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Abstract

Limited driving range and availability of charging infrastructures are still among the main barriers of adoption of electric

vehicles (EVs) in the market. Combination of those limiting factors causes ‘range anxiety’ in EV users. While different EV

battery technologies and charging infrastructures are under development, one short-term solution to reduce EV users’

range anxiety is to provide the EV user with an accurate range estimation. In this study, an EV range estimation technique

is proposed that recognises the current driving pattern and then classifies it into one of the predefined clusters (driving

modes). The future energy consumption per kilometre is then tuned according to the average energy consumption of

each cluster. Having an updated energy consumption rate, the EV range is calculated based on the battery state-

of-charge. Different features are considered for driving pattern clustering where ‘average speed’ and ‘average power’

were identified as the best choices for this application. The effectiveness of the proposed EV range estimator is validated

using real driving data that gives an average error of 9% in EV energy consumption estimation ahead.
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Introduction

Electric vehicle (EV) technologies are growing quickly
mainly because of their zero local emissions (i.e. direct
tailpipe emissions). However, limited driving range,
long charging time and in some areas, limited
number of charging infrastructures are still the main
barriers to the adoption of EVs in the market.1,2 The
combination of those limiting factors cause a phe-
nomenon called ‘range anxiety’,3–5 which refers to
the driver’s fear of running out of energy before arriv-
ing the destination. Although range anxiety could be
alleviated by increasing the battery pack’s capacity,
increasing the allowable charging power, and building
more charging stations, those solutions are quite
expensive and do not directly improve the driver’s
confidence on the remaining driving range (RDR).
EV drivers often reserve a buffer of around 20% of
the battery capacity to avoid running out of energy on
the journey.6 To make the most use of the limited
battery capacity, providing EV users with an accurate
RDR estimation is same important as increasing the
maximum range.7 Therefore, while different EV bat-
tery technologies and charging infrastructures are
under development, a short-term solution to alleviate

EV users’ range anxiety, is to provide an actuate
RDR estimation.8–12

EV RDR estimation is a very challenging task due
to the uncertainties in future driving condition (i.e.
driving pattern, traffic condition), environmental fac-
tors (i.e. ambient temperature, wind, rain), and bat-
tery state (i.e. nonlinearity, ageing), etc. There are a
number of techniques for RDR estimation in the lit-
erature, which are classified into two main categories:
(i) history-based and (ii) model-based estimation tech-
niques.13–19

The history-based methods assume that the imme-
diate future energy consumption is same as the very
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recent energy consumption. In other words, the
remaining range prediction relies on past energy con-
sumption data.20–23 Because of its less complexity,
this technique is commonly used in the existing
RDR estimators on commercial vehicles. However,
the accuracy of this technique suffers from the fre-
quent fluctuations in energy consumption that
happen in a real driving scenario. This consequently
causes fluctuations in RDR estimations shown on
dashboard that can potentially make it unreliable
for the EV user. To tackle this issue, EV manufac-
turers have proposed some solutions. Tesla Model S
provides either instant range or average RDR estima-
tion.24 Instant range utilizes the latest few data points
to calculate range while the average range utilizes
average energy consumed over the last 10, 25 or
50 km of the journey. When navigated to a destina-
tion, Tesla Model S can also predict energy usage
based on driving style (predicted speed, etc.) and envi-
ronmental factors (elevations, temperature, etc.). The
RDR of Nissan Leaf is calculated based on the his-
torical actual power consumption average.25 The
Renault Zoe estimates RDR using the average
energy consumption data over the last 200 km.26

On the other hand, model-based methods estimate
the remaining range in a more complicated way by
using adaptive algorithms or machine learning tech-
niques to predict future speed profile, future energy
consumption and remaining battery energy27,28 as dis-
cussed in the following.

Markov model is utilised in a study by Oliva
et al.29,30 to predict the driving speed profile in the
near future. Various sources of uncertainty such as
driving pattern and measurement noise have been
considered in those studies. Their RDR estimation
algorithm consists of two steps. Firstly, the battery
state is estimated by a particle filter29 or Kalman
filter.30 Secondly, the future driving profile is pre-
dicted using Markov chain. Then according to the
distribution of the propagated particles, the RDR
has been estimated as a probability distribution. In
another study by Pan et al.,31 Markov chain together
with artificial neural network (ANN), is utilised to
estimate the RDR. The estimation process is divided
into offline and online stages. At the online stage, the
real-time driving condition is recognised and then
classified into one of the four predefined clusters,
after which the Markov chain and ANN are used to
predict the future driving conditions based on the
driving pattern. The average energy consumption of
each cluster is calculated at the offline stage. Once the
current driving condition is recognised, the corre-
sponding energy consumption is identified and the
RDR is computed.

Liu et al.32 introduced a method called RDR
Information Fusion (RDRIF). The RDR is estimated
by the fusion of both the calculated and cumulated
range. The calculated range is obtained from the data
of the present battery state and vehicle energy

consumption, while the cumulated range is the cumu-
lation of the real travelled distance. The experiment
results show that after the initial stage the estimator
error is less than �5%. Adnane et al.33 proposed a
new driving mode predictor (DMP) using machine
learning models, which are obtained from EV’s
speed history. The DMP is then used in energy man-
agement system of a dual-source EV. In another
study, Sonalikar et al.34 implemented a simplified
approach to calculate the driving range using
Kalman filter and real-time vehicle data. In that tech-
nique, the initial error might be large however, it
could be reduced by using static or history energy
consumption at the beginning of the estimation.
Assuming that in the next decades there will be
more vehicles connecting to a server in the back-
end, Grubwinkler et al.35 used a cloud-based
method to gather speed information from diverse
vehicles and drivers. Then the estimation model pre-
dicts the energy consumption along a given road by
utilising the previously obtained data. The energy
consumption value is then used for RDR calculation.

In conclusion, model-based methods are more
accurate, but they need lots of data as input and
higher computational effort that might not be feasible
to be implemented in a passenger car. On the other
hand, while less accurate, history-based range estima-
tors are easy to be implemented in the vehicle for real-
time application, though they are not accurate
enough as discussed earlier.

In general, the EV RDR depends on two factors:
(i) available energy in the battery pack, and (ii) energy
consumption as a function of the conditions in which
the vehicle is operating. Information about the first
factor (i.e. battery state of charge) is available in all
commercial EVs. However, the second factor is very
difficult to be predicted. According to the literature,
driving pattern has a significant impact on the energy
consumption.36 Driving pattern can be presented in
different ways where a common form is the speed
profile verse time. There are different methods in
the literature, which are developed for driving pattern
information analysis and prediction. These methods
can be classified into two main categories, namely
driving pattern prediction and driving pattern recog-
nition.37,38 In the prediction category, the traffic and
geographic information provided by GPS or digital
maps is used to predict vehicle’s speed, elevation and
so on. Instead of predicting future driving patterns,
the driving pattern recognition methods extract fea-
tures of the past driving pattern to recognise the exist-
ing driving mode (no future prediction) and assume
that the driving pattern will not change in a very short
time horizon. In literature,39 field tests were con-
ducted to gather real driving data, and then driving
data segmentation and feature extraction have been
performed to investigate the influence of the features
on vehicle energy consumption using computer simu-
lation. Feng et al.40 studied a supervised driving
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pattern recognition method, based on which, each

driving pattern is represented by a feature vector,

which is formed by a set of parameters sensitive to

the driving pattern. The online driving pattern recog-

nition can be realised by computing feature vectors

and then cluster the current driving pattern to one of

the driving modes in the reference database. There are

also other studies in the literature in which the con-

cept of driving pattern (also called driving mode) rec-

ognition is utilised for energy management in hybrid

vehicles.41–44

This study is focused on creating a multi-mode EV

range estimator based on driving pattern recognition

(DPR). Although the concept of DPR already exist in

the literature, the application of such technique for

EV RDR estimation is done here for the first time.

The proposed RDR estimation technique aims to fill

the gap between the history-based techniques (with

more simplicity) and the model-based techniques

(with more accuracy) by proposing a proper trade-

off between accuracy and simplicity for real-time

applications. In other words, the proposed technique

is an advanced history-based method, which is intel-

ligent enough to distinguish between different driving

patterns.
Structure of this paper is as follows. The next sec-

tion discusses the RDR estimation strategy. Then,

driving data segmentation and energy consumption

of each cluster are discussed. ‘Driving pattern

clustering’ section discusses the proposed driving

pattern clustering technique using different features.

RDR estimation and the validation results are inves-

tigated in the penultimate section. The final section

includes the conclusions.

Range estimation strategy

A history-based method is chosen for range estima-

tion in this study which is model-free and without the

need for high computational effort. Therefore, it is

potentially applicable for real-time applications. As

mentioned in the Introduction section, the EV RDR

depends on (i) battery pack’s available energy and

(ii) energy consumption. Since the available energy

on board can be obtained from the battery manage-

ment system (BMS), this paper only studies the

second component, that is energy consumption.
Based on the fact that driving pattern rarely

changes in a very short time interval, it is reasonable

to assume that the driving pattern over the next few

seconds is very similar to that in the short history of

motion. The flow chart of the proposed RDR estima-

tion technique is shown in Figure 1. It consists of

offline and online stages. The proposed strategy is

designed such that it recognises the current driving

pattern (based on a short history of motion) and

then, the near future driving pattern is assumed to

be same as the current one. The online recognition

process is repeated frequently to avoid use of old

information while driving. The near future average

energy consumption (Wh/km) is then estimated

based on the identified cluster (here each cluster

Get previous driving segment

Start

Calculate driving features

Classify the previous driving 
segment to one of the 

predefined clusters

Get energy consumption 
value corresponding to the 

cluster

Calculate the remaining 
driving range

Select a number of driving 
segments representing 

different driving conditions

Calculate the driving features 
of the segments

Classify the segments into 
clusters

Calculate the energy 
consumption of each 

segment

Calculate the average 
energy consumption of the 

segments in the same cluster

Figure 1. Proposed RDR estimation strategy.
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means a driving mode). The average energy consump-
tion of each cluster is calculated offline, which is
explained in more detail in ‘Driving data segmenta-
tion and energy consumption calculation’ section.
Having the battery remaining energy information,
the RDR (km) is calculated by dividing the available
battery pack energy (Wh) by the future average
energy consumption value (Wh/km). When the driv-
ing pattern changes, the average energy consumption
value is also updated to the value corresponding to
the new recognised driving mode.

Based on this definition, the segments in same clus-
ter are assumed to have similar energy consumption
per kilometre, although it is known that there is a
variance between the energy consumption of each
individual segment and the cluster’s average energy
consumption. It is possible to decrease this deviation
by defining more clusters however, the drawback of
that solution is to have more transitions between clus-
ters in real-time, which can be another source of
error. So, a proper trade-off between the number of
clusters and overall performance of the system is nec-
essary. Different number of clusters are investigated
in this study as discussed in the following sections.

According to the proposed RDR estimation
strategy, the RDR could be calculated through equa-
tion (1):

RDR ¼ REbattery

Econsumption
(1)

REbattery ¼ SOC�C (2)

where RDR is the remaining driving range (km),
REbattery is the remaining energy (Wh) in the EV bat-
tery, Econsumption is the average energy consumption
value corresponding to the current driving mode
(Wh/km), SOC is the battery state of charge (%),
and C is the energy capacity of the EV battery
pack (Wh).

Driving data segmentation and energy

consumption calculation

EV energy consumption model

An accurate EV model is the prerequisite to calculate
the energy consumption. The EV that is considered in
this study, is BMW i3 with specifications presented in
Table 1. The EV model which is used in this study,
has been presented in full details in literature.47 It
consists of driver model, brake system, power elec-
tronics and electric motor, battery model, transmis-
sion system, auxiliary loads, and longitudinal vehicle
dynamics. As discussed in literature,47 the model has
been validated against experimental test data, which
has demonstrated a satisfactory level of accuracy in
terms of energy consumption calculation.

It should be noted that the EV model is only used

for offline energy consumption analysis. As men-

tioned in the Introduction section, this study aims

to combine the history of vehicle motion in real-

time with the offline model-based energy consump-

tion analysis to improve EV range estimation

accuracy. Driving data segmentation
In order to analyse a continuous signal of driving

data measured in real-time, one common technique is

to divide it into small segments. There are two meth-

ods in the literature to partition a measured speed

profile: segment and micro-trip.48,49 A driving seg-

ment refers to a section of the speed profile, which

is recorded in a certain period of time (a predefined

length) as shown in Figure 2 (the segment length is set

as 120 s in this example). On the other hand, a micro-

trip is defined as a section of the speed profile

but from one stop to another stop, as shown in

Figure 3. The micro-trip segmentation technique is

more useful for other applications such as driving

cycle development as discussed in literature.48

Therefore, in this study, the time segmentation

method is selected to partition the speed profile, as

it has a distinct length, which makes it easier to be

implemented in real-time.

Sample data for offline energy consumption

calculation

A range of standard driving cycles is utilised to gen-

erate a set of data that includes samples of driving

segments. The data set includes driving in different

types of road, different traffic conditions (congested,

urban, suburban, and highway), and different driving

behaviours. The driving data set is generated by com-

bining the following 11 drive cycles as shown in

Figure 4: UDDS, US06, SC03, NYCC, HWFET,

FTP, WLTP Class 3, Artemis Road, Artemis

Urban, Artemis Motorway 130, and Artemis

Motorway 150. In the next section, the driving data

set is divided into a number of segments for energy

consumption analysis.
It should be noted that the data set generated in

this section using the standard drive cycles is not used

Table 1. BMW i3 specifications.45,46

Curb weight 1390 kg

Aerodynamic drag coefficient 0.3

Frontal area 2.38m2

Motor Permanent magnet

AC synchronous

electric motor

Maximum power 125 kW @4775 rpm

Maximum torque 250Nm @ 0–4475 rpm

Battery chemistry Lithium-ion

Battery pack nominal voltage 355V

Battery pack nominal capacity 60Ah

Battery pack nominal energy 22 kWh

4 Proc IMechE Part C: J Mechanical Engineering Science 0(0)



for RDR estimation validation. For validation pur-
pose, a separate set of data is used, which is collected
by performing field measurements as explained in the
following sections.

Energy consumption calculation

In a real application, the battery current and voltage

signals are available from BMS control board, so the

electrical power coming out of the battery can be

Figure 2. Driving segments.

Figure 3. Driving micro-trips.

Figure 4. Combined speed profile based on different drive cycles.
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easily calculated. Then the energy consumed at each
driving segment can be obtained by integrating the
power signal. In the EV model also the same
approach is used where the energy coming out of
the battery is computed by integrating the product
of the battery pack current and voltage:

E ¼ 1

3600

Z
U�Idt (3)

where E is the energy consumed in the segment (Wh),
U is battery pack voltage (V), I is battery pack
current (A).

The combined speed profile (shown in Figure 4) is
used as the input of the simulation model. The EV
model is simulated over the whole speed profile to
obtain the energy consumption value corresponding
to each driving segment as presented in below:

Eseg ¼ Esegend � Esegstart (4)

where Eseg is the battery pack’s energy consumed in a
segment (Wh), and Esegend and Esegstart are the values of

energy consumption recorded at the end and start of
the segment respectively (Wh). For better understand-
ing of equation (4), its parameters are shown in
Figure 5.

The value of distance travelled is also recorded
in form of a time-series to calculate the average
speed of each segment. The distance travelled in one
segment can be obtained using the following
equation:

dseg ¼ dsegend � dsegstart (5)

where dseg is the distance travelled during a segment
(km), and dsegend and dsegstart are the values of distance
travelled recorded at the end and start of the segment
respectively (km) as shown in Figure 6.

The average speed of each segment can then be
calculated as follows:

vavg ¼ dseg

tseg
�1000 (6)
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Figure 5. Energy consumption calculation during a single segment.
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where vavg is the average speed of the segment (m/s),
dseg is the distance travelled in the segment (km), and
tseg is the segment’s time length (s).

The energy consumption per unit of distance can
then be calculated using equation (7):

Econseg ¼
Eseg

dseg
(7)

where Econseg is the energy consumption per unit of
distance (Wh/km), Eseg is the energy consumed
during a segment (Wh), and dseg is the distance trav-
elled over that segment (km).

Finally, the average energy consumption of all the
segments in the same cluster is calculated using equa-
tion (8):

Econcluster ¼
1

n

Xn
i

Econseg i
(8)

where Econcluster is the energy consumption per unit of
distance for a cluster (Wh/km), n is the number of the
segments belong to that cluster, and Econseg i

is the
energy consumption per unit of distance for the ith

segment of that cluster (Wh/km).

Driving pattern clustering

In order to recognise driving patterns in real-time, a
set of parameters (features) need to be defined to
characterise them first. As mentioned in the
Introduction section, different driving features have
been proposed in the literature to analyse driving pat-
terns. For real-time applications, the driving features
should be as simple as possible to reduce computa-
tional effort. For that reason, a single feature or very
limited number of features are desirable. According
to the literature, EV energy consumption (and conse-
quently the EV range) is very sensitive to features
such as ‘average speed’ and ‘average power’.39 In
the following sections, those two features are investi-
gated individually and then together in order to char-
acterise the driving patterns.

Driving pattern clustering using average speed

In this section, the driving segments are clustered into
different number of groups based on their average
speed. As driving data segmentation was discussed
in ‘Driving data segmentation’ section, different
values of segment length are considered. According
to the literature, both the number of clusters and
the length of the segments could influence the cluster-
ing performance.40 Therefore, different combinations
of cluster numbers and segment lengths are investi-
gated. For that purpose, the speed profile is parti-
tioned into 60, 120, 180, 240, 300, 360-sec length
segments respectively. On the other hand, to

investigate the impact of the number of clusters, the
driving segments are clustered into 3, 4, and 5 groups.

In the data set presented in ‘Sample data for offline
energy consumption calculation’ section, the maxi-
mum average speed is around 40m/s, so the cluster
boundaries are divided equally from 0 to 40m/s:

In first case, the driving segments are clustered into
3 groups as follows:

• Cluster 1: save < 13 m/s
• Cluster 2: 13 � save < 26 m/s
• Cluster 3: save � 26 m/s

In the second case, the driving segments are clus-
tered into four groups:

• Cluster 1: save < 10 m/s
• Cluster 2: 10 � save < 20 m/s
• Cluster 3: 20 � save < 30 m/s
• Cluster 4: save � 30 m/s

And in the third case, the driving segments are
clustered into five groups:

• Cluster 1: save < 8 m/s
• Cluster 2: 8 � save < 16 m/s
• Cluster 3: 16� save < 24 m/s
• Cluster 4: 24 � save < 30 m/s
• Cluster 5: save � 30 m/s

Where: save Is the average speed of the segment.
As an example, Figure 7 shows the average speed

of all the segments in the case of three clusters and
segment length of 60 seconds, which includes 197 seg-
ments in total.

It should be noted that the simple clustering tech-
nique that is used here is selected intentionally
because the data set was limited (as discussed in
‘Sample data for offline energy consumption calcula-
tion’ section). In real implementation of this tech-
nique (assuming a large data set), the speed
boundaries can be determined using other clustering
techniques based on the data rather than manually.
For example, k-means clustering technique is used in
literature50 for real driving data clustering.

Driving pattern clustering based on average power

In this section, ‘average power’ demand during each
segment is used as a feature for clustering of the driv-
ing segments. The power signal can potentially be
better than the speed signal because it also includes
the effect of road gradient, weight variations (e.g. Due
to more passengers), and other factors that are not
included in the speed profile. The battery output cur-
rent and voltage are used to calculate the battery
power. A similar procedure of segmentation, feature
extraction and clustering is applicable for the power
signal too.

Mao et al. 7



In the simulation model, the battery power signal

is recorded in form of a time-series. So the average

battery power of each segment can be calculated using

equation (9):

Pavg ¼ 1

n

Xn
i

Pi (9)

Where Pavg Is the average power demand of the seg-

ment (kw), n is the number of the power signal data

points, and Pi Is the iTh Power signal value (kw).
To investigate the impact of segments’ length,

same analysis is repeated for five different segment

lengths, which includes 120, 180, 240, 300, and

360 seconds. For the data set introduced in ‘Sample

data for offline energy consumption calculation’ sec-

tion, the maximum average power is around 30 kw, so

the clusters boundaries are set equally from 0 to

30 kw. Three different cluster numbers (3, 4, and 5)

are defined as follows:
In the first case, three cluster boundaries are set as

follows:

• Cluster 1: Pavg < 10 kw
• Cluster 2: 10 kw � Pavg < 20 kw
• Cluster 3: Pavg � 20 kw

In the second case, four clusters are defined:

• Cluster 1: Pavg < 7 kw

• Cluster 2: 7 kw � Pavg < 14 kw
• Cluster 3: 14 kw � Pavg < 21 kw
• Cluster 4: Pavg � 21 kw

And in the third case, five clusters are considered:

• Cluster 1: Pavg < 5 kw
• Cluster 2: 5 kw � Pavg < 10 kw
• Cluster 3: 10 kw � Pavg < 15 kw
• Cluster 4: 15 kw � Pavg < 20 kw
• Cluster 5: Pavg � 20 kw

Where Pavg Is the average power of the

segment (kw).
Taking the case of 60-second segments in three

clusters as an example, Figure 8 shows the average

power of segments for each cluster.

Driving pattern clustering based on average speed

and average power

In this section, both features of average speed and

average power are used at the same time to classify

the driving segments. In order to keep the total

number of clusters at a low level (i.e. For real-time

application), two regions are considered for each fea-

ture. For high-speed driving patterns, the average

power is normally above 10 kw, while it is below

that threshold for low-speed driving patterns. So

that value is used as a reference for defining a division
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Figure 7. Average speed of segments in different clusters.
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boundary. It should be noted that the value of power

threshold is obtained for the vehicle model, which is

used in this study, and a tuning process is necessary

when switching to another vehicle. In terms of aver-

age speed boundary, it is assumed that driving

patterns with an average speed below 10m/s are

low-speed while above 10m/s is considered as mild-

or high-speed driving pattern. Again, it should be

noted that the boundaries are subject to change

when vehicle specifications alter. The proposed

method in this study is flexible in terms of working

with a different set of clustering boundaries. The set

of numbers which are selected in the simulations here,

are just used to show the concept for an example

vehicle.
Therefore, the segments are classified into four

clusters as follows:

• Cluster 1: savg < 10m/s, Pavg < 10 kw
• Cluster 2: savg � 10m/s, Pavg < 10 kw
• Cluster 3: savg < 10m/s, Pavg � 10 kw
• Cluster 4: savg � 10m/s, Pavg � 10 kw

Where savg Is the average speed (m/s), and Pavg Is

the average power (kw).
The combined standard drive cycles data set is

partitioned into 60-, 120-, 180-, 240-, 300- and 360-

sec segment lengths. Then in each case, the segments

are classified into four clusters according to their

average speed and average power. Table 2 shows

the number of segments in each cluster for different

segment lengths. It is found that all the segments are

actually separated into only three clusters regardless

of the segment’s length, as there is no segment in

Cluster 3. This result is favourable because fewer clus-

ters mean fewer changes in driving patterns, thus less

fluctuation in estimated RDR. Actually, Cluster 3

includes segments with high power demand at low

speed, which is not common in a real driving scenario.

A good example of that is driving a sharp uphill

slowly, that does not exist in our data set. For that

reason, Cluster 3 is eliminated from the analysis in

this study. Thus Cluster 4 becomes the third cluster,

and hereinafter it is referred as ‘Cluster 3’.

RDR estimation and validation

The proposed RDR estimator is validated in this sec-

tion using real driving data. The speed profiles used in

‘Sample data for offline energy consumption
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Figure 8. Average power of segments in different clusters.

Table 2. Number of segments in each cluster.

Segment length

60 sec 120 sec 180 sec 240 sec 300 sec 360 sec

Cluster 1 147 68 41 30 22 17

Cluster 2 84 47 34 28 20 18

Cluster 3 0 0 0 0 0 0

Cluster 4 142 71 47 34 30 24

Mao et al. 9



calculation’ section are standard driving cycles, which
cannot represent the real driving features. In this sec-
tion, the average relative error was firstly defined to
describe the accuracy of the estimator, then the real
driving tests were performed on a typical EV, after
which the results were compared and analysed.

Validation approach

Average relative error. At the first step to validate the
effectiveness of the proposed driving segment cluster-
ing method, a relative error is defined as the differ-
ence between the energy consumption of a segment
and the average energy consumption of the cluster
that the segment belongs to it:

e ¼ jEconcluster � Econseg j
Econseg

�100% (10)

where e is the relative error (%), Econcluster is the aver-
age energy consumption of the cluster (Wh/km),
and Econseg is the energy consumption of the segment
(Wh/km).

The average relative error of all the segments in the
data set is considered to describe the effectiveness of
the clustering method, which is obtained as follows:

eavg ¼ 1

n

Xn
i

ei (11)

where eavg is the average relative error (%), ei is the
relative error of the ith segment (%), and n is the
number of segments.

Real driving speed profiles. At the second step of the
validation process, a new real driving data set is col-
lected by driving an EV on the road. For that pur-
pose, because of the availability of Nissan Leaf EV,
that car was used in the experiments. Although the
energy consumption of BMW i3 is different from that
of Nissan Leaf, here the aim of the experiments is not
to model the vehicle but to extract real speed profiles
for a typical EV. Similar to the standard drive cycles,
which can be used for simulation of different types of
vehicles, the collected real velocity profiles are
assumed to be useable in the same way. More details
about the test vehicle can be found in literature,51

however, it should be clarified that all the simulation
models and results in this study are obtained for
BMW i3.

To include a range of different types of road, such
as motorway, rural, and urban road, two routes were
selected as follows:

• Route A, from Dunstable to Milton Keynes: it
mainly consists of high-speed driving in a motor-
way; the length of this route is about 31 km as
shown in Figure 9(a).

• Route B, from Milton Keynes to Dunstable: this
route is completely different from the other route
from Dunstable to Milton Keynes. It mostly con-
tains extra-urban and urban roads; the length of
that road is about 26 km as shown in Figure 9(b).

A total of six tests were conducted, numbered as
Test 1 to Test 6, which are plotted in Figure 10. Each
of the journeys is partitioned into segments with dif-
ferent segment length, then the average speed and
average power of each segment are calculated.
Thereafter, the driving segments of each test are clas-
sified into clusters as discussed in ‘Driving pattern
clustering’ section.

Driving pattern clustering based on average speed

This section presents the results of the clustering
method using ‘average speed’ as the only driving fea-
ture. The results of ‘average power’ and combination
of both of them are also discussed in ‘Driving pattern
clustering based on average power’ section and
‘Driving pattern clustering based on both average
speed and average power’ section. Figure 11 shows
the average relative error of each test using average
speed by considering three clusters for different seg-
ment lengths. The results demonstrate that the aver-
age relative errors of the 60-sec segment length are the
highest, ranging from 25% to 40% for different tests,
whereas the 300-sec segment length has the smallest
errors, ranging from 5% to 15%. Since the 360-sec
segment length does not improve the results in com-
parison to 300-sec, longer segment lengths are not
investigated here. To conclude this outcome, when
the segment length increases, the energy consumption
values in the same cluster become at a similar level. In
other words, the variance of energy consumption
values in each cluster is smaller, resulting in smaller
errors. However, if the segment length is too long, the
energy consumption might be less sensitive to a
change in the driving pattern.

Figures 12 and 13 show the error values in the
4-cluster and 5-cluster cases respectively. As shown
in the figures, the two cases have similar trends as
that of 3-cluster case. Among all these cases, the
300-sec segment has the lowest errors; therefore,
300-sec (i.e. five minutes history) is chosen as the
most suitable length for segmentation with respect
to the average relative error. As a summary, the aver-
age relative error of different tests in case of 300-sec
segment length is shown in Figure 14. The results
demonstrate that for most of the tests, the case of
5-cluster has the lowest errors in comparison to the
3-cluster and 4-cluster cases. More than five clusters is
not further investigated because the higher the cluster
number is, the more transitions between the clusters
happen, which can potentially result in more fluctua-
tion in the estimated RDR or in other words, causing
confusion for the EV user.
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From the above analyses, it is concluded that the
proposed clustering method works best when consid-
ering 300-sec segment length and five clusters using
average speed as the only feature. Table 3 contains
the error values for the six experimental tests using
the proposed method. According to the results, Test 1
has the lowest error of 6.06%, test 4 has the highest
error of 13.63% and the average error of all the tests
is around 10%.

Driving pattern clustering based on average power

In this section, ‘average power’ is used instead of
‘average speed’ as the only feature for driving segment
clustering and RDR estimation. Figure 15 shows the
errors in the 3-cluster case, where 120-sec segment
length causes the highest errors around 20%. A sim-
ilar trend that was observed and discussed in ‘Driving
pattern clustering based on average speed’ section for
the average speed, can be found here too. According
to the results, the error decreases when the segment
length increases. When the cluster number increases
to four and five, as shown in Figures 16 and 17, the
300-sec segment length has the lowest error for some
tests while for the others, the 360-sec is the best. Since
300-sec and 360-sec have error values in a same range,
300-sec is preferred as it is shorter and thus more
sensitive to any quick change in driving pattern.

Therefore, 300-sec segment length is chosen as the
best choice here too.

Figure 18 compares error values using different
cluster numbers and average power as the only fea-
ture. According to the results, 300-sec segment length
and five clusters are selected as the best choices. The
error values for different tests using 300-sec segment
length and five clusters are presented in Table 4,
where the lowest error is 7.32% (i.e. for test-6), the
highest error is 11.71% and the average error is
around 10%. Compared with that from the average
speed, the error is at a similar level.

Driving pattern clustering based on both average
speed and average power

In this section, same analysis is performed as
explained in ‘Driving pattern clustering based on
average speed’ section and ‘Driving pattern clustering
based on average power’ section however, by using
both features of ‘average speed’ and ‘average power’.
The clusters boundaries are defined as explained in
‘Driving pattern clustering based on average speed
and average power’ section. Figure 19 shows the aver-
age relative error of energy consumption estimation
for different tests using both the ‘average speed’ and
‘average power’ features. The results demonstrate
that the higher the segment length is, the lower the

Figure 9. Experimental test routes: (a) test route A, which is from Dunstable to Milton Keynes, (b) test route B, which is from Milton
Keynes to Dunstable.
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average errors are; except for the 360-sec segment

length that has higher errors than the 300-sec case.

Therefore, among all the segment lengths, the best

choice seems to be the 300-sec length (i.e. same out-

come obtained in previous sections too). Table 5

contains the average relative error values of different

tests in case of 300-sec segment length. According to

the results, the minimum error is 7.73%, the maxi-

mum error is 11.56%, and the average error of all

six tests is 9.76%. In comparison to the previous

Figure 10. Speed profiles of the six tests: tests 1, 2 and 3 are performed on route A whereas tests 4, 5 and 6 are collected on
route B.
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Figure 11. Average error of each test using three clusters based on average speed.
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error values presented in Tables 3 and 4, it can be

concluded that the use of both ‘average speed’ and

‘average power’ performs slightly better than each

individual feature. Although this improvement has

been obtained with the cost of double computational

effort and memory in real-time. Of course, the use of

more features is also possible however, a good design

is the one which is based on a proper trade-off

between accuracy and simplicity in real-time.
Figure 20 demonstrates 300-sec segments in a two-

dimensional feature space, which includes average

speed and average power. All the drive cycles and

the real test data (6 tests) are divided into 300-sec

segments where each point represents one segment

in that figure. Figure 20(a) shows the clusters which

are used in this study, as introduced in ‘Driving pat-

tern clustering based on average speed and average

power’ section. Since no segment belongs to Cluster 3

according to the definition presented in ‘Driving pat-

tern clustering based on average speed and average

power’ section, that useless cluster was eliminated and

instead, Cluster 4 is named as Cluster 3 in Figure 20

(a). To evaluate the clustering outcomes, a second

technique called k-means clustering52 is used as a

benchmark too. K-means clustering technique has

been used before for driving segment clustering in

the literature.39 Figure 20(b) shows the clustering

results of the same data using the k-means method.

As shown in the figure, there is not much difference

between the clustering outcomes using the two tech-

niques, which validates the proposed technique of this

study. Although both techniques generate same

results, we preferred to use the first method, which

was presented in ‘Driving pattern clustering based on

average speed and average power’ section, because of

its simplicity for real-time applications.
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Figure 12. Average relative error for different tests in case of using four clusters and average speed.
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Results summary and comparison

Clustering results. The average relative error values,
which are obtained from different clustering solu-
tions, are summarised in Table 6. The results demon-
strate that the clustering solution based on both
‘average speed’ and ‘average power’ has the lowest
values of maximum and average error. The proposed
clustering solution based on the two features uses
only three clusters, while the other two solutions use
five clusters. Those selections are made based on the
results of different cluster numbers, which were pre-
sented earlier in Figures 14 and 18. The use of less
clusters has the advantages of simplicity and less
RDR estimation fluctuations (i.e. due to less cluster

change) in real-time too. Considering Test 3 as an

example shown in Figure 21; during that test, the

vehicle has travelled on an urban road at the first

400 sec and then it has moved to a highway. Using

the clustering method based on both features, there is

only one cluster change during that test, which is

detected by the algorithm and the RDR estimation

is adjusted accordingly.
It should be noted that the driving condition can

be recognised only after 300th sec of the journey. The

initial driving condition cluster is assumed to be clus-

ter number 1 at the first 300 sec of each journey (the

first segment), which means the RDR estimation is

performed based on energy consumption of cluster
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Figure 14. Average relative error for different tests in case of 300-sec segment length using average speed.

Table 3. Average relative error of different tests using average speed as the only feature.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Average

Average relative error 6.06% 9.64% 8.19% 13.63% 10.86% 13.28% 10.28%
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Figure 15. Average relative error for different tests in case of using three clusters and average power.
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Figure 16. Average relative error for different tests in case of using four clusters and average power.
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Figure 17. Average relative error for different tests in case of using five clusters and average power.
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Figure 18. Average relative error for different tests in case of 300-sec segment length using average power.

Table 4. Average relative error of different tests in case of 300-sec segment length using average power as the only feature.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Average

Average relative error 11.71% 9.99% 9.19% 13.49% 12.35% 7.32% 10.68%
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number 1 at the beginning. The reason of choosing

the first cluster is that usually the driving pattern has

low speed and power demand just after starting an

EV. After the first segment, the driving condition is

updated based on the extracted features.
Figures 21 and 22 show the estimated RDR using

the proposed clustering method based on: (i) two fea-

tures, (ii) average power, and (iii) average speed

respectively. According to Figure 21, the estimated

RDR drops from 110 km to around 75 km when the

estimator recognises the change in driving pattern

from urban driving to highway driving. After that,

the estimated range drops steadily as the recognised

driving pattern keeps unchanged and the battery

state-of-charge decreases gradually. However, by

using only one of the ‘average power’ or ‘average

speed’, the estimated range has more fluctuation as

shown in Figure 22(a) and (b). Table 7 summarises

the results in form of the number of cluster changes

and average relative error using three different clus-

tering approaches. Since the relative error of energy

consumption estimation using all the three clustering

approaches is at a similar level (i.e. around 9%),

therefore, we can conclude that the clustering

method using both features is preferred because of

fewer cluster changes. Again it should be highlighted
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Figure 19. Average relative error of energy consumption estimation using two features for different segment lengths.

Table 5. Average relative error of different tests in case of 300-sec segment length and using both average speed and average power.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Average

Average relative error 11.56% 10.77% 9.23% 7.73% 11.03% 8.25% 9.76%

(a) (b)

Figure 20. Driving segments clustering: (a) clustering based on speed/power thresholds, (b) clustering using k-means method.
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here that a proper trade-off is necessary between EV

user’s comfort (by providing a more consistent esti-

mation) and sensitivity to a quick change in driving

pattern (i.e. higher RDR accuracy). As discussed ear-

lier, one clustering solution can bring a higher accu-

racy in RDR but with the cost of more fluctuations

on the dashboard. The extreme example of this case is

a pure RDR estimator that works based on instanta-

neous energy consumption, which is ‘too accurate’ to

be useable in practice. On the other hand, another

clustering solution can bring a higher robustness in

RDR but with the cost of less sensitivity to a quick

change in driving pattern (i.e. less accuracy). The

extreme example of this case is a RDR estimator

that uses only one cluster (i.e. constant Wh/km) and

a long time window of the motion history. This study

was aimed at exploring other alternative solutions

between those extremes by proposing the idea of driv-

ing pattern recognition in real-time.

Energy consumption prediction results evaluation against a

benchmark method. As a complementary analysis, per-

formance of the proposed method is compared with a

standard benchmark RDR estimation technique.

Average Energy Consumption (AEC) method is

used as the benchmark in which the EV energy con-

sumption per km is estimated according to the vehicle

specifications published by the manufacturer.

Particularly for BMW i3, a new reference is added

which includes the average energy consumption of

that car, which is around 169Wh/km.46 That refer-

ence number is then used in the benchmark method

(i.e. AEC) for energy consumption prediction. The

results are calculated for all six test profiles using

both clustering and AEC methods. Comparison

between the outcomes is presented in Figure 23,

which demonstrates the proposed driving pattern

clustering technique outperforms the standard bench-

mark technique. Except for Test 1 where the AEC

method works well, in all other cases, driving pattern

clustering improves the results. The reason that AEC

works well for Test 1, is that the energy consumption

of that particular test is accidentally very close to the

nominal value of 169Wh/km. Indeed, the driving pat-

tern clustering technique is able to distinguish

between different driving segments however, the

AEC is handling them in a same way. That means

the AEC method generates higher errors when the

Table 6. Average relative error of energy consumption estimation using different clusters and features.

Based on average speed Based on average power Based on both features

Maximum relative error 13.63% 13.49% 11.56%

Minimum relative error 6.06% 7.32% 7.73%

Average relative error 10.28% 10.68% 9.76%

Number of clusters 5 5 3
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Figure 21. RDR estimation during Test 3 based on average power and average speed.
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Figure 22. RDR estimation during Test 3: (a) based on average power, and (b) based on average speed.

Table 7. Number of cluster changes and average relative error during Test 3 using three different clustering approaches.

Based on average

speed

Based on

average power

Based

on both

Segment

No.

savg
(m/s)

Pavg
(kW)

Cluster

No.

Cluster

No.

Cluster

No.

1 7.50 3.50 1 1 1

2 17.20 11.59 3 3 3

3 27.22 17.21 4 4 3

4 22.79 11.45 3 3 3

5 22.65 12.34 3 3 3

Average relative error 8.19% 9.19% 9.23%

Number of cluster changes 3 3 1
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Figure 23. Energy consumption prediction error using AEC and driving pattern clustering methods.
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real energy consumption is more far from the
nominal value.

By considering the average of all six tests, the pro-
posed technique improves the energy consumption
prediction results around 7Wh/km in comparison to
the AEC method. This improvement can be even
more if we could consider the effects of variations
in passenger weight, road gradient, tyre pressure,
and the air conditioning system. All of these factors
directly affect the average power, which is used as a
feature in our driving pattern recognition system. So,
the proposed technique will be able to react to them
however, the AEC method cannot.

Conclusions

This study was aimed at creating a multi-mode EV
range estimator based on driving pattern recognition.
By assuming that the battery capacity is known, range
estimation was presented in form of energy consump-
tion prediction (Wh/km). The proposed technique is
expected to fill the gap between the model-based
range estimation methods, which are more accurate
but need more data and computational effort, and the
history-based range estimators, which are easier to be
implemented in real-time but less accurate. The
history-based methods have been preferred in this
study because of their less complexity (i.e. model-
free) and being easy for implementation in real-time.
Subsequently, an EV range estimation strategy was
proposed that firstly recognise the driving pattern
over the last few minutes of vehicle motion, and
then classifies the driving pattern into one of the pre-
defined clusters (driving modes). The energy con-
sumption predictor uses that information until it
recognises a change in the driving pattern, which is
the time to switch to another mode. Different number
of clusters and segment lengths (ranging from 60 to
360 seconds) were studies to find the optimum seg-
ment length and the number of driving modes.
Average speed and average power were chosen to be
used as driving features. According to the results, by
considering segment length of 300 seconds and three
clusters, an average relative error of around 9% was
obtained for EV energy consumption prediction when
compared with experimental data. Considering the
fact that an EV range can be affected by a number
of factors, the proposed range estimator demonstrat-
ed a promising level of accuracy. One important fea-
ture of the proposed technique was the ability to be
implementable in real-time. That is against many
other high accuracy model-based estimators in the
literature, which are more accurate but not practical.

In addition to driving conditions, other factors
could also introduce uncertainties, which make the
EV energy consumption prediction even more chal-
lenging. For example, the range of EV drops under
cold or hot climates. The primary contributor to
range decrease is the cabin climate control system.

To maintain the occupant’s comfort within a thermal
comfort zone, heating, ventilation, and air condition-
ing (HVAC) system is utilised, which is the second
most energy-consuming system after the electric
motor. Therefore, it should be considered as an addi-
tional element when developing EV RDR estimation
algorithms. Moreover, the effect of battery thermal
behaviour should be investigated as well to improve
the RDR estimation results.
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