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Abstract: A rapid decline in mortality and fertility has become major issues in many developed
countries over the past few decades. An accurate model for forecasting demographic movements
is important for decision making in social welfare policies and resource budgeting among the
government and many industry sectors. This article introduces a novel non-parametric approach
using Gaussian process regression with a natural cubic spline mean function and a spectral mixture
covariance function for mortality and fertility modelling and forecasting. Unlike most of the existing
approaches in demographic modelling literature, which rely on time parameters to determine the
movements of the whole mortality or fertility curve shifting from one year to another over time,
we consider the mortality and fertility curves from their components of all age-specific mortality
and fertility rates and assume each of them following a Gaussian process over time to fit the whole
curves in a discrete but intensive style. The proposed Gaussian process regression approach shows
significant improvements in terms of forecast accuracy and robustness compared to other mainstream
demographic modelling approaches in the short-, mid- and long-term forecasting using the mortality
and fertility data of several developed countries in the numerical examples.

Keywords: demographic modelling; mortality forecasting; fertility forecasting; Gaussian process;
non-parametric regression; Lee-Carter model

1. Introduction

There has been an increasing demand for demographic modelling and forecasting
over the last few decades, driven by many developed countries are now suffering a rapid
decline in mortality and fertility, leading to a significant increase in expenditures on
health services for an ageing population and a shortage of future labour. Although many
factors, including wealth, religion and migration, play important roles in demographic
modelling and forecasting, mortality and fertility have been the principal determinants
of the demographic models during the last century. Hence a better understanding of the
mortality and fertility patterns and trends is of great importance for all stakeholders in
a society as the mortality forecasts, for example, play a vital role for the insurance and
pensions industries in pricing their insurance products. The fertility predictions are also of
great interest to the government and education sectors in planing children’s welfare and
educational services.

Unlike the biological and the medical methods, statisticians have developed very
different and purely mathematical methods to model the demographic patterns and trends
which are well-documented by Preston et al. [1]. The history of demographic modelling
with the mathematical approaches can be traced back to some deterministic models pro-
posed in the mid-nineteenth century, see, for example, Gompertz [2] and Makeham [3].
The deterministic models are, however, restricted with few fixed factors and have no
stochastic process considered owing to the lack of computing capability in that early pe-
riod. With the advance of technology in computing, stochastic modelling has become a
mainstream method of mortality and fertility curve fittings over the last three decades.
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A significant milestone of the demographic modelling literature is the seminal work done
by Lee and Carter [4], well-known as the Lee-Carter model, which can model and extrap-
olate a long-term mortality trend as a stochastic time series. It rapidly gained credit and
popularity, given its simplicity and ability to capture most variations in demographic data
evolved over time. For instance, Lee [5] applies it to fertility modelling and forecasting,
and there has also been a series of extensions, variants and modifications proposed af-
terwards, see, for example, Bell [6], Lee and Miller [7], Booth et al. [8], Brouhns et al. [9],
Renshaw and Haberman [10], Cairns et al. [11] and Hunt and Blake [12].

In the meantime, non-parametric or data-driven techniques, which do not need to
meet certain assumptions on parametric forms in the model calibration, have also been
introduced and developed in demographic modelling. This kind of techniques can be
dated back to the classical graduation technique [13], which maintains an agnostic view of
historical experience and solely focuses on removing random fluctuations in observed data
then directly extrapolates the past trend to the future. In more recent years, Currie et al. [14]
use P-splines to smooth the historical mortality surface across both age and year dimensions
before fitting. Hyndman and Ullah [15] extend the Lee-Carter model to a functional data
framework with a non-parametric smoothing method that allows for smooth functions
of age and is more robust for demographic modelling. Some other developments in this
area include Delwarde et al. [16], Debón et al. [17], Li et al. [18], Ludkovski et al. [19],
Dokumentov et al. [20], Wu and Wang [21] and Alexopoulos et al. [22].

As an alternative to existing methods as well as having several desirable advantages
over others, in this paper we propose a new non-parametric approach using Gaussian pro-
cess regression with a natural cubic spline mean function and a spectral mixture covariance
function for mortality and fertility modelling and forecasting. Unlike most of the existing
approaches in demographic modelling, which depend on a few parameters to determine
the movement of the whole mortality or fertility curve shifting from one year to another,
we consider the mortality and fertility curves from their components of all age-specific
mortality and fertility rates and assume each of them following a Gaussian process over
time to fit the whole curves in a discrete but dense style.

More will be discussed in detail in the paper, and the rest of this paper is organised
as follows. We briefly outline the theoretical background of Gaussian process regression
in Section 2. In Section 3, we describe the framework of the proposed Gaussian process
regression model for mortality and fertility modelling and forecasting. We then illustrate
the proposed model with applications to the empirical mortality and fertility data, followed
by comparisons to other existing approaches in terms of the systematic differences and
forecasting performances using the observed mortality and fertility data of ten developed
countries in Section 4. We lastly conclude this paper with discussions and remarks in
Section 5.

2. Theoretical Background of Gaussian Process Regression

Gaussian process regression (also known as Kriging) is a regression method which
belongs to a class of Bayesian non-parametric approaches to inferencing and modelling
of an unknown latent function. This approach can be seen as conditioning of test data on
training data in a joint Gaussian distribution. The theoretical basis for Gaussian process
regression (GPR) was initially developed for estimating the most likely distribution of
gold based on samples from a few boreholes in South Africa [23], and it was mainly used
for spatial analysis and natural resources evaluation in geostatistics in the past, see, for
example, Matheron [24], Journel and Huijbregts [25] and Cressie [26].

Over the last two decades, GPR has gained its popularity rapidly as different statistical
tools among the data science community, such as, Engel et al. [27], Krause et al. [28] and
Neal [29], due to its many desirable properties, such as the existence of explicit forms,
the ease of obtaining and expressing uncertainty in predictions, the ability to capture a
wide variety of patterns through different covariance functions, and a natural Bayesian
interpretation. It has also been recognised as a powerful tool for regressions and forecast-
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ing problems in the field of economics thanks to its abilities to quantify the uncertainties
associated with the historical experience of the observed data and to generate the full
stochastic trajectories for out-of-sample forecasts with prediction intervals under the Gaus-
sian probabilistic framework. It is also capable of scaling to a large dataset with a minimum
set of tunable (hyper-) parameters involved as well as capturing non-linear or periodic
dynamics with a high degree of analytic tractability that extends the explorabilities and
explainabilities of the classical linear regression model in more complicated scenarios.
Some economic forecasting applications with GPR can be found in the literature. For in-
stance, Alamaniotis et al. [30] perform a short-term load forecasting using an ensemble
of GPR approaches, and Wu et al. [31] predict the tourism demand volume in Hong
Kong using GPR. Since GPR is the fundamental technique applied in this article, we will
give a brief review of GPR which will be used later. Readers can refer to MacKay [32]
and Williams and Rasmussen [33] for more complete discussions of GPR.

Gaussian Process Regression

Let a training dataset with n pairs of observations of univariate covariates and re-
sponses be {ti, y(ti)}n

i=1. We consider the following non-linear regression model

y(ti) = f (ti) + ε(ti), ε(ti) ∼ N (0, σ2),

where f (·) is the unknown function that needs to be estimated, and {ε(ti)}n
i=1 are the

independent and identically normally distributed error terms with mean 0 and constant
variance σ2.

Following the Gaussian process paradigm, the unknown function { f (t) : t ∈ T } is
assumed to have a Gaussian process prior with a specified mean function and a specified
covariance function over the domain T . It gives for all t ∈ T

f (t) ∼ GP(µ(t), K(t, t′)), (1)

where the mean function µ(t) and the covariance function K(t, t′) are defined as

µ(t) = E[ f (t)],

K(t, t′) = Cov( f (t), f (t′)) = E[( f (t)− µ(t))( f (t′)− µ(t′))].

The specified mean function µ(·) and the specified covariance function K(·, ·) in the
Gaussian process prior reflect our prominent belief in the unknown function f (·), prior
to any information about the observed data. A well-specified prior mean function has
a profound impact on the forecast performance since the mean function will dominate
the forecast results of the Gaussian process regression model in regions far beyond from
the historical data. Meanwhile, the specified covariance function encodes the correlation
between any pair of outputs {y(t), y(t′)}, which determines the relativeness of one point
to another, such as smoothness or periodicity.

A common covariance function example is the squared exponential covariance func-
tion which is used to model a smooth function. It has the form

K(t, t′) = h2exp
(
− (t− t′)2

2l2

)
,

where h is the response-scale amplitude determining the variation of function values,
l is the characteristic length-scale which gives smooth variations in a covariate-scale and
controls how far the observed data can be extrapolated.

Another common example is the periodic covariance function, which is used to model
a periodic function. It gives

K(t, t′) = h2exp
(
− 2sin(π(t− t′)/p)2

l2

)
,
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where p determines the distance between repetitions of a function, h and l are the same as
in the squared exponential covariance function above.

A wide variety of covariance functions has been proposed, see, for example, Williams
and Rasmussen [33], and this allows us great flexibilities in modelling among many differ-
ent scenarios.

With the assumption of the Gaussian distribution on a collection of all the discrete
observations, y = [y(t1), . . . , y(tn)]T follows an n-variate normal distribution, i.e.,

y ∼ N (µ, K),

where µ = [µ(t1), . . . , µ(tn)]T , and K is the n× n covariance matrix with entries K(ti, tj) +

σ2δti ,tj . Here δti ,tj = 1 if ti = tj and 0 otherwise.
The log-likelihood function of the n-dimensional collection of the discrete observations

y for all the (hyper-) parameters in the specified mean function and the specified covariance
function (denoted by a generic θ) and the noise parameter σ2 is

L(θ, σ2) = −1
2

log|K| − 1
2
(y− µ)T(K)−1(y− µ)− n

2
log(2π), (2)

where | · | denotes the determinant of a matrix.
Standard gradient-based numerical optimisation techniques, such as Conjugate Gradi-

ent method, can be used to maximise the log-likelihood function L(θ, σ2) in Equation (2)
to obtain the estimates of the model parameters.

For the corresponding value y(t∗) at any measurement time point t∗, we can denote
the joint distribution of [y(t1), . . . , y(tn), y(t∗)]T as an (n + 1)-variate normal distribution
with a mean vector [µ(t1), . . . , µ(tn), µ(t∗)]T and a covariance matrix as[

K K∗

K∗T K(t∗, t∗) + σ2

]
,

where K∗ = [K(t∗, t1), . . . , K(t∗, tn)]T .
The conditional distribution of y(t∗) given y with the estimated (hyper-) parame-

ters θ̂ and noise variance σ̂2 through the optimisation of the log-likelihood function in
Equation (2), is then N (ŷ(t∗), σ̂∗2), where

ŷ(t∗) = µ(t∗) + K∗TK−1(y− µ),

σ̂∗2 = K(t∗, t∗) + σ̂2 − K∗TK−1K∗.

The Gaussian process regression approach for conditioning of an unknown value
by some realisations of a stochastic process in a joint Gaussian distribution can be seen
as expanding discrete data from a function space point of view over the same domain.
This idea can also be applied to the task of forecasting. With the Gaussian probabilistic
framework, it can quantify the uncertainty associated with the historical experience of the
observed data and then generate the full stochastic trajectories for out-of-sample forecasts
with prediction intervals. We will discuss this in detail with applications to mortality and
fertility data in the next section.

3. Methodology
3.1. Gaussian Process Regression (GPR) Model for Mortality and Fertility Modelling and
Forecasting

In this section, we introduce the proposed Gaussian process regression (GPR) model
for mortality and fertility modelling and forecasting.

Let our discrete observed log mortality (or fertility) rates dataset be {ti, yx(ti)} for
i = 1, . . . , n and x = 0, . . . , m, where n is the total number of observed calendar years t,
m is the maximum age of interest, and yx(ti) is the log of mortality (or fertility) rates for a
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given age x in a calendar year ti. The proposed GPR model for mortality (or fertility) rates
modelling and forecasting in a given age x is

yx(ti) = fx(ti) + εx(ti), εx(ti) ∼ N (0, σ2
x),

where fx(ti) is the underlying function that needs to be estimated, {εx(ti)}n
i=1 allow the

observation errors varying based on the assumption of i.i.d. normally distributed random
variables with mean 0 and constant variance σ2

x for a given age x.
Following the Gaussian process regression paradigm discussed in Section 2, the under-

lying function { fx(t) : t ∈ T } for mortality (or fertility) modelling and forecasting of each
age x is assumed to follow a Gaussian process with a specified prior mean function µx(t)
and a specified prior covariance function Kx(t, t′) over the domain T (note that mortality
and fertility data are not directly of a functional nature, and here we assume that there
are underlying functional time series which are observed with errors at discrete points).
It gives for all t ∈ T

fx(t) ∼ GP(µx(t), Kx(t, t′)). (3)

3.1.1. Specified Gaussian Process Prior Mean Function

Under the Gaussian process regression paradigm, we are allowed to choose a prior
mean function that reflects our prominent belief in the unknown function fx(t) for the
Gaussian process regression model. Due to incomplete information on the functional form
among the time-series of age-specific mortality and fertility rates and a wide range of
the patterns as exhibited in our numerical examples in Section 4 (see Figures 1a and 2a),
we adopt a non-parametric mean function, namely the natural cubic spline function, in the
proposed GPR model for mortality and fertility modelling and forecasting. The justifi-
cations for this choice here are that the natural cubic spline function can handle a broad
range of complex and non-linear functions that exist in all the age-specific mortality and
fertility rates as a general and unified approach. It behaves like a higher-order polynomial
regression model for curve fitting with no presumption needed on the relationship between
the covariate and response variables. Meanwhile, it can extrapolate the trend of historical
data smoothly into the future in an appropriate direction without suffering the overfitting
problem that occurs commonly in the higher-order polynomial regression model when it
comes to forecasting. The information involved in the actual observations of the data is
reflected in the coefficients involved which need to be estimated based on the data.

To explain further how it works mathematically, we consider the natural cubic spline
function with strictly increasing K knots {ξk}K

k=1 where ξ1 < ξ2 < . . . < ξK over the ob-
served time interval [t1, tn] can be represented as the truncated power series representation
for a cubic spline function. It gives

µx(t) =
3

∑
p=0

αptp +
K

∑
k=1

βk(t− ξk)
3
+, (4)

with additional constraints on the boundary conditions when t < ξ1 and t ≥ ξK, such that

α2 = 0, α3 = 0,
K

∑
k=1

βk = 0, and
K

∑
k=1

βkξk = 0, (5)

where (·)+ denotes the positive part, {αp}3
p=0 are the coefficients of the cubic polynomial

and {βk}K
k=0 are the coefficients of the truncated power series for the cubic splines with K

interior knots.
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(a)

(b)

Figure 1. (a) Univariate time series of the log age-specific male mortality rates with 20-year age
intervals and (b) the log male mortality curves from age 0 to age 100 from the year 1947 to the year
2016 in Japan.

By imposing the above boundary constraints in Equation (5), the natural cubic spline
function can be further derived as a reduced basis when t ≥ ξK for extrapolation as

µx(t) =
3

∑
p=0

αptp +
K

∑
k=1

βk(t− ξk)
3

=
3

∑
p=0

αptp +
K

∑
k=1

βk(t3 − 3ξkt2 + 3ξ2
k t− ξ3

k)

= α0 + α1t + α2t︸︷︷︸
=0

+ α3t︸︷︷︸
=0

+
K

∑
k=1

βkt3

︸ ︷︷ ︸
=0

−
K

∑
k=1

3βkξkt2

︸ ︷︷ ︸
=0

+
K

∑
k=1

3βkξ2
k t−

K

∑
k=1

βkξ3
k

= α0 + α1t +
K

∑
k=1

3βkξ2
k t−

K

∑
k=1

βkξ3
k

= (α0 −
K

∑
k=1

βkξ3
k) + (α1 +

K

∑
k=1

3βkξ2
k)t. (6)
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For simplicity of notation, we denote c0 = (α0−∑K
k=1 βkξ3

k) and c1 = (α1 + ∑K
k=1 3βkξ2

k).
Then

µx(t) = c0 + c1t,

thus µx(t) is a linear function with constants c0 and c1 when t ≥ ξK for extrapolation.
Unlike the cubic spline function whose behaviour tends to be erratic near boundaries

and the extrapolation can be unrealistic outside the observed time interval [t1, tn], the nat-
ural cubic spline function forces its extrapolation outside regions beyond the observed
data to be a linear function with zero second derivative that agrees with the spline in its
intercept and slope values among its last knot [34]. With this distinctive feature, the natural
cubic spline function can hence inherit the local information of recent data and gives a
reasonable direction for extrapolation. In demographic modelling, it is often the case that
more recent experience has greater relevance on future behaviour than those data from the
distant past. On account of this, we specify the natural cubic spline function as the mean
function for mortality and fertility modelling and forecasting in the proposed GPR model.

(a)

(b)

Figure 2. (a) Univariate time series of the log fertility rates with 5-year age intervals and (b) the log
fertility curves from age 15 to age 45 from the year 1947 to the year 2016 in Japan.

3.1.2. Specified Gaussian Process Prior Covariance Function

In the proposed GPR model, the specified covariance function is used to discover
and capture the similarities and various time-correlated structures among the historical
demographic trends for different age groups, then project their patterns into the future.

Given that the choice of covariance functions in Gaussian process regression remains
an ongoing research problem, in our study a range of commonly used covariance functions
are tested. Apart from the squared exponential and the periodic covariance functions
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mentioned in Section 2, we have also considered and tested four more common covari-
ance functions, including the rational quadratic, Matérn 3/2 and Matérn 5/2 covariance
functions documented in the Gaussian process literature [33], and the spectral mixture
covariance function proposed by Wilson and Adams [35]. The spectral mixture covariance
function is derived by modelling a spectral density of the Fourier transform of input-
correlated structures with a Gaussian mixture, which can automatically discover patterns
and extrapolate far beyond the available data; see Wilson and Adams [35] for detailed dis-
cussions.

From our empirical experiments, we have found that the spectral mixture covariance
function is indeed relatively more successful in capturing different patterns of age-specific
mortality and fertility rates. It also provides more accurate forecast results than the other
covariance functions for mortality and fertility predictions. Wu and Wang [21] also discov-
ered the similar results. The spectral mixture covariance function is thus selected as the
primary covariance function in the proposed GPR model for all age-specific mortality and
fertility rates as a unified approach.

Considering a Q number of Gaussian mixture components, in which the q-th compo-
nent has mean λq and variance ν2

q , the spectral mixture covariance function is defined as

Kx(t, t′) =
Q

∑
q=1

wqexp{−2π2(t− t′)2ν2
q}cos(2π(t− t′)λq), (7)

where wq is the weight specifying the contribution of the q-th Gaussian mixture component.

3.1.3. Likelihood Function of the Proposed GPR Model

It yields that yx = [yx(t1), . . . , yx(tn)]T in each given age x follows an n-variate normal
distribution, such that

yx ∼ N (µx, Kx),

where µx = [µx(t1), . . . , µx(tn)]T and Kx is the n × n specified covariance matrix with
entries Kx(ti, tj) + σ2

x δti ,tj . Here δti ,tj = 1 if ti = tj and 0 otherwise.
The log-likelihood function of the n-dimensional collection of the discrete observations

yx in each age x for all the (hyper-) parameters (denoted by a generic θx) and the noise
variance σ2

x is

L(θx, σ2
x) = −

1
2

log|Kx| −
1
2
(yx − µx)

T(Kx)
−1(yx − µx)−

n
2

log(2π), (8)

where | · | is the determinant of a matrix.
Standard gradient-based numerical optimisation techniques can be used to maximise

the log-likelihood function L(θx, σ2
x) in Equation (8) to obtain the estimates of the model pa-

rameters.

3.1.4. Out-of-Sample Forecasts and Prediction Intervals of the Proposed GPR Model

Let t∗h be the h-step ahead of the last observed calendar year where tn < t∗1 < . . . < t∗h
for all t∗i ∈ T . Then the joint distribution of [yx(t1), . . . , yx(tn), yx(t∗1), . . . , yx(t∗h)]

T is an
(n + h)-variate normal distribution that comes with the mean vector [µx(t1), . . . , µx(tn),
µx(t∗1), . . . , µx(t∗h)]

T and the covariance matrix is[
Kx K∗x

K∗Tx K∗∗x

]
,

where K∗x is the size of n× h covariance matrix, and K∗∗x is the size of h× h covariance
matrix with entries Kx(t∗i , t∗j ) + σ2

x δt∗i ,t∗j
. Here δt∗i ,t∗j

= 1 if t∗i = t∗j and 0 otherwise.
Therefore, the h-step ahead out-of-sample forecast and its variance of the age-specific

mortality (or fertility) rates can be found from the conditional distribution of
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y∗x = [yx(t∗1), . . . , yx(t∗h)]
T given yx with the estimated (hyper-) parameters θ̂x and noise

variance σ̂2
x through the optimisation of the log-likelihood function in Equation (8), is then

N (ŷ∗x, Var(y∗x)), and let µ∗x = [µx(t∗1), . . . , µx(t∗h)]
T , where

ŷ∗x = µ∗x + K∗Tx K−1
x (yx − µx), (9)

Var(y∗x) = K∗∗x − K∗Tx K−1
x K∗x + σ̂2

x I. (10)

With the normality assumptions on the model error and the known Var(y∗x),
a 100(1− α)% prediction interval for y∗x can be calculated as y∗x ± zα

√
Var(y∗x), where zα is

the (1− α/2) quantile of the standard normal distribution.

4. Applications

In this section, we demonstrate the usefulness of the proposed GPR model for mod-
elling and forecasting two different sets of demographic data—mortality data and fertility
data. We first apply the proposed model to the male mortality data and the fertility data
of Japan for illustration purposes. We then compare and evaluate the quality of the fitted
mortality and fertility curves by the proposed method with some other existing approaches
using the mortality and fertility data of ten different developed countries.

4.1. Male Mortality Data

The male mortality data of Japan are available from the year 1947 to the year 2016
from the Human Mortality Database [36]. The age-specific male mortality rates are defined
as the number of deaths in males during a calendar year, proportional to the male resident
population of the same age during the same calendar year. The database consists of the
age-specific male mortality rates by a single calendar year of age up to 110 years old.
We restrict our experimental mortality data up to age 100 to avoid any potential problem
associated with the erratic mortality rates above age 100.

The observed male mortality data are presented in Figure 1a as separate univariate
time series of the log age-specific male mortality rates with 20-year age intervals from
age 0 to age 100 from the year 1947 to the year 2016. We can see that there is a general
decrease in male mortality rates among all the selected age groups during the examined
period. The decline in mortality rates at higher ages seems to change more slowly than
those at younger ages. Figure 1b presents the log male mortality curves, which give us
information about the general trends and the variations of the age-specific male mortality
rates over the observed period. There is an apparent hump around 18 to 25 years old which
usually relates to reckless behaviour in teenage ages and a general drop for all population
in mortality rates over time, due primarily to the advances in medical technology.

4.2. Mortality Modelling and Forecasting

In the demonstration of the proposed model, we aim to display 10-years-ahead out-of-
sample forecasts of mortality rates. We first split the dataset into a training dataset with
the observed mortality rates from the year 1947 to the year 2006 and a test dataset with
the remaining observed mortality data from the year 2007 to the last sample data in the
year 2016. We use our GPR model in Equation (3) to fit the male mortality rates for each
given age in the training dataset. We equally place the interior knots ξ inside the quantile
position of the training time interval (K = 4) in the natural cubic spline mean function in
Equation (4), and use two Gaussian mixture components (Q = 2) in the spectral mixture
covariance function in Equation (7). These settings are the minimal requirements for the
number of parameters needed for the Gaussian process mean function and covariance
function. Further tests on the numbers of knots K and Gaussian mixture components Q
have been made, and no significant difference in our experiment results was found when
K > 4 and Q > 2. The parameters θx including the parameters of the mean function θµx

and the hyperparameters of the covariance function θKx = {(wq, mq, νq)}Q
q=1 and the noise

variance σ2
x can be estimated by maximising the log likelihood function in Equation (8)
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for each given age x. However, estimating all unknown parameters involved both in the
mean and the covariance structures for all age groups can be time demanding with high
computational costs in practice. Following the suggestions of Shi et al. [37], we remedy
this problem by computing the parameters of the mean function through the ordinary
least squares approach and then estimating the parameters of the covariance function
by maximising the log likelihood function in Equation (8). This estimating procedure is
analogous to de-trending the age-specific mortality rates by the empirical mean function
then modelling the residuals by a zero-mean Gaussian process. It indeed improved the
stability and the speed of the estimation procedure for all (hyper-) parameters in our
numerical examples.

The predictive mean and variance for forecasting age-specific mortality rates can be
obtained by Equations (9) and (10) respectively. As demonstration Figure 3 shows the
predicted results of some age-specific mortality rates by the proposed GPR model. We can
see that the proposed model can capture the varying patterns in mortality rates among
different age groups properly. The predicted mortality curve for all ages for any specified
year can then be constructed by extracting the predicted age-specific mortality rates from
age 0 to age 100 in that specified year. Figure 4 gives an example of the 10-years-ahead
out-of-sample forecast results of the male mortality curve with the 95% prediction intervals
using the proposed GPR model for the year 2016 based on the observations from the year
1947 to the year 2006.

Figure 3. Predicted male mortality rates of the selected age groups from age 0 to age 100 with
20-year age intervals using the proposed GPR model from the year 2007 to the year 2016 based on
the observations from the year 1947 to the year 2006 in Japan. The solid lines are the observed values,
and the dashed lines are the predictions and the 95% prediction intervals. The vertical line indicates
the starting point of the predictions.
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Figure 4. Predicted male mortality curve from age 0 to age 100 with the 95% prediction intervals
using the proposed GPR model for the year 2016 based on the observations from the year 1947 to the
year 2006 in Japan. The circles are the true log mortality rates, the solid line is the prediction, and the
dashed lines are the 95% prediction intervals.

4.3. Fertility Data

We move to the second case study of modelling and forecasting the age-specific
fertility rates. The age-specific fertility rates are defined as the number of births during
a calendar year, based on the age of the mother proportional to the total number of the
female resident population. The fertility data of Japan are available from the year 1947
to the year 2016 from the Human Fertility Database [38]. The database consists of the
age-specific fertility rates by calendar year from 12 to 55 years old. In our study, we choose
the age-specific fertility rates from age 15 to age 45, because the absence of the age-specific
fertility data below age 15 and above age 45 is prevalent in the datasets from the Human
Fertility Database. As we want to test the forecast performance of the proposed model for
each age and for a range of countries without having to deal with the missing data issues
we focus on the age-specific fertility rates from age 15 to age 45 only for which the data are
available for all the countries in the study.

We present the historical fertility data of Japan as separate univariate time series of the
log age-specific fertility rates with 5-year age intervals in Figure 2a and as the log fertility
curve from age 15 to age 45 from the year 1947 to the year 2016 in Figure 2b. They reflect
the patterns of fertility change caused by social conditions in different periods in Japan.
For example, there was a ‘baby boom’ in all age groups after the end of World War II in
1945 and a rapid decrease in the birth rate during the ‘Japanese economic miracle period’
in the early 1980s due to a delay in child-bearing while the economy was establishing
rapidly at that time. In more recent years, there was an increasing trend in fertility at
higher ages, because the females devoted more time in their educations and careers.
In general, females from age 20 to age 40 have relatively higher fertility rates compared
to the age groups 15 and 45. The bunch of fertility curves in Figure 2b display a concave
shape. It shows that the fertility rates climb from age 15 and reach their peak at around
age 30 then decline. There exist some sparse patterns in the later part of the fertility
curves, which reflects that the variations in birth rates above age 35 are obvious across the
observed years.
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4.4. Fertility Modelling and Forecasting

For the task of fertility forecasting, we again attempt to make 10-years-ahead out-
of-sample forecasts of fertility rates for demonstration in this section. We maintain the
same settings in the GPR model as for the mortality case, including the split of dataset,
the number of interior knots in the mean structure and the Gaussian mixture components
in the covariance structure with the same estimation procedures for all (hyper-) parameters
involved. As examples Figure 5 presents the forecast results of some age-specific fertility
rates by the GPR model. We can see that the GPR method can catch the varying patterns of
fertility reasonably well, except the cases where the test data do not follow the historical
trends determined by the training data. Figure 6 shows the predicted fertility curve from
age 15 to age 45 with the 95% prediction intervals using the proposed GPR model for the
year 2016 based on the observations from the year 1947 to the year 2006.

Figure 5. Predicted fertility rates of the selected age groups from age 15 to age 45 with 5-year age
intervals using the GPR model from the year 2007 to the year 2016 based on the observations from
the year 1947 to the year 2006 in Japan. The solid lines are the observed values, and the dashed lines
are the predictions and the 95% prediction intervals. The vertical line indicates the starting point of
the predictions.
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Figure 6. Predicted fertility curve from age 15 to age 45 with the 95% prediction intervals using the
GPR model for the year 2016 based on the observations from the year 1947 to the year 2006 in Japan.
The circles are the true log fertility rates, the solid line is the prediction, and the dashed lines are the
95% prediction intervals.

4.5. Comparisons and Forecast Accuracy Evaluations with Existing Models

We now compare and evaluate the forecast performance and accuracy of the pro-
posed GPR model with four other mainstream approaches in the demographic modelling
literature, namely, the Lee-Carter (LC) model [4], the Lee-Miller (LM) model [7], the Booth-
Maindonald-Smith (BMS) model [8] and the Hyndman-Ullah (HU) model [15].

The LC model applies the principal component analysis to decompose the age-time
matrix of the log mortality (or fertility) rates yx,ti into a linear combination of age and time
parameters from the first-order principal component, i.e.

yx,ti = ax + bxkti + εx,ti , εx,ti ∼ N (0, σ2), (11)

where ax is the averaged log mortality (fertility) rates at age x across all calender years, bx
reflects the relative change in the log mortality (fertility) rates at age x, kti measures the
general time trend of the log mortality (fertility) rates, and {εx,ti}n

i=1 are the i.i.d. normally
distributed error terms with zero mean and constant variance σ2. The LC model relies on
the h-step ahead extrapolated time parameter k̂ti+h by some time series models, such as
ARIMA model, to produce a h-year ahead forecast of the mortality (or fertility) curve across
all age groups.

The LM model, the BMS model and the HU model can be thought of as the extensions
and variants using the similar framework of the LC model in Equation (11). Their ways to
make forecasts of the mortality (or fertility) curves also depend on the extrapolation of the
time parameters derived from the age-time matrix of the log mortality (or fertility) rates [39].
More specifically, the LM model is a modification to the LC model where the coefficient
series is adjusted so that the fitted life expectancy is equal to the observed life expectancy
in each year in an attempt to reduce forecast basis. The BMS model modifies the LC model
to adjust the coefficients using the age-at-death distribution and determines the optimal
fitting period beforehand to address the non-linearity problem in the time component.
The HU model extends the LC model by adapting the functional data paradigm using non-
parametric smoothing to reduce outliers in observed data and more principal components
for robust forecasts.
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In contrast to the LC method and its numerous variants and extensions which rely
on the time parameters to determine the movement of the whole mortality (or fertility)
curve across all ages groups shifting from one year to another, our approach provides a
novel point of view in demographic modelling and forecasting. The proposed GPR method
treats demographic data in each age group as time series data and assumes each of them
following a Gaussian process to achieve the same tasks in a discrete but intensive fashion.
The natural cubic spline mean function in the proposed GPR method can automatically
discover and extract more recent information from the observed data and then extrapolate
its future trend in an appropriate direction. The spectral mixture covariance function in the
GPR model, on the other hand, addresses the problems associated with the non-linearity
and periodicity in the demographic data.

Figure 7 presents an example of the 10-years-ahead out-of-sample forecast results of
the Japanese male mortality curves from age 0 to age 100 for the year 2016 using the LC
model (with RMSE = 0.2172), the LM model (with RMSE = 0.1660), the BMS model (with
RMSE = 0.1109), the HU model (with RMSE = 0.2342) and the GPR model (with RMSE
= 0.0895) based on the observations from the year 1947 to the year 2006. The root mean
square error (RMSE) measures the standard deviation of the average squared prediction
error regardless of the positive or negative sign, and is defined here as

RMSE =

√√√√ 1
101

100

∑
x=0

(
yx,t2016 − ŷx,t2016

)2

,

where yx,t2016 is the log male mortality rates aged x in the year 2016.

Figure 7. Predicted male mortality curves from age 0 to age 100 for the year 2016 using the LC model
(with RMSE = 0.2172), the LM model (with RMSE = 0.1660), the BMS model (with RMSE = 0.1109),
the HU model (with RMSE = 0.2342) and the GPR model (with RMSE = 0.0895) based on the
observations from the year 1947 to the year 2006 in Japan.

Figure 8 shows another example of the 10-years-ahead out-of-sample forecast results of
the Japanese fertility curves from age 15 to age 45 for the year 2016 using the LC model (with
RMSE = 0.9401), the LM model (with RMSE = 0.7490), the BMS model (with RMSE = 1.2198),
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the HU model (with RMSE = 0.4205) and the GPR model (with RMSE = 0.3764) based on
the observations from the year 1947 to the year 2006. The RMSE here is

RMSE =

√√√√ 1
31

45

∑
x=15

(
yx,t2016 − ŷx,t2016

)2

,

where yx,t2016 is the log fertility rates aged x in the year 2016.

Figure 8. Predicted fertility curves from age 15 to age 45 for the year 2016 using the LC model (with
RMSE = 0.9401), the LM model (with RMSE = 0.7490), the BMS model (with RMSE = 1.2198), the HU
model (with RMSE = 0.4205) and the GPR model (with RMSE = 0.3764) based on the observations
from the year 1947 to the year 2006 in Japan.

Forecast Accuracy Evaluations Using Rolling-Window Analysis

For evaluating the forecast accuracy, we consider ten developed countries for which
mortality and fertility data are also available in the Human Mortality Database [36] and
the Human Fertility Database [38]. We focus the data periods of all selected countries
commencing in the year 1947 up to the year 2016 (70 years in total) for a unified purpose.
Although we intent to use the same set of ten countries for both experiments in mortality
and fertility, we are restricted by the availability of either mortality or fertility data in some
countries. Hence, Belgium and the Netherlands are used for the mortality experiments only
while Germany and Italy are selected for the fertility experiments. The remaining eight
other countries are the same in both mortality and fertility experiments. We implement
the four existing models mentioned above using the R package ‘demography’ with the
instructions of Booth et al. [40] on how the parameters should be set in these models.
Rolling-window analysis is used for assessing the consistency of the forecasting ability
of a model by rolling a fixed size prediction interval (window) throughout the observed
period [41]. We hold the sample data from the initial year up to the year tm, where tm < tn,
as holdout samples and produce the forecast for the tm+h year where h is the forecast
horizon. The forecasts errors are then determined by comparing the out-of-sample forecast
results with the actual data. We increase one rolling-window (1 year ahead) in year tm+1 to
make the same procedure again for the year tm+1+h until the rolling-window analysis covers
all available data in year tn. We consider four different forecast horizons (h = 5, 10, 15
and 20) with ten sets of rolling-window to examine the short-term, the mid-term, and the
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long-term forecast abilities of the models. In the mortality rolling-window experiments,
the RMSE formula is

RMSEc(h) =

√√√√ 1
10× 101

9

∑
w=0

100

∑
x=0

(
yx,tm+w+h − ŷx,tm+w+h

)2

,

where c is the selected country, w is the index of the rolling-window sets and x is the age
from age 0 to age 100. And the RMSE in the fertility rolling-window experiments is

RMSEc(h) =

√√√√ 1
10× 31

9

∑
w=0

45

∑
x=15

(
yx,tm+w+h − ŷx,tm+w+h

)2

,

where x is the age from age 15 to age 45.
Table 1 presents the average RMSE results of ten sets of rolling-window analysis across

ten countries in four different forecast horizons for the mortality experiments. The proposed
GPR model performs consistently the most desirable for mortality forecasting. It occupies
the major positions of having the least forecast errors among the ten selected countries in
the four different prediction horizons. The method is shown to be capable of capturing
various mortality curve patterns across different periods and age groups. We can see that
the GPR model has significant improvements in the prediction accuracy in comparison
with the four other tested models, particularly for the mortality data of Japan. It may
mainly be thanks to the intensive treatment of mortality curve fitting by the GPR approach,
which enhances the forecast accuracy and robustness, especially for countries with high
mortality fluctuations in certain age groups due possibly to natural disasters. It is also
worth noting that the forecasting performances of the LM model in the short term and
the mid-short term are remarkably well with the UK and the USA male mortality data.
The consistency and small variabilities of mortality curves in the UK and the USA over age
and time may contribute to the superiority of the LM model compared to the other tested
models in our experiments. The forecast performances of the LC model, the BMS model
and the HU model are reasonably similar with no particularly outstanding point in our
experiments.

Table 2 shows the average RMSE results of ten sets of rolling-window analysis across
the selected ten countries in the four different prediction horizons in the fertility experi-
ments. The proposed GPR model continues to maintain the dominant positions of having
the smallest forecast errors in the short term and the mid-short term forecast horizons and
is comparable with the HU model in the fifteen-year forecast horizon. As for the long
term prediction of the twenty-year forecast horizon, it appears that the HU model is more
suitable to capture the fertility patterns with smaller forecasts errors than the GPR model.
The HU model also fits the French fertility data better than the other models. It may be
because the fertility data contain more outliers or measurement errors than the mortality
data, and the HU model includes the smoothing techniques, which can improve the model
forecasting performances if the observed fertility data are smoothed in advance.
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Table 1. The average RMSEs of ten sets of rolling-window analysis on the predicted male mortality
curves using the LC model, the LM model, the BMS model, the HU model and the GPR model. The
lowest forecast errors among all the models are highlighted.

Country LC Model LM Model BMS Model HU Model GPR Model

h = 5
Austria 0.3122 0.3191 0.2596 0.2591 0.2581
Belgium 0.2560 0.2783 0.2429 0.2458 0.2359
Canada 0.1850 0.1574 0.1762 0.1519 0.1583
France 0.1879 0.1260 0.1365 0.1477 0.1457
Japan 0.1903 0.1365 0.1564 0.1533 0.1164

Netherlands 0.2679 0.2284 0.2046 0.2265 0.2233
Sweden 0.2873 0.3178 0.2695 0.2633 0.2566

Switzerland 0.3346 0.3597 0.3077 0.3109 0.2774
UK 0.1805 0.1301 0.1382 0.1584 0.1504

USA 0.1266 0.0875 0.1324 0.1183 0.1258
Average 0.2328 0.2141 0.2024 0.2035 0.1948
h = 10
Austria 0.3504 0.3289 0.2793 0.2809 0.2783
Belgium 0.2902 0.2945 0.2820 0.3044 0.2634
Canada 0.2197 0.1837 0.2078 0.1862 0.2017
France 0.2443 0.1871 0.2074 0.2391 0.1985
Japan 0.2630 0.2187 0.2824 0.2382 0.1208

Netherlands 0.3294 0.2706 0.2629 0.2861 0.2678
Sweden 0.3153 0.3311 0.2869 0.2813 0.2740

Switzerland 0.3888 0.4087 0.3942 0.4030 0.3842
UK 0.2271 0.1730 0.1987 0.2133 0.1899

USA 0.1514 0.1231 0.1706 0.1474 0.1724
Average 0.2780 0.2519 0.2572 0.2580 0.2351
h = 15
Austria 0.4022 0.3707 0.3119 0.3582 0.3130
Belgium 0.3251 0.3148 0.3050 0.3558 0.2906
Canada 0.2659 0.2413 0.2340 0.2220 0.2595
France 0.2992 0.2699 0.2937 0.3431 0.2924
Japan 0.3631 0.3366 0.3551 0.2688 0.2063

Netherlands 0.3787 0.3316 0.3145 0.3335 0.2992
Sweden 0.3677 0.3637 0.3194 0.3331 0.2986

Switzerland 0.4574 0.4724 0.5270 0.5347 0.5279
UK 0.2836 0.2292 0.2373 0.2604 0.2310

USA 0.1855 0.1825 0.2109 0.1798 0.2172
Average 0.3328 0.3113 0.3109 0.3189 0.2936
h = 20
Austria 0.4600 0.4289 0.3833 0.4275 0.3813
Belgium 0.3666 0.3402 0.3330 0.3740 0.3200
Canada 0.3113 0.2747 0.2394 0.2594 0.2613
France 0.3491 0.3218 0.3236 0.4051 0.3105
Japan 0.5193 0.5120 0.4385 0.3333 0.2828

Netherlands 0.4218 0.3828 0.3968 0.3739 0.3321
Sweden 0.4214 0.3943 0.3794 0.4154 0.3270

Switzerland 0.4910 0.5259 0.5930 0.6774 0.6169
UK 0.3529 0.2894 0.2750 0.3774 0.2717

USA 0.2017 0.2089 0.1856 0.2159 0.2122
Average 0.3895 0.3679 0.3548 0.3859 0.3316



Forecasting 2021, 3 224

Table 2. The average RMSEs of ten sets of rolling-window analysis on the predicted fertility curves
using the LC model, the LM model, the BMS model, the HU model and the GPR model. The lowest
forecast errors among all the models are highlighted.

Country LC Model LM Model BMS Model HU Model GPR Model

h = 5
Austria 0.6112 0.2509 0.6203 0.2287 0.1801
Canada 0.6044 0.2481 0.1330 0.3236 0.2432
France 0.4927 0.1565 0.2334 0.0981 0.2462

Germany 0.6495 0.2420 0.5870 0.1608 0.1489
Italy 0.5414 0.2635 0.3719 0.4402 0.2805

Japan 0.6533 0.3876 0.6721 0.5302 0.2769
Sweden 0.5970 0.1905 0.1562 0.2768 0.1553

Switzerland 0.6734 0.2822 0.4553 0.2536 0.2059
UK 0.4280 0.2392 0.2554 0.2970 0.2920

USA 0.4499 0.1757 0.2170 0.3554 0.2431
Average 0.5701 0.2436 0.3702 0.2964 0.2272
h = 10
Austria 0.7328 0.5081 0.7915 0.3370 0.3276
Canada 0.7476 0.5054 0.2581 0.3630 0.2881
France 0.6026 0.3428 0.4888 0.2043 0.3742

Germany 0.7531 0.4990 0.7365 0.2909 0.2008
Italy 0.7064 0.5449 0.8189 0.5346 0.4802

Japan 0.8998 0.7846 1.2119 0.6443 0.3424
Sweden 0.7524 0.4169 0.2699 0.3857 0.1789

Switzerland 0.7926 0.5536 0.4835 0.4489 0.3274
UK 0.5928 0.4780 0.3448 0.3594 0.3294

USA 0.5058 0.3172 0.3092 0.4458 0.4241
Average 0.7086 0.4950 0.5713 0.4014 0.3273
h = 15
Austria 0.8863 0.7721 0.9997 0.4972 0.6215
Canada 0.9300 0.8080 0.5972 0.4347 0.4894
France 0.7871 0.5908 0.8119 0.4960 0.5973

Germany 0.9231 0.7684 0.9732 0.4319 0.2961
Italy 0.9339 0.8319 1.3051 0.7208 0.9365

Japan 1.2392 1.2202 1.5252 0.6989 0.5641
Sweden 0.8930 0.6031 0.5837 0.5307 0.3582

Switzerland 0.9837 0.8390 0.9742 0.6711 0.6488
UK 0.7850 0.7286 0.4473 0.5277 0.4505

USA 0.6125 0.5309 0.4280 0.5312 0.5539
Average 0.8986 0.7690 0.8495 0.5603 0.5439
h = 20
Austria 1.0445 1.0165 1.2876 0.6219 1.0984
Canada 1.2030 1.1651 1.2181 0.5261 0.9405
France 0.9948 0.8514 1.1597 0.8039 0.9926

Germany 1.1324 1.0523 1.3186 0.6835 0.6710
Italy 1.1945 1.1354 1.6735 0.9316 1.6623

Japan 1.6871 1.7571 1.6005 0.7553 0.8688
Sweden 1.0161 0.7615 0.9025 0.6986 0.6580

Switzerland 1.2332 1.1462 1.4133 0.7295 1.2452
UK 1.0005 0.9784 0.7820 0.8654 0.6823

USA 0.7946 0.7948 0.7017 0.6077 0.6676
Average 1.1301 1.0659 1.2057 0.7224 0.9487

5. Discussion and Conclusion Remarks

Following the theoretical framework of Gaussian process regression discussed in
Section 2, in this paper, we have introduced a new design of the Gaussian process regression
model equipped with the natural cubic spline mean function and the spectral mixture
covariance function as a new approach for mortality and fertility modelling and forecasting.
The use of the natural cubic spline mean function in the proposed GPR model can exploit
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the local information of the recent data and force its extrapolation beyond the observed data
as a linear function to provide smooth and robust forecasts. The spectral mixture covariance
function, on the other hand, detects and handles any non-linearity and periodicity of the
demographic data unexplained by the fitted mean function.

We have demonstrated the usefulness and flexibility of the proposed GPR model
through two empirical data applications: one is to forecast the male mortality data, and the
other is to predict the fertility data. Our experiments have proved the forecasting ability
of the proposed GPR model. In these two experiments, the accuracies of the predicted
mortality and fertility curves are improved by the proposed GPR model in terms of the
average forecast errors for the ten tested countries in the different forecasting horizons
when compared to the other four mainstream approaches. The prediction performances
of these four methods rely barely on the extrapolation of the time parameters as they
determine how the movement of the whole mortality (or fertility) curve should shift over
time across all age groups. The entire fitted curve can go far away from its expected location
when the fitted time parameters in these four methods are not well predicted. This problem
can be seen in our demonstration for the predicted Japanese fertility curve in Figure 8 as
the forecast results of the fertility curves by the mainstream approaches, such as the LC
model and the BMS model, deviate from the observation noticeably in some parts of the
curve. In contrast, the proposed method is more robust to this issue, because it treats each
age group as time-series data and assumes each of them following a Gaussian process to
achieve the same tasks in a discrete but very intensive fashion to avoid this issue.

Furthermore, the proposed GPR model is in time series, non-linear and non-parametric
structures and is not restricted to mortality and fertility modelling and forecasting only.
It can be used for other factors that impact population forecasting, such as migration flows,
provided that the age-specific data are available. It can also support a wider range of
potential applications in many domains of applied science and engineering, such as signal
processing or weather forecasting. Its particular features enable more flexibility than the
four existing models considered in our study. Although Wu and Wang [21] proposed a
similar approach using Gaussian process regression with a weighted linear mean function,
the weighted linear mean structure relies on the assumption that more recent data tend to
have more weights on the future mortality, which requires on subjective judgements on how
the weights are assigned to reflect the impacts of different periods. It can affect the accuracy
of forecasts remarkably when different subjective choices of weights are adopted, or the
weight parameters are inappropriately specified [21]. In contrast, our method exploits the
natural cubic spline function as a non-parametric mean structure without any assumption
made on the relationship between the mortality rates and the time, and it lets the natural
cubic spline mean function automatically identify the local information from the observed
data and then project the future mortality in an appropriate direction.

The main limitations of the proposed GPR models also relate to the characteristics of
the classes of independent time series and simple non-parametric single population extrap-
olative methods of which it belongs to. Although it can capture the trends of the historical
demographic data robustly, at the same time, it lacks the ability to incorporate and model
other related information, such as the changes in medical technology, environment and
social-economy. One may also expect that the mortality or fertility rates for different ages
may be closely correlated, especially among the neighbouring ages. Our GPR model would
be more desirable if it could model the dependence on different age groups simultaneously
while taking their heterogeneity into account. We, therefore, aim to extend the current GPR
model to a spatial or a multi-output GPR model for connecting the relationships between
different age groups and time periods altogether. Another limitation is that the models
do not incorporate the natural upper limits of mortality and fertility rates explicitly—the
forecast is based on the historical data only, although the lower limits are removed by
considering the logarithm of the rates. It is also noted that our models do not take account
of the cohort effect which refers to the phenomenon that the mortality experience of the
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same cohort group of individuals who were born in the same calender year is highly
correlated. All of these will be left for our future works to achieve.
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