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Predators regulate prey abundance (direct predation) as well as influencing their metabolism 19 

and behaviour (indirect effects) through the perception of risk. Antipredator traits are informed 20 

by individual experience of risk, which may vary over environmental gradients and through 21 

ontogeny. As prey grow, individual vulnerability generally diminishes, and the reduction in 22 

individual vulnerability with ontogenetic growth can potentially lead to size refugia, ultimately 23 

nullifying the impacts of direct predation. Despite the ecological importance of the indirect 24 

effects of predation and the disproportionate influence larger individuals have on ecological 25 

level processes, there has been little focus on the potential indirect effects of predation risk on 26 

invulnerable prey. Using a combination of field and laboratory experiments, we measured the 27 

changes in  routine oxygen consumption of vulnerable and invulnerable size classes of the 28 

intertidal snail Nucella lapillus (dogwhelk), exposed to effluent from its crab predator Carcinus 29 

maenas. To test the potential influence of prior experience of predation risk, measurements 30 

were conducted on populations naturally exposed to different levels of predation pressure. Field 31 

results showed that only invulnerable snails modified their routine oxygen consumption in the 32 

presence of risk, and this occurred across all populations. Oxygen consumption rates in the 33 

laboratory, however, contradicted the pattern, with only vulnerable prey responding to the 34 

perception of risk. Metabolic responses of both vulnerable and invulnerable prey under field 35 

and laboratory conditions are discussed in the context of asset protection and prey energetic 36 

state. Observations of snail behaviour in the laboratory showed that dogwhelks from exposed 37 

shores, where predatory risk is higher, were more likely to exhibit antipredator behaviour. 38 

Importantly, our findings provide evidence that the indirect effects of predators remain 39 

influential even after prey are no longer susceptible to direct predation and add to the growing 40 

body of evidence highlighting the ecological importance of indirect predation. 41 
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 45 

In many species, exposure to a predatory cue elicits a series of coordinated, adaptive 46 

physiological responses, which influence antipredator behaviour (Hawlena, Kress, Dufresne, 47 

& Schmitz, 2011; Van Dievel, Janssens, & Stoks, 2016) and may come at an energetic cost 48 

(Hawlena & Schmitz, 2010; Kamenos, Calosi, & Moore, 2006; Slos & Stoks, 2008). Such 49 

physiological and behavioural responses, as well as promoting prey survival, lead to localized 50 

reductions in foraging rates or changes in habitat use that can cause trophic cascades with 51 

lasting effects on local population densities and community structure (Schmitz, Beckerman, & 52 

O’Brien, 1997; Schmitz, Krivan, & Ovadia, 2004; Trussell, Ewanchuk, Bertness, & Silliman, 53 

2004; Werner & Peacor, 2003). The energetic costs of predator-induced stress responses have 54 

been suggested as potential explanations for reductions in prey fitness, and consequently 55 

changes in prey demography (Boonstra, Hik, Singleton, & Tinnikov, 1998; Creel, Christianson, 56 

Liley, & Winnie, 2007; Preisser, Orrock, & Schmitz, 2007; Slos & Stoks, 2008), ecosystem 57 

nutrient dynamics (Hawlena & Schmitz, 2010), energy flow through trophic levels (C M 58 

Matassa & Trussell, 2014) and may possibly account for food chain length in some systems 59 

(Trussell, Ewanchuk, & Matassa, 2006b).  60 

The threat of predation varies both temporally and spatially at the individual and population 61 

level (Lima & Bednekoff, 1999; Lima & Dill, 1990). Natural variation in ambient predation 62 

pressure among populations has led to the evolution of adaptive physiological and behavioural 63 

responses to predation, which may be adjusted by local conditions (Donelan & Trussell, 2018; 64 

Handelsman et al., 2013; Holopainen, Aho, Vornanen, & Huuskonen, 1997). For example, the 65 

resting metabolic rate of frog tadpoles, Rana temporaria, exposed to short-term risk increases, 66 
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leading to an enhanced ability to escape predators. However, with longer exposure metabolic 67 

rates drop, showing acclimation to predator risk by reducing energetic demands which may 68 

underpin risk-averse behaviour while foraging (Steiner & Van Buskirk, 2009). This individual 69 

experience of local predation pressure can also inform the subsequent generation, through 70 

epigenetic programming (Jablonka & Raz, 2009; Love, Mcgowan, & Sheriff, 2013). This trait 71 

is particularly important for direct developing offspring, whose experience of risk is likely to 72 

correlate strongly with that of their parents (Dixon & Agarwala, 1999; Poethke, Weisser, & 73 

Hovestadt, 2010). For instance, offspring dispersal (a predator avoidance trait) in the lizard 74 

Zootoca vivipara increases as a consequence of maternal predator-related stress, decreasing the 75 

potential predation pressure experienced by offspring during the most vulnerable stages of 76 

development (Bestion, Teyssier, Aubret, Clobert, & Cote, 2014). In this way, parental input 77 

and individual experience combine to produce more suitable adaptive ecotypes (Donelan & 78 

Trussell, 2015; Giesing, Suski, Warner, & Bell, 2011) with natural selection acting to reinforce 79 

local adaptations (Guerra-Varela et al., 2009; Mäkinen et al., 2008).  80 

At the level of the individual, several factors including learned behaviours and ontogenetic 81 

somatic growth can result in a change in the suite of predators that threaten prey and, in many 82 

cases, result in a reduction in overall predation pressure (Paradis, Pepin, & Brown, 1996; 83 

Scharf, Juanes, & Rountree, 2000). Larvae of the three-spined stickleback, Gasterosteus 84 

aculeatus, use predator size relative to their own as a measure of predation risk and modify 85 

their foraging behaviour accordingly, thus optimizing energy intake while minimizing the risk 86 

of being eaten (Bishop & Brown, 1992). This type of threat-sensitive behaviour is further 87 

enhanced when prey are able to adjust their behaviour relative to their encounter rates with 88 

different predators (Rochette, Maltais, Dill, & Himmelman, 1999). Legault and Himmelman 89 

(1993) showed that this kind of threat-sensitive behaviour exists in several marine invertebrate 90 
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prey, but that correlations between encounter rates and antipredator behaviour vary between 91 

species.  92 

Ontogenetic somatic growth can be an escape strategy in and of itself, with many prey species 93 

able to grow to size refugia and escape direct predation completely (Chase, 1999). Little is 94 

known regarding the way in which prey that have reached a size refuge respond to the threat 95 

of predation (Lundvall, Svanbäck, Persson, & Byström, 1999; Werner et al., 1983), although 96 

links between size-related vulnerability and antipredator behaviour have been shown in certain 97 

aquatic gastropods (DeWitt, Sih, & Hucko, 1999; Rochette & Himmelman, 1996). In their 98 

study into the potential for the aquatic snail Physa gyrina to express behavioural compensation 99 

for morphological vulnerability to a crayfish predator (Orconectes rusticus), DeWitt et al 100 

(1999) showed that larger less vulnerable snails demonstrate reduced levels of antipredator 101 

behaviour. Considering the disproportionate impact larger individuals have on demography 102 

and resources (Etter, 1989; Paine, 1976), it is perhaps surprising that little interest has been 103 

shown in the indirect effects predators have on prey that have reached size refugia.  104 

The purpose of this study was to investigate how differences in prey size, and hence 105 

vulnerability to direct predation, affect the physiological and antipredator response in prey.  In 106 

addition, we examined how these effects were modified by prior experience of predation risk, 107 

based on habitat (sheltered or exposed shores). We used a widely adopted intertidal predator–108 

prey system and implemented a series of field and laboratory experiments, to examine both 109 

physiological and behavioural responses of vulnerable and invulnerable prey to predation risk. 110 

<H1>Methods 111 

<H2>Predator–prey system 112 

The green shore crab, Carcinus maenas, is an important predator of the dogwhelk, Nucella 113 

lapillus (hereafter referred to as Nucella).  Both species are found extensively across the North 114 



6 | P a g e  
 

Atlantic and co-occur along a gradient of wave exposure (Crothers 1985). Nucella reaches a 115 

size refuge from crab predation at 27 mm shell length (Hughes & Elner, 1979). As with many 116 

gastropod species, Nucella are able to assess predation risk through the detection of differences 117 

in concentration of kairomones, waterborne chemical cues inadvertently released by predators 118 

(Edgell, 2010; Catherine M. Matassa & Trussell, 2011; Vadas, Burrows, & Hughes, 1994). 119 

Nucella use differences in the concentration of these chemicals to assess the proximity of a 120 

predator (Freeman & Hamer, 2009; Large, Smee, & Trussell, 2011) and therefore are 121 

influenced by local hydrodynamic conditions (Freeman & Hamer, 2009; Large et al., 2011). 122 

For example, in high-flow, wave-exposed environments, characterized by an elevated degree 123 

of mixing, the homogenization of the olfactory seascape created by predatory kairomones 124 

affects the chemoreceptive ability of prey (Large et al., 2011; Weissburg, James, Smee, & 125 

Webster, 2003; Zimmer & Butman, 2000). Large et al (2011) showed that antipredator 126 

behaviour in N. lapillus is strongly influenced by hydrodynamic mixing and that Nucella 127 

chemoreception ability is reduced in very slow- or fast-flowing turbulent water. They argued 128 

that on exposed shores, due to the homogenization of different concentrations of chemical cues, 129 

Nucella are unable to perceive predation risk. Wave action also directly impacts the densities 130 

of crabs, with wave exposure being negatively correlated with crab densities (Hughes & Elner, 131 

1979; Large & Smee, 2013; Menge, 1983; Rochette, Smee, & Trussell, 2011). Hence 132 

populations of Nucella can experience varying levels of predation risk depending on local wave 133 

action regimes (Freeman & Hamer, 2009; Large et al., 2011; Menge, 1976; Tyler, Stafford, & 134 

Leighton, 2014). The effects of wave action combined with inherent differences in predator 135 

densities result in the formation of distinct ecotypes of Nucella, with plasticity present in both 136 

morphological and behavioural antipredator traits (Crothers, 1983; Guerra-Varela et al., 2009; 137 

Large & Smee, 2013; Rolán, Guerra-Varela, Colson, Hughes, & Rolan-Alvarez, 2004). 138 
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<H2>Site selection and predator numbers  139 

 140 

Our field study was conducted at six sites, three wave-exposed and three wave-sheltered, 141 

around the coasts of Anglesey, North Wales, U.K. (Fig. 1). Sites were initially selected as 142 

wave-sheltered or wave-exposed based on community structure (Ballantine, 1961) and later 143 

exposure was calculated using the map-based method to estimate mean wave fetch for each 144 

site (Burrows, Harvey, & Robb, 2008). To estimate differences in crab abundance, baited crab 145 

traps (60 x 40 cm and 35 cm high, with 500 g of fish) were used at each of the six sites. For 146 

each site, crab numbers per trap were counted on 3 consecutive days. A single baited crab trap 147 

was placed in the midzone and left for two complete tidal cycles, sampled and then redeployed 148 

a further two times, each time ca. 30 m along the shore from the previous location. This allowed 149 

us to average crab numbers across the 3 days for each site to provide a mean crab number per 150 

trap per site. 151 

  152 

<H2>Field measurements  153 

We compared field oxygen consumption rates of two size classes of Nucella from exposed (low 154 

predator abundance) and sheltered (high predator abundance) shores with and without a 155 

predator cue. Small Nucella, considered vulnerable to predation (N = 7 at each site, mean shell 156 

length 14.6 ± SD 1.3 mm) and large, considered invulnerable (N = 7 at each site, mean shell 157 

length 29.0 ± SD 1.6 mm) were collected from the same tidal height to control for any unknown 158 

shore level size gradients (Elner & Hughes, 1978). Field measurements were conducted 159 

between 1100 and 1700 on 4–8 October 2017, apart from one sheltered shore which had to be 160 

completed during the next tidal cycle (17 October 2017) due to adverse weather conditions. 161 

Animals were collected before being exposed to air, as the tide was receding, and subsequently 162 

were kept submerged to avoid any potential impacts on oxygen consumption rates (McMahon, 163 
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1988; Stickle, Moore, & Bayne, 1985). Care was taken not to select individuals that were 164 

actively feeding. Individual Nucella were carefully placed into closed system respirometers (70 165 

x 70 mm and 50 mm high) containing fully aerated filtered sea water to determine oxygen 166 

consumption rates. All water used in field measurements was sourced from the laboratories at 167 

the School of Ocean Sciences, Bangor University, Menai Bridge, U.K. Changes in water 168 

oxygen partial pressure (PO2) were measured using an optical fluorescence technique (PreSens, 169 

Regensburg, Germany, Fibox 4 trace, Fiber Optic Trace Oxygen Meter). Each respirometer 170 

was equipped with a single oxygen sensor spot (PreSens) located on the inside of the lid, which 171 

allowed for nonintrusive measurement of sea water PO2 levels at regular intervals. The 172 

seawater was filtered (0.45 μm) to reduce contaminating effects of biological activity from 173 

microbes and algae, and two controls consisting of respirometers without snails were included 174 

during each trial (N=16). Controls for filtered sea water and crab effluent were used to assess 175 

any background (microbial) oxygen consumption rates and this was then subtracted from all 176 

other measurements in that trial. Sea surface temperature was measured at each site at the 177 

beginning of each experiment and respirometers were placed into temperature-controlled water 178 

baths to ensure that in situ temperatures were maintained throughout the period of oxygen 179 

consumption measurement (mean 14.18 ± SD 0.06 oC across all sites) to prevent temperature-180 

related changes in metabolic rates (Dahlhoff, Stillman, & Menge, 2008). 181 

Preliminary trials showed that rates of oxygen consumption were initially elevated when 182 

Nucella were first placed in the respirometers due to handling stress, but levels fell over the 183 

next 25 min as snails settled in the respirometers. Over the next 45 min PO2 levels fell within 184 

the respirometers in a linear fashion which we considered to be routine rates of oxygen 185 

consumption as the snails were free to move around within the respirometers. Several studies 186 

have shown that exposure to crab effluent influences Nucella behaviour and therefore the use 187 

of routine rates of oxygen uptake are more appropriate when determining the natural reaction 188 
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of Nucella to the detection of a predator (including the effects of movement). Based on these 189 

initial observations, individual snails were inserted into their respiration chambers, sealed and 190 

left for 25 min before the initial PO2 reading was taken. Repeated PO2 readings were then taken 191 

every 5 min for the next 45 min to determine the linear fall in PO2 over time. Snails therefore 192 

spent 70 min in total in their respective respirometers. In each case, care was taken to avoid 193 

hypoxia from developing within the respirometers by ensuring that PO2 levels remained above 194 

17 kPa throughout this period. Rates of oxygen consumption were determined from the drop 195 

in PO2 over 45 min by linear regression, minus the background fall in PO2 from the respective 196 

controls. This value was multiplied by the solubility coefficient for oxygen adjusted for salinity 197 

and temperature to give whole-body values in ml O2/h. Values were corrected to STPD 198 

(standard temperature and pressure and dry) and expressed as μmol O2/h. 199 

Once a baseline oxygen consumption rate had been established for each snail, they were then 200 

subjected to the predation risk treatment. Each snail that had been monitored for baseline 201 

oxygen consumption was exposed to predation risk by exchanging the water in the 202 

respirometer for water treated through exposure to crabs.  This ‘predation risk’ water was 203 

created in the field by adding 8–10 large male crabs (mean carapace length ± SD 56.6 ± 4.8 204 

mm) to 20 litres of filtered and aerated water for 1 h. Nucella were kept submerged during the 205 

water change. They were then allowed a further 25 min to acclimatize to the new treatment. 206 

Once measurements were complete, all Nucella were marked and returned to the laboratory 207 

to assess their oxygen consumption rates and behavioural responses to predation risk under 208 

controlled laboratory conditions. 209 

<H2>Laboratory measurements  210 

Individuals collected from the field were housed in a temperature-controlled aquarium at 211 

similar temperatures to those in the field (mean 13.9 ± SD 0.9 oC) in fully aerated, recirculated, 212 
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natural sea water for 1 month before being used in the second experiment. Nucella were not 213 

exposed to predation risk during this period. They were fed mussels and barnacles ad libitum 214 

and then starved for 48 h before their oxygen consumption was measured, to standardize 215 

digestive state (C M Matassa & Trussell, 2014). Laboratory measurements followed the same 216 

protocol as the field experiment with routine oxygen consumption rates being established prior 217 

to measuring them under predation risk conditions. Water temperature was maintained at the 218 

respective in situ temperatures. After 25 min of acclimatization, oxygen consumption rates 219 

were measured every 5 min for 45 min. As with the field experiment, the same individuals 220 

were then exposed to crab effluent and their oxygen consumption rates were measured.  221 

To determine whether the two size classes of Nucella show typical antipredator responses 222 

(cessation of movement, Freeman, Dernbach, Marcos, & Koob, 2014; Vadas et al., 1994), they 223 

were observed for 20 s every 5 min, over 45 min, and their precise location noted on a diagram 224 

of the respirometer following the approach of Large et al. (2011). Care was taken not to cast a 225 

shadow over the respiration chambers to reduce any potential impacts on Nucella behaviour. 226 

As the exact movement of individuals between 5 min increments could not be known, we used 227 

the shortest possible distance between two consecutive increments for our calculations. By 228 

combining the distance travelled between all increments, we were able to estimate the total 229 

distance travelled during the experiment.  230 

<H2>Statistical analysis 231 

As the focus of this study was on comparing the effect of predation risk on oxygen consumption 232 

rates of vulnerable and invulnerable prey and not directly on the effects of size, analysis was 233 

conducted on whole animal rates of oxygen consumption (Dahlhoff et al., 2008; Hayes, 2001; 234 

Packard & Boardman, 1999). To assess the potential impact of predation risk on the oxygen 235 

consumption rates of vulnerable and invulnerable prey both in the field and in the laboratory, 236 
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we used a model selection approach using gamma distributed generalized linear mixed models 237 

(GLMMs). In both analyses, we used whole animal oxygen consumption rates as a response 238 

variable and wave exposure (exposed and sheltered), Nucella vulnerability (vulnerable and 239 

invulnerable) and predation risk treatment (no predator cue and predator cue) as fully crossed 240 

fixed effects. Log-transformed total length was used as a covariate to account for any potential 241 

size-related differences within the size ranges selected. We considered site as being nested 242 

within wave exposure and Nucella ID as a repeated measure (both treated as random effects). 243 

We also performed a GLMM with Nucella movement as a response variable using the same 244 

fixed, nested and repeated terms effects as in previous analyses. The movement results showed 245 

overdispersion and were therefore analysed using a negative binomial GLMM. We used the 246 

glmm.TMB package to analyse movement results (Brooks et al., 2017).  247 

All GLMMs were constructed and compared in R 3.5.0 (R Core Team, 2013) using the 248 

lme4 package (Bates, Mächler, Bolker, & Walker, 2015). Backward model selection was 249 

achieved using the drop1 function and models with the lowest Akaike information criterion 250 

(AIC) were selected (Bolker et al., 2008). When interaction terms were significant at the α = 251 

0.05 level, Tukey post hoc tests were carried out using the emmeans package (Lenth, 252 

Singmann, Love, Buerkner, & Herve, 2004). 253 

<H2>Ethical Note.  254 

Our experimental protocol complies with all institutional guidelines at Bangor University. No 255 

animals were harmed during the experiment. After the experiment, each whelk was returned to 256 

its collection location. No permit was necessary to perform the experiments described above. 257 
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<H1>Results 258 

<H2>Field results 259 

Exposure calculations (measured as average wave fetch per site) using the Burrows et al. (2008) 260 

map-based method concurred with our assessment of exposure with sheltered and exposed 261 

shores having a mean wave fetch of 17.89 km (± 7.77 SD) and 49.55 km (± 10.09 SD), 262 

respectively. These values agree with Burrows et al. (2008) assessment of wave-sheltered and 263 

wave-exposed shores which they defined as being 20–40 km and 40–60 km, respectively.  264 

There was a significant effect of wave exposure on crab numbers per trap  (ANOVA: F1,11 = 265 

7.42, P = 0.016; Table 1), with wave-exposed sites having an average of 0.89 ± 0.42 crabs per 266 

trap compared with wave-sheltered sites which had an average of 41.22 ± 5.81 crabs per trap 267 

(Fig. 2). The combination of wave exposure effects on the perception of kairomones (Freeman 268 

& Hamer, 2009; Large et al., 2011) and the stark difference in predator densities indicate that 269 

Nucella were exposed to different levels of predation risk at the two types of site. 270 

 271 

The addition of Nucella shell length to all models tested had no impact on the AIC calculated 272 

and it was therefore not included in further analysis. Model selection results for our field and 273 

laboratory measurements are summarized in Table 2. Background respiration rates were 0.52 274 

µmol O2/h across treatments. Oxygen consumption rates of vulnerable Nucella (mean 3.60 275 

µmol O2/h, SE = 0.25) were lower than those of invulnerable individuals (mean = 16.65 276 

µmol/l/h, SE = 0.85) across all exposure gradients and treatments (gamma distributed GLMM: 277 

N = 65, 
 =   P < 0.001; Fig. 3). GLMM analysis showed that the two size classes of 278 

Nucella reacted differently when exposed to crab effluent (gamma distributed GLMM: N = 279 

65, 
 = , P = 0.003). Further post hoc analysis showed that in the presence of predation 280 

risk, invulnerable Nucella reduced their respiration rates by 36.2% (Table A1), whereas 281 
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vulnerable individuals showed a slight nonsignificant increase in oxygen consumption rates of 282 

6.01% (Table A1). This pattern was consistent across both exposure levels (gamma distributed 283 

GLMM: N = 65, 
 = , P = 0.49; Fig. 3).  284 

<H2>Laboratory results 285 

Overall laboratory background respiration rates contributed in control respirometers were 0.30 286 

µmol/O2/h. As with the field results, in the laboratory, invulnerable Nucella had higher oxygen 287 

consumption rates than vulnerable individuals (gamma distributed GLMM: N = 288 

65, 
 = , P < 0.001). However, under laboratory conditions although there was an 289 

interaction between treatment and size (gamma distributed GLMM: N = 65, 
 = , P < 290 

0.001), it was vulnerable Nucella that showed a reduction in respiration rates by 26.8% under 291 

predator risk (Table A1), whereas respiration of invulnerable individuals did not differ between 292 

treatments (Table A1, Fig. 4). Once again, differences between size classes were the same 293 

irrespective of exposure level (gamma distributed GLMM: N = 65, 
 = , P = 0.169).  294 

<H2>Laboratory behavioural responses 295 

The detection of a predatory cue affected the behaviour of Nucella, and its impact was 296 

influenced by both prey vulnerability and wave exposure level (Fig. 5). Overall, vulnerable 297 

Nucella reduced their movement in the presence of a predatory cue, whereas invulnerable 298 

Nucella did not (negative binomial GLMM: N = 65, 
 = , P < 0.001). Post hoc testing 299 

revealed that both size classes moved similar distances in filtered sea water (Fig. 5) but in crab 300 

effluent vulnerable Nucella reduced their movement (Table A1), whereas invulnerable 301 

individuals did not (Table A1). Under predation risk conditions, there was an overall effect of 302 

wave exposure on Nucella behaviour (Fig. 6; negative binomial GLMM: N = 65, 
 = , P 303 

= 0.03). Nucella from sheltered shores, naturally exposed to higher ambient levels of predation 304 



14 | P a g e  
 

risk, reduced their movement when exposed to crab effluent (Table A1), whereas Nucella from 305 

wave-exposed shores remained active (Table A1). 306 

<H1>Discussion 307 

Short-term metabolic responses of invertebrate prey to predation risk and the resulting 308 

antipredator behaviour are not well understood (Canero & Hermitte, 2014; Mitchell, Bairos-309 

Novak, & Ferrari, 2017), and the influence of individual vulnerability even less so (DeWitt et 310 

al., 1999). Exposing Nucella to a predatory cue affected their routine metabolic rate as well as 311 

their antipredator behaviour, but each response was influenced differently by individual 312 

vulnerability and wave exposure. When vulnerable and invulnerable Nucella were exposed to 313 

a predatory cue in the field, moments after being collected, it was the invulnerable size class 314 

that reduced its oxygen consumption rate, as opposed to vulnerable ones. Note that Nucella 315 

were not tethered while in the respiration chamber as our intention was to capture the total 316 

oxygen consumption related to the detection and subsequent short-term response to predation 317 

risk. Therefore, our results do not allow us to distinguish between a potential physiological 318 

response to predation risk and the metabolic cost of the resulting behavioural response. 319 

Changes in oxygen consumption rates are therefore a combination of stress-induced changes 320 

in metabolic rate as well as behavioural changes. Notwithstanding, our results clearly indicate 321 

that predation risk may still influence prey that are otherwise safe from direct predation by 322 

specific predators. In addition, by comparing oxygen consumption in the field, in individuals 323 

extracted directly from natural conditions, with that of individuals maintained in the laboratory, 324 

we have also shown important differences in response. Our results and particularly the 325 

differences between the field and laboratory observations are explained in relation to size-326 

related risk taking as well as through potential changes in Nucella physiological and energetic 327 

state. 328 
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<H2>Oxygen consumption in vulnerable Nucella 329 

When vulnerable Nucella were exposed to a predatory cue in the field, there was no change in 330 

oxygen consumption when compared to respiration in filtered sea water alone. Previous 331 

laboratory-based studies show a cessation of movement in the presence of a predatory cue 332 

(Large & Smee, 2010; Vadas et al., 1994). However, our field-based results, when framed from 333 

the perspective of foraging–risk trade-off, may be explained by Clark’s asset protection 334 

principle (APP, Clark, 1994). The APP asserts that foraging decisions relate to the relative 335 

amount an individual stands to lose or gain from foraging at a specific time. The APP argues 336 

that for a given amount of energy to be gained from foraging at a specific time, smaller 337 

individuals have less to lose (less already invested in growth) and proportionally more to gain 338 

than a larger individual. In this context, smaller individuals should forage under risky 339 

conditions if the potential energy gain is high enough. In essence, it is more favourable for 340 

smaller prey to forage during risky periods than larger individuals. Thus, vulnerable Nucella 341 

under predation risk conditions are likely to continue to search for food due to the high fitness 342 

gains, resulting in similar levels of oxygen consumption between our two treatments.  343 

In the laboratory, where Nucella were fed ad libitum and did not experience risk cues or wave 344 

action for one month, oxygen consumption responses to risk differed to those in the field.  345 

Vulnerable Nucella reduced their routine metabolic rate as well as their movement when 346 

exposed to a predatory cue. These seemingly contradictory patterns between field and 347 

laboratory results may be explained in the context of the risk allocation hypothesis (RAH).  The 348 

RAH rests on the inextricable link between current energy reserves and decision making under 349 

risky conditions, meaning that behavioural changes are not a result of momentary trade-offs, 350 

but rather as forming part of an overarching foraging strategy (Burrows & Hughes, 1991; Lima 351 

& Bednekoff, 1999; Lima & Dill, 1990; Mangel & Clark, 1986). In essence, low energy 352 

reserves force prey to forage irrespective of risk, whereas when energy reserves are high,  prey 353 
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are able to wait out risky periods in order to forage during more favourable ones (Lima & 354 

Bednekoff, 1999; Lima & Dill, 1990). One of the important predictions of the RAH is that if 355 

prey experience prolonged periods of safety interspersed with short high-risk periods, then prey 356 

should stop foraging during the high-risk periods (Lima, 1998). In the laboratory, Nucella 357 

experienced ‘safe’ conditions, where they were able to increase energy reserves. Thus, when 358 

faced with predatory risk they reduced activity as predicted by the RAH which in turn was 359 

reflected in a reduction in oxygen consumption. When Matassa and Trussell (2014) tested the 360 

response of starved and satiated Nucella in the laboratory they found patterns that corroborate 361 

our field–laboratory comparisons. Satiated animals did not forage during risky periods whereas 362 

starved individuals were forced to forage even under high-risk conditions.  363 

<H2>Oxygen consumption in invulnerable Nucella 364 

Although vulnerable Nucella reacted predictably to predation risk in terms of the RAH, the 365 

pattern seen in the invulnerable adults was less clear. Under field conditions, invulnerable 366 

Nucella reduced their oxygen consumption rate in response to a predatory cue. Large 367 

invulnerable Nucella are much more likely than small vulnerable individuals to have sufficient 368 

energy reserves to be able to reduce activity in the presence of increased risk (Feare, 1970). 369 

Thus, a reduction in oxygen consumption in the field may be a consequence of a reduction in 370 

movement. Although the exact mechanism underpinning this reduction in oxygen consumption 371 

is beyond the scope of this investigation (stress response and movement), these observations 372 

are important in showing that Carcinus is still able to affect Nucella even after they have 373 

reached a size refuge. This pattern changed after Nucella had been housed under ‘safe’ 374 

conditions in the laboratory. When tested again in the laboratory, where we expected a similar 375 

pattern to that seen in the field (with satiated individuals reducing their respiration as well as 376 

their movement), there was no reduction in oxygen consumption or movement under the 377 

predation risk condition. Clearly the complexity of behavioural and physiological changes in 378 
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laboratory-housed Nucella at a size refuge warrants further study, as these size classes have a 379 

disproportionate influence on population dynamics.  380 

<H2>Antipredator behaviour 381 

Antipredator behaviour was only assessed in the laboratory, and not in the field. Our 382 

observations showed an interesting influence of wave exposure (and hence prior experience of 383 

predatory threat) on the propensity for Nucella to adopt an antipredator behaviour. Wave-384 

sheltered populations (which naturally experience higher predation risk) showed higher levels 385 

of antipredator behaviour (cessation of movement) than their wave-exposed counterparts. At 386 

the population level, comparisons of the effects of sympatric and allopatric predators on the 387 

behaviour of prey have shown that the influence of local ambient predation pressure informs 388 

antipredator behaviours (Aschaffenburg, 2008; Large & Smee, 2013; Rochette, Dill, & 389 

Himmelman, 1997; Rochette et al., 1999). In comparisons of antipredator behaviour of the 390 

common whelk, Buccinum undatum, from populations naturally exposed to different suites of 391 

predators, Rochette and Himmelman (1996) found that individuals adopt more appropriate 392 

antipredator behaviour to sympatric predators than allopatric ones. In Nucella investigations of 393 

wave exposure effects on behaviour are conflicting. Large and Smee (2013) found that crabs 394 

caused a reduction in Nucella movement in both wave-sheltered and wave-exposed 395 

populations. By contrast, and in accordance with our own work, Freeman et al. (2014) showed 396 

lower levels of antipredator behaviour in more predator-naïve populations from exposed 397 

shores.  398 

<H2>Potential ecological importance 399 

The changes in behavioural and physiological traits of prey can have potentially cascading 400 

effects on the rest of the biological community. A predator’s influence on community dynamics 401 

is not limited to their regulation of prey densities (density-mediated indirect interactions, 402 

DMIIs), but also through their influence on prey physiological and behavioural traits (trait-403 
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mediated indirect interactions, TMIIs). Investigations into the potential strength of DMIIs 404 

compared to TMIIs between Carcinus and Nucella have shown that direct predation and 405 

predation risk exert similar influence on the community dynamics of this rocky shore food 406 

chain (Trussell, Ewanchuk, & Matassa, 2006a). Our results indicate that this may in fact be an 407 

underestimation of the importance of TMIIs as previous studies have only used small size 408 

classes of Nucella that have lower foraging rates than individuals at the size refuge used in this 409 

study (Dunkin & Hughes, 1984). The persistence of the indirect effects of Carcinus on Nucella 410 

even after a size refuge has been reached will mean that TMIIs persist for longer than DMIIs, 411 

increasing their ecological importance. The greater impact larger individuals have on resources, 412 

combined with the protracted temporal scale at which prey are influenced by predation risk, 413 

may result in a considerable underestimation of the overall impacts predators have on an 414 

ecosystem.   415 

<H2>Conclusions 416 

Our results provide insight into the effects of predators on prey of differing vulnerability and 417 

the potential for antipredator behaviours to be influenced by local environmental factors (wave 418 

exposure and hence presumed influence of predation risk). Importantly, we have shown that 419 

the influence of a predator may be more far reaching than originally thought, as they are able 420 

to affect oxygen consumption of prey even after they are no longer susceptible to direct 421 

predation. Our contrasting results from field and laboratory experiments show clearly that 422 

understanding of prey state (e.g. physiological/energetic condition which is likely to change 423 

dependent on handling and husbandry) is critical in generating a holistic understanding of 424 

predator–prey responses (e.g. Matassa & Trussell, 2014). Finally, although not consistent 425 

across all responses, we found an effect of wave exposure on antipredator behaviour (cessation 426 

of movement) indicating an effect of prior experience of predation risk. Further studies into the 427 

potential for predators to indirectly influence prey that are not at risk of direct predation will 428 
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enable us to better appreciate the overall influence predators have on the ecosystem they 429 

inhabit.  430 
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 706 

Table 1  Wave fetch indices for exposed and sheltered sites using the Burrows et al. (2008) 707 

map-based method using 32 angular sectors and mean crab number per trap per site 708 

 709 

Site   Wave exposure  Mean fetch (km) Mean crab number (SE) 710 

Moelfre      Sheltered      11.71   54.66 (10.7) 711 

Porth Cwefan      Sheltered      26.62   45.66  (4.48) 712 

Bull Bay      Sheltered      15.37   23.33  (3.17) 713 

Point Lynas      Exposed      55.10     0.00  (0.00) 714 

Cemlyn Bay      Exposed      55.64     1.33  (0.88) 715 

Trearddur Bay      Exposed      37.89     1.33  (0.88) 716 

 717 

  718 
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 719 

Table 2 Field and laboratory model selection results for the potential influence of predation 720 

risk on wave-exposed and wave-sheltered populations of dogwhelks 721 

    Terms removed      df          Field      Laboratory Movement 722 
 723 
3-way factorial                           11          700.52         619.47    1478.19 724 
2-way interaction  E*T*S  10 700.52   617.67  1476.61 725 
   T*S  9 706.07   619.47  1486.37 726 
   E*S  9 696.98   629.18  1478.99 727 
   E*T  9 696.98    615.74  1475.10 728 
Single 2-way interaction E*S + T*S 8 704.20    627.26  1485.34  729 
   E*T + T*S 8 705.28    629.54  1488.90 730 
   E*T + E*S 8 696.58    616.86  1478.19 731 
Fixed terms  E*T + E*S + T*S 7 703.37    627.60  1487.41 732 
   T  6 717.00    643.29  1500.16 733 
   S  6 766.94    688.82  1485.59 734 
   E  6 701.87    627.26  1490.31 735 
Single fixed terms  T + S  5 785.58    704.94  1499.03 736 
   E + S  5 715.65    642.90  1503.99 737 
   E + T  5 765.00    687.03  1488.46 738 
Random factor   Site  10 699.21 617.67  1476.19 739 
 740 

E = wave exposure, T = risk treatment, S = size (vulnerability). Models were selected using 741 

generalized linear square models and corrected Akaike information criterion (AICc) for all 742 

dependent variables. Selected models are highlighted in bold.  743 

 744 

 745 
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Table A1 Post hoc Tukey’s HSD test results for significant interactions from GLMMs conducted on data from field and laboratory experiments  746 

 747 

‘Vulnerable’/’invulnerable’ refers to level of vulnerability to predators; ‘sheltered’/‘exposed’ refers to level of wave exposure. Statistically 748 

significant models (P = 0.001) are in bold.  749 

  
 

Contrast   Combination    

Experiment Model 
 

Factor   Levels    Estimate Z ratio P 

Field O2 

consumption 

O2 con ~ Vulnerability + Risk treatment 

+ Wave exposure + 

Vulnerability * Risk treatment + 

(1|Site) + (1 | Nucella ID) 

 

Risk 

treatment 

 
  

No  

predator 

  

vs 
  

Predator 

 
Vulnerable -0.0608    -0.609  0.914  

  
 

    
Invulnerable -0.4573      -5.290 <0.001  

    

Laboratory O2 

consumption  

O2 con ~ Vulnerability + Risk treatment 

+ Wave exposure + 

Vulnerability * Risk treatment + 

(1|Site) + (1 | Nucella ID) 

 

Risk 

treatment 

  No  

predator 
vs Predator 

  Vulnerable -0.3379  -5.883  <0.001 

 

  

  Invulnerable -0.0555        -1.094 0.644 

Laboratory 

movement 
analysis 

Movement ~ Vulnerability + Risk 

treatment + Wave exposure + 

Vulnerability * Risk treatment + 
Wave exposure * Risk treatment + 

(1|Site) + (1 | Nucella ID) 

 

Risk 

treatment 

  No  

predator 
vs Predator 

  

Vulnerable -1.6137       -5.052 <0.001 

 

    

Invulnerable -0.2426      -0.984 0.715 

 

 

 

Risk 

treatment 

 

No 

predator 

vs Predator 

 

 

   

 

  

   

 

  
Sheltered -1.3559     -4.401 <0.001 

 

  
Exposed -0.5004      -1.982 0.157 
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Figure 1 Map of study sites across the Isle of Anglesey, Wales, U.K.  750 

Figure 2 Mean number (± SE) of C. maenas caught per trap for exposed and sheltered shores. 751 

*P < 0.01 (t test). 752 

Figure 3 Field oxygen consumption rates (mean ± SE) of vulnerable and invulnerable 753 

dogwhelks from sheltered and exposed shores in filtered sea water (no predator cue) and under 754 

predation risk (predator cue). Different letters indicate significantly different results from a 755 

post hoc Tukey’s HSD.  756 

Figure 4 Laboratory oxygen consumption rates (mean ± SE) of vulnerable and invulnerable 757 

dogwhelks from sheltered and exposed shores in filtered sea water (no predator cue) and under 758 

predation risk (predator cue). Different letters indicate significantly different results from a 759 

post hoc Tukey’s HSD.  760 

Figure 5 Movement (mean ± SE) of invulnerable and vulnerable dogwhelks from sheltered 761 

and exposed shores in filtered sea water (grey bars) and under predation risk (white bars). 762 

Different letters indicate significantly different results from a post hoc Tukey’s HSD.  763 

Figure 6 Combined movement (mean ± SE) of all size classes of dogwhelks from sheltered 764 

and exposed shores in filtered sea water (grey bars) and under predation risk (white bars).  765 

Different letters indicate significantly different results from a post hoc Tukey’s HSD.  766 

 767 
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Figure 3 794 
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Figure 5  824 
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Figure 838 6  
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