

Synthesis of Candidate Advanced Technology Fuel: Uranium Diboride (ÚB2) via Carbo/Borothermic Reduction of UO2

Turner, Joel; Martini, Fabio; Buckley, James; Phillips, G; Middleburgh, Simon; Abram, Tim

Journal of Nuclear Materials

DOI: https://doi.org/10.1016/j.jnucmat.2020.152388

Published: 01/11/2020

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Turner, J., Martini, F., Buckley, J., Phillips, G., Middleburgh, S., & Abram, T. (2020). Synthesis of Candidate Advanced Technology Fuel: Uranium Diboride (UB2) via Carbo/Borothermic Reduction of UO2. Journal of Nuclear Materials, 540, [1252388]. https://doi.org/10.1016/j.jnucmat.2020.152388

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Synthesis of Candidate Advanced Technology Fuel: Uranium Diboride (UB₂) via Carbo/Borothermic Reduction of UO₂

J. Turner¹, F. Martini², J. Buckley¹, G. Phillips¹, S.C. Middleburgh², T.J. Abram¹

¹Nuclear Fuel Centre of Excellence, The University of Manchester, United Kingdom ²Nuclear Futures Institute, Bangor University, Bangor, LL57 1UT, United Kingdom

Abstract

7

The synthesis of uranium diboride (UB_2) from uranium dioxide (UO_2) has been carried out for the first time after a coordinated experimental and theoretical investigation. The reliable conversion of UO_2 to UB_2 is of importance when considering commercially relevant products (e.g. as an advanced technology fuel - ATF), avoiding the use of uranium metal as a reactant. UO_2 was reduced and borated in-situ through careful combination with boron carbide (B₄C) and graphite (carbo/borothermic reduction). The reaction is observed to only be favourable at low partial pressures of CO, here made possible through use of a vacuum furnace at temperatures up to 1800 °C. At higher partial pressures of CO, the product of the reaction is UB_4 . For phase pure UB_2 , excess B_4C is required due to the formation of volatile boron oxides that are released from the reaction mixture as is observed when synthesising other borides through similar routes.

Keywords: Nuclear, Fuel, Uranium, High Density Fuels

1 1. Introduction

Uranium diboride (UB₂) is a refractory ceramic with physical properties that make it a 2 promising candidate for the development of high-performance nuclear materials, including fuel. 3 UB₂ has a higher uranium density compared to uranium dioxide (11.68 g cm⁻³ and 9.67 g cm⁻³, 4 respectively [1]), similar to other accident tolerant fuels/advanced technology candidate fuels (ATFs) such as U_3Si_2 (11.31 g cm⁻³ [2]). UB₂ also has a much higher thermal conductivity com-6 pared to UO_2 [3, 4], which will result in a lower fuel centre-line temperatures during normal 7 operating conditions and a significantly flatter temperature profile across the pellet. This has a number of beneficial effects: (1) reducing the rate of the temperature-dependent release of fission products, (2) reduction in the pellet strain as a result of thermal expansion (which is similar to that 10 of UO_2), (3) a reduction in the amount of thermal energy stored inside the fuel and importantly 11 (4) a significant increase in the margin to centre-line melting. 12

At the same time, a higher spatial density of uranium allows more fissile material to be loaded for a given core layout - thereby extending the interval between refuelling outages and improving the fuel-cycle economics. Similarly, UB₂ can be used as a burnable absorber material further improving the fissile content within a core, extending residence times and again improving fuelcycle economics.

Preprint submitted to The Journal of Nuclear Materials

July 7, 2020

Borides have historically not been explored as fuel materials, due to the high neutron absorption cross section of boron-10, which comprises approximately 20 at.% of boron found naturally. The enrichment of boron to increase boron-10 content for use in nuclear control systems is well established, while relatively isotopically pure boron-11 is used in a number of electronic components that require stability in a radiation environment [5]. There therefore exist industrial-scale methods for isotopic enrichment of elemental boron, albeit potentially not at the scale required for fuel manufacture at present.

A key challenge to developing an alternative to UO_2 is that of synthesis and fabrication. UO_2 has a number of economical and scalable synthesis routes (including the integrated dry route [6] and wet routes, for example the AUC process [7]) converting uranium hexafluoride (UF₆) to UO_2 . Difficulty identifying a route for conversion either from fluoride or from oxide starting materials (widely available and relatively easy to handle) has dampened the enthusiasm for other ATF candidate fuels, including U_3Si_2 .

Presently, the only reported route for UB_2 preparation is by melting elemental uranium and 31 boron in stoichiometric amounts [3, 8, 9, 10, 32]. This procedure is only suitable for the prepa-32 ration of small quantities of uranium diboride in a laboratory setting, (uranium powder is py-33 rophoric and not economical to produce). It must also be noted that the precipitation of uranium 34 diboride from melts of uranium and boron affords products with significant compositional in-35 homogeneity [3] that would require multiple cycles of solidification, crushing and remelting to 36 achieve a consistent stoichiometry throughout the sample. UB_4 was also produced by fused-salt 37 electrolysis methods, for example in studies by Andrieux [36]. 38

The development of an alternative, safer and more reliable route could allow larger amounts of UB₂ to be available for testing and evaluation. In particular, it would be highly desirable to use uranium dioxide as a precursor owing to the wealth of industrial experience and wellestablished techniques regarding its preparation and handling. Past work has used B_2O_3 or B_4C with an oxide that is then reduced at elevated temperatures forming the desired boride phase [37, 38, 39, 40, 41].

The purpose of the present work is therefore to demonstrate that UB₂ may be synthesised through a carbo/borothermic route from a UO₂ precursor, avoiding the need for uranium metal fabrication and/or high temperature melting. It consists of a theoretical thermodynamics study on the required conditions and reactions for UB₂ formation, and experimental demonstration of UB₂ synthesis through the theoretical route.

50 2. Theory

The concept of carbo/borothermic reduction has long been applied in the industrial synthesis of diboride ceramics such as zirconium diboride (ZrB_2) [11], which is isostructural with UB₂ and has a similar chemistry [12].

$$2ZrO_{2(s)} + B_4C_{(s)} + 3C_{(s)} \longrightarrow 2ZrB_{2(s)} + 4CO_{(g)}$$

$$\tag{1}$$

 $_{54}$ By analogy, the borocarbothermal route may be extended to the preparation of UB₂.

$$2UO_{2(s)} + B_4C_{(s)} + 3C_{(s)} \longrightarrow 2UB_{2(s)} + 4CO_{(g)}$$

$$\tag{2}$$

An excess of boron is typically required in the starting material of this route, due to the presence of relatively volatile boron species in the reaction system [13]. The active removal of carbon monoxide can be used to make reaction 2 more favourable. A thermodynamic evaluation of the reactions was carried out to determine the conditions under which they may occur. In its most general form, the Gibbs free energy depends on temperature and pressure. In the present case the effect of pressure on the condensed phases was assumed to be negligible and the pressure sensitivity was wholly ascribed to gaseous CO, allowing us to write:

$$\Delta G_{RXN}(p_{CO}, T) = \Delta H_{RXN}^{\ominus}(T) - T \cdot \Delta S_{RXN}^{\ominus}(T) + C_{CO} \cdot RT \cdot \ln(\frac{p_{CO}}{p^{\ominus}})$$
(3)

⁶³ Where $\Delta G_{RXN}(p_{CO}, T)$ is the variation in Gibbs free energy at a given temperature *T* and a ⁶⁴ given partial pressure of carbon monoxide in the headspace P_{CO} , $\Delta H_{RXN}^{\ominus}(T)$ and $\Delta S_{RXN}^{\ominus}(T)$ are ⁶⁵ respectively the standard variations in enthalpy and entropy at a given temperature, C_{CO} is the ⁶⁶ stoichiometric coefficient with which CO is featured in the reaction and p^{\ominus} is the standard state ⁶⁷ pressure of 1 bar.

68 3. Thermodynamic Modelling

The thermodynamic properties of most of the substances involved in the reaction model 69 described are widely reported in literature and were immediately available through the NIST 70 database. Data for UO_2 was taken from [35] and [23] as representative data from the extensive 71 literature on the material. Conversely, the thermodynamic properties of UB_2 and UB_4 are not 72 readily available and as such we have used quantum mechanical calculations based on density 73 functional theory to complement the available data for those compounds, providing a robust set 74 of predictions relevant to the synthesis of UB₂. Table 1 summarises the available literature data 75 on the compounds of interest. 76

Substance	$\Delta_f H^{\ominus}$ at 298 K (kJ/mol)	S^{\ominus} at 298 K (J/mol·K)	Other data
$B_2O_{3(l)}$	-1253.36 [20]	78.45 [20]	$C_p(T)$ function [20]
$B_4C_{(s)}$	-62.68 [20]	26.77 [20]	$C_p(T)$ function [20]
$C_{(s)}$	0.00	5.74 [35]	$C_p(T)$ function [21]
$CO_{(g)}$	-110.53 [20]	197.66 [20]	$C_p(T)$ function [20]
$UB_{2(s)}$	-164.85 [10]	55.1 [10]	$C_p(T)$ function [30]
$UB_{4(s)}$	-234.18 [30], -245.60 [22]	68.41 [30] 71.13, [22]	$C_p(T)$ function [30]
$UO_{2(s)}$	-1085.0 [35]	77.03 [35]	$C_p(T)$ function [23]

Table 1: Available literature data on compounds of interest. Data for diboron trioxide are referred to its liquid state, since the synthesis takes place above its melting point of 723 K [20].

The enthalpy and the entropy of formation of UB_2 and UB_4 as functions of temperature were estimated via density functional theory (DFT) calculations, performed with the Vienna ab-initio simulation package (VASP) [14, 15, 16] and Phonopy [17].

For the VASP calculations, the projector augmented wave (PAW) potentials [18] were used in conjunction with the generalised gradient approximation (GGA) exchange correlation functional described by Perdew, Burke and Ernzerhof [19].

VASP was used to calculate the total energy per formula unit of crystalline structures of α -U

⁸⁴ [29], B [28], UB₂ [8] and UB₄ [8] under constant pressure, allowing cell size, shape and volume ⁸⁵ to change. Subsequently, Phonopy was used to determine the heat capacity at constant pressure

⁸⁶ per formula unit for the substances of interest.

In all calculations a convergence threshold of 10^{-8} eV was set for electronic minimisation, 87 and a threshold of 10^{-7} eV/Å was set for geometric optimisation. The cut-off energy was set to 88 550 eV for all calculations with a Gaussian smearing of 0.08 eV. A Γ -centred k-point mesh was 89 automatically generated with a constant k-point density of approximately 0.03 Å for each cell. 90 Convergence tests were carried out with respect to the cut-off energy and the k-point density until 91 subsequent increases resulted in changes that were smaller than 1 meV/atom. A convergence test 92 of the smearing parameter σ was carried out by increasing its value and stopping at the maximum 93 value which resulted in a difference between the total electronic energy and the electronic free 94 95 energy smaller than 1 meV/atom.

No Hubbard correction was applied to account for electron localisation in U, UB₂ and UB₄, since elemental uranium is metallic and experimental and computational data show UB₂ [24, 25] and UB₄ [25] to have no gap between the valence and the conduction band. This is consistent with the investigations of Burr et al. [1].

The static (0 K) formation enthalpy $(\Delta_f H_{i,DFT})$ is simply predicted using DFT. To calculate the enthalpy of formation at a given temperature T $(\Delta_f H_i(T))$ it is possible to use equation 4:

$$\Delta_f H_i(T) = \Delta_f H_{i,DFT} - q_r(T) + q_P(T) \tag{4}$$

Where $q_R(T)$ and $q_P(T)$ represent the heat exchanged respectively by the reactants and the products between 0 K and the temperature T, which can be calculated by integrating their heat capactities over the same range.

The literature value for the integral of the heat capacity of UB₂ in the 0-298 K range is reported by Flotow to be 8.880 ± 0.017 kJ/mol [10], while the value calculated via DFT is 8.557kJ/mol.

The values for the molar entropies $S_i(T)$ of UB₂ and UB₄ were calculated by exploiting the integral definition of entropy (5), with their entropy at 0 K assumed to be nil according to the Third Law of thermodynamics:

$$S_{i}(T) = S_{i}(0K) + \int_{0K}^{298K} \frac{C_{p,i}(T')}{T'} \cdot dT$$
(5)

The calculations yield results that are very consistent with the values obtained by experiment for UB_2 and UB_4 as shown in Table 2:

Table 2: Comparison between the values of enthalpy ($\Delta_f H$) and entropy (S) for UB₂ and UB₄ calculated in this work and those reported in the literature. Values for UB₄ reported in [30] and [22] were close but different (no uncertainties of the measurement were provided) and as such they were averaged and the uncertainty was estimated as the standard deviation between the reported measurements in this study.

Compound	$\Delta_f H$ (298 K) (kJ/mol)		S (298 K) (J/mol· K)		
	This Work	Literature	This Work	Literature	
UB ₂	-169.6	-165 ± 17 [10]	55.8	55.1 ± 0.1 [10]	
UB_4	-245.7	-240±8 [22, 30]	67.8	$69.8 \pm 1.4 [22, 30]$	

The available data on enthalpies, entropies and heat capacities were combined to predict the behaviour of the reaction system as a function of temperature and partial pressure of CO. The molar enthalpy of formation $\Delta_f H_i(T)$ and standard molar entropy $S_i^{\ominus}(T)$ for a substance *i* at a given temperature *T* were calculated according to equation 6 and 7:

$$\Delta_f H_i(T) = \Delta_f H_i(298K) + \int_{298K}^T C_{p,i}(T') \cdot dT'$$
(6)

$$S_{i}^{\Theta}(T) = S_{i}^{\Theta}(298K) + \int_{298K}^{T} \frac{C_{p,i}(T')}{T'} \cdot dT'$$
(7)

¹¹⁷ Moreover, for CO at a partial pressure p_{CO} a further correction to entropy applies:

$$S_{CO}(T, p_{CO}) = S_{CO}^{\Theta}(T) - R \cdot \ln \frac{p_{CO}}{p^{\Theta}}$$
(8)

¹¹⁸ Where *R* is the universal gas constant and p^{\ominus} is the standard state pressure expressed in appro-¹¹⁹ priate units (e.g 1 bar).

Based on experimental data showing the predominant formation of UB_4 over UB_2 at relatively high partial pressures of CO (see subsequent sections) and on the work of Guo et al. in the preparation of UB_4 [26], calculations were performed for three relevant compositions of the reaction mixture assuming a step-wise behaviour. A mixture prepared according to the stoichiometry dictated by reaction 9 may also host reaction 10, leading to the formation of UB_4 . UB_4 may react further according to reaction 11 to finally afford UB_2 .

$$2UO_{2(s)} + B_4C_{(s)} + 3C_{(s)} \longrightarrow 2UB_{2(s)} + 4CO_{(g)}$$

$$\tag{9}$$

$$UO_{2(s)} + B_4C_{(s)} + C_{(s)} \longrightarrow UB_{4(s)} + 2CO_{(g)}$$
⁽¹⁰⁾

$$UB_{4(s)} + UO_{2(s)} + 2C_{(s)} \longrightarrow 2UB_{2(s)} + 2CO_{(g)}$$

$$\tag{11}$$

Reaction 10 may be further split into the two following reactions, which can be favourable in the projected conditions of the synthesis. Reaction 12 indicates a possible pathway for the formation and subsequent loss of volatile $B_2O_{3(l)}$ from the relatively non-volatile B_4C :

$$7UO_{2(s)} + 8B_4C_{(s)} \longrightarrow 7UB_{4(s)} + 2B_2O_{3(l)} + 8CO_{(g)}$$
(12)

$$UO_{2(s)} + 2B_2O_{3(l)} + 8C_{(s)} \longrightarrow UB_{4(s)} + 8CO_{(g)}$$

$$\tag{13}$$

The calculation of the free energy of formation for the three mixtures reported in Table 3 131 provides trends such as those reported in Figure 1, here with a P_{CO} of 10^{-4} bar, highlighting 132 the most thermodynamically favourable composition of the mixture as a function of temperature 133 (transitions at 1400 K and 1600 K) - which is the one with the most negative Gibbs free energy 134 (ΔG) . Data from these plots can be compiled to provide a phase diagram such as Figure 2, which 135 reports the most stable composition of the solid portion of the reaction mixture as a function of 136 temperature and CO pressure. No reaction occurs in Region 1; only reaction 12 is favourable in 137 Region 2, meaning that any B_2O_3 that forms cannot be converted into other compounds; reaction 138 10 is favourable in Region 3 but reaction 12 is not, meaning that UB_4 may form via pathways that 139 do not involve B_2O_3 ; both reactions 12 and 13 are favourable in Region 4, allowing UB₄ to form 140 with B_2O_3 as an intermediate product; reaction 11 is favourable in Region 5, finally converting 141 UB₄ into UB₂. Figure 2 clearly predicted that in order to obtain UB₂ from the borocarbothermal 142 reduction of UO_2 , a region in which UB_4 may form must be initially crossed. As such, it is 143 expected that UB₄ may persist in the final product for kinetic reasons (e.g. non-ideal mixing). 144

As shown by Figure 2, operating at low values of p_{CO} gives a twofold advantage, in that it lowers the temperature at which UB₂ may be obtained and reduces the temperature interval in which UB₄ formation is preferred.

	Initial Mixture	Mixture after Reaction 10	Mixture after Reaction 11
UO ₂	2	1	0
B_4C	1	0	0
С	3	2	0
UB_4	0	1	0
CO	0	2	4
UB_2	0	0	2

Table 3: Molar ratios of the reaction mixture under the assumption that reactions 10 and 11 proceed to completion **Initial Mixture | Mixture after | Mixture after**

Figure 1: Free energy of formation of the three reactions considered in Table 3, calculated at a CO pressure of 10^{-4} bar

Figure 2: Phase diagram for the condensed phases of the reaction mixture for the borocarbothermal synthesis of UB₂. Region 1: UO₂, B₄C and C; Region 2: UO₂, UB₄, B₂O₃ and C; Region 3: UO₂, UB₄ and C; Region 4: UO₂, UB₄, C and B₂O₃ may form as an intermediate product; Region 5: UB₂.

148 **4. Experimental Method**

Synthesis of UB₂ from UO₂ was investigated experimentally by mixing pre-prepared pow-149 ders according to reaction 2. UO_2 powder was commercially procured from ABSCO ltd (U.K.) 150 and phase purity was confirmed via X-ray diffraction (XRD) prior to mixing, with stoichiome-151 try measured to be 2.02 ± 0.02 as measured using thermogravimetry. No phases other than UO₂ 152 were detected via this method. B_4C was purchased from Sigma Aldrich (99.7% purity), while 153 carbon powder was produced by crushing nuclear graphite (grade NBG-18). Although reaction 154 2 was taken as a reference, exact ratios of carbon and boron carbide were varied in an effort to 155 improve phase purity of the final product, accounting for volatilisation of boron compounds and 156 the production of CO₂ during lower temperature stages of the reaction, as the furnace increased 157 in temperature. 158

Powders were mixed within a planetary ball mill (Retsch PBM 200) using 50 ml tungsten 159 carbide vessels and 10 mm and/or 5 mm media at 350-400 rpm. Milling was carried out for the 160 times listed within Table 4, with reverses of rotation every 10 minutes to ensure a well-mixed 161 powder. Powders were mixed as a blend, carbon or boron carbide added to vary the precursor 162 ratio and then re-milled, and so total milling times are provided within the results presented. 163 XRD performed on blends after milling but before heat treatment did not show the formation 164 of new phases, and it was assumed that there was insufficient energy for mechanically driven 165 conversion. 166

Following milling, powders were pressed at 1 tonne/cm² which produced a stable and robust green pellet. Green pellets were heat treated within a graphite crucible on tantalum foil, to prevent additional carbon interaction with the material during synthesis. Initial experiments using alumina crucibles demonstrated that the material reacted with Al₂O₃ to produce a glassy phase (possibly an boro-alumina glass) which physically sealed the crucible lid in one instance.

Heat treatment was performed in a Red Devil graphite vacuum furnace (R.D. Webb Red Devil) at 1800 °C with a ramp rate of 20 °C/min and a 30 minute dwell time. All runs were started with an initial vacuum (at least 10⁻⁵ mbar) and operation of the turbo vacuum pump was maintained throughout. As expected, vacuum was seen to vary during operation, likely due to the release of CO during the reaction.

Material phase quantification was carried out using XRD (Malvern Panalytical Empyrian).
 XRD samples of synthesised material were prepared by breaking the pellet within a pestle and
 mortar, and grinding fragments to a fine powder before sprinkling on a silicon zero background
 holder. Powder was held in place using Kapton film and petroleum jelly. Phase quantification
 was carried out using Rietveld analysis, within the Panalytical Highscore programme.

182 5. Experimental Results

Initial trials were conducted in flowing Ar at 1475 °C with varied compositions and milling parameters. These tests were conducted within an STA, in an effort to observe the onset temperature of the reaction, and were not expected to produce phase pure material. However, the only phases produced with these conditions were UB₄, UC and a UBC phase first reported by Toth et al [27] and are not reported in Table 4.

Following heat treatment, mixtures appeared to form semi-sintered pellets which were solid to handle, but could easily be broken if force was applied. The colour of material post-heating varied with the phases present, as confirmed with XRD. UO₂-rich samples were dark brown or brick red in colour, while UB₂- and UB₄-rich material appeared silver or black.

Reference	Heat Treatment	Milling	UO ₂ Molar	B ₄ C Molar	C Molar	\mathbf{UB}_2	Other Phases
			Ratio	Ratio	Ratio	Content	
Exp-1	1800C, vacuum	2 hours	2.10	1.00	1.01	30%	UO_2, UB_4
Exp-2	1800C, vacuum	4 hours	2.10	1.00	2.18	70%	UO_2, UB_4
Exp-3	1800C, vacuum	6 hours	2.10	1.00	3.68	85%	UO_2
Exp-4	1800C, vacuum	30 mins	2.00	1.00	2.50	0%	UB_4, C
Exp-5	1800C, vacuum	1 hour	2.00	1.00	3.00	0%	UB_4, C
Exp-6	1800C, vacuum	90 mins	2.00	1.00	3.58	90%	UC, UC_2
Exp-7	1800C, vacuum	4 hours	2.09	1.00	3.04	90%	UO_2
Exp-8	1800C, vacuum	4 hours	1.86	1.00	2.75	90%	UB_4, UO_2

Table 4: Overview of experimental trials. Molar ratio has been normalised to B_4C content. UB_2 content is rounded to $\pm 5\%$ to account for relative inaccuracies within the Reitveld method, as these contents were not corroborated using an alternative method

Table 4 shows the phases synthesised from various heat treatments, milling durations and reactant compositions. XRD spectra of selected products are shown in Figure 3.

Synthesis performed at 1800 °Cs and under vacuum produced UB₂ apart from for Exp. 4 194 and 5 (although with varied phase purity). Exp. 4 and 5 were milled for comparatively short 195 timescales, 30 and 60 mins, respectively, which may have resulted in poor mixing and therefore 196 a lack of the desired reaction. This is supported by the presence of carbide phases within Exp-6, 197 which do not appear in other experiments. This likely occurs from a localised excess of carbon 198 within the mixture, and a similar mixture milled for much longer (Exp-3) contained residual 199 UO_2 , rather than carbides. Residual UO_2 is predicted for well-mixed samples as a result of 200 volatilisation. 201

The material milled for four hours and containing a relative mixture of approximately $2UO_2$:B₄C:3C (Exp. 7) produced 90 % phase pure UB₂ with UO₂ as the only detectable impurity remaining.

The addition of 10 % more carbon and B_4C over that required for reaction 2 (Exp-8) produced the highest purity material, albeit it by a small margin. The UB₂ phase fraction within this material was consistently observed to be between 90 and 92% from repeated XRD analysis, while Exp 7 Experiments typically had 87-89% UB₂ from the same analysis.

208 6. Summary

The experimental results show that the synthesis of UB₂ from UO₂ is possible with careful consideration of the processing parameters and consideration of intermediate reactions that occur, see reaction 11. The structure of the UB₂ is *P*6/*mmm* in agreement with previous investigations [3, 32] with a lattice parameter of $\mathbf{a} \equiv \mathbf{b} = \mathbf{3.133}$ Å and $\mathbf{c} = \mathbf{3.986}$ Å.

Thermodynamic modelling performed in this study suggests that conversion of UO₂ to UB₂ will not occur unless the CO partial pressure is maintained at a sufficiently low value. Experimentally, poor CO removal was observed to result in the production of UB₄ and UBC phases in early trials in flowing argon. Similar behaviour has been reported for ZrB₂ and HfB₂ [33] and more recently for High Entropy Borides (HEBs) [13].

The conversion of the expected initial reaction product, UB_4 , to UB_2 appears to be kinetically slow relative to its formation from UO_2 . By ensuring the reaction products have a greater degree of intimate contact through thorough milling and mixing, there is a significant reduction in the

Figure 3: XRD patterns of synthesised material. A: After 60 minutes milling of stoichiometric blend, showing the formation of UB₄ only (Exp-5) B: With additional carbon and 90 minute milling, showing the production of UC alongside UB₂ (Exp-6). C: After four hours milling of stoichiometric blends, showing the synthesis of UB₂ with residual UO₂ (Exp-7). Plotted points correspond to theoretical peak positions and intensities of the reference files listed within the Figure. Data for C was only recorded down to 30 °C 2 θ due to operator error.

impurity phases initially observed (mainly residual UB₄, carbon and uranium carbide formation). 221 Further work could be considered to improve this mixing further. 222

Finally, the need for additional B_4C within the experiment was anticipated, due to the volatile 223 nature of many boron compounds leading to its loss during fabrication. It is expected that UO_2 or 224 any excess oxygen within the UO₂ will react with B_4C to produce B_2O_3 , a phase that is a liquid 225 above $450 \,^{\circ}$ C with a very high vapour pressure and therefore volatility [34] (although known to 226 enhance transport phenomena during sintering of compounds such as molybdenum silicide [31]). 227 Any excess oxygen in the UO_2 itself will also need an appropriate amount of either C or B_4C 228 excess to ensure full conversion is possible. 229

7. Data Availability 230

The raw/processed data required to reproduce these findings cannot be shared at this time as 231 the data also forms part of an ongoing study 232

8. Acknowledgements 233

The authoes acknowledges the use of the Department of Materials X-ray Diffraction Suite at 234 the University of Manchester and are grateful for the technical support, advice and assistance of 235 Dr. John E. Warren. 236

Penny Dowdney, Magnus Limbck, Antoine Claisse and Mattias Puide are thanked for their 237 support. 238

SCM is funded through the Sêr Cymru II programme by Welsh European Funding Office 239 (WEFO) under the European Development Fund (ERDF). Computing resources were made 240 available by Supercomputing Wales. FM is funded through the KESS 2 programme sponsored 241 by Westinghouse Electric. 242

JB and GP are funding through the Department for Business, Energy and Industrial Strategy 243 (BEIS) Nuclear Innovation Programme (NIP). JT is funded by the Dalton Nuclear Institute at the 244 University of Manchester.

245

References 246

- [1] P.A. Burr, E. Kardoulaki, R. Holmes, S.C. Middleburgh, J. Nucl. Mater. 513 (2019) 45-55 247
- [2] D.A. Lopez, A. Benarosch, S. Middleburgh, K.D. Johnson, J. Nucl. Mater. 496 (2017) 234-241. 248
- [3] E. Kardoulaki, J.T. White, D.D. Byler. D.M. Frazer, A.P. Shivprasad, T.A. Saleh, B.Gong, T.Yaob, J.Lian, 249 K.J.McClellan, J. Alloy Comp. 818 (2020) 153216. 250
- [4] L.J.Evitts, S.C.Middleburgh, E.Kardoulaki, I.Ipatova M.J.D.Rushton, W.E.Lee, J. Nucl. Mater. 528 (2020) 151892. 251
- 252 [5] R.C. Baumann, E.B. Smith, IEEE International Reliability Physics Symposium Proceedings. 38th Annual (2000).
- S. E. Ion R. H. Watson, 20 Years of Production of UO₂ by the Integrated Dry RouteA BNFL Perspective on Dry 253 [6] Conversion, A Collection of Papers on Engineering Aspects of Fabrication of Ceramics: Ceramic Engineering and 254 Science Proceedings, Volume 14 (1993). 255
- [7] C.S. Choi, J.H. Park, E.H. Kim, H.S. Shin, I.S. Chang, J. Nucl. Mater. 153 (1988) 148-155. 256
- [8] J.-P. Dancausse, E. Gering, S. Heathman and U. Benedict, L. Gerward, S. Staun Olsen, F. Hulliger, J. Alloy Comp. 257 189 (1992) 205-208. 258
- J. Turner, T. Abram, J. Nucl. Mater. 529 (2020) 151919. 259 [9]
- [10] H. E. Flotow, D. W. Osborne, J. Chem. Phys. 51 (1969) 583. 260
- 261 [11] S. Zhu, W.G. Fahrenholtz, G.E. Hilmas, S.C. Zhang, J. Am. Ceram. Soc. 90 (2007) 3660-3663.
- [12] E. Jossou, D. Oladimeji, L. Malakkal, S. Middleburgh, B. Szpunar, J. Szpunara, J. Nucl. Mater. 494 (2017) 147-156. 262
- [13] L. Feng, W.G. Fahrenholtz, G.E. Hilmas, J. Am. Ceram. Soc. 103 (2020) 724-730. 263
- [14] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47:558, 1993. 264

- [15] G. Kresse and J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor
 transition in germanium. Phys. Rev. B, 49:14251, 1994.
- [16] G. Kresse and J. Furthmaller. Efficiency of ab-initio total energy calculations for metals and semiconductors using
 a plane-wave basis set. Comput. Mat. Sci., 6:15, 1996.
- ²⁶⁹ [17] A. Togo, I. Tanaka, Scr. Mater. 108 (2015) 1-5.
- [18] P. E. Blochl. Projector augmented-wave method. Phys. Rev. B, 50:17953, 1994.
- [19] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett.,
 77:3865, 1996.
- [20] M.W. Chase, C.A.Davies, J.R.Downey, D. Frurip, R.A.J. McDonald, Phys. Chem. Ref. Data. JANAF Thermochem.
 Tables 4 (1998).
- 275 [21] A.T.D. Butland, R.J. Maddison, J. Nucl. Mater. 49 (1973) 4556.
- 276 [22] I. Barin, U-WS2. Thermochemical Data of Pure Substances (1995) 17251815
- Y.E. Kim, J.W. Park, J. Cleveland, Thermophysical properties database of materials for light water and heavy water
 reactors. Int. At. Energy Agency, Vienna, Austria, Tech. Rep. IAEA-TECDOC-1496 (2006).
- ²⁷⁹ [24] T. Ohkochi, et al. Phys. Rev. B 78 (2008) 165110.
- 280 [25] L.L. Lohr, Int. J. Quantum Chem. 40 (1991) 121130.
- 281 [26] H. Guo, et al. J. Am. Ceram. Soc. 102 (2019) 1049-1056.
- 282 [27] L. Toth, H. Nowotny, F. Benesovsky, E. Rudy, Monatsh. Chem. Verw. Teile. Anderer. Wiss. 92 (1961) 794802.
- [28] G. Parakhonskiy, N.Dubrovinskaia, E. Bykova, R. Wirth, L. Dubrovinsky, High Press. Res. 33 (2013) 673683.
- 284 [29] A.C. Lawson, C.E. Olsen, J.W. Richardson Jnr, M. Mueller, G.H. Lander, Acta Crystallogr. Sect. B, 44 (1988) 8996
- 285
 286 [30] P.Y. Chevalier, E. Fischer, Journal of Nuclear Materials, 288 (2001) 100129.
- [30] J-M. Ting, Journal of Materials Science Letters, 14 (1995) 539541.
- 288 [32] L. Brewer, D.L. Sawyer, D.H. Templeton, C.H. Dauben, J. Am Ceram Soc. 34 (1951) 173-179.
- [33] G-J. Zhang, W-M. Guo, D-W. Ni, Y-M. Kan, J. Phys. Conf. Ser. 176 (2008) 012041.
- ²⁹⁰ [34] R.H. Lamoreaux, D.L. Hildenbrand, L. Brewer, J. Phys. Chem. Ref. Data 16 (1987) 419.
- [54] K.H. Lamoreaux, D.L. Hudenbrand, L. Diewei, J. Huys, Chen, Kei, Data 10 (1767) 415.
- [35] Medvedev, Vadim Andreevich, J. D. Cox, and Donald D. Wagman, eds. CODATA key values for thermodynamics. New York: Hemisphere Publishing Corporation, 1989.
- [36] J-L Andrieux, P. Blum, "Sur La preparation electrolytique et les properietes des boures d'uranium" Compt. rend.
 229 (1949) 210
- ²⁹⁵ [37] R. Kieffer, F, Benesovsky and E.R. Honak, Z. anorg. allg. Chem. 268 191 (1952)
- 296 [38] H.M. Greenhouse, O.E. Accountius and H.H. Sisler, J.Am. Chem. Soc. 73 5086 (1951)
- 297 [39] E. Wedekind and F. Fetzer, Ber. Dtsch. Chem. Ges. 40, 297 (1907)
- [40] P. Schwarzkopf and R. Kieffer, "Refractory Hard Metals: Borides, Carbides, Nitrides, and Silicides", Macmillan,
 1953
- [41] N.R. Koenig, B.A. Webb "Properties of Ceramic and Cermet Fuels for Sodium Graphite Reactors" Atomics Inter national (1960) NAASR-3880)