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A new nonlinear lifting line method
for aerodynamic analysis and deep
learning modeling of small unmanned
aerial vehicles
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Abstract

In this work, a computationally efficient and high-precision nonlinear aerodynamic configuration analysis method is

presented for both design optimization and mathematical modeling of small unmanned aerial vehicles. First, we have

developed a novel nonlinear lifting line method which (a) provides very good match for the pre- and post-stall aero-

dynamic behavior in comparison to experiments and computationally intensive tools, (b) generates these results in order

of magnitudes less time in comparison to computationally intensive methods such as computational fluid dynamics. This

method is further extended to a complete configuration analysis tool that incorporates the effects of basic fuselage

geometries. Moreover, a deep learning based surrogate model is developed using data generated by the new aerody-

namic tool that can characterize the nonlinear aerodynamic performance of unmanned aerial vehicles. The major novel

feature of this model is that it can predict the aerodynamic properties of unmanned aerial vehicle configurations by using

only geometric parameters without the need for any special input data or pre-process phase as needed by other

computational aerodynamic analysis tools. The obtained black-box function can calculate the performance of an

unmanned aerial vehicle over a wide angle of attack range on the order of milliseconds, whereas computational fluid

dynamics solutions take several days/weeks in a similar computational environment. The aerodynamic model predictions

show an almost 1-1 coincidence with the numerical data even for configurations with different airfoils that are not used

in model training. The developed model provides a highly capable aerodynamic solver for design optimization studies as

demonstrated through an illustrative profile design example.
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Introduction

Small unmanned aerial vehicles (UAVs) provide an

enabling capability for a wide range of civilian and

military applications such as cargo delivery, surveil-

lance, reconnaissance, and tracking. As such micro,

mini, and small UAVs, which are classified as Class-I

unmanned aerial systems according to NATO stand-

ards,1 stand out as relatively inexpensive systems,2

replacing manned and unmanned tactical units espe-

cially in low speed and low altitude operations.

Within these low Reynolds number flight regimes,
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small UAVs are continuously exposed to performance

variation due to operation at off-design conditions

while maneuvering3 or while flying in adverse weather
conditions. However, besides computationally expen-

sive computational fluid dynamics (CFD) analysis

tools, there is limited amount of aerodynamic analysis

tools that specifically focus on small UAVs within their
nonlinear and viscous flow regimes. Thus, a computa-

tionally efficient and reliable tool for aerodynamic

characterization is required that can be used for both

modeling design optimization and mathematical

modeling of these types of small unmanned aerial sys-
tems.4 Toward this goal, in this article we design a new

nonlinear lifting line method stemming from Prandtl’s

classical lifting line theory (LLT). This method is able

to determine the 3D maximum lift coefficient and the
pre- and post-stall aerodynamic behavior of lifting sur-

faces (such as wing and tail) by using its section’s non-

linear 2D lift curve, which is obtained experimentally

or numerically. The proposed method also gives

induced drag directly, and provides the viscous drag
and pitching moment coefficients by using two-

dimensional (2D) airfoil data based on wind-tunnel

or flight experiments. Once integrated with semi-

empirical fuselage configuration analysis, the complete
methodology provides a fast and reliable aerodynamic

analysis tool for small UAVs.
In general, in small UAV classes, an attempt is made

to create an operational design that meets the require-
ments under very limited size and power restrictions.

At this point, an aerodynamic solver is needed that can

very quickly give a nonlinear aerodynamic perfor-

mance map of thousands of UAV configurations
within certain limits for both design and design optimi-

zation. Although conventional aerodynamic solvers

cannot provide the efficiency required for such a

study, it is possible to create a digital model of the
current aerodynamic method with artificial intelligence

(AI) algorithms, which have become especially popular

recently.5 In the latter part of this article, we design a

neural network model that can predict the nonlinear

aerodynamic characteristics of UAV configurations
by using deep learning techniques. The developed

model shows strong interpolation capability between

design points, and it stands out as an aerodynamic

solver for optimization problems as it does not require
any input other than geometric parameters. We further

demonstrate these specific advantages of the surrogate

model in a small UAV design optimization application.

As illustrated in Figure 1, the proposed methodologies
provide a crucial and explicit design and synthesis tool

for small UAVs. The input–output relationships of the

developed methodologies provide the fundamental

working principle of tools that are also explicitly used

for in-house UAV design and development programs
such as the one illustrated in Figure 2.

If we focus on aerodynamic analysis applications of
such small UAVs, as the complexity of the mathemat-
ical model increases, the flow simulation approaches
real physical conditions, and the error rate in the anal-
ysis decreases. Nevertheless, higher-order solutions
generally require extensive computational capacity
and time,7 making it infeasible for many small UAV
design problems. Therefore, in the early phases of air-
craft design studies, hundreds of aerodynamic analyses
are required for different geometries at particular flow
conditions as a part of design optimization. For this
reason, it is preferable to use low-order methods, which
have a significantly lower computational power
requirement and a shorter processing time than the
CFD methods based on the Navier–Stokes equations.

Literature review – Computational

aerodynamic model

Throughout history, numerous methods are developed
for aerodynamic configuration analysis. The early
methods have been geared towards hand calculations
and the most popular of them is based on the Prandtl’s
classical lifting line theory.8,9 Some of the earlier non-
linear applications of this type of method focused cal-
culation of pre-stall performance of wings.10,11

Unfortunately, these methods are generally limited
with the single lifting surface with no-sweep and no-
dihedral at a low and moderate angle of attack flight
regime. A discrete application of the lifting line theory
named as numerical lifting line method begins with the
work of Weissinger.12 Numerical lifting line methods
rely on the assumptions that the flow is irrotational and
inviscid.13 However, nonlinear applications of this
method can also be formed by utilizing the 2D airfoil
data14,15 as the base aerodynamic characteristic model.
Another group of methods for aerodynamic

Figure 1. Basic input–output relationships of methodologies.

2 International Journal of Micro Air Vehicles



configuration analysis, namely lifting surface methods,

begins with the work of Falkner.16 In these methods,

any lifting surface is approximated by its camber sur-

face by ignoring the thickness and they are known
more like as vortex lattice methods since 1970s. Also,

nonlinear applications of this method can be found in

the literature.17,18 Popular computational aerodynamic

programs for small and mini UAVs such as XFLR5,19

OpenVSP/VSPAero,20 Tornado VLM,21,22 and

MachUp23 utilize these potential theory based meth-

ods. When nonlinear analysis of a complete aircraft is

considered, it is observed that the estimation success
and the reliability of the mentioned studies are limit-

ed.7,24 We further refer the reader to literature7,24 and

Table 4 for an in-depth comparison of the existing

computational aerodynamic analysis tools.

State of art and contributions –

Computational aerodynamic model

Using potential theory based mathematical models, it is

possible to obtain the lift, induced drag, and moment

coefficients of a wing at low and medium angles of

attack. However, because the viscosity effects in the

flow are neglected in potential theory, nonlinear behav-

ior of the lift curve at a high angle of attack and the
stall characteristics of the wing in the post-stall region

cannot be determined by using low-order linear meth-

ods.25–27 In addition, the maximum lift and viscous

drag coefficients, which are important parameters for

design, flight control and performance studies,28

cannot be calculated. Nevertheless, in the literature, a

number of studies based on low-order methods have

been reported that include viscosity effect modifica-

tions. For example, in nonlinear applications of the

classical lifting line method, viscous effects of the 2D

section are reflected to three-dimensional (3D) wing
characteristics11,29 using an iterative method.

However, direct application of these methods results

in limited and imprecise approximation of the nonlin-

ear aerodynamic characteristics for wing geometries

without sweep and dihedral angles in the subsonic

regime. As such, our aerodynamic method presented

in this work also employs an iterative method, but

with a key additional partial linear approximation to
the lift curve. Using the new method, we performed a

configuration analysis on the Aerospace Research

Center (ARC) UAV (see Figure 2) and compared the

lift coefficient results with other high- and low-order

tools as demonstrated in Figure 3. The results clearly

indicate the accuracy of our method in both linear and

also nonlinear regimes in comparison to other existing

standard tools and methodologies. Further informa-
tion about this analysis is provided in the

“Aerodynamic model” section along with other valida-

tion studies. The proposed method brings a novel

approach to the literature with the ability to calculate

nonlinear aerodynamic performance including the

post-stall flight region for a wide class of UAV

configurations.

Literature review – AI based aerodynamic

model

When the focus is on design and design optimization,

traditional engineering tools for the conceptual and

Figure 2. ARC UAV and flight tests.6
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preliminary design phases provide limited flexibility
and capability in general performance estimation of
arbitrary new designs.30,31 It has been possible to
meet these requirements with machine learning meth-
ods such as deep learning, which allow us to train a
highly nonlinear neural network model through regres-
sion analysis via a given set of inputs and associated
outputs. There are several studies in the literature on
determining the performance of 2D airfoils using
machine learning and artificial neural network algo-
rithms.32–34 It is also known that such algorithms are
used to extend the database of a specified aircraft.35–39

The existing methods within the literature40–45 such as
fuzzy inference systems and neural networks are
designed for estimating the performance of a single
configuration under a single flight condition and does
not contain the complete the aircraft configuration. In
addition, these predictions generally focus on a single
target coefficient. Thus, the effort is towards functional
approximation rather than developing a surrogate
model with generalization capability.

State of art and contributions – AI based

aerodynamic model

In this work, we focus on the complete aircraft config-
uration across a wide range of different flight conditions
even in the high angle of attack regimes where fully
nonlinear behavior is observed. We refer the reader to
“Artificial neural network” section, in which we further
demonstrate the precision of our approach in compari-
son to other methods40,41,45 through direct comparison
of the value of the coefficient of determination R2. As
such, for large-scale design optimization problems, it is

necessary to train the model with huge amounts of data
that include numerous combinations of different geo-
metric configurations. In the literature, flight tests,
experimental studies, and a combination of low- and
high-order computational methods have been used to
generate restrictive data sets tailored towards more spe-
cific design problems.35 Creating large data sets with
flight tests, experimental studies, and high-order compu-
tational methods such as CFD can become computa-
tionally extensive and practically infeasible.46 At this
stage, low-order computational aerodynamic methods
stand out as a cheap and fast option. However, as
explained previously, these methods generally do not
take into consideration the most critical viscous effects.
Therefore, the nonlinear behavior of the lift curve at a
high angle of attack and the stall characteristics of the
aerial vehicle in the pre- and post-stall regions cannot be
determined. Because nonlinear behavior of lift curves is
especially seen at low Reynolds numbers, this problem
comes to the forefront in every small UAV application.
To address this problem, we propose the design of a
neural network to predict aerodynamic performance
across a wide combination of aerodynamic geometries
and configurations. To train the artificial neural net-
work model, a large data set was produced by using
our new computationally efficient nonlinear lifting line
method. Because of the speed and reliability of the aero-
dynamics analysis tool, it was possible to generate and
analyze tens of thousands of configurations in minutes
even on a personal computer. The designed artificial
neural network model essentially calculates the aerody-
namic performance of various UAV configurations
including the 3D maximum lift coefficient and pre-
and post-stall aerodynamic behavior without requiring
2D airfoil performance data. In the training of the
neural network model, the NACA four-digit series air-
foils are defined by their geometric parameters: camber
location, camber, and thickness ratio.47 This definition
allows the model to use only the dimensional parameters
as inputs without requiring 2D airfoil performance data.
The results show that model prediction exhibits an
almost 1-1 coincidence with the numerical data even
for configurations with different airfoils that are not
used in model training. This demonstrates the generali-
zation capability of the trained model. This is further
illustrated in Figure 4, in which the lift coefficient pre-
diction from the neural network model shows an excel-
lent match with the real lift coefficient data associated
with a conventional UAV configuration. Further infor-
mation and test cases can be found in the “Application
of surrogate model” subsection.

The results presented in this article partially origi-
nate from two preliminary works5,7 from our research
group. To be specific, the aerodynamic model part par-
tially covers the research in Karali et al.7 However, in

Figure 3. ARC UAV lift coefficient comparison.
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this study, we have further developed the existing algo-
rithm and employed a more systematic approach by
incorporating the fuselage aerodynamics into the anal-
ysis tool so that it can model the complete UAV aero-
dynamics. In addition, we have reduced the number of
iterations required to achieve the final circulation dis-
tribution required by updating the iteration section of
the algorithm. The origin of the neural network model
in the second part of this work stems from our prelim-
inary analysis in Karali et al..5 In this article, we have
extended the methodology from Karali et al.5 to a com-
plete UAV solution by adding the fuselage definition to
the AI model. In addition, we have significantly
enlarged the data set used to train of the model.
Based on these differences, we have produced a new
feature set using a novel algorithm and developed a
new network structure. This was crucial for claiming
generalization capability for the proposed method and
model. In addition, in this work, we have demonstrated
the capability of the model through a simple illustrative
design optimization example.

The rest of the article is organized as follows: In the
“Aerodynamic model” section, the nonlinear lifting
line method is explained, providing insight into its
mathematical basis and several test examples. In the
“Artificial neural networks model” section, in-depth
information is given about the structure of the algo-
rithm, data sets, and test examples. Next, the surrogate
model used in the design optimization of a small UAV
and the results are provided. Finally, the conclusions
are presented, and the objectives planned to be
achieved in future studies are explained.

Aerodynamic model

As the basis of our aerodynamic configuration analy-
sis, we utilize our nonlinear lifting line approach,7

which modifies the potential flow based Prandtl’s lift-
ing line theory for the calculation of nonlinear charac-
teristics at high angles of attack. In Figure 5, the
process diagram of the nonlinear lifting line methodol-
ogy is given. The main features of the method can be
summarized as a partial linear approximation to the lift
curve and an iteration process to correct the error due
to linear approximation. Calculations in the method
begin from the zero lift angle of attack of 3D wing
geometry and proceeds step by step with an appropri-
ate increase in the angle of attack. At each angle of
attack, the error in the lift coefficient due to linear
approximation is corrected by using an iteration pro-
cess on a spanwise circulation distribution.

Figure 4. Neural network predictions for lift coefficient of a
conventional UAV. Figure 5. Flowchart of nonlinear lifting line methodology.
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Classical lifting line theory

In Prandtl’s lifting line theory, also known as classical

lifting line theory, the flow around a finite wing is sim-

ulated by a system of horseshoe vortices in uniform

parallel free flow. The leading edge filaments of the

horseshoe vortex all coincide on the wing as the

bound vortex to represent the effect of the wing,

while the side part filaments reflect the impacts of the

trailing vortices. Detailed information about this math-

ematical model can be found in any aerodynamics

textbook.48,49

In general applications of this model, the streamwise

variation in strength of the bound vortex is represented

by the sinus Fourier series

CðhÞ ¼ 4sV1
XN
j¼1

AjsinðjhÞ (1)

and the aerodynamic parameters of the lifting surface

are obtained as follows

CL ¼ pARA1 (2)

CDi
¼ C2

L

pAR
ð1þ dÞ; d ¼

XN
j¼2

j
Aj

A1

� �2

(3)

e ¼
XN
j¼1

jAjsinðjhÞ
sinðhÞ (4)

The Fourier coefficients, Aj, depend on the geometry

of the wing and the angle of attack. In the classical

method, a linear solution is obtained for the 3D wing

with a one-step calculation using the linear lift curve

slope of the 2D profile. However, in this article, a new

partial linear approach is used for the 2D lift curve.

Partial linear approach to nonlinear

lift curve

In the nonlinear region of a lift curve, for a spanwise

station, i, of a wing at any incidence, let aki and ckli be

the local geometric angle of attack and the local lift

coefficient, respectively (see Figure 6). Assume that

the lift curve slope remains constant for a small

increase of Da in the angle of attack. If the new local

geometric angle of attack is defined as akþ1i , then the

new lift coefficient is obtained as

ckþ1li
¼ ckli þ aki ðakþ1i � aki Þ (5)

For the same lift coefficient, the following equation

can be written with a 2D approach as in the classical

lifting line method

ckþ1li
¼ ckli þ ak1i

akþ1ei
� akei

� �
(6)

where ae is the effective angle of attack and a1 is the

2D lift curve slope, which is also assumed constant for

the increase Da. The differences between the local geo-

metric angles of attack and the effective angles of

attack are the downwash angles

aki � akei ¼ eki ; akþ1i � akþ1ei
¼ ekþ1i (7)

Introducing these relations in equation (6)

ckþ1li
¼ ckli þ ak1i

akþ1i � ekþ1i

� �
� aki � eki

� �h i
(8)

Recalling that the change in the angle of attack Da is

akþ1i � aki ¼ Da (9)

the following equation is obtained

ckþ1li
¼ ckli þ ak1i

Da� ekþ1i � eki

� �h i
(10)

If the Kutta–Joukowski theorem for the lift is

applied, the section lift coefficient is obtained in

terms of the circulation

L0 ¼ q1V1C ¼ cl
1

2
q1V

2
1c! cl ¼ 2C

V1c
(11)

Introducing this relation, equation (10) gives

2Ckþ1

V1ci
¼ 2Ck

V1ci
þ ak1i

Da� ekþ1i � eki

� �h i
(12)

Figure 6. Partial linear approach to the lift curve.
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Introducing equations (1) and (4), which represent

the circulation and the downwash angle in terms of the

Fourier coefficients, into equation (12) and rearrang-

ing, one obtains

XN
j¼1

1

lki
þ j

sinhi

� �
sinjhiA

kþ1
j ¼

XN
j¼1

1

lki
þ j

sinhi

� �
sinjhiA

k
j þ Da

(13)

where

lki ¼
8s

ak1i
ci

(14)

Thus, the relation between the spanwise circulation

distribution and wing geometry is ensured. Applying

this equation to properly distributed N sections

(called stations) along the wingspan, the following

linear equation system is obtained

XN
j¼1

Dk
ijA

kþ1
j ¼

XN
j¼1

Dk
ijA

k
j þ Da; ði ¼ 1; . . . ;NÞ (15)

where

Dk
ij ¼

1

lki
þ j

sinhi

� �
sinjhi (16)

This system of equations can be written in matrix

form as follows

Dk
ij

h i
Akþ1

j

n o
¼ Dk

ij

h i
Ak

j

n o
þ fDag (17)

where Ak
j are the Fourier series coefficients of the pre-

vious angle of attack, and they are assumed to be

known previously. The solution of this system of equa-

tion is defined as

Akþ1
j

n o
¼ Ak

j

n o
þ Dk

ij

h i�1
fDag (18)

By using the obtained Akþ1
j Fourier coefficients, the

aerodynamic parameters of the wing such as the lift

coefficient, induced drag coefficient, and effective

angle of attack can be calculated for the new step. It

should be noted that, at each new angle of attack step,

the effective angles of attack and 2D lift curve slope, aki ,

and therefore, the Dk
ij coefficients, will change.

When equation (18) is examined, it appears that

each calculation step depends on the previous solution.

Thus, it is necessary to determine a starting point at the

beginning of equation (18). In this study, the zero lift

angle of attack of the 3D wing was used as the

beginning of the solution. The procedure to obtain
this angle is given in the next subsection.

Moreover, as can be seen from equation (18), the
partial linear approach solution depends on the step
size Da. Using a rectangular planform wing with an
AR 10 and NACA 4415 cross section, a test application
was conducted and the results are demonstrated in
Figure 7. It can be clearly stated that the different
step sizes in the calculations lead to different results
in 3D wing performance.

In Figure 7, as the calculation steps become smaller,
the solutions begin to converge to a single specific
curve. However, it is not practical to analyze with
very small step sizes. To overcome this problem, after
each calculation step, an iterative procedure is applied
to the spanwise circulation distribution. The detailed
information about this process is given in the section
titled “Iteration method for circulations”. However,
first, the Fourier series of the starting point must be
calculated.

Calculation of zero lift angle of attack

If the lift curve of a 3D wing is examined, it is observed
that the zero lift angle of attack point usually remains
in a narrow linear region. It is possible to find this
angle by an inverse solution using classical lifting line
theory. To achieve this, first, the system of linear equa-
tions is arranged in matrix form as follows

Dij½ � Ajf g ¼ ai � a0if g (19)

Figure 7. Calculated lift curves for different step sizes using
equation (18).
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where a0i is the zero lift angle of attack of the ith sec-

tion along the span, and Dij is given above by equation

(16). If there is a geometric twist on the wing, it is

convenient to define local geometric angles of attack

in terms of the root section’s angle of attack, aroot, and
the local twist angle bi as follows

ai ¼ aroot þ bi (20)

With this definition, equation (19) takes the form

Dij½ � Ajf g ¼ arootf g þ bi � a0if g (21)

As is known from classical lifting line theory, the lift

coefficient depends on the first Fourier coefficient A1 as

given in equation (2), and it is clear that, when the lift is

zero, A1 is also zero. Thus, if equation (21) is rear-

ranged with aroot as the unknown instead of A1, the

following system of linear equations is obtained

�1 D12 . . . D1N

�1 D22 . . . D2N

..

. ..
. ..

. ..
.

�1 DN . . . DNN

2
666664

3
777775

aroot
A2

..

.

AN

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

b1 � a01
b2 � a0N2

..

.

bN � a0N

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
(22)

In this matrix system, the RHS vector is known

from the geometrical properties of the wing. The Dij

coefficients are calculated by using the 2D lift curve

slope a1 of the airfoil around its zero lift angle

of attack.

Iteration method for circulations

In the step-by-step procedure explained in the partial

linear approach, the Fourier coefficients at any new

angle of attack are calculated by using 2D lift curve

slopes at the previous angle of attack. Because these

slopes are assumed to be the same as the values at the

previous angle of attack for the one-step calculation, the

Fourier coefficients calculated for the new angle of

attack have an error depending on the step size Da.
Because of the iteration process, which is shown with

the red dashed line in Figure 8, the error is minimized.

These errors have been shown in Figure 7 for several

step sizes, and it is seen that while the step size is larger,

the error is also larger. Therefore, an iteration is

required at each angle of attack step to correct this error.
The iterative method used in the current study is based

on the correction of the spanwise circulation distribution

by using the wing section’s 2D lift coefficients obtained

either experimentally or numerically. This procedure

begins with the wing lift coefficient obtained at the new

angle of attack using the partial linear approach.
The iteration steps are as follows:
(i) Calculate the circulation distribution by using the

Fourier coefficients obtained from the partial linear

approximation

Cold
i ¼ 4sV1

XN
j¼1

Ajsinjhi (23)

(ii) Calculate the downwash angles by using the

Fourier coefficients in equation (4) and the effective

angles of attack as follows

aei ¼ ai � ei (24)

(iii) For each section, determine the local lift coeffi-

cient by using the effective angles of attack in the section’s

2D data obtained either experimentally or numerically.
(iv) Calculate the new circulation distribution with

the following relationship obtained from the

Figure 8. Iteration process representation on the lift curve.
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Kutta-Joukowski law for the lift and the lift coefficient
definition

Cnew
i ¼ 1

2
V1cicli (25)

(v) Compare these circulations with the previous
one. If the difference is smaller than 10�5, exit the iter-
ation loop, otherwise calculate new circulation values
as follows

Ci ¼ Cold
i þ RF Cnew

i � Cold
i

� �
(26)

where RF is a relaxation factor, whose value is chosen
as 0.05 here in the examples

(vi) Reorganizing equation (1) as a system of linear
equations, one obtains

sin1h1 sin3h1 . . . sinnh1
sin1h2 sin3h2 . . . sinnh2

..

. ..
. ..

. ..
.

sin1hn sin3hn . . . sinnhn

2
6664

3
7775

A1

A2

..

.

An

8>>><
>>>:

9>>>=
>>>;

¼
C1=4sV1
C2=4sV1

..

.

Cn=4SV1

8>>><
>>>:

9>>>=
>>>;

(27)

In equation (27), the coefficient matrix comprises
constant and known parameters. Because the circula-
tion distribution is obtained in the previous step, cal-
culate new Fourier coefficients using the inverse of
coefficient matrix.

(vii) Repeat steps 1 to 6 until convergence is
obtained.

A case study of this iteration process is conducted
on the wing that was used above to generate Figure 7.
The outcome is shown in Figure 9 together with the
previous lift curves. The results of this application
obtained for Da ¼ 2� and Da ¼ 5� steps demonstrate
the capability of the iteration method.

Calculation of aerodynamic coefficients

Using the final form of the Fourier series coefficients, it
is possible to calculate the lift and induced drag coef-
ficients via equations (2) and (3). However, the classical
methodology does not give information about any
other force or moment parameters. Nevertheless, the
viscous drag and pitching moment coefficients can be
obtained by using 2D experimental or numerical
data of the wing section. To achieve this, first 2D
data are interpolated to obtain corresponding values
for the effective angles of attack given by the method

at each spanwise station. Later, these values are inte-

grated numerically along the span as in equations (28)

and (29)

CDv
¼ 2

S

XN
i¼1

Si�cDvi
; �cDvi

¼ cDvi
þ cDviþ1

2
(28)

Cmy
¼ 2

S�c

XN
i¼1

Si�ci�cmyi
; �cmyi

¼ cmyi
þ cmyiþ1

2
(29)

where

Si ¼ ci þ ciþ1
2

yiþ1 � yið Þand�ci ¼ ci þ ciþ1
2

(30)

Similar to these coefficients, flow separation points

and pressure coefficients can be also calculated by

using 2D data of the wing section. The data in the

look-up table are interpolated according to the effec-

tive angle of attack at each spanwise station.

Application of the aerodynamic model

In this section, the results of several test applications of

the new nonlinear lifting line method are presented to

show its applicability, limits, advantages, and disad-

vantages. Using the Visual Basic programming lan-

guage, a computer program was developed. The main

algorithm of the program is shown in Table 1.
First, the method was validated with experimental

data. Ostowari and Naik’s experimental studies on

Figure 9. Lift curves for different step sizes of the rectangular
wing.
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NACA 44XX airfoil sections are convenient data sour-

ces for the validations.50 These studies include 2D

experimental data for NACA 44XX airfoils for differ-

ent thickness ratios as well as 3D experimental results

for rectangular wings of different aspect ratios at sev-

eral Reynolds numbers. These airfoils are well known

and very popular in aviation. In particular, several

UAVs, micro aerial vehicles, and light aircraft use

these four-series wing sections. As such, even tactical

UAVs such as AAI RQ-7 Shadow and AAI RQ-2

Pioneer are examples of UAVs with their NACA

4415 cross-sectional rectangular wings.
Hence, a rectangular wing of aspect ratio 9 with a

NACA 4415 section is chosen for the first test case (see

Table 2). This wing will be analyzed for two different

Reynolds numbers: 0:25� 106 and 0:50� 106. In the
next figures, M was used in the legends to represent
the Reynolds number 106.

The results obtained from the analysis are illustrated
together with the experimental data in Figure 11. It is
clearly observed that the numerical results are almost
1-1 coincident with the experimental data in both the
linear and nonlinear regions. The calculated maximum
lift coefficients are nearly equal to the experimental
values for both Reynolds numbers. These results
show that the current method can precisely calculate
the lift coefficient in both the linear and nonlinear
regions up to 10� beyond the stall point for
Re ¼ 0:25M. However, after the 25

�
angle of attack,

there is a small offset between the lift curves for
Re ¼ 0:50M. Furthermore, the calculated total drag
and pitching moment curves also showed satisfactory
results. It must be noted that the results, which are
taken from the literature, are represented by an average
curve, because some fluctuations are present in the
experimental data of the pitching moment coefficients.

In the second test case, a rectangular wing of aspect
ratio 12 with a NACA 4415 section was used (see
Table 3). In comparison with Test I, the only difference
in this case is that the aspect ratio has been slightly
increased.

As in the previous test case, numerical results are
given with validation data in Figure 12. In this exam-
ple, the nonlinear behavior of the experimental lift
curve begins at a nearly 12� angle of attack. As in the
previous test case, the numerical method is able to cal-
culate this nonlinear region accurately up to a 25� angle
of attack. As seen in Figure 12, the developed method
can predict the post-stall aerodynamic behavior of the
3D wing. The second graph shows the results of the
calculated total drag coefficient for a zero lift angle
attack up to a ¼ 30�. These numerical results are

Figure 10. U.S. Navy RQ-2B Pioneer51 and RQ-7B Shadow.52

Table 1. Algorithm of nonlinear lifting line method.

Algorithm of N-LLT program

Inputs:

Geometry parameters

2D Airfoil performance data

1: for i ¼ 1 to N  number of stations

2: compute geometry parameters fcðiÞ; yðiÞ; . . .g
3: end for

4: solve Dij½ � Ajf g ¼ arootf g þ bi � a0if g
5: while aroot < amax  max AoA limit

6: Akþ1j

n o
¼ Akj

n o
þ Dk

ij

h i�1fDag
7: Cold

i ¼ 4sV1
XN

j¼1 Ajsinjhi
8: for iter ¼ 1 tomaxiter
9: compute Aj using Ci

10: e ¼
XN

j¼1
jAjsinðjhÞ
sinðhÞ  downwash angle

11: aei ¼ ai � ei
12: Cnew

i ¼ 1
2
V1cicli

13: if jCold
i � Cnew

i j < 10�5

14: exit for

15: end if

16: Ci ¼ Cold
i þ RF Cnew

i � Cold
i

� �
17: end for

18: compute CL; CD; Cm
Output:

Aerodynamic performance of 3D geometry

Table 2. Test Case I specifications.

Section Planform AR Re

NACA 4415 Rectangular 9 0:25� 106–0:50� 106
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compared with the experimental data in the literature.
From this information, it is clear that the value of the

total drag coefficient calculated using the method is
very close to its experimental value. In the third

graph, the numerical pitching moment results exhibit
an offset relative to the experimental data.

Nevertheless, the method estimates the behavior of
the moment curve with a small margin of error.

In the next validation study, the developed tool will
be compared with other computational aerodynamic

tools. Several tools have been described in the literature
for aerodynamic analysis of lifting surfaces and config-

urations. The tools used in this study are listed in
Table 4 with their running time. In this table, all

tools except NASA TetrUSS USM3D53 are freely
downloadable analysis tools.

In this test case, the geometry is a rectangular wing

of AR¼ 12 with a NACA 4415 section. The analyses
for this case were performed for a Reynolds number of

3 million based on the chord length. Specifications for
geometry are given in Table 5. Two-dimensional data

for the current developed method are taken from a
database in the literature53 generated by using NASA

USM3D tool.
The results of all these analyses are presented in

Figure 13. In the figure the black dashed line represents
3D data obtained using the NASA USM3D CFD tool

and given in a database in the literature.53 XFLR5
VLM,19 XFLR5 Panel Method,19 OpenVSP

(VSPAero) VLM, and Tornado VLM22 codes calculate
the lift curves with a linear approximation because

their mathematical model is based on potential

theory. Hence, these tools are not able to predict the
maximum lift coefficient and nonlinear behavior in the
pre- and post-stall regions. On the other hand, XFLR5
LLT (only for a single surface) and DATCOM perform
a calculation to estimate the maximum lift coefficient.
However, the DATCOM prediction results in particu-
lar are far from satisfactory, as seen in Figure 13.

A detailed examination of Figure 13 shows that the
developed method calculated both the linear and non-
linear region of the lift curve with a minimum error
margin. Further, the calculated maximum lift coeffi-
cient almost equals validation value.

In Figure 14, the section lift coefficients, which are
calculated by the developed method, are compared
with the CFD results. Considering that the nonlinear
behavior starts at 12�, the calculated lift distribution at
the pre-stall angle of attack (a ¼ 14�) appears to be
highly accurate. It is important to note that the
method calculates these values at a low number of sta-
tions. This is why lines connecting these points perfect-
ly straight. In addition to this, nonlinear LLT predicts
the lift distribution with a very small error margin at
the stall angle of attack, which is represented by the
orange line. Furthermore, it can calculate the general
characteristics of the lift distribution in the post-stall
region correctly. As can be seen from the red curve, a
large fluctuation in the lift distribution can be captured
by the developed method. However, low fluctuations
between the spanwise stations are ignored by the pro-
gram. The program can calculate all the angles of
attack range within 0.06 s on a typical personal com-
puter configuration.

The flow separation lines, which is another feature
calculated by the developed method, are compared
with the results in the database. For this purpose, the
required 2D flow separation input was obtained by
using XFOIL. The results, shown in Figure 15, are
formed as a scaled half-wing. In the graphs, the same
color was used for the angles of attack as in the

Figure 11. Test Case I: lift, total drag, and pitching moment coefficients.

Table 3. Test case II specifications.

Section Planform AR Re

NACA 4415 Rectangular 12 0:25� 106–0:50� 106
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previous ones. According to the lift curve in Figure 13,

wing stall begins at an 18� angle of attack. It is gener-

ally known that for a rectangular planform, the wing’s

root region stalls first. This situation can also be

observed in the results of the numerical analysis and

CFD. Similar to the lift distribution, the method was

also able to capture large changes in the flow separa-

tion points at the spanwise stations. The results were

found to be quite successful for a low-order method.

Extension of the method to aerodynamic

analysis of the conventional aerial vehicle

It is known that the Prandtl’s classical lifting line

theory is applicable only to a single lifting surface. In

this study, a methodology was developed to make it

possible to solve lifting surface configurations. To
accomplish this, it is necessary to calculate the down-
wash of the wing on the tail. A nonlinear methodology
can be repeated for the aft surface. In Phillips et al.,54 a
mathematical model is developed to estimate the down-
wash a few chord lengths or more aft of an unswept
wing. In this model, a rolled-up vortex sheet is taken as
a single horseshoe shaped vortex filament. A numerical
calculation is performed with Fourier series coefficients
and wing geometry data; therefore, completely arbi-
trary spanwise variations can be used in the method.

Downwash velocities at tail stations can be calculated
with Fourier coefficients of the wing geometry, which is
obtained at the end of the iteration process. In equation
(31), the kb, kp, and kv parameters represent the wingtip
vortex span, tail position, and wingtip vortex strength

Figure 12. Test Case II: lift, total drag, and pitching moment coefficients.

Table 4. Computational aerodynamic analysis tools with their
solution time.

Program Method Time

Developed code Nonlinear lifting line method ms

NASA USM3D Computational fluid dynamics h/day

XFLR5 Lifting line method ms

XFLR5 Vortex lattice method s

XFLR5 Panel method s

Tornado Vortex lattice method s

OpenVSP Vortex lattice method s

DATCOM Semi-empirical method ms

Table 5. Test Case III specifications.

Section Planform AR Re

NACA 4415 Rectangular 12 3:0� 106

Figure 13. Test Case III: lift coefficients.
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factors, respectively. While the dimensionless parame-

ters kv and kb depend on the planform shape of the

wing, kp depends on both the planform shape of the

wing and the position of the tail relative to the wing

eið�x; �y; �zÞ ffi �Vzð�x; �y; �zÞ
V1

¼ kvkp
kb

CLw
=ARw

� �
(31)

If the downwash angle at the tail location and twist

angle of the tail are known, the angle of attack for each

tail station is obtained as

ataili ¼ aroot þ btaili � ei (32)

With this information, the new developed nonlinear

lifting line method can be applied to the tail geometry.

Thus, all the calculated parameters related to the wing

are obtained for the tail as well, and nonlinear analysis

of the wing-tail configurations becomes possible. The

aerodynamic force coefficients for the lifting surface

configurations are obtained as in equations (33) and (34)

CLtotal
¼ CLwing

þ CLtail

Stail

Sref
(33)

CDtotal
¼ CDwing

þ CDtail

Stail

Sref
(34)

In this way, it is possible to calculate the total drag
of wing-tail configurations with viscous effects.
However, it is known that the fuselage geometry has
a major impact, especially in terms of parasitic drag for
the complete configuration. According to Sadraey, usu-
ally 30–50% of the aircraft’s zero lift drag (CDo

) is
caused by the fuselage.55 As in the example used in
this study, UAVs typically have simple fuselage geom-
etries. Hence, it is possible to calculate the drag force
using analytical/empirical methods.

Using these methods,56 zero-lift drag coefficient for
fuselage geometries can be formulated as

CD0fslg
¼ RwfCf 1þ 60

lf=df
� �3 þ 0:0025 lf=df

� �( )
Swetfslg

Sref

(35)

In addition to this coefficient, other components
such as landing gears, stores, and pylons can be calcu-
lated with these analytical/empirical methods. In light
of this information, the total drag coefficient of the
aircraft can finally be calculated with equation (36)

CDtotal
¼ CDwing

þ CDtail
þ CDfuselage

þ CDmisc
(36)

In a simple UAV analysis, the pitching moment is
needed to determine the static stability of the vehicle. If
a component-based approach is used to calculate this
coefficient, equation (37) is obtained

Cmtotal
¼ Cmcgwing

þ Cmcgtail
þ Cmcgfuselage

(37)

The contribution of the wing and tail to an air-
plane’s static stability can be calculated with the basic
force–moment equations that determine total moment
over the CG point. Multhopp’s method can be used to
calculate the contribution of the body to the pitching
moment57

Cm0fuselage
¼ k2 � k1

36:5S�c

Xx¼lf
x¼0

w2
f a0w þ ifð ÞDx (38)

Cmafuselage
¼ 1

36:5S�c

Xx¼lf
x¼0

w2
f @eu=@aDx (39)

Detailed information and sample applications about
these equations can be found in the literature.56,57

Thus, all the equations necessary for a complete
UAV analysis are completed.

Figure 14. Test Case III: section lift coefficient distributions.

Figure 15. Test Case III: flow separation points.
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The new developed tool has been used in the design

and mathematical modeling of the ARC UAV (see

Figure 16). To be specific, using the proposed method-

ology, the nonlinear performance of different UAV

configurations was analyzed and the results quickly

transferred to the dynamic model for simulation and

flight control system design. We refer the reader to the

literature58–60 for further details of usage of these

models within the calculation of stability derivatives

and the flight control system design processes.
In this example, the aerodynamic performance of

the project UAV was compared with various analysis

tools, and the results are presented in Figure 17.

Inspection of the lift curve shows that the method is

in good agreement with the CFD (ANSYS Fluent)

results in both the linear and nonlinear regions, includ-

ing stall behavior. Using identical computational hard-

ware configuration, the Fluent CFD analysis for the

CL � a calculation for 15 test points took 120 h, where-

as the new developed methodology took 0.01 s to com-

pute the CL � a calculation for 30 test points.

This shows the remarkable computational advantage

that can be obtained by using the proposed method

while capturing all the important nonlinear effects.

Consequently, the proposed methodology has the

potential to serve as a rapid configuration analysis

tool for both stand-alone analysis and multidisciplinary

design optimization schemes.

In the second graph of Figure 17, the total drag

coefficient curves are compared. As in Test Case III,

the VLM program’s induced drag results are summed

with their viscous drag module solutions. In the devel-

oped method, the contribution of the fuselage to the

total drag coefficient was added to the results obtained

directly from the lifting surfaces.
The angle of attack limit that XFLR5 converges to

in viscous analysis lies in a very narrow range for this

configuration. The developed method exhibits compa-

rable results with CFD and Tornado up to the 9
�
angle

of attack. Interestingly, there is a reduction in the rate

of increase of CFD results after this point. The

DATCOM results are not very reliable in terms of

drag, as stated in the user manual warnings.61

Figure 17 shows that there is a large offset in the

drag curve. This situation also dictates that

DATCOM should be used carefully considering the

limits in empirical tables, especially for UAV dimen-

sions and flight regimes.
Finally, Figure 17 compares the pitching moment

curves. As shown in the figure, the computational

tools’ results are compatible with each other.

However, the developed method, which is shown with

a blue line, exhibits significantly different results at

higher angle of attack regimes as it calculates the pitch-

ing moment curve with fully nonlinear behavior.

Detecting this behavior is critical to accurately model

Figure 17. Test Case IV: lift, total drag, and pitching moment coefficients.

Figure 16. ARC UAV geometry.
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and control the UAV in agile flight. Because the CFD
data are missing in this figure, the offset in the calcu-
lation of the developed method has been tested in a
different way. To show that the difference in behavior
is caused by the inherent nonlinear structure of the lift
curve, linear inviscid 2D performance inputs were used.
This analysis is represented with a black dashed line,
and it is clear that the results are consistent with those
from the other analysis tools. In this way, it can be
concluded that viscous effects are the main reason for
the variation exhibited by the developed method com-
pared to the other tools. In the next section, we focus
on generating an efficient aerodynamic configuration
analysis engine that can be utilized for design optimi-
zation of small UAVs.

Artificial neural network model

One of the key challenges towards in design optimiza-
tion of small UAVs is the lack of fast and precise aero-
dynamic configuration analysis engines that can be
utilized as part of the optimization routines. Toward
this goal, in this work, we generate a black-box func-
tion that can predict the aerodynamic characteristics of
UAV configurations including viscous effects by using
deep learning techniques. To be specific, an artificial
neural network architecture is designed and trained
using the data set created by the aerodynamic analysis
tool presented in the previous section.

Figure 18 shows the colorized process diagram of
the artificial neural network methodology. Extending
our previous work,5 the contribution of the fuselage to
the total drag and pitching moment coefficients is
incorporated into the model by expanding the data
set. In addition, improvements have been made to
both the feature set and the network structure of the
method. Through this, we have achieved a wider gen-
eralization capability within the design space. With the
increase in the training data size, the accuracy of the
neural network in estimating aerodynamic perfor-
mance increases. In the next subsections, we step by
step follow the process diagram of the artificial
neural network methodology shown in Figure 18, start-
ing with data generation. All the data sets, features,
and training configurations are given in detail to
ensure the reproducibility of the presented results.

Data generation

Our nonlinear lifting line method offers a fast and reli-
able method for creating the aerodynamic data neces-
sary to train the neural network model. Toward
creating the base geometric aerodynamic data set, the
geometry definition was modified, and multiple
XFOIL62 analysis outputs were used as the 2D

performance input. Each configuration was analyzed

for approximately 30 different angles of attack. The
relationship between calculation time and configura-

tion numbers is shown in Figure 19 with a log-log
scale. The calculation times show a strong first-order

(i.e., n¼ 1) log relationship. It is also important to note
that in this study, a personal computer is used as the

main computational environment.
In this study, the final data set with 94,500 config-

urations was used, but this number can be increased

with various geometric combinations. Table 6 shows
the number of configurations and the total number of

rows in the data set.
Table 7 summarizes all the 25 parameters in the data

set. Here, 21 of them are related to geometry, while 1

Figure 18. Flowchart of artificial neural network model.
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parameter is related to the flow condition, and 3 to the

performance outputs.
In the first stage of the study, certain geometrical

limits were determined to prevent the data size from

increasing too much. However, as mentioned in the

previous sections, it will not be difficult to increase

these combinations because the program can solve

one configuration for 30 different flow conditions in

0.01 s. The parameters determined for the combina-

tions are listed in Table 8.
Whereas different camber ratio profiles are used in

the wing sections, the tail profile is restricted to the

symmetrical NACA 0012 profile. The Reynolds

number depending on the wing mean aerodynamic

chord was determined to be equivalent to the flight

regime of the small UAVs. By configuring the geomet-

ric dimensions and positions of the tail and fuselage to

the wing geometry, numerous different configurations

with logical dimensions have been produced.

Feature extraction

In the feature extraction process, first, the initial data

set of the raw data is examined. For this purpose, the

correlation matrix was calculated using Pearson’s

method. In Figure 20, positive correlations between

features are shown with dark blue and negative corre-

lations with light blue. The color densities are propor-

tional to the correlation values.
As can be seen from the figure, the angle of attack

data (alpha) as expected, exhibit a strong relationship

with the target data; the CL, CD, and CM coefficients.

The remaining features alone are not sufficient to

increase the generalizing capacity of the method and

to cover the design space. As reported in previous stud-

ies, the initial data set of raw data is insufficient, espe-

cially for the estimation of the pitching moment curve.

An automated feature engineering and selection proce-

dure library, autofeat, is used to overcome this prob-

lem.63 This library improves the prediction accuracy of

a regression model by producing additional nonlinear

features. This library enabled 12 nonlinear features to

be generated and inserted in the initial set.

Structure of the artificial neural network

In this subsection, the artificial neural network struc-

ture and its mathematical basis are explained step by

step. Before training the model, the data set was pre-

screened to detect and to clear anomalies in the aero-

dynamic performance coefficients. At this point, it is

very important to precisely stratify and shuffle the data

set to ensure proper training and prevent undesired

situations. In addition, the data set was divided into

three groups: test, train, and validation. First, 95% of

the data set was reserved for training and 5% for test-

ing. In the next step, 10% of the training set was used

Figure 19. Relationship between the number of configurations
and the calculation time.

Table 6. Data set dimensions and generation times.

Number of

configurations

Total row

number

Parameters

(columns)

Run

time (min)

94,500 2,835,000 25 17.5

Table 7. All configuration parameters in data set.

Wing and tail parameters

Span

Root chord length

Tip chord length

Incidence angle

Airfoil thickness ratio

Airfoil camber ratio

Airfoil max. camber location

2D performance input file name

Fuselage

Hydraulic diameter

Length

Location

x-Distance

y-Distance

z-Distance

Flow condition

Angle of attack (a)
Performance coefficients

Lift coefficient (CL)

Drag coefficient (CD)

Pitching moment coefficient (Cm)
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for validation. The percentages and data numbers of
these groups are further detailed in Table 9.

In the last stage, before establishing the network
structure, the training and the test sets are individually
scaled to prevent the convergence problem caused by
the difference in magnitude of the inputs. As shown in
equation (40), scaling is applied by subtracting the min-
imum value of the set from each data item and dividing
the result by the range of the set. In the equation, xsci
represents the scaled sample

xsci ¼
xi �minðxÞ

maxðxÞ �minðxÞ (40)

The scaled data are supplied the network structure
from the input layer as the features set. The model
consists of the input, output, and six hidden layers
(see Figure 21).

The output of the layers can be formulated as

follows

zli ¼ f Wlxl;sci þ bl
� �

(41)

where f is the activation function, Wl is the weight

matrix, and the bl is the bias vector at the lth layer. In

this algorithm, the activation function decides which

neurons will be activated, in other words, what infor-

mation would be passed to the further layers. The acti-

vation function was chosen as the rectified linear unit

(ReLU), one of the most used activation functions in

neural networks.64 To initialize the weight matrices the

“He normal initializer” was selected.65 This initializer

uses samples from a truncated normal distribution cen-

tered around zero.
The absolute error is used as the loss function to find

the error between the real and predicted values of the

data. In equation (42), while yi is the actual output, ŷi is

the predicted output of the neural network

EðW; bÞ ¼ 1

n

Xn
i¼1
jyi � ŷij (42)

The Adam method was chosen as the optimizer to

minimize the error function by updating the weight and

bias values.66 The Adam optimizer calculates the

Table 8. Geometric parameters and ranges in the data set.

Surface Airfoil Chord AR Incidence x-Location Reynolds number

NACA 2412

Wing NACA 4412 0.2 to 0.6 10 to 20 �2 to 2 – 0:4� 106 to 1:2� 106

NACA 6412

Tail NACA 0012 ð0:5 to 1Þ � cwing 4 to 8 �2 to 2 ð0:4 to 0:6Þ � bwing 0:2� 106 to 1:2� 106

Figure 20. Correlation matrix of initial data set.

Table 9. Training, validation, and test sets.

Set Data %

Number of

data items

Train 85.5% �2,400,000
Validation 9.5% �270,000
Test 5% �141,000

Figure 21. Structure of the neural network. (a) Mean absolute
error vs. epoch. (b) Mean squared error vs. epoch.
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partial derivatives of the cost function and uses this
information to update the moment vectors in each

iteration step.
Finally, a neural network model is built by using the

parameters as summarized in Table 10.
In the next step, the model was trained using the

network structure and the data sets. The learning
curves of the training process are shown in Figure 22.
As can be seen from the figures, the loss is converged to
the minimum value after 250 epochs. The behavior of

the curves and error rate values shows that the learning
processes are completed successfully without over- or
underfitting.

Furthermore, the error values from the training
phase are shown in Table 11. These values were
found satisfactory, and the training phase was
completed.

After finishing the training phase, the proposed
model is verified with a test set that was not used in

the training. The predicted results and real values of the
model for the different configurations in the test set are
compared in Figure 23. Because there are more than
141,000 test data items, comparisons were visualized by

taking 500 points randomly from the data set. As can
be seen from the figures, a large number of different
target values are distributed over a wide range.
However, the model was able to capture even the

most extreme values.
It must be noted that pitching moment calculations

are completed using CG as the reference point at 75%
of the chord for all configurations.

To monitor the success of the entire test set of the

model, the value of the coefficient of determination, R2,
is calculated. The results are visualized in Figure 24. In
these figures, the x-axis and y-axis represent the real
and predicted values, respectively. The value of R2

was quite close to 1 in all target coefficients. This

situation can also be observed in the figures: almost

all the 141,000 test data items are on the regression

curve. The total number of values that are not included

in the regression line is low enough to be

underestimated.
It is important to note that our proposed method

achieves much higher (R2 ¼ 0:99805� 0:99976) in

comparison to different approaches40–45 with the coef-

ficient of determination within (R2 ¼ 0:805� 0:945)

range. This demonstrates the precision and extensive

learning capabilities of our proposed approach even

in the high angle of attack regimes where fully non-

linear behavior is observed. In the next subsection we

will provide these capabilities on various applications.

Application of the surrogate model

In this subsection, the outcomes of several test exam-

ples of the current surrogate model are presented to

show its generalization capability. As previously

explained, the model predicts the nonlinear

Table 10. Hyperparameters for the NN architecture.

Parameters Values

Number of hidden layers 6

Neurons in the 1st 512

Neurons in the 2nd 256

Neurons in the 3rd 128

Neurons in the 4th 64

Neurons in the 5th 32

Neurons in the 6th 16

Activation function ReLU

Optimizer Adam

Initializer HE normal

Loss function MAE

Batch size 512

Epoch number 250

Figure 22. Learning curves of developed model. (a) Predicted
lift coefficients vs. real values. (b) Predicted drag coefficients vs.
real values. (c) Predicted pitching moment coefficients vs. real
values.

Table 11. Training and validation error values.

Data set Mean absolute error Mean squared error

Training 0.00116 0.000018

Validation 0.00124 0.000024
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performance coefficients of the UAV configuration
using only geometry data as input (see Figure 1).
This gives the model a practicality and computation
speed that has never been achieved in any aerodynamic
analysis tool that relies on actual computation of the
flow dynamics.

In Test Cases A and B, a conventional and a tandem
configuration of UAVs with wing profiles used in

training the model were chosen as examples.
Specifications for UAV geometries are summarized in
Table 12.

As can be seen from Figure 25, the predicted results
are nearly equal to the real values. The neural network
model has accurately calculated the lift coefficient in
both the linear and nonlinear regions including post-
stall for conventional and tandem configurations.
Similarly, it has calculated the drag and pitching
moment coefficients successfully. Moreover, the
model was able to capture pitching moment changes
at a high angle of attack due to the nonlinear behavior
of the lifting surfaces.

In Test Cases C and D, the same geometries were
tested as in the previous example, excluding the wing
profiles. This time 3412 and 5412 were used as wing
profiles to test the model generalization capability. The
camber ratio of these generic profiles differs from those
used in training the model. However, as described in
the previous sections, the camber ratio of the profile is
given as input to the model. Thus, the developed model
is intended to calculate other profiles in the NACA 4-
series. The profiles used in the test studies are summa-
rized in Table 13.

The results of these analyses are presented in
Figure 26. As the results show, the new developed
neural network model is compatible with the real
values in both the linear and nonlinear regions. In
this sense, it can be clearly stated that the proposed
model can calculate nonlinear effects on the lift
curves even in the post-stall regime. The success rates
in the drag and pitching moment coefficients are also
very high. The predicted results are almost 1-1 compat-
ible with the real results. Again, it should be noted that
these profiles were not used in model training.
However, the artificial neural network was able to cal-
culate the impact on aerodynamic performance owing
to its ability to interpolate between profiles. Dozens of
applications made in addition to these test studies showFigure 23. Test set performance on target coefficients.

Figure 24. Test set (�141; 000 data) performance for target parameters.
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that the model can calculate interval design points with
very accurately by covering the design space.

To demonstrate the feasibility of the
methodology, developed surrogate model was used as
the aerodynamic solver for an optimization study of
small UAVs. For this purpose, the model was
transferred to MATLAB as a function. A simple design
optimization study was generated using the genetic
algorithm toolbox.

In the GA approach, an initial set of designs is gen-
erated using design variables remaining within prede-
termined limits. For each design, fitness values are
calculated using the cost function, and a random
subset is selected from the current design set for those
that are better fits. Random operations are used to

create new designs using the subset of selected designs.
In this methodology, while the gene represents the
design variable, the chromosome is used to name the
design point. Aerodynamic characterization of new
individuals obtained after crossovers and mutations
can be provided instantly by the currently developed
AI model, and fitness values can be calculated.

By using the Case-A configuration in the previous
test studies, an attempt was made to maximize the
endurance performance of this vehicle. To achieve
this objective, the wing profile and incidence angles
of the lifting surfaces have been optimized in a way
that will ensure static stability conditions and prevent
the maximum drag limit from being exceed. The pur-
pose of this optimization problem is to obtain a con-
figuration with maximum efficiency that provides the
required stability and aerodynamic conditions. The
optimization problem can be defined as

maximize
x

fðxÞ ¼ L

D
(43)

subject to 0:35 < CL < 0:45 (44)

Figure 25. Test Cases A (conventional) and B (tandem) aerodynamic performance coefficients.

Table 13. NACA series airfoils used in test cases.

Conventional Tandem

Surface Case A Case C Case B Case D

Wing 2412 3412 4412 5412

Tail 0012 0012 0012 0012

Table 12. Specifications for Test Cases A and B.

Test Case A Test Case B

Parameters Wing Tail Fuselage Wing Tail Fuselage

Span 2.25 0.9 – 6 3 –

Chord 0.2 0.2 – 0.4 0.4 –

Incidence 0 0 – 1 0 –

Airfoil 2412 0012 – 4412 0012 –

Diameter – – 0.2 – – 0.4

Length – – 2 – – 5

Reynolds 0.4M 0.4M – 0.8M 0.8M –

Location [0,0,0] [1,0,0] [�1,0,0] [0,0,0] [2.5,0,0] [�2.5,0,0]
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Cm0
> 0 (45)

Cma < 0 (46)

CD < 0:035 (47)

where x includes the cruise angle of attack, wing airfoil
camber ratio, and wing and tail incidence angles. The
first inequality constraint is related to the lift coeffi-
cient, and this is necessary to balance the weight with-
out changing the cruise speed dramatically. The
minimum value of Cm0

is determined as zero, because
it is one of the major constraints of longitudinal static
stability. Moreover, the stick fixed pitching moment
slope must be negative for stable longitudinal flight.
As a final condition of inequality, the total drag coef-
ficient is limited to that in the basic configuration to
ensure equality of the thrust and drag forces.

In this optimization problem, geometry variables are
limited to the cruise angle of attack, the wing section
camber ratio, and the incidence angles of the lifting
surfaces (see Table 14). The aim is to increase the

aerodynamic efficiency with small profile changes

while preserving the main geometry dimensions.

However, it is possible to use all the other 14 parame-

ters related to the wing, tail, and fuselage components

shown in Table 7.
The speed of the surrogate model ensured that the

optimization study, which included hundreds of itera-

tions, was completed in 2–3 s. The new values of the

variables are shown in Table 15.
In addition, the new wing profile that the program

optimally designed in the NACA 4-series airfoil family

and the previous airfoil are compared in Figure 27.

This example directly emphasizes the design flexibility

of the method.
According to the results of this study, the aerody-

namic efficiency increased by 5.18%. Several different

geometry parameters such as the wing, tail, and fuse-

lage dimensions can easily be used as variables in sim-

ilar optimization studies. The examples show that this

developed model can be an essential aerodynamic

solver for large-scale aircraft design optimization

studies.

Table 14. Variables with lower and upper bounds.

Variable Symbol Min. Max.

Cruise AoA acruise 0� 3�

Wing incidence iwing 0� 2�

Tail incidence itail �2� 2�

Wing airfoil camber ratio cwing 2% 6%

Table 15. Optimized geometry variables.

Configuration cwing iwing itail

Test Case A 2.00% 0:00� 0:00�

Optimized 2.86% 0:57� 0:04�

Figure 26. Test Case C (conventional) and D (tandem) aerodynamic performance coefficients.
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Conclusions

This article presents a new computational aerodynamic
method and its surrogate model to predict the nonlin-
ear aerodynamic performance of small UAVs. The
developed nonlinear lifting line tool can calculate the
performance of UAV configurations in a remarkably
efficient way in terms of processing time and power. In
the analyses, it was observed that the method can solve
90 different UAV configurations at 30 different angles
of attack in 1 s running time. When the computational
complexity of the developed tool was examined, it was
found that it has a linear time, O(n), behavior.
However, because the method is based on Prandtl’s
lifting line theory, it needs 2D performance inputs of
the section profiles of the lifting surfaces. To eliminate
this deficiency, a new deep learning-based model is
trained using data of 94,500 UAV configurations pro-
duced by the aerodynamic method. Because of the
complex artificial neural networks supported by the
new feature sets, the model has a mean absolute error
order of 1� 10�3. The developed neural network
model provides a stand-alone analysis tool and the
basis for bidirectional design optimization for small
UAVs. In addition to this, the model offers a starting
point for an inverse tool that can calculate geometry
parameters including wing or tail dimensions, section
profiles, incidence angles, and angles of attack of con-
figurations for a given design condition. At the end of
the article, a simple genetic algorithm-based optimiza-
tion application was conducted, and the aerodynamic
efficiency of a generic UAV configuration was
increased by 5.18% in a few seconds. Thus, the devel-
oped model provides a highly capable aerodynamic
solver for such design optimization studies.

However, the proposed approach also has some lim-
itations. Because the method is based on classical lifting
line theory, it is not suitable for unconventional geom-
etries that have wings with high sweep or dihedral
angles and low aspect ratios. Elimination of this defi-
ciency is possible with the development of a new non-
linear tool based on the panel methods. In addition, in
this study, the training of the AI model was provided

by using the mathematical formulation of the NACA-4

series airfoil family. To improve the validity of the sur-

rogate model, the training data need to be further

enhanced to cover different airfoil families.
Our current research is focused on extending the

proposed methodology to capture a wider design

space including further effects on the performance

coefficients.
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