
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

  www.elsevier.com/locate/procedia 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of 
existing products for an assembly oriented product family identification 

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat 
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France 

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Disruptive events in complex manufacturing systems (CMS), characterised by labour-intensive processes and repetitive activities, render these 
systems vulnerable. In order to tackle this challenge, an approach for resilience-based system design optimisation is proposed. The approach: (i) 
introduces a dynamic multi-dimensional resilience metric; and (ii) formulates the resilience as a multi-objective optimisation problem to improve 
CMSs resilience by finding an optimal human resource allocation model, considering design factors including redundancy, resources capacity 
and roles. The case study, selected to test the validity of the presented approach, show improvement in resilience and efficiency, in terms of 
throughput, resources utilisation and restoration time. 
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1. Introduction 

Designing complex manufacturing systems (CMSs) has 
raised significant attention in our modern society over the last 
decades [1]. This ever-growing interest raises the necessity of 
understanding and handling the complexity of these systems, 
which may become vulnerable in case of disruptions. In the 
context of CMSs, the propagation of effects due to disruptive 
events may be rapid and catastrophic and typically lead to 
production delays or even partial or full production losses. 
CMSs’ complexity is characterised by parallel interactions 
between activities due to multiple sub-systems operating 
simultaneously, time-dependency, diversity, repeating 
manufacturing modules in multiple sub-systems and 
complications in the physical structure of (sub)-systems [1][2].  

In order to develop practices for prompt response and 
efficient handling of unwanted events, the resilience of systems 
is being studied over the past few years. Hollnagel [3] defines 
resilience as an: “intrinsic ability of a system to adjust its 
functioning prior to, during, or following changes and 
disturbances, so that it can sustain required operations under 

both expected and unexpected conditions”. Analysing design 
parameters to determine how to optimally respond to disruptive 
in CMSs is a rich area for academic research. Thus, this paper 
addresses the following research question: “How to optimise 
the dynamic resilience in CMSs under multiple simultaneous 
disruptions through changes to the system design, by finding 
the most efficient combination of resources allocation?”. This 
study contributes to knowledge by: (i) proposing a dynamic 
multi-dimensional resilience metric, considering system 
throughput, resource utilisation and lead times, to gain 
fundamental understanding on how to evaluate disruptions in 
CMSs; and (ii) formulating the resilience as a multi-objective 
optimisation (MOO) problem to enhance systems’ resilience 
proposing changes to the system design. The MOO finds an 
optimal resources allocation model, considering design factors 
including redundancy levels and resources capacity and roles. 

2. Concept of system resilience 

Resilience, typically defined at the system level, is viewed in 
Fig. 1 (adapted from [4]) as a system resilience curve (SRC). 
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Resilience, typically defined at the system level, is viewed in 
Fig. 1 (adapted from [4]) as a system resilience curve (SRC). 
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Fig. 1: System resilience curve before, during and after a disruptive event 

The SCR shows how the performance levels change over 
time before, during and after the occurrence of a disruptive 
event. The system is assumed to operate at a steady-state 
performance level ( ������� ) until the occurrence of the 
disruptive event at �� (Phase I – normal operation). In Phase II
(shock and response), the time that covers the period since the 
disruptive event occurs at �� until the worst case performance 
level of the system reached at ��, shows the time required for 
the system to act for mitigating and absorbing the impact of the 
event (robustness). The worst case performance level at �� is 
expected to be greater or equal to the robustness performance 
level ( ������� ) before any recovery action is conducted. 
Recovery actions are applied to the system in Phase III
(recovery) until some minimal acceptable recovery 
performance level (���������) has been obtained (��). This is 
an intermediate performance level at which some high-priority 
functionalities of the system have been recovered. In Phase IV
(performance restoration), the system’s restoration completion 
at ��, shows the time required for the system to be fully restored 
and return to steady-state operating conditions at the nominal 
performance level (�������). After Phase IV, the system may 
learn from the disruptive event and improve its resilience 
against future events with similar behaviour. Resilience is also 
related to restoration time/rapidity (�∗) that describes the speed 
at which the system fully restores to a desired performance. 
Following the SRC, optimising system resilience after the 
occurrence of disruptive events refers to the development of 
strategies to respond timely (after ��) and restore to normal 
operations (�������) as quickly and efficiently as possible, i.e., 
at a minimum �∗, while ensuring efficient usage of resources 
and redundancy. Robustness and rapidity are the two key 
elements required in measuring system resilience [4]. In this 
work, robustness and rapidity are examined in terms of 
system’s throughput and lead times, respectively. 

The remainder of the paper is structured as: Section 3
discusses the literature review, Section 4 presents the proposed 
approach, Section 5 validates the approach through a case 
study, and Section 6 provides a conclusion to the paper. 

3. Literature review 

Several research studies examine resilience across a wide 
spectrum of systems in the literature. Within the context of 
supply chains, there exists a considerable body of research that 
explores the concept of resilience [5]. The focus of the majority 
of this research has mainly relied on handling external 

disruptions (i.e., fires, earthquakes, floods, etc.). Meanwhile, 
the literature on resilience from a manufacturing systems 
perspective is less consistent. According to [6], a certain 
number of research studies investigates the resilience in 
manufacturing systems, developing control policies 
(scheduling and rescheduling policies, tasks reallocation 
policy, optimal capacity control and inventory policies) for 
achieving resilient operations. However, the majority of these 
policies does not provide generic applicability as redundancy 
or/and flexibility dimensions are barely considered. This may 
lead to costly and/or isolated solutions.  

Within the context of CMSs, optimisation of resilience by 
changing design factors can expedite the systems’ performance 
recovery and mitigate unwanted impacts [7]. Thus, recovery 
activities such as resource allocation are employed to minimise 
the performance loss and recovery time. There is currently an 
increase in the number of studies [7]–[11] that attempt to 
improve systems’ resilience by optimally allocating available 
human and equipment resources. It is observed that the 
majority of these studies simplify the problem focusing on 
minimising performance losses without considering recovery 
time. Although individual attempts have been made providing 
guidelines on how to enhance the resilience of CMSs by finding 
optimal resource allocation models, the resilience optimisation 
is a topic that remains unsolved in the literature.  

Overall, a resilient system should be typically designed with 
the capability to satisfy a set of functional requirements 
including minimal performance loss, quick recovery and 
preventing excessive use of resources and constraints such as 
redundancy and flexibility. However, most research studies 
propose static models to measure resilience and pay limited 
attention on resource utilisation and constraints [9]. In order to 
tackle the aforementioned challenges and gain insights on how 
to design resilient CMSs, an approach for resilience-based 
system design optimisation, considering reduction in 
performance losses and restoration time with limited resources, 
is proposed.  

It is noted that CMSs consist of multiple subsystems able to 
operate simultaneously. In this work, these subsystems are 
referred to as manufacturing phases comprising of activities. 
Performing multiple activities in different phases can lead to 
parallel interactions. Some of the threads may internally occur 
in CMSs are unexpected/late deliveries; unexpected orders; 
quality problems; and inventory-related issues. 

4. Conceptual framework: Resilience-based system design 
optimisation approach  

Considering a system under disruptions, it can: (i) continue 
operating if the performance level is at least equal to the 
minimum acceptable operating level (������� ); and (ii) fully 
restore, if the performance level is greater or equal to the 
nominal performance level (������� ). This process highly 
depends on the changes made to the system design. This work 
investigates the optimisation of the continuity and restoration 
plans for CMSs from the perspective of resilience. Thus, a 
resilience-based optimisation approach using multi-objective 
theory is proposed to ensure CMSs’ continuity and restoration, 
by minimising loss of performance and restoration time, and 



538	 Christina Latsou  et al. / Procedia CIRP 100 (2021) 536–541
Author name / Procedia CIRP 00 (2019) 000–000 3

preventing excessive use of resources. A multi-dimensional 
resilience measure and a resumption-recovery strategy, 
proposing an optimal resource allocation model, are discussed. 
The design factors considered for the MOO problem 
formulation are the amount of resources, and inventory and 
storage capacities. In this work, multi-layered interdependent 
CMSs being under the occurrence of simultaneous unexpected 
deliveries and orders are examined. 

4.1. Phase I – DES model development of CMSs 

The conceptual framework proposed in this work is viewed 
in Fig. 2. The framework, studying the occurrence of disruptive 
events in CMSs, comprises of three phases: (i) a discrete-event 
simulation (DES) model consisting of three layers, i.e. activity, 
object and inventory-resource; (ii) a resilience assessment in 
CMSs; and (iii) an optimisation engine which operates in 
conjunction with the simulation model to find the optimal 
resources allocation. In phase I, a multi-layered DES model is 
developed, capturing the static and dynamic behaviours of 
CMSs. The three layers for the construction of DES model in 
phase I are outlined as: 

 Activity layer: this is the backbone of DES model. In this 
layer, nodes, representing manufacturing activities, are 
connected by edges to model the paths of a given phase. 
Multiple interdependent phases may also be modelled in this 
layer. Characteristics of these nodes are cycle time, 
resources per node, capacity and effect on inventory. 

 Object layer: this layer includes system’s objects such as 
products, raw materials, orders, deliveries and services. 
Objects characteristics can be type, rate and quantity.  

 Inventory-Resource layer: in this layer information about 
the inventory and resources (human and equipment) is 
captured. Characteristics of this layer are storage capacity, 
storage space availability, stock size, resources quantity, 
schedule, priority tasks and resources utilisation levels. 

The three layers communicate interactively through edges, 
enabling the structural and behavioural imitation of a CMS. 
Edges between activity nodes can be sequential, parallel, 
and/or join and and/or split. Inventory-resource edges are 
unidirectional ending to activity nodes. An activity node can 
seize more than one inventory/resource node. Object edges are 
also unidirectional starting from activity nodes. Finally, edges 
connecting object nodes can be used to demonstrate a series of 
sub-components assembling a component. 
After modelling the behaviour of a CMS, unexpected events 
are introduced to the system. As seen from Fig. 2, 
characteristics of these events may be type, start and end dates 
to realise the duration of the disruptions and rate.  

4.2. Phase II – Resilience assessment in CMSs  

After performing multiple simulation runs, the resilience is 
measured in phase II, employing: (i) the number of processed 
requests to the total number of received requests, in percentage 
(throughput); (ii) human and equipment resources utilisation 
(the ratio of total billable hours to the number of total available  

Fig. 2: Framework for measuring and optimising the resilience in CMSs 

hours, in percentage); and (iii) restoration time through the lead 
times of activities. In order to decide if the MOO approach 
(phase III in Fig. 2) is required, the system resilience is assessed 
examining if the numbers of daily deliveries and orders are 
higher than the average. 

Once this condition is true, the levels of throughput, 
resources utilisation and lead times are monitored. The 
minimum allowable performance levels (�������) for deliveries 
and orders are defined at a desired percentage of the total 
amount of received deliveries and requested orders. Similarly, 
the maximum allowable resource utilisation level of each 
human/equipment resource group ( ��������/ ��������� ) is 
also defined at a desired percentage of their total working time. 
With the help of the simulation model, lead times are measured 
in various parts within the system. If all the aforementioned 
performance metrics are satisfied, the system is resilient to a 
given disruption, otherwise a MOO experiment is formulated 
(phase III in Fig. 2). 

4.3. Phase III – Resilience-based design optimisation in CMSs 

The philosophy behind the communication between the 
optimisation engine in phase III and the DES model is as: the 
optimisation engine suggests design changes to be made to the 
simulation model in terms of resources in order to improve 
system’s resilience; while after performing these changes, the 
simulation model is executed to find the improved resilience. 
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The process is repeated until certain conditions (objective 
functions, decision variables and requirements), defined by 
decision-makers, are satisfied. The MOO approach discussed 
in this work, proposes reallocation of operators within existing 
groups in order to increase system’s flexibility while improving 
system’s throughput, resources utilisation and lead times. In 
this work, metaheuristics, equally powerful to the classical 
optimisation algorithms or the stochastic combinatorial 
optimisation problems [12], are employed. OptQuestTM [13] 
search engine uses the metaheuristic algorithms of Scatter 
Search, Tabu Search and Neural Networks, combining them 
into a single search heuristic. OptQuestTM is used to optimise 
the resilience of CMSs by generating the Pareto set of MOO 
problems based on the Weighted Sum Method (WSM). 

For the resilience-based design optimisation in CMSs, phase 
III in Fig. 2, the proposed MOO approach follows four steps: 

 The objective functions for the resilience optimisation are 
defined, in step 1. The objectives are maximising the 
system’s throughput, while minimising both resources 
utilisation and lead times of assets (restoration time).  

 In step 2, decision variables, obtained from the object and 
inventory-resource layers of DES model, are defined, 
capturing model’s parameters to be optimised. In this work, 
decision variables refer to the system’s resources.  

 In step 3, each sub-objective, from step 1, is initially solved 
as a single-objective problem and then scaled based on the 
best and worst calculated values (upper and lower bounds 
for the set of non-dominated solutions). These values are 
used as requirements in the MOO experiment, giving an 
indication for the range of values that can be achieved by 
the non-dominated points. Having defined the lower and 
upper bounds from the single optimisation problems, it leads 
to the development of the so called pay-off table.  

 In step 4, inventory and storage related constraints for the 
available assets and spaces in the storage areas are set as: (i) 
a new order can start only if there exists available at least an 
asset in the storage or safety storage area; and (ii) a new 
delivery is accepted only if there is available at least one 
space in the storage/safety storage area. 

After setting the objective functions, decision variables 
requirements and constraints, the optimisation problem is 
executed and the optimal resource allocation is generated 
following heuristic rules. As it is important to simultaneously 
optimise all the objectives, equal weights for each objective are 
set, employing the WSM. 

5. Validation: case study in a cryogenic warehouse 

To demonstrate the validity of the proposed approach to 
measure and optimise resilience, a CMS at a Cell and Gene 
Therapy (CGT) cryogenic warehouse, being under 
simultaneous (beginning at the same moment) disruptive 
events, is selected. Following the framework in Fig. 2, the 
system is computationally constructed employing the three-
layered DES model (phase I). By the occurrence of disruptive 
events, performance measures capturing the system resilience 
are assessed to ensure that certain conditions for the normal 

operation of the system are satisfied (phase II). Once these 
conditions are not satisfied, a MOO experiment is carried out 
to optimise the resilience, by recommending changes to the 
system design (phase III). In this case study, these changes refer 
to human resources (HR) reallocation in the shop-floor. 

5.1. Cryogenic warehouse: Phase I – DES model development 

In this section, the multi-layered DES model (phase I), is 
developed for the cryogenic warehouse using AnyLogic as: 

 Activity layer: modelling the flow of material and 
information within the three manufacturing phases of the 
system: (I) Receipt and Inventory; (II) Storage and 
Monitoring; and (III) Distribution. The system receives 
daily a certain amount of: (a) deliveries for storing and 
monitoring; and (b) orders for distributing cryogenic 
material to manufacturers and healthcare institutions. The 
activities execution within the three phases are viewed in the 
UML Activity diagram in Fig. 3. 

 Object layer: capturing information about the rates of 
deliveries (12/week) and orders (10/week), and the types of 
shippers (LN2) and cryogenic material existing at any time 
within the system.

 Inventory-Resource layer: for the development of the 
inventory half-layer, information including the initial stock 
size of shippers equals to 35 ( 12% of the storage shippers’ 
capacity) and initial stock size of material equals to 3000 (
10% of the storage material capacity) is considered. For the 
development of the resource half-layer, equipment and 
HRs-related information is required. In terms of equipment 
resources, the company owns 2 trolleys and 4 cryocarts for 
shippers’ transportation, 12 tanks for material storage and 
pallet racks with total storage capacity of 420 shippers. With 
regard to HRs, the company’s working hours is between 
8:30am – 17:30pm including a 30-minute lunch break. 
There exist 6 groups of HRs for: receiving deliveries (2); 
general tasks (20); shippers filling (4); and for quality 
checks: QA (4), QC (6), and QP (2). The numbers in the 
parentheses indicate the amount of operators within each 
group. Each operator may be trained to carry out multiple 
activities. The activities in which the operators are trained 
are: receipt of deliveries (2); receipt of material (9); shipper 
filling (4); inventory (13); verification (18); and dispatch 
(12). The numbers in the parentheses show the operators 
required for each activity. 

5.2. Cryogenic warehouse: Phase II – Resilience assessment 

After modelling the CGT cryogenic warehouse based on the 
proposed DES model and performing simulation runs for one 
year, the system is experiencing unexpected events and thus its 
resilience is assessed (phase II). The model is running for a ten 
working day period during which simultaneous unexpected 
deliveries (4 times more than the average daily rates, ����  = 
4*������ ) and orders (5 times more than the average daily 
rates, ����  = 5*������ ) occur. �������  for deliveries and orders 
is defined at 75%. However, the analysis of simulation results 
shows a daily increase in work in progress (WIP) by 100%.  
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Fig. 3: Case study: UML activity diagram for a cryogenic warehouse 

It is also found that once the number of deliveries increases, the 
utilisation of the operators trained in shipper filling (SF) 
increases at 96%, 16% higher than the robustness level 
(������� =  80%). Similarly, the lead times for picking and 
dispatching shippers, at Phase III, increase by 132% and 261% 
respectively. These activities take longer than normal due to 
operator’s unavailability. From these results, it is seen that the 
nominal performance levels, as explained in step 4 in Fig. 2, 
are not satisfied, and hence, the MOO method for resources 
reallocation is required to improve the system’s resilience.  

5.3. Cryogenic warehouse: Phase III – Resilience-based 
design optimisation  

For the formulation of resilience optimisation for the cryogenic 
warehouse (phase III), three objective functions, namely 
maximising the amount of accepted deliveries and completed 
orders, minimising the utilisation of SF operators and 
minimising the lead times for picking and dispatching shippers, 
are examined (step 1). The decision variables are defined 
ensuring that the number of operators remains constant and 
equal to the current number (step 2), as the company has no 
intention to recruit more operators. For the optimisation 
process, the upper and lower bounds for the set of non-
dominated solutions are found by soling each objective 
individually. The best and worst values which define the 
requirements are then used to create the pay-off table (step 3). 
Due to space constraints the pay-off table is omitted. In step 4, 
constraints for the inventory capacity and storage spaces are 
defined. Thus, before an order initiation, if the inventory stock 
size is greater than zero, then there are available at least one 
shipper and one product in the storage area and hence the 
operator can complete the dispatch. Else, the inventory safety 
stock size is checked and if there are available at least one 
shipper and one product in the safety storage area, the operator 
completes the dispatch. Otherwise, operators complete 
dispatch once a shipper and a product are available. Similarly, 
before an asset storing (after receiving delivery), if the storage 
space availability is greater than zero, then there are available 
spaces for at least one shipper and one product to the storage 
area. The operator can store the delivered shipper and product. 

Else, the safety storage space is checked and if there are 
available spaces for at least one shipper and one product, the 
operator stores the delivered shipper and product. Otherwise, 
the operator performs storage once required space becomes 
available. 

The three single objectives, from step 1, are then combined 
and solved assuming equal weights (i.e. 1/3) for each objective 
using the WSM. After setting the prerequisites, the MOO 
experiment is executed. AnyLogic OptQuest® generates the 
User Interface, showing the current and best feasible solutions, 
and the dynamic optimisation progress with respect to the 
number of iterations. The optimisation results are 
diagrammatically presented in Fig. 4, illustrating the 
maximisation of the deliveries and dispatches for 2200 
iterations. Optimisation results did not change beyond this 
number of iterations. Following the results obtained, the 
optimal values of operators required within each role are: 
receipt of deliveries (2); receipt of material (4); SF (12); 
inventory (7); verification (9); and dispatch (5).  

The proposed reallocation of operators is then embedded 
into the simulation model. The model is examined for a ten 
working day period during which experiencing the disruptions 
previously considered by employing the new allocation of 
operators. The simulation results show that the system accepts 
90 deliveries and completes 92 orders, while achieving the 
normal utilisation levels of the operators trained in SF (63%) 
within average 25 and 7.5 minutes of picking and dispatching 
shippers, respectively. All the metrics satisfy the nominal 
performance measures and hence the system is resilient.  

Figures 5-7 demonstrate the average daily resource 
utilisation of SF operators and lead times for picking and 
dispatching shippers along simultaneous disruptions that occur 
at 8:30am for three cases: (i) normal system operation; (ii) 
system under disruptions with no changes to the system design; 
and (iii) system under disruptions applying the proposed 
optimal resource allocation. The variations of simulation 
results applying the current and the optimal operators’ 
allocation show that the optimal solution allows an increase of 
21 deliveries and dispatches while reducing the SF utilisation 
by 29% (Fig. 5). There is a significant improvement on this 
utilisation percentage which also results within the company’s 
allowable limits, as the normal performance level is set at 60%, 
whereas the robustness level at 80%. Similarly, the optimal 
solution increases the amount of deliveries and dispatches by 
11%, while reducing the lead times for picking and dispatching 
the shippers by 23% and 36% respectively (Fig. 6-7). These 
latter improvements show that the suggested allocation 
eliminates delaying tasks and promptly provides sufficient 
operators once required. Finally, while considering the optimal 
operators’ allocation, it is not observed any change in the 
resources utilisation and lead times that worsen the system’s 
performance.  

It is also seen from the plots that if the system is under 
disruptions and no action is taken, the HR utilisation and lead 
times increase and remain at high levels, making the system 
unable to efficiently handle the disruptions (red line). On the 
contrary, once the HR reallocation, obtained from the MOO, is 
applied, a significant drop is observed in these measures (blue 
line). The results from the optimal HR allocation finally show 
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that in all cases they are close to the performance levels at 
which the system works under normal operation (green line). 
Hence, the case study demonstrates that the proposed HR 
reallocation leads to eliminate the WIP, prevent excessive use 
of resources and quick recovery, improving efficiently the 
system’s resilience. Thus, the proposed resilience-based design 
approach can be effectively applied for handling disruptions in 
a cryogenic warehouse and enable users to evaluate the 
effectiveness of the proposed resumption-recovery strategy. 
The outcome of this research shows that the proposed approach 
has a clear impact on the resilience of CMSs by considering the 
trade-off between the performance loss, restoration rapidity 
and HRs utilisation. 

Fig: 4: MOO results - No. of Deliveries & Dispatches vs. No. of Iterations 

Fig. 5: Resource utilisation of shippers filling operators 

Figure 6: Lead time for picking shippers 

Fig. 7: Lead time for dispatching shippers 

6. Conclusions and future work 

In this paper, a resilience-based design approach, developed 
for CMSs being under simultaneous disruptions, is proposed 
to: (i) measure the resilience via throughput, resources 
utilisation and lead times; and (ii) assist decision-makers to 
design a system with optimal resource planning in order to 

improve the system’s resilience (MOO). The contributions of 
the proposed framework are: introducing a multi-dimensional 
quantitative resilience metric; considering constrained 
resources and inventory levels; and examining simultaneous 
disruptive events, which extend the existing resilience concepts 
for CMSs that mostly suggest two-dimensional resilience 
metrics, do not consider the dimension of redundancy and 
study single disruptions. The proposed approach is 
demonstrated by its application to an industrial system at a CCT 
cryogenic warehouse. The results show that, the reallocation of 
operators at the shop-floor indicated by the proposed MOO 
method can improve the multi-dimensional system resilience 
performance. The resilience analysis and recovery capability, 
capturing the propagation of disruptions in CMSs as well as 
mitigating their effects, which may be difficult to be predicted 
due to the dynamic behaviour of these systems, can provide a 
novel guidance for CMS design. The approach helps CMSs 
under simultaneous disruptions to become resilient and users to 
determine the optimal number of assigned operators required 
on each workstation in a facility. Future work could include the 
optimisation of resilience in CMSs analysing different 
scenarios considering each time a different probability of 
occurrence of a disruptive event, such as optimistic, realistic 
and pessimistic. The analysis of multiple scenarios can enhance 
the quality of the proposed approach helping system designers 
to make informed decisions. Finally, antifragility, which is 
beyond resilience, is an interesting topic that could be studied 
in the future extending the current work. The focus should be 
on understanding how the capacity of CMSs can not only resist 
disruptive events but benefit from them. 
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