
1.  Introduction
Subaqueous mass failures that propagate as slides, slumps, debris flows, and turbiditic flows are major 
processes that transport sediments from the continental shelf and upper slope to deep basins that can have 
serious socioeconomic consequences (Hampton et al., 1996; Pope et al., 2017; Sammartini et al., 2019; Tall-
ing et al., 2014). Under a changing climate, it is crucial to understand the relationship between the occur-
rence of mass failures and climate-driven factors such as changes in water-level and sedimentation rate 
(Leynaud et al., 2007; Owen et al., 2007). Despite numerous investigations on this topic, several schools of 
opinion exist. Some researchers demonstrate that lowering sea-level can promote mass failures (Blumberg 
et al., 2008; Huhn et al., 2019; McHugh et al., 2002), while others suggest the opposite (Brothers et al., 2013; 
Neves et al., 2016; Trincardi et al., 2003).

In contrast, some researchers have documented no clear correlation between mass failure occurrence and 
sea-level change as the ages of failure events appear to be random (Pope et al., 2015; Urlaub et al., 2013). 
They suggested that an accurately dated record of subaqueous mass failure deposits from a specific setting 
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with the same trigger is key to understanding the possible link (Pope et al., 2015; Smith et al., 2013; Urlaub 
et al., 2013). In addition to the role of water-level, previous studies have suggested that sedimentation-driv-
en overpressure on subaqueous slopes can also decrease slope stability and facilitate mass failures (Leynaud 
et al., 2007; Sawyer et al., 2017; Ten Brink et al., 2016), but rapid sedimentation alone cannot facilitate mass 
failures (Cardona et al., 2020; Stigall & Dugan, 2010).

To address the contrasting viewpoints and interpretations noted above regarding the role of climate in driv-
ing mass failure frequency, we present a record from the Dead Sea depocenter that spans the last 220 kyr and 
comprises 490 earthquake-triggered (seismogenic) mass failure events. This case study provides a unique 
opportunity to shed new light on the debate by distinguishing and separating trigger and preconditioning 
factors. First, we focus on one specific setting in which the sediments experienced the same climatic and 
tectonic forcing (Lu, Bookman, et al., 2020; Lu, Waldmann, Ian Alsop, & Marco, 2017; Lu, Waldmann, Na-
del, & Marco, 2017; Lu, Wetzler, et al., 2020). Second, it is established that earthquakes act as the trigger for 
these events (Lu, Waldmann, Ian Alsop, & Marco, 2017; Lu, Wetzler, et al., 2020; Lu et al., 2021). Third, the 
sedimentary sequence is well-dated (Goldstein et al., 2020) (Figure S1, Table S1). Fourth, the slope morphol-
ogy of the basin (Sade et al., 2014) and sedimentary processes at the lake margin (Alsop et al., 2016; Hali-
va-Cohen et al., 2012) and center (Lu, Waldmann, Ian Alsop, & Marco, 2017; Neugebauer et al., 2014) are 
well-understood. Therefore, this unique record allows a critical assessment and testing of the links between 
the occurrence of mass failure, changes in water-level, and sedimentation rate driven by a changing climate.

2.  Mass Failure Deposits in the Dead Sea
The central and deepest part of the Dead Sea marks the depocenter of the Dead Sea Basin, which is the 
largest pull-apart basin developed along the Dead Sea Fault (Figure 1) (Bartov et al., 2006; Ben-Avraham 
et  al.,  2008). The Dead Sea is characterized by lake-level high-stands with large-amplitude fluctuations 
(>140 m) during glacials, while low-stands with low-amplitude fluctuations (<70 m) occurred during inter-
glacials (Torfstein, Goldstein, Stein, & Knzel 2013; Torfstein, 2019; Waldmann et al., 2010). Aragonite-de-
tritus laminae mainly accumulate during glacials, while halite and homogeneous mud are more widely 
deposited during interglacials (Kiro et al., 2015; Torfstein et al., 2015).

Seismites in the Dead Sea comprise two categories: one group results from in situ coseismic sedimenta-
ry effects (in situ seismites: in situ folded layers, intraclast breccia layers, and micro-faults) (Ken-Tor 
et al.,  2001; Lu, Waldmann, Ian Alsop, & Marco,  2017; Lu, Wetzler, et  al.,  2020; Marco & Agnon,  1995; 
Wetzler et  al.,  2010), and the other group forms by secondary seismogenic sedimentary effects, that is, 
seismogenic mass failure deposits (Lu, Waldmann, Ian Alsop, & Marco, 2017; Lu et al., 2021). We subdivide 
seismogenic mass failure deposits in the Dead Sea into four basic types.

(a) Type I: Seismogenic sandy turbidites. These deposits comprise sandy turbidites that overlie in situ seis-
mites (Lu et al., 2021) (Figures 2a and 2b), with further sandy turbidites that correlate to historic earth-
quakes (Lu, Wetzler, et al., 2020) (Figures 2c and 2d). (b) Type II: Laminae fragments-imbedded detritus 
layers (Figures 2e–2i). These deposits are characterized by sparse fragments of aragonite-detritus laminae 
within detritus beds and are formed by seismogenic slope failure-induced comminution of aragonite-de-
tritus laminae (Lu et al., 2021). (c) Type III: Slump deposits (Figure 2j). These deposits feature intensely 
deformed and fragmented aragonite-detritus laminae with distinctive layer folding, which are considered 
to be sourced from middle and lower lake slopes (Lu, Waldmann, Ian Alsop, & Marco,  2017). (d) Type 
IV: Chaotic deposits (Figure  2k). These deposits are characterized by mud containing coarse sands and 
well-rounded gravel, occasionally with some intraclasts, showing poorly sorted chaotic structures which 
are interpreted to be sourced from marginal lakeshore areas (Lu, Waldmann, Ian Alsop, & Marco, 2017).

In addition, thousands of intervals of homogeneous mud, turbidite, and debrite (on a centimeter to me-
ter-scale) are also preserved in the Dead Sea depocenter (Figure S2). However, a seismic or nonseismic ori-
gin cannot yet be established for these deposits. Mixed information is expected for a combined data set that 
compares deposits with different triggers. To test the possible link between changes in water-level and mass 
failures with the same trigger (Pope et al., 2015; Urlaub et al., 2013), we focus on earthquake-triggered mass 
failures, whereas mass failures with unclear triggering mechanism(s) are systematically excluded from the 
analysis.
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Figure 1.  Tectonic setting of the Dead Sea Basin and locations of ICDP drilling. (a) Active faults (red lines) in the basin (Bartov et al., 2006; Ben-Avraham 
et al., 2008). (b) Bathymetric map showing the morphologic characters of basin slopes (from Sade et al., 2014) and lines of profile sections (c). (c) Profiles 
showing the present-day morphology of basin slopes which are used as an analog for the past 220 kyr.
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3.  Materials, Methods and Chronology
3.1.  ICDP Core 5017-1 (Central) and Core 5017-3 (Marginal)

During 2010–2011, a 457 m-long Core 5017-1 was recovered from the Dead Sea depocenter at a water depth 
of 297.5 m (Neugebauer et al., 2014). Another 340 m-long Core 5017-3 was recovered in the upper slope of 

LU ET AL.

10.1029/2021GL093391

4 of 12

Figure 2.  Features of seismogenic mass failure deposits (events) in the Dead Sea center (core 5017-1). The pink and blue bars indicate the position of events 
and in situ seismites, respectively. (a–d) Type I deposits. (e–i) Type II deposits; the blue circles are magnifying glasses (×2.5). (j) Type III deposits. (k) Type IV 
deposits. See Text S1 for core depth.
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the lake at a water depth of 2.1 m (Figure 1). The recovered cores preserve sequences of aragonite-detritus 
laminae, halite, gypsum, and homogeneous mud (Figure 3a). We correlate the main stratigraphic units at 
the orbital-scale between the two cores based on the gamma-ray response from the downhole wireline logs 
(Coianiz et al., 2019). This allows us to compare sedimentation rates and facies between the two different 
environments in the lake.
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Figure 3.  Distribution of seismogenic mass failure deposits (events) in the Dead Sea center over the last 70 kyr. (a) Lithology of Core 5017-1. (b) Distribution of 
events along with time and lake-level (Bookman et al., 2006; Torfstein, Goldstein, Kagan, & Stein, 2013; Morin et al., 2018). (c) Probability density of events in 
5 kyr bins (pink-colored) and Kernel Density of events (gray curve). (d) Lake central and marginal sedimentation rate (SR). (e) Correlation between lake central 
SR (SRcentral), lake marginal SR (SRmarginal), and probability density of events.
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3.2.  XRF and Magnetic Susceptibility Scanning

The undisturbed core sections were scanned using an ITRAX core scanner at GFZ (Potsdam) with a Chro-
mium tube at 30 mA current and 30 kV voltage. The scanning resolution is 1 mm and exposure time is 1 s 
(Neugebauer et al., 2014). We use titanium (Ti) as a proxy for clastic input and calcium (Ca) for carbonate 
and gypsum to investigate different facies (Lu et al., 2021). To eliminate constant-sum constraints and non-
linear matrix effects, we transform the elemental intensities into log-ratios (ln(Ca/Ti)) (Weltje et al., 2015). 
The core sections are also scanned at a 1-mm step for magnetic susceptibility by using a Multi-Sensor Core 
Logger with a Bartington MS2E sensor.

3.3.  Chronology

Core 5017-1 spans the past 220 kyr (Goldstein et al., 2020; Kitagawa et al., 2017), with most dating uncer-
tainty at <±1 kyr (Table S1; Text S2). We constrain the timing of each mass failure event by the age of the 
first underlying in situ sediment horizon and by linear interpolation. In some cases, erosion occurs at the 
base of mass-movements and sediment gravity flows (Alsop et al., 2019; Lu, Waldmann, Ian Alsop, & Mar-
co, 2017), thus the calculated ages constrain a maximum age for the events.

3.4.  Sedimentation Rate Calculation for the Lake Center and Margin

We calculate sedimentation rate, S, as:

  Δ
Δ
DS t

t
� (1)

where D is the cumulative thickness of sediments deposited over the time interval Δt. Sedimentation rate 
calculation over the past glacials and interglacials (MIS 7-1) for the lake margin is based on correlation of 
the main stratigraphic units between Core 5017-1 and Core 5017-3 (Coianiz et al., 2019).

Reliable millennial-scale correlations between the central and marginal cores based on gamma-ray data can 
only be achieved for the last 20 kyr when evaporite layers formed throughout the lake floor and can be used 
as stratigraphic markers. Therefore, we obtain millennial-scale variations in sedimentation rate at the lake 
margin over the past 70 kyr by considering both the marginal Core 5017-3 (20–0 ka) and three Last Glacial 
(Lisan Formation) outcrops (70–15 ka; Table S2) (Torfstein, Goldstein, Kagan, & Stein, 2013).

We average sedimentation rates derived from the three Last Glacial outcrops at a 5 kyr interval because the 
sections are not complete at individual sites. We then integrate the averaged outcrop record and the upper 
slope Core 5017-3 record into one composite record in a 5 kyr bin size (Text S3, Table S2). We use this com-
posite record to represent sedimentation rates on the upper lake slopes for the time 70–0 ka.

3.5.  Data Binning and Probability Density Calculation for Events Over the Last 70 kyr

The sediments deposited during the Last Glacial in both Core 5017-1 and lakeshore sections are sparsely 
dated with gaps around 5  kyr. To compare the probability density of seismogenic mass failure deposits 
(hereafter referred to as events) with lake center and margin sedimentation rates, we group our data set of 
sedimentation rates and the events in 5 kyr bins.

We calculate probability density of events, P as:

   


Δ
Δ

n t
P t

N
� (2)

where n is the number of events over time interval Δt (=5 kyr) and N  is the total number of events over the 
last 70 kyr. We define the probability density of events as extremely low or the highest when the values are 
≤0.04 (standard deviation) and ≥0.08, respectively.
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We compare the distribution of probability density of events in different sizes of bins (3.5, 5, 7 kyr). The 
three sets show similar distributions of probability density of events over the last 70 kyr (Figure S3), sug-
gesting that the shape of the event distribution is insensitive to changes in bin size. In addition, we also use 
the Gaussian Kernel and the Sheather-Jones method to determine the optimal bandwidth (3.01) and model 
the Kernel Density of events. The modeling yields a smooth curve that shows a similar distribution with the 
probability density of events binned in different sizes (Figure S3).

4.  Results
4.1.  Features of Seismogenic Mass Failure Deposits (Events)

Type I deposits show smaller fluctuations in Ca/Ti ratio than the aragonite-detritus laminae intervals (Fig-
ures 2a and 2b), suggesting mixing processes. Type II deposits also show smaller fluctuations in the Ca/Ti 
ratio than the aragonite-detritus laminae intervals underlying the units (Figures 2e–2i), thus also suggest-
ing mixing. Type III and IV deposits both show frequent variations in magnetic susceptibility (Figures 2j 
and 2k), indicating large-scale mixing processes and implying that the units have undergone significant 
transportation. We identify 490 such deposits in Core 5017-1 over the past 220 kyr.

4.2.  Lake Margin and Center Sedimentation Rates Over the Last 220 kyr

At a millennial-scale, over the past 70  kyr, lake margin and center sedimentation rates show a similar 
trend, with a correlation factor of 0.95 (Figure 3e). The sedimentation rates are high during 15–0 ka (lake 
margin: >320 cm/kyr; center: >420 cm/kyr) and low during 70–15 ka (lake margin: <170 cm/kyr; center: 
<295 cm/kyr) (Figure 3d; Table S2). At an orbital-scale, over MIS 7-1, lake margin and center sedimentation 
rates also show a similar trend, with a correlation factor of 0.99 (Figure 4f). The rates are high during inter-
glacials (165–645 cm/kyr) and low during glacials (<145 cm/kyr) (Figure 4e; Table S3).

4.3.  Occurrence of Events Compared to Lake Levels and Sedimentation Rates During 70–0 ka

We identify 30 Type I events, 114 Type II events, 57 Type III events, and 8 Type IV events over the last 
70 kyr (Figures 3b and S2; Table S4). The Type II and III events mainly occur during the Last Glacial (Fig-
ure S2). The lake-level underwent high-amplitude fluctuations (>140 m; Text S4) during the Last Glacial 
high-stand, compared to low-amplitude fluctuations (<70 m) during the Holocene low-stand (Figure 3b) 
(Torfstein, Goldstein, Kagan, & Stein, 2013). At the centennial-to decadal-scale, the events occurred at all 
lake-level states of rising, falling, and stable intervening periods (<5 m/kyr; Text S4).

At a millennial-scale, the events have the highest probability density (>0.08) during 35–15 ka when lake-lev-
els show the largest fluctuations but sedimentation rates are low (Figures 3c and 3d; Table S5). In addi-
tion, the probability density is extremely low (<0.04) during 15–0 ka when lake-levels show low-amplitude 
fluctuations but sedimentation rates are highest. The events also occurred frequently (0.04–0.11) during 
70–35 ka, when sedimentation rates are low but lake-levels display frequent middle-magnitude fluctua-
tions. The correlation coefficients between the probability density of events and the marginal and central 
sedimentation rates are both −0.4, indicating a weak negative correlation between them (Figure 3e). Addi-
tionally, we find no clear relationship between the thickness of event deposits and lake-level (coefficient: 
−0.02), and between the thickness of event deposits and marginal sedimentation rates (coefficient: −0.25) 
(Figures 4a and 4b).

During 42–0 ka, dating uncertainties are <±0.3 kyr (Table S1) and there is high confidence in lake-level 
history for the majority (70%) of the time interval, with low confidence for the remaining 22%, and only 8% 
of lake-levels unknown (Figure 3b). About 81% of failure events (N = 115) occurred during time intervals 
with high confidence in lake-level history. Among them, 87% of events (N = 100) occurred during lake-level 
rises/falls (spanning 82% of the total time), while 13% of events (N = 15) occurred during quiet intervals 
(spanning 18% of the total time) (Figure 4c). Our analysis reveals that the distribution of events over the 
three different lake-level states is not sensitive to the different definitions for “quiet intervals” (Figure S4; 
Table S6).
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4.4.  Occurrence of Events in the Past Glacial-Interglacial Cycles

The frequency of events in the Penultimate Interglacial (MIS 7), Penultimate Glacial (MIS 6), Last Intergla-
cial (MIS 5), Last Glacial (MIS 4-2), and Holocene (MIS 1) are 1.5, 3.4, 1.1, 2.9, and 1.7 events per kyr, re-
spectively (Figure 4d). The events occurred more frequently during glacials (with lake-level high-stands and 
large-amplitude fluctuations) than in interglacials (low-stands and low-amplitude fluctuations) (Text S5; 
Figure S5). The frequency of events is high during glacials when sedimentation rates are low and it is low 
during interglacials when sedimentation rates are high (Figures 4d–4f; Table S3). We observe negative cor-
relations (−0.6 and −0.5) between the frequency of events and marginal and central sedimentation rates at 
an orbital-scale.

5.  Discussion
Types I–IV events are only a partial recorder of the entire paleoearthquake catalog (Lu, Wetzler, et al., 2020), 
and therefore do not provide any inferences regarding earthquake recurrence. Moreover, the majority of 
in situ seismites in Core 5017-1 are not overlain by any types of the mass failure-related events, there-
by indicating that mass failures do not develop with each significant seismic shaking or that those mass 
movements were too weak to reach the drill site. Therefore, some additional, nonseismic preconditioning 
factor(s) must have facilitated the seismically triggered mass failure deposits identified in Core 5017-1.
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Figure 4.  Occurrence of seismogenic mass failure deposits (events) in different lake-level statuses. (a and b) Correlation between the thickness of event layers, 
lake-level (a), and SRmarginal (b). (c) Percentage of events occurred at different lake-level states over the past 42 kyr (high confidence in lake-level history only). 
(d) Frequency of events over MIS 7-1 (220–0 ka). (e) Lake marginal and central SR over MIS 7-1. (f) Correlation between SRcentral, SRmarginal, and frequency of 
events (f) over MIS 7-1.
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5.1.  Implications of the Link Between Sedimentation Rates and Occurrence of Events

At the millennial-scale, the correlation coefficients between the probability density of events and lake mar-
ginal and central sedimentation rates are both −0.4 (Figure 3e). At the orbital-scale, the coefficient between 
the probability density of events and lake marginal sedimentation rates is −0.6, and the coefficient between 
the probability density of events and lake central sedimentation rates is −0.5 (Figure 4f). This new data set 
differs from observations in other basins where rapid sedimentation results in a reduction of submarine 
slope stability and thereby facilitates mass failures (Leynaud et al., 2007; Sawyer et al., 2017; Ten Brink 
et al., 2016). Rapid sediment loading may promote mass failures via increasing pore water pressure, thereby 
lowering the effective stress in a slope sequence (Leynaud et al., 2007; Sawyer et al., 2017). However, this 
process also depends on sediment properties (permeability and compressibility) and geometry of the slope 
sedimentary sequences (Flemings et al., 2002; Urlaub et al., 2015). In the Dead Sea case, comparable sedi-
mentation rates in the basin depocenter and on the slope during MIS2-4 suggests sediment draping and thus 
no major changes in depositional geometry that could drive lateral fluid flow. Our data set over different 
time-scales suggests that variation in sedimentation rate is not the main preconditioning factor for mass 
failures during seismic shaking in the Dead Sea. This suggests that in combination, sedimentation rates 
were too low and permeability was too high for the generation of excess pore pressure and lowered effective 
stress in the upper lake slopes due to sedimentation alone.

5.2.  Effect of Lake-Level Change on the Occurrence of Events

Our data set reveals that at the centennial- to decadal-scale, the events are not statistically correlated with 
lake-level state. The percentage of events that occurred during quiet intervals (13%) is close to the total 
time occupied by stable lake-levels (18%). Additionally, the time resolution of lake-level reconstruction and 
the time lag between the lake-level effects and mass failures are difficult to estimate for individual events 
at specific times (Text S6). Thus, the statistics at the centennial-to decadal-scale do not allow us to make a 
definite statement regarding a possible link between lake-level changes and mass failures. However, at the 
millennial- and orbital-scale, we find a statistical correlation between the lake-level and the frequency of 
events. Higher frequency of events (during 35–15 ka, MIS 6, and MIS 4-2) are statistically correlated with 
high lake-levels that were punctuated by large-amplitude falls/rises.

Field investigations and modeling in the Dead Sea Basin have confirmed that incision of stream channels 
and associated bank failures occurred during rapid falls in lake-level (Closson et al., 2010; Dente et al., 2021; 
Hassan & Klein, 2002), indicating an overall decrease in slope stability around the lake margins. A similar 
mechanism of falling water-levels promoting mass failures, has also been reported in Laguna Potrok Aike, 
southern Patagonia (Anselmetti et al., 2009), and along the continental margin of New Jersey (McHugh 
et al., 2002) and the South-Chilean active margin (Blumberg et al., 2008).

Previously suggested mechanisms for mass failures promoted by sea-level rise include (a) enhanced rapid 
sedimentation causing greater overburden on slope sediments (Nisbet & Piper, 1998; Trincardi et al., 2003), 
and (b) increased water load enhancing seismicity (Brothers et al., 2013; Neves et al., 2016; Smith et al., 2013). 
In the Dead Sea case, relatively low sedimentation rates are statistically correlated with lake-level rises and 
high-stands at both the millennial- and orbital-scales (Figures 3b–3d and 4e) (Lu, Bookman, et al., 2020; 
Lu, Waldmann, Nadel, & Marco, 2017), and thus do not support mechanism “(i).” Regarding the enhanced 
seismicity hypothesis, a complete paleoearthquake (Mw ≥ 5) record that covers the Last Glacial is currently 
lacking and we are therefore unable to evaluate this model.

In the Dead Sea Basin, the very high lake-levels during glacials (>−330  m; Figure  3b) inundated more 
marginal slopes with steeper gradients (7°–21°) and loaded these slopes with loose sediments (Figures 1c 
and S6). These changes can increase the overall subaqueous slope failure potential during seismic shaking 
and lead to the accumulation of these event deposits in the lake center. Also, the rapid and high-amplitude 
drops in lake-level during glacials may have enhanced slope erosion and decreased terrestrial slope stability 
around the lake (Closson et al., 2010; Dente et al., 2021; Hassan & Klein, 2002), creating preconditioned 
slopes for seismogenic mass failures.
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5.3.  Other Lake-Level Change-Connected Factor(s) and Implications

Another important factor is that sedimentary sequences deposited under different climate conditions and 
lake-level states on the upper lake slopes (lake margin) comprise different lithologies. Aragonite-detri-
tus laminae are mainly deposited during wet glacials and wet periods of interglacials when the Dead Sea 
lake-level is relatively high and brine is oversaturated for calcite (Barkan et al., 2001; Stein et al., 1997). 
The highest probability density of events occurred during 35–15 ka when lake-levels were high (> −330 m; 
Figure S2) and submerged more marginal slopes with steeper gradients (7°–21°) and charged these slopes 
with aragonite-detritus laminae.

During 35–15 ka, 66% of the events are Type II deposits which are comparable in composition to arago-
nite-detritus laminae (Figure 2), with thickness mostly <5 cm (Table S4), and unrelated to other typical pre-
conditioning factor(s) for subaqueous landslides such as enhanced sedimentation rate (Figure 3). Surficial 
sediment remobilization triggered by earthquakes that is, reported from Chilean lakes and offshore Japan 
may explain these new observations of very thin layers of mixed sediments from the Dead Sea (McHugh 
et al., 2016; Moernaut et al., 2017; Molenaar et al., 2021). These factors connected to lake-level change can 
collectively favor the observed pattern of seismogenic mass failures in the Dead Sea.

Our study implies that to reliably test the cause-and-effect relationships between mass failures and cli-
mate-driven factors, for example, changes in water-level and sedimentation rate, at a much higher time-res-
olution, one should focus on suitable sequences. Such sequences need to comprise well-dated mass failure 
deposits from one setting with a well-constrained history of water-level changes at the centennial-to dec-
adal-scale. Also needed is a quantification of preconditioning factors through (in-situ) geotechnical data 
and/or slope stability modeling. Our study highlights the unique potential of deep drilling and lacustrine 
sequences to better understand and constrain the link between mass failures and potential climate-driven 
factors, which can serve as an analog for marine investigations.

Data Availability Statement
Data sets are available in the Supporting Information and PANGAEA database (https://doi.org/10.1594/
PANGAEA.931843).
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