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Synthesis of Candidate Advanced Technology Fuel: Uranium

Diboride (UB2) via Carbo/Borothermic Reduction of UO2

J. Turner1 , F. Martini2 , J. Buckley1 , G. Phillips1 , S.C. Middleburgh2 , T.J. Abram1

1
Nuclear Fuel Centre of Excellence, The University of Manchester, United Kingdom

2
Nuclear Futures Institute, Bangor University, Bangor, LL57 1UT, United Kingdom

Abstract

The synthesis of uranium diboride (UB2) from uranium dioxide (UO2) has been carried out
for the first time after a coordinated experimental and theoretical investigation. The reliable
conversion of UO2 to UB2 is of importance when considering commercially relevant products
(e.g. as an advanced technology fuel - ATF), avoiding the use of uranium metal as a reactant.
UO2 was reduced and borated in-situ through careful combination with boron carbide (B4C) and
graphite (carbo/borothermic reduction). The reaction is observed to only be favourable at low
partial pressures of CO, here made possible through use of a vacuum furnace at temperatures up
to 1800 ◦C. At higher partial pressures of CO, the product of the reaction is UB4. For phase pure
UB2, excess B4C is required due to the formation of volatile boron oxides that are released from
the reaction mixture as is observed when synthesising other borides through similar routes.

Keywords: Nuclear, Fuel, Uranium, High Density Fuels

1. Introduction1

Uranium diboride (UB2) is a refractory ceramic with physical properties that make it a2

promising candidate for the development of high-performance nuclear materials, including fuel.3

UB2 has a higher uranium density compared to uranium dioxide (11.68 g cm−3 and 9.67 g cm−3,4

respectively [1]), similar to other accident tolerant fuels/advanced technology candidate fuels5

(ATFs) such as U3Si2 (11.31 g cm−3 [2]). UB2 also has a much higher thermal conductivity com-6

pared to UO2 [3, 4], which will result in a lower fuel centre-line temperatures during normal7

operating conditions and a significantly flatter temperature profile across the pellet. This has a8

number of beneficial effects: (1) reducing the rate of the temperature-dependent release of fission9

products, (2) reduction in the pellet strain as a result of thermal expansion (which is similar to that10

of UO2), (3) a reduction in the amount of thermal energy stored inside the fuel and importantly11

(4) a significant increase in the margin to centre-line melting.12

At the same time, a higher spatial density of uranium allows more fissile material to be loaded13

for a given core layout - thereby extending the interval between refuelling outages and improving14

the fuel-cycle economics. Similarly, UB2 can be used as a burnable absorber material further15

improving the fissile content within a core, extending residence times and again improving fuel-16

cycle economics.17
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Borides have historically not been explored as fuel materials, due to the high neutron absorp-18

tion cross section of boron-10, which comprises approximately 20 at.% of boron found naturally.19

The enrichment of boron to increase boron-10 content for use in nuclear control systems is well20

established, while relatively isotopically pure boron-11 is used in a number of electronic compo-21

nents that require stability in a radiation environment [5]. There therefore exist industrial-scale22

methods for isotopic enrichment of elemental boron, albeit potentially not at the scale required23

for fuel manufacture at present.24

A key challenge to developing an alternative to UO2 is that of synthesis and fabrication. UO225

has a number of economical and scalable synthesis routes (including the integrated dry route26

[6] and wet routes, for example the AUC process [7]) converting uranium hexafluoride (UF6)27

to UO2. Difficulty identifying a route for conversion either from fluoride or from oxide starting28

materials (widely available and relatively easy to handle) has dampened the enthusiasm for other29

ATF candidate fuels, including U3Si2.30

Presently, the only reported route for UB2 preparation is by melting elemental uranium and31

boron in stoichiometric amounts [3, 8, 9, 10, 32]. This procedure is only suitable for the prepa-32

ration of small quantities of uranium diboride in a laboratory setting, (uranium powder is py-33

rophoric and not economical to produce). It must also be noted that the precipitation of uranium34

diboride from melts of uranium and boron affords products with significant compositional in-35

homogeneity [3] that would require multiple cycles of solidification, crushing and remelting to36

achieve a consistent stoichiometry throughout the sample. UB4 was also produced by fused-salt37

electrolysis methods, for example in studies by Andrieux [36].38

The development of an alternative, safer and more reliable route could allow larger amounts39

of UB2 to be available for testing and evaluation. In particular, it would be highly desirable40

to use uranium dioxide as a precursor owing to the wealth of industrial experience and well-41

established techniques regarding its preparation and handling. Past work has used B2O3 or B4C42

with an oxide that is then reduced at elevated temperatures forming the desired boride phase43

[37, 38, 39, 40, 41].44

The purpose of the present work is therefore to demonstrate that UB2 may be synthesised45

through a carbo/borothermic route from a UO2 precursor, avoiding the need for uranium metal46

fabrication and/or high temperature melting. It consists of a theoretical thermodynamics study47

on the required conditions and reactions for UB2 formation, and experimental demonstration of48

UB2 synthesis through the theoretical route.49

2. Theory50

The concept of carbo/borothermic reduction has long been applied in the industrial synthesis51

of diboride ceramics such as zirconium diboride (ZrB2) [11], which is isostructural with UB252

and has a similar chemistry [12].53

2ZrO2(s) + B4C(s) + 3C(s) −→ 2ZrB2(s) + 4CO(g) (1)

By analogy, the borocarbothermal route may be extended to the preparation of UB2.54

2UO2(s) + B4C(s) + 3C(s) −→ 2UB2(s) + 4CO(g) (2)

An excess of boron is typically required in the starting material of this route, due to the55

presence of relatively volatile boron species in the reaction system [13]. The active removal of56

carbon monoxide can be used to make reaction 2 more favourable.57
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A thermodynamic evaluation of the reactions was carried out to determine the conditions58

under which they may occur. In its most general form, the Gibbs free energy depends on tem-59

perature and pressure. In the present case the effect of pressure on the condensed phases was60

assumed to be negligible and the pressure sensitivity was wholly ascribed to gaseous CO, allow-61

ing us to write:62

∆GRXN(pCO,T ) = ∆H−⊖−
RXN

(T ) − T · ∆S −⊖−
RXN

(T ) +CCO · RT · ln(
pCO

p−⊖−
) (3)

Where ∆GRXN(pCO,T ) is the variation in Gibbs free energy at a given temperature T and a63

given partial pressure of carbon monoxide in the headspace PCO, ∆H−⊖−
RXN

(T ) and ∆S −⊖−
RXN

(T ) are64

respectively the standard variations in enthalpy and entropy at a given temperature, CCO is the65

stoichiometric coefficient with which CO is featured in the reaction and p−⊖− is the standard state66

pressure of 1 bar.67

3. Thermodynamic Modelling68

The thermodynamic properties of most of the substances involved in the reaction model69

described are widely reported in literature and were immediately available through the NIST70

database. Data for UO2 was taken from [35] and [23] as representative data from the extensive71

literature on the material. Conversely, the thermodynamic properties of UB2 and UB4 are not72

readily available and as such we have used quantum mechanical calculations based on density73

functional theory to complement the available data for those compounds, providing a robust set74

of predictions relevant to the synthesis of UB2. Table 1 summarises the available literature data75

on the compounds of interest.76

Table 1: Available literature data on compounds of interest. Data for diboron trioxide are referred to its liquid state, since
the synthesis takes place above its melting point of 723 K [20].

Substance ∆ f H−⊖− at 298 K (kJ/mol) S −⊖− at 298 K (J/mol·K) Other data
B2O3(l) -1253.36 [20] 78.45 [20] Cp(T) function [20]
B4C(s) -62.68 [20] 26.77 [20] Cp(T) function [20]

C(s) 0.00 5.74 [35] Cp(T) function [21]
CO(g) -110.53 [20] 197.66 [20] Cp(T) function [20]
UB2(s) -164.85 [10] 55.1 [10] Cp(T) function [30]
UB4(s) -234.18 [30], -245.60 [22] 68.41 [30] 71.13, [22] Cp(T) function [30]
UO2(s) -1085.0 [35] 77.03 [35] Cp(T) function [23]

The enthalpy and the entropy of formation of UB2 and UB4 as functions of temperature were77

estimated via density functional theory (DFT) calculations, performed with the Vienna ab-initio78

simulation package (VASP) [14, 15, 16] and Phonopy [17].79

For the VASP calculations, the projector augmented wave (PAW) potentials [18] were used in80

conjunction with the generalised gradient approximation (GGA) exchange correlation functional81

described by Perdew, Burke and Ernzerhof [19].82

VASP was used to calculate the total energy per formula unit of crystalline structures of α-U83

[29], B [28], UB2 [8] and UB4 [8] under constant pressure, allowing cell size, shape and volume84

to change. Subsequently, Phonopy was used to determine the heat capacity at constant pressure85

per formula unit for the substances of interest.86
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In all calculations a convergence threshold of 10−8 eV was set for electronic minimisation,87

and a threshold of 10−7 eV/Å was set for geometric optimisation. The cut-off energy was set to88

550 eV for all calculations with a Gaussian smearing of 0.08 eV. A Γ-centred k-point mesh was89

automatically generated with a constant k-point density of approximately 0.03 Å for each cell.90

Convergence tests were carried out with respect to the cut-off energy and the k-point density until91

subsequent increases resulted in changes that were smaller than 1 meV/atom. A convergence test92

of the smearing parameter σwas carried out by increasing its value and stopping at the maximum93

value which resulted in a difference between the total electronic energy and the electronic free94

energy smaller than 1 meV/atom.95

No Hubbard correction was applied to account for electron localisation in U, UB2 and UB4,96

since elemental uranium is metallic and experimental and computational data show UB2 [24, 25]97

and UB4 [25] to have no gap between the valence and the conduction band. This is consistent98

with the investigations of Burr et al. [1].99

The static (0 K) formation enthalpy (∆ f Hi,DFT ) is simply predicted using DFT. To calculate100

the enthalpy of formation at a given temperature T (∆ f Hi(T )) it is possible to use equation 4:101

∆ f Hi(T ) = ∆ f Hi,DFT − qr(T ) + qP(T ) (4)

Where qR(T ) and qP(T ) represent the heat exchanged respectively by the reactants and the prod-102

ucts between 0 K and the temperature T, which can be calculated by integrating their heat capac-103

ities over the same range.104

The literature value for the integral of the heat capacity of UB2 in the 0-298 K range is105

reported by Flotow to be 8.880 ± 0.017 kJ/mol [10], while the value calculated via DFT is 8.557106

kJ/mol.107

The values for the molar entropies Si(T) of UB2 and UB4 were calculated by exploiting the108

integral definition of entropy (5), with their entropy at 0 K assumed to be nil according to the109

Third Law of thermodynamics:110

S i(T ) = S i(0K) +
! 298K

0K

Cp,i(T ′)
T ′

· dT (5)

The calculations yield results that are very consistent with the values obtained by experiment111

for UB2 and UB4 as shown in Table 2:112

Table 2: Comparison between the values of enthalpy (∆ f H) and entropy (S ) for UB2 and UB4 calculated in this work
and those reported in the literature. Values for UB4 reported in [30] and [22] were close but different (no uncertainties
of the measurement were provided) and as such they were averaged and the uncertainty was estimated as the standard
deviation between the reported measurements in this study.

Compound ∆ f H (298 K) (kJ/mol) S (298 K) (J/mol· K)
This Work Literature This Work Literature

UB2 -169.6 -165 ± 17 [10] 55.8 55.1 ± 0.1 [10]
UB4 -245.7 -240±8 [22, 30] 67.8 69.8 ± 1.4 [22, 30]

The available data on enthalpies, entropies and heat capacities were combined to predict the113

behaviour of the reaction system as a function of temperature and partial pressure of CO. The114

molar enthalpy of formation ∆ f Hi(T ) and standard molar entropy S −⊖−
i

(T) for a substance i at a115

given temperature T were calculated according to equation 6 and 7:116

∆ f Hi(T ) = ∆ f Hi(298K) +
!

T

298K

Cp,i(T ′) · dT ′ (6)
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S −⊖−
i

(T ) = S −⊖−
i

(298K) +
!

T

298K

Cp,i(T ′)
T ′

· dT ′ (7)

Moreover, for CO at a partial pressure pCO a further correction to entropy applies:117

S CO(T, pCO) = S −⊖−
CO

(T ) − R · ln pCO

p−⊖−
(8)

Where R is the universal gas constant and p−⊖− is the standard state pressure expressed in appro-118

priate units (e.g 1 bar).119

Based on experimental data showing the predominant formation of UB4 over UB2 at rela-120

tively high partial pressures of CO (see subsequent sections) and on the work of Guo et al. in the121

preparation of UB4 [26], calculations were performed for three relevant compositions of the reac-122

tion mixture assuming a step-wise behaviour. A mixture prepared according to the stoichiometry123

dictated by reaction 9 may also host reaction 10, leading to the formation of UB4. UB4 may react124

further according to reaction 11 to finally afford UB2.125

2UO2(s) + B4C(s) + 3C(s) −→ 2UB2(s) + 4CO(g) (9)
126

UO2(s) + B4C(s) +C(s) −→ UB4(s) + 2CO(g) (10)
127

UB4(s) + UO2(s) + 2C(s) −→ 2UB2(s) + 2CO(g) (11)

Reaction 10 may be further split into the two following reactions, which can be favourable128

in the projected conditions of the synthesis. Reaction 12 indicates a possible pathway for the129

formation and subsequent loss of volatile B2O3(l) from the relatively non-volatile B4C:130

7UO2(s) + 8B4C(s) −→ 7UB4(s) + 2B2O3(l) + 8CO(g) (12)

UO2(s) + 2B2O3(l) + 8C(s) −→ UB4(s) + 8CO(g) (13)

The calculation of the free energy of formation for the three mixtures reported in Table 3131

provides trends such as those reported in Figure 1, here with a PCO of 10−4 bar, highlighting132

the most thermodynamically favourable composition of the mixture as a function of temperature133

(transitions at 1400 K and 1600 K) - which is the one with the most negative Gibbs free energy134

(∆G). Data from these plots can be compiled to provide a phase diagram such as Figure 2, which135

reports the most stable composition of the solid portion of the reaction mixture as a function of136

temperature and CO pressure. No reaction occurs in Region 1; only reaction 12 is favourable in137

Region 2, meaning that any B2O3 that forms cannot be converted into other compounds; reaction138

10 is favourable in Region 3 but reaction 12 is not, meaning that UB4 may form via pathways that139

do not involve B2O3; both reactions 12 and 13 are favourable in Region 4, allowing UB4 to form140

with B2O3 as an intermediate product; reaction 11 is favourable in Region 5, finally converting141

UB4 into UB2. Figure 2 clearly predicted that in order to obtain UB2 from the borocarbothermal142

reduction of UO2, a region in which UB4 may form must be initially crossed. As such, it is143

expected that UB4 may persist in the final product for kinetic reasons (e.g. non-ideal mixing).144

As shown by Figure 2, operating at low values of pCO gives a twofold advantage, in that it145

lowers the temperature at which UB2 may be obtained and reduces the temperature interval in146

which UB4 formation is preferred.147
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Table 3: Molar ratios of the reaction mixture under the assumption that reactions 10 and 11 proceed to completion
Initial Mixture Mixture after Mixture after

Reaction 10 Reaction 11
UO2 2 1 0
B4C 1 0 0
C 3 2 0
UB4 0 1 0
CO 0 2 4
UB2 0 0 2

Figure 1: Free energy of formation of the three reactions considered in Table 3, calculated at a CO pressure of 10−4 bar
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Figure 2: Phase diagram for the condensed phases of the reaction mixture for the borocarbothermal synthesis of UB2.
Region 1: UO2, B4C and C; Region 2: UO2, UB4, B2O3 and C; Region 3: UO2, UB4 and C; Region 4: UO2, UB4, C
and B2O3 may form as an intermediate product; Region 5: UB2.
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4. Experimental Method148

Synthesis of UB2 from UO2 was investigated experimentally by mixing pre-prepared pow-149

ders according to reaction 2. UO2 powder was commercially procured from ABSCO ltd (U.K.)150

and phase purity was confirmed via X-ray diffraction (XRD) prior to mixing, with stoichiome-151

try measured to be 2.02±0.02 as measured using thermogravimetry. No phases other than UO2152

were detected via this method. B4C was purchased from Sigma Aldrich (99.7% purity), while153

carbon powder was produced by crushing nuclear graphite (grade NBG-18). Although reaction154

2 was taken as a reference, exact ratios of carbon and boron carbide were varied in an effort to155

improve phase purity of the final product, accounting for volatilisation of boron compounds and156

the production of CO2 during lower temperature stages of the reaction, as the furnace increased157

in temperature.158

Powders were mixed within a planetary ball mill (Retsch PBM 200) using 50 ml tungsten159

carbide vessels and 10 mm and/or 5 mm media at 350-400 rpm. Milling was carried out for the160

times listed within Table 4, with reverses of rotation every 10 minutes to ensure a well-mixed161

powder. Powders were mixed as a blend, carbon or boron carbide added to vary the precursor162

ratio and then re-milled, and so total milling times are provided within the results presented.163

XRD performed on blends after milling but before heat treatment did not show the formation164

of new phases, and it was assumed that there was insufficient energy for mechanically driven165

conversion.166

Following milling, powders were pressed at 1 tonne/cm2 which produced a stable and robust167

green pellet. Green pellets were heat treated within a graphite crucible on tantalum foil, to168

prevent additional carbon interaction with the material during synthesis. Initial experiments using169

alumina crucibles demonstrated that the material reacted with Al2O3 to produce a glassy phase170

(possibly an boro-alumina glass) which physically sealed the crucible lid in one instance.171

Heat treatment was performed in a Red Devil graphite vacuum furnace (R.D. Webb Red172

Devil) at 1800 ◦C with a ramp rate of 20 ◦C/min and a 30 minute dwell time. All runs were173

started with an initial vacuum (at least 10−5 mbar) and operation of the turbo vacuum pump was174

maintained throughout. As expected, vacuum was seen to vary during operation, likely due to175

the release of CO during the reaction.176

Material phase quantification was carried out using XRD (Malvern Panalytical Empyrian).177

XRD samples of synthesised material were prepared by breaking the pellet within a pestle and178

mortar, and grinding fragments to a fine powder before sprinkling on a silicon zero background179

holder. Powder was held in place using Kapton film and petroleum jelly. Phase quantification180

was carried out using Rietveld analysis, within the Panalyical Highscore programme.181

5. Experimental Results182

Initial trials were conducted in flowing Ar at 1475 ◦C with varied compositions and milling183

parameters. These tests were conducted within an STA, in an effort to observe the onset temper-184

ature of the reaction, and were not expected to produce phase pure material. However, the only185

phases produced with these conditions were UB4, UC and a UBC phase first reported by Toth et186

al [27] and are not reported in Table 4.187

Following heat treatment, mixtures appeared to form semi-sintered pellets which were solid188

to handle, but could easily be broken if force was applied. The colour of material post-heating189

varied with the phases present, as confirmed with XRD. UO2-rich samples were dark brown or190

brick red in colour, while UB2- and UB4-rich material appeared silver or black.191
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Table 4: Overview of experimental trials. Molar ratio has been normalised to B4C content. UB2 content is rounded to
± 5% to account for relative inaccuracies within the Reitveld method, as these contents were not corroborated using an
alternative method

Reference Heat Treatment Milling UO2 Molar B4C Molar C Molar UB2 Other Phases
Ratio Ratio Ratio Content

Exp-1 1800C, vacuum 2 hours 2.10 1.00 1.01 30% UO2, UB4
Exp-2 1800C, vacuum 4 hours 2.10 1.00 2.18 70% UO2, UB4
Exp-3 1800C, vacuum 6 hours 2.10 1.00 3.68 85% UO2
Exp-4 1800C, vacuum 30 mins 2.00 1.00 2.50 0% UB4, C
Exp-5 1800C, vacuum 1 hour 2.00 1.00 3.00 0% UB4, C
Exp-6 1800C, vacuum 90 mins 2.00 1.00 3.58 90% UC, UC2
Exp-7 1800C, vacuum 4 hours 2.09 1.00 3.04 90% UO2
Exp-8 1800C, vacuum 4 hours 1.86 1.00 2.75 90% UB4, UO2

Table 4 shows the phases synthesised from various heat treatments, milling durations and192

reactant compositions. XRD spectra of selected products are shown in Figure 3.193

Synthesis performed at 1800 ◦Cs and under vacuum produced UB2 apart from for Exp. 4194

and 5 (although with varied phase purity). Exp. 4 and 5 were milled for comparatively short195

timescales, 30 and 60 mins, respectively, which may have resulted in poor mixing and therefore196

a lack of the desired reaction. This is supported by the presence of carbide phases within Exp-6,197

which do not appear in other experiments. This likely occurs from a localised excess of carbon198

within the mixture, and a similar mixture milled for much longer (Exp-3) contained residual199

UO2, rather than carbides. Residual UO2 is predicted for well-mixed samples as a result of200

volatilisation.201

The material milled for four hours and containing a relative mixture of approximately 2UO2:B4C:3C202

(Exp. 7) produced 90 % phase pure UB2 with UO2 as the only detectable impurity remaining.203

The addition of 10 % more carbon and B4C over that required for reaction 2 (Exp-8) produced204

the highest purity material, albeit it by a small margin. The UB2 phase fraction within this205

material was consistently observed to be between 90 and 92% from repeated XRD analysis,206

while Exp 7 Experiments typically had 87-89% UB2 from the same analysis.207

6. Summary208

The experimental results show that the synthesis of UB2 from UO2 is possible with care-209

ful consideration of the processing parameters and consideration of intermediate reactions that210

occur, see reaction 11. The structure of the UB2 is P6/mmm in agreement with previous investi-211

gations [3, 32] with a lattice parameter of a ≡ b= 3.133 Å and c= 3.986 Å.212

Thermodynamic modelling performed in this study suggests that conversion of UO2 to UB2213

will not occur unless the CO partial pressure is maintained at a sufficiently low value. Experi-214

mentally, poor CO removal was observed to result in the production of UB4 and UBC phases in215

early trials in flowing argon. Similar behaviour has been reported for ZrB2 and HfB2 [33] and216

more recently for High Entropy Borides (HEBs) [13].217

The conversion of the expected initial reaction product, UB4, to UB2 appears to be kinetically218

slow relative to its formation from UO2. By ensuring the reaction products have a greater degree219

of intimate contact through thorough milling and mixing, there is a significant reduction in the220

9



Figure 3: XRD patterns of synthesised material. A: After 60 minutes milling of stoichiometric blend, showing the
formation of UB4 only (Exp-5) B: With additional carbon and 90 minute milling, showing the production of UC alongside
UB2 (Exp-6). C: After four hours milling of stoichiometric blends, showing the synthesis of UB2 with residual UO2
(Exp-7). Plotted points correspond to theoretical peak positions and intensities of the reference files listed within the
Figure. Data for C was only recorded down to 30 ◦C 2θ due to operator error.
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impurity phases initially observed (mainly residual UB4, carbon and uranium carbide formation).221

Further work could be considered to improve this mixing further.222

Finally, the need for additional B4C within the experiment was anticipated, due to the volatile223

nature of many boron compounds leading to its loss during fabrication. It is expected that UO2 or224

any excess oxygen within the UO2 will react with B4C to produce B2O3, a phase that is a liquid225

above 450 ◦C with a very high vapour pressure and therefore volatility [34] (although known to226

enhance transport phenomena during sintering of compounds such as molybdenum silicide [31]).227

Any excess oxygen in the UO2 itself will also need an appropriate amount of either C or B4C228

excess to ensure full conversion is possible.229

7. Data Availability230

The raw/processed data required to reproduce these findings cannot be shared at this time as231

the data also forms part of an ongoing study232
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