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 14 

Many assessments of ecosystem services (ESs; nature’s contribution to people [1]) are 15 

based on maps of land cover. For example, Costanza et al. [2] estimated the value of global 16 

ESs using economic valuations based on land cover and land use data. This method con- 17 

sists of matching an ecosystem type with the potential ESs that they provide. However, 18 

within the different types of land cover or land use considered, various environmental 19 

factors occurring at finer temporal or spatial scales (e.g. climatic variation) are not well 20 

captured. Thus, ES assessments are largely scale dependent, often missing important var- 21 

iables at both large and small scales. More in-depth studies should be encouraged to elu- 22 

cidate the roles of variables other than land cover [3]. 23 

Furthermore, ES is an intrinsically socioecological concept [4] and the land cover ap- 24 

proach primarily considers broad environmental variables - taking little account of social 25 

variables that can impact significantly on the value and types of ES provided. While a 26 

land cover approach can give an estimate of potential ES [5], or the ability of an ecosystem 27 

to provide a service [6], it does not take into account demand (either synergistic or con- 28 

flictual) or how people can access the service, as well as local factors that may influence 29 

service provision, which are largely ignored [7]. ES flows are known to vary between dif- 30 

ferent groups and socioeconomic settings, as people differ in their preferences as well as 31 

the options available to them. In this regard, differences according to people's socioeco- 32 

nomic status and residential location (e.g. urban or rural areas) should be taken into ac- 33 

count when quantifying the demand side [8–14]. 34 

One of the most substantial challenges hindering our understanding of the interac- 35 

tions between people and nature is that data on many social systems are not collected in 36 

a comparable manner to natural systems data [15,16]. Within natural science, the devel- 37 

opment of sensor technologies (ranging from site-specific moisture and flow sensors up 38 

to remote satellite-based sensors) has brought forth unprecedented levels of data availa- 39 

bility, providing standardised hourly/daily/weekly data at high spatial resolution (e.g. 40 

metres, kilometres) and across vast spatial extents (often globally). However, many as- 41 

pects of social science have not experienced this step change and so now lag behind in 42 

their ability to capture data at both high spatial-temporal resolution and global scales 43 

(Figure 1). For example, while much social data collection is often at regular time intervals 44 

(e.g., annual) and (at best) geographically representative, the expense and logistic chal- 45 

lenge of these efforts precludes data collection at the frequency necessary to capture the 46 
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socioeconomic drivers or responses to environmental disturbances at scales relevant to 47 

current global challenges. This fundamentally limits our ability to understand the flow of 48 

ESs from ecosystems to end-users (beneficiaries). 49 

 50 

 51 

Figure 1. The disconnect between some common social (blue) and ecological (green) data collec- 52 
tion methods across space and time. Smartphone and social network data (dashed blue) have the 53 
potential to bridge this gap. 54 

Thus, whilst ES research has undoubtedly moved on from the land cover-based ben- 55 

efit transfer methods used to estimate the global value of ecosystem services, and which 56 

caused international debate in the late 1990s, large knowledge gaps remain. For example: 57 

When can land cover be used as an accurate proxy for ES use? What are the links between 58 

the biophysical production of ESs and their use? How can we identify who is using which 59 

ESs? Do static inputs (e.g. one-off surveys or satellite images) adequately capture dynamic 60 

ES information? Can ES methods be standardised across landscapes, or do different com- 61 

munities require different methods? In order to support evidence-based decision-making, 62 

research should strive towards answering these (and many other) questions across a va- 63 

riety of scales [17]. 64 

This Special Issue [18] aims to provide a collection of papers that critically evaluate 65 

the links between observed land use and ESs. It contains 11 peer-reviewed papers (ac- 66 

ceptance rate: ~31%), focusing on 8 countries (China, Ethiopia, Germany, India, Kenya, 67 

Mexico, Myanmar, and USA). The contributions are written by authors from research or- 68 

ganisations spanning 16 countries and 6 continents – truly a global effort! 69 

Aguilar-Fernández et al. [19] demonstrate that local landscape conditions (e.g. land 70 

cover, management, climate) are important determinants of ESs in tropical rangelands. 71 

Stein et al. [20] focus on food production in Germany, evidencing that arable crop patterns 72 

are partially determined by the local site. Ye et al. [21] support this, arguing that land 73 

cover is a major factor in determining ESs. They apply benefit transfer using modified 74 

local value coefficients to show how changes in land cover in Guangdong province, south- 75 

ern China, impacts ES supply. The study finds that ES value decreased from US$121,666 76 
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billion in 1990 to US$116,432 billion in 2018 (−4.3%), predominantly driven by expansion 77 

of urban areas. However, they also note that synergy was the dominant relationship 78 

among ecosystem services, with 53 pairs of ESs positively correlated (i.e., synergies), and 79 

28 pairs negatively correlated (i.e., trade-offs) between 1990 and 2000. Bai et al. [22] sup- 80 

port this finding, using InVEST to show high levels of spatial interactions between ESs, 81 

with the majority (10 out of 17) showing synergies rather than trade-offs, grouping them 82 

into three bundles to highlight how multiple services can be delivered in combination. 83 

Woldeyohannes et al. [23] employ a similar approach, using land cover data to de- 84 

termine ES value via benefit transfer. However, they contrast and compare two different 85 

methods, using global values (obtained from Costanza et al. [24]) and more locally rele- 86 

vant values (from Kindu et al. [25]). In general, the local values are all considerably lower 87 

than would be expected if a global valuation was applied, highlighting the importance of 88 

considering the users of the land in ES science and how, for a given land cover, different 89 

beneficiary groups may result in considerably different land uses, ES values and flows. 90 

Thus, it is vitally important to explicitly consider beneficiaries when studying ESs. 91 

Kariuki et al. [26] do just this, asking community elders in southern Kenya about how 92 

landscapes have been used over time. They find that, over the last half century, there has 93 

been a 30% decline in livestock grazing land due to the expansion of land for agriculture 94 

and wildlife conservation. Interestingly, despite this decline, livestock grazing remains 95 

the preferred land use in subdivided and privatised lands, potentially highlighting the 96 

cultural importance of livelihoods and how this can affect societal values and local prior- 97 

itisation of ESs. 98 

Prioritisation is further explored by Fetene et al. [27] in relation to urban expansion 99 

in Ethiopia. They use community perception to show the ES-related expectations from 100 

cropland, agroforestry and grassland – with local people expecting more ESs from agro- 101 

forestry. However, they evidence a disconnect between local beneficiaries and decision- 102 

makers – with the former prioritising food, fodder, water, erosion prevention and com- 103 

post ESs, whilst the latter substitute compost and water, for water regulation and climate 104 

regulation. This highlights that different users will exploit the same land covers in very 105 

different ways (due to their different priorities) and that scale effects are often prevalent 106 

– with global benefits (e.g. climate regulation) prized highly by distant beneficiaries, often 107 

at the expense of local people who are unable to access provisioning services to ensure the 108 

regulating service is maintained [28,29]. 109 

However, different beneficiary groups, whilst socioeconomically disparate, some- 110 

times show surprisingly similarity in ES demand. Welivita et al. [30] provide evidence 111 

that beneficiaries in rural, peri-urban and urban areas in and around Hyderabad, India, 112 

seem to access ESs in similar ways. They show that beneficiaries across the rural-urban 113 

spectrum obtain comparable quantities of ESs with similar levels of direct/indirect access 114 

to equally distant ecosystems. This is in contrast to what might be expected from Cum- 115 

ming et al. [31] which would predict rural people have relatively direct relationships with 116 

local ecosystems, whereas urban inhabitants often have more indirect access to distant 117 

ecosystems. 118 

Zin et al. [32] show similar appreciation of the recreational value of Popa Mountain 119 

National Park, Myanmar, across both domestic and international visitors – using two in- 120 

dependent methods to evidence the high value of the park (~15-20 million USD per year). 121 

Sutton et al. [33] show that national parks in USA are also extremely valuable – providing 122 

$98 billion per year in ES value. However, they argue that, given this annual benefit, the 123 

United States National Park Service is chronically underfunded, and investment in na- 124 

tional parks should be increased ten-fold. 125 

Finally, Dolan et al. [34] break ES flow down into two concepts: nature to people 126 

(whereby nature moves towards the end-user), and people to nature (whereby the end- 127 

user moves towards the natural good). Applying this concept to Welivita et al. [30] shows 128 

that urban people often travel shorter distances than rural people to access most ESs, likely 129 
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because improved infrastructure in urban areas allows for the transport of ESs from wider 130 

ecosystems to the locality of the beneficiaries’ place of residence. 131 

Dolan et al. [34] highlight that existing movement theories from other disciplines 132 

might help ES scientists better understand how people travel to access nature on land- 133 

scape scales. They also issue a call-to-arms, as identifying which theory/theories best ap- 134 

ply to the ES field requires validation data on similar scales. However, as discussed above, 135 

there is often a dearth of social science data at high spatial-resolution across large scales 136 

(Figure 1). 137 

In order to address the ongoing problem of how to scale-up social science methods 138 

and so advance ES research, two key criteria need to be met – ES scientists need the capa- 139 

bility to 1) collect the social data at regular time intervals and over large scales, and 2) 140 

analyse these ‘big data’ quickly and efficiently. We suggest that these thresholds have now 141 

been achieved. Access to mobile and smartphones is increasing; e.g. in 2005 in the devel- 142 

oping world, there were 23 mobile subscriptions per 100 inhabitants and no concept of 143 

mobile internet; in 2015, there were 92 mobile subscriptions and 39 mobile internet sub- 144 

scriptions per 100 inhabitants [35]. Alongside falling costs of associated call time and data, 145 

this proliferation makes it feasible and affordable to conduct social surveys (and other 146 

embedded forms of data) at high-frequencies (via smartphone apps) across national, con- 147 

tinental and global scales, even in current data deficient areas such as the Global South 148 

[15,16]. Similarly, data from social networks are now readily available and can provide 149 

further insight at comparable scales (Figure 1) [36–39]. Computer processing power, and 150 

machine learning and artificial intelligence techniques have all improved, allowing these 151 

big data to be manipulated and analysed [39–41] on relatively standard desktop comput- 152 

ers (e.g. using cloud computing [42]). Thus, there is already high potential to conduct 153 

quantitative social science methods at high spatial-temporal resolutions and across large 154 

scales, but urgent research is needed into how qualitative data (a foundational element of 155 

social science) can be collected across similar scales and which analytic methods can ef- 156 

fectively handle such data (and its theoretically informed interpretations) at large scales. 157 

As such, we hope this manuscript and associated Special Issue act as a call-to-arms for ES 158 

scientists to rapidly investigate and adopt such methods which, we believe, could trans- 159 

form our understanding of ES. 160 
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