Human interaction events: distribution between 11am and 12pm for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.
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Figure 7.26: Human interaction events: distribution between 11am and 12pm for

10,000 households, ”zoom” to non-zero values.
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Figure 7.27: Cumulative distribution between 9am and 12pm.
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Figure 7.28: Human interaction events: distribution between 12pm and 1pm for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.

Figure 7.29: Human interaction events: distribution between 12pm and 1pm for

10,000 households, ”zoom” to non-zero values.
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Figure 7.30: Human interaction events: distribution between 1pm and 2pm for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.

Figure 7.31: Human interaction events: distribution between 1pm and 2pm for

10,000 households, ”zoom” to non-zero values.
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Figure 7.32: Human interaction events: distribution between 2pm and 3pm for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.

Figure 7.33: Human interaction events: distribution between 2pm and 3pm for

10,000 households, ”zoom” to non-zero values.
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Figure 7.34: Human interaction events: distribution between 3pm and 4pm for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.

Figure 7.35: Human interaction events: distribution between 3pm and 4pm for

10,000 households, ”zoom” to non-zero values.
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Figure 7.36: Cumulative distribution between 1pm and 4pm.

Figure 7.37: Human interaction events: distribution between 4pm and 5pm for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.
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Figure 7.38: Human interaction events: distribution between 4pm and 5pm for

10,000 households, ”zoom” to non-zero values.

Figure 7.39: Human interaction events: distribution between 5pm and 6pm for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.
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Figure 7.40: Human interaction events: distribution between 5pm and 6pm for

10,000 households, ”zoom” to non-zero values.

Figure 7.41: Human interaction events: distribution between 6pm and 7pm for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.
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Figure 7.42: Human interaction events: distribution between 6pm and 7pm for

10,000 households, ”zoom” to non-zero values.

Figure 7.43: Human interaction events: distribution between 7pm and 8pm for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.
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Figure 7.44: Human interaction events: distribution between 7pm and 8pm for

10,000 households, ”zoom” to non-zero values.
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Figure 7.45: Cumulative distribution between 5pm and 8pm.
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Figure 7.46: Human interaction events: distribution between 8pm and 9pm for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.

Figure 7.47: Human interaction events: distribution between 8pm and 9pm for

10,000 households, ”zoom” to non-zero values.
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Figure 7.48: Human interaction events: distribution between 9pm and 10pm for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.

Figure 7.49: Human interaction events: distribution between 9pm and 10pm for

10,000 households, ”zoom” to non-zero values.
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Figure 7.50: Human interaction events: distribution between 10pm and 11pm for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.

Figure 7.51: Human interaction events: distribution between 10pm and 11pm for

10,000 households, ”zoom” to non-zero values.
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Figure 7.52: Human interaction events: distribution between 11pm and 12am for

10,000 households. Impact 1 equals to “door open for 12 sec at an angle of 90o”.

Figure 7.53: Human interaction events: distribution between 11pm and 12am for

10,000 households, ”zoom” to non-zero values.
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Figure 7.54: Cumulative distribution between 9pm and 12am.


