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Abstract. The uses of artificial intelligence (AI) today seem limitless. It has 

helped organisations understand their customers more, provide them with better, 

more tailored services, and helped people with disabilities understand the world 

they previously could not. There are also many areas of current research for the 

use of AI. Aiding law-enforcement when they must analyse evidence of an 

indecent nature is one example where the use of AI, if successful, could enhance 

detection of indecent images and also reduce the workload and stress on the law 

enforcement staff employed in such activities. Working with indecent images of 

minors is particularly stressful. This paper reviews the current stage at which 

artificial intelligence finds itself when estimating a person’s age. By reviewing 

its accuracy, it is possible to evaluate the feasibility of its inclusion in an artificial-

intelligence-aided evidence analysis tool. With artificial intelligence currently 

capable of estimating a person’s age to within a few years, its incorporation 

would most certainly allow photographs to be analysed and flagged if anyone is 

suspected of being underage.  

Keywords: Age estimation, child pornography, pornography, digital forensics.  

1 Introduction  

The use of artificial intelligence (AI) is one that is growing at a tremendous pace. What 

started as a trickle a few decades ago has turned into a steady flow with almost daily 

advances. Today’s AI is now able to handle many tasks such as running a building’s 

heating and cooling [1]. This is in part due to the increased power of the computer 

systems that AI runs on. Within the past five years, the move from CPU to GPU 

hardware has resulted in increased accuracy, in conjunction with decreased training and 

processing times. This has allowed traditional solutions to work faster and be more 

accurate whilst making it possible to find answers to more complex problems.  

AI has become the buzzword of the day amongst large corporations (Facebook, 

Microsoft, Google, etc.). Due to their respectively large infrastructures, these 

corporations are at the forefront of current research. This has allowed for some AI to be 

so well adapted to their situation, they are not only able to handle current tasks, but are 

so well trained they can work completely autonomously, with only the most critical 

problems being handed to humans for review.  



One example of this would be the AI Google is using to control its data centre cooling 

[2]. In 2016, DeepMind (Google’s AI division) developed an AI-powered 

recommendation system to improve the energy efficiency of Google’s data centres. In 

recent times, this recommendation system has evolved to implement these 

recommendations autonomously.  

To achieve this, every five minutes the AI polls the thousands of sensors distributed 

throughout the data centre that make up the cooling system. The AI then identifies 

which actions will minimise energy consumption, whilst remaining within defined 

safety constraints. Despite only being in place for a short space of time, Google 

estimates energy savings of around 30 percent, with further improvements expected.  

Learning to Navigate in Cities Without a Map [3] is another DeepMind example. 

This time, using photographs taken as part of Google Street View, they developed an 

AI capable of navigating from A to B without the aid of a map. This is to simulate how 

humans navigate, by using landmarks or remembering certain streets.  

To achieve successful navigation, their agent consists of three parts: A convolutional 

network used for processing the Street View images and extracting visual features; a 

locale-specific recurrent neural network used to memorise the environment; and finally, 

an interchangeable locale-invariant recurrent network that decides the agent’s journey.  

As the name suggests, this third component is interchangeable and unique to each 

city where the agent navigates. All of this allows the agent to remember navigational 

cues from previous cities and apply that knowledge to cities not previously visited. The 

ultimate goal of this research is to aid scientists in the understanding of biological 

approach navigation.  

Currently, AI is used for a wide variety of tasks, anything from the previously noted 

heating and cooling of buildings to describing an image’s content to the visually 

impaired [4]. A more specific area of focus is the estimation of a human’s age-based 

upon facial details present in their photograph. The practical uses of this may seem 

niche at first glance, but it can be used in a wide variety of functions, including 

biometrics and human-computer interaction [5, 6], and may provide further applications 

in child pornography detection.  

This author’s research seeks to establish practical means by which AI may be used 

as a digital forensics tool for analysing evidence regarded as child pornography. To say 

whether or not a child is present within gathered visual evidence, it is important to 

identify the ages of the humans within said evidence. This paper establishes the current 

state of age estimation through a review of the literature and hypothesises a possible 

approach to age estimation for the author’s research project.  

  

1.1 Significance of Research  

The primary objective of this project is to invent a new, robust method of analysing 

visual pornographic evidence within digital forensic investigations, which has both 

inconsequential false positives and low false-negative detection rates. The speed of 

estimation is a secondary objective of this research, although, given the current state of 

computer power, it is inevitable that the new method will be faster than a human analyst.  



Such a method would allow analysts to focus their efforts on other relevant materials, 

such as e-mails and other content-heavy files, which AI would struggle to handle.   

  

1.2 Child Pornography  

Before one may design an automated tool for the detection of child pornography, one 

must first understand what the term ‘child pornography’ means. Whilst at first glance, 

the term may seem easily definable, there is indeed some ambiguity surrounding its 

definition. Focusing on the term ‘pornography’ one would be forgiven for considering 

it to simply mean ‘images of naked people’. However, this could be considered an 

oversimplification when one considers Naturism, for example. Under this hypothetical, 

simplified definition of pornography, this legitimate and largely appropriate activity 

would be considered pornography, when in fact it is considered as the cultural (and 

sometimes political) movement that both encourages and defends social nudity.  

Pornography may instead be broadly described as “Printed or visual material 

containing the explicit description or display of sexual organs or activity, intended to 

stimulate sexual excitement” [Oxford English Dictionary]. Now, taking into 

consideration the legal definition of a child includes their inability to provide consent 

to sexual activities, child pornography must be considered as illegal [7]. It may further 

be described as a portrayal of sexual assault against a child. In Scotland, Under Section 

52, 52A Civic Government (Scotland) Act 1982 [8], the mere possession of material 

depicting such situations is considered a criminal offence, with consequences including 

up to 10 years in prison and a fine not exceeding £5,000.  

Understanding the definition reveals the problem associated with current methods as 

well as the problems with developing a working solution. To correctly classify child 

pornography, a system must not just take into consideration a child’s nakedness but 

grasp the very situation in which a child finds itself. This is because even in situations 

where a child is fully-clothed, they may be presenting themselves in a provocative way 

and as such be considered as victims of child exploitation. Considering this renders 

current methods of adult pornography detection unusable for child pornography 

detection.  

  

2 Research Methodology  

2.1 Hypothesis  

The hypothesis of this investigation is “It is possible to automatically estimate a 

human’s age based on their photographic image”. To prove this hypothesis, a detailed 

review of research of the last 10 years has been undertaken.  

  



2.2 Approach to Research  

To obtain a significant body of research to discuss, a chronological list of significant 

works was first produced from the last 10 years. Selecting works that obtained results 

with a low mean average error (MAE < 5 years) narrowed this initial list further. This 

step produced research that shared closely grouped mean average errors. Therefore, it 

was important to select research, as well as producing low mean average errors, that 

explored interesting techniques to achieve those results.  

Of course, this method produced a very short list of results. Whilst the works within 

this list are both contemporary and have low MAE, it does not necessarily include 

seminal works. However, for inclusion in a digital forensics’ toolkit, research that 

produces a low MAE is the focus rather than a paper’s distinct methodology.  

Before an appropriate detection system may be built, it is first imperative that a 

means of age estimation be found. It was, therefore, important to analyse the research 

from a digital forensics’ perspective. Whilst none of the research reviewed is concerned 

necessarily with digital forensics, age estimation may be considered important when 

seeking a working solution for child pornography detection. Selecting research that 

presented a low mean average was important because it allows possible future detection 

solutions to not only estimate a broad age range but also produce a narrow age range 

that is accurate to within a few years.   

  

2.3 Proposed Research  

In a system designed to locate child pornography, age estimation plays an important 

role. However, age estimation is only one of many techniques present within this 

author’s research. There is also nudity detection, filename analysis and investigating 

the metadata of a file to make sure it is what it eludes to be.  

To successfully detect media files that contain child sexual abuse, this author 

proposes a toolkit in which files are analysed both with the use of artificial intelligence 

and without. Filename analysis is one example where simple programming could be 

used to check the file’s name against a dictionary of keywords. Each mode is classed as 

an input into a Weighted Naïve Bayesian Formula. A weight is applied to each mode to 

convey the level of importance that any individual mode should hold over another.  

Every mode with its associated weight is used as inputs into the Bayesian formula, 

which ultimately assigns the probability of the input file containing child sexual abuse. 

To evaluate this approach, firstly one will use a hard drive containing pornographic 

material that has been deliberately placed. This way, it is possible to measure the 

toolkit’s performance by measuring the number of files found versus the total number 

of known files. Secondly, the toolkit will be given to digital forensic analysts within 

law-enforcement to gather real-world data with regards to its accuracy, performance, 

and qualitatively, how easy it is to use.  

  



2.4 Age Identification  

Jain, Dess et al. [9] describe age classification as “soft biometrics”. Unlike traditional 

methods of biometrics, the soft variety identifies features such as age, gender, skin and 

eye colour. Unfortunately, whilst calculable elements of the human physiology exist, it 

has been expressed in the past that no such methods exist for reliably calculating human 

age [9]. Nevertheless, promising advancements within the past five years bring this into 

question.  

As an example, consider the interesting work conducted by Eugene Bobrov et al., 

PhotoAgeClock: deep learning algorithms for development of non-invasive visual 

biomarkers of aging [10]. Deep neural networks were trained on 8,414 high-resolution 

images of eye corneas labelled with their corresponding age. For people 20-80 years 

old, their model was able to achieve a mean absolute error of 2.3 years and 95% Pearson 

and Spearman correlation. This is just one work in many of recent years that continue 

to prove that AI age estimation is both practical and accurate.  

Humorously, one recent social network-based trend sparked an interesting debate, 

with its genesis coming from a flippant post by Kate O’Neill of Wired magazine [11, 

12]. The trend involves showing two pictures, side by side – the left, oneself 10 years 

previous; the right, oneself today. Whilst the general user regards this as harmless fun 

– a way of remembering past events – the debate has ignited around whether or not this 

is, in fact, a way for social media companies to have access to perfectly labelled pictures 

showing a wide variety of age progression over a fixed period. Whilst Facebook has 

been quick to refute these claims with a press release stating they have no part to play 

in the game’s orchestration, it does make for an interesting topic of debate when very 

few full and clean datasets currently exist.  

To have a dataset that is both complete and accurate (such as having a person’s age 

correct) is important for training and testing AI because, without a dataset’s accuracy, 

the algorithm is sure to produce inaccurate results. Whilst such datasets do exist, using 

them to train an AI to estimate correctly a child’s age does present a problem because 

currently available datasets show a bias towards adult ages. To estimate a child’s age, 

however, there may be several possibilities. One such example would be to train an AI 

using an adult orientated dataset. Negative results produced by the AI would, therefore, 

would allow the human observer to infer the person is a child.  

  

Kwon, Y.H., and da Vitoria Lobo, N.  

This fascinating research paper produced in 1999 [13] details how the use of various 

ratios produced by measuring facial features can be used to estimate the classification 

group (baby, adult, or senior) a person belongs to (see Fig. 1). Whilst this paper does 

not use AI as its classification method, it is one of the first papers to discuss a 

mathematical implementation for age estimation.  

To achieve an estimation, a several facial features are evaluated. Initially, the outline 

of the face is found by drawing an oval slightly below-centre of the middle (to 

compensate for hair). This oval shape is iteratively expanded by increasing the axes at 

half-lengths and updating the centre.  



Using similar methods, the chin is located and the initial outline is adjusted to suit. 

With the outline of the face determined, it is now possible to find the sides of the face 

before finally finding the eyes, mouth, and nose. Once all locations are found, several 

ratios are formed from their locations. These ratios, in conjunction with wrinkle 

geography, are used to assign a person to an age group.  

  

Fig. 1. The different ratios used. Each ratio measures different elements of a person’s face and 

all together, along with wrinkle geography, are used to estimate a person’s age.   

The ‘wrinkle geography’ is important, as there is a direct correlation between a person’s 

age and the degree of wrinkles. With the positions of the eyes, mouth, and nose now 

known, it is possible to map the remaining areas of the face as possible wrinkle 

locations. Wrinkle detection is archived by using snakelets [14] (a snake segment 

designed to find curved segments of an image) that are dropped in random orientation 

and positions in the mapped areas. Any snakelets not found to be near wrinkles are 

removed. At this stage, wrinkles are marked by a sudden change in colour and depth. 

To determine a wrinkle’s legitimacy, remaining snakelets are investigated by summing 

distances between each snakelet and wrinkle point. Sums found to be within a threshold 

distance are an indication of a wrinkle. These steps are repeated for all the remaining 

snakelet points until complete wrinkle geography is produced; with snakelets accurately 

following the path of the person’s wrinkles. Shown in Fig. 2, is a systematic example 

of this process.  



  

Fig. 2. Three states of wrinkle detection and the mapping process. The furthest left view shows 

the snakelet’s initial state, which is being dropped in random orientations. The middle views show 

the snakelets after stabilisation. The final view demonstrations the summing process that is used 

to complete the wrinkle geography.  

With the level of wrinkles for the test subject now determined, in conjunction with the 

other feature information, it is possible to determine a group in which the person 

belongs. To validate this approach, 15 faces (five for each baby, adult, and senior 

groups) were used for testing. For the 15 faces, the results show that “classifications 

were 100% correct.”  

Whilst certainly interesting (and possibly questionable because of its high accuracy 

level), it is worth noting this was a simple categorisation problem. Very few wrinkles 

indicated the person was a baby, not a person with good skin quality. Using this 

approach to define an age sub-category (say 35-35, for example) for individuals would 

prove to be less accurate. Besides, the photographs used for training and evaluation 

were all ‘mugshots’ in which the face was square to the camera and completely visible. 

Such methods, therefore, would again yield poorer results when used for images that 

failed to match the ones used for this research.  

  

Huerta, Ivan et al.  

According to Huerta, Ivan et al. [15], existing works tackle age estimation by relying 

on complex, finely tuned models, which are reliant on several facial landmarks for 

increased accuracy. Instead, their age estimation approach uses points around the eyes. 

This is achieved by first successfully detecting the facial region within photographs. 

Using a convolutional neural network, they detect eyes and surrounding areas. Further 

work is undertaken to yield an aligned version of the face by a “non-reflective similarity 

image transformation”.  

The choice of visual features that are extracted and subsequently used for 

classification directly affect the performance of the age estimation. For this research, 

the authors chose to select commonly used invariant descriptors, including Histograms 

of Oriented Gradients (HOG), Local Binary Patterns (LBP), and Speeded-Up Robust 

Features (SURF).  

HOG [16], in particular, has been used with success in many computer vision 

applications. Simply, it works by dividing the image region into a grid. Each cell is 

further split into smaller cells. For each pixel within a cell, horizontal and vertical 

gradients are obtained. For the histogram, Q bins for the angle are chosen. This may be 

thought of as an array of angles, where unsigned orientation is usually used, such that 



angles less than 0° are increased by 180°. The histograms are then concatenated, 

providing the final descriptor. At the end of this process, one is left with a complete and 

largely accurate outline of an object (Fig. 3). In Huerta’s research, this results in an 

outline around a human head, bringing it into focus.   

  

Fig. 3. Results of a sample HOG routine. The top row is the inputs to the HOG process and the 

bottom row shows their respective outputs. After the HOG process, one is left with a detailed 

outline of the input image. 1  

Local Binary Patterns (LBP), are a texture descriptor made popular by Ojala et al. in 

their 2002 paper Multiresolution Grayscale and Rotation Invariant Texture 

Classification with Local Binary Patterns [17]. LBPs compute a local representation of 

texture by comparing each pixel with its surrounding neighbourhood of pixels. This is 

unlike Haralick texture features that compute a global representation of texture.  

To construct an LBP texture descriptor, the input image is first converted to 

grayscale. For each pixel in the image, a neighbourhood of r size surrounding the centre 

pixel is selected. If the intensity of the centre pixel is greater than or equal to its 

neighbour, the neighbour’s value is set to one; otherwise, zero. The value for the centre 

pixel is calculated by first converting all of the neighbour’s binary values to decimal 

before taking their sum. The output of this sum is used as the value of the centre pixel. 

This process is repeated until the complete image is analysed. Finally, to build the LBP 

descriptor, a histogram is computed over the result, in which each bin corresponds to 

an LBP code.   

                                                           
1  www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-

featuredescriptor/  



Another method, Speeded-Up Robust Features (SURF) [18], as the name suggests, 

is a fast and robust method for image matching and object recognition, and a faster 

alternative to SIFT (Scale-Invariant Feature Transform).  

In the case of Huerta, Ivan et al. they use U-SURF, an upright version of the 

technique. U-SURF is not invariant to image rotation and therefore performs better with 

images where the camera is unlikely to shift. The square image region to describe is 

partitioned into 4x4 sub-regions. Horizontal and vertical wavelet responses 𝑑𝑥 and 𝑑𝑦 

are computed and weighted with Gaussian. The sum of these responses and their 

absolute values are stored, generating a four-dimensional vector  

(∑ 𝑑𝑥 , ∑ 𝑑𝑦, ∑|𝑑𝑥| , ∑|𝑑𝑦|) for each sub-region, and these are concatenated to form the 

final 64-dimensional descriptor of the image region, SURF64.  

One complaint shared in many age estimation types of research is the limited freely 

available datasets. For this research, the authors focused on the MORPH dataset [19], 

given its large number of samples and age distributions. Whilst another dataset, FRGC 

[20], does exist however, it is noted that only one previous publication has used it. With 

the dataset chosen, training and evaluation could occur.  To evaluate the accuracy of 

age estimators, Mean Average Error (MAE) and Cumulative Score (CS), both well-

documented metrics, were used.  

The results put forward for this relatively novel approach are promising too, with a 

MAE score of 4.25 years, compared to the previously published 4.38. The authors note 

that this could be further improved (to MAE 4.16) when using one descriptor and large 

images.  

  

Liu, Hao et al. (2017)  

Lui, Hao et al. 2017 paper [21] proposes a “group-aware deep feature learning” 

approach to facial age estimation. Compared to other approaches, which rely on 

handcrafted descriptors, this approach first split ages into 10-year segments. These age 

ranges are further split into smaller, overlapping ones (Fig. 4).   

  

  

Fig. 4. An age group is split into three regions: one non-overlapping region in the middle and two 

symmetrical overlapping regions adjacent with neighbouring age groups coloured in yellow. The 

yellow regions are overlaps of four years.  

This approach is taken because it would be difficult and impractical to collect a large 

enough dataset of facial data for the same person covering a wide range of age labels. 

Instead, as it is easier to collect facial images of individuals in short-intervals (e.g. 



intervals of less than 10 years), their model splits age ranges into groups. The authors 

posit that the appearance of a person of 50 years old is more similar to those 47-52 years 

old than those 30 years old and therefore it is better to split their age process into several 

discrete groups.  

For training, each image was resized to 244x244 pixels and then downscaled to 

64x64 and 32x32 as multi-scale input to the defined multi-path convolutional neural 

network (CNN). To unify and align the images, all facial bounding boxes and facial 

landmarks – the central region of the eye, and the base of the nose – were detected. An 

overview is shown in Fig. 5.  

  

  

Fig. 5. The multi-path network architecture. The input image is scaled to 32x32, 64x64, 224x224 

respectively. Each scaled version is passed through its respective subnet and normalised through 

the embedding layer. 4096 denotes the output dimension of each subnet. The face descriptor is 

the output layer, which contains the estimated age.  

Initial training and testing took place on the FG-NET dataset [22]. This dataset contains 

just over 1,000 images from 82 persons, with ages ranging from zero to 69. Testing was 

conducted using a “leave-one-person-out” approach, such that one person’s dataset was 

omitted at random, with the remaining ones being used for models training. This was 

performed 82 times for cross-validation. The results were then averaged to obtain final 

age estimations. Using this data, the MAE was 3.93.  

Further training and testing were conducted using the MORPH dataset. Containing 

some 55,608 images from about 13,000 subjects, and with ages from 16 to 77, it is 

significantly larger than the FG-NET dataset. Testing was undertaken slightly 

differently from previous, due to the dataset’s size. Instead, the dataset was split equally 

into 10 folds. One of the folds was selected at random and used for testing, whilst the 

rest were used for training. This process was repeated 10 times and the resulting average 

was taken. This time, the MAE was 3.25.  



Finally, the ChaLearn Challenge dataset was used. This dataset contains just over 

4,000 images and 1,500 images for validation. Unlike the previous datasets, all the 

images are taken in a large variety of settings, with further variance introduced by 

different aspect ratios and quality changes. When compared to the other datasets, the 

authors believe that the diverseness of the ChaLearn Challenge dataset causes the MAE 

to be slightly higher, 4.21. Regardless of the dataset used, Hao et al. were able to 

produce industry-average results at worst, with marginally more accurate results in most 

cases.  

  

Hu, Zhenzhen et al. (2017)  

Hu, Zhenzhen et al. present state-of-the-art results in their paper Facial Age Estimation 

with Age Difference [23]. Whilst typical approaches towards age estimation are centred 

on using labelled data, their approach uses age difference information instead. To obtain 

access to this type of information, the authors had to create their dataset. This was 

achieved by extracting photographs with their related information from Flickr.com. 

Importantly, this related information contains the dates the images were taken and 

uploaded. After filtering the images through face detection and alignment algorithms, 

the remaining 150,000 images create the final dataset.  

A network is trained with the FG-NET and MORPH datasets to create a pre-trained 

age estimator. For their non-age-labelled dataset, two images of the same person are 

combined as a pair. For the age-labelled datasets, the authors follow the work 

undertaken by Geng et al. [24] and Geng [25]. This overarching approach was 

undertaken, as it should allow for consistent age estimation. For their non-age-labelled 

dataset, they used the year difference between two images of the same person to train 

an age difference estimator. The two images are assigned a probability of their age with 

a range of estimated ages. By using several loss functions, they can evaluate the age 

probability distributions and adjust the loss function for the network as a whole (Fig. 

6).  

  

  



Fig. 6. Model displaying the input-output flow of the network. The model is pre-trained on the 

FG-NET and MORPH datasets. For the non-age-labelled dataset, two images of the same subject 

are combined as a pair. The network is then fine-tuned using the image pairs.  

Much like other experiments, MAE and cumulative score (CS) are used as performance 

metrics. To evaluate the network’s performance, it was first tested using the age-

labelled dataset. 80 percent of images were randomly selected as the training data, with 

the remaining images set aside for testing. MAE was 2.8 and 2.78 (FG-NET and 

MORPH, respectively), which are state-of-the-art (Table 1).  

Further evaluation was undertaken using the year-labelled dataset. As this dataset 

does not contain ages, but rather years, it was only possible to test the age difference 

estimator. Like the previous testing, the dataset was split, with 30,000 images from 700 

subjects selected. The MAE of the age difference estimator is 1.74 while the average 

age difference of the year-labelled dataset is seven years. To evaluate the usefulness of 

age difference information, results with and without this information were investigated. 

Without this information, the MAE was 3.12; whilst with this information, it dropped 

to 2.78 (Table 2).   

Table 1. MAE Comparison with age estimation algorithms on the age-labelled databases.  

Heading level  FG-NET  MORPH  

RED + SVM [26]  6.33  6.57  

SVR  5.45  5.52  

kNN  8.13  8.22  

CS-LBFL [27]  4.36  4.37  

Our methods  2.8  2.78  

Table 2. MAE comparison with age estimation algorithms on the year-labelled databases.  

 
GoogleLeNet with year-label data  2.78  
GoogleLeNet (Gaussian label)  3.13  

GoogleLeNet (Single label)  3.15  

Huerta [28]  3.88  

Wang [29]  3.81  

Wang [30]  4.77  

 
  

2.5 Inclusion in Further Research  

As one can see, this area of research is very active. As such, there are many different 

methods of approaching the problem of age estimation. All methods discussed rely on 

common datasets such as FG-NET or MORPH for training and testing. Even Hu, 

Zhenzhen et al., still rely on these datasets despite constructing their own to reduce their 

Methods     MORPH   



MAE. The different strides made in current research is interesting, considering their 

differences in accuracy, despite sharing these datasets.  

Although the research covered discussed age estimation as a means of soft-

biometrics, age estimation may also play an important role in digital forensics. Its 

inclusion in an automated child pornography detection tool is certainly worth 

considering as it would most likely aid in its successful detection. Furthermore, this 

could be achieved by implementing some of the methods discussed. For example, 

Huerta, Ivan et al. pose a novel approach, which, whilst indeed a simpler method when 

compared to the other research discussed, would provide reasonably accurate results 

when included as a single-mode in a multi-modal system. Furthermore, if a version of  

Hu, |henzhen et al.’s network could be successfully trained and tested, then-current 

estimation accuracy could be further improved.  

In contrast, in situations where age estimation data containing children is not 

abundantly available, it may be possible to use a person’s height instead. Within the 

past two decades, research has been conducted where estimating the height of a human 

has been the focus [31-33]. As a prerequisite for the vast majority of this research, 

however, data presented to any algorithm must include the known measurements of an 

object, often thought of as a pseudo-calibration. By doing this, algorithms can make 

presumptive estimations on objects whose dimensions are unknown by essentially 

comparatively scaling (or, indeed, downscaling) them. Consequently, for digital 

forensics, absolute measurements would most likely be impossible to obtain because 

they would lack the means of calibration in the field; as this calibration would have to 

happen at the time the photographs were being taken.  

  

3 Conclusions  

Using AI to estimate a person’s age is a growing field, especially when it may be used 

as a by-product of other uses, such as facial recognition. The MAE has consistently 

been reduced over recent years, currently sitting at just under three. A decade ago, that 

MAE was as high as eight or nine. This low error rate, and inversely high accuracy rate, 

most certainly helps when one is to consider using age estimation as part of a child 

pornography detection toolkit.  

As mentioned, however, the distinct lack of child-focused training data compounds 

the difficulty of accurate age estimation for younger people. Nevertheless, it may still 

be possible to estimate a child’s age despite this. By detecting all persons within a 

photograph and estimating their respective ages, it would be a safe assumption to make 

that any persons below a certain age (e.g. 18) would be classed as a child. To detect a 

child within pornography, this approach, in tandem with other identifiers (such as their 

height), may yield a high enough accuracy where it would be possible to consider its 

inclusion in real-world applications.   

  



3.1 Future Work  

The goal of the author’s research is to incorporate successfully AI into digital forensics, 

through the development of a toolkit. AI techniques discussed in this review paper show 

contemporary methods can estimate a person’s age to within three years. This current 

accuracy means that age estimation must be included in the author’s toolkit  

To that end, the author will be including AI-based age estimation within the toolkit 

under development. Future work will include further research into suitable AI 

architectures and, once a suitable architecture has been selected, its inclusion into the 

toolkit.  
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