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Zhongke Gao, Senior Member, IEEE, Zhu Gong, Qing Cai, Chao Ma, and Celso Grebogi

Abstract—Depicting the relationship between brain cognitive
state and task difficulty level constitutes a challenging problem
of significant importance. In order to probe it, we design an
experiment to gather EEG data from mental arithmetic task
under different difficulty levels. We construct brain complex
networks using a complex network method and information
entropy theory. We then employ weighted clustering coefficient
to characterize the networks generated from different brain
cognitive states. The results show that with the increase in task
difficulty level, the mean weighted clustering coefficients show
a decrease. This is due to the lack of coordination of brain
activity and the low efficiency of the network organization caused
by the increase in task difficulty. In addition, we calculate the
permutation entropy from the signals of each channel EEG
signals to support the findings from our network analysis. These
findings render our method particularly useful for depicting the
relationship between brain cognitive state and difficulty level.

Index Terms—Complex Network; Electroencephalogram
(EEG); Brain Cognition; Time Series Analysis.

I. INTRODUCTION

THE understanding of the brain lends itself as the leading
transdisciplinary research effort in this century. To study

some of its properties, researchers use different brain imaging
techniques, for instance, functional magnetic resonance imag-
ing (fMRI) [1], electroencephalography (EEG) [2], [3] and
magnetoencephalography (MEG) [4]. As a temporal resolution
brain electrical signals acquisition method, non-invasive and
directly measurable, EEG is significantly more cost effective
than most other techniques [5] and the size of its acquisition
equipment is smaller than the others. Consequently, EEG is
comprehensively used by researchers to monitor brain physio-
logical activity. Among different areas of brain research, brain
behavior dynamics greatly benefits from understanding the
brain mechanism. Particularly, brain cognitive research, which
is an approach of analyzing brain behavior dynamics, benefits
from the research involving the working mechanism of the
human brain. In this work, we aim at understanding an aspect
of cognition by studying brain connectivity using the theory of
complex networks. We investigate brain changes by designing
cognitive experiments involving different cognitive difficulty
levels. Cognitive difficulty level is the degree of mental effort
to complete a cognitive task (e.g. mental arithmetic, problem
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solving, working memory, and reading). Cognitive difficulty
level does impact on the amount of mental resources required
by the subject to deal with a given cognitive task [6]. It is
widely understood that the cognitive state changes with the
change of brain activities [7]. But it is still not well understood
how the brain cognitive state is affected by brain activities.
Therefore, depicting changes of brain state under the task
difficulty levels becomes an emerging hot research topic.

Previous researchers have published on the brain functional
mechanisms under different cognitive states. Grundy et al.
[8] used multiscale entropy analysis and multivariate statistics
on EEG data to characterize the relationship between brain
signal complexity and task difficulty. Sciaraffa et al. [9] used
multiple-brain connectivity analysis to EEG data collected
from a cooperative task and to reveal that the task difficulty
level has impact on the averaged local properties of a brain
network. Those papers discussed the relationship between
brain state and task difficulty level from different angles.
However, in order to reflect changes of brain cognitive state
as a whole, to uncover the inherent non-linear characteristics
of EEG signals, and the complex dynamic characteristics of
the brain under different cognitive difficulty levels, a multi-
disciplinary approach using complex networks is called for.

For the past decades, complex network, as a complex system
description method, has attracted much attention [10], [11].
Complex network provides new approaches of nonlinear time
series analysis [12] and has been successfully used in network
topology inference [13], multiphase flow [14], information
propagation [15] and especially in brain science. A novel study
[16], based on EEG signals, provides quantitative evidence that
the disruption in the cortical inter-hemispheric connectivity
and deficits in higher order cognitive functions are corre-
lated with cognitive deficits. Another method for detecting
epileptic seizure from EEG signals based on adaptive optimal
kernel complex network was developed [17], achieving a high-
accurate classification.

Many studies have shown that the brain can be thought of
as a complex system [10], [18]. Different regions of the brain
have their own distinct function, both simply and complex
tasks require the cooperation and coordination of various
brain regions, making the construction of functional brain
network indispensable. In particular, the theory of multisource
information fusion of complex network is applied increasingly
to the study of brain cognitive state. For instance, EEG was
used to detect the association with workload and mental states
during cognitive tasks [19]. The description of EEG signal
complexity can reflect the holistic state of brain function and
reveal the inherent nonlinear characteristics of EEG signals.
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Therefore, it is of great significance to describe the complex
dynamic characteristics of the brain under different cognitive
difficulty levels by using, in particular, multiple EEG signals.

In this work, we design an experiment of mental arith-
metics under different difficulty levels. Based on complex
network method and information entropy theory, we combine
topology information with functional connectivity information
to develop a brain network construction method. We apply
weighted clustering coefficient as a performance index to brain
network analysis to reveal the complexity and the dynamic
behavior of brain under different cognitive difficulty levels.
The result shows that with the increase of cognitive difficulty
levels, the mean weighted clustering coefficients show a de-
creasing tendency. This is due to the lack of coordination of
brain activity and the low efficiency of network organization
caused by the difficult tasks. These findings render our method
particularly useful for depicting the interrelationship between
brain cognitive state and difficulty level.

II. PARTICIPANTS SELECTION AND EXPERIMENT DESIGN

A. Participants

The 10 participants (7 males, 3 females, mean age 22.5
years) involved in this experiment are recruited from the
School of Electrical and Information Engineering, Tianjin Uni-
versity. They all have normal or corrected-to-normal eyesight
and are right-handed with no physiological or psychological
medical history. Furthermore, the participants are required to
abstain from alcohol, smoking, caffeine, tea and heavy meals
for a minimum of one day before the experiment.

B. Experimental Design

The experiments are performed at the Laboratory of Com-
plex Networks and Intelligent Systems, Tianjin University.
We choose the arithmetic addition as the difficulty task for
the experiment. The number of terms in the addition reflects
the difficulty level of the task. During the experiment, a
group of numbers is exhibited horizontally in the middle of
a computer screen for the subjects to carry out the mental
arithmetic addition. Three different difficulty levels correspond
to three experimental conditions (addition of two numbers, six
numbers and twelve numbers). Thirty random questions make
up a sub-experiment, which includes ten questions (extracted
randomly from a question bank) of each difficulty level. Each
experiment is made up of three sub-experiments.

The stimulation interface of an experimental group: vi-
sual stimuli is displayed in the middle of the screen, four
alternative answers are displayed below the question. The
distance between the subjects’ eyes and the screen is 50
centimeters. In addition, the eyes and the middle of the screen
are aligned horizontally. When the mental arithmetic comes
to a completion, the subject keys in the answer using the
keyboard. The input answer is recorded in a text document.
Correspondingly, the control group has no alternative answer,
and the subjects click the mouse at the end of the response
when the mental arithmetic finishes.
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Fig. 1. Flow chart of complex network analysis.

C. EEG Data Acquisition and Preprocessing

The data acquisition process begins with the stimulation
interface being presented, and ends up with all the questions
being answered. The experiment interface is compiled by
the software Eprime. EEG signals are collected by a 40-
channel NuAmps amplifier at 1000Hz sampling rate, which
confirms with the standard international 10-20 system. Before
collection, EEG electrodes are covered with a conductive
gel to require the skin impedance to be below 5 kΩ. The
equipped brain electrode cap includes 2 posterior auricular
reference channels and 4 EOG acquisition channels (vertical
and horizontal EOG channel), which are used for detecting
eye blink and movement. We get 30 valid acquisition channels
EEG signals.

EEGlab toolbox (Matlab) is used to preprocess the acquired
EEG data, i.e., the acquired data is filtered with a bandpass
of 1-40Hz by finite impulse response (FIR) filter to eliminate
noise. Subsequently, Independent Component Correlation Al-
gorithm (ICA) is used to eliminate blink artifacts and EOG
signal interference. Finally, the preprocessed data is organized
by different difficulty levels to carry out the analysis.

III. METHODOLOGY

Based on the modelling method of Ref. [20], we combine
topology information with functional connectivity information,
based on a brain network construction method. The flow chart
is shown in Fig. 1.

For a multi-channel signal {xk,j}Lj=1, k = 1, 2, ..., N , con-
taining N sub-signals of equal length L, the Shannon entropy
of any discrete sequence i is defined as

HI = −
∑
i

p(i)log2p(i), (1)

where p(i) is the probability distribution of all states contained
in the sequence i. Mutual information between a discrete
sequence i and a discrete sequence j is defined as

HIJ = −
∑
i

p(i, j) log
p(i, j)

p(i)p(j)
, (2)

where
MIJ = HI +HJ −HIJ ≥ 0. (3)

Mutual information (MI), as an extension of information
entropy, reflects the mutual dependence of two variables.
That is to say, it measures the ”amount of information”
acquired about one random variable from detecting another



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS 3

random variable. MI has been successfully applied to time
series analysis in many fields and it is symmetric under the
interchange of i and j, therefore MI does not carry direction
information.

When constructing the brain network, in order to distinguish
different frequency bands of EEG (delta, 2–4 Hz; theta, 4–8
Hz; alpha1, 8–10 Hz; alpha2, 10–13 Hz; beta, 13–30 Hz;
gamma, 30-50Hz), we use Fast Fourier Transform (FFT) to
process the data. Then, for each frequency band, we consider
the EEG channels as nodes of the network, and determine the
edges as follows:

(1) Acquire edges with topology information. Locate the
EEG channels, regard them as triangle vertices. The length
of a triangle side is calculated by the physical distance. The
triangle and its sides are considered to be available, only if the
following conditions are satisfied: (a) there is no other vertices
located in the triangle except the vertices on the sides; (b) the
triangle is an acute triangle or a right triangle, i.e., it is not
an obtuse triangle. If the triangle exists, set the edges to 1, or
else set it to 0. Accordingly, we get a binary matrix A.

(2) Acquire edges with functional connectivity information.
Compute MI of every two EEG channels to obtain a 30 by
30 matrix. Delete proportional lowest edges of this matrix. In
this work, we set the proportion as 30%-50% with an interval
of 1% to get the weighted matrix B.

(3) Combine topology information with functional connec-
tivity information. If an edge is present both in matrix A and
matrix B, we then consider that this edge exists and assign
its edge weight of matrix B to it. It still needs to meet the
condition that for the triangle of every three nodes, the sum
of any two sides is greater than the third side. In this way, we
get the final adjacent matrix of our brain network.

These steps make up our brain network. We eliminate
edges with less mutual dependence and avoid long-distant
connections, which guarantee the effectiveness of our method
from both information theory and topology points of view.

IV. DECODING BRAIN COGNITIVE STATE IN THE BRAIN
NETWORK

After constructing the brain network, we use clustering
coefficient to characterize the brain network. In graph theory,
a clustering coefficient is the index which measures the degree
of nodes’ tendency of clustering together [21]. Clustering coef-
ficient is a reasonable measure of network functional segrega-
tion. There is evidences that nodes that are connected together
tightly are often characterized by relatively intensive relation,
which leads to larger clusters. The presence of clusters in
functional networks suggests an organization of statistical
dependencies indicative of segregated neural processing [22].
Thus, the mean weighted clustering coefficient for the network
reflects the prevalence of clustered connectivity around an
individual node. We use clustering coefficient as our brain
network performance index to quantify the densely connected
clusters of varied cognitive difficulty levels, in order to mea-
sure the dynamic functional segregation of the network. In
weighted undirected network, clustering coefficient is defined
as [23]
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Fig. 2. Tendency between cognitive difficulty levels and brain network
performance in experimental group (with alternatives, red circle) and control
group (no alternative, black triangle) of a typical subject in different bands:(a)
delta band; (b) theta band; (c) alpha1 band; (d) alpha2 band; (e) beta band;
(f) gamma band.
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where ti
w is the (weighted) geometric mean of triangles

around node i, defined as

ti
w =

1

2

∑
j,h∈N

(wijwihwjh)
1
3 (5)

and kiw is the weighted degree of node i, which is defined as

ki
w =

∑
j∈N

wij . (6)

We calculate weighted clustering coefficient of brain net-
work in different bands of all subjects. The result of a typical
subject is presented in Fig.2, in which the horizontal axis
shows the cognitive difficulty level of a task. Correspondingly,
the vertical axis shows the mean values and the variances of
weighted clustering coefficient of the brain network, revealing
the clustering of the brain network. Red line shows exper-
imental clustering coefficient with four alternatives in three
difficulty levels, black line shows weighted clustering coeffi-
cient under experiment with no alternative in three difficulty
levels. No matter which experimental group or control group,
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TABLE I
MEAN AND VARIANCE VALUES OF WEIGHTED CLUSTERING COEFFICIENT

IN THE EXPERIMENTAL GROUPS OF ALL THE SUBJECTS IN THE BETA
BAND.

Weighted CC Easy Medium Hard

Mean Variance Mean Variance Mean Variance

Subject 1 1.4686 0.0508 0.7002 0.057 0.4219 0.0094
Subject 2 1.5304 0.0849 0.969 0.0382 0.7012 0.0403
Subject 3 1.5005 0.1672 0.9062 0.0517 0.6414 0.0976
Subject 4 1.8407 0.216 1.2924 0.0389 0.8711 0.01
Subject 5 1.5745 0.0687 0.8418 0.0342 0.5605 0.0392
Subject 6 1.8367 0.1037 1.0588 0.0716 0.6421 0.0753
Subject 7 1.767 0.0763 0.944 0.0771 0.5796 0.0108
Subject 8 1.7625 0.1665 0.9613 0.0789 0.5729 0.0171
Subject 9 1.7174 0.0918 1.0041 0.0335 0.6048 0.0225
Subject 10 1.6614 0.0371 1.0661 0.1061 0.5362 0.0247

TABLE II
MEAN AND VARIANCE VALUES OF THE WEIGHTED CLUSTERING

COEFFICIENT IN THE CONTROL GROUP OF ALL SUBJECTS IN BETA BAND.

Weighted CC Easy Medium Hard

Mean Variance Mean Variance Mean Variance

Subject 1 1.8394 0.0801 0.8827 0.0269 0.4613 0.0185
Subject 2 1.6586 0.0736 1.1504 0.0375 0.7542 0.0111
Subject 3 1.7229 0.1209 0.9535 0.083 0.5238 0.0181
Subject 4 1.9923 0.0989 1.3484 0.0825 1.0186 0.0179
Subject 5 1.8478 0.0558 0.9858 0.0481 0.5884 0.0215
Subject 6 2.017 0.1903 1.2447 0.0391 0.7228 0.0178
Subject 7 1.9065 0.1176 1.1262 0.1131 0.6106 0.0223
Subject 8 2.1603 0.1932 1.18 0.0999 0.6073 0.0408
Subject 9 2.0162 0.1063 1.0973 0.0587 0.7585 0.0705
Subject 10 1.7634 0.1458 1.2628 0.0748 0.5541 0.0118

and what band is being considered, transition from easy to
hard condition gives rise to decrease of the weighted clustering
coefficient, which means that the clustering in brain network
weakens gradually. By the same token, data of all ten subjects
in all bands has the same tendency, which can be seen in Table
I (experimental group) and Table II (control group).

The workload is positively related to cognitive difficulty
level, which means that workloads increase as the cognitive
task becomes more difficult [24]. Whether the experimental
group or the control group, when the cognitive difficulty level
is easy, the cognitive workload is relatively low, and the
weighted clustering coefficient of the network has larger mean
value and more significant variance. This is because the easy
task involves fewer parts of the brain and the brain regions
form clusters, bringing more efficient organization of the brain
network, segregating brain functional activities. Besides, the
addition of two terms can easily affect the task difficulty,
leading to a larger variance. As the cognitive difficulty level
and the cognitive workloads increase, the mean value of
the weighted clustering coefficient of the network shows a
decreasing tendency and variance that is not so obvious any
longer. In order to carry out the task better, all parts of the
brain are involved, clusters decrease, leading to a decreased
brain functional segregation. Hard cognitive difficulty level
gives rise to less coordinated brain activities and less efficient
organization of the brain network. So the variance fluctuation
is reduced. Shen et al. [24] and Sciaraffa et al. [9] also give
their analysis to this phenomenon. When the number of terms
adds up to 12, reaching the highest cognitive difficulty level,
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Fig. 3. A radar map of the permutation entropy distribution under three
cognitive difficulty levels (Green: easy; Red: medium; Blue: hard) of a typical
subject.

the weighted clustering coefficient of the network has the
lowest mean value and the smallest variance, which means the
worst functional segregation and the least efficient organization
of the brain network. Meanwhile, no matter what difficulty
level is, the control group has larger clustering coefficient
than the experimental group. This can be partly explained by
the fact that typing in the answers with keyboard needs more
attention resulting in a more difficult cognition. The validity
of our results is further verified by it.

In order to better characterize the complexity of the brain,
we compute the permutation entropy of 30-channel EEG
signals under three different cognitive difficulty levels from
all subjects. The distribution of permutation entropy of a
typical subject is presented in the form of a radar map in
Fig. 3. Permutation entropy is a nonlinear complexity measure
for time series, with the advantages of simplicity, extremely
fast calculation, robustness, and invariance with respect to
nonlinear monotonous transformations [25]. For any time
series x(t), t = 1, 2, ..., embed it into an m-dimensional space

X(t) = [x(t), x(t+ τ), ..., x(t+mτ)], (7)

where m is the embedding dimension and τ is the time lag.
For a given embedding dimension, there are m! possible per-
mutations. If each permutation is considered as a symbol, the
embedded time vector X(t) can be represented by a symbol
sequence j, each having probability distribution pj . Thus,
based on the Shannon entropy definition, the permutation
entropy Hp, is defined as

Hp(m) = −
k∑

j=1

pj ln(pj). (8)

When pj= 1
m! , Hp reaches maximum ln(m!). The changes

of Hp reflect and amplify the subtle changes in the time series,
while the value of Hp represents the degree of randomness; a
smaller permutation entropy means a more regular time series
[26].

In the easy task, the permutation entropy is relatively
small and there are differences among the channels, indicating
that the complexity and nonlinearity are relatively low but
slightly uneven distribution. With the cognitive difficulty level
increased, the permutation entropy increases as well, showing
higher complexity and nonlinearity. Besides, the permutation
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entropy among the channels shows relatively even distribution
under medium and hard task. Permutation entropy analysis
demonstrates the increase in complexity and nonlinearity when
the cognitive difficulty level increases, which supports our
results and indicate their validity. Though we can spot the
difference of the permutation entropy between medium and
hard tasks, however, the values are still too close to distinguish.

V. CONCLUSION

In this paper, we articulate a strategy for decoding brain
cognitive states under different difficulty levels from EEG
signals. First, we design an experiment of mental arithmetic
under three difficulty levels and collect the EEG data. We
regard each channel as a node in a complex network. We com-
bine topology and mutual information from information theory
to obtain the edges. Finally, we compute mean values and
variances of weighted clustering coefficients of networks under
different cognitive difficulty levels to characterize functional
segregation of the brain network. The results show that with
the increase of cognitive difficulty level, the mean weighted
clustering coefficient presents a decreasing tendency, which is
due to the lack of coordination of brain activity and the low
efficiency of network organization caused by the difficult tasks.
Resulting from no alternative as a reference also promotes
the difficulty, the mean weighted clustering coefficients of the
control group under the same cognitive difficulty level are
lower than that of the experimental group. At the same time,
the variances of the weighted clustering coefficient decrease,
which could be accounted by the fluctuation among each
tasks of the same cognitive difficulty level. In addition, we
also compute the permutation entropy in order to analyze
EEG signals under different cognitive difficulty levels, and
found that the medium and difficult tasks are indeed more
complex than the easy task. This validates the validity of
our experimental design. Meanwhile, the value of permutation
entropy under medium and hard tasks are extremely close,
thus the permutation entropy method is hard to make the
distinction, which proves the necessity of our experiment. Our
results demonstrate that our methods are capable of accurately
reflecting changes in tendency of the brain network under
various experimental conditions by decoding brain cognitive
state.
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